1. Field of the Invention
The disclosed subject matter relates generally to the fabrication of semiconductor devices and, more particularly, to forming interlayer ballistic conductor signal lines.
2. Description of the Related Art
In modern integrated circuits, minimum feature sizes, such as the channel length of field effect transistors, have reached the deep sub-micron range, thereby steadily increasing performance of these circuits in terms of speed and/or power consumption and/or diversity of circuit functions. As the size of the individual circuit elements is significantly reduced, thereby improving, for example, the switching speed of the transistor elements, the available floor space for interconnect lines electrically connecting the individual circuit elements is also decreased. Consequently, the dimensions of these interconnect lines and the spaces between the metal lines have to be reduced to compensate for a reduced amount of available floor space and for an increased number of circuit elements provided per unit area.
Interconnect lines can be generally categorized into three groups: signal, clock and power lines. These interconnect types have different and in some cases opposing requirements. Signal lines require small capacitance and are less sensitive to resistance especially for short interconnects. Signal lines are almost immune from electromigration because they pass bidirectional currents. Thus, for signal lines, low aspect ratio lines are favored. Clock lines, which have an activity factor of 1, require low resistance and capacitance. Clock lines, however, can fail due to electromigration because of the large currents they pass and because, in some cases, the current path is different in charge and discharge durations. Power lines are particularly susceptible to electromigration failure due to large currents flowing mainly in one direction.
In modern integrated circuits, a limiting factor of device performance is the signal propagation delay caused by the switching speed of the transistor elements. As the channel length of these transistor elements has now reached 50 nm and less, the signal propagation delay is no longer limited by the field effect transistors. Rather, the signal propagation delay is limited, owing to the increased circuit density, by the interconnect lines, since the line-to-line capacitance (C) is increased and also the resistance (R) of the lines is increased due to their reduced cross-sectional area. The parasitic RC time constants for signal lines limit the performance of the semiconductor devices.
Conventional dual damascene interconnect techniques typically result in lines having the same aspect ratio in a particular metallization layer. Hence, it is difficult to optimize the constructs of the lines depending on their intended function: signal, clock or power.
The present application is directed to various methods for interlayer ballistic conductor interconnect lines so as to eliminate or reduce the effects of one or more of the problems identified above.
The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an exhaustive overview of the invention. It is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
Generally, the present disclosure is directed to various methods of forming conductive lines. One illustrative method includes forming a ballistic conductor line above a first metallization layer. A dielectric layer is formed above the ballistic conductor line. A first via is embedded in the dielectric layer contacting a first portion of the ballistic conductor line. A second via is embedded in the dielectric layer contacting a second portion of the ballistic conductor line to define a signal path between the first and second vias through the ballistic conductor line.
An illustrative device includes a dielectric layer, a ballistic conductor line embedded in the dielectric layer, a first via embedded in the dielectric layer and contacting a first portion of the ballistic conductor line, and a second via embedded in the dielectric layer and contacting a second portion of the ballistic conductor line to define a signal path between the first and second vias through the ballistic conductor line.
The disclosure may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:
While the subject matter disclosed herein is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Various illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present subject matter will now be described with reference to the attached figures. Various structures, systems and devices are schematically depicted in the drawings for purposes of explanation only and so as to not obscure the present disclosure with details that are well known to those skilled in the art. Nevertheless, the attached drawings are included to describe and explain illustrative examples of the present disclosure. The words and phrases used herein should be understood and interpreted to have a meaning consistent with the understanding of those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, i.e., a definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is intended to have a special meaning, i.e., a meaning other than that understood by skilled artisans, such a special definition will be expressly set forth in the specification in a definitional manner that directly and unequivocally provides the special definition for the term or phrase. The present disclosure is directed to various methods of forming an interconnect structure. With reference to the attached drawings various illustrative embodiments of the methods and devices disclosed herein will now be described in more detail.
The device layer 105 includes contacts 125 (e.g., tungsten) formed in a dielectric layer 130 for contacting underlying devices, such as transistors (not shown). A first metallization layer 135 of the metallization system 115, including a cap layer 140 (e.g., SiCN) and a dielectric layer 145, is formed above the device layer 105. The first metallization layer 135 is formed using a conventional dual damascene process to define conductive lines 150 (e.g., copper) to provide intra-layer signal paths and vias 155 (e.g., copper) to provide inter-layer signal paths. A cap layer 160 (e.g., SiCN) is formed above the dielectric layer 145.
The dielectric layers 130, 145 may be the same or different materials. In the illustrated embodiment, the dielectric layer 145 may be a low-k dielectric material having a dielectric constant of approximately 3.0 or lower or an ultra-low-k (ULK) material having a dielectric constant of approximately 2.5 or lower.
Exemplary ballistic conductor materials include graphene, carbon nanotubes, silicon nanowires, samarium hexaboride, stanene, silicene, boronene and topolocial insulators, such as mercury telluride, cadmium telluride, bismuth antimonide, pure antimony, bismuth selenide, bismuth telluride, and antimony telluride. In general, ballistic conductor materials provide low-capacitance signal paths with very thin material layers. In general, ballistic conductor materials may be formed in very thin sheets, sometime as thin as the thickness of a single atom.
The sidewall angle of the vias 200, 210 affects the quality of the connection between the vias 200, 205 and the ballistic conductor line 175. The etch process for forming the openings in the cladding layer 180 and the ballistic conductor line 175 prior to forming the vias 200, 210 may be tailored to increase the sidewall angle, at least in the region where the vias 200, 210 interface with the ballistic conductor line 175.
The use of ballistic conductor signal lines 175 within a metallization layer 185 allows both low aspect ratio signal or clock lines and high aspect ratio power lines to coexist. The RC characteristics of the lines may be controlled separately, thereby allowing separate optimization of the line characteristics.
The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. For example, the process steps set forth above may be performed in a different order. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.