All of the material in this patent application is subject to copyright protection under the copyright laws of the United States and of other countries. As of the first effective filing date of the present application, this material is protected as unpublished material.
However, permission to copy this material is hereby granted to the extent that the copyright owner has no objection to the facsimile reproduction by anyone of the patent documentation or patent disclosure, as it appears in the United States Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Not Applicable
Not Applicable
The present invention provides a system and method for fabricating high reliability capacitors, inductors, and multi-layer interconnects on hybrid microelectronic substrate surfaces using thin film technology. Specifically, it employs a thin lower electrode layer under a patterned dielectric layer. Conventional thin film conductors, upper electrodes for capacitors, spiral inductors, and resistor elements are then deposited on top of the dielectric layer to form thin film hybrid microelectronic devices containing conductors, capacitors, inductors, and resistors all integrated together on the same device.
Hybrid microelectronic devices are manufactured on a variety of substrate materials using various techniques such as thick film, low temperature co-fired ceramic (LTCC), specialty printed circuit board (PCB), or thin film technology. Hybrid devices are used in many microelectronics applications in the defense, medical, communications, computer, automotive, and infrared imaging industries, as well as in many other applications. In all of these industries there is continuous demand for devices that offer improved performance and function. In order to satisfy these demands, the number of passive devices (capacitors, inductors, and resistors) designed into microelectronic devices continues to grow. For instance, a typical cellular phone product may contain 400 components with less than 20 devices being active (i.e., semiconductors) and the 380 or more devices being passive devices.
Along with demands for better performance are also requirements to provide products that are less expensive and smaller in size. It is reported that the passive components in a cellular phone product can occupy 80% of the printed circuit board area and account for 70% of the product assembly costs. Thus, there is clear need to reduce the size and cost of the passive devices required in microelectronic devices.
Of the hybrid circuit fabrication techniques, thin film technology is extremely well suited for use in RF/microwave, wireless, and optical transmission technologies because of its ability to provide high quality features, extremely dense packaging, and a large range of integrated features.
The current state of the art in thin film hybrid microelectronic manufacturing offers cost effective, high reliability methods for integrating conductors, inductors, and resistors onto the same thin film hybrid circuit device but not capacitors and interconnects (i.e. connections between devices and multiple layers).
Presently, capacitors are typically purchased individually and attached to the thin film devices using various surface mount die attach techniques. The individual chip capacitors take up valuable space, require much assembly labor, and can decrease reliability due to assembly problems.
Interconnects are often required to interconnect components and devices and to attach to the center of spiral inductors and power splitters such as Lange couplers. Current technology uses wire or ribbon bonding to make individual interconnects. Wire or ribbon bonds can add higher costs and sometimes cause high frequency performance problems due to bond inconsistencies, different bond shapes or the bonds falling over and shorting to conductor lines that they are crossing over.
Thus, there is a clear need for a reliable fabrication method that offers both integrated capacitors and integrated interconnects. It is especially desirable that this method provides features that are usable from DC to very high operating frequencies. The prior art does not satisfy this need.
A recent approach to the integration of capacitors and interconnects has concentrated on fabricating these devices on silicon wafers. See MARC DE SAMBER, NICK PULSFORD, MARC VAN DELDEN, ROBERT MILSOM; “Low-Complexity MCM-D Technology with Integrated Passives for High Frequency Applications”, The International Journal of Microcircuits and Electronic Packaging, Volume 21, Number 2, Second Quarter 1998, pgs 224-229 (ISSN 1063-1674) (International Microelectronics and Packaging Society).
This paper presented simple concepts for fabricating integrated capacitors, inductors, resistors, and interconnects on silicon wafers. However, processing thin film hybrid substrates offers unique challenges when compared to silicon wafers, and the teachings presented in this prior art are not directly applicable to thin film hybrid substrate processing.
Two basic techniques have been used in the past to fabricate integrated capacitors onto thin film hybrid devices. Both techniques are based on the “parallel plate” construction or MIM (metal-insulator-metal) capacitor design. Both techniques are inherently difficult to manufacture as they need to address the issue of “step coverage” of the dielectric layer over the thick bottom electrode.
This type of capacitor is very difficult to manufacture as it presents many problems such as capacitance value reproducibility problems, shorting (0106) of the top electrode (0104) to the bottom electrode (0102) through the thin dielectric (0105), low breakdown voltage, low Q (quality factor) at high frequencies, and wire bonding challenges.
The capacitor value or capacitance is inversely proportional to the thickness of the dielectric layer so it is very advantageous to have the dielectric layer as thin as possible. When depositing a thin dielectric layer over a thicker electrode layer electrical shorts are introduced at the edge (0106) of the bottom electrode (0102) due to poor “step coverage” (0105) of the dielectric layer (0103) as shown in
This process is inherently difficult because the lower electrode (0202) is relatively thick, thereby making it problematic to make contact to the upper electrode (0207) without shorting to the thick lower electrode (0202). Most dielectric coatings (0203), in order to be applied at a thickness that will completely cover the lower electrode layer (0202), exhibit extremely low capacitance densities and therefore are used only rarely. Therefore, the air-bridge method becomes a logical method for making a connection to the upper electrode (0207) because it can use thinner dielectrics with higher capacitance densities.
This method exhibits manufacturing and repeatability problems due to its very complex nature. It is extremely expensive and problematic to produce. It also suffers from reliability problems because the air bridges are vulnerable to shorts from handling.
In an effort to fabricate integrated interconnects, a “crossover” or “air-bridge” technique has also been employed, as described in
A more complex version of the simple air-bridge is to support the crossover span (0402) with an underlying insulating material (0403), as illustrated in
The addition of the insulating support (0403) under the span (0402) increases the complexity and cost of the supported crossover process. It is again important to note that due to the complex nature of the supported air-bridge process, it is extremely rare for supported air-bridge interconnects and air-bridge capacitors to be produced on the same device.
The prior art in this area relates generally to the following U.S. Pat. Nos.: 3,969,197; 4,002,542; 4,002,545; 4,038,167; 4,062,749; 4,364,099; 4,408,254; 4,410,867; 4,423,087; 4,471,405; 4,599,678; 4,631,633; 5,122,923; 5,258,886; 5,262,920; 5,338,950; 5,390,072; 5,455,064; 5,539,613; 5,587,870; 5,643,804; 5,670,408; 5,685,968; 5,693,595; 5,699,224; 5,708,302; 5,736,448; 5,737,179; 5,745,335; 5,760,432; 5,767,564; 5,781,081; 5,818,079; 5,872,040; 5,874,379; 5,877,533; 5,882,946; 5,883,781; 5,889,299; 5,907,470; 5,912,044; 5,936,831; 5,943,547; 5,973,908; 5,973,911; 5,982,018; 6,001,702; 6,023,407; 6,023,408; 6,040,594; 6,069,388; 6,072,205; 6,075,691.
These patents generally address the following general areas:
The present invention provides a system and method for fabricating cost effective, high reliability capacitors and multi-layer interconnects in order to provide the ability to integrate capacitors and interconnects along with conductors, inductors, and resistors all on the same thin film hybrid microelectronic device. Accordingly, the objectives of the present invention are (among others) to circumvent the deficiencies in the prior art and affect one or more of the following:
The invention is related in the general area of generating integrated thin film capacitors and other passive components along with associated interconnect. To date, the industry has been unable to commercially fabricate a viable integrated capacitor in the thin film industry. The system and method described in the figures and the following text discloses such a system that can be fabricated using conventional thin film technologies at substantially reduced costs over methods currently used within the industry.
For a fuller understanding of the advantages provided by the invention, reference should be made to the following detailed description together with the accompanying drawings wherein:
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detailed preferred embodiment of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to the embodiment illustrated.
The numerous innovative teachings of the present application will be described with particular reference to the presently preferred embodiments, wherein these innovative teachings are advantageously applied to the particular problems of an INTEGRATED THIN FILM CAPACITOR/INDUCTOR/INTERCONNECT SYSTEM AND METHOD. However, it should be understood that these embodiments are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed inventions. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in the plural and visa versa with no loss of generality.
Referring to the system as described in
[1] Metalization (1401)
As shown in
This layer (0502) is typically formed of a lower adhesive layer and an upper conducting layer. Key to the success of the present invention is keeping the total thickness of this metalized layer (0502) at or below approximately 1.50 μm. The prior art universally teaches the use of base metalization layers on the order of 2-4 μm in thickness that makes step coverage difficult in all known capacitor/inductor/interconnect fabrication processes. The present invention breaks with this methodology and utilizes a much thinner adhesive/conducting layer combination to achieve reliable step coverage and superior passive component performance.
The lower adhesive layer is generally very thin (˜0.03-0.05 μm) and is optimally comprised of chrome (Cr), titanium (Ti), or titanium-tungsten (Wti), although other adhesive conducting materials are also known in the art. The purpose of this layer is to generally act as a bonding interface between the substrate (0501) and the conducting layer (0502).
The upper conducting layer is generally thicker (approximately 0.25 μm to approximately 1.40 μm in thickness, limited only by the total thickness of 1.5 μm of the metalized layer (0502) described above) than the lower adhesive layer and may be comprised of any of a wide variety of metals, but preferred embodiments utilize gold (Au), copper (Cu), aluminum (Al), silver (Ag), tantalum (Ta), tungsten (W), titanium (Ti), nickel (Ni), molybdenum (Mo), platinum (Pt), and/or palladium (Pd). The combination of the lower adhesive layer and upper conducting layer serves as the bottom electrode layer (0502).
[2] Align/Expose/Etch Lower Electrodes (1402)
A photoresist (not shown) is then applied, imaged, and the substrate etched (1402) to form the desired patterns for the lower electrodes of the capacitors (0603) and any interconnects (0604), as shown in
[3] Apply Dielectric Layer (1403)
Then, as shown in
[4] Align/Expose/Etch Contact Holes (1404)
Thereafter, as shown in
Note also that in many applications it will be advantageous to selectively pattern the dielectric layer to remove certain portions of dielectric under the upper level metalization. This optional selective patterning can easily be accomplished in this same step. Rationales for this selective patterning procedure may be associated with improving the electrical performance of various capacitor/inductor/interconnect/resistor components, as one skilled in the art will readily recognize.
[5] Metalize Substrate to Make Contact with Lower Electrodes (1405)
[6] Align/Expose/Etch Upper Electrode/Inductor/Conductor (1406)
Thereupon, as shown in
[7] Optionally/Form Resistor Elements (1407)
In
Construction Variations
From the foregoing, it will be understood by one skilled in the art that according to the present invention a lower electrode and interconnect layer formed using a high conductivity material such as Au, Ag, Cu, or Al will offer excellent high frequency characteristics.
It will be further understood that according to the present invention the dielectric material and thickness can be chosen to optimize capacitance values and/or breakdown voltage.
It will be further understood that according to the present invention to integrate capacitors and interconnects on a variety of thin film hybrid substrates and surface finishes along with conductors, inductors, and resistor elements.
In summary, it will be understood by one skilled in the art that according to the present invention it becomes possible to integrate capacitors, inductors, and/or interconnects on a thin film hybrid substrate along with conductors and/or resistor elements in a wide variety of configurations.
As described previously, the exemplary method used to fabricate the capacitor/inductor/interconnect of the present invention is illustrated in
Material Variations
The present invention is amenable to a wide variety of system/method variations, some of which include the following:
An important variation of the exemplary system/method involves the bypass/decoupling/filter capacitor structure illustrated in
The present invention when applied to this typical application is presented by the exemplary construction diagram of
The capacitor structures generally comprise thinly deposited lower plates (1105, 1106) and an overcoat of dielectric (1107, 1108). Contact to the lower plates (1105, 1106) is made with via contacts (1109, 1110) through the dielectric, which make contact with upper layers of thick metalized interconnect (1111, 1112).
The advantage of this structure is evident when compared to the prior art because it permits the ground contact of the capacitor to be placed within the capacitor, thus reducing both the series resistance of the capacitor contacts as well as the inductance normally associated with crossover spans and other interconnect associated with techniques used in the prior art.
It is important to note that within the context of the prior art, the lower capacitor plates (1105, 1106) would normally be formed as thick metalization comparable to the top interconnect (1111, 1112, 1113), thus making step coverage of the dielectric layer (1107, 1108) problematic and unreliable. The construction technique and materials taught by the present invention overcome these deficiencies in the prior art and provide for a higher degree of performance and reliability than possible with prior art structures.
One skilled in the art will recognize that the capacitor structure depicted in
Referring to the system as described in
What is significant to note about the individual capacitors, inductors, and interconnect (fabricated using the method illustrated herein and for which an exemplary flowchart is given in
While a wide variety of system applications are amenable to use of the present invention, several are preferred and will now be discussed. Discussion of these applications in no way limits the scope of the present invention.
One application of the present invention is in bypass/decoupling/filter systems as illustrated in
The present invention is particularly well suited to this application because it permits the inductor (1212) and capacitor (1213) to be fully integrated on the same substrate in close proximity to the amplifier (1211). Furthermore, the thin dielectric and low effective series resistance of the capacitors constructed using the techniques of the present invention permit the power supply bypass/decoupling/filtering operation of the capacitor (1213) to be superior to the use of any chip-capacitor alternative. The reason for this is that any chip-capacitor alternative will have significant inductance associated with bond pads and bonding sidewalls of the chip-capacitor, thus reducing its effective capacitance at high frequencies.
Additionally, other capacitors (1214) and/or inductors (1215) that may be associated with the amplifier (1211) within the context of the amplifier subsystem (1210) are also amenable to implementation using the present invention. Applications for these components will vary based on the specific function of the amplifier system (1210). Note that in addition to capacitors (1214) and inductors (1215), the present invention also permits integration of resistor elements in close proximity to the amplifier (1211), which further increases the performance and reliability of the manufactured system while reducing the overall cost of the completed subsystem (1210).
The amplifier subsystem (1210) illustrated in
The advantage of the present invention over the prior art in this application is significant. Traditional phased antenna arrays utilizing capacitors/inductors/interconnect generally comprise components fabricated using crossover spans as illustrated in
Furthermore, the crossover bridge (0304) technique illustrated in
Thus, the present invention specifically anticipates the use of the thin film capacitor/inductor/interconnect structures described herein in both active and passive phased antenna arrays. These phased antenna arrays have wide application as is well known to one skilled in the art.
Fabricated capacitor test structures using the teachings of the present invention had remarkably consistent capacitance values in the 15-30 pF range and self-resonant frequencies ranging from 1.4-2.4 GHz, which is more than sufficient performance for many RF/wireless applications and significantly better than comparable prior art capacitor structures.
Fabricated inductor test structures using the teachings of the present invention had remarkably consistent inductance values in the 20-70 nH range and quality factors (Q) ranging from 22 at 2 GHz (20 nH) to 14 at 800 MHz (70 nH). While this performance analysis is preliminary, it does indicate that the present invention teachings permit inductors to be fabricated with significantly higher reliability, manufacturability, and performance than possible with the prior art.
A system and method for the fabrication of high reliability capacitors, inductors, and multi-layer interconnects on various substrate surfaces has been disclosed. The disclosed method first employs a thin metal layer deposited and patterned on the substrate. This thin patterned layer is used to provide both lower electrodes for capacitor structures and interconnects for upper electrode components. Next, a dielectric layer is deposited over the thin patterned layer and the dielectric layer is patterned to open contact holes to the thin patterned layer. The upper electrode layer is then deposited and patterned on top of the dielectric.
Although a preferred embodiment of the present invention has been illustrated in the accompanying drawings and described in the foregoing detailed description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications, and substitutions without departing from the spirit of the invention as set forth and defined by the following claims:
This patent application is a continuation-in-part Patent Application for “INTEGRATED THIN FILM CAPACITOR/INTERCONNECT SYSTEM AND METHOD”, Ser. No. 09/960,796, filed Sep. 21, 2001, now U.S. Pat. No. 6,761,963. Applicants incorporate this parent application by reference and claim benefit pursuant to 35 U.S.C. §120 for this previously filed patent application. Applicant claims benefit pursuant to 35 U.S.C. §119 and hereby incorporates by reference Provisional Patent Application for “INTEGRATED THIN FILM CAPACITOR/INTERCONNECT SYSTEM AND METHOD”, Ser. No. 60/234,135, filed Sep. 21, 2000, and submitted to the USPTO with Express Mail Label EM267139965US.
Number | Name | Date | Kind |
---|---|---|---|
3553693 | Lockerd et al. | Jan 1971 | A |
3895272 | Smolko et al. | Jul 1975 | A |
3969197 | Tolar et al. | Jul 1976 | A |
4002542 | Young | Jan 1977 | A |
4002545 | Fehiner et al. | Jan 1977 | A |
4038167 | Young | Jul 1977 | A |
4062749 | Young | Dec 1977 | A |
4109297 | Lesh et al. | Aug 1978 | A |
4364099 | Koyama et al. | Dec 1982 | A |
4408254 | Chu et al. | Oct 1983 | A |
4410867 | Arcidiacono et al. | Oct 1983 | A |
4423087 | Howard et al. | Dec 1983 | A |
4471405 | Howard et al. | Sep 1984 | A |
4599678 | Wertheimer et al. | Jul 1986 | A |
4628149 | Dohya | Dec 1986 | A |
4631633 | Shaulov et al. | Dec 1986 | A |
4786523 | Dohya | Nov 1988 | A |
4958258 | Charruau | Sep 1990 | A |
5122923 | Matsubara et al. | Jun 1992 | A |
5258886 | Murayama et al. | Nov 1993 | A |
5262920 | Sakuma et al. | Nov 1993 | A |
5338950 | Bahl | Aug 1994 | A |
5390072 | Anderson et al. | Feb 1995 | A |
5455064 | Chou et al. | Oct 1995 | A |
5485138 | Morris | Jan 1996 | A |
5539613 | Yamamichi et al. | Jul 1996 | A |
5587870 | Anderson et al. | Dec 1996 | A |
5604658 | Pedder | Feb 1997 | A |
5643804 | Arai et al. | Jul 1997 | A |
5670408 | Yamamichi et al. | Sep 1997 | A |
5685968 | Hayakawa et al. | Nov 1997 | A |
5693595 | Talisa et al. | Dec 1997 | A |
5699224 | Hanamura et al. | Dec 1997 | A |
5708302 | Azuma et al. | Jan 1998 | A |
5736448 | Saia et al. | Apr 1998 | A |
5737179 | Shaw et al. | Apr 1998 | A |
5745335 | Watt | Apr 1998 | A |
5760432 | Abe et al. | Jun 1998 | A |
5767564 | Kunimatsu et al. | Jun 1998 | A |
5781081 | Arakawa et al. | Jul 1998 | A |
5818079 | Noma et al. | Oct 1998 | A |
5872040 | Wojnarowski et al. | Feb 1999 | A |
5874379 | Joo et al. | Feb 1999 | A |
5877533 | Arai et al. | Mar 1999 | A |
5882946 | Otami | Mar 1999 | A |
5883781 | Yamamichi et al. | Mar 1999 | A |
5889299 | Abe et al. | Mar 1999 | A |
5907470 | Kita et al. | May 1999 | A |
5912044 | Farooq et al. | Jun 1999 | A |
5915188 | Ramakrishnan et al. | Jun 1999 | A |
5936831 | Kola et al. | Aug 1999 | A |
5943547 | Yamamichi et al. | Aug 1999 | A |
5973908 | Saia et al. | Oct 1999 | A |
5973911 | Nishioka | Oct 1999 | A |
5982018 | Wark et al. | Nov 1999 | A |
6001702 | Cook et al. | Dec 1999 | A |
6023407 | Farooq et al. | Feb 2000 | A |
6023408 | Schaper | Feb 2000 | A |
6040594 | Otani | Mar 2000 | A |
6069388 | Okusa et al. | May 2000 | A |
6072205 | Yamaguchi et al. | Jun 2000 | A |
6075691 | Duenas et al. | Jun 2000 | A |
6100574 | Norstrom et al. | Aug 2000 | A |
6236101 | Erdeljac et al. | May 2001 | B1 |
6410858 | Sasaki et al. | Jun 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040081811 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09960796 | Sep 2001 | US |
Child | 10686128 | US |