1. Field of the Invention
The present invention relates generally to charged-particle beam apparatus.
2. Description of the Background Art
Charged-particle beam apparatus utilize particles such as electrons, protons or ions. Such apparatus include, for example, scanning electron microscopes (SEMs), electron beam inspection/review tools, electron beam metrology tools, and various other apparatus.
One embodiment relates to a charged-particle beam apparatus. The apparatus includes at least a source for generating the charged-particle beam, a first deflector, and a second deflector. The first deflector is configured to scan the charged-particle beam in a first dimension. The second deflector is configured to deflect the scanned beam such that the scanned beam impinges telecentrically (perpendicularly) upon a surface of a target substrate.
Another embodiment relates to a method of electron beam inspection. A primary electron beam is generated and scanned in a first dimension. The scanned beam is deflected such that it impinges telecentrically upon a surface of a target substrate.
Another embodiment relates to a method of electron beam lithography. A primary electron beam is generated and scanned in a first dimension. The scanned beam is controllably blocked so as to generate a programmed pattern. The scanned beam is also deflected such that it impinges telecentrically upon a surface of a target substrate.
Other embodiments are also disclosed.
For some applications, it is desirable to scan a charged-particle beam over a large distance in at least one dimension. This may be done with a relatively large working distance (similar to the scan size) between deflectors and target, as in a typical cathode ray tube (CRT). An example of such a configuration is shown in
A primary or incident electron beam 101 is generated using an electron gun (or other type of electron source) 102 and gun lenses 104. Other column components 106 may include, for example, blanker, aperture, DC align, and DC and dynamic stigmator components. A main lens 108 may then focus the beam 101, and the beam 101 may be deflected across a large angular range using a scan deflector 110. The scan deflector 110 may be implemented as an electrostatic deflector in one embodiment, or may be implemented as a magnetic deflector in another embodiment.
In the configuration shown in
However, the apparatus 100 of
Furthermore, the scattered electrons (secondary electrons and/or backscattered electrons) in such a system tend to spread over a large area. This makes the scattered electron detection system (not shown) complex and large. The complex and large detection system may typically limit the detection speed and the possibilities for energy or spatial resolution.
Therefore, it is highly desirable to improve the scanning of charged-particle beams over large fields. In particular, it is highly desirable to overcome the above discussed drawbacks and limitations.
The present application discloses techniques to substantially improve large-field scanning of charged particles. Depending on the particular application, one or more of these techniques may be combined together.
A primary or incident electron beam 201 is generated using an electron gun (or other type of electron source) 202 and gun lenses 204. Other column components 206 may include, for example, blanker, aperture, DC align, and DC and dynamic stigmator components. A main lens 208 may then focus the beam 201, and the beam 201 may be deflected across a large angular range using a scan deflector 210. The scan deflector 210 may be implemented as an electrostatic deflector in one embodiment, or may be implemented as a magnetic deflector in another embodiment.
In the configuration shown in
In this apparatus 200, the scanned beam 201 passes through a slot along the x-direction in a collector plate of the secondary electron detector 212. The detector 212 is thus configured to allow the beam 201 to be scanned along one-dimension while also functioning to collect secondary electrons emitted from the substrate 218.
The beam 201 is then deflected for a second time by a linear deflector. Here, the linear deflector comprises a magnetic scanner 214. The magnetic scanner 214 is configured so as not to deflect the undeflected beam 201-a traveling along the optic axis of the column. The greater the angle of the deflected beam 201-b, the greater the second deflection by the magnetic scanner 214 so as to re-orient the beam perpendicularly with respect to the surface of the substrate 218.
In one embodiment, the magnetic scanner 214 may be comprised of two long coils, with or without pole pieces. The magnetic field from the magnetic scanner 214 is oriented in the short direction (i.e. across the slot). If pole pieces are used, they are preferably laminated rather than solid to avoid eddy currents.
Electric field strength at the surface of the substrate 218 may be controlled by a Wehnelt electrode 216. The Wehnelt electrode 216 comprises a long slotted charge-control electrode which is a short distance above the surface of the substrate 218. The Wehnelt electrode 216 provides for control over the electric fields at the substrate surface while allowing a large scan in one dimension. The Wehnelt electrode 216 also provides for the option of one-dimensional focusing of the secondary electrons emitted from the substrate 218.
In accordance with an alternate embodiment, the apparatus may be configured without the detector 212, such that the scattered electrons may instead be collected at a combined Wehnelt electrode/detector assembly at 216. In another alternate embodiment, such a detector may be omitted altogether, and the substrate current may instead be used to provide a signal for forming an image of the substrate.
A primary or incident electron beam 301 is generated using an electron gun (or other type of electron source) 302 and gun lenses 304. Other column components 306 may include, for example, blanker, aperture, DC align, and DC stigmator components. A main lens 308 may then focus the beam 301, and the beam 301 may be deflected across a large angular range using a scan deflector 310. The scan deflector 310 may be implemented as an electrostatic deflector in one embodiment, or may be implemented as a magnetic deflector in another embodiment.
In the configuration shown in
In this apparatus 300, the scanned beam 301 is deflected for a second time by a linear deflector 312. Here, the linear deflector 312 comprises a magnetic scanner or an electric comb deflector. The linear deflector 312 is configured or operated so as not to deflect the undeflected beam 301-a traveling along the optic axis of the column. The greater the angle of the deflected beam 301-b, the greater the second deflection by the linear deflector 312 so as to re-orient the beam perpendicularly with respect to the surface of the substrate 318.
In one embodiment, the linear deflector 312 may be implemented as a magnetic scanner comprised of two long coils, with or without pole pieces. The magnetic field from the magnetic scanner is oriented in the short direction (i.e. along the y-direction). If pole pieces are used, they are preferably laminated rather than solid to avoid eddy currents. In another embodiment, the linear deflector 312 may be implemented as an electric comb deflector. Such an electric comb deflector is described further below in relation to
After the second deflection, the beam 301 may pass through an electric secondary electron (SE) separator 314. The SE separator 314 is configured to separate secondary electrons 319 emitted from the surface, such that the secondary electrons 319 are directed away from the primary beam 301 and towards the secondary electron detection system. The SE separator 314 separates the secondary electrons 319 from the primary beam 301 before the secondary electrons 319 reach the linear deflector 312. Such separation is particularly advantageous if the linear deflector 312 comprises a magnetic scanner because otherwise the secondary electrons 319 may be deflected in a wrong direction by the magnetic scanner. An implementation of the SE separator 314 is discussed further below in relation to
Electric field strength at the surface of the substrate 318 may be controlled by a Wehnelt electrode 316. The Wehnelt electrode 316 may comprise a long slotted charge-control electrode which is a short distance above the surface of the substrate 318. The Wehnelt electrode 316 provides for control over the electric fields at the substrate surface while allowing a large scan in one dimension. A positive potential may be applied to the Wehnelt electrode 316 with respect to the substrate 318 so as to accelerate the secondary electrons 319 away from the substrate. The Wehnelt electrode 316 may also provide one-dimensional focusing (in the y-dimension) of the secondary electrons 319 emitted from the substrate 318.
Furthermore, an additional electrode or electrodes (not depicted) may be positioned further from the substrate 318 than the Wehnelt electrode 316. The additional electrode(s) may have a positive potential with respect to the substrate and may be used for better control of fields at the substrate surface than the use of the Wehnelt electrode 316 alone. For example, a “saddle field” may be formed, giving no electric field at the substrate surface directly under the slot, but with an approximately linearly increasing field strength as distance increases from the substrate surface.
The secondary electron detection system may include, for example, a de-scanner 320 and a detector 322. The de-scanner 320 may be configured to deflect the secondary electrons along the x-direction in such a way that the secondary electrons converge upon the position of the detector 322. Alternatively, the secondary electron detection system may comprise an array detector which includes a series of detector elements along the x-direction so as to detect the secondary electrons without necessarily needing the de-scanner 320.
The first pair of electrode 402-a is shown with a negatively-charged (relatively negative potential) left electrode and a positively-charged (relatively positive potential) right electrode. The second pair of electrode 402-b is shown with a positively-charged (relatively positive potential) left electrode and a negatively-charged (relatively negative potential) right electrode. The third pair of electrode 402-c is shown with a negatively-charged (relatively negative potential) left electrode and a positively-charged (relatively positive potential) right electrode.
Preferably, the potentials on the electrodes are adjusted so that the primary electron beam 301 (which is of higher energy) is only slightly deflected and impacts perpendicularly upon the surface of the substrate 318. However, because the secondary electrons 319 are emitted in the reverse direction at much lower energies, the secondary electrons 319 are substantially deflected by the separator 314 such that their trajectories are bent away from the optic axis and towards the detection system. In the particular implementation illustrated in
A primary or incident electron beam 601 is generated using an electron gun (or other type of electron source) 602 and gun lenses 604. Other column components 606 may include, for example, blanker, aperture, DC align, and DC and dynamic stigmator components. A main lens 608 may then focus the beam 601, and the beam 601 may be deflected across a large angular range using a scan deflector 610. The scan deflector 610 may be implemented as an electrostatic deflector in one embodiment, or may be implemented as a magnetic deflector in another embodiment.
In the configuration shown in
The scanned beam 601 is then deflected for a second time by an elongated Wien filter 614. The elongated Wien filter 614 comprises an electric “comb” deflector, where the electric field is along the slot direction (i.e. along the x-direction), combined with a static magnetic deflector, where the magnetic field is across the slot direction (i.e. along the y-direction). The electric comb deflector is configured or operated so as not to deflect the undeflected beam 601-a traveling along the optic axis of the column. The greater the angle of the deflected beam 601-b, the greater the second deflection by the electric comb deflector so as to re-orient the beam perpendicularly with respect to the surface of the substrate 618.
Electric field strength at the surface of the substrate 618 may be controlled by a Wehnelt electrode 616. The Wehnelt electrode 616 may comprise a long slotted charge-control electrode which is a short distance above the surface of the substrate 618. The Wehnelt electrode 616 provides for control over the electric fields at the substrate surface while allowing a large scan in one dimension. A positive potential may be applied to the Wehnelt electrode 616 with respect to the substrate 618 so as to accelerate the secondary electrons 619 away from the substrate. The Wehnelt electrode 616 may also provide one-dimensional focusing (in the y-dimension) of the secondary electrons 619 emitted from the substrate 618.
Furthermore, an additional electrode or electrodes (not depicted) may be positioned further from the substrate 618 than the Wehnelt electrode 616. The additional electrode(s) may have a positive potential with respect to the substrate and may be used for better control of fields at the substrate surface than the use of the Wehnelt electrode 616 alone. For example, a “saddle field” may be formed, giving no electric field at the substrate surface directly under the slot, but with an approximately linearly increasing field strength as distance increases from the substrate surface.
The elongated Wien filter 614 may be configured to deflect the secondary electrons 619 so as to effectively de-scan their positions such that the secondary electrons 619 converge at a point which is offset along the slot dimension from the electron source. In other words, the Wien filter 614 may de-scan the secondary electrons such that they enter a fixed detection system.
As illustrated in
Electric charges may be controllably applied to the electrodes in each row such that dipole electric fields E 706 are in the vicinity of the primary electron beam 704. As shown, the general idea is to have the electrodes 708 nearest to the electron beam position 704 to have a neutral (or near neutral) charge, the electrodes 710 on the side towards the optic axis (“X”) 707 in relation to the electron beam position 704 to be positively charged, and the electrodes 712 on the side away from the optic axis 707 in relation to the electron beam position 704 be negatively charged. This results in an electric field E 706 pointed away from the optic axis 707 and in the application of electrostatic force F which bends the trajectory of the negatively-charged electron beam 704.
As the electron beam 704 is scanned to and from along the x-dimension, the charges on the electrodes 702-a and 702-b are adjusted in position and strength so as to bend the electron beam 704 by an appropriate amount. In other words, the electrostatic potentials applied to the electrodes 702 are scanned with the beam 704. Preferably, the applied potentials are of a strength so as to achieve telecentric impingement of the electron beam 704 onto the substrate. Of course, when the electron beam 704 is positioned at the optic axis 707, no deflection is needed. In the absence of a magnetic field, no electric field E 706 need by generated by the electric comb deflector 700 at this position. If the electric comb deflector 700 is part of an elongated Wien filter (as in
Alternatively, in some situations, it may be possible for the electric comb deflector's electrostatic potentials to be static. For example, a quasi-parabolic potential profile may be applied along the slot dimension (the x-dimension).
The above-discussed techniques may be used with a single electron source, or with a linear array of sources. For a linear array of sources, it is preferable to deflect the charged-particle beams from all the sources simultaneously and to detect secondary electrons on separate detectors corresponding to the sources.
If a smaller spot size of the primary beam is needed in the above-discussed systems, lenses elongated in the slot dimension may be used to provide additional focusing. These can be of the electric “comb lens” or the magnetic “slider lens” variety. A magnetic “slider lens” is described, for example, in U.S. Pat. No. 6,633,366 to de Jager et al.
Possible applications for the above-discussed techniques include, for example, electron beam inspection and electron beam lithography.
In the case of electron beam inspection, the secondary electrons, the backscattered electrons, and/or the substrate current may be used as the detected signal. The wafers or other substrates being inspected may be translated in a direction perpendicular to the linear scan provided by the above-described apparatus. In other words, if the scan is along the x-dimension, the wafers or other substrates may be translated along the y-dimension.
In the case of electron beam lithography, detection of the secondary electrons is not needed. The primary electron beam may be controllably blocked so as to generate a programmed pattern.
In the above description, numerous specific details are given to provide a thorough understanding of embodiments of the invention. However, the above description of illustrated embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise forms disclosed. One skilled in the relevant art will recognize that the invention can be practiced without one or more of the specific details, or with other methods, components, etc. In other instances, well-known structures or operations are not shown or described in detail to avoid obscuring aspects of the invention. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize.
These modifications can be made to the invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims. Rather, the scope of the invention is to be determined by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.
The present application claims the benefit of U.S. Provisional Application No. 60/712,694, entitled “Large-Field Scanning of Charged Particles,” filed Aug. 30, 2005, by inventor Kirk J. Bertsche, the disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4789787 | Parker | Dec 1988 | A |
4962313 | Rose | Oct 1990 | A |
5084622 | Rose | Jan 1992 | A |
5126565 | Rose | Jun 1992 | A |
5319207 | Rose et al. | Jun 1994 | A |
5336885 | Rose et al. | Aug 1994 | A |
5448063 | De Jong et al. | Sep 1995 | A |
5449914 | Rose et al. | Sep 1995 | A |
5502306 | Meisburger et al. | Mar 1996 | A |
5831274 | Nakasuji | Nov 1998 | A |
6559445 | Rose | May 2003 | B2 |
6586736 | McCord | Jul 2003 | B1 |
6618134 | Vaez-Iravani et al. | Sep 2003 | B2 |
6633366 | de Jager et al. | Oct 2003 | B2 |
6636302 | Nikoonahad et al. | Oct 2003 | B2 |
6673637 | Wack et al. | Jan 2004 | B2 |
6774372 | Rose et al. | Aug 2004 | B1 |
6784437 | Rose | Aug 2004 | B2 |
6797962 | Rose et al. | Sep 2004 | B1 |
6836372 | Rose et al. | Dec 2004 | B2 |
6878936 | Kienzle et al. | Apr 2005 | B2 |
6891168 | Knippelmeyer | May 2005 | B2 |
6914248 | Clauss | Jul 2005 | B2 |
6943349 | Adamec et al. | Sep 2005 | B2 |
6967328 | Kienzle et al. | Nov 2005 | B2 |
20020130260 | McCord et al. | Sep 2002 | A1 |
20030066961 | Kienzle et al. | Apr 2003 | A1 |
20030169060 | Shinada et al. | Sep 2003 | A1 |
20040056193 | Kienzle et al. | Mar 2004 | A1 |
20050035292 | Adamec et al. | Feb 2005 | A1 |
20060060790 | Nakasuji et al. | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
60712694 | Aug 2005 | US |