1. Field of the Invention
The invention in general relates to electronic memories, and in particular such memories capable of storing multiple data bits (M) in a single memory cell or multiple memory cells (N) where (M) is greater than (N).
2. Statement of the Problem
Electronic memories comprising arrays of memory cells arranged in rows and columns are well known. Most such memories are capable of storing a single bit of data in each memory cell. However, as the need for denser memories has grown and the ability to detect smaller voltages, currents, and/or charges has developed, memories that store multiple bits of data per cell have become commercially available. These include two-bit-per-cell Read Only Memory (ROM), two- or multiple-bits-per-cell dynamic random access memory (DRAM), multi-level flash memories, two-bit-per-cell MLC StrataFlash™ developed by Intel, two-bit-per-cell mirror bit flash developed by AMD, Ovonic Unified Memory (OUM), Magnetoresistive Random Access Memory (MRAM), EEPROM multi-bit cells, EPROM multi-bit cells, CCD (Charge Coupled Device) memory cells, and many others. There are hundreds of patents describing the design details for such memories, including U.S. Pat. No. 4,287,570 describing a multiple-bit ROM NOR memory, U.S. Pat. No. 4,388,702 describing a multiple-bit ROM memory with virtual ground, U.S. Pat. No. 4,586,163 describing a multiple-bit ROM NAND memory, U.S. Pat. No. 4,653,023 describing a plural-bit-per-cell ROM NOR memory, U.S. Pat. No. 4,771,404 describing a two-bits-per-cell DRAM, U.S. Pat. No. 5,351,210 describing a serially accessible multi-bit-per-cell DRAM, U.S. Pat. No. 4,661,929 describing a multi-bit-per-cell DRAM, U.S. Pat. No. 5,283,761 describing a multi-level DRAM cell, U.S. Pat. No. 4,964,079 describing a multi-bit-per-cell flash memory, U.S. Pat. No. 5,043,940 describing a multi-state flash memory cell, U.S. Pat. No. 5,218,569 describing an N-bits-per cell flash memory, U.S. Pat. No. 5,790,456 describing a multiple-bits-per-cell flash EEPROM, and U.S. Pat. No. 5,515,324 describing a NAND flash memory.
For all of the above memory cells, it is necessary to distinguish four or more voltage levels over the same voltage range that two voltage levels are distinguished in one-bit-per-cell memories. For example, if the conventional cell has a zero volts as logic “0” state and five volts as the logic “1” state, a two-bit cell using the same cell structure must be able to distinguish a zero volt state, a 1.67 volt state, a 3.33 volt state and a five volt state. However, at the same time that there is a demand for denser memories, there is also a demand for memories using less power. Further, the drive for higher densities also requires smaller and smaller circuit footprints, including thinner insulation layers. Thinner insulation layers require lower voltages to prevent unsuitably high leakage currents. If the system voltage is scaled down to achieve less power and suitably small leakage currents in small footprint devices, the voltage differences that must be distinguished become correspondingly small, and it is difficult, if not impossible, to develop reliable read/write circuitries, especially for the Very Deep Submicron Technologies (VDS) with the scaling of system supply voltage down to 1.0 volt or lower. Thus, when reliability, accessing time performance, and/or low power consumption are important, commercial electronic devices uniformly utilize conventional one-bit per cell architectures.
From the above, it is evident that there is a need for an electronic memory architecture that is denser than a one-bit-per-cell architecture, which can be scaled to small footprints and low voltages, and at the same time is highly reliable.
The invention provides a solution to the above problem by providing a memory architecture that utilizes three voltage levels per cell, which we shall refer to herein as the Tri-Level Cell (TLC). Since it is inherently easier to distinguish three voltage levels in a cell, as compared to four or more levels per cell, such a memory can be more easily scaled down to small footprints and low power.
The memory architecture according to the invention utilizes multiple memory cells to obtain three or more bits of data. For example, in the preferred embodiment, two tri-level memory cells (TLCs) are used to obtain three bits of data in a TLC cell pair, thus increasing the memory storage capacity by 50% with roughly the same die area. It is preferred that each of the multiple-level cells has only one extra level from a conventional single bit memory cell, i.e., three levels: Since one TLC cell only has three logic states, two TLC cells are required to get nine logic states, which is enough to represent three bits of data storage with one extra state. We will call this a Tri-level Cell Pair strategy. The two single-bit TLC cells can be combined in one cell or can be placed in different locations as required by layout and circuit design considerations. The one extra state is preferably used as a violation state, un-programmed, privileged state, etc., which is not available from the existing multi-level cell (MLC) designs, nor the Single-level Cell (SLC designs). As known in the art, such an extra state can be used to increase reliability of the overall cell architecture.
The invention provides an electronic memory comprising: a memory cell pair comprising a first memory cell and a second memory cell, each said memory cell comprising an electronic storage element, e.g., a single bit line cell or elements or complementary bit line cells, capable of existing in three or more electronic memory states; a write circuit for writing three or more data bits to said memory cell pair, wherein at least one of said data bits is used to determine an electronic memory state of said first cell and an electronic memory state of said second cell; and a read circuit for reading three or more data bits from said memory cell pair, wherein at least one data bit is determined by an electronic memory state of said first cell and an electronic memory state of said second cell. Preferably, said memory cell pair includes an extra state that is not used in representing said three or more data bits. Preferably, said first and second memory cells are capable of existing in an odd number of states. Preferably, said first and second memory cells are capable of existing in three electronic memory states for a total of nine possible memory state combinations and there are three of said data bits. Preferably, one of said nine possible memory state combinations is not used in directly recording said three data bits. Preferably, said memory further includes a tri-level sense amplifier for sensing three electronic levels and for outputting two logic signals. Preferably, said memory includes two of said tri-level sense amplifiers and a decoder for decoding the four logic signals output by said sense amplifiers into three data bits. The single-bitline-cell or complementary-bitline-cell memory can be a flash memory, a read only memory (ROM), a ferroelectric memory (FeRAM) or (FRAM), a dynamic memory such as dynamic random access memory (DRAM) or a dynamic register, an ovonic unified memory (OUM), or a magnetoresistive random access memory (MRAM). In the case of a dynamic memory, the memory cells preferably include an MOS capacitor, and more preferably, an NMOS capacitor. The memory can be ferroelectric memory, which may be a non-volatile memory, a destructive read out memory, or a non-destructive readout memory. The memory may also be either an NAND memory or an NOR memory.
The invention also provides a method of reading an electronic memory, said method comprising: reading three electronic levels from each of 2N memory cells, where N is an integer; and decoding said electronic levels into 2N+N data bits. Preferably, said reading comprising reading three electronic levels from each of two memory cells, and said decoding comprises decoding said electronic levels into three data bits. For a complementary-bit-line-cell when the true-and-complement storage elements, which can be capacitive or resistive, can store “0” or “1” value independently, the three levels can also be represented by the normal, e.g., “01”=High, “10”=Low, and the third level can be “11 or 00”=Middle.
In another aspect, the invention provides a method of writing to an electronic memory, said method comprising: receiving 2N+N bits of data, where N is an integer; and writing said bits of data into three electronic levels in each of 2N memory cells. Preferably, said receiving comprises receiving three data bits, and said writing comprises writing three electronic levels into each of two memory cells.
The Tri-Level TLC Cell Pair strategy gives a 50% increase in memory storage capacity with a much less challenging circuit development effort as compared to Multi-level Cell (MLC) designs, with very minor additional die area. Any of the non-volatile technologies like EEPROM, EPROM, FeRAM, Silicon-On-Fe-Capacitor FeRAM, OUM memory, and various types of flash memories, which include stacked-gate cell, two-transistor cell (MirrorBit), split-gate cell, etc., can be easily modified to provide the 50% increase in storage capacity. All synchronous or asynchronous DRAMs, Silicon-On-Capacitor DRAMs, PSRAMs, and 1TSRAMs can also be converted to this Tri-Level TLC Cell Pair strategy to gain a 50% storage capacity. Numerous other features, objects, and advantages of the invention will become apparent from the following description when read in conjunction with the accompanying drawings.
1. Overview
The invention relates to electronic memories. These memories include memory arrays comprising rows and columns of memory cells electrically connected with signal lines, such as word lines and bit lines, plus associated circuitry for writing and reading to the memory.
Cells 120 and 130 are addressed by word write line 102 carrying a write signal WLwrite and word read line 104 carrying a word read signal WLread. Cell 120 is also addressed by write bit line 106 carrying signal BL1write and read bit line 108 carrying signal BL1read, while cell 130 is also addressed by write bit line 116 carrying signal BL2 and read bit line 118 carrying signal BL2. Each cell, such as 120, has a write port 121 connected to the write bit line 106 and a read port 124 connected to the read bit line and is connected to the write word line 102 and read word line 104 via address lines 128 and 126, respectively. Generally, there are additional rows of cells above and below row 150 as indicated by dotted lines 140 and 142 and additional columns of cells to the left and right of columns 152 and 154 as indicted by dotted lines 141 and 147, respectively. There also may be additional columns of cells between columns 152 and 154 as indicated by dotted lines 145 and 146; that is, cell pair 101 is not necessarily comprised of neighboring cells.
As will be shown in the examples below, each tri-level cell 120 and 130 preferably comprises a single tri-level storage element for a single bit line architecture, and two storage elements for a complementary-dual-bit-lines architecture. By “a single tri-level storage element” is meant a single capacitor, a single transistor, or a single resistor, a single magnetoresistive element, or a single other element that is conventionally used as a storage element in an electronic memory. It is noted that some memory cells, such as dual floating gate NAND flash cell, actually contain two storage elements, since the floating gate has an insulating portion which divides the gate in two. This is not considered to be a single storage element, since there are two separate storage gates in the dual gate structure. In general, the most common tri-level storage element can be of two types: resistive, which depends on variation of drive strengths or threshold voltage variation to provide the three levels; or capacitive, which depends on the amount of charge stored or variation of capacitance to provide the three levels. In general, each port, read or write, can have its own corresponding control lines and bit line, or control lines can be shared or merged depending on timing and applications; bit lines can also be shared, merged, or joined serially depending on timing and applications, or read and write ports can also be shared or merged together depending on the applications. Some examples include: a NOR flash cell is a resistive type single port READ/WRITE with merged word line and bit line; a NAND flash cell is a resistive type single port READ/WRITE with merged word line, and serially joined bit lines; a NOR virtual ground flash cell is a resistive type single port READ/WRITE with merged word line, and shared bit lines; a NOR ROM cell is a resistive type single port READ; a NAND ROM cell is a resistive type single port READ with serially joined bit lines; a NOR virtual ground ROM cell is a Resistive type single port READ with shared bit lines; a DRAM cell is a capacitive type single port READ/WRITE with merged word line and bit line; a dynamic 1R1W register cell is a capacitive type one read port and one write port; a dynamic 1R2W register cell is a capacitive type one read port and two write ports; a dynamic 2R2W register cell is a capacitive type two read ports, and two write ports; an OUM cell is a resistive type single-port READ/WRITE with merged word line and bit line; an MRAM cell is a resistive type single port READ/WRITE with merged word line and bit line; a 1T1C FeRAM cell is a capacitive type single port READ/WRITE with one bit line, and two word lines with one of the word lines used as a plate line. If any of the above memories is implemented with complementary-dual-bit-line cells, the three levels of the Tri-Level Cell can be represented in the True-&-Complement cell as “0, 1” as the first level, “1, 0” as the second level, “1, 1” or “0, 0” as the third level.
MEMORY 200 includes decoder and word line drive 441, memory cell array 245, column (y) selector circuit 278, input/output circuitry 279, and control logic 280. Memory cell array 245 includes tri-level cell pair 250, read word line 204, read bit lines 252, optionally decoded read drive line 258, as well as other cell pairs and word and drive lines as discussed above in connection with
Read Control logic 280 receives control signals from control pins 282 and address signals on address lines 284 and provides row address signals to decoder 241 on row address bus 287, column address signals to column selector circuit 278 on column address bus 286, and provides input/output control signals to input/output circuit 279 on lines 285. Row decoder 441 decodes the row address and applies word line signals on word lines 246, including the read word line 204 associated with cells 220 and 230. Input/output circuitry 279 includes tri-level sense amplifiers 272 and 274, read control circuitry 271, and tri-level decoder 276. The inputs to tri-level sense amplifiers 272 and 274 include a read control signal, a voltage reference signal Vref from reference voltage source 278, and the bit line signal B1 and B2, respectively, from the corresponding read bit lines 252 and 254. Each tri-level sense amplifier outputs two signals, S01 and S02, from tri-level sense amplifier 272, and S02 and S12 from sense amplifier 274, which signals are input into tri-level decoder 276. An example of how each sense amplifier maps the three logic levels to the two output signals S0 and S1 is shown in Table 1:
In Table 1, the zeros and ones represent corresponding logic states and the X represents a “don't care” state. As another example, each of the tri-level sense amps 272 and 274 can also have three outputs representing directly the low, medium, and high levels, i.e., SL, SM, and SH.
The read control circuit 271 also inputs a signal to tri-level sense amplifier 276. The output from tri-level read decoder 276 is a three-bit data signal Y0, Y1, Y2 output on data out bus 235. The ideal location for placing Error Detection And Correction Circuits (ECC or EDAC) is at the input section of the tri-level read decoder 276. To simplify the ECC algorithm, the physical failure mechanism can be exploited. For a capacitive charge storage element, the failure mode would mostly be total charge lost. If the capacitor can retain any charge, it is a good capacitor. The Medium and High states can be viewed as one state. The ECC would only need to worry about with or without charge states. For resistive type memory like Flash and OUM, the failure mode would mostly be an extra fast programmed cell. It means that the cell would be high resistance or high threshold whenever it is programmed. The Low programmed state and the Medium programmed state can be viewed as one state. The ECC would only need to worry about conductive or not-conductive states; or in another words Low threshold states or High threshold states. In the case of ferroelectric memory, one of the failure modes would be that the ferroelectric capacitor has lost all the polarization charge. The ECC would only need to worry about with or without polarization charge states.
Two different samples of decoding maps from the S01, S11, S02, and S12 signals to the Y0, Y1, and Y2 signals are shown in Table 2 and Table 3.
The decoding maps are selected depending on circuit design considerations. The Extra State can also be used as unprogrammed, unknown, violation, privileged, etc. If data output 235 is a bus and Y0, Y1, Y2 are output in parallel, they represent three separate data outputs. If data output 235 is a single pin and Y0, Y1, Y2 are sent in series through one pin, they can be considered as three different values for one data output.
The data inputs D0, D1, D2 can be first encoded by encoder 376 into X01, X11 for TLC cell 220, and X02, X12 for TLC cell 230 and then by drivers 372 and 374, respectively, into LOW, MEDIUM and HIGH signals for writing to the respective cells. Tables 4, 5, and 6 illustrate how this can be done. The encoder 376 first encodes the D0, D1, and D2 signals into two signals X0 and X1 for each TLC cell 220 (TLC1) and 230 (TLC2) according to Table 4:
where X indicates a “don't care” state as before. Within the tri-level drivers 372 and 374, respectively, the two input signals X0 and X1 are interpreted as shown in Table 5:
Thus, the three bits D0, D1, and D2 each result in the following states being written into the cells 220 (TLC1) and 230 (TLC2) as shown in Table 6:
The outputs of the Tri-Level Write Encoder TLWENC are the TLWENC can also write out the LOW, MEDIUM, or HIGH commands directly to write into the Tri-Level storage element for each corresponding TLC cell. Different encoding maps can be selected depending on circuit design considerations. The extra state can be used as an unprogrammed, unknown, violation, privileged state, etc., depending on circuit applications. In the case of a flash memory, the extra state can be one in which both cells are erased by no data being written into the cell. In the case of a DRAM, the cells during power startup will most likely have no charge in them. It can be considered a violation if the cells were not written but are being read.
The invention contemplates that split-gate flash memory cells or dual floating gate flash cells can be incorporated into the NAND memory just discussed, or other flash memories discussed herein in either NAND or NOR architectures. These split-gate flash memory cells and dual floating gate flash cells and the various address architectures which are used in such flash memories are well-known in the art and thus will not be discussed in detail herein. Any other known or future flash architecture can be used. For example, for circuit design or layout considerations, BLAn, n+1, n−1, n−2 bit lines, which are in the vertical direction in
An example of an NOR flash memory core array 600 is shown in
Similarly, any other known flash architecture can be implemented to obtain three bits from two cells.
In dynamic storage components like DRAM, 1TSRAM, PSRAM, Dynamic Register array, Dynamic FIFO, etc., a capacitor is being used in the memory cell to store the desired logic state. As an example of a dynamic memory to which the TLCP strategy is applied,
The capacitors used in any TLCP cell with dynamic charge storage can be any capacitor available in the specific process, e.g., MIM, PIP, PN junction, trench capacitor, stacked capacitor, sidewall capacitor, NMOS capacitor, PMOS capacitor, native NMOS capacitor, native PMOS capacitor, depletion NMOS capacitor, etc. To maximize the capacitance on an MOS capacitor, the MOS transistor can be depletion implanted with Negative VT, or a native NMOS with VT close to 0V, or NMOS transistor with the gate node connected to a high voltage so the NMOS transistor will be in an ON state to maximize the effective capacitance.
The TLCP strategy can also be used in Read Only Memories (ROMs). There are many types of ROM memories. The NOR style ROM has cells with select transistors of different strengths or different widths to implement multi-level, e.g., 2-bit-per-cell ROM. The NAND style ROM uses implants for programming. It is possible to adjust the levels of the implants for each cell to implement multi-level. For Virtual Ground style ROM, the selected ROM cell transistor can be like the NOR style with various channel widths to implement multiple bits of data per cell.
The TLCP strategy can also be used with ferroelectric memories.
There are probably hundreds of different architectures of ferroelectric memories, all of which can be combined with the TLCP strategy to obtain three bits from a pair of cells. Some of these are the 1T/1C cell described in U.S. Pat. No. 4,893,272, the trinion cell described in U.S. Patent Publication No. 20030206430, and the chain cell described in U.S. Pat. No. 6,483,373, all of which are hereby incorporated by reference to the same extent as though fully disclosed herein.
Since the preferred TLCP strategy uses memory cells with three levels, it is a lot easier to implement as compared to a regular 2-bit-per-cell memory cell with four levels or MLC cells with multiple levels greater than or equal to 4. As indicated by the examples above, the TLCP strategy can be used with nearly every memory cell architecture. This strategy is suitable for both volatile and non-volatile memories. It is also applicable to mirror-bit two transistor styles of memory cell with each side being tri-level. The two TLC cells can be located together in one unit cell, or in different column or row locations, or even in other memory blocks depending on the circuit implementations. The specific implementation of the TLC pair is dependent on each individual memory cell technology. That is, the invention is not limited to the exact implementations of each individual technology described herein, but is broad enough to include using the preferred pair of tri-level cells, preferably having exactly only one extra level from a regular single bit memory cell, to get one more bit of data out of the two cells.
With any embodiment, the TLCP strategy gives a 50% increase in memory storage capacity with a much less challenging circuit development effort and roughly the same silicon area. Many of the non-volatile technologies like EEPROM, EPROM, FeRAM, OUM memory, and various types of flash memories, which includes stacked-gate cells, two-transistor cells, split-gate cells, etc., can be easily modified to have the 50% increase in storage capacity. All DRAMs including synchronous or asynchronous DRAMs, DDR DRAMs, QDR DRAMs, PSRAMs, 1TSRAMs, etc., can also be converted to this TLCP strategy to gain a 50% increase in storage capacity. In all of the above figures described, where NMOS passgates are shown in the schematics as examples, they could be PMOS, N/P MOS, bipolar transistors, finFet, triple-gate Transistors, etc., depending on circuit design requirements.
There has been described novel electronic memory architectures utilizing a tri-level memory cell. Now that the tri-level cell and various memory architectures using the cell have been described, those skilled in the electronics arts may make many variations. It should be understood that the particular embodiments shown in the drawings and described within this specification are for purposes of example and should not be construed to limit the invention, which will be described in the claims below. Further, it is evident that those skilled in the art may now make numerous uses and modifications of the specific embodiments described, without departing from the inventive concepts. It is also evident that the methods recited may, in many instances, be performed in a different order, or equivalent components may be used in the memories, and/or equivalent processes may be substituted for the various processes described. Consequently, the invention is to be construed as embracing each and every novel feature and novel combination of features present in and/or possessed by the invention herein described.
This patent application claims the benefit of U.S. Provisional Patent Application No. 60/542,094 filed Feb. 5, 2004, which provisional patent application is hereby incorporated by reference to the same extent as though fully disclosed herein.
Number | Date | Country | |
---|---|---|---|
60542094 | Feb 2004 | US |