Semiconductor devices are used in a variety of electronic applications, such as personal computers, cell phones, digital cameras, and other electronic equipment. Semiconductor devices are typically fabricated by sequentially depositing insulating or dielectric layers, conductive layers, and semiconductive layers of material over a semiconductor substrate, and patterning the various material layers using lithography to form circuit components and elements thereon. Many integrated circuits are typically manufactured on a single semiconductor wafer, and individual dies on the wafer are singulated by sawing between the integrated circuits along a scribe line. The individual dies are typically packaged separately, in multi-chip modules, for example, or in other types of packaging.
As the semiconductor industry has progressed into nanometer technology process nodes in pursuit of higher device density, higher performance, and lower costs, challenges from both fabrication and design issues have resulted in the development of three-dimensional designs, such as the fin field effect transistor (FinFET). FinFETs are fabricated with a thin vertical “fin” (or fin structure) extending from a substrate. The channel of the FinFET is formed in this vertical fin. A gate is provided over the fin. Advantages of the FinFET may include reducing the short channel effect and providing a higher current flow.
Although existing FinFET devices and methods of fabricating FinFET devices have generally been adequate for their intended purpose, they have not been entirely satisfactory in all respects.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It should be noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the subject matter provided. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Some variations of the embodiments are described. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements. It should be understood that additional operations can be provided before, during, and after the method, and some of the operations described can be replaced or eliminated for other embodiments of the method.
Embodiments for forming a fin field effect transistor (FinFET) device structure are provided.
Referring to
Afterwards, a dielectric layer 104 and a mask layer 106 are formed over the substrate 102, and a photoresist layer 108 is formed over the mask layer 106. The photoresist layer 108 is patterned by a patterning process. The patterning process includes a photolithography process and an etching process. The photolithography process includes photoresist coating (e.g., spin-on coating), soft baking, mask aligning, exposure, post-exposure baking, developing the photoresist, rinsing and drying (e.g., hard baking). The etching process includes a dry etching process or a wet etching process.
The dielectric layer 104 is a buffer layer between the substrate 102 and the mask layer 106. In addition, the dielectric layer 104 is used as a stop layer when the mask layer 106 is removed. The dielectric layer 104 may be made of silicon oxide. The mask layer 106 may be made of silicon oxide, silicon nitride, silicon oxynitride, or another applicable material. In some other embodiments, more than one mask layer 106 is formed over the dielectric layer 104.
The dielectric layer 104 and the mask layer 106 are formed by deposition processes, such as a chemical vapor deposition (CVD) process, high-density plasma chemical vapor deposition (HDPCVD) process, spin-on process, sputtering process, or another applicable process.
After the photoresist layer 108 is patterned, the dielectric layer 104 and the mask layer 106 are patterned by using the patterned photoresist layer 108 as a mask as shown in
Afterwards, an etching process is performed on the substrate 102 to form a fin structure 110 by using the patterned dielectric layer 104 and the patterned mask layer 106 as a mask. The etching process may be a dry etching process or a wet etching process.
In some embodiments, the substrate 102 is etched by a dry etching process. The dry etching process includes using the fluorine-based etchant gas, such as SF6, CxFy, NF3 or combinations thereof. The etching process may be a time-controlled process, and continue until the fin structure 110 reach a predetermined height. In some other embodiments, the fin structure 110 has a width that gradually increases from the top portion to the lower portion.
After the fin structure 110 is formed, the patterned dielectric layer 104 and the patterned mask layer 106 are removed. An insulating layer 112 is formed to cover the fin structure 110 over the substrate 102 as shown in
In some embodiments, the insulating layer 112 is made of silicon oxide, silicon nitride, silicon oxynitride, fluoride-doped silicate glass (FSG), or another low-k dielectric material. The insulating layer 112 may be deposited by a chemical vapor deposition (CVD) process, a spin-on-glass process, or another applicable process.
Afterwards, the insulating layer 112 is thinned or planarized to expose the top surface of the fin structure 110 as shown in
As a result, an isolation structure 114, such as a shallow trench isolation (STI) structure, surrounds the fin structure 110. A lower portion of the fin structure 110 is surrounded by the isolation structure 114, and an upper portion of the fin structure 110 protrudes from the isolation structure 114. In other words, a portion of the fin structure 110 is embedded in the isolation structure 114. The isolation structure 114 prevents electrical interference or crosstalk.
Afterwards, a first dummy gate structure 116a and a second dummy gate structure 116b are formed across the fin structure 110 and extends over the isolation structure 114 as shown in
In some embodiments, the first dummy gate structure 116a includes a first dummy gate dielectric layer 118a and a first dummy gate electrode layer 120a formed over the first dummy gate dielectric layer 118a. In some embodiments, the second dummy gate structure 116b includes a second dummy gate dielectric layer 118b and a second dummy gate electrode layer 120b formed over the second dummy gate dielectric layer 118b.
After the first dummy gate structure 116a and the second dummy gate structure 116b are formed, first spacers 122a are formed on the opposite sidewalls of the first dummy gate structure 116a, and second spacers 122b are formed on the opposite sidewalls of the second dummy gate structure 116b. The first spacers 122a and the second spacers 122b may be a single layer or multiple layers.
In some embodiments, the first dummy gate structure 116a has a first width W1 in a direction parallel to the fin structure 110, and the second dummy gate structure 116b has a second width W2 in a direction parallel to the fin structure 110. In other words, the first width W1 is measured from an edge of the first spacers 122a to an edge of the opposite first spacer 122a. The second width W2 is measured from an edge of the second spacers 122b to an edge of the opposite second spacer 122b. The first width W1 is smaller than the second width W2.
Afterwards, source/drain (S/D) structures 124 are formed in the fin structure 110. In some embodiments, portions of the fin structure 110 adjacent to the first dummy gate structure 116a and the second dummy gate structure 116b are recessed to form recesses at two sides of fin structure 110, and a strained material is grown in the recesses by an epitaxial (epi) process to form the source/drain (S/D) structures 124. In addition, the lattice constant of the strained material may be different from the lattice constant of the substrate 102. In some embodiments, the source/drain structures 124 include Ge, SiGe, InAs, InGaAs, InSb, GaAs, GaSb, InAlP, InP, or the like.
After the source/drain structures 124 are formed, a contact etch stop layer (CESL) 126 is formed over the substrate 102, and an inter-layer dielectric (ILD) structure 128 is formed over the contact etch stop layer 126 as shown in
The ILD structure 128 may include multilayers made of multiple dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, tetraethoxysilane (TEOS), phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), low-k dielectric material, and/or other applicable dielectric materials. Examples of low-k dielectric materials include, but are not limited to, fluorinated silica glass (FSG), carbon doped silicon oxide, amorphous fluorinated carbon, parylene, bis-benzocyclobutenes (BCB), or polyimide. The ILD structure 128 may be formed by chemical vapor deposition (CVD), physical vapor deposition, (PVD), atomic layer deposition (ALD), spin-on coating, or other applicable processes.
Afterwards, a polishing process is performed to the ILD structure 128 until the top surface of the first dummy gate structure 116a and the top surface of the second dummy gate structure 116 bare exposed. In some embodiments, the ILD structure 128 is planarized by a chemical mechanical polishing (CMP) process.
After the ILD structure 128 is formed, the first dummy gate structure 116a is removed to form a first trench 130a in the ILD structure 128 and the second dummy gate structure 116b is removed to form a second trench 130b in the ILD structure 128 as shown in
After the first trench 130a and the second trench 130b are formed, a first etched gate structure 132′a and a second etched gate structure 132′b are formed in the first trench 130a and the second trench 130b, respectively, as shown in
The first etched gate structure 132′a includes a first etched gate dielectric layer 134′a, a first etched work function layer 136′a and a first gate electrode layer 138′a. The second etched gate structure 132′b includes a second etched gate dielectric layer 134′b, a second etched work function layer 136′b and a second gate electrode layer 138′b. The first etched gate structure 132′a has an unleveled top surface, and the second etched gate structure 132′b has an unleveled top surface.
A first hard mask structure 152a is formed over the first etched gate structure 132′a, and a second hardmask layer 152b is formed over the second etched gate structure 132′b. The first hard mask structure 152a includes a first portion 154a, a second portion 156a and a third portion 158a, and the thicknesses of the portion 154a, the second portion 156a and the third portion 158a are different.
Referring to
The third width W3 is smaller than the fourth width W4. The fourth width W4 is greater than the third width W3. In some embodiments, the third width W3 is in a range from about 10 nm to about 100 nm. In some embodiments, the fourth width W4 is in a range from about 101 nm to about 500 nm.
After the first trench 130a and the second trench 130b are formed, a gate dielectric layer 134 is conformally formed in the first trench 130a and the second trench 130b as shown in
The gate dielectric layer 134 may be a single layer or multiple layers. The gate dielectric layer 134 is made of silicon oxide (SiOx), silicon nitride (SixNy), silicon oxynitride (SiON), dielectric material(s) with low dielectric constant (low-k), or combinations thereof. In some embodiments, the gate dielectric layer 134 is made of an extreme low-k (ELK) dielectric material with a dielectric constant (k) less than about 2.5. In some embodiments, ELK dielectric materials include carbon doped silicon oxide, amorphous fluorinated carbon, parylene, bis-benzocyclobutenes (BCB), polytetrafluoroethylene (PTFE) (Teflon), or silicon oxycarbide polymers (SiOC). In some embodiments, ELK dielectric materials include a porous version of an existing dielectric material, such as hydrogen silsesquioxane (HSQ), porous methyl silsesquioxane (MSQ), porous polyarylether (PAE), porous SiLK, or porous silicon oxide (SiO2). In some embodiments, the gate dielectric layer 134 is deposited by a plasma enhanced chemical vapor deposition (PECVD) process or by a spin coating process.
Afterwards, a work function layer 136 is formed over the gate dielectric layer 134. In some embodiments, the thickness of the work function layer 136 is greater than the thickness of the gate dielectric layer 134. The work function layer 136 is made of metal material, and the metal material may include N-work-function metal or P-work-function metal. The N-work-function metal includes tungsten (W), copper (Cu), titanium (Ti), silver (Ag), aluminum (Al), titanium aluminum alloy (TiAl), titanium aluminum nitride (TiAlN), tantalum carbide (TaC), tantalum carbon nitride (TaCN), tantalum silicon nitride (TaSiN), manganese (Mn), zirconium (Zr) or combinations thereof. The P-work-function metal includes titanium nitride (TiN), tungsten nitride (WN), tantalum nitride (TaN), ruthenium (Ru) or combinations thereof.
After the work function layer 136 is formed, a gate electrode layer 138 is formed over the work function layer 136 as shown in
The gate electrode layer 138 is formed by a deposition process, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), high density plasma CVD (HDPCVD), metal organic CVD (MOCVD), or plasma enhanced CVD (PECVD).
Afterwards, a portion of the gate dielectric layer 134, the work function layer 136 and the gate electrode layer 138 outside of the first trench 130a and the second trench 130b are removed by a removal process 11 as shown in
As a result, a first gate structure 132a in the first region 11 is constructed by a first gate dielectric layer 134a, a first work function layer 136a and a first gate electrode layer 138a formed in the first trench 130a. A second gate structure 132a in the second region 12 is constructed by a second gate dielectric layer 134b, a second work function layer 136b and a second gate electrode layer 138b formed in the second trench 130b. It should be noted that the area of the second gate electrode layer 138b in the second region 12 is larger than the area of the first gate electrode layer 138a in the first region 11.
The first gate structure 132a and the second gate structure 132b are transversely overlying a middle portion of the fin structure 110. A channel region is formed below the first gate structure 132a and the second gate structure 132b, and the channel region is wrapped by the first gate structure 132a and the second gate structure 132b.
It should be noted that the CMP process is performed on the first gate electrode layer 138a in the first region 11 and the second gate electrode layer 138b in the second region 12. The CMP process suffers an issue called “dishing effect”. The dishing effect is generated when the CMP process is performed on the metal layer formed over trenches having different width. The surface of the metal layer is recessed in a dish shape in a wider opening. Therefore, in order to reduce the dishing effect between the first region 11 and the second region 12, an etching process is performed on the first gate electrode layer 138a and the second gate electrode layer 138b after the CMP process.
As a result, the first gate electrode layer 138a in the first region 11 is slightly recessed to form a first recess 160a, and the second gate electrode layer 138b in the second region 12 is recessed heavily to form a second recess 160b. The depth of the second recess 160b is greater than the depth of the first recess 160a.
In some embodiments, the first recess 160a has a first depth D1 measured from a top surface of the first gate spacer 122a to a top surface of the first gate electrode layer 138a. In some embodiments, the second recess 160b has a second depth D2 measured from a top surface of the second gate spacer 122a to a top surface of the second gate electrode layer 138b. The second depth D2 is greater than the first depth D1.
For regions with different exposed areas (or etched areas), it is difficult to control etch uniformity due to the loading effect. Depending on the etching strategy, the loading effect is the etch rate for a larger area being either faster or slower than it is for a smaller area. In other words, the loading effect is that the etch rate in large area is mismatched the etch rate in small area. This means that the loading effect may be affected by the pattern density. Therefore, while etching the first work function layer 136a in a first region 11 and the second work function layer 136b in a second region 12, it is more difficult to control the uniformity of the etch depth.
In addition, as mentioned above, a top surface of the second gate electrode 138b is lower than a top surface of the first gate electrode 138a after the removal process 11. More specifically, more area of the second work function layer 136b is exposed than the first work function layer 136a because the removed portion of the second etched gate electrode layer 138′b is greater than that of the first etched gate electrode layer 138′a. Therefore, after the second etching process, the etched depth of the second work function layer 136b may be more than the etched depth of the first work function layer 136a due to the loading effect.
If more than a predetermined amount of the second work function layer 136b in the second region 12 is removed, the breakdown voltage (Vbd) of the second gate structure 132b may undesirably decrease. More specifically, if too much of the second work function layer 136b is removed, the second work function layer 136b may touch a top surface of the fin structure 110, the function of the second gate structure 132b may fail. On the other hand, if less than the predetermined amount of the first work function layer 136a in the first region 11 is removed, a gate-to-drain capacitance (Cgd) of the first gate structure 132a may undesirably increase.
In order to resolve the above problems, a second etching process including a first plasma operation 13a and a second plasma operation 13b is performed. After the removal process 11, the second etching process is used to remove a portion of the first work function layer 136a and a portion of the second work function layer 136b.
The second etching process includes the first plasma operation 13a as shown in
In some embodiments, the second etching process is operated at a temperature in a range from about 60 degrees to about 100 degrees. If the temperature is lower than 60 degrees, the etching rate may be too low, and more etching time is needed. Thus, the fabrication cost may increase. If the temperature is higher than 100 degrees, the etching rate may be too high. Thus, the etching amount is difficult to control and over-etching may occur.
In some embodiments, the second etching process is operated at a pressure in a range from about 1 mtorr to about 10 mtorr. If the pressure of the second etching process is lower than 1 mtorr, the etching rate is too low. If the pressure of the second etching process is higher than 80 mtorr, the etching uniformity is poor.
In some embodiments, the first plasma operation 13a is performed by using a first plasma includes boron chloride (BCl3), chlorine gas (Cl2), oxygen (O2) or combinations thereof. In some embodiments, the first plasma operation 13a is performed at a power in a range from about 100 W to about 500 W. If the power is smaller than 100 W, the etching rate may be too low. If the power is greater than 500 W, the etching rate may be too fast, and the critical dimension (CD) is difficult to control.
After the first plasma operation 13a is performed, the second plasma operation 13b is performed on the first work function layer 136a and the second work function layer 136b as shown in
It should be noted that during the second plasma operation 13b, the protection film 137 may temporarily form over the first work function layer 136a and the second work function layer 136b. The protection film 137 is used to prevent the second work function layer 136b from being etched too much due to the loading effect.
In some embodiments, the second plasma operation 13b is performed by using a second plasma comprising chlorine gas (Cl2), hydrogen bromide (HBr), or combinations thereof. In some embodiments, the second plasma operation 13b is performed at zero power. During the second plasma operation 13b, the main function of the second plasma is to perform a deposition operation. The main function of the first plasma is to perform an etching operation.
When the bias power of the second plasma operation 13b is set at zero, the gas generated from the second plasma may react with each other to form a polymer over the first work function layer 136a and the second work function layer 136b. The temporary polymer is used as a protection layer to prevent the second work function layer 136b from being etched too much. Therefore, the loading effect between the first work function layer 136a and the second work function layer 136b is reduced.
It should be noted that the first plasma operation 13a is operated at a bias power in a range from about 100 W to about 500 W, but the second plasma operation 13b is operated at zero power. No etching operation is performed when the power is at zero value. Therefore, the loading effect may be reduced by performing the second plasma operation 13b after the first plasma operation 13a.
After the second plasma operation 13b, the first etched work function layer 136′a and the second etched work function layer 136′b are obtained as shown in
In some embodiments, the first etched work function layer 136′a has a third height H3 which is measured from a top surface of the isolation structure 114 to a top surface of the first etched work function layer 136′a. In some embodiments, the second etched work function layer 136′b has a fourth height H4 which is measured from a top surface of the isolation structure 114 to a top surface of the second etched work function layer 136′b. In some embodiments, the third height H3 is higher than the fourth height H4. In some embodiments, a gap ΔH between the third height H3 and the fourth height H4 is in a range from about 1 nm to about 6 nm. In some embodiments, a gap ΔH between the third height H3 and the fourth height H4 is in a range from about 2 nm to about 4 nm.
In some embodiments, the first via 162a has a third depth D3 which is measured from a top surface of the first gate spacers 122a to a top surface of the first etched work function layer 136′a. In some embodiments, the second via 162b has a fourth depth D4 which is measured from a top surface of the second gate spacers 122b to a top surface of the second etched work function layer 136′b. In some embodiments, the third depth D3 is greater than the fourth depth D4. In some embodiments, a gap ΔH between the third depth D3 and the fourth depth D4 is in a range from about 1 nm to about 6 nm. In some embodiments, a gap ΔH between the third depth D3 and the fourth depth D4 is in a range from about 2 nm to about 4 nm.
After the second plasma operation 13b and before a third etching process (as shown in
After the second etching process including the first operation 13a and the second operation 13b, a third etching process 15 is performed on the first gate dielectric layer 134a in the first region 11 and the second gate dielectric layer 134b in the second region 12 as shown in
As a result, the first etched gate dielectric layer 134′a and the second etched gate dielectric layer 134′b are obtained after the third etching process 15. In some embodiments, the first etched gate dielectric layer 134′a has a fifth height H5, and the second etched gate dielectric layer 134′b has a sixth height H6. In some embodiments, the fifth height H5 is equal to the sixth height H6. The fifth height H5 of the first etched gate dielectric layer 134′a is higher than the third height H3 of the first etched work function layer 136′a. The sixth height H6 of the second etched gate dielectric layer 134′b is higher than the fourth height H4 of the second etched work function layer 136′b.
In addition, a top portion of the first gate dielectric layer 134a is removed to form a first hole 164a in the first region 11, and a top portion of the second gate dielectric layer 134b is removed to form a second hole 164b in the second region 12. In some embodiments, the first hole 164a has a fifth depth D5, and the second hole 164b has a sixth depth D6. In some embodiments, the fifth depth D5 is equal to the sixth depth D6.
After the third etching process 15, a fourth etching process 17 is performed on the first gate electrode layer 138a and the second gate electrode layer 138b as shown in
In addition, a top portion of the first gate electrode layer 138 is removed to form a first cavity 166a in the first region 11, and a top portion of the second gate electrode layer 138b is removed to form a second cavity 166b in the second region 12. In some embodiments, the first cavity 166a has a seventh depth D7 and the second cavity 166b has an eighth depth D8. The seventh depth D7 is equal to the eighth depth D8.
After the fourth etching process 17, a first hard mask layer 152a is formed on the etched gate structure 132′a, and a second hard mask layer 152b is formed on the etched gate structure 132′b as shown in
The first hard mask structure 152a includes a first portion 154a over the first etched gate dielectric layer 134′a, a second portion 156a over the first etched work function layer 136′a and a third portion 158a over the first etched gate electrode layer 138′a. The second hard mask structure 152b includes a first portion 154b over the second etched gate dielectric layer 134′b, a second portion 156b over the second etched work function layer 136′b and a third portion 158b over the second etched gate electrode layer 138′b.
In some embodiments, the first hard mask structure 152a is formed by filling the first via 162a, the first hole 164a, and the first cavity 166a with a dielectric material. The second hard mask structure 152b is formed by filling the second via 162b, the second hole 164b, and the second cavity 166b with a dielectric material.
In some embodiments, the hard mask structures 152a, 152b are made of silicon nitride. The hard mask structures 152a, 152b may be formed by using low-pressure chemical vapor deposition (LPCVD) or plasma enhanced chemical vapor deposition (PECVD), although other deposition processes may also be used in some other embodiments.
As shown in
Referring to
After the first plasma operation 13a, the second plasma operation 13b is performed as shown in
After the second plasma operation 13b, a second cycle including the first plasma operation 13a and the second plasma operation 13b may be performed again. The loading effect may be gradually reduced by repeating the cycle. The time of the cycle may be adjusted according to the actual application.
Afterwards, top portions of the first gate dielectric layer 134a and the second gate dielectric layer 134b are removed by the third etching process 15 as shown in
The first etched work function layer 136′a has a ninth height H9, and the second etched work function layer 136′b has a tenth height H10. The ninth height H9 is smaller than the tenth height H10. In some embodiments, a gap ΔH between the ninth height H9 and the tenth height H10 is in a range from about 1 nm to about 6 nm. In some embodiments, a gap ΔH between the ninth height H9 and the tenth height H10 is in a range from about 2 nm to about 4 nm. The first etched work function layer 136′a is level with the first etched gate dielectric layer 134′a.
After the third etching process 15, the fourth etching process 17 is performed to remove top portions of the first gate electrode layer 138a and the second gate electrode layer 138b as shown in
After the fourth etching process 17, the first hard mask layer 152a and the second hard mask layer 152b are formed over the uneven surface of the first etched gate structure 132′a and the second etched gate structure 132′b as shown in
When the loading effect between the first region 11 and the second region 12 is reduced, the third height H3 (shown in
Embodiments for forming a semiconductor device structure and method for formation the same are provided. A FinFET structure includes a first gate structure and a second gate structure formed over a fin structure over a substrate. The gate structure includes a gate dielectric layer, a work function layer and a gate electrode layer. The area of the second gate structure is greater than that of the first gate structure. In order to reduce the loading effect between two gate structures, when the work function layer is etched, a first plasma operation and a second plasma operation are sequentially performed on the work function layer. The bias power of the second plasma operation is set at zero value. Therefore, the gate-to-drain capacitance (Cgd) of the first gate structure is decreased, and the breakdown voltage (Vbd) of the second gate structure is increased. As a result, the performance of the FinFET device structure is improved.
In some embodiments, a FinFET device structure is provided. The FinFET device structure includes an isolation structure formed over a substrate and a fin structure formed over the substrate. The FinFET device structure includes a first gate structure and a second gate structure formed over the fin structure, and the first gate structure has a first width in a direction parallel to the fin structure, the second gate structure has a second width in a direction parallel to the fin structure, and the first width is smaller than the second width. The first gate structure includes a first work function layer having a first height which is measured from a top surface of the isolation structure to a top surface of the first gate structure. The second gate structure includes a second work function layer having a second height which is measured from a top surface of the isolation structure to a top surface of the second gate structure and a gap between the first height and the second height is in a range from about 1 nm to about 6 nm.
In some embodiments, a method for forming a FinFET device structure is provided. The method includes forming a fin structure over a substrate, and the substrate comprises a first region and a second region. The method includes forming a first dummy gate structure and a second dummy gate structure over the fin structure and forming an inter-layer dielectric (ILD) structure over the substrate and adjacent to the first dummy gate structure and the second dummy gate structure. The method also includes removing the first dummy gate structure and the second dummy gate structure to form a first trench and a second trench in the ILD structure and forming a first gate structure in the first trench and a second gate structure in the second trench. The first gate structure includes a first work function layer, and the second gate structure includes a second work function layer. The method further includes performing a first plasma operation on the first work function layer and the second work function layer for a first period of time and performing a second plasma operation on the first work function layer and the second work function layer for a second period of time. The first work function layer has a first height, and the second work function layer has a second height, and a gap between the first height and the second height is in a range from about 1 nm to about 6 nm.
In some embodiments, a method for forming a semiconductor device structure is provided. The method includes forming a fin structure over a substrate and forming a first dummy gate structure and a second dummy gate structure over the fin structure. The method also includes forming an inter-layer dielectric (ILD) structure over the substrate and adjacent to the dummy gate structure and removing the first dummy gate structure and the second dummy gate structure to form a first trench and a second trench in the ILD structure. The method also includes forming a first work function layer in the first trench and a second work function layer in the second trench and forming a first gate electrode layer over the first work function layer and a second gate electrode layer over the second work function layer. The method further includes removing a portion of the first work function layer and a portion of the second work function layer by an etching process. The etching process includes a first plasma operation and a second plasma operation, and the second plasma operation is performed at zero bias power.
One general aspect includes a fin field effect transistor (FINFET) device structure, including: an isolation structure formed over a substrate; a fin structure formed over the substrate; and a first gate structure and a second gate structure formed over the fin structure, where the first gate structure has a first width in a direction parallel to the fin structure, the second gate structure has a second width in a direction parallel to the fin structure, and the first width is smaller than the second width, and where the first gate structure includes a first work function layer and a gate electrode surrounded by the first work function layer and a step between a topmost surface of the gate electrode and a topmost surface of the first work function layer, the first work function layer having a first height which is measured from a top surface of the isolation structure to a top surface of the first gate structure; and the second gate structure includes a second work function layer and a second gate electrode surrounded by the second work function layer and a step between a topmost surface of the second gate electrode and a topmost surface of the second work function layer, the second work function layer having a second height which is measured from a top surface of the isolation structure to a top surface of the second gate structure.
Another general aspect includes a device including: a fin extending from a semiconductor substrate, the fin having a longitudinal axis in a first direction; a first gate stack extending over the fin and having a longitudinal axis orthogonal to the first direction, the first gate stack having a first width in the first direction and including a first gate dielectric layer having outermost sidewalls spaced apart by the first width, a first work function layer having outermost sidewalls spaced apart by a second width in the first direction less than the first width and having innermost sidewalls spaced apart by a third width in the first direction less than the second width, and a first gate electrode having outermost sidewalls spaced apart by the third width, where a topmost surface of the first gate electrode forms a step with a topmost surface of the first work function layer; and a second gate stack extending over the fin and having a longitudinal axis orthogonal to the first direction, the second gate stack having a fourth width in the first direction and including a second gate dielectric layer having outermost sidewalls spaced apart by a fifth width in the first direction, a second work function layer having outermost sidewalls spaced apart by a sixth width in the first direction less than the fifth width and having innermost sidewalls spaced apart by a seventh width in the first direction less than the sixth width, and a second gate electrode having outermost sidewalls spaced apart by the seventh width, where a topmost surface of the second gate electrode forms a step with a topmost surface of the second work function layer.
Yet another general aspect includes a device including: a fin field effect transistor (FINFET) device structure, including: an isolation structure formed over a substrate; a fin structure formed over the substrate; and a first gate structure and a second gate structure formed over the fin structure, where the first gate structure has a first width in a direction parallel to the fin structure, the second gate structure has a second width in a direction parallel to the fin structure, and the first width is smaller than the second width, and where the first gate structure includes a first gate dielectric layer, a first work function layer, a first gate electrode surrounded by the first work function layer, and a first capping layer, the first capping layer having a first thickness over the first gate dielectric layer, a second thickness over the first work function layer and a third thickness, less than the first thickness and the second thickness over the first gate electrode; the second gate structure includes a second gate dielectric layer second work function layer, a second gate electrode surrounded by the second work function layer, and a second capping layer overlying the second gate stack, the second capping layer having a fourth thickness over the first gate dielectric layer, a fifth thickness over the second work function layer and a sixth thickness, less than the fifth thickness and the sixth thickness, over the second gate electrode.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations here in without departing from the spirit and scope of the present disclosure.
This application is a continuation of U.S. patent application Ser. No. 15/445,664, filed on Feb. 28, 2017, and entitled “Fin Field Effect Transistor (FinFET) Device Structure with Uneven Gate Structure” which is a divisional of U.S. patent application Ser. No. 14/737,066, filed on Jun. 11, 2015, (now U.S. Pat. No. 9,583,485, issued Feb. 28, 2017) and entitled “Fin Field Effect Transistor (FinFET) Device Structure with Uneven Gate Structure and Method for Forming the Same” which claims priority to U.S. Provisional Patent Application No. 62/165,569 filed May 22, 2015, and entitled “Fin Field Effect Transistor (FinFET) Device Structure with Uneven Gate Structure and Method for Forming the Same,” which applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4786360 | Cote et al. | Nov 1988 | A |
5834371 | Ameen | Nov 1998 | A |
5960270 | Misra et al. | Sep 1999 | A |
6093332 | Winniczek et al. | Jul 2000 | A |
6855989 | Wang et al. | Feb 2005 | B1 |
7232762 | Chang et al. | Jun 2007 | B2 |
7718538 | Kim et al. | May 2010 | B2 |
8466012 | Chang | Jun 2013 | B1 |
8487378 | Goto et al. | Jul 2013 | B2 |
8729634 | Shen et al. | May 2014 | B2 |
8826213 | Ho et al. | Sep 2014 | B1 |
8883648 | Hsieh et al. | Nov 2014 | B1 |
8887106 | Ho et al. | Nov 2014 | B2 |
8969878 | Kim | Mar 2015 | B2 |
9012319 | Choi et al. | Apr 2015 | B1 |
9082852 | Liu | Jul 2015 | B1 |
9209273 | Lin | Dec 2015 | B1 |
9245805 | Yeh et al. | Jan 2016 | B2 |
9252238 | Trevino et al. | Feb 2016 | B1 |
9318389 | Yang et al. | Apr 2016 | B1 |
9508715 | Feng et al. | Nov 2016 | B1 |
10483370 | Chang et al. | Nov 2019 | B2 |
20010005057 | Pasch | Jun 2001 | A1 |
20010008205 | Wilke | Jul 2001 | A1 |
20050054192 | Kang et al. | Mar 2005 | A1 |
20050106882 | Chao et al. | May 2005 | A1 |
20050148137 | Brask et al. | Jul 2005 | A1 |
20070123036 | Brakensiek et al. | May 2007 | A1 |
20070259501 | Xiong et al. | Nov 2007 | A1 |
20080197110 | Kim et al. | Aug 2008 | A1 |
20090191711 | Rui et al. | Jul 2009 | A1 |
20100129984 | Vakanas et al. | May 2010 | A1 |
20100270619 | Lee | Oct 2010 | A1 |
20120049279 | Shrivastava et al. | Mar 2012 | A1 |
20120074475 | Chew | Mar 2012 | A1 |
20130161762 | Kelly et al. | Jun 2013 | A1 |
20130187236 | Xie et al. | Jul 2013 | A1 |
20130320412 | Yamasaki | Dec 2013 | A1 |
20130328111 | Xie et al. | Dec 2013 | A1 |
20140048867 | Toh et al. | Feb 2014 | A1 |
20140061817 | Gan et al. | Mar 2014 | A1 |
20140061917 | Kim et al. | Mar 2014 | A1 |
20140070320 | Mukherjee et al. | Mar 2014 | A1 |
20140191325 | Chowdhury et al. | Jul 2014 | A1 |
20140203333 | Huang et al. | Jul 2014 | A1 |
20140282326 | Chen et al. | Sep 2014 | A1 |
20140367790 | Choi et al. | Dec 2014 | A1 |
20150021694 | Trevino et al. | Jan 2015 | A1 |
20150041905 | Xie et al. | Feb 2015 | A1 |
20150041926 | Pradhan et al. | Feb 2015 | A1 |
20150076609 | Xie et al. | Mar 2015 | A1 |
20150126023 | Choi et al. | May 2015 | A1 |
20150145027 | Lin et al. | May 2015 | A1 |
20150206963 | Ho et al. | Jul 2015 | A1 |
20150243564 | Zhao | Aug 2015 | A1 |
20160005658 | Lin et al. | Jan 2016 | A1 |
20160163601 | Xie | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
103219231 | Jul 2013 | CN |
104347426 | Feb 2015 | CN |
102013104744 | Dec 2013 | DE |
102013215671 | Mar 2014 | DE |
102014222289 | May 2015 | DE |
102014019257 | Jul 2015 | DE |
2011071517 | Apr 2011 | JP |
100823874 | Apr 2008 | KR |
1020100014502 | Feb 2010 | KR |
1020130127257 | Nov 2013 | KR |
1020150000267 | Jan 2015 | KR |
201133793 | Oct 2011 | TW |
I485842 | May 2015 | TW |
Entry |
---|
Polishchuk, Igor et al. “Dual Work Function Metal Gate CMOS Transistors by Ni—Ti Interdiffusion,” IEEE Electron Device Letters, vol. 23, No. 4, Apr. 2002, pp. 200-202. |
Number | Date | Country | |
---|---|---|---|
20200066719 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62165569 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14737066 | Jun 2015 | US |
Child | 15445664 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15445664 | Feb 2017 | US |
Child | 16669145 | US |