Drop resistant bumpers for fully molded memory cards

Information

  • Patent Grant
  • 7485952
  • Patent Number
    7,485,952
  • Date Filed
    Thursday, June 26, 2003
    21 years ago
  • Date Issued
    Tuesday, February 3, 2009
    15 years ago
Abstract
A memory card comprising a leadframe having a plurality of contacts, at least one die pad, and a plurality of conductive traces extending from respective ones of the contacts toward the die pad. Also included in the leadframe are at least two bumpers. Attached to the die pad is a semiconductor die which is electrically connected to at least one of the traces. A body defining at least two corner regions at least partially encapsulates the leadframe and the semiconductor die such that the contacts are exposed in a bottom surface defined by the body, and the bumpers are located at respective ones of the corner regions thereof.
Description
STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT

Not Applicable


BACKGROUND OF THE INVENTION

The present invention relates generally to memory cards and, more particularly, to a memory card (e.g., a multi-media card (MMC)) comprising a leadframe which is provided with bumpers arranged to absorb any impact on the corners of the card to resist cracking or chip-out at the corners when the card is dropped onto a hard surface.


As is well known in the electronics industry, memory cards are being used in increasing numbers to provide memory storage and other electronic functions for devices such as digital cameras, MP3 players, cellular phones, and personal digital assistants. In this regard, memory cards are provided in various formats, including multi-media cards and secure digital cards.


Typically, memory cards comprise multiple integrated circuit devices or semiconductor dies. The dies are interconnected using a circuit board substrate which adds to the weight, thickness, stiffness and complexity of the card. Memory cards also include electrical contacts for providing an external interface to an insertion point or socket. These electrical contacts are typically disposed on the back side of the circuit board substrate, with the electrical connection to the dies being provided by vias which extend through the circuit board substrate.


In an effort to simplify the process steps needed to fabricate the memory card, there has been developed by Applicant a memory card wherein a leadframe assembly is used as an alternative to the circuit board substrate, as described in Applicant's co-pending U.S. application Ser. No. 09/956,190 entitled LEAD-FRAME METHOD AND ASSEMBLY FOR INTERCONNECTING CIRCUITS WITHIN A CIRCUIT MODULE filed Sep. 19, 2001, of which the present application is a continuation-in-part. As is described in Ser. No. 09/956,190, the leadframe and semiconductor die of the memory card are covered with an encapsulant which hardens into a cover or body of the memory card. The body is sized and configured to meet or achieve a “form factor” for the memory card. In the completed memory card, the contacts of the leadframe are exposed within a common surface of the body, with a die pad of the leadframe and the semiconductor die mounted thereto being disposed within or covered by the body.


Applicant has previously determined that the molding or encapsulation process used to form the body of the card sometimes gives rise to structural deficiencies or problems within the resultant memory card. These problems include portions of the die pad of the leadframe being exposed in the body of the memory card, flash being disposed on the contacts of the leadframe, chipping in a peripheral flange area of the body, and mold gate pull-out wherein a portion of the mold or encapsulating compound is pulled out from within the body, leaving a small recess or void therein. To address these particular problems, Applicant has previously developed a memory card having a “die down” configuration attributable to the structural attributes of the leadframe included therein, and an associated molding methodology employed in the fabrication of such memory card. This die-down memory card is disclosed in Applicant's co-pending U.S. application Ser. No. 10/266,329 entitled DIE DOWN MULTI-MEDIA CARD AND METHOD OF MAKING SAME filed Oct. 8, 2002, the disclosure of which is incorporated herein by reference.


In the electronics industry, memory cards such as multi-media cards are subject to an MMCA test requirement which requires that the card survive a 1.5 mm free fall drop test without incurring any damage. Memory cards as currently known in the art typically fail this MMCA standard drop test due to damage or chipping which occurs in the corner areas of the body thereof. The present invention addresses this particular shortcoming of memory cards by providing “bumpers” as a leadframe structure or feature which provide shock absorption to protect the corner areas of the body from damage at impact upon a hard surface such as a floor. These and other attributes of the present invention will be described in more detail below.


BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention, there are provided various embodiments of a leadframe which are formed in a manner such that a memory card constructed through the use of the leadframe includes bumpers or bumper segments disposed in at least two of the corner regions defined by the card body. The bumpers or bumper segments are uniquely configured to provide shock absorption to protect the corner areas or regions of the body from damage at impact upon a hard surface such as a floor. As a result, the inclusion of the bumpers or bumper segments in the memory card in accordance with the present invention allows the memory card to meet various test requirements which require that the card survive a prescribed freefall drop without incurring any damage to the body thereof.


The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:



FIG. 1 is a bottom plan view of a memory card having a leadframe which is formed to include bumpers constructed in accordance with a first embodiment of the present invention;



FIG. 2 is a top plan view of a leadframe formed to include the bumpers of the first embodiment, the leadframe being shown in a preliminary, unsingulated state;



FIG. 3 is a top plan view of the leadframe shown in FIG. 2 in its final, singulated state;



FIG. 4 is a bottom plan view of a memory card having a leadframe which is formed to include bumpers constructed in accordance with a second embodiment of the present invention;



FIGS. 5A-5G are partial plan views of corner regions of memory cards having leadframes which are formed to include variations of the bumpers of the first and second embodiments shown in FIGS. 1 and 4;



FIG. 6 is a bottom plan view of memory card having a leadframe which is formed to include bumpers constructed in accordance with a third embodiment of the present invention; and



FIG. 7 is a partial cross-section view of the leadframe from FIG. 2 depicting a bend in a trace which is located between one of the contacts and the die pad of the leadframe.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings wherein the showings are for purposes of illustrating preferred embodiments of the present invention only, and not for purposes of limiting the same, FIG. 1 depicts a memory card 10 which includes a leadframe 12 (shown in FIGS. 2 and 3) constructed in accordance with a first embodiment of the present invention. The leadframe 12 is shown in a preliminary, unsingulated state in FIG. 2, and in its final, singulated state in FIG. 3. As shown in FIG. 1, the memory card 10 has a form factor particularly suited for use in a multi-media card memory application. However, those of ordinary skill in the art will recognize that the memory card 10 may have alternative memory card formats, including those of secure digital cards (SDC), compact flash (CF), memory stick, and other small form factor memory cards.


In its preliminary, unsingulated state, the leadframe 12 of the memory card 10 comprises an outer frame or dambar 14. The dambar 14 has a generally rectangular configuration defining an opposed pair of longitudinal sides or segments 16 and an opposed pair of lateral sides or segments 18. In addition to the dambar 14, the leadframe 12 includes a die attach area or die pad 20 which is disposed within the interior of the dambar 14. The die pad 20 defines opposed, generally planar top and bottom surfaces. Integrally connected to and extending from one lateral side 18 of the dambar 14 is a plurality of contacts 22 of the leadframe 12. Each of the contacts 22 also defines opposed, generally planar top and bottom surfaces. Integrally connected to and extending from each of the contacts 22 is a conductive trace 24. The traces 24 terminate in close proximity to the die pad 20. Tie bars 26 are used to integrally connect the die pad 20 to the longitudinal sides 16 of the dambar 14.


In addition to the above-described elements, the leadframe 12 includes bumpers 28 which are disposed within the interior of the dambar 14. More particularly, the bumpers 28 are integrally connected to the dambar 14 at respective ones of the four corner regions collectively defined by the longitudinal and lateral sides 16, 18 of the dambar 14. The particular configuration of each bumper 28 and possible variants thereof will be discussed in more detail below.


In the memory card 10, attached to the top surface of the die pad 20 are multiple semiconductor dies 30. In FIGS. 2 and 3, a pair of semiconductor dies 30 is shown as being attached to the top surface of the die pad 20 in spaced relation to each other. The attachment of the semiconductor dies 30 to the die pad 20 is preferably facilitated through the use of an epoxy or adhesive. Subsequent to such attachment, the contacts or terminals disposed on the top surface of each semiconductor die 30 are electrically connected to one or more traces 24, the die pad 20, and/or each other through the use of conductive wires 32. In this regard, the conductive wires 32 effectively place the terminals of the semiconductor dies 30 into electrical communication with the leadframe 12 and, more particularly, to one or more of the contacts 22 thereof.


Those of ordinary skill in the art will recognize that the leadframe 12 may be formed to include any number of contacts 22 depending on the desired application for the memory card 10. Along these lines, the leadframe 12 may further be alternatively configured to define more than one die pad for accommodating fewer or greater numbers of semiconductor dies alone or in combination with other devices such as passive devices. In this regard, the two semiconductor dies 30 shown in FIGS. 2 and 3 may be substituted with one or more than two semiconductor dies alone or in combination with one or more other devices. Further, one or more than two semiconductor dies and/or one or more other devices can be attached to a single die pad, or to respective ones of multiple die pads. The pattern of the conductive traces 24 may also be varied depending upon the number and arrangement of die pads and the number of semiconductor dies and/or other passive devices included in the memory card 10. Thus, the configuration of the leadframe 12 as shown in FIGS. 2 and 3 is exemplary only, in that the number and arrangement of die pads, contacts, and conductive traces may be varied as needed to satisfy the requirements of a particular application.


Subsequent to the electrical connection of the semiconductor dies 30 to the leadframe 12 in the above-described manner, the leadframe 12 is preferably subjected to a bending operation wherein each of the traces 24 is bent so as to facilitate the creation of an angled or sloped portion therein which is located between the contacts 22 and the die pad 20. As shown in the partial cross-sectional view of the leadframe 12 presented in FIG. 7, the bending of the traces 24 removes the contacts 22 from their original co-planar relationship to the die pad 20. Thus, the contacts 22 and die pad 20 extend along respective ones of spaced, generally parallel planes. The bending of the leadframe 12 in the above-described manner may occur either prior to the attachment of the semiconductor dies 30 to the top surface of the die pad 20, or subsequent to the extension of the conductive wires 32 between the terminals of the semiconductor dies 30 and the traces 24.


Subsequent to the bending of the leadframe 12, an encapsulant material is applied to the leadframe 12, the semiconductor dies 30 and conductive wires 32. The encapsulant material is preferably a plastic (e.g., thermoset, thermoplastic) which, upon hardening, forms a body 34 of the memory card 10. The body 34 defines a generally planar top surface, and an opposed, generally planar bottom surface 36. In addition, the body 34 defines an opposed pair of longitudinal sides 38, an opposed pair of lateral sides 40, and a fifth sloped side 42 which extends angularly between one of the lateral sides 40 and one of the longitudinal sides 38. In the completed body 34, the bottom surfaces of the contacts 22 of the leadframe 12 are exposed in and generally flush with the bottom surface 36 of the body 34. The leadframe 12 is preferably fabricated from a conductive metal material (e.g., copper) through either a chemical etching or mechanical stamping process. It is contemplated that the die pad 20, contacts 22, and traces 24 of the leadframe 12 will be formed to have a thickness less than that of the surrounding dambar 14 and bumpers 28 by subjecting one or both sides of the formed leadframe 12 to a partial etching process. As a result, in addition to the bottom surfaces of the contacts 22 being exposed in the bottom surface 36 of the body 34, the opposed top and bottom surfaces of each of the bumpers 28 are also exposed in and substantially flush with respective ones of the top surface and bottom surface 36 of the body 34 as is seen in FIG. 1. The exposure of the top and bottom surfaces of each bumper 28 within the body 34 is attributable to the increased thickness of the bumpers 28 in comparison to those portions of the leadframe 12 which are covered by the body 34 (i.e., the die pad(s) 20, contacts 22 and traces 24).


Subsequent to the formation of the body 34, the leadframe 12 is cut or singulated in a manner facilitating the removal of the dambar 14 as is needed to electrically isolate the traces 24 and hence the contacts 22 from each other. In this regard, the body 34 is preferably formed on the leadframe 12 such that the dambar 14 remains exposed (i.e., is not covered by the body 34). The exposure of the dambar 14 allows for the removal of the same from the completely formed body 34. The body 34 is formed to provide a prescribed form factor for the memory card 10.


As seen in FIGS. 2 and 3, the bumpers 28 are defined in the completed memory card 10 as a result of the removal of the dambar 14 from the remainder of the leadframe 12. In the completed memory card 10, three of the bumpers 28 have a generally L-shaped configuration, and are located in respective ones of three complementary corner regions collectively defined by the longitudinal and lateral sides 38, 40 of the body 34. The remaining bumper 28 has a configuration differing from that of the other three L-shaped bumpers 28, and extends along the sloped side surface 42 of the body 34. Though the memory card 10 is shown in FIGS. 1 and 3 as including a total of four bumpers 28, those of ordinary skill in the art will recognize that alternative configurations are contemplated wherein less than four bumpers 28 are included in the memory card 10. For example, the bumper 28 located along the sloped side surface 42, may be omitted alone or in combination with the bumper 28 partially defined by the lateral side 40 disposed closest to the contacts 22. In such alternative configuration, the sole two bumpers 28 included in the memory card 10 would be located in respective ones of those corner regions partially defined by the lateral side 40 of the body 34 disclosed furthest from the contacts 22. Additionally, though not shown, it is contemplated that in the memory card 10, the semiconductor die(s) 30 may be attached to the bottom surface of the die pad 30 as opposed to the top surface thereof as shown in FIGS. 2 and 3. This alternative configuration is commonly referred to as a die down or deep down-set configuration. The attachment of the semiconductor die(s) to either the top or bottom surfaces of the die pad 20 does not alter the structural or functional attributes of the bumpers 28 located within one or more of the corner regions defined by the body 34 of the memory card 10. As indicated above, the bumper(s) 28 of the memory card 10 effectively protect the corner areas or regions of the body 34 from damage at impact upon a hard surface such as a floor. Thus, the bumper(s) 28 help the memory card 10 in achieving compliance with various test requirements such as the above-described MMCA test requirement requiring that the memory card 10 survive a 1.5 mm freefall drop test without incurring any damage.


Referring now to FIG. 4, there is shown a bottom plan view of a memory card 10a constructed in accordance with a second embodiment of the present invention. The memory card 10a is substantially similar to the above-described memory card 10, except that the leadframe of the memory card 10a is formed such that when the dambar is removed therefrom, two sets of bumper segments 44 are included at respective ones of a pair of corner regions of the body 34a of the memory card 10a which are partially defined by the lateral side 40a which is disposed furthest from the contacts 22a. However, it will be recognized that in the memory card 10a, the bumper segments 44 may also be included at the remaining corner region of the body 34a and/or along the sloped side 42a thereof, in the manner shown in relation to the bumpers 28 of the memory card 10.



FIGS. 5A-5D depict alternatively configured bumpers 28a, 28b, 28c, 28d, respectively, which each may be used as an alternative to the bumpers 28 shown and described in relation to FIGS. 1-3. FIGS. 5E-5G depict sets of bumper segments 44a, 44b, 44c, respectively, which may be used as an alternative to the bumper segments 44 shown in FIG. 4. Those of ordinary skill in the art will recognize that the bumpers 28 and bumper segments 44 shown in FIGS. 1 and 4 and the structural variations thereof shown in FIGS. 5A-5G may be used in any number and in any combination within the memory card 10, 10a.


Referring now to FIG. 6, there is shown a bottom plan view of a memory card 10b constructed in accordance with a third embodiment of the present invention. The memory card 10b is similar to the memory card 10, except that the leadframe of the memory card 10b is formed such that the removal of the dambar therefrom facilitates the creation of a continuous bumper 46. As seen in FIG. 6, the bumper strip 46 extends along both longitudinal sides 38b of the body 34b, the lateral side 40b which is disposed furthest from the contacts 22b, and the sloped side 42b. The bumper 46 also extends along a small section of the remaining lateral side 40b, terminating at approximately that contact 22b disposed furthest from the sloped side 42b. Though not shown, as an alternative to being formed as a continuous strip, the bumper 46 may comprise a series of bumper segments similar to those shown in FIGS. 4 and 5E-5G.


This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.

Claims
  • 1. A memory card comprising: a plurality of contacts;at least one die pad defining opposed top and bottom surfaces;a plurality of conductive traces extending from respective ones of the contacts toward the die pad; andat least two bumpers;at least one semiconductor die attached to the die pad and electrically connected to at least one of the traces; anda body defining at least two corner regions and at least partially encapsulating the contacts, the die pad, the bumpers and the semiconductor die such that the contacts are exposed in a bottom surface defined by the body and the bumpers are located at respective ones of the corner regions of the body but do not protrude therefrom.
  • 2. The memory card of claim 1 wherein the traces are bent in a manner such that the die pad and the contacts extend along respective ones of spaced, generally parallel frame planes.
  • 3. The memory card of claim 2 wherein the semiconductor die is attached to the bottom surface of the die pad so as to extend along a die plane which is disposed between and generally parallel to the frame planes.
  • 4. The memory card of claim 2 wherein the semiconductor die is attached to the top surface of the die pad.
  • 5. The memory card of claim 1 wherein: the body defines an opposed pair of longitudinal sides, an opposed pair of lateral sides, and a sloped side which extends angularly between one of the lateral sides and one of the longitudinal sides;the contacts extend along one of the lateral sides of the body; andthe at least two bumpers are located at respective ones of a pair of the corner regions which are partially defined by the lateral side of the body opposite that including the contacts extending there along.
  • 6. The memory card of claim 5 wherein each of the bumpers comprises a plurality of bumper segments.
  • 7. The memory card of claim 5 wherein four of the bumpers are located at respective ones of the sloped side and three of the corner regions collectively defined by the longitudinal and lateral sides of the body.
  • 8. The memory card of claim 7 wherein each of the bumpers comprises a plurality of bumper segments.
  • 9. The memory card of claim 1 wherein: each of the bumpers defines opposed, generally planar top and bottom surfaces;the body defines opposed, generally planar top and bottom surfaces; andthe top and bottom surfaces of the bumpers are exposed in and substantially flush with respective ones of the top and bottom surfaces of the body.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. application Ser. No. 09/956,190 entitled LEAD-FRAME METHOD AND ASSEMBLY FOR INTERCONNECTING CIRCUITS WITHIN A CIRCUIT MODULE filed Sep. 19, 2001 now U.S. Pat. No. 6,900,527.

US Referenced Citations (286)
Number Name Date Kind
2596993 Gookin May 1952 A
3435815 Forcier Apr 1969 A
3734660 Davies et al. May 1973 A
3838984 Crane et al. Oct 1974 A
4054238 Lloyd et al. Oct 1977 A
4189342 Kock Feb 1980 A
4258381 Inaba Mar 1981 A
4289922 Devlin Sep 1981 A
4301464 Otsuki et al. Nov 1981 A
4332537 Slepcevic Jun 1982 A
4417266 Grabbe Nov 1983 A
4451224 Harding May 1984 A
4530152 Roche et al. Jul 1985 A
4541003 Otsuka et al. Sep 1985 A
4646710 Schmid et al. Mar 1987 A
4707724 Suzuki et al. Nov 1987 A
4727633 Herrick Mar 1988 A
4737839 Burt Apr 1988 A
4756080 Thorp, Jr. et al. Jul 1988 A
4812896 Rothgery et al. Mar 1989 A
4862245 Pashby et al. Aug 1989 A
4862246 Masuda et al. Aug 1989 A
4907067 Derryberry Mar 1990 A
4920074 Shimizu et al. Apr 1990 A
4935803 Kalfus et al. Jun 1990 A
4942454 Mori et al. Jul 1990 A
4987475 Schlesinger et al. Jan 1991 A
5018003 Yasunaga et al. May 1991 A
5029386 Chao et al. Jul 1991 A
5041902 McShane Aug 1991 A
5057900 Yamazaki Oct 1991 A
5059379 Tsutsumi et al. Oct 1991 A
5065223 Matsuki et al. Nov 1991 A
5070039 Johnson et al. Dec 1991 A
5087961 Long et al. Feb 1992 A
5091341 Asada et al. Feb 1992 A
5096852 Hobson Mar 1992 A
5118298 Murphy Jun 1992 A
5151039 Murphy Sep 1992 A
5157475 Yamaguchi Oct 1992 A
5157480 McShane et al. Oct 1992 A
5168368 Gow, 3rd et al. Dec 1992 A
5172213 Zimmerman Dec 1992 A
5172214 Casto Dec 1992 A
5175060 Enomoto et al. Dec 1992 A
5200362 Lin et al. Apr 1993 A
5200809 Kwon Apr 1993 A
5214845 King et al. Jun 1993 A
5216278 Lin et al. Jun 1993 A
5218231 Kudo Jun 1993 A
5221642 Burns Jun 1993 A
5250841 Sloan et al. Oct 1993 A
5252853 Michii Oct 1993 A
5258094 Furui et al. Nov 1993 A
5266834 Nishi et al. Nov 1993 A
5273938 Lin et al. Dec 1993 A
5277972 Sakumoto et al. Jan 1994 A
5278446 Nagaraj et al. Jan 1994 A
5279029 Burns Jan 1994 A
5294897 Notani et al. Mar 1994 A
5327008 Djennas et al. Jul 1994 A
5332864 Liang et al. Jul 1994 A
5335771 Murphy Aug 1994 A
5336931 Juskey et al. Aug 1994 A
5343076 Katayama et al. Aug 1994 A
5358905 Chiu Oct 1994 A
5365106 Watanabe Nov 1994 A
5381042 Lerner et al. Jan 1995 A
5391439 Tomita et al. Feb 1995 A
5394607 Chiu et al. Mar 1995 A
5406124 Morita et al. Apr 1995 A
5410180 Fujii et al. Apr 1995 A
5414299 Wang et al. May 1995 A
5424576 Djennas et al. Jun 1995 A
5428248 Cha Jun 1995 A
5435057 Bindra et al. Jul 1995 A
5444301 Song et al. Aug 1995 A
5452511 Chang Sep 1995 A
5454905 Fogelson Oct 1995 A
5474958 Djennas et al. Dec 1995 A
5484274 Neu Jan 1996 A
5493151 Asada et al. Feb 1996 A
5508556 Lin Apr 1996 A
5517056 Bigler et al. May 1996 A
5521429 Aono et al. May 1996 A
5528076 Pavio Jun 1996 A
5534467 Rostoker Jul 1996 A
5539251 Iverson et al. Jul 1996 A
5543657 Diffenderfer et al. Aug 1996 A
5544412 Romero et al. Aug 1996 A
5545923 Barber Aug 1996 A
5581122 Chao et al. Dec 1996 A
5592019 Ueda et al. Jan 1997 A
5592025 Clark et al. Jan 1997 A
5594274 Suetaki Jan 1997 A
5595934 Kim Jan 1997 A
5604376 Hamburgen et al. Feb 1997 A
5608267 Mahulikar et al. Mar 1997 A
5625222 Yoneda et al. Apr 1997 A
5633528 Abbott et al. May 1997 A
5639990 Nishihara et al. Jun 1997 A
5640047 Nakashima Jun 1997 A
5641997 Ohta et al. Jun 1997 A
5643433 Fukase et al. Jul 1997 A
5644169 Chun Jul 1997 A
5646831 Manteghi Jul 1997 A
5650663 Parthasarathi Jul 1997 A
5661088 Tessier et al. Aug 1997 A
5665996 Williams et al. Sep 1997 A
5673479 Hawthorne Oct 1997 A
5683806 Sakumoto et al. Nov 1997 A
5689135 Ball Nov 1997 A
5696666 Miles et al. Dec 1997 A
5701034 Marrs Dec 1997 A
5703407 Hori Dec 1997 A
5710064 Song et al. Jan 1998 A
5723899 Shin Mar 1998 A
5724233 Honda et al. Mar 1998 A
5736432 Mackessy Apr 1998 A
5745984 Cole, Jr. et al. May 1998 A
5753532 Sim May 1998 A
5753977 Kusaka et al. May 1998 A
5766972 Takahashi et al. Jun 1998 A
5770888 Song et al. Jun 1998 A
5776798 Quan et al. Jul 1998 A
5783861 Son Jul 1998 A
5789280 Yokota Aug 1998 A
5801440 Chu et al. Sep 1998 A
5808359 Muto et al. Sep 1998 A
5814877 Diffenderfer et al. Sep 1998 A
5814881 Alagaratnam et al. Sep 1998 A
5814883 Sawai et al. Sep 1998 A
5814884 Davis et al. Sep 1998 A
5817540 Wark Oct 1998 A
5818105 Kouda Oct 1998 A
5821457 Mosley et al. Oct 1998 A
5821615 Lee Oct 1998 A
5834830 Cho Nov 1998 A
5835988 Ishii Nov 1998 A
5844306 Fujita et al. Dec 1998 A
5856911 Riley Jan 1999 A
5859471 Kuraishi et al. Jan 1999 A
5866939 Shin et al. Feb 1999 A
5871782 Choi Feb 1999 A
5874784 Aoki et al. Feb 1999 A
5877043 Alcoe et al. Mar 1999 A
5886397 Ewer Mar 1999 A
5886398 Low et al. Mar 1999 A
5894108 Mostafazadeh et al. Apr 1999 A
5897339 Song et al. Apr 1999 A
5900676 Kweon et al. May 1999 A
5903049 Mori May 1999 A
5903050 Thurairajaratnam et al. May 1999 A
5909053 Fukase et al. Jun 1999 A
5915998 Stidham et al. Jun 1999 A
5917242 Ball Jun 1999 A
5939779 Kim Aug 1999 A
5942794 Okumura et al. Aug 1999 A
5951305 Haba Sep 1999 A
5959356 Oh Sep 1999 A
5969426 Baba et al. Oct 1999 A
5973388 Chew et al. Oct 1999 A
5976912 Fukutomi et al. Nov 1999 A
5977613 Takata et al. Nov 1999 A
5977615 Yamaguchi et al. Nov 1999 A
5977630 Woodworth et al. Nov 1999 A
5981314 Glenn et al. Nov 1999 A
5986333 Nakamura Nov 1999 A
5986885 Wyland Nov 1999 A
6001671 Fjelstad Dec 1999 A
6013947 Lim Jan 2000 A
6018189 Mizuno Jan 2000 A
6020625 Qin et al. Feb 2000 A
6025640 Yagi et al. Feb 2000 A
6031279 Lenz Feb 2000 A
RE36613 Ball Mar 2000 E
6034423 Mostafazadeh et al. Mar 2000 A
6040626 Cheah et al. Mar 2000 A
6043430 Chun Mar 2000 A
6060768 Hayashida et al. May 2000 A
6060769 Wark May 2000 A
6072228 Hinkle et al. Jun 2000 A
6075284 Choi et al. Jun 2000 A
6081029 Yamaguchi Jun 2000 A
6084310 Mizuno et al. Jul 2000 A
6087715 Sawada et al. Jul 2000 A
6087722 Lee et al. Jul 2000 A
6100594 Fukui et al. Aug 2000 A
6113474 Costantini et al. Sep 2000 A
6118174 Kim Sep 2000 A
6118184 Ishio et al. Sep 2000 A
RE36907 Templeton, Jr. et al. Oct 2000 E
6130115 Okumura et al. Oct 2000 A
6130473 Mostafazadeh et al. Oct 2000 A
6133623 Otsuki et al. Oct 2000 A
6140154 Hinkle et al. Oct 2000 A
6143981 Glenn Nov 2000 A
6169329 Farnworth et al. Jan 2001 B1
6177718 Kozono Jan 2001 B1
6181002 Juso et al. Jan 2001 B1
6184465 Corisis Feb 2001 B1
6184573 Pu Feb 2001 B1
6194777 Abbott et al. Feb 2001 B1
6197615 Song et al. Mar 2001 B1
6198171 Huang et al. Mar 2001 B1
6201186 Daniels et al. Mar 2001 B1
6201292 Yagi et al. Mar 2001 B1
6204554 Ewer et al. Mar 2001 B1
6208020 Minamio et al. Mar 2001 B1
6208021 Ohuchi et al. Mar 2001 B1
6208023 Nakayama et al. Mar 2001 B1
6211462 Carter, Jr. et al. Apr 2001 B1
6218731 Huang et al. Apr 2001 B1
6222258 Asano et al. Apr 2001 B1
6225146 Yamaguchi et al. May 2001 B1
6229200 Mclellan et al. May 2001 B1
6229205 Jeong et al. May 2001 B1
6239367 Hsuan et al. May 2001 B1
6239384 Smith et al. May 2001 B1
6242281 Mclellan et al. Jun 2001 B1
6256200 Lam et al. Jul 2001 B1
6258629 Niones et al. Jul 2001 B1
6281566 Magni Aug 2001 B1
6281568 Glenn et al. Aug 2001 B1
6282095 Houghton et al. Aug 2001 B1
6285075 Combs et al. Sep 2001 B1
6291271 Lee et al. Sep 2001 B1
6291273 Miyaki et al. Sep 2001 B1
6294100 Fan et al. Sep 2001 B1
6294830 Fjelstad Sep 2001 B1
6295977 Ripper et al. Oct 2001 B1
6297548 Moden et al. Oct 2001 B1
6303984 Corisis Oct 2001 B1
6303997 Lee Oct 2001 B1
6307272 Takahashi et al. Oct 2001 B1
6309909 Ohgiyama Oct 2001 B1
6316822 Venkateshwaran et al. Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6323550 Martin et al. Nov 2001 B1
6326243 Suzuya et al. Dec 2001 B1
6326244 Brooks et al. Dec 2001 B1
6326678 Karnezos et al. Dec 2001 B1
6335564 Pour Jan 2002 B1
6337510 Chun-Jen et al. Jan 2002 B1
6339255 Shin Jan 2002 B1
6348726 Bayan et al. Feb 2002 B1
6355502 Kang et al. Mar 2002 B1
6369447 Mori Apr 2002 B2
6369454 Chung Apr 2002 B1
6373127 Baudouin et al. Apr 2002 B1
6380048 Boon et al. Apr 2002 B1
6384472 Huang May 2002 B1
6388336 Venkateshwaran et al. May 2002 B1
6395578 Shin et al. May 2002 B1
6400004 Fan et al. Jun 2002 B1
6410979 Abe Jun 2002 B2
6414385 Huang et al. Jul 2002 B1
6420779 Sharma et al. Jul 2002 B1
6429508 Gang Aug 2002 B1
6437429 Su et al. Aug 2002 B1
6444499 Swiss et al. Sep 2002 B1
6448633 Yee et al. Sep 2002 B1
6452279 Shimoda Sep 2002 B2
6464121 Reijnders Oct 2002 B2
6476469 Hung et al. Nov 2002 B2
6476474 Hung Nov 2002 B1
6482680 Khor et al. Nov 2002 B1
6498099 McLellan et al. Dec 2002 B1
6498392 Azuma Dec 2002 B2
6507096 Gang Jan 2003 B2
6507120 Lo et al. Jan 2003 B2
6534849 Gang Mar 2003 B1
6559525 Huang May 2003 B2
6566168 Gang May 2003 B2
6624005 DiCaprio et al. Sep 2003 B1
6843421 Chhor et al. Jan 2005 B2
20010008305 McLellan et al. Jul 2001 A1
20010014538 Kwan et al. Aug 2001 A1
20010011654 Kimura Jan 2002 A1
20020024122 Jung et al. Feb 2002 A1
20020027297 Ikenaga et al. Mar 2002 A1
20020140061 Lee Oct 2002 A1
20020140068 Lee et al. Oct 2002 A1
20020163015 Lee et al. Nov 2002 A1
20030030131 Lee et al. Feb 2003 A1
20030073265 Hu et al. Apr 2003 A1
Foreign Referenced Citations (67)
Number Date Country
19734794 Aug 1997 DE
5421117 Jun 1979 EP
5950939 Mar 1984 EP
0393997 Oct 1990 EP
0459493 Dec 1991 EP
0720225 Mar 1996 EP
0720234 Mar 1996 EP
0794572 Oct 1997 EP
0844665 May 1998 EP
0936671 Aug 1999 EP
098968 Mar 2000 EP
1032037 Aug 2000 EP
55163868 Dec 1980 JP
5745959 Mar 1982 JP
58160095 Aug 1983 JP
59208756 Nov 1984 JP
59227143 Dec 1984 JP
60010756 Jan 1985 JP
60116239 Aug 1985 JP
60195957 Oct 1985 JP
60231349 Nov 1985 JP
6139555 Feb 1986 JP
629639 Jan 1987 JP
63067762 Mar 1988 JP
63205935 Aug 1988 JP
63233555 Sep 1988 JP
63249345 Oct 1988 JP
63316470 Dec 1988 JP
64054749 Mar 1989 JP
1106456 Apr 1989 JP
1175250 Jul 1989 JP
1205544 Aug 1989 JP
1251747 Oct 1989 JP
3177060 Aug 1991 JP
4098864 Sep 1992 JP
5129473 May 1993 JP
5166992 Jul 1993 JP
5283460 Oct 1993 JP
692076 Apr 1994 JP
6140563 May 1994 JP
6260532 Sep 1994 JP
7297344 Nov 1995 JP
7312405 Nov 1995 JP
864634 Mar 1996 JP
8083877 Mar 1996 JP
8125066 May 1996 JP
8222682 Aug 1996 JP
8306853 Nov 1996 JP
98205 Jan 1997 JP
98206 Jan 1997 JP
98207 Jan 1997 JP
992775 Apr 1997 JP
9293822 Nov 1997 JP
10022447 Jan 1998 JP
10163401 Jun 1998 JP
10199934 Jul 1998 JP
10256240 Sep 1998 JP
00150765 May 2000 JP
556398 Oct 2000 JP
2001060648 Mar 2001 JP
200204397 Aug 2002 JP
941979 Jan 1994 KR
9772358 Nov 1997 KR
100220154 Jun 1999 KR
0049944 Jun 2002 KR
9956316 Nov 1999 WO
9967821 Dec 1999 WO
Continuation in Parts (1)
Number Date Country
Parent 09956190 Sep 2001 US
Child 10607324 US