Embodiments of the invention relate to the manufacturing of complementary metal-oxide-semiconductor (CMOS) devices. More particularly, embodiments of the invention relate to integrating n-type and p-type metal gate transistors within a single CMOS device.
Prior art CMOS devices manufactured with prior art semiconductor processes typically have polysilicon gate structures. Polysilicon, however, can be susceptible to depletion effects, which can add to the overall gate dielectric thickness in the CMOS device. Furthermore, as the effective physical gate dielectric thickness decreases, the polysilicon depletion contributes proportionally to the total dielectric thickness. It is, therefore, desirable to eliminate polysilicon depletion in order to scale gate oxide thickness.
Metal gates, on the other hand, are not as susceptible to depletion as polysilicon and are in many ways preferable to polysilicon for forming gate structures. Typical prior art semiconductor processes, however, do not incorporate n-type and p-type metal gates within the same device or integrated circuit. This is due, in part, to the complexity and cost of developing a semiconductor process that can reliably deposit metal gate structures of differing types into the same semiconductor device or integrated circuit.
Embodiments of the invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Embodiments of the invention described herein relate to semiconductor manufacturing. More particularly, embodiments of the invention described relate to integrating n-type and p-type metal gate transistors within the same complementary metal-oxide-semiconductor (CMOS) device or integrated circuit.
In order to manufacture CMOS devices and integrated circuits that can avoid the effects of gate depletion, embodiments of the invention incorporate n-type and p-type metal gates into the same CMOS device or integrated circuits.
The ILDO is polished back to expose the doped polysilicon gates in FIG. 2. The ILDO polishing also removes residual silicide around the nitride masking layer. After the polysilicon gates 205, 210 are exposed, an ammonium hydroxide etch is used to selectively etch away 305 the n-type polysilicon. The ammonium hydroxide etch is low temperature (e.g., <40 deg. Celsius), uses sonication, and has a concentration of approximately 2-29%. The result of the polysilicon etch is illustrated in FIG. 3.
Removal of the p-type polysilicon above the gate dielectric creates a damascene-like “trench” which is filled with an n-type metal 405, such as Hf, Zr, Ti, Ta, or Al, as illustrated in FIG. 4. Alternatively, the trench can be filled with an alloy containing an n-type component using PVD (“Physical vapor deposition”), CVD (“Chemical vapor deposition”), or ALD (“Atomic Layer deposition”). CVD and ALD may use an organometallic or halide precursor, and a reducing atmosphere. Furthermore, the thickness of the n-type metal or alloy can be such that the trench is only partially filled. For example, the thickness of the n-type metal or alloy can vary from approximately 50 angstroms to approximately 1000 angstroms in various embodiments. If the trenches are not completely filled, they may be filled with an easily polished metal, such as W (“Tungsten”) or Al (“Aluminum”).
The n-type metal is polished back to create the n-type metal gates 505 and to expose the p-type polysilicon gate 510 as illustrated in FIG. 5.
A p-type metal, such as Ru (“Ruthenium”), Pd (“Palladium”), Pt (“Platinum”), Co (“Cobalt”), Ni (“Nickel”), TiAIN (“Titanium Aluminum Nitride”), or WCN (“Tungsten Carbon Nitride”) can be used to fill the gate trench created by etching the p-type polysilicon gate 605. Alternatively, an alloy using p-type metal can be deposited in the trench using chemical vapor deposition or atomic layer deposition with an organometallic precursor and a reducing atmosphere. Furthermore, the thickness of the p-type metal or alloy can be such that the trench is only partially filled.
The p-type metal or alloy is polished back, as illustrated in
Contacts 903 are etched and deposited, as illustrated in
Rather than using a dry etch to remove the p-type polysilicon as described above, the p-type polysilicon gate can be converted to n-type in order to allow a gentler wet etch to remove the polysilicon rather than a dry etch. For example, after the p-type polysilicon 1010 has been exposed, rather than using a selective dry etch to remove the polysilicon, an n-type implant 1015 is performed to change the doping of the polysilicon in order to allow an ammonium hydroxide etch to be performed, as illustrated in FIG. 10.
The result of the implant and ash (if required) is illustrated in FIG. 11. An ammonium hydroxide etch removes the remaining polysilicon gate structure 1210 resulting in the structure illustrated in
While the invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications of the illustrative embodiments, as well as other embodiments, which are apparent to persons skilled in the art to which the invention pertains are deemed to lie within the spirit and scope of the invention.
This application is a divisional of U.S. patent application Ser. No. 10/327,293, which was filed on Dec. 20, 2002.
Number | Name | Date | Kind |
---|---|---|---|
6107126 | Wu | Aug 2000 | A |
6255698 | Gardner et al. | Jul 2001 | B1 |
6261887 | Rodder | Jul 2001 | B1 |
6365450 | Kim | Apr 2002 | B1 |
6410376 | Ng et al. | Jun 2002 | B1 |
6541395 | Trivedi et al. | Apr 2003 | B1 |
6586288 | Kim et al. | Jul 2003 | B2 |
6620664 | Ma et al. | Sep 2003 | B2 |
6677652 | Lin et al. | Jan 2004 | B2 |
6740551 | Yoshida et al. | May 2004 | B2 |
6825528 | Iwata et al. | Nov 2004 | B2 |
20020058734 | Kim et al. | May 2002 | A1 |
Number | Date | Country |
---|---|---|
0 899 784 | Mar 1999 | EP |
2 358 737 | Aug 2001 | GB |
Number | Date | Country | |
---|---|---|---|
20040214385 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10327293 | Dec 2002 | US |
Child | 10851360 | US |