This application claims priority to Chinese Patent Application No. 202111476407.8 filed on Dec. 6, 2021, the disclosure of which is incorporated herein by reference in its entirety.
The present disclosure relates to the chip packaging technologies, and in particular to a double-sided package structure and a manufacturing method thereof.
With the continuous development of semiconductor technologies, to satisfy more and more application requirements, electronic packages are becoming smaller and smaller. To reduce the area of a product, components need to be mounted onto two faces of a substrate, thereby improving the utilization rate. However, mounting components onto the two faces of the substrate brings difficulties for double-sided packaging. The double-sided packaging requires a complex technique and more technical processes than traditional single-sided packaging. As a result, the production costs and the production cycle are greatly increased.
Embodiments of the present disclosure provide a double-sided package structure and a manufacturing method thereof so that components on two surfaces of a double-sided mount structure can be molded simultaneously in one molding process, thereby simplifying the technical process, reducing the difficulty of the packaging technique, and ameliorating the warpage problem of the substrate of the double-sided package structure.
In a first aspect, embodiments of the present disclosure provide a manufacturing method of a double-sided package structure. The method includes the steps below.
At least two discrete double-sided mount structures are secured to a first side of a master at intervals.
The first side of the master is molded such that a molded body encasing the at least two discrete double-sided mount structures is formed.
The master is removed.
The molded body is split such that individual double-sided package structures are obtained.
Optionally, that the at least two discrete double-sided mount structures are secured to the first side of the master at intervals includes the step below.
Electrical connection structures in the at least two discrete double-sided mount structures are soldered onto a pad of the master.
Optionally, after the master is removed, the method further includes the step below.
The molded body on one side of the master is thinned and removed such that the electrical connection structures are exposed.
Optionally, after the molded body on one side of the master is thinned and removed such that the electrical connection structures are exposed, the method further includes the steps below.
A solder ball is embedded in the exposed electrical connection structures.
The solder ball is reflowed such that the solder ball and the electrical connection structure are fused into an external solder ball.
Optionally, that the at least two discrete double-sided mount structures are secured to the first side of the master at intervals includes the step below.
The electrical connection structures in the at least two discrete double-sided mount structures are partially sunk into a temporary adhesive layer of the master.
Optionally, the temporary adhesive layer includes at least one of a pyrolysis adhesive tape, a photolysis adhesive tape or a chemical etching adhesive tape.
Optionally, that the master is removed includes the step below.
The temporary adhesive layer is removed such that the master is separated from the molded body.
Optionally, one electrical connection structure includes any one of the following structures: a first solder ball, a communication carrier board and a second solder ball that are stacked together; a third solder ball; or a copper column.
Optionally, before the at least two discrete double-sided mount structures are secured to the first side of the master at intervals, the method further includes the steps below.
Components are mounted onto a first face of the substrate.
Components are mounted onto a second face of the substrate, where the first face is opposite to the second face.
The substrate whose two faces are mounted with the components is split such that individual double-sided mount structures are formed.
Optionally, that the molded body is split such that individual double-sided package structures are obtained includes the step below.
The molded body is split by being cut such that the individual double-sided package structures are obtained, where a cutting line has a width greater than a width of a gap between adjacent double-sided mount structures.
In a second aspect, embodiments of the present disclosure provide a double-sided package structure manufactured by the manufacturing method described in the first aspect.
The double-sided package structure includes a double-sided mount structure and a molded body encasing the double-sided mount structure. The double-sided mount structure includes a substrate and components mounted onto two opposite surfaces of the substrate.
In the manufacturing method of a double-sided package structure provided by the embodiment of the present disclosure, the at least two discrete double-sided mount structures are secured to the first side of the master, the at least two discrete double-sided mount structures are molded such that the molded body is formed, the master is removed, and the molded body is split such that the individual double-sided package structures are obtained. Components on two surfaces of a double-sided mount structure are molded simultaneously in one molding process, thereby simplifying the technical process and reducing the difficulty of the packaging technique. Moreover, multiple individual double-sided mount structures are molded, and the multiple double-sided mount structures do not share the same substrate; therefore the difference between the upper moldflow pressure of the substrate and the lower moldflow pressure of the substrate is reduced when the double-sided molding is performed, thereby alleviating the warpage problem of the substrate of the double-sided package structure formed by being packaged.
The present disclosure is further described hereinafter in detail in conjunction with drawings and embodiments. It is to be understood that the embodiments described herein are merely intended to explain the present disclosure and not to limit the present disclosure. Additionally, it is to be noted that for ease of description, only part, not all, of the structures related to the present disclosure are illustrated in the drawings.
In S11, at least two discrete double-sided mount structures are secured to a first side of a master 113 at intervals.
In a double-sided mount structure, two opposite surfaces of the substrate are each mounted with components, and the components may include, for example, a chip. Referring to
In S12, the first side of the master 113 is molded such that a molded body 101 encasing the at least two discrete double-sided mount structures is formed.
Referring to
In S13, the master 113 is removed.
In S14, the molded body 101 is split such that individual double-sided package structures are obtained.
In the manufacturing method of a double-sided package structure provided in this embodiment of the present disclosure, the at least two discrete double-sided mount structures are secured to the first side of the master 113, the at least two discrete double-sided mount structures are molded such that the molded body 101 is formed, the master 113 is removed, and the molded body 101 is split such that individual double-sided package structures are obtained.
The components on the two surfaces of the double-sided mount structure are molded simultaneously in one molding process, thereby simplifying the technical process and reducing the difficulty of the packaging technique. Moreover, multiple individual double-sided mount structures are molded, and the multiple double-sided mount structures do not share the same substrate; therefore the difference between the upper moldflow pressure of the substrate and the lower moldflow pressure of the substrate is reduced when the double-sided molding is performed, thereby alleviating the warpage problem of the substrate of the double-sided package structure formed by being packaged.
As an example, embodiments of the present disclosure further provide a manufacturing method of a double-sided mount structure. The manufacturing method of a double-sided mount structure can be used for manufacturing a double-sided mount structure that serves as an object to be packaged on a master to form a double-sided package structure. That is, the manufacturing process of a double-sided mount structure is the front part in the manufacturing process of a double-sided package structure.
In S01, components are mounted onto a first face of a substrate 107.
Referring to
In S02, components are mounted onto a second face of the substrate 107, where the first face is opposite to the second face.
Referring to
In S03, the substrate 107 whose two faces are mounted with the components is split such that individual double-sided mount structures are formed.
In the manufacturing method of a double-sided mount structure provided in this embodiment, the first face of the substrate 107 is mounted with the components, the second face of the substrate 107 is mounted with the components, and the substrate 107 whose two faces are mounted with the components is split such that individual double-sided mount structures are formed.
In S21, electrical connection structures in the at least two discrete double-sided mount structures are soldered onto a pad 1131 of the master 113.
Referring to
In S22, the first side of the master 113 is molded such that a molded body 101 encasing the at least two discrete double-sided mount structures is formed.
Referring to
In S23, the master 113 is removed.
In S24, the molded body 101 on one side of the master 113 is thinned and removed such that the electrical connection structures are exposed.
For example, referring to
For example, referring to
In S25, a solder ball is embedded in the exposed electrical connection structures.
Referring to
In S26, the solder ball is reflowed such that the solder ball and the electrical connection structures are fused into an external solder ball.
Referring to
In S27, the molded body 101 is split such that individual double-sided package structures are obtained.
In the manufacturing method of a double-sided package structure provided in this embodiment, the molded body 101 on one side of the master 113 is thinned and removed such that the electrical connection structures are exposed, the solder ball 1101 is embedded in the exposed electrical connection structures, and the embedded solder ball 1101 is reflowed. In this manner, the electrical connection structures encased by the molded body 101 are led out of the molded body 101 via the external solder ball (that is the solder ball 110) formed by fusion, thereby facilitating the double-sided package structure to be electrically connected to other substrates or the assembly board via the electrical connection structures.
In S31, the electrical connection structures in the at least two discrete double-sided mount structures are partially sunk into a temporary adhesive layer 1132 of the master 113.
Referring to
Optionally, the temporary adhesive layer 1132 includes at least one of a pyrolysis adhesive tape, a photolysis adhesive tape or a chemical etching adhesive tape.
For example, the depth of the second solder ball 110 sunk into the temporary adhesive layer 1132 is greater than the radius of the second solder ball 110, and thus the part of the second solder ball 110 protected by the temporary adhesive layer 1132 is large enough. At least half of the second solder ball 110 is exposed after the temporary adhesive layer 1132 and the master 113 are removed, laying a foundation for being soldered onto other substrates or the assembly board.
In S32, the first side of the master 113 is molded such that the molded body 101 encasing the at least two discrete double-sided mount structures is formed.
Referring to
In S33, the temporary adhesive layer 1132 is removed such that the master 113 is separated from the molded body.
Referring to
In S34, the molded body 101 is split such that individual double-sided package structures are obtained.
In the manufacturing method of a double-sided package structure provided in the embodiment, the electrical connection structures in the at least two discrete double-sided mount structures are partially sunk into the temporary adhesive layer 1132 of the master 113, the at least two discrete double-sided mount structures are molded such that the molded body 101 is formed, the temporary adhesive layer 1132 is removed such that the master is separated from the molded body. In this manner, the electrical connection structures without being encased by the molded body 101 directly are exposed out of the molded body 101, thereby facilitating the double-sided package structure to be electrically connected to other substrates and the assembly board via the electrical connection structures.
In the preceding embodiment, the example is illustrated in which one electrical connection structure includes the first solder ball 108, the communication carrier board 109 and the second solder ball 110 that are stacked together. With the communication carrier board 109 as the adapter board, the second solder ball 110 may be rearranged on the communication carrier board 109 relative to the position of the first solder ball 108, thereby flexibly satisfying the requirements of various situations on the number of pins and the distribution state of the pins. Moreover, high environment-polluting techniques do not exist.
In an embodiment, one electrical connection structure may include a third solder ball. That is, a large solder ball is used for replacing the first solder ball 108, the communication carrier board 109 and the second solder ball 110.
In another embodiment, one electrical connection structure may include a copper column. That is, the copper column is used for replacing the first solder ball 108, the communication carrier board 109 and the second solder ball 110.
Optionally, referring to
Embodiments of the present disclosure further provide a double-sided package structure manufactured by the manufacturing method described in the preceding embodiments. Referring to
For example, the components 102, 103, 105 and 106 are mounted onto a first side of the substrate 107, the components 111 and 112, the first solder ball 108, the communication carrier board 109 and the second solder ball 110 are mounted onto a second side of the substrate 107, and the first side of the substrate 107 is opposite to the second side of the substrate 107.
It is to be noted that the preceding are only preferred embodiments of the present disclosure and technical principles used therein. It is to be understood by those skilled in the art that the present disclosure is not limited to the embodiments described herein. Those skilled in the art can make various apparent modifications, adaptations, combinations and substitutions without departing from the scope of the present disclosure. Therefore, while the present disclosure has been described in detail through the preceding embodiments, the present disclosure is not limited to the preceding embodiments and may include more other equivalent embodiments without departing from the concept of the present disclosure. The scope of the present disclosure is determined by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
202111476407.8 | Dec 2021 | CN | national |