This invention relates to energy conditioning.
Electrical circuits using low frequency electrical power generate noise that is coupled through the power distribution system. That noise is generally detrimental. In the past, capacitors have been used to condition the electrical power propagating to and from devices. One type of device in which capacitors have been used to condition electrical power is an active circuitry. Capacitors have been used to in active circuitry to decouple noise from the power lines. Typically, in applications involving Large or Very Large Scale Integration (LSI or VLSI) Integrated Circuits (ICs), multiple rows of capacitors are arrayed on a PC board as close as feasible to the location of the IC in the PC board, given design constraints. This arrangement provides sufficient decoupling of the power and ground from the IC's active circuitry. The terms “bypass” and “decoupling” are used interchangeable herein.
This application discloses novel energy conditioner structures and novel combinations of the connections of the energy conditioners on other structures, such as PC board structures, and novel circuit arrangements of the energy conditioners with structures, such as PC boards, described herein, generally provide improved decoupling, per conditioner, and require less conditioners and related structure, such as vias, to provide sufficient decoupling. Similarly to PC boards, the structures to which the novel conditioners and the novel combination of the connections of the energy conditioners may be applied include first level interconnects and semiconductor chips, including for example ASIC, FPGA, CPU, memory, transceiver, computer on a chip, and the like.
More particularly, this application discloses and claims energy conditioner internal structures and external structures, connection structure, and circuits including energy conditioners having A, B, and G master electrodes.
In one aspect, the claims define an internal structure of an energy conditioner:
wherein said internal structure has a left side surface, a right side surface, an upper side surface, a lower side surface, a top side surface, and a bottom side surface;
wherein said internal structure comprises a dielectric material and a conductive material;
wherein surfaces of said dielectric material and surfaces of said conductive material define said left side surface, said right side surface, said upper side surface, said lower side surface, said top side surface, and said bottom side surface;
wherein said conductive material comprises a first A conductive layer and a first B conductive layer in a first plane;
wherein said first A conductive layer and said first B conductive layer are electrically isolated from one another in said structure;
wherein said first A conductive layer comprises at least one first A conductive layer first tab and a first A conductive layer main body portion;
wherein said first B conductive comprises at least one first B conductive layer first tab and a first B conductive layer main body portion;
wherein said first A conductive layer main body portion does not extend to any one of said left side, right side, upper side, and lower side;
wherein said first B conductive layer main body portion does not extend to any one of said left side, right side, upper side, and lower side;
wherein said at least one first A conductive layer first tab extends to said left side surface, said upper side surface, and said lower side surface; and
wherein said at least one first B conductive layer first tab extends to at least portions of said right side surface, said upper side surface, and said lower side surface.
In aspects dependent upon the foregoing, the claims define wherein said first A conductive layer main body portion extends to a region closer to said right side surface than said left side surface and closer to said upper side surface than said lower side surface, and wherein said first B conductive layer main body portion extends to a region closer to said left side surface than said right side surface and closer to said lower side surface than said upper side surface; wherein said at least one first A conductive layer first tab comprises a single tab extending across all of said left side, extending to a left side end of said upper side surface, and extending to a left side end of said lower side surface; wherein said at least one first A conductive layer first tab comprises at least two tabs; wherein said conductive material further comprises a first G conductive layer; wherein conductive material further comprises a first G conductive layer between said first A conductive layer and said first B conductive layer; wherein conductive material further comprises a first G conductive layer in a second plane parallel to said first plane, and said G conductive layer has a G conductive layer main body portion having a region opposing at least a portion of said first A conductive layer A main body portion and a portion of said first B conductive layer main body portion;
wherein said conductive material comprises a second A conductive layer in a second plane and a second B conductive layer in said second plane;
wherein said second A conductive layer and said second B conductive layer are electrically isolated from one another in said structure;
wherein said second A conductive layer comprises at least one second A conductive layer first tab and a second A conductive layer main body portion;
wherein said second B conductive layer comprises at least one second B conductive layer first tab and a second B conductive layer main body portion;
wherein said second A conductive layer main body portion does not extend to any one of said left side surface, said right side surface, said upper side surface, and said lower side surface;
wherein said second B conductive layer main body portion does not extend to any one of said left side surface, said right side surface, said upper side surface, and said lower side surface;
wherein said at least one second A conductive layer first tab extends to at least portions of said left side surface, said upper side surface, and said lower side surface;
wherein said at least one second B conductive layer first tab extends to at least portions of said right side surface, said upper side surface, and said lower side surface;
wherein said second A conductive layer main body portion extends to a region closer to said right side surface than said left side surface and closer to said lower side surface than said upper side surface, and wherein said second B conductive layer main body portion extends to a region closer to said left side surface than said right side surface and closer to said upper side surface than said lower side surface;
whereby said first A conductive layer main body portion and said second B conductive layer main body portion have a first region of substantial overlap and said second A conductive layer main body portion and said first B conductive layer main body portion have a second region of substantial overlap; wherein said conductive material further comprises a first G conductive layer, and wherein said first G conductive layer comprises a main body portion having a substantial overlap with both said first region and said second region; wherein said first G conductive layer is in a third plane between said first plane and said second plane; wherein said conductive material further comprises:
a first G conductive layer in said first plane between said first A conductive layer and said first B conductive layer and electrically isolated in said structure from said first A conductive layer and said first B conductive layer; and
a second G conductive layer in said second plane between said second A conductive layer and said second B conductive layer and electrically isolated in said structure from said second A conductive layer and said second B conductive layer; wherein said conductive material further comprises a second G conductive layer, and wherein said second G conductive layer comprises a main body portion having a substantial overlap with both said first region and said second region; and wherein said first G conductive layer is in a third plane between said first plane and said second plane.
In a second aspect the claims define an assembly comprising said internal structure and an external structure of an energy conditioner, wherein said external structure comprises: a first conductive integration region that extends along at least one of said left side surface, said upper side surface, and said lower side surface and contacts there at, at least one of said at least one first A conductive layer first tab; and a second conductive integration region that extends along at least one of said right side surface, said upper side surface, and said lower side surface and contacts thereat at least one of said at least one first B conductive layer first tab.
Dependent upon the second aspect, the claims define wherein said internal structure further comprises a G conductive layer including a G conductive layer main body portion, a G conductive layer first tab, and a G conductive layer second tab, and wherein said external structure further comprises a third conductive integration region that extends along at least one side surface of said internal structure and contacts thereat said G conductive layer first tab; wherein said external structure further comprises a fourth conductive integration region that extends along at least one side surface of said internal structure opposite the one side surface of said internal structure along which said third conductive integration region extends where at said fourth conductive integration region contacts said G conductive layer second tab; wherein at least one of said first conductive integration region, said second conductive integration region, said third conductive integration region, and said fourth conductive integration region are formed from solder; wherein at least one of said first conductive integration region, said second conductive integration region, said third conductive integration region, and said fourth conductive integration region comprise a conductive band; further comprising a mounting structure to which said external structure is mounted, wherein said mounting structure consists of only a first conductive regions, a second conductive region, and a third conductive region; wherein said first conductive region comprises conductive material in a first via, said second conductive region comprises conductive material in a second via, and said third conductive region comprises conductive material in a third via.
In a third aspect the claims define a circuit comprising an internal structure of an energy conditioner having A and B layers in the same plane and tabs extending to at least three side surfaces; a source, and a load, wherein said internal structure is connected in said circuit in a circuit 1 configuration; a circuit comprising an internal structure of an energy conditioner having A and B layers in the same plane and tabs extending to at least three side surfaces, a source, and a load, wherein said internal structure is connected in said circuit in a circuit 2 configuration; a circuit comprising an internal structure of an energy conditioner having A, B, and G master electrode components, a source, and a load, wherein said internal structure is connected in said circuit in a circuit 3 configuration; a circuit comprising an internal structure of an energy conditioner having A, B, and G master electrode components, a first source, a second source, a first load, and a second load, wherein said internal structure is connected in said circuit in a circuit 4 configuration; a circuit comprising an internal structure of an energy conditioner having A, B, and G master electrode components, a first source, a first load, and a second load, wherein said internal structure is connected in said circuit in a circuit 5 configuration; a circuit comprising said internal structure of an energy conditioner having A, B, and G master electrode components, a first source, a first load, and a second load, wherein said internal structure is connected in said circuit in a circuit 6 configuration.
In additional aspects, the invention comprises an assembly having an energy conditioner having an internal structure, a mounting structure; and wherein said internal structure is mounted on said mounting structure; wherein said mounting structure comprises no more than three separate conductive elements; an assembly comprising: an energy conditioner having an internal structure including components of A, B, and G master electrodes, and an external structure comprising conductive regions that conductively connect components of the A master electrode to one another, components of the B master electrode to one another, and components of the G master electrode to one another; a mounting structure; wherein said internal structure is mounted on said mounting structure; wherein said mounting structure consists of only a first conductive region, a second conductive region, and a third conductive region; and wherein said A master electrode contacts said first conductive region, said B master electrode contacts said second conductive region, and said G master electrode contacts said third conductive region.
In additional aspects, the claims define that said G master electrode includes a first G conductive integration region that and a second G conductive integration region spatially separated and not contacting said first G conductive integration region, wherein both said a first G conductive integration region and said second G conductive integration region contact said third conductive region.
In another aspect, the claims define an internal structure of an energy conditioner: wherein said internal structure has a left side surface, a right side surface, an upper side surface, a lower side surface, a top side surface, and a bottom side surface; wherein said internal structure comprises a dielectric material and a conductive material; wherein surfaces of said dielectric material and surfaces of said conductive material define said left side surface, said right side surface, said upper side surface, said lower side surface, said top side surface, and said bottom side surface; wherein said conductive material comprises a stack of at least seven conductive layers in the following order from top to bottom: A1; G1; B1; G1; A1; G1; and B1; wherein each A1 conductive layer has an A1 first tab that extends to said upper side surface near said left side surface and an A2 tab that extends to said lower side surface near said left side surface; wherein each G1 conductive layer has a G1 first tab that extends to said left side surface and a G2 tab that extends to said right side surface near; and wherein each B1 conductive layer has a B1 first tab that extends to said upper side surface near said right side surface and a B2 tab that extends to said lower side surface near said right side surface. In dependent aspects, each tab of the same type has a vertical overlap with all other tabs of the same type, and conductive integration regions conductively connect layers of the same type only to one another; and wherein additional conductive layers exist within the seven layer sequence.
The figures show elements of embodiments of the inventions. The same reference number in different figures refers to identical elements or elements with similar structure or function.
Conventional capacitors are two terminal discrete devices.
In operation, power source 11 distributes electrical power to circuit elements mounted to board 1 via conductive connection of power source 11 to power plane 15. Ground plane 16 conductively connects to ground 12. Vias 17 and 19 conductively connect to power plane 15. Via 18 does not conductively connect to power plane 15 and instead passes through an aperture in power plane 15 to ground plane 16. Power plane 15 is above ground plane 16.
In operation, power feed from source 11 through one or more power planes provides power for active circuitry in the IC mounted in region 8 to operate. Conditioners mounted to the elements of array 7, one conditioner per array element, decouple transients otherwise induced in power due to switching and the like in the active circuitry of the IC.
In alternatives to arrangement 4A, pads may have different sizes, lengths, or widths from one another. For example, pad 402 may be shorter than pads 401, 403.
In another alternative to arrangement 4A, outer pads 401, 403 may have a different shape than central pad 402. For example, outer pads 401, 403 may include convex central regions and/or flared end regions. For example, outer pads 401, 403 may be the same length as one another but shorter or longer than central pad 402.
In another alternative to arrangement 4A, certain vias may have a diameter larger than the width or length of the pad to which they are attached such that the via is not entirely contained within the footprint of a conductive pad. For example, a via diameter may be equal to a width of a conductive pad, 1.5, 2, or 3 times a width of the conductive pad.
In another alternative to arrangement 4A, certain vias may have different cross-sectional diameters from one. For example, cross-section diameters of vias connecting to the central pad 402 may be ⅓, ½, 1, 1.5, 2, or 3 times the cross-sectional diameter of vias connecting to outer pads 401, 403.
In another alternative to arrangement 4A, vias 402V1, 402V2 may be spaced from one another by more than or less than the spacing between vias 401V1, 401V2 and the spacing between 403V1, 403V2.
In another alternative to arrangement 4A, each conductive pad may contain one, two, three, or more vias. For example, each conductive pad 401, 402, 403 may contain a single via. For example, pads 401 and 403 may contain 2 or 3 vias and pad 402 may contain one via. For example, pads 401 and 403 may contain 1 via and pad 402 may contain 2 or 3 vias.
In another alternative to arrangement 4A, the pads may not exist in which case just conductive vias exist in one of the foregoing arrangements. For example, two parallel rows of three vias.
In another alternative to arrangement 4A, some pads may have connected vias and some may not. For example, central pad 402 may contain 1, 2, 3, or more vias and outer pads 401, 403 may contain no vias. For example, central pad 402 may contain no vias and each outer pad 401, 403, may contain 1, 2, 3, or more vias.
In another alternative to arrangement 4A, the cross-sections of vias may not be circular, such as elliptical, elongated, or irregular.
Preferably, vias in each pad are spaced symmetrically on either side of the center of the pad. Preferably, the arrangement of vias is symmetric about the center point of central pad 402.
The inventors contemplate all variations of arrangements of mounting structures (pads and vias combinations, sizes, and shapes) and energy conditioners mounted therein that provide conductive connection between the conductive elements of the mounting structure and A, B, and G master electrodes (defined herein below) internal to the energy conditioner. The A, B, and G master electrodes either have regions forming part of the surface of the energy conditioner or internally physically contact conductive bands (outer electrodes) forming part of the surface of the energy conditioner. Thus, all variations of the conductive band structures and mounting structure that provide suitable connection to the A, B, and G master electrodes are contemplated. In addition, the inventors contemplate all variations of energy conditioners lacking conductive band (outer electrodes) that can be mounted on and soldered (or conductively pasted) to the board thereby conductively connecting the A, B, and G master electrodes to the conductive regions of the mounting structure.
Herein, conductive integration region, means either a conductive band or equivalent solder providing the contact to tabs of layers of a master electrode thereby conductively integrating those conductive layers to one master electrode. Tabs mean those portions of conductive layers of an internal structure of an energy conditioner that extend to the upper, lower, left or right side surfaces of the internal structure. Main body portions of conductive layers of an internal structure means those portions of the conductive layers that do not extend to the upper, lower, left or right side surfaces of the internal structure.
Thus, the inventors contemplate all combinations of the mounting structure configurations for mounting a conditioner to a surface and (1) either conductive band configurations or exposed A, B, and G master electrodes surfaces of energy conditioners that provide suitable connections for the A, B, and G master electrodes.
Some combinations of novel energy conditioner and surface mounting structure provide (1) a first conductive and mechanical contact, such as a solder connection, to at least one and more preferably all conductive bands connected to one side of the A and B master electrodes, (2) a second conductive and mechanical contact, such as a solder contact, to at least one and preferably all conductive bands connected to the opposite side of the A and B master electrodes, and (3) a third conductive contact to at least one and preferably all bands connected to both of the opposite ends of the G master electrode. The foregoing reference to electrical contact includes situations where DC current is blocked, such as where a dielectric cap or layer exists somewhere along a via.
It has been determined by numerical calculations that the values shown in
In
Relation of Internal Structure to External Structure of Energy Conditioners
Meaning of “Plate”, and Interconnector and IC Alternative Embodiments
The term “plate” herein generally is used to simplify explanation by defining a combination of a dielectric under layer with none, one, or more than one distinct conductive over layers. However, the relevant structure is the sequence of conductive layers separated by dielectric material. The hidden surface of the structures referred as plates in the following figures represents a dielectric surface; that is, dielectric material vertically separating the defined conductive layers from one another. In discrete energy conditioner component embodiments, the structure are often formed by layering dielectric precursor material (green material) with conductive layer precursor material (conductive paste or the like), firing that layered structure at temperatures sufficient to convert the dielectric precursor to a desired structurally rigid dielectric material and to convert the conductive precursor layer to a high relatively conductivity (low resistivity) conductive layer. However, embodiments formed in interconnects and semiconductor structures would use different techniques, including conventional lithographic techniques, to fabricate equivalent or corresponding structures to those shown in
Regardless of the mechanism of formation, it is the existence of the master electrodes' morphologies, assembly with external conductive structure, assembly with mounting structure, and integration into circuits 1-6 that are functionally important for decoupling.
Common Features of Internal Structure of Energy Conditioners
A master electrode refers to the conductive layers or regions internal to an energy conditioner and the structure internal to the energy conditioner physically contacting those conductive layers or regions so that they form one integral conductive structure.
Internal structure of energy conditioners includes conductive layers or regions spaces by dielectric material from other conductive layers or regions. The conductive layers or regions each have tab regions that extend to an edge or periphery of the dielectric material. An edge of each tab region of each conductive layer is contacted to external surface conductive structure. The external surface conductive structure may be either conductive bands integral to the discrete energy conditioner or by solder employed also to mount the energy conditioner internal structure to mounting structure. In energy conditioner internal structures having a plurality of conductive layers or regions designed to form a single master electrode, tabs of those conductive layers or regions are vertically aligned in the stack of layers so that a single conductive tab may conductively connect those conductive layers or regions to thereby form a master electrode.
Alternatively, or in addition to conductive bands or solder connecting to externally exposed edges of conductive layers or regions of a master electrode, conductively filled or lined vias may selectively connect to the same conductive layers or regions.
Relationship between Internal Structures of Energy Conditioners and External Structure of Energy Conditioners
Each one of the internal structures of energy conditioners shown in
Relationship between Internal Structures of Energy Conditioners, External Structure of Energy Conditioners, and Circuits 1-6
At least in circuits wherein the A and B master electrode are not tied to the same conductive path of the circuit (circuits 1, 3, 4, and 5; see
At least in circuits wherein the A master electrode is not tied to the same conductive path of the circuit as the G master electrode (circuits 1-6; see
At least in circuits wherein the B master electrode is not tied to the same conductive path of the circuit as the G master electrode (circuits 1, 2 and 6; see
Features Common to Various Internal Structures Shown in
Detailed Description of
In the following figures, plates of a stack shown displaced horizontally or vertically in the page exist in the stack in the sequence as expanded horizontally or vertically in the page. Each stack includes a top and a bottom spaced from one another in a direction perpendicular to the face of the paper of the figures. In addition, each plate of each stack is shown in the figures as having in the plane of the paper a left side LS, right side RS, upper side US, and lower side LLS.
Plate 1300B includes dielectric material on which resides conductive layer G1. Conductive layer G1 has tab G1T1 extending to a central region of the US. Conductive layer G1 has tab G1T2 extending to a central region of the LS. Conductive layer G1 has a main body portion B1M between tabs G1T1 and G1T2.
Plate 1300C includes conductive layer A2 for the A master electrode, conductive layer B2 for the B master electrode. Conductive layers A2 and B2 are separated from one another by exposed dielectric surface D. Conductive layer A2 has a tab A2T extending to the entire LS, and also the far left sides of the US and LLS. Conductive layer B2 has a tab B2T extending to the entire RS, and also to the far right sides of the US and LLS. Conductive layer A2 has a main body portion A2M extending the majority of the distance from the LS to the RS on the lower half of plate 1300A. Conductive layer B2 has a main body portion B2M extending the majority of the distance from the RS to the LS on the upper half of plate 1300A.
The stack of
In one alternative external structure, the third conductive integration structure and the fourth conductive integration structure form a single conductive band around the outer surface of said energy conditioner. The same alternative applies to
Alternatively, for
Alternatively, for
Plates 3300A each have an upper surface that consists of a surface of conductive layer A1 and exposed dielectric surface D. Conductive layer A1 consists of tabs A1T1, A1T2, and main body portion AMB. Conductive layer A1 is part of an A master electrode. Tab A1T1 extends to the US near the LS. Tab A1T2 extends to the LLS near the LS. AMB extends from tabs A1T1 and A1T2 towards the LS.
Plates 3300B each have an upper surface that consists of a surface of conductive layer G1 and exposed dielectric surface D. Conductive layer G1 consists of tabs G1T1, G1T2, and main body portion GMB. Tab G1T1 extends to the middle of the LS. Tab G1T2 extends to the middle of the RS.
Plates 3300C each have an upper surface that consists of a surface of conductive layer B1 and exposed dielectric surface D. Conductive layer B1 consists of tabs B1T1, B1T2, and main body portion BMB. Conductive layer B1 is part of a B master electrode. Tab B1T1 extends to the US near the LS. Tab A1T2 extends to the LLS near the LS. AMB extends from both tabs A1T1 and A1T2 towards the center.
Stack 33A also shows a dielectric plate having no conductive layers thereon at the top of the stack. The dielectric cover represents the condition that the conductive layers not be shorted to external conductive material, as might happen if they were otherwise uncovered.
Alternatives to stack 33A include one or more repetitions of the sequence of plates 3300A, 3300B, 3300C, 3300B, 3300A, 3300B, 3300C, and one or more repetitions of the sequence of plates 3300A, 3300B, 3300C added to the top or the bottom of the sequence of plates 3300A, 3300B, 3300C, 3300B, 3300A, 3300B, 3300C.
Stack 33A may be assembled in a variety of external structures to provide various connections. In one assembly of stack 33A and external structure 31 of
In alternatives assemblies, stack 33A is assembled with either external structure 3A or 3G wherein the tabs of the G conductive layer contact internal surfaces of bands C2 and C4. In these alternatives, band C1 contacts to tabs at opposite ends of contact A conductive layer thereby forming two parallel conductive paths from tab A1T1 to tab A1T2; one directly between the tabs and the other through the connecting structure of band C1. Similarly, two parallel conductive paths are formed from B tabs of the same B layer by band C3.
The foregoing describe embodiments and alternatives within the scope of the novel concepts disclosed herein. The following claims define the scope of protection sought.
This application is a continuation of application Ser. No. 11/817,634, filed Aug. 31, 2007 now U.S. Pat. No. 7,782,587, which is a U.S. National Stage Application of International Application PCT/US06/06607, filed Feb. 27, 2006, which claims the benefit of provisional Application No. 60/656,910, filed Mar. 1, 2005, provisional Application No. 60/661,002, filed Mar. 14, 2005, provisional Application No. 60/668,992, filed Apr. 7, 2005, provisional Application No. 60/671,107, filed Apr. 14, 2005, provisional Application No. 60/671,532, filed Apr. 15, 2005, provisional Application No. 60/674,284, filed Apr. 25, 2005, and provisional Application No. 60/751,273, filed Dec. 19, 2005. The following applications are each incorporated by reference herein: application Ser. No. 11/817,634, filed Aug. 31, 2007, International Application PCT/US06/06607, filed Feb. 27, 2006, provisional Application No. 60/656,910, filed Mar. 1, 2005, provisional Application No. 60/661,002, filed Mar. 14, 2005, provisional Application No. 60/668,992, filed Apr. 7, 2005, provisional Application No. 60/671,107, filed Apr. 14, 2005, provisional Application No. 60/671,532, filed Apr. 15, 2005, provisional Application No. 60/674,284, filed Apr. 25, 2005, and provisional Application No. 60/751,273, filed Dec. 19, 2005.
Number | Name | Date | Kind |
---|---|---|---|
3240621 | Flower, Jr. et al. | Mar 1966 | A |
3343034 | Ovshinsky | Sep 1967 | A |
3379943 | Breedlove | Apr 1968 | A |
3573677 | Detar | Apr 1971 | A |
3736471 | Donze et al. | May 1973 | A |
3742420 | Harnden, Jr. | Jun 1973 | A |
3790858 | Brancaleone et al. | Feb 1974 | A |
3842374 | Schlicke | Oct 1974 | A |
4023071 | Fussell | May 1977 | A |
4119084 | Eckels | Oct 1978 | A |
4135132 | Tafjord | Jan 1979 | A |
4139783 | Engeler | Feb 1979 | A |
4191986 | ta Huang et al. | Mar 1980 | A |
4198613 | Whitley | Apr 1980 | A |
4259604 | Aoki | Mar 1981 | A |
4262317 | Baumbach | Apr 1981 | A |
4275945 | Krantz et al. | Jun 1981 | A |
4292558 | Flick et al. | Sep 1981 | A |
4308509 | Tsuchiya et al. | Dec 1981 | A |
4320364 | Sakamoto et al. | Mar 1982 | A |
4335417 | Sakshaug et al. | Jun 1982 | A |
4353044 | Nossek | Oct 1982 | A |
4366456 | Ueno et al. | Dec 1982 | A |
4384263 | Neuman et al. | May 1983 | A |
4394639 | McGalliard | Jul 1983 | A |
4412146 | Futterer et al. | Oct 1983 | A |
4494092 | Griffin | Jan 1985 | A |
4533931 | Mandai et al. | Aug 1985 | A |
4553114 | English et al. | Nov 1985 | A |
4563659 | Sakamoto | Jan 1986 | A |
4586104 | Standler | Apr 1986 | A |
4587589 | Marek | May 1986 | A |
4590537 | Sakamoto | May 1986 | A |
4592606 | Mudra | Jun 1986 | A |
4612140 | Mandai | Sep 1986 | A |
4612497 | Ulmer | Sep 1986 | A |
4636752 | Saito | Jan 1987 | A |
4682129 | Bakermans et al. | Jul 1987 | A |
4685025 | Carlomagno | Aug 1987 | A |
4688151 | Kraus et al. | Aug 1987 | A |
4694265 | Kupper | Sep 1987 | A |
4698721 | Warren | Oct 1987 | A |
4703386 | Speet et al. | Oct 1987 | A |
4712062 | Takamine | Dec 1987 | A |
4713540 | Gilby et al. | Dec 1987 | A |
4720760 | Starr | Jan 1988 | A |
4746557 | Sakamoto et al. | May 1988 | A |
4752752 | Okubo | Jun 1988 | A |
4760485 | Ari et al. | Jul 1988 | A |
4772225 | Ulery | Sep 1988 | A |
4777460 | Okubo | Oct 1988 | A |
4780598 | Fahey et al. | Oct 1988 | A |
4782311 | Ookubo | Nov 1988 | A |
4789847 | Sakamoto et al. | Dec 1988 | A |
4793058 | Venaleck | Dec 1988 | A |
4794485 | Bennett | Dec 1988 | A |
4794499 | Ott | Dec 1988 | A |
4795658 | Kano et al. | Jan 1989 | A |
4799070 | Nishikawa | Jan 1989 | A |
4801904 | Sakamoto et al. | Jan 1989 | A |
4814295 | Mehta | Mar 1989 | A |
4814938 | Arakawa et al. | Mar 1989 | A |
4814941 | Speet et al. | Mar 1989 | A |
4819126 | Kornrumpf et al. | Apr 1989 | A |
4845606 | Herbert | Jul 1989 | A |
4847730 | Konno et al. | Jul 1989 | A |
4904967 | Morii et al. | Feb 1990 | A |
4908586 | Kling et al. | Mar 1990 | A |
4908590 | Sakamoto et al. | Mar 1990 | A |
4924340 | Sweet | May 1990 | A |
4942353 | Herbert et al. | Jul 1990 | A |
4967315 | Schelhorn | Oct 1990 | A |
4978906 | Herbert et al. | Dec 1990 | A |
4990202 | Murata et al. | Feb 1991 | A |
4999595 | Azumi et al. | Mar 1991 | A |
5029062 | Capel | Jul 1991 | A |
5034709 | Azumi et al. | Jul 1991 | A |
5034710 | Kawaguchi | Jul 1991 | A |
5051712 | Naito et al. | Sep 1991 | A |
5059140 | Philippson et al. | Oct 1991 | A |
5065284 | Hernandez | Nov 1991 | A |
5073523 | Yamada et al. | Dec 1991 | A |
5079069 | Howard et al. | Jan 1992 | A |
5079223 | Maroni | Jan 1992 | A |
5079669 | Williams | Jan 1992 | A |
5089688 | Fang et al. | Feb 1992 | A |
5105333 | Yamano et al. | Apr 1992 | A |
5107394 | Naito et al. | Apr 1992 | A |
5109206 | Carlile | Apr 1992 | A |
5140297 | Jacobs et al. | Aug 1992 | A |
5140497 | Kato et al. | Aug 1992 | A |
5142430 | Anthony | Aug 1992 | A |
5148005 | Fang et al. | Sep 1992 | A |
5155655 | Howard et al. | Oct 1992 | A |
5161086 | Howard et al. | Nov 1992 | A |
5162977 | Paurus et al. | Nov 1992 | A |
5167483 | Gardiner | Dec 1992 | A |
5173670 | Naito et al. | Dec 1992 | A |
5179362 | Okochi et al. | Jan 1993 | A |
5181859 | Foreman et al. | Jan 1993 | A |
5186647 | Denkmann et al. | Feb 1993 | A |
5206786 | Lee | Apr 1993 | A |
5208502 | Yamashita et al. | May 1993 | A |
5219812 | Doi et al. | Jun 1993 | A |
5220480 | Kershaw, Jr. et al. | Jun 1993 | A |
5236376 | Cohen | Aug 1993 | A |
5243308 | Shusterman et al. | Sep 1993 | A |
5251092 | Brady et al. | Oct 1993 | A |
5257950 | Lenker et al. | Nov 1993 | A |
5261153 | Lucas | Nov 1993 | A |
5262611 | Danysh et al. | Nov 1993 | A |
5268810 | DiMarco et al. | Dec 1993 | A |
5290191 | Foreman et al. | Mar 1994 | A |
5299956 | Brownell et al. | Apr 1994 | A |
5300760 | Batliwalla et al. | Apr 1994 | A |
5310363 | Brownell et al. | May 1994 | A |
5311408 | Ferchau et al. | May 1994 | A |
5319525 | Lightfoot | Jun 1994 | A |
5321373 | Shusterman et al. | Jun 1994 | A |
5321573 | Person et al. | Jun 1994 | A |
5326284 | Bohbot et al. | Jul 1994 | A |
5337028 | White | Aug 1994 | A |
5353189 | Tomlinson | Oct 1994 | A |
5353202 | Ansell et al. | Oct 1994 | A |
5357568 | Pelegris | Oct 1994 | A |
5362249 | Carter | Nov 1994 | A |
5362254 | Siemon et al. | Nov 1994 | A |
5378407 | Chandler et al. | Jan 1995 | A |
5382928 | Davis et al. | Jan 1995 | A |
5382938 | Hansson et al. | Jan 1995 | A |
5386335 | Amano et al. | Jan 1995 | A |
5396201 | Ishizaki et al. | Mar 1995 | A |
5401952 | Sugawa | Mar 1995 | A |
5405466 | Naito et al. | Apr 1995 | A |
5414393 | Rose et al. | May 1995 | A |
5414587 | Kiser et al. | May 1995 | A |
5420553 | Sakamoto et al. | May 1995 | A |
5432484 | Klas et al. | Jul 1995 | A |
5446625 | Urbish et al. | Aug 1995 | A |
5450278 | Lee et al. | Sep 1995 | A |
5451919 | Chu et al. | Sep 1995 | A |
RE35064 | Hernandez | Oct 1995 | E |
5455734 | Foreman et al. | Oct 1995 | A |
5461351 | Shusterman | Oct 1995 | A |
5463232 | Yamashita et al. | Oct 1995 | A |
5471035 | Holmes | Nov 1995 | A |
5477933 | Nguyen | Dec 1995 | A |
5481238 | Carsten et al. | Jan 1996 | A |
5483407 | Anastasio et al. | Jan 1996 | A |
5483413 | Babb | Jan 1996 | A |
5488540 | Hatta | Jan 1996 | A |
5491299 | Naylor et al. | Feb 1996 | A |
5493260 | Park | Feb 1996 | A |
5495180 | Huang et al. | Feb 1996 | A |
5500629 | Meyer | Mar 1996 | A |
5500785 | Funada | Mar 1996 | A |
5512196 | Mantese et al. | Apr 1996 | A |
5531003 | Seifried et al. | Jul 1996 | A |
5534837 | Brandt | Jul 1996 | A |
5535101 | Miles et al. | Jul 1996 | A |
5536978 | Cooper et al. | Jul 1996 | A |
5541482 | Siao | Jul 1996 | A |
5544002 | Iwaya et al. | Aug 1996 | A |
5546058 | Azuma et al. | Aug 1996 | A |
5548255 | Spielman | Aug 1996 | A |
5555150 | Newman, Jr. | Sep 1996 | A |
5568348 | Foreman et al. | Oct 1996 | A |
5570278 | Cross | Oct 1996 | A |
5583359 | Ng et al. | Dec 1996 | A |
5586007 | Funada | Dec 1996 | A |
5590016 | Fujishiro | Dec 1996 | A |
5592391 | Muyshondt et al. | Jan 1997 | A |
5612657 | Kledzik | Mar 1997 | A |
5614881 | Duggal et al. | Mar 1997 | A |
5619079 | Wiggins et al. | Apr 1997 | A |
5624592 | Paustian | Apr 1997 | A |
5640048 | Selna | Jun 1997 | A |
5645746 | Walsh | Jul 1997 | A |
5647766 | Nguyen | Jul 1997 | A |
5647767 | Scheer et al. | Jul 1997 | A |
5668511 | Furutani et al. | Sep 1997 | A |
5682303 | Goad | Oct 1997 | A |
5692298 | Goetz et al. | Dec 1997 | A |
5700167 | Pharney et al. | Dec 1997 | A |
5708553 | Hung | Jan 1998 | A |
5719450 | Vora | Feb 1998 | A |
5719477 | Tomihari | Feb 1998 | A |
5719750 | Iwane | Feb 1998 | A |
5741729 | Selna | Apr 1998 | A |
5751539 | Stevenson et al. | May 1998 | A |
5767446 | Ha et al. | Jun 1998 | A |
5789999 | Barnett et al. | Aug 1998 | A |
5790368 | Naito et al. | Aug 1998 | A |
5796568 | Baiatu | Aug 1998 | A |
5796595 | Cross | Aug 1998 | A |
5797770 | Davis et al. | Aug 1998 | A |
5808873 | Celaya et al. | Sep 1998 | A |
5822174 | Yamate et al. | Oct 1998 | A |
5825084 | Lau et al. | Oct 1998 | A |
5825628 | Garbelli et al. | Oct 1998 | A |
5828093 | Naito et al. | Oct 1998 | A |
5828272 | Romerein et al. | Oct 1998 | A |
5828555 | Itoh | Oct 1998 | A |
5831489 | Wire | Nov 1998 | A |
5834992 | Kato et al. | Nov 1998 | A |
5838216 | White et al. | Nov 1998 | A |
5847936 | Forehand et al. | Dec 1998 | A |
5867361 | Wolf et al. | Feb 1999 | A |
5870272 | Seifried et al. | Feb 1999 | A |
5875099 | Maesaka et al. | Feb 1999 | A |
5880925 | DuPre et al. | Mar 1999 | A |
5889445 | Ritter et al. | Mar 1999 | A |
5895990 | Lau | Apr 1999 | A |
5898403 | Saitoh et al. | Apr 1999 | A |
5898562 | Cain et al. | Apr 1999 | A |
5905627 | Brendel et al. | May 1999 | A |
5907265 | Sakuragawa et al. | May 1999 | A |
5908151 | Elias | Jun 1999 | A |
5909155 | Anderson et al. | Jun 1999 | A |
5909350 | Anthony | Jun 1999 | A |
5910755 | Mishiro et al. | Jun 1999 | A |
5912809 | Steigerwald et al. | Jun 1999 | A |
5917388 | Tronche et al. | Jun 1999 | A |
5926377 | Nakao et al. | Jul 1999 | A |
5928076 | Clements et al. | Jul 1999 | A |
5955930 | Anderson et al. | Sep 1999 | A |
5959829 | Stevenson et al. | Sep 1999 | A |
5959846 | Noguchi et al. | Sep 1999 | A |
5969461 | Anderson et al. | Oct 1999 | A |
5977845 | Kitahara | Nov 1999 | A |
5978231 | Tohya et al. | Nov 1999 | A |
5980718 | Van Konynenburg et al. | Nov 1999 | A |
5995352 | Gumley | Nov 1999 | A |
5999067 | D'Ostilio | Dec 1999 | A |
5999398 | Makl et al. | Dec 1999 | A |
6004752 | Loewy et al. | Dec 1999 | A |
6013957 | Puzo et al. | Jan 2000 | A |
6016095 | Herbert | Jan 2000 | A |
6018448 | Anthony | Jan 2000 | A |
6021564 | Hanson | Feb 2000 | A |
6023406 | Kinoshita et al. | Feb 2000 | A |
6031710 | Wolf et al. | Feb 2000 | A |
6034576 | Kuth | Mar 2000 | A |
6034864 | Naito et al. | Mar 2000 | A |
6037846 | Oberhammer | Mar 2000 | A |
6038121 | Naito et al. | Mar 2000 | A |
6042685 | Shinada et al. | Mar 2000 | A |
6046898 | Seymour et al. | Apr 2000 | A |
6052038 | Savicki | Apr 2000 | A |
6061227 | Nogi | May 2000 | A |
6064286 | Ziegner et al. | May 2000 | A |
6072687 | Naito et al. | Jun 2000 | A |
6075211 | Tohya et al. | Jun 2000 | A |
6078117 | Perrin et al. | Jun 2000 | A |
6078229 | Funada et al. | Jun 2000 | A |
6084779 | Fang | Jul 2000 | A |
6088235 | Chiao et al. | Jul 2000 | A |
6091310 | Utsumi et al. | Jul 2000 | A |
6092269 | Yializis et al. | Jul 2000 | A |
6094112 | Goldberger et al. | Jul 2000 | A |
6094339 | Evans | Jul 2000 | A |
6097260 | Whybrew et al. | Aug 2000 | A |
6097581 | Anthony | Aug 2000 | A |
6104258 | Novak | Aug 2000 | A |
6104599 | Ahiko et al. | Aug 2000 | A |
6108448 | Song et al. | Aug 2000 | A |
6111479 | Myohga et al. | Aug 2000 | A |
6120326 | Brooks | Sep 2000 | A |
6121761 | Herbert | Sep 2000 | A |
6125044 | Cherniski et al. | Sep 2000 | A |
6130585 | Whybrew et al. | Oct 2000 | A |
6137392 | Herbert | Oct 2000 | A |
6142831 | Ashman et al. | Nov 2000 | A |
6144547 | Retseptor | Nov 2000 | A |
6147587 | Hadano et al. | Nov 2000 | A |
6150895 | Steigerwald et al. | Nov 2000 | A |
6157528 | Anthony | Dec 2000 | A |
6157547 | Brown et al. | Dec 2000 | A |
6160705 | Stearns et al. | Dec 2000 | A |
6163454 | Strickler | Dec 2000 | A |
6163456 | Suzuki et al. | Dec 2000 | A |
6165814 | Wark et al. | Dec 2000 | A |
6175287 | Lampen et al. | Jan 2001 | B1 |
6180588 | Walters | Jan 2001 | B1 |
6181004 | Koontz et al. | Jan 2001 | B1 |
6181231 | Bartilson | Jan 2001 | B1 |
6183685 | Cowman et al. | Feb 2001 | B1 |
6185091 | Tanahashi et al. | Feb 2001 | B1 |
6188565 | Naito et al. | Feb 2001 | B1 |
6191472 | Mazumder | Feb 2001 | B1 |
6191475 | Skinner et al. | Feb 2001 | B1 |
6191669 | Shigemura | Feb 2001 | B1 |
6191932 | Kuroda et al. | Feb 2001 | B1 |
6195269 | Hino | Feb 2001 | B1 |
6198123 | Linder et al. | Mar 2001 | B1 |
6198362 | Harada et al. | Mar 2001 | B1 |
6204448 | Garland et al. | Mar 2001 | B1 |
6205014 | Inomata et al. | Mar 2001 | B1 |
6207081 | Sasaki et al. | Mar 2001 | B1 |
6208063 | Horikawa | Mar 2001 | B1 |
6208225 | Miller | Mar 2001 | B1 |
6208226 | Chen et al. | Mar 2001 | B1 |
6208494 | Nakura et al. | Mar 2001 | B1 |
6208495 | Wieloch et al. | Mar 2001 | B1 |
6208501 | Ingalls et al. | Mar 2001 | B1 |
6208502 | Hudis et al. | Mar 2001 | B1 |
6208503 | Shimada et al. | Mar 2001 | B1 |
6208521 | Nakatsuka | Mar 2001 | B1 |
6208525 | Imasu et al. | Mar 2001 | B1 |
6211754 | Nishida et al. | Apr 2001 | B1 |
6212078 | Hunt et al. | Apr 2001 | B1 |
6215373 | Novak et al. | Apr 2001 | B1 |
6215647 | Naito et al. | Apr 2001 | B1 |
6215649 | Appelt et al. | Apr 2001 | B1 |
6218631 | Hetzel et al. | Apr 2001 | B1 |
6219240 | Sasov | Apr 2001 | B1 |
6222427 | Kato et al. | Apr 2001 | B1 |
6222431 | Ishizaki et al. | Apr 2001 | B1 |
6225876 | Akino et al. | May 2001 | B1 |
6226169 | Naito et al. | May 2001 | B1 |
6226182 | Maehara | May 2001 | B1 |
6229226 | Kramer et al. | May 2001 | B1 |
6236572 | Teshome et al. | May 2001 | B1 |
6240621 | Nellissen et al. | Jun 2001 | B1 |
6243253 | DuPre et al. | Jun 2001 | B1 |
6249047 | Corisis | Jun 2001 | B1 |
6249439 | DeMore et al. | Jun 2001 | B1 |
6252161 | Hailey et al. | Jun 2001 | B1 |
6262895 | Forthun | Jul 2001 | B1 |
6266228 | Naito et al. | Jul 2001 | B1 |
6266229 | Naito et al. | Jul 2001 | B1 |
6272003 | Schaper | Aug 2001 | B1 |
6281704 | Ngai et al. | Aug 2001 | B2 |
6282074 | Anthony | Aug 2001 | B1 |
6282079 | Nagakari et al. | Aug 2001 | B1 |
6285109 | Katagiri et al. | Sep 2001 | B1 |
6285542 | Kennedy, III et al. | Sep 2001 | B1 |
6288906 | Sprietsma et al. | Sep 2001 | B1 |
6292350 | Naito et al. | Sep 2001 | B1 |
6292351 | Ahiko et al. | Sep 2001 | B1 |
6309245 | Sweeney | Oct 2001 | B1 |
6310286 | Troxel et al. | Oct 2001 | B1 |
6313584 | Johnson et al. | Nov 2001 | B1 |
6320547 | Fathy et al. | Nov 2001 | B1 |
6324047 | Hayworth | Nov 2001 | B1 |
6324048 | Liu | Nov 2001 | B1 |
6325672 | Belopolsky et al. | Dec 2001 | B1 |
6327134 | Kuroda et al. | Dec 2001 | B1 |
6327137 | Yamamoto et al. | Dec 2001 | B1 |
6331926 | Anthony | Dec 2001 | B1 |
6331930 | Kuroda | Dec 2001 | B1 |
6342681 | Goldberger et al. | Jan 2002 | B1 |
6346743 | Figueroa et al. | Feb 2002 | B1 |
6352914 | Ball et al. | Mar 2002 | B2 |
6353540 | Akiba et al. | Mar 2002 | B1 |
6373673 | Anthony | Apr 2002 | B1 |
6388207 | Figueroa et al. | May 2002 | B1 |
6388856 | Anthony | May 2002 | B1 |
6395996 | Tsai et al. | May 2002 | B1 |
6448873 | Mostov | Sep 2002 | B1 |
6456481 | Stevenson | Sep 2002 | B1 |
6469595 | Anthony et al. | Oct 2002 | B2 |
6498710 | Anthony | Dec 2002 | B1 |
6504451 | Yamaguchi | Jan 2003 | B1 |
6509640 | Li et al. | Jan 2003 | B1 |
6509807 | Anthony et al. | Jan 2003 | B1 |
6510038 | Satou et al. | Jan 2003 | B1 |
6522516 | Anthony | Feb 2003 | B2 |
6549389 | Anthony et al. | Apr 2003 | B2 |
6559484 | Li et al. | May 2003 | B1 |
6563688 | Anthony et al. | May 2003 | B2 |
6580595 | Anthony et al. | Jun 2003 | B2 |
6594128 | Anthony | Jul 2003 | B2 |
6603372 | Ishizaki et al. | Aug 2003 | B1 |
6603646 | Anthony et al. | Aug 2003 | B2 |
6606011 | Anthony et al. | Aug 2003 | B2 |
6606237 | Naito et al. | Aug 2003 | B1 |
6608538 | Wang | Aug 2003 | B2 |
6618268 | Dibene, II et al. | Sep 2003 | B2 |
6636406 | Anthony | Oct 2003 | B1 |
6650525 | Anthony | Nov 2003 | B2 |
6687108 | Anthony et al. | Feb 2004 | B1 |
6696952 | Zirbes | Feb 2004 | B2 |
6717301 | De Daran et al. | Apr 2004 | B2 |
6738249 | Anthony et al. | May 2004 | B1 |
6768630 | Togashi | Jul 2004 | B2 |
6806806 | Anthony | Oct 2004 | B2 |
6873513 | Anthony | Mar 2005 | B2 |
6894884 | Anthony, Jr. et al. | May 2005 | B2 |
6950293 | Anthony | Sep 2005 | B2 |
6954346 | Anthony | Oct 2005 | B2 |
6995983 | Anthony et al. | Feb 2006 | B1 |
7042303 | Anthony et al. | May 2006 | B2 |
7042703 | Anthony et al. | May 2006 | B2 |
7050284 | Anthony | May 2006 | B2 |
7106570 | Anthony, Jr. et al. | Sep 2006 | B2 |
7110227 | Anthony et al. | Sep 2006 | B2 |
7110235 | Anthony, Jr. et al. | Sep 2006 | B2 |
7113383 | Anthony et al. | Sep 2006 | B2 |
7141899 | Anthony et al. | Nov 2006 | B2 |
7180718 | Anthony et al. | Feb 2007 | B2 |
7193831 | Anthony | Mar 2007 | B2 |
7224564 | Anthony | May 2007 | B2 |
7262949 | Anthony | Aug 2007 | B2 |
7274549 | Anthony | Sep 2007 | B2 |
7301748 | Anthony et al. | Nov 2007 | B2 |
7321485 | Anthony et al. | Jan 2008 | B2 |
7336467 | Anthony et al. | Feb 2008 | B2 |
7336468 | Anthony et al. | Feb 2008 | B2 |
7423860 | Anthony et al. | Sep 2008 | B2 |
7428134 | Anthony | Sep 2008 | B2 |
7440252 | Anthony | Oct 2008 | B2 |
7443647 | Anthony | Oct 2008 | B2 |
7586728 | Anthony | Sep 2009 | B2 |
7593208 | Anthony et al. | Sep 2009 | B2 |
7609500 | Anthony et al. | Oct 2009 | B2 |
7609501 | Anthony et al. | Oct 2009 | B2 |
7630188 | Anthony | Dec 2009 | B2 |
7675729 | Anthony et al. | Mar 2010 | B2 |
7688565 | Anthony et al. | Mar 2010 | B2 |
7733621 | Anthony et al. | Jun 2010 | B2 |
7768763 | Anthony et al. | Aug 2010 | B2 |
7782587 | Anthony et al. | Aug 2010 | B2 |
7817397 | Anthony | Oct 2010 | B2 |
20010001989 | Smith | May 2001 | A1 |
20010002105 | Brandelik et al. | May 2001 | A1 |
20010002624 | Khandros et al. | Jun 2001 | A1 |
20010008288 | Kimura et al. | Jul 2001 | A1 |
20010008302 | Murakami et al. | Jul 2001 | A1 |
20010008478 | McIntosh et al. | Jul 2001 | A1 |
20010008509 | Watanabe | Jul 2001 | A1 |
20010009496 | Kappel et al. | Jul 2001 | A1 |
20010010444 | Pahl et al. | Aug 2001 | A1 |
20010011763 | Ushijima et al. | Aug 2001 | A1 |
20010011934 | Yamamoto | Aug 2001 | A1 |
20010011937 | Satoh et al. | Aug 2001 | A1 |
20010013626 | Fujii | Aug 2001 | A1 |
20010015643 | Goldfine et al. | Aug 2001 | A1 |
20010015683 | Mikami et al. | Aug 2001 | A1 |
20010017576 | Kondo et al. | Aug 2001 | A1 |
20010017579 | Kurata | Aug 2001 | A1 |
20010019869 | Hsu | Sep 2001 | A1 |
20010020879 | Takahashi et al. | Sep 2001 | A1 |
20010021097 | Ohya et al. | Sep 2001 | A1 |
20010022547 | Murata et al. | Sep 2001 | A1 |
20010023983 | Kobayashi et al. | Sep 2001 | A1 |
20010024148 | Gerstenberg et al. | Sep 2001 | A1 |
20010028581 | Yanagisawa et al. | Oct 2001 | A1 |
20010029648 | Ikada et al. | Oct 2001 | A1 |
20010031191 | Korenaga | Oct 2001 | A1 |
20010033664 | Poux et al. | Oct 2001 | A1 |
20010035801 | Gilbert | Nov 2001 | A1 |
20010035802 | Kadota | Nov 2001 | A1 |
20010035805 | Suzuki et al. | Nov 2001 | A1 |
20010037680 | Buck et al. | Nov 2001 | A1 |
20010039834 | Hsu | Nov 2001 | A1 |
20010040484 | Kim | Nov 2001 | A1 |
20010040487 | Ikata et al. | Nov 2001 | A1 |
20010040488 | Gould et al. | Nov 2001 | A1 |
20010041305 | Sawada et al. | Nov 2001 | A1 |
20010043100 | Tomita et al. | Nov 2001 | A1 |
20010043129 | Hidaka et al. | Nov 2001 | A1 |
20010043450 | Seale et al. | Nov 2001 | A1 |
20010043453 | Narwankar et al. | Nov 2001 | A1 |
20010045810 | Poon et al. | Nov 2001 | A1 |
20010048581 | Anthony et al. | Dec 2001 | A1 |
20010048593 | Yamauchi et al. | Dec 2001 | A1 |
20010048906 | Lau et al. | Dec 2001 | A1 |
20010050550 | Yoshida et al. | Dec 2001 | A1 |
20010050600 | Anthony et al. | Dec 2001 | A1 |
20010050837 | Stevenson et al. | Dec 2001 | A1 |
20010052833 | Enokihara et al. | Dec 2001 | A1 |
20010054512 | Belau et al. | Dec 2001 | A1 |
20010054734 | Koh et al. | Dec 2001 | A1 |
20010054756 | Horiuchi et al. | Dec 2001 | A1 |
20010054936 | Okada et al. | Dec 2001 | A1 |
20020000521 | Brown | Jan 2002 | A1 |
20020000583 | Kitsukawa et al. | Jan 2002 | A1 |
20020000821 | Haga et al. | Jan 2002 | A1 |
20020000893 | Hidaka et al. | Jan 2002 | A1 |
20020000895 | Takahashi et al. | Jan 2002 | A1 |
20020003454 | Sweeney et al. | Jan 2002 | A1 |
20020005880 | Ashe et al. | Jan 2002 | A1 |
20020024787 | Anthony | Feb 2002 | A1 |
20020027263 | Anthony et al. | Mar 2002 | A1 |
20020027760 | Anthony | Mar 2002 | A1 |
20020044401 | Anthony et al. | Apr 2002 | A1 |
20020075096 | Anthony | Jun 2002 | A1 |
20020079116 | Anthony | Jun 2002 | A1 |
20020089812 | Anthony et al. | Jul 2002 | A1 |
20020113663 | Anthony et al. | Aug 2002 | A1 |
20020122286 | Anthony | Sep 2002 | A1 |
20020131231 | Anthony | Sep 2002 | A1 |
20020149900 | Anthony | Oct 2002 | A1 |
20020158515 | Anthony, Jr. et al. | Oct 2002 | A1 |
20020186100 | Anthony et al. | Dec 2002 | A1 |
20030029632 | Anthony, Jr. et al. | Feb 2003 | A1 |
20030029635 | Anthony, Jr. et al. | Feb 2003 | A1 |
20030048029 | DeDaran et al. | Mar 2003 | A1 |
20030067730 | Anthony et al. | Apr 2003 | A1 |
20030161086 | Anthony | Aug 2003 | A1 |
20030202312 | Anthony et al. | Oct 2003 | A1 |
20030206388 | Anthony et al. | Nov 2003 | A9 |
20030210125 | Anthony | Nov 2003 | A1 |
20030231451 | Anthony | Dec 2003 | A1 |
20030231456 | Anthony et al. | Dec 2003 | A1 |
20040004802 | Anthony et al. | Jan 2004 | A1 |
20040008466 | Anthony et al. | Jan 2004 | A1 |
20040027771 | Anthony | Feb 2004 | A1 |
20040032304 | Anthony et al. | Feb 2004 | A1 |
20040054426 | Anthony | Mar 2004 | A1 |
20040085699 | Anthony | May 2004 | A1 |
20040105205 | Anthony et al. | Jun 2004 | A1 |
20040124949 | Anthony et al. | Jul 2004 | A1 |
20040130840 | Anthony | Jul 2004 | A1 |
20040218332 | Anthony et al. | Nov 2004 | A1 |
20040226733 | Anthony et al. | Nov 2004 | A1 |
20050016761 | Anthony, Jr. et al. | Jan 2005 | A9 |
20050018374 | Anthony | Jan 2005 | A1 |
20050063127 | Anthony | Mar 2005 | A1 |
20050248900 | Anthony | Nov 2005 | A1 |
20050286198 | Anthony et al. | Dec 2005 | A1 |
20060023385 | Anthony et al. | Feb 2006 | A9 |
20060139836 | Anthony | Jun 2006 | A1 |
20060139837 | Anthony et al. | Jun 2006 | A1 |
20060193051 | Anthony et al. | Aug 2006 | A1 |
20060203414 | Anthony | Sep 2006 | A1 |
20070019352 | Anthony | Jan 2007 | A1 |
20070047177 | Anthony | Mar 2007 | A1 |
20070057359 | Anthony et al. | Mar 2007 | A1 |
20070103839 | Anthony et al. | May 2007 | A1 |
20070109709 | Anthony et al. | May 2007 | A1 |
20080160681 | Anthony et al. | Jul 2008 | A1 |
20090321127 | Anthony et al. | Dec 2009 | A1 |
20100078199 | Anthony et al. | Apr 2010 | A1 |
20100180438 | Anthony et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
197 28 692 | Jan 1999 | DE |
198 57 043 | Mar 2000 | DE |
0623363 | Nov 1994 | EP |
98915364 | Nov 1994 | EP |
0776016 | May 1997 | EP |
0933871 | Aug 1999 | EP |
1022751 | Jul 2000 | EP |
1024507 | Aug 2000 | EP |
1061535 | Dec 2000 | EP |
1128434 | Aug 2001 | EP |
1873872 | Dec 2008 | EP |
2496970 | Jun 1982 | FR |
2606207 | May 1988 | FR |
2765417 | Dec 1998 | FR |
2808135 | Oct 2001 | FR |
2217136 | Apr 1988 | GB |
2341980 | Mar 2000 | GB |
57-172130 | Oct 1982 | JP |
63-269509 | Nov 1988 | JP |
1-27251 | Jan 1989 | JP |
02-267879 | Nov 1990 | JP |
03-018112 | Jan 1991 | JP |
5-283284 | Oct 1993 | JP |
05-299292 | Nov 1993 | JP |
06-053048 | Feb 1994 | JP |
06-053049 | Feb 1994 | JP |
06-053075 | Feb 1994 | JP |
06-053077 | Feb 1994 | JP |
06-053078 | Feb 1994 | JP |
06-084695 | Mar 1994 | JP |
06-151014 | May 1994 | JP |
06-151244 | May 1994 | JP |
06-151245 | May 1994 | JP |
6-302471 | Oct 1994 | JP |
06-325977 | Nov 1994 | JP |
07-022757 | Jan 1995 | JP |
07 161568 | Jun 1995 | JP |
07-235406 | Sep 1995 | JP |
07-235852 | Sep 1995 | JP |
07-240651 | Sep 1995 | JP |
08-124795 | May 1996 | JP |
08-163122 | Jun 1996 | JP |
08-172025 | Jul 1996 | JP |
8172025 | Jul 1996 | JP |
9-266130 | Oct 1997 | JP |
09-284077 | Oct 1997 | JP |
09-284078 | Oct 1997 | JP |
9-294041 | Nov 1997 | JP |
10-12490 | Jan 1998 | JP |
11-97291 | Apr 1999 | JP |
11-21456 | Aug 1999 | JP |
11-214256 | Aug 1999 | JP |
11-223396 | Aug 1999 | JP |
11-219824 | Oct 1999 | JP |
11-294908 | Oct 1999 | JP |
11-305302 | Nov 1999 | JP |
11-319222 | Nov 1999 | JP |
11-345273 | Dec 1999 | JP |
2000-188218 | Apr 2000 | JP |
2000-243646 | Aug 2000 | JP |
2000-286665 | Oct 2000 | JP |
WO 9115046 | Oct 1991 | WO |
WO 9720332 | Jun 1997 | WO |
WO 9743786 | Nov 1997 | WO |
WO 9845921 | Oct 1998 | WO |
WO 9904457 | Jan 1999 | WO |
WO 9919982 | Apr 1999 | WO |
WO 9937008 | Jul 1999 | WO |
WO 9952210 | Oct 1999 | WO |
WO 0016446 | Mar 2000 | WO |
WO 0065740 | Nov 2000 | WO |
WO 0074197 | Dec 2000 | WO |
WO 0077907 | Dec 2000 | WO |
WO 0106631 | Jan 2001 | WO |
WO 0110000 | Feb 2001 | WO |
WO 0141232 | Jun 2001 | WO |
WO 0141233 | Jun 2001 | WO |
WO 0145119 | Jun 2001 | WO |
WO 0171908 | Sep 2001 | WO |
WO 0175916 | Oct 2001 | WO |
WO 0184581 | Nov 2001 | WO |
WO 0186774 | Nov 2001 | WO |
WO 0259401 | Jan 2002 | WO |
WO 0211160 | Feb 2002 | WO |
WO 0215360 | Feb 2002 | WO |
WO 0227794 | Apr 2002 | WO |
WO 0233798 | Apr 2002 | WO |
WO 0245233 | Jun 2002 | WO |
WO 0265606 | Aug 2002 | WO |
WO 02080330 | Oct 2002 | WO |
WO 03005541 | Jan 2003 | WO |
WO 2004070905 | Aug 2004 | WO |
WO 2005002018 | Jan 2005 | WO |
WO 2005015719 | Feb 2005 | WO |
WO 2005065097 | Jul 2005 | WO |
WO 2006093830 | Sep 2006 | WO |
WO 2006093831 | Sep 2006 | WO |
WO 2006099297 | Sep 2006 | WO |
WO 2006104613 | Oct 2006 | WO |
WO 2007103965 | Sep 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100319978 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
60656910 | Mar 2005 | US | |
60661002 | Mar 2005 | US | |
60668992 | Apr 2005 | US | |
60671107 | Apr 2005 | US | |
60671532 | Apr 2005 | US | |
60674284 | Apr 2005 | US | |
60751273 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11817634 | US | |
Child | 12861811 | US |