This invention relates generally to integrated circuits, and more particularly to the fabrication of stress-sensitive integrated circuits.
With the advancement of modem technologies, integrated circuits having more functions and greater performance are increasingly demanded, which requires more semiconductor devices to be made for a circuit. A high degree of integration can be achieved in several ways, among which scaling semiconductor devices is the most commonly used method. Ninety (90) nm, 60 nm, and even 45 nm technologies have been used to produce very small devices having high performance. During packaging processes, two or more dies may be stacked together, and the dies may include integrated circuits having similar or completely different functions, so that both device number and functional circuit number can be increased. Typically, in order to stack more than one die into a package, the dies have to be thinned by a backside grinding process wherein the backsides or inactive sides of the dies are ground or polished until the dies are of desired thicknesses. Typically, wafers are thinned and cut into dies.
These methods have a side effect, however. Small devices, particularly devices fabricated using 90 nm technology or below, are more sensitive to stress. Not only is the performance of the devices affected, but undesired stress may also cause a malfunction of the semiconductor devices, affecting the reliability of the integrated circuit. Thinner dies, on the other hand, have increased stresses, further worsening the problem.
Conventionally, research was concentrated on reducing the stresses in dies. This includes increasing either the thickness of the dies or the thickness of the molding compound for packaging. However, due to the demand for thin dies, these methods have become less practical. Additionally, modification to packaging processes requires testing and debugging, thus increasing the cost and time to market. Functional tests may also be needed after the packaging processes, particularly on chips including stress-sensitive circuits, to ensure that integrated circuits function correctly.
Therefore, there is the need for novel approaches for reducing the effect of stress on integrated circuits.
The preferred embodiment of the present invention provides a method for fabricating a semiconductor structure having stress-sensitive circuits and a semiconductor structure fabricated using the method.
In accordance with one aspect of the present invention, the semiconductor structure includes a semiconductor chip. Stress-sensitive circuits are substantially excluded out of an exclusion zone on the chip to reduce the effects of the stress to the stress-sensitive circuits. The stress-sensitive circuits are preferably analog circuits. The exclusion zone preferably includes corner regions of the semiconductor chip, wherein the corner regions preferably have a diagonal length of less than about one percent of the diagonal length of the semiconductor chip.
In accordance with another aspect of the present invention, stress-sensitive analog circuits include devices having channel lengths less than about five times the minimum channel length.
In accordance with yet another aspect of the present invention, the exclusion zone further includes edge regions of the semiconductor chip.
In accordance with yet another aspect of the present invention, a method for forming the preferred embodiments of the present invention includes analyzing a circuit to be fabricated, determining stress-sensitive circuits, providing a semiconductor chip, determining an exclusion zone on the semiconductor chip, and forming substantially all stress-sensitive circuits outside the exclusion zone.
The advantageous features of the preferred embodiments of the present invention include full compatibility with existing integrated circuit fabrication processes with no extra process steps or cost involved. The performance and reliability of integrated circuits containing stress-sensitive circuits are improved.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
Research has been conducted to analyze the stress on chips.
Combining the results from
Note that the results shown in
In the preferred embodiments of the present invention, circuits to be fabricated on a chip are first analyzed and grouped as stress-sensitive circuits and non-stress-sensitive circuits. Stress-sensitive circuits are those circuits, if under stress, for which the performance and/or reliability are substantially affected in an undesirable way. Typically, analog circuits are more sensitive to stresses, and are more likely to be stress-sensitive circuits. Preferably, stress-sensitive circuits include phase-locked loop (PLL), digital-analog converter (DAC), analog-digital converter (ADC), regulator, filter, and the like, which are preferably used in electronic systems such as cellular phones, wireless application modules, PDAs, hand held devices, and image capturing devices.
One skilled in the art will realize, however, that the term “stress-sensitive” is a term of art, and its determination is affected by the technology used for fabricating the integrated circuit and design requirements. For example, an integrated circuit may be considered stress-sensitive if used in a high performance application, as a small degradation in performance will cause the circuit to fail to meet design requirements, while the same circuit will be non-stress-sensitive if low performance is required.
Devices having small channel lengths are more stress-sensitive, and circuits, particularly analog circuits comprising devices having small channel lengths, are preferably considered stress-sensitive circuits. The effect of stress to circuits was not significant in older generation integrated circuits. One of the reasons is that there was a lower performance requirement for older-generation integrated circuits. Another reason is that larger devices are less sensitive to stress. However, new generations of integrated circuits having smaller scales suffer more from stress problems. It is thus desirable to use the preferred embodiments of the present invention on the fabrication of small-scale circuits, for example, circuits with MOS devices fabricated using 90 nm, and preferably 65 nm, and even more preferably 45 nm technologies and below. In the preferred embodiment, analog circuits with channel lengths less than about ten times the minimum channel length of a MOS device are grouped as stress-sensitive circuits. In other embodiments, analog circuits with channel lengths less than about five times the minimum channel length of MOS devices are grouped as stress-sensitive circuits. For example, the minimum channel length for 65 nm technology is about 65 nm, and analog circuits having devices with channel lengths less than about 325 nm are therefore stress-sensitive circuits.
Stress in a chip is also related to the structure and materials of the chip. For example, chips fabricated using low-k materials (k value less than about 3) typically have high stresses. The formation of a high number of metallization layers or metallization layers with high stress such as copper layers also cause a higher likelihood of high stress. In one embodiment, chips fabricated using carbon-containing material as a low-k dielectric or using at least four copper metallization layers will suffer a high stress problem. In 90 nm, 60 nm or even 45 nm and below technologies, an ultra low-k dielectric (k less than about 2.7) and a high number of copper metallization layers (for example, more than eight copper metallization layers), stress becomes a critical issue while processing the semiconductor product. It is thus preferred to take these factors into account when analyzing and grouping circuits.
In the preferred embodiment, stress-sensitive circuits are substantially excluded out of exclusion zones, which have high stresses, and fabricated in remaining regions on the same chip. Non-stress-sensitive circuits, on the other hand, can be fabricated in both stress-sensitive zones and non-stress-sensitive zones.
Although the exclusion zones are preferably determined by stress levels, they can also be determined by locations on the chip due to the correlation between stress and location.
The preferred embodiment of the present invention is shown in
A variation of the preferred embodiment of the present invention is shown in
In a further variation of the preferred embodiment, as shown in
It is appreciated that the optimal locations and dimensions of the exclusion zones are affected by factors such as the material of the substrate, the dimensions of the die, etc. as previously discussed. A determination of exclusion zones thus preferably includes measuring stresses on chips with similar dimensions and materials, and determining an acceptable stress level for stress-sensitive circuits according to design specifications.
The fabrication of the integrated circuits is also affected by the chip (also referred to as a die in the packaging art) thickness and packaging processes. Preferably, if a chip has a thickness of less than about 200 μm, stress-sensitive circuits are preferably determined and fabricated out of the exclusion zones.
The preferred embodiments of the present invention are fully compatible with existing integrated circuit fabrication processes. No extra process steps or cost is involved. The performance and reliability of integrated circuits containing stress-sensitive circuits are improved. Time to market is reduced. Additionally, the preferred embodiments of the present invention provide a guideline for the manufacture of stress-sensitive circuits.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application claims priority to provisional patent application Ser. No. 60/725,493; filed on Oct. 11, 2005, entitled “Exclusion Zone for N90 Stress-Sensitive Circuit Design,” which application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5047711 | Smith et al. | Sep 1991 | A |
5096855 | Vokoun, III | Mar 1992 | A |
5136364 | Byrne | Aug 1992 | A |
5206181 | Gross | Apr 1993 | A |
5239191 | Sakumoto et al. | Aug 1993 | A |
5285082 | Axer | Feb 1994 | A |
5371411 | Hara et al. | Dec 1994 | A |
5751065 | Chittipeddi et al. | May 1998 | A |
5831330 | Chang | Nov 1998 | A |
5834829 | Dinkel et al. | Nov 1998 | A |
6022791 | Cook et al. | Feb 2000 | A |
6114766 | Shields | Sep 2000 | A |
6121677 | Song et al. | Sep 2000 | A |
6284657 | Chooi et al. | Sep 2001 | B1 |
6300223 | Chang et al. | Oct 2001 | B1 |
6350622 | Misewich et al. | Feb 2002 | B2 |
6358839 | Li et al. | Mar 2002 | B1 |
6365958 | Ibnabdeljalil et al. | Apr 2002 | B1 |
6384463 | Miles et al. | May 2002 | B1 |
6483173 | Li et al. | Nov 2002 | B2 |
6492716 | Bothra et al. | Dec 2002 | B1 |
6495918 | Brintzinger | Dec 2002 | B1 |
6521975 | West et al. | Feb 2003 | B1 |
6566736 | Ogawa et al. | May 2003 | B1 |
6605861 | Toyoda | Aug 2003 | B2 |
6796024 | Katoh et al. | Sep 2004 | B2 |
6806168 | Towle et al. | Oct 2004 | B2 |
6841455 | West et al. | Jan 2005 | B2 |
6861754 | Lin et al. | Mar 2005 | B2 |
6861755 | Hosoda et al. | Mar 2005 | B2 |
6876062 | Lee et al. | Apr 2005 | B2 |
6876064 | Matumoto et al. | Apr 2005 | B2 |
6876946 | Yasuda et al. | Apr 2005 | B2 |
6939736 | Grabham et al. | Sep 2005 | B2 |
6963389 | Fukada | Nov 2005 | B2 |
6998712 | Okada et al. | Feb 2006 | B2 |
7042099 | Kurashima et al. | May 2006 | B2 |
7087452 | Joshi et al. | Aug 2006 | B2 |
7126225 | Su et al. | Oct 2006 | B2 |
7126255 | Yamaguchi et al. | Oct 2006 | B2 |
7129565 | Watanabe et al. | Oct 2006 | B2 |
7129566 | Uehling et al. | Oct 2006 | B2 |
7135384 | Takyu et al. | Nov 2006 | B2 |
7138297 | Iijima et al. | Nov 2006 | B2 |
7138700 | Tomita et al. | Nov 2006 | B2 |
7145211 | Mallikarjunaswamy et al. | Dec 2006 | B2 |
7235834 | Fukada | Jun 2007 | B2 |
7235864 | Lee | Jun 2007 | B2 |
7259445 | Lau et al. | Aug 2007 | B2 |
7291874 | Hsu | Nov 2007 | B2 |
7294937 | Su et al. | Nov 2007 | B2 |
7335577 | Daubenspeck et al. | Feb 2008 | B2 |
7387950 | Kuo et al. | Jun 2008 | B1 |
7400028 | Tomita | Jul 2008 | B2 |
7407835 | Chuang | Aug 2008 | B2 |
7453128 | Tsutsue et al. | Nov 2008 | B2 |
7456507 | Yang | Nov 2008 | B2 |
7566915 | Chang et al. | Jul 2009 | B2 |
7646078 | Jeng et al. | Jan 2010 | B2 |
7763887 | Han | Jul 2010 | B2 |
8125052 | Jeng et al. | Feb 2012 | B2 |
20010005604 | Lee et al. | Jun 2001 | A1 |
20010005617 | Feurle et al. | Jun 2001 | A1 |
20010008296 | Gelsomini et al. | Jul 2001 | A1 |
20010019848 | Misewich et al. | Sep 2001 | A1 |
20020024115 | Ibnabdeljalil et al. | Feb 2002 | A1 |
20020130394 | Toyoda | Sep 2002 | A1 |
20030003677 | Fukada | Jan 2003 | A1 |
20040084777 | Yamanoue et al. | May 2004 | A1 |
20040119164 | Kurashima et al. | Jun 2004 | A1 |
20040150070 | Okada et al. | Aug 2004 | A1 |
20040150073 | Matumoto et al. | Aug 2004 | A1 |
20050009300 | Murari et al. | Jan 2005 | A1 |
20050017363 | Lin et al. | Jan 2005 | A1 |
20050026397 | Daubenspeck et al. | Feb 2005 | A1 |
20050098893 | Tsutsue et al. | May 2005 | A1 |
20050148115 | Williams et al. | Jul 2005 | A1 |
20050151239 | Lee | Jul 2005 | A1 |
20050230005 | Liang et al. | Oct 2005 | A1 |
20050269702 | Otsuka | Dec 2005 | A1 |
20050280120 | Tomita | Dec 2005 | A1 |
20060001144 | Uehling et al. | Jan 2006 | A1 |
20060012012 | Wang et al. | Jan 2006 | A1 |
20060022195 | Wang | Feb 2006 | A1 |
20060055002 | Yao et al. | Mar 2006 | A1 |
20060055007 | Yao et al. | Mar 2006 | A1 |
20060103025 | Furusawa et al. | May 2006 | A1 |
20060125090 | Chen et al. | Jun 2006 | A1 |
20060172457 | Huang | Aug 2006 | A1 |
20060192265 | Hsu | Aug 2006 | A1 |
20070018331 | Chen | Jan 2007 | A1 |
20070090447 | Morimoto et al. | Apr 2007 | A1 |
20070090547 | Su et al. | Apr 2007 | A1 |
20070158788 | Yang | Jul 2007 | A1 |
20080054263 | Han | Mar 2008 | A1 |
20080157284 | Chang et al. | Jul 2008 | A1 |
20080213938 | Kao | Sep 2008 | A1 |
20080265378 | Lee et al. | Oct 2008 | A1 |
20080283969 | Jeng et al. | Nov 2008 | A1 |
20080299708 | Tsutsue | Dec 2008 | A1 |
20090115024 | Jeng et al. | May 2009 | A1 |
20090115025 | Jung | May 2009 | A1 |
20090315184 | Tokitoh | Dec 2009 | A1 |
20090321890 | Jeng et al. | Dec 2009 | A1 |
20100123219 | Chen et al. | May 2010 | A1 |
20100207251 | Yu et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
1701418 | Nov 2005 | CH |
1542505 | Nov 2004 | CN |
1770432 | May 2006 | CN |
1830079 | Sep 2006 | CN |
1956173 | May 2007 | CN |
Entry |
---|
Pidin, S., et al. “MOSFET Current Drive Optimization Using Silicon Nitride Capping Layer for 65-nm Technology Node,” 2004 Symposium on VLSI Technology Digest of Technical Papers, IEEE, Jul. 2004, pp. 54-55. |
“Motorola MC7457RX1000NB Microprocessor,” Sample Prep Delamination, Motorola Chipworks, Mar. 15, 2005, 1 page, Figure 3.1.3 Die Seal. |
Number | Date | Country | |
---|---|---|---|
20070090547 A1 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
60725493 | Oct 2005 | US |