This invention relates generally to adhering silicon nitride films to carbon-containing silicon oxide films.
In interconnect systems, it is desirable to integrate low dielectric constant interlayer dielectric carbon doped oxide films. Carbon doping of the oxide improves the overall performance of the interconnect system by lowering its dielectric constant. However, the carbon doping also degrades the interface adhesion between the carbon doped oxide interlayer dielectric films and silicon nitride etch-stop films. As a result of the poor adhesion, thermomechanical failures may occur due to packaging induced stress. These failures may occur at the top and bottom of the carbon doped oxide films.
Current techniques for solving this problem involve using a downstream plasma ammonia pretreatment of the carbon doped oxide film surface before the silicon nitride film deposition. However, this treatment merely removes surface contaminants and does not reduce or solve the adhesion problem.
Thus, there is a need for better ways to adhere silicon nitride films to carbon-doped oxide films.
A directional plasma argon densification treatment of carbon doped oxide films prior to silicon nitride deposition improves the adhesion between the silicon nitride etch-stop film layer and a carbon doped oxide film layer. The densified surface layer creates a buried interface to the bulk carbon doped oxide film. Adhesion between the silicon nitride and the carbon doped oxide film may be improved by more than 50 percent in some embodiments.
The use of the argon densification process modifies the carbon doped oxide film chemically by producing a carbon-depleted or silicon dioxide-like surface layer. It also modifies the carbon doped oxide film physically by densifying the surface layer. In particular, it creates a rough, buried interface between the dense, carbon-depleted surface layer and the bulk carbon doped oxide film. At the same time, the actual carbon doped oxide surface is not roughened.
Thus, referring to
Referring to
The entire surface of the carbon doped oxide film 20 may be treated with a directional argon plasma. The power and dose of the argon plasma may be high enough to create a densified, carbon-depleted layer with a buried, rough interface to the bulk films.
Thus, as shown in
For example, in some embodiments through the use of argon sputtering, the ratio of SiCH3 to SiOH may be lowered from 0.42 to 0.02 (measured using time-of-flight secondary ion mass spectrometry (TOFSIMS)) on the top five atomic layers), the near surface density may be increased from 1.6 g/cc to 3.9 g/cc (measured with X-ray reflectivity at 20–100 Angstroms) and the roughness of the carbon doped oxide film can be reduced from 0.19 to 0.14 nanometers, measured with atomic force microscopy (AFM). In the same example, the interface adhesion energy may be improved from 3.2 J/m2 using ammonia plasma pretreatment or 4.2 j/m2 using H2 plasma to 5.1 J/m2 with argon sputtering two times. The fracture interface root mean squared (rms) roughness in nanometers may be improved from 0.23 for ammonia pretreatment or 0.31 for H2 plasma surface treatment to 0.44 with argon sputtering two times. The adhesion energy may be measured with a 4-point bending on the silicon nitride/carbon doped oxide blanket film stacks. The fracture interface roughness may be measured with an atomic force microscopy of delaminated 4-point bend samples.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Number | Name | Date | Kind |
---|---|---|---|
5633208 | Ishikawa | May 1997 | A |
6329297 | Balish et al. | Dec 2001 | B1 |
6407013 | Li et al. | Jun 2002 | B1 |
6602806 | Xia et al. | Aug 2003 | B1 |
6767836 | San et al. | Jul 2004 | B1 |
20040084412 | Waldfried et al. | May 2004 | A1 |
20050032392 | Goh et al. | Feb 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20040051176 A1 | Mar 2004 | US |