This relates generally to mitigating radio-frequency interference and, more particularly, to electromagnetic shielding structures that help isolate radio-frequency circuitry from radio-frequency interference.
Electronic devices such as computers, cellular telephones, and other devices often contain circuitry that requires electromagnetic shielding. For example, some electronic devices include radio-frequency transceiver circuits that are susceptible to radio-frequency interference. Electronic devices may also include memory and other components that use clock signals during normal operation. If care is not taken, signals from one circuit may interfere with the proper operation of another circuit. For example, a clock signal or a clock signal harmonic that falls within the operating band of a radio-frequency receiver may cause undesirable interference for a radio-frequency transceiver.
To protect from electromagnetic interference, circuits such as radio-frequency transceivers are typically enclosed within metal radio-frequency (RF) shielding cans. The metal of the shielding cans blocks radio-frequency signals and helps shield the enclosed components from electromagnetic interference (EMI). In a typical configuration, integrated circuit components are covered by RF shielding cans after being mounted on a printed circuit board.
Conventional arrangements in which radio-frequency shielding cans are mounted to a printed circuit board can help to reduce electromagnetic interference, but may be undesirably bulky. This may limit the effectiveness of radio-frequency shielding can arrangements in situations such as those in which compact shielding is desired.
It would therefore be desirable to provide improved radio-frequency shielding structures.
Electronic devices may include electrical components mounted on one or more substrates. The electrical components may sometimes be referred to herein as electronic components. The electrical components may include radio-frequency transceiver circuits, clock circuits, processors, application-specific integrated circuits, and other electrical components. The substrate on which the components are mounted may be a rigid printed circuit board, a flexible printed circuit board, a plastic carrier, or other printed circuit substrates.
The electrical components may be sensitive to electromagnetic interference and may have the potential to generate electromagnetic interference for other components. To help protect the components from electromagnetic interference, at least one of the components on a substrate may be electromagnetically shielded. Electromagnetic shielding structures may be formed from insulating materials and conductive materials. The shielding structures may isolate components that are sensitive to electromagnetic interference from components that generate electromagnetic interference or from external sources of electromagnetic interference.
Shielding structures may be formed using manufacturing tools such as molding tools, cutting tools, heating tools, and deposition tools. Shielding structures may, for example, be formed by using laser cutting tools or other cutting tools to form compartments around components. Injection molding tools may also be used to form compartments around selected components. Substrates may be formed with sacrificial regions to accommodate manufacturing variances and to allow manufacturing tools to grip the substrate. The sacrificial regions of a substrate may later be removed to help reduce the dimensions of the device.
Solder walls or metal fences may be formed around selected components. Conductive paint, foil, metals, metal alloys, or other conductive materials may be used to form a conductive layer that covers the components. Insulating materials (e.g., dielectric materials) may be used to provide structural support to the conductive layer and to help prevent electrical shorting between the conductive layer and underlying components that are being shielded. The insulating materials may include compartments that cover the components.
With one suitable arrangement, conductive foil may be wrapped around a substrate to provide an electromagnetic shield for multiple components on the substrate. The conductive foil may be wrapped over a top surface of the substrate and side walls of the substrate. Alternatively, the conductive foil may be wrapped to enclose the entire substrate (e.g., to provide electromagnetic shielding when components are formed on multiple surfaces of the substrate).
Insulating structures having compartments may be formed from heat-shrink material. The insulating structures may be placed over the components and heated so that the compartments shrink to fit the components. A conductive layer may then be deposited over the insulating structures so that the components are shielded from electromagnetic interference.
Electronic components may be tested during the formation of shielding structures for the electronic components (e.g., to identify components that are faulty). The electronic components may be mounted to metal traces on a substrate. Metal test traces formed on the substrate may be coupled to the electronic components and may be left exposed during testing operations. If desired, test posts may be formed on the test traces. Testing operations may be performed by conveying and receiving test signals through the test traces using test equipment (e.g., a tester). After successful testing, the test traces may be electromagnetically shielded using additional shielding structures formed from insulating materials and conductive materials.
Temporary shielding structures may be used during testing. The temporary shielding structures may be adjustable and allow testing of individual components before an electronic device is fully assembled and provided with permanent electromagnetic shielding structures. For example, the shielding structures may be temporarily positioned to shield selected components during test operations. The temporary shielding structures may be removed after completion of testing.
Further features of the present invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description.
This relates to shielding structures for electrical components. The shielding structures may include radio-frequency shielding structures and/or magnetic shielding structures. The electrical components that are shielded by the shielding structures may be components such as integrated circuits that operate in radio-frequency bands (e.g., transceiver integrated circuits, memory circuits and other circuits with clocks that produce signals with fundamentals or harmonics in radio-frequency bands, etc.). Shielded components may also include circuitry formed from one or more discrete components such as inductors, capacitors, and resistors, switches, etc. The electrical components that are shielded may be aggressors (components that produce radio-frequency or magnetic signal interference) and/or victims (components that are sensitive to interference that is received from external sources).
The shielding structures may help to reduce interference from electromagnetic signals and may therefore sometimes be referred to as electromagnetic interference (EMI) shielding structures.
Electronic components may be mounted on one or more printed circuit boards in an electronic device. As an example, the electronic components may be surface-mount technology (SMT) components that are mounted directly onto a printed circuit board. The printed circuit boards may be formed from rigid printed circuit board materials such as fiberglass-filled epoxy (e.g., FR4), flexible printed circuits (e.g., printed circuits formed from flexible sheets of polymer such as polyimide), and rigid flex circuits (e.g., printed circuits that contain both rigid portions and flexible tails). Printed circuit boards on which components such as integrated circuit components and discrete components are mounted may sometimes be referred to as main logic boards. The electronic components and the printed circuit board may sometimes be collectively referred to as packaged components.
Printed circuit boards having shielded components may be used in electronic devices such as desktop computers, laptop computers, computers built into computer monitors, tablet computers, cellular telephones, media players, gaming devices, television set top boxes, audio-video equipment, handheld devices, miniature devices such as pendant and wristwatch devices, or other electronic equipment.
An illustrative electronic device that may contain shielding structures is shown in
Device 10 may include electronic components 12 mounted on a printed circuit board 14 within housing 13. Electronic components 12 may include integrated circuits such as general purpose processing units, application-specific integrated circuits, radio-frequency components such as wireless transceivers, clock generation and distribution circuits, or other electronic components such as discrete components. Printed circuit board 14 may be a main logic board (MLB) or other types of logic boards.
Printed circuit board 14 and its associated components may sometimes be referred to herein as packaged components.
Some of electronic components 12 may be sensitive to electromagnetic interference. For example, a wireless transceiver component may be sensitive to radio-frequency harmonics from a system clock generation component. Some of electronic components 12 may produce radio-frequency signal interference (e.g., a cellular transceiver may emit radio-frequency signals that affect other components of device 10). Other components may generate magnetic interference (e.g., inductors in a power management system may generate magnetic fields). To ensure that the components of device 10 operate properly, it may be desirable to electromagnetically shield components 12 on printed circuit board 14 from each other (e.g., by covering components 12 of
As an example, it may be desirable to shield a wireless communications integrated circuit to help ensure that system noise (e.g., from clocks or other noise sources) does not interfere with proper receiver operation. It may also be desirable to shield an audio circuit so that the audio circuit does not pick up noise from another circuit on device 10 or to shield memory circuits and processor components so that their clocks do not cause interference with other components. In some situations, it may be desirable to shield a group containing multiple components (e.g., when the components are sensitive to electromagnetic interference from external sources).
Shielding structures may be formed using shielding materials 18 and insulating materials 16. The shielding structures may sometimes be referred to as electromagnetic interference (EMI) shielding structures. Shielding materials 18 may include conductive materials such as silver paint, platinum paint, solder, metals such as copper or aluminum, metal alloys such as nickel-iron alloys, conductive adhesives, or other materials suitable for electromagnetic shielding. Shielding materials 18 may be formed in various configurations including walls, fences, sheets or layers, combinations of these configurations, or other desired configurations.
Insulating materials 16 may be used to help prevent electrical shorting between shielding materials 18 and conductive materials on substrate 14 (e.g., conductive portions of components 12). Insulating materials 16 may be formed from epoxy, over-molding materials, under-fill materials, heat-shrink jackets, acrylic materials, dielectric materials, thermoset materials, thermoplastics, rubbers, plastics, or other desirable materials that provide electrical insulation. Insulating materials 16 may be used to form configurations that include compartments for selected components on a substrate. If desired, insulating materials 16 may be used to form configurations that provide structural support for shielding materials 18.
Insulating materials 16 may include materials that are electrically insulating and thermally conductive. For example, insulating materials 16 may include thermally conductive plastics, epoxy, or other thermally conductive materials. Insulating materials 16 that are thermally conductive may be used to draw heat away from components 12. For example, a radio-frequency transceiver may become undesirably hot during normal operation. In this scenario, it may be desirable to form shielding structures from insulating materials that are thermally conductive to help protect the radio-frequency transceiver from overheating.
Insulating materials 16 and shielding materials 18 may be used to form shielding structures that selectively shield components 12 mounted on a substrate 14 (e.g., a printed circuit board).
Manufacturing tools 30 may include molding tools 32, cutting tools 34, heating tools 36, deposition tools 38, and other tools desirable for forming shielding structures for components 12. For example, manufacturing tools 30 may include photolithography tools for applying photoresist masks and etching tools (e.g., chemical etching tools that use etchants to remove materials). As another example, manufacturing tools 30 may include screen printing tools for printing materials such as shielding materials 18 or insulating materials 16.
Molding tools 32 may be used to mold insulating materials 16 to form shielding structures. Molding tools 32 may include injection molding tools, sintering tools, matrix molding tools, compression molding tools, transfer molding tools, extrusion molding tools, and other tools suitable for molding insulating materials 16 into a desired configuration.
Cutting tools 34 may include sawing tools, laser cutting tools, grinding tools, drilling tools, electrical discharge machining tools, or other machining or cutting tools suitable for cutting insulating materials 16 and shielding materials 18.
Heating tools 36 may include oil-based heating tools, gas-based heating tools, electrical-based heating tools, or any other heating tools suitable for heating insulating materials 16 and/or shielding materials 18. Heating tools 36 may, if desired, be used to apply pressure to materials 16 or 18.
Deposition tools 38 may be used to deposit insulating materials 16 and/or shielding materials 18. For example, deposition tools 38 may be used to form insulating structures by depositing insulating materials 16 at desired locations on substrate 14. As another example, deposition tools 38 may include tools for injecting insulating materials 16 (e.g., epoxy) into injection molding tools to form shielding structures. Deposition tools 38 may also include thin-film deposition tools (e.g., chemical or physical deposition tools) or other tools desirable for forming shielding structures.
Manufacturing tools 30 may be used to form shielding structures that shield respective groups of components 12 that are susceptible to electromagnetic interference. Each group of components may include one or more components 12. As shown in the illustrative arrangement of
As an example, to form the shielded compartments of
Molding tools such as molding tools 32 may be used to form structures 112 that define the shape and location of compartments 110. Structures 112 may be placed over conductive traces 104 that are coupled to ground plane 102. Structures 112 may have holes 114 through which insulating materials 16 may be injected into the space inside molding structures 112. After an injection process (e.g., after heated insulating materials 16 are injected and sufficiently cooled), molding structures 112 may be removed. One or more shielding layers (not shown) may be subsequently formed over insulating compartments 110 (e.g., using deposition tools 38). The shielding layer may contact traces 104 and, in combination with ground plane 102, may form a shielding structure that helps protect components in compartments 110 from electromagnetic interference.
Packaged components 20 may be placed on component support structure 130 and injecting tool 126 may be used to inject insulating materials (e.g., thermoplastic or thermoset material) into the region between top chase 122 and bottom chase 124 as shown by arrows 127. Heating elements 128 may be used to melt the insulating materials by applying heat. Top chase 122 and bottom chase 124 may be clamped together to force insulating materials 16 to form desired compartments (e.g., compartments 110) on packaged components 20.
Components may be placed at the edges of a substrate. In some scenarios, it may be necessary to place components at a minimum distance from the edge of the substrate. For example, a portion of the substrate at the edges of the substrate may be reserved for clamping tools that maintain stability of the substrate during manufacturing.
A layer of insulating material 16 may be deposited over component 12 and substrate 14 to form shielding structures. In some scenarios, manufacturing tools such as deposition tools 38 that are used to deposit insulating layer 16 may have associated manufacturing tolerances. Consider the scenario in which it is desired to form packaged components having substrate 14 and insulating materials 16 that extend from component 12 to dashed line 140. In this scenario, it may be difficult to precisely and accurately deposit insulating material 16 due to manufacturing tolerances associated with deposition tools (e.g., insufficient insulating material or excess region 141 may be formed).
As shown in
Manufacturing tools such as tools 30 may be used to form shielding structures using sacrificial regions of a substrate such as region 143 of
In step 144, a substrate having sacrificial regions along the periphery of the substrate may be formed. For example, substrate 14 may be formed with sacrificial region 143 located at the edges of substrate 14.
In step 145, components may be placed on the substrate. The components may include components mounted using surface mount technology and may include integrated circuits (e.g., integrated circuits formed on respective substrates), resistors, capacitors, inductors, or other components suitable for mounting on substrate 14. One or more of the components may be mounted adjacent to the sacrificial regions.
In step 146, deposition tools such as tools 38 may be used to deposit insulating material over the substrate. The deposition tools may be configured to deposit the insulating material in a layer that sufficiently extends into sacrificial regions of the substrate (e.g., to accommodate variances of the boundary of the layer of insulating material). The insulating layer may be formed to enclose the components. If desired, the insulating layer may be formed having compartments such as compartment 108 of
In step 147, the sacrificial regions of the substrate may be removed. The sacrificial regions may be removed using cutting tools 34. For example, laser cutting tools may be used to cut through insulating materials 16 and substrate 14 along dashed line 140 of
In step 148, a shielding layer may be formed over the insulating layer to shield the underlying components from electromagnetic interference. The shielding layer may be deposited using deposition tools 38. As an example, shielding layer 18 may be formed from conductive materials deposited on the top and side of insulating layer 16 as shown in
Shielding compartments for components may be formed using conductive walls. The conductive walls may be formed between components 12 (e.g., walls may be formed between components 12 that are sensitive to radio-frequency interference or produce electromagnetic interference). In the example of
Shielding compartments may be formed by depositing conductive fences around selected components 12. In the example of
If desired, optional insulating layer 164 may be formed underneath conductive layer 166 (e.g., insulating layer 164 may be attached to the bottom surface of conductive layer 166). Insulating layer 164 may help ensure that components 12 are not electrically shorted to conductive layer 166.
In one suitable embodiment, a magnetic shielding layer 168 may be formed (e.g., deposited) over radio-frequency shielding layer 166. Magnetic shielding layer 168 may be formed from materials that help to redirect magnetic fields away from component 12. Shielding layer 168 may, as an example, be formed from metal alloys such as nickel-iron alloys that tend to absorb magnetic fields.
The example of
A shielding structure for components may be formed by wrapping a shielding layer around packaged components.
A shielding structure formed from insulating layers 173A and 173B and shielding layer 171 may be wrapped over components 12 and substrate 14. Shielding layer 171 may be interposed between insulating layers 173A and 173B. Shielding layer 171 may be formed from a radio-frequency shielding layer, a magnetic shielding layer, or both (e.g., a radio-frequency shielding layer formed over a magnetic shielding layer). As an example, shielding layer 171 may be formed from a flexible conductive foil such as a metal foil (e.g., copper foil, aluminum foil, etc.).
Shielding layer 171 and insulating layers 173A and 173B may be wrapped separately over components 12 and substrate 14 or may be formed a wrap structure that is wrapped over components 12 and substrate 14. As an example, shielding layer 171 may be attached to insulating layers 173A and 173B via adhesives to form a single wrap structure.
Insulating layers 173A and 173B may serve to electrically isolate shielding layer 171 (e.g., from components 12 or external objects). Shielding layer 171 may be electrically coupled to ground plane 102 via solder joints 172 to form a shielding structure that encloses components 12. The example of
In some scenarios, it may be desirable to maintain a minimum distance between components 12 and shielding layer 171. For example, the presence of a shielding layer such as layer 171 near some of components 12 may affect operation of those components. Spacers such as spacer block 174 may be interposed between components 12 and shielding layer 171 to ensure that a sufficient distance is maintained between components 12 and shielding layer 171 so that the presence of shielding layer 171 does not interfere with normal operation of components 12. Spacers 174 may be formed from insulating materials (e.g., insulating materials 16) and may be formed having any desired shape and dimensions. Shielding layer 171 and insulating layers 173A and 173B may be structurally supported by components 12 and/or spacers 174.
If desired, region 170 between shielding layer 171 and substrate 14 may be filled with insulating materials. The insulating materials may be used in combination with or in place of insulating layer 173A. As an example, the insulating materials may include over-molding or under-fill materials (e.g., materials associated with injection molding). The insulating materials may serve to insulate components 12 from shielding layer 171 and may be used in place of or in addition to insulating layer 173A. The insulating materials may serve as a structural support for shielding layer 171. In one suitable embodiment, the insulating materials may include thermally conductive materials that conduct heat away from components 12 (e.g., the insulating materials may be electrically insulating and thermally conductive).
In some scenarios, components may be placed on opposing surfaces of a substrate.
It is not necessary to wrap the shielding structure of
In step 176, packaged components may be formed. The packaged components may include components placed on a substrate (e.g., integrated circuit components formed on respective substrates or discrete components such as resistors, capacitors, etc.). The components may be placed on a single surface of the substrate or on opposing surfaces of the substrate. The substrate may include a ground plane that serves as an electrical grounding path for the components on the substrate. If desired, the substrate may be formed with contacts such as contacts 175 that are coupled to the ground plane through the substrate.
In step 177, spacers may be formed on selected components. For example, spacers 174 may be placed on components as shown in
In step 178, a shielding structure may be wrapped around the packaged components so that the components on the substrate are shielded from radio-frequency and/or magnetic interference. As an example, the shielding structure may be a metal foil that is wrapped around the packaged components and coupled to side walls of the substrate via solder or conductive adhesives (e.g., as shown in
Insulating structures for components 12 may be formed before attaching insulating structures to packaged components 20. As shown in
The insulating materials may be formed having compartments that are somewhat larger than what is necessary to enclose components 12. In other words, gaps 182 may separate insulating materials 16 and components 12. As shown in
In one suitable embodiment, compartments may be formed around selected components without covering other components. In the example of
In step 183, an insulating structure having compartments may be formed from insulating materials (e.g., using molding tools 32 or other manufacturing tools). The insulating materials may be formed from materials that can be reformed via heat and/or pressure (e.g., thermoplastic materials). The compartments may be formed based on the location and dimensions of components on a substrate. Each compartment may be formed somewhat larger than a corresponding component that is to be enclosed by that compartment.
In step 184, the insulating structure may be placed on the substrate so that the components on the substrate are enclosed by corresponding compartments (e.g., as shown in
In step 185, heat and/or pressure may be applied to the insulating structure so that the insulating structure is reformed to fill gaps between the compartment walls and the components (e.g., as shown in
In step 186, a shielding layer may be formed over the insulating structure to shield the components from electromagnetic interference (e.g., radio-frequency and/or magnetic interference). The shielding layer may be formed using deposition tools 38, by wrapping the substrate with a shielding structure, etc.
During manufacturing, it may be desirable to test components such as radio-frequency components before the components have been permanently covered with shielding structures. For example, it may be desirable to perform tests on integrated circuits that have been soldered to a printed circuit board before the components are covered with insulating and shielding materials. By testing the components before the process of fabricating the shielding structures is complete, the ability to rework or scrap defective components may be preserved.
As shown in
Temporary shields 18 may include compressible members 190 formed from compressible materials such as steel wool, conductive polymers, or other conductive and compressible materials. Substrate 14 may include contacts 175 to which compressible members 190 may be coupled during testing. Compressible members 190 may help protect contacts 175 from being damaged during testing. During testing, a shielding structure formed from temporary shields 18, contacts 175, and ground plane 102 may help protect selected components 12 on substrate 14 from electromagnetic interference.
During testing, test equipment 188 (e.g., a tester) may be used to communicate with components 12 via paths 191. Paths 191 may include cables and probes for conveying test signals between test equipment 188 and components 12. For example, probes may be used to contact test points at the surface of substrate 14. In this scenario, the substrate may include paths that couple the test points to components 12 to convey the test signals between the test points and the components.
Test equipment 188 may perform testing on components by sending and receiving test signals from components 12 via paths 191. Testing may be performed to determine whether components 12 are operating properly. Adjustable positioning structures may be used to adjust the positioning of shields 18 to shield selected components from electromagnetic interference during test operations. For example, during a first test operation, components C1, C3, and C4 may be shielded. During subsequent test operations, adjustable positioning structures may be used to reposition shields 18 to shield other components such as component C2.
In step 192, a device under test (e.g., a substrate 14 on which components 12 have been placed) may be placed on support structure such as support structure 189.
In step 193, adjustable positioning structures may be used to position temporary shielding structures to enclose selected components on the device under test. For example, adjustable positioning structures 187 of
In step 194, test equipment such as test equipment 188 may be used to perform testing of the device under test. For example, test equipment 188 may be used to test components to determine whether the device under test is operating properly (e.g., to determine whether components 12 on substrate 14 are operating properly). During testing, the temporary shielding structures may serve as radio-frequency and/or magnetic shielding for selected components of the device under test. If desired, the temporary shielding structures may be configured to shield all of the components or selected groups of the components.
Subsequent tests that require different configurations of the temporary shielding structures may be performed by returning to step 193 via path 195. For example, temporary shielding structures may be repositioned to shield different components during subsequent tests. If testing is complete, the operations of step 196 may be performed.
In step 196, the temporary shielding structures may be removed from the device under test. For example, adjustable positioning structures 187 may be used to reposition temporary shields 18 away from components 12.
In step 197, the device under test may be removed from the support structure. If testing was successful, the operations of step 198 may be performed to form permanent shielding structures that serve as radio-frequency and/or magnetic shielding for components on the device under test. In the event that testing fails (e.g., if one or more components of the device under test are identified as defective), the operations of step 199 may be performed.
In step 199, the device under test may be reworked or scrapped. As an example, the device under test may be reworked to replace defective components or rework routing paths or connections on the substrate (e.g., by re-soldering connections between the components and the substrate). In this scenario, the process may return to step 192 via optional path 200 to test the reworked device under test.
It may be desirable to test components on a substrate during the formation of shielding structures for the components (e.g., to test for faults in the components or the connections between the components and the substrate during the formation of permanent shielding structures).
As shown in
An insulating layer 16 may be deposited to cover components 12, test point 201, and substrate 14 as shown in
In a subsequent step, a layer of conductive materials 18 may be deposited over insulating layer 16 as shown in
A portion of conductive layer 18 over test point 201 may then be removed as shown by arrows 206 of
As shown by
In a subsequent step, testing of packaged components 20 may be performed using a test probe 210 as shown in
The example of
After testing of packaged components 20 is complete (e.g., in response to determining that components 20 are operating properly), the previously removed regions of conductive layer 18 and insulating layer 16 may be filled with an insulating material 212 as shown in
As shown in
As an example, test point 201 may be a substantially circular contact formed on the surface of substrate 14. In this scenario, insulating material 212 may form a cylindrical insulating structure that covers test point 201. If desired, insulating material 212 may overlap with insulating layer 16 and/or conductive layer 18. Conductive layer 214 may be deposited to cover a substantially circular area over test point 201 and insulating material 212. Conductive layer 214 and conductive layer 18 may, in combination, serve to form a continuous layer of conductive material over components 12.
The example of
In step 222, packaged components may be formed having components on a substrate. The substrate may include test points that are coupled to the components (e.g., as shown in
In step 224, an insulating layer may be deposited on the substrate (e.g., insulating layer 16 of
In step 226, a conductive layer may be deposited over the substrate (e.g., conductive layer 18 of
In step 228, portions of the conductive layer over the test points may be removed to expose underlying portions of insulating layer 16 (e.g., using etching tools or cutting tools 34 such as laser cutting tools).
In step 230, portions of insulating layer 16 that were exposed during step 228 may be removed so that the test points are exposed (e.g., using cutting tools 34).
In step 232, the exposed test points may be used to test components that are coupled to the test points. For example, test equipment may be used to send and receive test signals to the components using probes that contact the test points (e.g., as shown in
In step 234, the test points may be covered with insulating material. For example, deposition tools 38 may be used to fill regions of insulating layer 16 and conductive region 18 that were removed during steps 226 and 228 with an insulating material 212 (e.g., as shown in
In step 236, the insulating material over the test points may be covered with a layer of conductive materials for shielding the test points (e.g., as shown in
In one suitable embodiment, packaged components may be formed with test posts for testing of components.
As shown in
In a subsequent step, a layer of insulating material 16 may be deposited on substrate 14 as shown in
A removable cap 244 may then be placed over test post 242 as shown in
A layer of conductive material 18 may then be deposited over insulating layer 18 and removable cap 244 as shown in
Removable cap 244 may be subsequently removed along with portions of conductive layer 18 that covers removable cap 244 as shown in
Test post 242 may be used to perform testing of a respective component 12 that is coupled to test post 242 via contact 201 and path 204. For example, a probe may be positioned to contact test post 242 and used to transmit and receive test signals through test post 242 to the respective component 12. If desired, multiple test posts that are coupled to components on substrate 14 may be formed and used for testing of the components.
In a subsequent step, a shielding structure may be formed that shields test post 242 as shown in
In step 262, the packaged components may be formed having test points at the surface of a substrate (e.g., test points such as test point 201 of
In step 264, test posts may be attached to the test points (e.g., test posts such as test post 242 of FIG. 19A that are coupled to components). The test posts may extend vertically above the substrate and may be attached to the test points via solder or other forms of conductive coupling (e.g., conductive adhesive, etc.).
In step 266, a layer of insulating material may be formed over the substrate (e.g., insulating layer 16 of
In step 268, removable caps may be placed over the test posts. Each removable cap may, for example, be formed and placed over a respective test post as shown in
In step 270, a shielding layer may be deposited using deposition tools 38 as shown in
In step 272, the removable caps may be removed along with portions of the shielding layer that cover the removable caps (e.g., as shown in
In step 274, testing of components may be performed using the test posts (e.g., using test equipment to transmit and receive test signals from the components via the test posts). In response to successful testing, the test posts may be covered with shielding structures during step 276 (e.g., shielding structures each formed from an insulating layer 250 and a conductive layer 248 as shown in
Electronic components on a substrate may be selectively shielded using any desired electromagnetic shielding structures (e.g., some components may be shielded without shielding other components).
In step 282, components such as components 12 may be mounted on a substrate (e.g., substrate 14 or other printed circuit board substrates).
In step 284, shielding structures may be formed using insulating materials and shielding materials around selected components. For example, metal fences may be used to selectively shield a component as shown in
The foregoing is merely illustrative of the principles of this invention and various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. The foregoing embodiments may be implemented individually or in any combination.
This application claims the benefit of provisional patent application No. 61/495,348, filed Jun. 9, 2011, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
638820 | Swaab et al. | Dec 1899 | A |
753796 | Jarvis et al. | Mar 1904 | A |
4717990 | Tugcu | Jan 1988 | A |
4994659 | Yabe et al. | Feb 1991 | A |
5177324 | Carr et al. | Jan 1993 | A |
5316165 | Moran, Jr. | May 1994 | A |
5461545 | Leroy et al. | Oct 1995 | A |
5600181 | Scott et al. | Feb 1997 | A |
5689878 | Dahringer et al. | Nov 1997 | A |
5694300 | Mattei et al. | Dec 1997 | A |
5761053 | King et al. | Jun 1998 | A |
5981043 | Murakami et al. | Nov 1999 | A |
5987739 | Lake | Nov 1999 | A |
5990989 | Ozawa | Nov 1999 | A |
6218610 | Suzuki | Apr 2001 | B1 |
6326544 | Lake | Dec 2001 | B1 |
6455936 | Lo et al. | Sep 2002 | B1 |
6483719 | Bachman | Nov 2002 | B1 |
6492194 | Bureau et al. | Dec 2002 | B1 |
6600101 | Mazurkiewiez | Jul 2003 | B2 |
6659512 | Harper et al. | Dec 2003 | B1 |
6671183 | Tsuzuki | Dec 2003 | B2 |
6683245 | Ogawa et al. | Jan 2004 | B1 |
6733954 | Yamamoto et al. | May 2004 | B2 |
6738249 | Anthony et al. | May 2004 | B1 |
6940010 | Cunningham et al. | Sep 2005 | B2 |
6952046 | Farrell et al. | Oct 2005 | B2 |
6977187 | Farrell et al. | Dec 2005 | B2 |
7089646 | Leerkamp | Aug 2006 | B2 |
7095627 | Yokota | Aug 2006 | B2 |
7102896 | Ajioka et al. | Sep 2006 | B2 |
7177161 | Shima | Feb 2007 | B2 |
7180012 | Tsuneoka et al. | Feb 2007 | B2 |
7196275 | Babb et al. | Mar 2007 | B2 |
7214889 | Mazurkiewicz | May 2007 | B2 |
7381906 | Holmberg | Jun 2008 | B2 |
7446265 | Krohto et al. | Nov 2008 | B2 |
7476566 | Farrell et al. | Jan 2009 | B2 |
7501587 | English | Mar 2009 | B2 |
7506436 | Bachman | Mar 2009 | B2 |
7586185 | Fukasawa | Sep 2009 | B2 |
7639513 | Otsuki | Dec 2009 | B2 |
7643311 | Coffy | Jan 2010 | B2 |
7649499 | Watanabe | Jan 2010 | B2 |
7651889 | Tang et al. | Jan 2010 | B2 |
7745910 | Olson et al. | Jun 2010 | B1 |
7898066 | Scanlan et al. | Mar 2011 | B1 |
7906371 | Kim et al. | Mar 2011 | B2 |
7920367 | Anthony et al. | Apr 2011 | B2 |
7972901 | Farrell et al. | Jul 2011 | B2 |
7989928 | Liao et al. | Aug 2011 | B2 |
8008753 | Bolognia | Aug 2011 | B1 |
8022511 | Chiu et al. | Sep 2011 | B2 |
8030750 | Kim et al. | Oct 2011 | B2 |
8093690 | Ko et al. | Jan 2012 | B2 |
8093691 | Fuentes et al. | Jan 2012 | B1 |
8110902 | Eun et al. | Feb 2012 | B2 |
8212339 | Liao et al. | Jul 2012 | B2 |
8212340 | Liao | Jul 2012 | B2 |
8279625 | Just et al. | Oct 2012 | B2 |
8654537 | Fisher et al. | Feb 2014 | B2 |
20010054754 | Inoue | Dec 2001 | A1 |
20020119585 | Yamazaki et al. | Aug 2002 | A1 |
20020153360 | Yamazaki et al. | Oct 2002 | A1 |
20020192931 | Hayakawa | Dec 2002 | A1 |
20030057544 | Nathan et al. | Mar 2003 | A1 |
20040121602 | Maruyama et al. | Jun 2004 | A1 |
20040233035 | Fjelstad | Nov 2004 | A1 |
20040259389 | Yamazaki et al. | Dec 2004 | A1 |
20050064685 | Hayakawa | Mar 2005 | A1 |
20060086518 | Kawaguchi et al. | Apr 2006 | A1 |
20060152913 | Richey et al. | Jul 2006 | A1 |
20070120132 | Maruyama et al. | May 2007 | A1 |
20080210462 | Kawagishi et al. | Sep 2008 | A1 |
20090223711 | Ueno et al. | Sep 2009 | A1 |
20090289548 | Maruyama et al. | Nov 2009 | A1 |
20090289755 | Yu et al. | Nov 2009 | A1 |
20100246143 | Dinh et al. | Sep 2010 | A1 |
20110063810 | Chen et al. | Mar 2011 | A1 |
20120261181 | Izawa et al. | Oct 2012 | A1 |
20130027897 | Just et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
H04-079352 | Dec 1992 | JP |
H06-041198 | Feb 1994 | JP |
10-051173 | Feb 1998 | JP |
2001-339016 | Dec 2001 | JP |
2003-273571 | Sep 2003 | JP |
3113508 | Jul 2005 | JP |
2009212446 | Sep 2009 | JP |
2009290141 | Dec 2009 | JP |
Entry |
---|
Henkel Electronics, “PCB Protection with Macromelt,” Jan. 13, 2011. Retrieved from the Internet: <URL:http://www.youtube.com/watch?v=0yBYU—QHibw>. |
Henkel Electronics, “PCB Protection Overview,” Mar. 16, 2011. Retrieved from the Internet: <URL:http://www.youtube.com/watch?v=LEslHhpzKyc&feature=related>. |
Marchese, “Macromelt Hot Melts to Shape Electronics: Introductionto Products and Technology,” Henkel Loctite Adhesives, Jun. 30, 2006, Casarile, Italy (22 pages). |
Number | Date | Country | |
---|---|---|---|
20120320558 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61495348 | Jun 2011 | US |