1. Field of the Invention
The present invention relates generally to the field of chip on board (COB) and surface mount technology (SMT) memory cards, and particularly to a method and apparatus for manufacturing memory cards with a robust write-protect device to protect the host device against possible damage.
2. Description of the Prior Art
As computers have gained enormous popularity in recent decades, so has the need for better and more efficient ways of storing memory. Notable among memory devices are the portable ones such as memory cards that may be carried around by the user to access their information at different locations. For other electronic devices such as iPods, Personal Digital Assistants (PDA), Digital cameras/camcorders, and cellular phones, memory cards are also used for storing of information. This is particularly common in the case of personal computers (PC) where the need often arises to transfer data from one PC to another. Examples of portable memory devices include nonvolatile memory devices such as secure digital cards (SD) that are removably connectible to a computer.
Conventional prior art memory cards provide both write-protect and read-write functionalities by sliding a male switch in a female slot or by sliding a female switch on a male guide. However, in the conventional designs of the memory cards, the switch may fall into the host device to which the memory card is coupled, and cause damage or jam the memory card slot. It is important that the write-protect device, in order to protect the host device from being damaged, be more robust than current switches, as exhibited by the various embodiments of the present invention. In addition, most users in practice use the memory card in the read-write mode, and rarely switch over to the write-protect mode.
Thus, it is desirable to manufacture a write-protectable memory card that is robust enough to withstand extensive use without damaging the host device or jamming the memory card slot thereof. In addition, the memory card should have a low cost of manufacturing, with an improved esthetic quality to appeal to a wide range of potential users.
Briefly, an embodiment of the present invention includes a memory card having a bottom plastic piece with a plurality of lateral sides, one of which includes a notch, and a cavity interposed along the lateral sides. A printed circuit board (PCB) assembly, including memory, is positioned in the cavity. Fins, made during the manufacturing process, are located in the read-write/write-protect notch-region of the memory card and cause the memory card to function in read-write mode when the fins are present, and in write-protect mode when the fins are removed and the notch is exposed. Alternatively, a removable cap is inserted into the notch, configuring the card to function in a read-write mode when the cap is present in the notch, and in a write-protect mode when the notch is exposed.
The foregoing and other objects, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments, which make reference to several figures of the drawings.
a) shows an enlarged view of memory card 10, identifying each of the fins—52, 53, and 54—located in notch-region 50 of lateral side 13 in accordance with an embodiment of the present invention.
b) shows a bottom view of the lower portion of memory card 10, with dashed lines designating the cross-sectional plane A-A through fin 52 and bottom plastic piece 12, illustrating the vantage point of
c) shows cross-sectional view A-A of bottom plastic piece 12, partially separated from fin 52 by v-grooves 58 and 59, of memory card 10.
a) shows an enlarged view of Memory card 60, with an alternative write-protect device to the fins of card 10, identifying female socket 61 in notch-region 62, of lateral side 63 of bottom plastic piece 67, in accordance with an embodiment of the present invention.
b) shows male read-write enabling plug 64, composed exposed of read-write plug portion 66, and a male plug connection element 65, further divided into two arms—65(a) and 65(b)—by slot 68.
c) shows a bottom view of memory card 60 with dashed lines designating the cross-sectional plane B-B, through notch-region 62 of bottom plastic piece 67, illustrating the vantage point of
d) shows cross-sectional view B-B of bottom plastic piece 67 with plug 64 inserted into notch-region 62 and female socket 61, of memory card 60
a) shows an enlarged view of card 70, with an alternative write-protect device to fin-structure 11 of memory card 10 and female socket 61 of memory card 60, identifying clamp-bar 72 in notch-region 71, of lateral side 73 of bottom plastic piece 74, in accordance with an embodiment of the present invention.
b) shows a partial bottom view of memory card 70 with dashed lines designating the cross-sectional plane C-C through notch-region 71, clamp-bar 72, and bottom plastic piece 74, illustrating the vantage point of
c) shows cross-sectional view C-C of bottom plastic piece 74, with clamp-device 75 attached to clamp-bar 72, of memory card 70.
a) shows memory card 10 mated to host device 84, being secured and held in position via spring bar 82, and read-write mode being enabled by the host device 84's detection spring 83 detecting the presence of fins 52, 53, and 54, in accordance with an embodiment of the present invention.
b) shows memory card 81 mated to host device 84, being secured and held in position via spring bar 82, and write-protect mode being enabled by the host device 84's detection spring 83 detecting notch 88.
a) shows Chip on Board (COB) PCB assembly 100 to include electronic devices 101 and 102, and substrate 103.
b) shows a Surface Mounted Technology (SMT) PCB assembly 104 to include Electronic devices 105 and 107, passive components 108 and 109, and substrate 106.
a) shows finished memory card 10, with fin-structure 11 on lateral side 13, being comprised of bottom plastic piece 12, having shoe-shaped cavity 113 within which PCB assembly 112 is placed, molded top piece 111, and label 31, in accordance with an embodiment of the present invention.
b) shows finished memory card 70, in accordance with an embodiment of the present invention. Memory card 70 is comprised of bottom plastic piece 74 with shoe-shaped cavity 114 within which PCB assembly 112 is placed, clamp-bar 72 within notch-region 71, which is fitted with clamp-device 75, injection-molded top piece 111, and label 113.
a) shows injection-molding apparatus 122 with molten plastic 124, and injection port 123, descending upon bottom plastic piece 12 with PCB assembly 112 inserted into cavity 113.
b) shows injection-molding apparatus 122 injecting molten plastic 124, through injection port 123, into cavity 113 of bottom plastic piece 12.
c) shows a close-up view of corner-lip 127, on one of the four corners surrounding cavity 113, of bottom plastic piece 12.
a) shows a cross sectional view of completed memory card 130 to include bottom plastic piece 12, PCB assembly 112, and hardened plastic top piece 131, which previously was molten plastic 124, in accordance with an embodiment of the present invention.
b) shows an angular top view of finished memory card 130, including bottom plastic piece 12 and top plastic piece 131.
Referring now to
Memory card 10 is manufactured with fin-structure 11 in place, causing the card to default in the read-write mode. When write protection is desired, fin-structure 11 is snapped off, by the user, exposing a notch on lateral side 13, as will be further discussed shortly. Thereafter, a write-protect sensor pin of the host device, as will be shown in other figures, is used to detect the write-protect mode of memory card 10, and no new information may be written onto the protected memory content of memory card 10 (i.e., thereafter, memory card 10 operates in the write-protect mode).
In practice, the memory card is often used in the read-write mode, i.e., information may be written to, or read from, the memory card by a host device. Then, when desired, a user repositions the traditional memory card's switch, enabling write-protect mode and preventing inadvertent data loss. The traditional switch, however, is overly sensitive to mechanical forces and can fall into the host device to which the card is connected, potentially causing physical damage to expensive electronic equipment. On memory card 10, fin-structure 11 replace the traditional write-protect switch, and there is no concern regarding their potential to fall into, and damage, a host device to which memory card 10 is connected. Additionally, once fin-structure 11 is removed, the write-protection is permanent, and the risk of inadvertent read-write mode reversion, and subsequent over-writing of valuable data is eliminated.
Printed on label 16 may be a custom designed logo and other information. The label 16 has an adhesive layer on the underside for attachment to the top surface of memory card 10. Label 16 covers the interface on the top surface of memory card 10 to render a seamless appearance thereto, and enhance aesthetic value. In addition, label 16 enhances moisture and water resistance of the memory card 10 to protect the electronic devices within.
Referring now to
Specifically, the write-protect/read-write plug device 23 is inserted into a notch, as shown in
Referring now to
Referring now to
Referring now to
In one embodiment of the present invention, fins 52-54 are each composed of plastic, and are created as part of the injection-molding process that forms the bottom plastic piece 12—which will be further discussed later. While three fins, 52-54, are shown in
Referring now to
Referring now to
b) shows male plug device 64, manufactured as part of a single molding step, comprised of a male plug connection element 65 centrally disposed on a side of exposed read-write plug portion 66. Male plug connection element 65 is manufactured so that it has two arms—65(a) and 65(b)—separated by slot 68. Arms 65(a) and 65(b) are manufactured to slope outward from exposed read-write plug portion 66, and gradually spread wider, increasing in cross-sectional area as their distance from exposed read-write plug portion 66 becomes greater. Arms 65(a) and 65(b) of plug connection element 65 are narrowest where they connect to exposed read-write portion 66, and at their ends are ultimately wider than female socket 61 of memory card 60. This gradual widening of male plug connection element 65, together with slot 68 in the center of connection element 65, causes male plug connection element 65 to become slightly compressed and subsequently expand upon insertion into female socket 61. This ensures a snug fit, so that inadvertent loss or removal of male plug device 64 is unlikely. Exposed read-write plug portion 66 is accessible to the user even when male plug device 64 is inserted in notch-region 62, allowing the user easy removal with, for example, fingers, to enable write-protect mode.
Referring now to
d) shows cross-sectional view B-B, where male plug device 64 is tightly coupled to female socket 61, and protrudes from lateral side 63 of memory card 60 to facilitate easy removal of male plug device 64 by the user.
a) shows memory card 70 in accordance with an alternative embodiment of the present invention. Memory card 70's notch-region 71, on lateral side 73, contains a clamp-bar 72 for attachment and removal of a clamp-device, enabling read-write or write-protect mode respectively.
b), a top view of memory card 70, designates cross-sectional plane C-C as crossing through notch-region 71, clamp-bar 72, and bottom plastic piece 74.
c) shows cross-sectional view C-C, where clamp-device 75 is tightly coupled to clamp-bar 72, and protrudes beyond lateral side 73, to facilitate easy removal of clamp-device 75 by the user when write-protect mode is desired. Additionally, the non-permanent nature of the clamp-bar/clamp-device read-write/write-protect mechanism, allows memory card 70 to be temporarily protected from re-writing by removal by clamp-device 75, and for re-writing to be enabled, when desired, by re-attachment of clamp-device 75.
In the embodiment of the present invention where a clamp-device 75 is employed to control read-write/write-protect status of memory card 70 as previously noted, clamp-device 75 is snapped into place on clamp-bar 72 in a manner having clamp-device 75 positioned to fit around clamp-bar 72 tightly, so that clamp-device 75 will not be removed without user effort, and will not inadvertently fall into the host with which memory card 70 is coupled.
Referring now to
In
a) shows a top angular view of internal PCB assembly 100, employing chip on board (COB) electronics. PCB assembly 100 is composed of electronic devices, for example 101 and 102, mounted to substrate 103. Examples of electronic devices include flash memory units, controllers, and passive components.
b) shows a top angular view of an alternative PCB assembly 104, employing surface mounted technology (SMT) electronics. Assembly 104 is composed of, for example, electronic devices 105 and 107, and passive component 108-109, mounted on substrate 106. Passive components 108-109 may include, for example, resistors, capacitors, and inductors. In other embodiments of the present invention, electronic devices 105 and 107, and passive components 108 and 109 can be mounted on both sides, or on the bottom-side of substrate 106.
a) shows an overview of the assembly process of memory card 10. Bottom plastic piece 12, including fin-structure 11 on lateral side 13, is created from a single injection-molding step. Bottom plastic piece 12 has an upper-lid on one side, which can be better seen in
b) shows the assembly of memory card 70, with clamp-bar 72 in notch-region 71 of lateral side 73, as an alternative to the fin-structure 11 read-write/write-protect mechanism. Memory card 70 is manufactured in a similar 2-step molding process as that described for memory card 10. Bottom plastic piece 74, PCB assembly 112, and label 113 are coordinate to parts 13, 112, and 31 of
a) and 12(b) further explore the second step injection-molding process of top plastic piece 111, the product of which is abstractly shown in
c) shows corner lip 127 of bottom plastic piece 12. Bottom plastic piece 12 contains four of these lips—one overhanging each of the corners surrounding cavity 113. Lip 127 serves as a support and a lid for molten plastic 124, increasing the surface area of the plastic with which molten plastic 124 can bind, and ensuring that once molten plastic 124 hardens, it is not able to fall out—even under stressful conditions.
Referring now to
Because the manufacturing process described above is a 2-step molding process, the glass transition temperature of the plastic material of the second molding step—molten plastic 124, which becomes hardened plastic 131—should be higher than the glass transition temperature of the material of the first molding step that creates bottom plastic piece 12. This ensures strong cross-linking between the top plastic piece 131 and the bottom plastic piece 12.
b) shows a top angular view of finished memory card 130. The two-step injection-molding process provides for a finished product with clean lines, and protected internal electronic components.
Although the present invention has been described in terms of specific embodiment, it is anticipated that alterations and modifications thereof will no doubt become apparent to those more skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modification as fall within the true spirit and scope of the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/888,282 filed on Jul. 8, 2004, and entitled “MANUFACTURING METHOD FOR MEMORY CARD” and a continuation-in-part of U.S. patent application Ser. No. 10/913,868 filed on Aug. 6, 2004, and entitled “REMOVABLE FLASH INTEGRATED MEMORY MODULE CARD AND METHOD OF MANUFACTURE” and a continuation-in-part of U.S. patent application Ser. No. 11/744,119, filed on May 3, 2007, and entitled “SEAMLESS SECURED DIGITAL CARD MANUFACTURING METHODS WITH MALE GUIDE AND FEMALE SWITCH”, the disclosures of which are incorporated herein by reference as though set forth in full.
Number | Name | Date | Kind |
---|---|---|---|
5061845 | Pinnavaia | Oct 1991 | A |
7407393 | Ni et al. | Aug 2008 | B2 |
7420803 | Hsueh et al. | Sep 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20080037308 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11744119 | May 2007 | US |
Child | 11770661 | US | |
Parent | 10913868 | Aug 2004 | US |
Child | 11744119 | US | |
Parent | 10888282 | Jul 2004 | US |
Child | 10913868 | US |