NOT APPLICABLE
A typical semiconductor die package comprises a leadframe structure, a semiconductor die mounted on a die attach pad of the leadframe structure, and a molding material. The leadframe structure is typically etched with recesses so that the molding material locks to the leadframe structure. In the conventional leadframe structure, the etched recesses face each other. An example of this is shown in
Such conventional semiconductor die packages are useful. However, it would be desirable to either reduce the size of a semiconductor die package or increase the size of the die attach pad. By making a semiconductor die package smaller, the semiconductor die package can be used in smaller electronic devices. By increasing the size of a die attach pad, a larger semiconductor die can be used. If the semiconductor die comprises a power transistor, the larger semiconductor die can have a higher current rating than a smaller semiconductor die.
Embodiments of the invention address these problems, individually and collectively.
Embodiments of the invention are directed to leadframe structures, semiconductor die packages including the leadframe structures, and methods for making the leadframe structures and the semiconductor die packages.
One embodiment of the invention is directed to a leadframe structure comprising a first leadframe structure portion comprising a first thin portion and a first thick portion. The first thin portion is defined in part by a first recess. The leadframe structure also comprises a second leadframe structure portion comprising a second thin portion and a second thick portion. The second thin portion is defined in part by a second recess. The first thin portion faces the second recess, and the second thin portion faces the first recess.
Another embodiment of the invention is directed to a semiconductor die package comprising a leadframe structure comprising a first leadframe structure portion comprising a first thin portion and a first thick portion. The first thin portion is defined in part by a first recess, and the first leadframe structure portion is a lead. The leadframe structure has a second leadframe structure portion comprising a second thin portion and a second thick portion. The second thin portion is defined in part by a second recess. The second leadframe structure portion is a die attach pad. The first thin portion faces the second recess, and the second thin portion faces the first recess. A semiconductor die is on the die attach pad, and a molding material is formed around at least part of the leadframe structure and the semiconductor die.
Yet another embodiment of the invention is directed to a method comprising obtaining a leadframe structure precursor including a first leadframe structure precursor portion and a second leadframe structure precursor portion, forming a first recess in the first leadframe structure precursor portion, whereby the first leadframe structure precursor portion thereafter has a first thick portion and a first thin portion, and forming a second recess in the second leadframe structure precursor portion. The second leadframe structure precursor portion thereafter has a second thick portion and a first thin portion. The first thin portion faces the second recess, and the second thin portion faces the first recess in the formed leadframe structure.
Yet another embodiment of the invention is directed to a method for forming a semiconductor die package. The method comprises forming a leadframe structure according to the method described above, and attaching a semiconductor die to the second leadframe structure portion. A molding material may also be molded around the leadframe structure and the semiconductor die.
These and other embodiments of the invention are described in further detail below.
a) shows a side, cross-sectional view of a portion of a conventional leadframe structure.
b) shows a side, cross-sectional view of a portion of a leadframe structure according to an embodiment of the invention.
a) shows a side, cross-sectional view of a portion of a conventional leadframe structure.
b) shows a top plan view of a conventional leadframe structure.
a) shows a side, cross-sectional view of a portion of a leadframe structure according to an embodiment of the invention.
b) shows a top plan view of a leadframe structure according to an embodiment of the invention.
a)-5(c) respectively show bottom, top, and side views of a leadframe structure.
a)-6(e) show process steps that can be used in forming a leadframe structure according to an embodiment of the invention.
In the drawings, like numerals designated like elements, and the descriptions of like elements may or may not be repeated.
A leadframe structure is disclosed. The leadframe structure includes a first leadframe structure portion with a first thin portion and a first thick portion, where the first thin portion is defined in part by a first recess. It also includes a second leadframe structure portion with a second thin portion and a second thick portion, where the second thin portion is defined in part by a second recess. The first thin portion faces the second recess, and the second thin portion faces the first recess.
The first leadframe structure portion 10(a) may be a lead such as a gate or a source lead, while the second leadframe structure portion 10(b) may comprise a die attach pad for supporting a semiconductor die (not shown). The second leadframe structure portion 10(b) may also comprise a drain lead. The gap 14 electrically isolates the first and second leadframe structure portions 10(a), 10(b) from each other.
The first leadframe structure portion 10(a) comprises a first surface 10(a)-1 and a second surface 10(a)-2 opposite the first surface 10(a)-1. The first surface 10(a)-1 may be connected to a conductive wire or clip, which is in turn connected to a semiconductor die (not shown) that would be mounted on a first surface 10(b)-1 of the second leadframe structure portion 10(b). The first surface 10(b)-1 may be a die attach pad, and may receive a semiconductor die.
The first leadframe structure portion 10(b) also comprises a first inner recess 10(a)-3 and an outer recess 10(a)-4. It also includes a first thick portion 10(a)′ and a first thin portion 10(a)″ that is defined in part by the inner recess 10(a)-3. The thickness of the first thin portion 10(a)″ may be less than about 50% of the thickness of the first thick portion 10(a)′. In preferred embodiments, the thickness of the first thin portion 10(a)″ is between about 20-50% of the thickness of the first thick portion 10(a)′. Also, the length of the first thin portion 10(a)″ may be less than about 20, or even 12 mils in embodiments of the invention. The length of the first thin portion 10(a)″ may also be greater than about 1 mil in some embodiments.
The second leadframe structure portion 10(b) comprises a first surface 10(b)-1 and a second surface 10(b)-2 opposite the first surface 10(b)-1. The second leadframe structure portion 10(b) also comprises a second inner recess 10(b)-3. It also includes a second thick portion 10(b)′ and a second thin portion 10(b)″ that is defined in part by the inner recess 10(b)-3. The thickness of the first thin portion 10(b)″ may be less than about 50% of the thickness of the first thick portion 10(b)′ . In preferred embodiments, the thickness of the first thin portion 10(b)″ is between about 20-50% of the thickness of the first thick portion 10(b)′. Also, the length of the second thin portion 10(b)″ (or “overhang”) may be less than about 20, or even 12 mils in embodiments of the invention. The length of the second thin portion 10(b)″ may also be greater than about 1 mil in some embodiments.
As shown in
The die attach pad in the second leadframe structure portion 10(b) may optionally include a number of apertures (not shown). Like the recesses 10(a)-3, 10(b)-3, 10(a)-4, they can be used to lock the leadframe structure 10 to a molding material (not shown).
If desired, the leadframe structure 10 can be coated with one or more layers of material. For example, the leadframe structure 10 may include a base metal such as copper or a copper alloy. The base metal may be coated with one or more underbump metallurgy layers. For example, NiPd may be pre-plated on a copper leadframe structure. The total thickness of the leadframe structure can vary. For example, in some embodiments, the thickness of the leadframe structure can be about 8 mils thick (or more or less than this).
a) shows a conventional leadframe structure 18 including a first leadframe structure portion 18(a) and a second leadframe structure portion 18(b). As shown, first and second thin portions 18(a)-1 and 18(b)-2 face each other. Consequently, the minimum spacing may be d1, and the gap may be 80% of the thickness of the leadframe structure 18.
In comparison,
a) and 3(b) respectively show a part of a conventional leadframe structure and a top plan view of the leadframe structure 18.
a) and 4(b) respectively show a part of a leadframe structure 10 according to an embodiment of the invention and a top plan view of the leadframe structure 10.
Comparing
a)-5(b) respectively show bottom and top plan views of a leadframe structure 10.
A method for making the above-described leadframe structure 10 can be described with reference to
a) shows a copper frame 112 (i.e., an example of a leadframe structure precursor) coated on both sides with photoresist layers 104. The copper frame 112 may be obtained in any suitable manner (e.g., stamping, etching, etc.). Also, any suitable photoresist material (e.g., a negative photoresist) and any suitable photoresist deposition process (e.g., spin coating, roller coating, etc.) can be used to form the photoresist layers 104.
b) shows the photoresist layers 104 being exposed with light 108 through masks 106. The masks 106 include light transmissive areas 110 through which light can pass to irradiate the photoresist 104, as well as opaque areas where light cannot pass through. The exposed regions 102 in the photoresist layers 104 correspond to the light transmissive areas 110 in the masks 106. The exposed regions 102 may thereafter be rendered soluble in a developing solution or material.
c) shows the photoresist layers 104 after they have been developed. As shown, gaps 114 are shown where the photoresist layers 104 are developed.
d) shows how etching can be used to etch the copper frame to form a leadframe structure 10. Any suitable etching process can be used in embodiments of the invention. For example, conventional wet or dry etching processes can be used in embodiments of the invention. Etching may form u-grooves or recesses on both sides of the copper frame, simultaneously or sequentially. Preferably, the etching depth is greater than 50% (e.g., 60%) of the thickness of the copper frame.
e) shows the leadframe structure 10 with its first and second leadframe structure portions 10(a), 10(b) after the photoresist layers 104 have been stripped. Any suitable stripping solution may be used to strip the photoresist layers 104 from the leadframe structure.
After the leadframe structure 10 is formed, it may be optionally plated, as described above, to form a plated leadframe structure. The leadframe structure 10 can thereafter be used to support a semiconductor die in a semiconductor die package.
A molding material 42 may be formed around at least a portion of the leadframe structure 10 and the semiconductor die 40. The molding material 42 may comprise an epoxy based molding material or other suitable molding material. A conventional molding process can be used to shape the molding material 42.
The semiconductor die package 100 may be in the form of an MLP (microlead package) or a leaded package.
The semiconductor dies used in the semiconductor die packages according to preferred embodiments of the invention include vertical power transistors. Exemplary vertical power transistors are described, for example, in U.S. Pat. Nos. 6,274,905 and 6,351,018, both of which are assigned to the same assignee as the present application, and both which are herein incorporated by reference in their entirety for all purposes. Vertical power transistors include VDMOS transistors. A VDMOS transistor is a MOSFET that has two or more semiconductor regions formed by diffusion. It has a source region, a drain region, and a gate. The device is vertical in that the source region and the drain region are at opposite surfaces of the semiconductor die. The gate may be a trenched gate structure or a planar gate structure, and is formed at the same surface as the source region. Trenched gate structures are preferred, since trenched gate structures are narrower and occupy less space than planar gate structures. During operation, the current flow from the source region to the drain region in a VDMOS device is substantially perpendicular to the die surfaces. Other types of devices may simply have an input at one surface of the die and an output at the other opposite surface of the die. Other suitable vertical devices may include diodes.
As shown in
Embodiments of the invention have a number of advantages. For example, a leadframe structure with offset top and bottom partially etched regions can create openings of at least 50% of the material thickness for good metal to metal clearance between adjacent leadframe structure portions. This allows for larger die attach pad sizes that are achievable compared to conventional leadframe structures while maintaining the same footprint and package size. This allows one to provide a larger die in a smaller semiconductor die package. Also, a larger die attach pad improves manufacturability as there is more room to attach a die, as the distance between the die attach pad edge and the die edge is increased.
Also, by providing a larger die attach pad, for discrete devices, this can result in an improved RDSon performance as a larger die can be used. Calculations were performed using an existing MLP 2×2 dual DAP package. The results of the calculations are shown in Table 1 below.
As shown in Table 2 below, a larger die can result in approximately a 20-22% improvement in Rdson using the inventive leadframe structure described herein. Thus, embodiments of the invention provide for advantageous results that are not achieved using conventional leadframe structures.
Any recitation of “a”, “an” or “the” is intended to mean “one or more” unless specifically indicated to the contrary. Any recitation of “first,” “second,” etc., may include additional elements as well.
The above description is illustrative but not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of the disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents.
Lastly, one or more features of any one or more embodiments may be combined with features from other embodiments without departing from the spirit and the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4890153 | Wu | Dec 1989 | A |
5327325 | Nicewarner, Jr. | Jul 1994 | A |
5646446 | Nicewarner, Jr. | Jul 1997 | A |
5776797 | Nicewarner, Jr. et al. | Jul 1998 | A |
6133634 | Joshi | Oct 2000 | A |
6329706 | Nam | Dec 2001 | B1 |
6424035 | Sapp et al. | Jul 2002 | B1 |
6432750 | Jeon et al. | Aug 2002 | B2 |
6449174 | Elbanhawy | Sep 2002 | B1 |
6489678 | Joshi | Dec 2002 | B1 |
6556750 | Constantino et al. | Apr 2003 | B2 |
6566749 | Joshi et al. | May 2003 | B1 |
6574107 | Jeon et al. | Jun 2003 | B2 |
6621152 | Choi et al. | Sep 2003 | B2 |
6627991 | Joshi | Sep 2003 | B1 |
6630728 | Glenn | Oct 2003 | B2 |
6642738 | Elbanhawy | Nov 2003 | B2 |
6645791 | Noquil et al. | Nov 2003 | B2 |
6674157 | Lang | Jan 2004 | B2 |
6683375 | Joshi et al. | Jan 2004 | B2 |
6696321 | Joshi | Feb 2004 | B2 |
6720642 | Joshi et al. | Apr 2004 | B1 |
6731003 | Joshi et al. | May 2004 | B2 |
6740541 | Rajeev | May 2004 | B2 |
6756689 | Nam et al. | Jun 2004 | B2 |
6774465 | Lee et al. | Aug 2004 | B2 |
6777800 | Madrid et al. | Aug 2004 | B2 |
6806580 | Joshi et al. | Oct 2004 | B2 |
6830959 | Estacio | Dec 2004 | B2 |
6836023 | Joshi et al. | Dec 2004 | B2 |
6867481 | Joshi et al. | Mar 2005 | B2 |
6867489 | Estacio | Mar 2005 | B1 |
6891256 | Joshi et al. | May 2005 | B2 |
6891257 | Chong et al. | May 2005 | B2 |
6893901 | Madrid | May 2005 | B2 |
6943434 | Tangpuz et al. | Sep 2005 | B2 |
6989588 | Quinones et al. | Jan 2006 | B2 |
6992384 | Joshi | Jan 2006 | B2 |
7022548 | Joshi et al. | Apr 2006 | B2 |
7023077 | Madrid | Apr 2006 | B2 |
7045396 | Crowley et al. | May 2006 | B2 |
7061077 | Joshi | Jun 2006 | B2 |
7061080 | Jeun et al. | Jun 2006 | B2 |
7081666 | Joshi et al. | Jul 2006 | B2 |
7122884 | Cabahug et al. | Oct 2006 | B2 |
7154168 | Joshi et al. | Dec 2006 | B2 |
7157799 | Noquil et al. | Jan 2007 | B2 |
7196313 | Quinines et al. | Mar 2007 | B2 |
7199461 | Son et al. | Apr 2007 | B2 |
7208819 | Jeun et al. | Apr 2007 | B2 |
7215011 | Joshi et al. | May 2007 | B2 |
7217594 | Manatad | May 2007 | B2 |
20030197290 | Crowley et al. | Oct 2003 | A1 |
20030201520 | Knapp et al. | Oct 2003 | A1 |
20040041242 | Joshi | Mar 2004 | A1 |
20050062148 | Seo et al. | Mar 2005 | A1 |
20050285235 | Carney et al. | Dec 2005 | A1 |
20060006504 | Lee et al. | Jan 2006 | A1 |
20060076660 | Boschlin et al. | Apr 2006 | A1 |
20060151858 | Ahn et al. | Jul 2006 | A1 |
20070246838 | Hoeglauer et al. | Oct 2007 | A1 |
20080087991 | Cheah et al. | Apr 2008 | A1 |
20080173991 | Cruz et al. | Jul 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080258272 A1 | Oct 2008 | US |