Field of the Disclosure
This disclosure relates to semiconductor processing. More particularly, this disclosure relates to a processing system and method of distributing fluid therein to facilitate sequential deposition of films on a substrate.
Description of the Related Art
The semiconductor processing industry continues to strive for larger production yields while increasing the uniformity of layers deposited on substrates having increasingly larger surface areas. These same factors in combination with new materials also provide higher integration of circuits per unit area of the substrate. As circuit integration increases, the need for greater uniformity and process control regarding layer thickness rises. As a result, various technologies have been developed to deposit layers on substrates in a cost-effective manner, while maintaining control over the characteristics of the layer. Chemical vapor deposition (CVD) is a common deposition process employed for depositing layers on a substrate. CVD is a flux-dependent deposition technique that requires precise control of the substrate temperature and precursors introduced into the processing chamber in order to produce a desired layer of uniform thickness. These requirements become more critical as substrate size increases, creating a need for more complexity in chamber design and fluid flow technique to maintain adequate uniformity.
A variant of CVD that demonstrates superior step coverage is a sequential deposition technique known as atomic layer deposition (ALD). ALD has steps of chemisorption that deposit monolayers of reactive precursor molecules on a substrate surface. To that end, a pulse of a first reactive precursor is introduced into a processing chamber to deposit a first monolayer of molecules on a substrate disposed in the processing chamber. A pulse of a second reactive precursor is introduced into the processing chamber to form an additional monolayer of molecules adjacent to the first monolayer of molecules. In this manner, a layer is formed on a substrate by alternating pulses of an appropriate reactive precursor into a deposition chamber. Each injection of a reactive precursor is separated by an inert fluid purge to provide a new atomic layer additive to previous deposited layers to form a uniform layer on the substrate. The cycle is repeated to form the layer to a desired thickness. The control over the relatively small volume of gas utilized in each pulse is problematic. Pulse frequency is limited by the response times of valves and flow lag within the chamber's gas delivery system. The lag is at least partially due to the relative remote position of control valves to the process chamber. Consequently, ALD techniques result in a deposition rate that is much lower than typical CVD techniques.
Therefore, a need exists to reduce the time required to deposit films employing sequential deposition techniques.
Provided is a lid assembly for a semiconductor system, an exemplary embodiment of which includes a support having opposed first and second surfaces, with a valve coupled to the first surface. A baffle plate is mounted to the second surface. The valve is coupled to the support to direct a flow of fluid along a path in an original direction and at an injection velocity. The baffle plate is disposed in the path to disperse the flow of fluid in a plane extending transversely to the original direction. The proximity of the valve to the baffle plate allows enhanced rate and control of fluid disposed through the lid assembly.
In one aspect of the disclosure, one embodiment of a lid assembly for a semiconductor processing system includes a lid having a gas manifold coupled to a first surface and a baffle plate coupled to a second surface. The gas manifold includes a body having a first channel, a second channel and a third channel extending therethrough. The baffle plate includes a recess formed in a first side of the baffle plate and defining a plenum with a second surface of the lid. The plenum communicates with the first, second and third channels via a plurality of inlet channels disposed in the lid. The baffle plate has a center passage disposed therethrough which provides a singular passageway between the plenum and the second side of the baffle plate. Optionally, any combination of the lid, gas manifold or baffle plate may additionally include features for controlling the heat transfer therebetween.
In another aspect of the disclosure, a baffle plate for distributing gases into a semiconductor processing chamber is provided. In one embodiment, the baffle plate includes a plate having a first side and a second side. A recess is formed in the first side and defines a plenum adapted to receive gases prior to entering the processing chamber. A center passage is disposed through the plate concentrically and is concentric with the recess. The center passage provides a single passageway between the recess and the second side of the plate.
A more particular description of the disclosure, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, wherever possible, to designate identical elements that are common to the figures.
Referring to
To facilitate access to processing chamber 16 depicted in
The lid assembly 20 further includes one or more, (two are shown in
Gas lines 37, 39 extend between connectors 41, 43 and the reservoirs 33, 35 respectively. The connectors 41, 43 are coupled to the lid 20a. The process gases are typically delivered through the housing 14 to the connectors 41, 43 before flowing into the reservoirs 33, 35 through the gas lines 37, 39.
Additional connectors 45, 47 are mounted adjacent the gas manifold 34 down stream from the reservoirs 33, 35 and connect to the reservoirs by gas lines 49, 51. The connectors 45, 47 and gas lines 49, 51 generally provide a flowpath for process gases from the reservoir 33, 35 to the gas manifold 34. A purge gas line 53 is similarly connected between a connector 55 and a connection 57 on the gas manifold 34. In one embodiment, a tungsten source gas, such as tungsten hexafluoride, is connected to the first reservoir 33 and a reducing gas such as silane or diborane is connected to the second reservoir 35.
The channel 73 additionally is coupled to the upper surface 63. The valve 65 is disposed between the upper surface 63 of the gas manifold 34 and a cleaning source 38. The cleaning source 38 is a compact system for providing cleaning reagents, typically in the form of fluorine or fluorine radicals, for removing contaminants and deposition byproducts from the chamber 16. In one embodiment, the cleaning source 38 is a remote plasma source that typically includes subsystems (not shown) such as a microwave generator in electrical communication with a plasma applicator, an autotuner and an isolator. The gas channel 73 through which the cleaning gases are delivered from the cleaning source 38 is additionally connected with the gas channel 71b that delivers purge gas to the chamber 16 through the plenum 308 disposed in the baffle plate 36. In this manner, as purge gas is delivered to the chamber 16, any cleaning reagents remaining in the channel 73 between the gas channel 71b and the chamber 16 may be flushed and exhausted from the chamber 16 prior to the next deposition process.
The gas manifold 34 further includes a conduit 75 for flowing a heat transfer medium therethrough, thus allowing temperature control of the gas manifold 34. In tungsten deposition processes, for example, the gas manifold 34 is typically cooled. For other processes, such as titanium nitride deposition, the gas manifold 34 may be heated to prevent condensation of the reactive gases within the manifold. To further assist in temperature control of the gas manifold 34, a lower surface 77 of the gas manifold 34 may be configured to tailor the surface area contact with a first surface 42 of the lid 20a, thus controlling the thermal transfer between the housing 14 and manifold through the lid 20a. Alternatively, the housing 14 and manifold 34 may be configured to maximize the contact area.
Optionally, a plurality of recesses 28 may be formed in a second surface 44 of the lid 20a that contacts the baffle plate 36. The recesses 28 allow the contact area between the baffle plate 36 and lid 20a to be tailored to promote a desired rate of heat transfer. The baffle plate 36 may alternately be configured to control the contact area with the lid 20a as described with reference to
Referring to
Returning to
The baffle plate 36 is generally annular and includes a first side 36a disposed proximate the lid 20a and a second side 36b generally exposed to interior of the processing chamber 16. The baffle plate 36 has a passage 700 disposed between the first side 36a and the second side 36b. A recess 702, typically concentric with the passage 700, extends into the first side 36a. The recess 702 and lid 20a define a plenum therebetween. The recess 702, typically circular in form, is configured to extend radially from a center line of the baffle plate 36 to a diameter that extends beyond the inlet passages 302, 304, and 306 disposed in the lid 20a so that gases flowing from the inlet passages enter the plenum and exit through the passage 700.
A bottom 712 of the recess 702 defines a mixing lip 704 that extends radially inward into the passage 700. The transition from a wall 714 of the recess 702 to the bottom 712 includes a radius 710 to assist in directing fluid flow within the recess 702 while maximizing the swept volume of the recess 702. Gases flowing into the plenum from the inlet passages 302, 304, and 306 are re-directed by the flat surface of the mixing lip 704 generally towards the center of the recess 702 before passing through the passage 700 and into the process chamber 16. The recess 702 combined with a singular exit passage for delivering gases to the chamber 16 (e.g., the passage 700) advantageously reduces the surface area and orifices requiring purging and cleaning over conventional showerheads having multiple orifices for gas delivery.
The mixing lip 704 may include a rounded tip 806 to assist in directing the flow through the passage 700 and into the chamber 16 with minimal pressure drop. In one embodiment, the mixing lip 704 includes a transition angle 808 between the tip 804 and the second side 36b of the baffle plate 36 to enhance the radial flow and uniformity of fluids exiting the passage 700 and into the chamber 16.
Returning to
Referring to
The support pedestal 48 includes an embedded thermocouple 50a that may used to monitor the temperature thereof. For example, a signal from the thermocouple 50a may be used in a feedback loop to control power applied to a heater element 52a by a power source 52. The heater element 52a may be a resistive heater element or other thermal transfer device disposed in or in contact with the pedestal 48 utilized to control the temperature thereof. Optionally, support pedestal 48 may be heated using a heat transfer fluid (not shown).
The support pedestal 48 may be formed from any process-compatible material, including aluminum nitride and aluminum oxide (Al2O3 or alumina) and may also be configured to hold a substrate thereon employing a vacuum, e.g., support pedestal 48 may be a vacuum chuck. To that end, support pedestal 48 may include a plurality of vacuum holes (not shown) that are placed in fluid communication with a vacuum source, such as pump system via vacuum tube routed through the support shaft 48a.
A liner assembly is disposed in the processing chamber 16 and includes a cylindrical portion 54 and a planar portion. The cylindrical portion 54 and the planar portion may be formed from any suitable material such as aluminum, ceramic and the like. The cylindrical portion 54 surrounds the support pedestal 48. The cylindrical portion 54 additionally includes an aperture 60 that aligns with the slit valve opening 44 disposed a side wall 14b of the housing 14 to allow entry and egress of substrates from the chamber 16.
The planar portion extends transversely to the cylindrical portion 54 and is disposed against a chamber bottom 14a of processing chamber 16 disposed opposite to lid assembly 20. The liner assembly defines a chamber channel 58 between the housing 14 and both cylindrical portion 54 and planar portion. Specifically, a first portion of channel 58 is defined between the chamber bottom 14a and planar portion. A second portion of channel 58 is defined between the side wall 14b of the housing 14 and the cylindrical portion 54. A purge gas is introduced into the channel 58 to minimize inadvertent deposition on the chamber walls along with controlling the rate of heat transfer between the chamber walls and the liner assembly.
Disposed along the side walls 14b of the chamber 16 proximate the lid assembly 20 is a pumping channel 62. The pumping channel 62 includes a plurality of apertures, one of which is shown as a first aperture 62a. The pumping channel 62 includes a second aperture 62b that is coupled to a pump system 18 by a conduit 66. A throttle valve 18a is coupled between the pumping channel 62 and the pump system 18. The pumping channel 62, the throttle valve 18a, and the pump system 18 control the amount of flow from the processing chamber 16. The size and number and position of apertures 62a in communication with the chamber 16 are configured to achieve uniform flow of gases exiting the lid assembly 20 over support pedestal 48 and substrate seated thereon. A plurality of supplies 68a, 68b, and 68c of process and/or other fluids, is in fluid communication with one of valves 32a, 32b, or 32c through a sequence of conduits (not shown) formed through the housing 14, lid assembly 20, and gas manifold 34.
A controller 70 regulates the operations of the various components of system 10. The controller 70 includes a processor 72 in data communication with memory, such as random access memory 74 and a hard disk drive 76 and is in communication with at least the pump system 18, the power source 52, and valves 32a, 32b, and 32c.
Although any type of process fluid may be employed, one example of process fluids are B2H6 gas and WF6 gas, and a purge fluid is Ar gas. N2 may also be used as a purge gas. The chamber pressure is in the range of 1 Torr to 5 Torr, and the pedestal 48 is heated in the range of 350° to 400° C. Each of the process fluids is flowed into the processing chamber 16 with a carrier fluid, such as Ar. It should be understood, however, that the purge fluid might differ from the carrier fluid, discussed more fully below.
One cycle of the sequential deposition technique in accordance with the present disclosure includes flowing the purge fluid, Ar, into the processing chamber 16 during time t1, before B2H6 is flowed into the processing chamber 16. During time t2, the process fluid B2H6 is flowed into the processing chamber 16 along with a carrier fluid, which in this example is Ar. After the flow of B2H6 terminates, the flow of Ar continues during time t3, purging the processing chamber 16 of B2H6. During time t4, the processing chamber 16 is pumped so as to remove all process fluids. After pumping of the processing chamber 16, the carrier fluid Ar is introduced during time t5, after which time the process fluid WF6 is introduced into the processing chamber 16, along with the carrier fluid Ar during time t6. After the flow of WF6 into the processing chamber 16 terminates, the flow of Ar continues during time t7. Thereafter, the processing chamber 16 is pumped so as to remove all process fluids therein, during time t8, thereby concluding one cycle of the sequential deposition technique in accordance with the present disclosure. This sequence of cycles is repeated until the layer being formed thereby has desired characteristics, such as thickness, conductivity and the like. It can be seen that the time required during each period t1-t7 greatly affects the throughput of system 10. To maximize the throughput, the lid assembly 20 and the injection assembly 30 are configured to minimize the time required to inject process fluids into the processing chamber 16 and disperse the fluids over the process region proximate to the support pedestal 48. For example, the proximity of the reservoirs 33, 35 and valves 32a-32b to the gas manifold 34 reduce the response times of fluid delivery, thereby enhancing the frequency of pulses utilized in ALD deposition processes. Additionally, as the purge gases are strategically delivered through the lower portion of the passage 73, sweeping of cleaning agents from the gas manifold 34 and baffle plate 36 is ensured and process uniformity with smaller process gas volumes is enhanced.
Although the disclosure has been described in terms of specific embodiments, one skilled in the art will recognize that various modifications may be made that are within the scope of the present disclosure. For example, although three valves are shown, any number of valves may be provided, depending upon the number of differing process fluids employed to deposit a film. Therefore, the scope of the disclosure should not be based upon the foregoing description. Rather, the scope of the disclosure should be determined based upon the claims recited herein, including the full scope of equivalents thereof.
This application is a continuation of U.S. application Ser. No. 14/152,730, filed Jan. 10, 2014, which is a continuation of U.S. application Ser. No. 13/012,341, filed Jan. 24, 2011, now abandoned, which is a continuation of U.S. application Ser. No. 10/993,924, filed Nov. 19, 2004, now U.S. Pat. No. 7,905,959, which is a continuation of U.S. application Ser. No. 10/016,300, filed Dec. 12, 2001, now U.S. Pat. No. 6,878,206, which claims benefit of U.S. Prov. Appl. No. 60/305,970, filed Jul. 16, 2001, which are incorporated herein by reference in their entireties. Additionally, this application is related to U.S. Pat. Nos. 6,333,123 and 6,660,126, as well as U.S. application Ser. No. 09/798,258, filed on Mar. 2, 2001, published as US 20020121241, now abandoned, which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3592575 | Jaeger et al. | Jul 1971 | A |
4058430 | Suntola et al. | Nov 1977 | A |
4389973 | Suntola et al. | Jun 1983 | A |
4413022 | Suntola et al. | Nov 1983 | A |
4415275 | Dietrich | Nov 1983 | A |
4486487 | Skarp et al. | Dec 1984 | A |
4538653 | Shea | Sep 1985 | A |
4741354 | DeMild, Jr. | May 1988 | A |
4761269 | Conger | Aug 1988 | A |
4767494 | Kobayashi et al. | Aug 1988 | A |
4790262 | Nakayama | Dec 1988 | A |
4806321 | Nishizawa et al. | Feb 1989 | A |
4813846 | Helms et al. | Mar 1989 | A |
4829022 | Kobayashi et al. | May 1989 | A |
4834831 | Nishizawa et al. | May 1989 | A |
4838983 | Schumaker et al. | Jun 1989 | A |
4838993 | Aoki et al. | Jun 1989 | A |
4840921 | Matsumoto | Jun 1989 | A |
4842683 | Cheng | Jun 1989 | A |
4845049 | Sunakawa | Jul 1989 | A |
4859625 | Matsumoto | Aug 1989 | A |
4859627 | Sunakawa et al. | Aug 1989 | A |
4861417 | Mochizuki et al. | Aug 1989 | A |
4872947 | Wang | Oct 1989 | A |
4876218 | Pessa et al. | Oct 1989 | A |
4908095 | Kagatsume | Mar 1990 | A |
4917556 | Stark et al. | Apr 1990 | A |
4927670 | Erbil | May 1990 | A |
4931132 | Aspnes et al. | Jun 1990 | A |
4951601 | Maydan et al. | Aug 1990 | A |
4960720 | Shimbo et al. | Oct 1990 | A |
4975252 | Nishizawa et al. | Dec 1990 | A |
4993357 | Scholz | Feb 1991 | A |
4993358 | Mahawili | Feb 1991 | A |
5000113 | Wang | Mar 1991 | A |
5013400 | Kurasaki | May 1991 | A |
5013683 | Petroff et al. | May 1991 | A |
5027746 | Frijlink et al. | Jul 1991 | A |
5028565 | Chang et al. | Jul 1991 | A |
5082798 | Arimoto et al. | Jan 1992 | A |
5085885 | Foley et al. | Feb 1992 | A |
5091217 | Hey | Feb 1992 | A |
5091320 | Aspnes et al. | Feb 1992 | A |
5130269 | Kitahara et al. | Jul 1992 | A |
5166092 | Mochizuki et al. | Nov 1992 | A |
5173327 | Sandhu et al. | Dec 1992 | A |
5173474 | Connell et al. | Dec 1992 | A |
5186718 | Tepman et al. | Feb 1993 | A |
5205077 | Wittstock et al. | Apr 1993 | A |
5225366 | Yoder | Jul 1993 | A |
5232164 | Resch et al. | Aug 1993 | A |
5234561 | Randhawa et al. | Aug 1993 | A |
5246536 | Nishizawa et al. | Sep 1993 | A |
5250148 | Nishizawa et al. | Oct 1993 | A |
5254207 | Nishizawa et al. | Oct 1993 | A |
5256244 | Ackerman | Oct 1993 | A |
5259881 | Edwards et al. | Nov 1993 | A |
5261959 | Gasworth | Nov 1993 | A |
5270247 | Sakuma et al. | Dec 1993 | A |
5273588 | Foster | Dec 1993 | A |
5278435 | Van Hove et al. | Jan 1994 | A |
5281274 | Yoder | Jan 1994 | A |
5286296 | Sato et al. | Feb 1994 | A |
5290748 | Knuuttila et al. | Mar 1994 | A |
5294286 | Nishizawa et al. | Mar 1994 | A |
5296403 | Nishizawa et al. | Mar 1994 | A |
5300186 | Kitahara et al. | Apr 1994 | A |
5311055 | Goodman et al. | May 1994 | A |
5316615 | Copel et al. | May 1994 | A |
5316793 | Wallace et al. | May 1994 | A |
5330610 | Eres et al. | Jul 1994 | A |
5336324 | Stall et al. | Aug 1994 | A |
5338362 | Imahashi | Aug 1994 | A |
5338389 | Nishizawa et al. | Aug 1994 | A |
5348911 | Jurgensen et al. | Sep 1994 | A |
5356476 | Foster | Oct 1994 | A |
5368062 | Okumura | Nov 1994 | A |
5374570 | Nasu et al. | Dec 1994 | A |
5376166 | Hoffmann | Dec 1994 | A |
5395791 | Cheng et al. | Mar 1995 | A |
5411590 | Hawkins | May 1995 | A |
5423936 | Tomita | Jun 1995 | A |
5429650 | Hoffmann | Jul 1995 | A |
5438952 | Otsuka et al. | Aug 1995 | A |
5439876 | Graf et al. | Aug 1995 | A |
5441703 | Jurgensen | Aug 1995 | A |
5443033 | Nishizawa et al. | Aug 1995 | A |
5443647 | Aucoin et al. | Aug 1995 | A |
5455072 | Bension et al. | Oct 1995 | A |
5458084 | Thorne et al. | Oct 1995 | A |
5469806 | Mochizuki et al. | Nov 1995 | A |
5480678 | Rudolph | Jan 1996 | A |
5480818 | Matsumoto et al. | Jan 1996 | A |
5483919 | Yokoyama et al. | Jan 1996 | A |
5484664 | Kitahara et al. | Jan 1996 | A |
5500256 | Watabe | Mar 1996 | A |
5503875 | Imai et al. | Apr 1996 | A |
5516366 | Kanno | May 1996 | A |
5521126 | Okamura et al. | May 1996 | A |
5527733 | Nishizawa et al. | Jun 1996 | A |
5532511 | Nishizawa et al. | Jul 1996 | A |
5534073 | Kinoshita | Jul 1996 | A |
5540783 | Eres et al. | Jul 1996 | A |
5567267 | Kazama | Oct 1996 | A |
5580380 | Liu et al. | Dec 1996 | A |
5599397 | Anderson | Feb 1997 | A |
5601651 | Watabe et al. | Feb 1997 | A |
5609689 | Kato et al. | Mar 1997 | A |
5616181 | Yamamoto et al. | Apr 1997 | A |
5637530 | Gaines et al. | Jun 1997 | A |
5641984 | Aftergut et al. | Jun 1997 | A |
5644128 | Wollnik et al. | Jul 1997 | A |
5667592 | Boitnott et al. | Sep 1997 | A |
5674786 | Turner et al. | Oct 1997 | A |
5693139 | Nishizawa et al. | Dec 1997 | A |
5695564 | Imahashi et al. | Dec 1997 | A |
5705224 | Murota et al. | Jan 1998 | A |
5707880 | Aftergut et al. | Jan 1998 | A |
5711811 | Suntola et al. | Jan 1998 | A |
5725673 | Anderson | Mar 1998 | A |
5730801 | Tepman et al. | Mar 1998 | A |
5730802 | Ishizumi et al. | Mar 1998 | A |
5746875 | Maydan | May 1998 | A |
5747113 | Tsai | May 1998 | A |
5749974 | Habuka et al. | May 1998 | A |
5755886 | Wang | May 1998 | A |
5788447 | Yonemitsu et al. | Aug 1998 | A |
5788799 | Steger et al. | Aug 1998 | A |
5796116 | Nakata et al. | Aug 1998 | A |
5801634 | Young et al. | Sep 1998 | A |
5807792 | Ilg et al. | Sep 1998 | A |
5830270 | McKee et al. | Nov 1998 | A |
5835677 | Li et al. | Nov 1998 | A |
5851849 | Comizzoli et al. | Dec 1998 | A |
5855675 | Doering et al. | Jan 1999 | A |
5855680 | Soininen et al. | Jan 1999 | A |
5856219 | Naito et al. | Jan 1999 | A |
5858102 | Tsai | Jan 1999 | A |
5866213 | Foster et al. | Feb 1999 | A |
5866795 | Wang et al. | Feb 1999 | A |
5879459 | Gadgil et al. | Mar 1999 | A |
5879461 | Adams | Mar 1999 | A |
5882165 | Maydan et al. | Mar 1999 | A |
5882413 | Beaulieu et al. | Mar 1999 | A |
5895530 | Shrotriya | Apr 1999 | A |
5904565 | Nguyen et al. | May 1999 | A |
5916365 | Sherman | Jun 1999 | A |
5923056 | Lee et al. | Jul 1999 | A |
5923985 | Aoki et al. | Jul 1999 | A |
5925574 | Aoki et al. | Jul 1999 | A |
5928389 | Jevtic | Jul 1999 | A |
5942040 | Kim et al. | Aug 1999 | A |
5947710 | Cooper et al. | Sep 1999 | A |
5968276 | Lei et al. | Oct 1999 | A |
5972430 | DiMeo, Jr. et al. | Oct 1999 | A |
5976260 | Kinoshita | Nov 1999 | A |
5976261 | Moslehi | Nov 1999 | A |
5989345 | Hatano et al. | Nov 1999 | A |
6001669 | Gaines et al. | Dec 1999 | A |
6015590 | Suntola et al. | Jan 2000 | A |
6019848 | Frankel et al. | Feb 2000 | A |
6025627 | Forbes et al. | Feb 2000 | A |
6036773 | Wang et al. | Mar 2000 | A |
6042652 | Hyun et al. | Mar 2000 | A |
6043177 | Falconer et al. | Mar 2000 | A |
6051286 | Zhao et al. | Apr 2000 | A |
6062798 | Muka | May 2000 | A |
6068703 | Chen | May 2000 | A |
6071572 | Mosely et al. | Jun 2000 | A |
6071808 | Merchant et al. | Jun 2000 | A |
6079426 | Subrahmanyam | Jun 2000 | A |
6084302 | Sandhu | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6110556 | Bang | Aug 2000 | A |
6113977 | Soininen et al. | Sep 2000 | A |
6117244 | Bang et al. | Sep 2000 | A |
6123775 | Hao | Sep 2000 | A |
6124158 | Dautartas et al. | Sep 2000 | A |
6130147 | Major et al. | Oct 2000 | A |
6139700 | Kang et al. | Oct 2000 | A |
6140237 | Chan et al. | Oct 2000 | A |
6140238 | Kitch | Oct 2000 | A |
6143659 | Leem | Nov 2000 | A |
6144060 | Park et al. | Nov 2000 | A |
6158446 | Mohindra et al. | Dec 2000 | A |
6161500 | Kopacz | Dec 2000 | A |
6170492 | Ueda et al. | Jan 2001 | B1 |
6174377 | Doering et al. | Jan 2001 | B1 |
6174809 | Kang et al. | Jan 2001 | B1 |
6176198 | Kao et al. | Jan 2001 | B1 |
6176930 | Koai et al. | Jan 2001 | B1 |
6178918 | van Os | Jan 2001 | B1 |
6183563 | Choi et al. | Feb 2001 | B1 |
6190459 | Takeshita | Feb 2001 | B1 |
6197683 | Kang et al. | Mar 2001 | B1 |
6200893 | Sneh | Mar 2001 | B1 |
6203613 | Gates et al. | Mar 2001 | B1 |
6206967 | Mak et al. | Mar 2001 | B1 |
6207302 | Sugiura et al. | Mar 2001 | B1 |
6231672 | Choi et al. | May 2001 | B1 |
6248605 | Harkonen et al. | Jun 2001 | B1 |
6270572 | Kim et al. | Aug 2001 | B1 |
6271148 | Kao et al. | Aug 2001 | B1 |
6277200 | Xia | Aug 2001 | B2 |
6287965 | Kang et al. | Sep 2001 | B1 |
6291876 | Stumborg et al. | Sep 2001 | B1 |
6302964 | Umotoy | Oct 2001 | B1 |
6302965 | Umotoy et al. | Oct 2001 | B1 |
6305314 | Sneh et al. | Oct 2001 | B1 |
6306216 | Kim et al. | Oct 2001 | B1 |
6316098 | Yitzchaik et al. | Nov 2001 | B1 |
6368987 | Kopacz | Apr 2002 | B1 |
6387185 | Doering et al. | May 2002 | B2 |
6416822 | Chiang et al. | Jul 2002 | B1 |
6446573 | Hirayama et al. | Sep 2002 | B2 |
6447607 | Soininen et al. | Sep 2002 | B2 |
6454860 | Metzner | Sep 2002 | B2 |
6478872 | Chae et al. | Nov 2002 | B1 |
6481945 | Hasper et al. | Nov 2002 | B1 |
6511539 | Raaijmakers | Jan 2003 | B1 |
6551406 | Kilpi | Apr 2003 | B2 |
6572705 | Suntola et al. | Jun 2003 | B1 |
6578287 | Aswad | Jun 2003 | B2 |
6579372 | Park | Jun 2003 | B2 |
6593484 | Yasuhara et al. | Jul 2003 | B2 |
6630030 | Suntola et al. | Oct 2003 | B1 |
6630201 | Chiang et al. | Oct 2003 | B2 |
6660126 | Nguyen et al. | Dec 2003 | B2 |
6716287 | Santiago et al. | Apr 2004 | B1 |
6718126 | Lei | Apr 2004 | B2 |
6734020 | Lu et al. | May 2004 | B2 |
6772072 | Ganguli et al. | Aug 2004 | B2 |
6773507 | Jallepally et al. | Aug 2004 | B2 |
6777352 | Tepman et al. | Aug 2004 | B2 |
6778762 | Shareef et al. | Aug 2004 | B1 |
6812157 | Gadgil | Nov 2004 | B1 |
6815285 | Choi et al. | Nov 2004 | B2 |
6818094 | Yudovsky | Nov 2004 | B2 |
6821563 | Yudovsky | Nov 2004 | B2 |
6866746 | Lei et al. | Mar 2005 | B2 |
6868859 | Yudovsky | Mar 2005 | B2 |
6878206 | Tzu | Apr 2005 | B2 |
6958174 | Klaus et al. | Oct 2005 | B1 |
7905959 | Tzu | Mar 2011 | B2 |
9587310 | Tzu | Mar 2017 | B2 |
20010000866 | Sneh et al. | May 2001 | A1 |
20010009140 | Bondestam et al. | Jul 2001 | A1 |
20010011526 | Doering et al. | Aug 2001 | A1 |
20010013312 | Soininen et al. | Aug 2001 | A1 |
20010014371 | Kilpi | Aug 2001 | A1 |
20010031562 | Raaijmakers et al. | Oct 2001 | A1 |
20010034123 | Jeon et al. | Oct 2001 | A1 |
20010041250 | Werkhoven et al. | Nov 2001 | A1 |
20010042523 | Kesala | Nov 2001 | A1 |
20010042799 | Kim et al. | Nov 2001 | A1 |
20010054377 | Lindfors et al. | Dec 2001 | A1 |
20020000196 | Park | Jan 2002 | A1 |
20020002948 | Hongo | Jan 2002 | A1 |
20020007790 | Park | Jan 2002 | A1 |
20020009544 | McFeely et al. | Jan 2002 | A1 |
20020009896 | Sandhu et al. | Jan 2002 | A1 |
20020015855 | Sajoto | Feb 2002 | A1 |
20020017242 | Hamaguchi et al. | Feb 2002 | A1 |
20020033183 | Sun | Mar 2002 | A1 |
20020041931 | Suntola et al. | Apr 2002 | A1 |
20020052097 | Park | May 2002 | A1 |
20020066411 | Chiang et al. | Jun 2002 | A1 |
20020073924 | Chiang et al. | Jun 2002 | A1 |
20020076481 | Chiang et al. | Jun 2002 | A1 |
20020076507 | Chiang et al. | Jun 2002 | A1 |
20020076508 | Chiang et al. | Jun 2002 | A1 |
20020086106 | Park et al. | Jul 2002 | A1 |
20020092471 | Kang et al. | Jul 2002 | A1 |
20020094689 | Park | Jul 2002 | A1 |
20020104481 | Chiang et al. | Aug 2002 | A1 |
20020108570 | Lindfors | Aug 2002 | A1 |
20020110991 | Li | Aug 2002 | A1 |
20020115886 | Yasuhara et al. | Aug 2002 | A1 |
20020121241 | Nguyen et al. | Sep 2002 | A1 |
20020121342 | Nguyen et al. | Sep 2002 | A1 |
20020127745 | Lu et al. | Sep 2002 | A1 |
20020134307 | Choi | Sep 2002 | A1 |
20020144655 | Chiang et al. | Oct 2002 | A1 |
20020144657 | Chiang et al. | Oct 2002 | A1 |
20020146511 | Chiang et al. | Oct 2002 | A1 |
20020197856 | Matsuse et al. | Dec 2002 | A1 |
20030000473 | Chae et al. | Jan 2003 | A1 |
20030004723 | Chihara | Jan 2003 | A1 |
20030010451 | Tzu | Jan 2003 | A1 |
20030017697 | Choi et al. | Jan 2003 | A1 |
20030022338 | Ruben et al. | Jan 2003 | A1 |
20030042630 | Babcoke et al. | Mar 2003 | A1 |
20030053799 | Lei | Mar 2003 | A1 |
20030057527 | Chung et al. | Mar 2003 | A1 |
20030072913 | Chou et al. | Apr 2003 | A1 |
20030075273 | Kilpela et al. | Apr 2003 | A1 |
20030075925 | Lindfors et al. | Apr 2003 | A1 |
20030079686 | Chen et al. | May 2003 | A1 |
20030089308 | Raaijmakers | May 2003 | A1 |
20030101927 | Raaijmakers | Jun 2003 | A1 |
20030101938 | Ronsse et al. | Jun 2003 | A1 |
20030106490 | Jallepally et al. | Jun 2003 | A1 |
20030113187 | Lei et al. | Jun 2003 | A1 |
20030116087 | Nguyen | Jun 2003 | A1 |
20030121469 | Lindfors et al. | Jul 2003 | A1 |
20030121608 | Chen et al. | Jul 2003 | A1 |
20030140854 | Kilpi | Jul 2003 | A1 |
20030143328 | Chen et al. | Jul 2003 | A1 |
20030143747 | Bondestam et al. | Jul 2003 | A1 |
20030153177 | Tepman et al. | Aug 2003 | A1 |
20030172872 | Thakur | Sep 2003 | A1 |
20030194493 | Chang et al. | Oct 2003 | A1 |
20030196603 | Nguyen et al. | Oct 2003 | A1 |
20030198754 | Xi et al. | Oct 2003 | A1 |
20030213560 | Wang | Nov 2003 | A1 |
20030216981 | Tillman | Nov 2003 | A1 |
20030219942 | Choi et al. | Nov 2003 | A1 |
20030221780 | Lei | Dec 2003 | A1 |
20030224107 | Lindfors et al. | Dec 2003 | A1 |
20030235961 | Metzner | Dec 2003 | A1 |
20040005749 | Choi | Jan 2004 | A1 |
20040011404 | Ku | Jan 2004 | A1 |
20040011504 | Ku et al. | Jan 2004 | A1 |
20040013577 | Ganguli et al. | Jan 2004 | A1 |
20040014320 | Chen et al. | Jan 2004 | A1 |
20040015300 | Ganguli et al. | Jan 2004 | A1 |
20040016404 | Gregg | Jan 2004 | A1 |
20040025370 | Guenther | Feb 2004 | A1 |
20040048451 | Marsh et al. | Mar 2004 | A1 |
20040065255 | Yang et al. | Apr 2004 | A1 |
20040069227 | Ku et al. | Apr 2004 | A1 |
20040071897 | Verplancken et al. | Apr 2004 | A1 |
20040129212 | Gadgil et al. | Jul 2004 | A1 |
20040144308 | Yudovsky | Jul 2004 | A1 |
20040144311 | Chen et al. | Jul 2004 | A1 |
20040219784 | Kang et al. | Nov 2004 | A1 |
20040224506 | Choi et al. | Nov 2004 | A1 |
20040235285 | Kang et al. | Nov 2004 | A1 |
20050006799 | Gregg et al. | Jan 2005 | A1 |
20050059240 | Choi et al. | Mar 2005 | A1 |
20050095859 | Chen et al. | May 2005 | A1 |
20050104142 | Narayanan et al. | May 2005 | A1 |
20050252449 | Nguyen | Nov 2005 | A1 |
20080063798 | Kher | Mar 2008 | A1 |
20090232986 | Choi | Sep 2009 | A1 |
20110114020 | Tzu | May 2011 | A1 |
20140179114 | van Schravendijk | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
19627017 | Jan 1997 | DE |
19820147 | Jul 1999 | DE |
0344352 | Dec 1989 | EP |
0429270 | May 1991 | EP |
0442290 | Aug 1991 | EP |
0497267 | Aug 1992 | EP |
0799641 | Oct 1997 | EP |
1167569 | Jan 2002 | EP |
2626110 | Jul 1989 | FR |
2692597 | Dec 1993 | FR |
2355727 | May 2001 | GB |
58098917 | Jun 1983 | JP |
58100419 | Jun 1983 | JP |
60065712 | Apr 1985 | JP |
61035847 | Feb 1986 | JP |
61210623 | Sep 1986 | JP |
62069508 | Mar 1987 | JP |
62091495 | Apr 1987 | JP |
62141717 | Jun 1987 | JP |
62167297 | Jul 1987 | JP |
62171999 | Jul 1987 | JP |
62232919 | Oct 1987 | JP |
63062313 | Mar 1988 | JP |
63085098 | Apr 1988 | JP |
63090833 | Apr 1988 | JP |
63222420 | Sep 1988 | JP |
63222421 | Sep 1988 | JP |
63227007 | Sep 1988 | JP |
63252420 | Oct 1988 | JP |
63266814 | Nov 1988 | JP |
64009895 | Jan 1989 | JP |
64009896 | Jan 1989 | JP |
64009897 | Jan 1989 | JP |
64037832 | Mar 1989 | JP |
64082615 | Mar 1989 | JP |
64082617 | Mar 1989 | JP |
64082671 | Mar 1989 | JP |
64082676 | Mar 1989 | JP |
1103982 | Apr 1989 | JP |
1103996 | Apr 1989 | JP |
64090524 | Apr 1989 | JP |
1117017 | May 1989 | JP |
1143221 | Jun 1989 | JP |
1143233 | Jun 1989 | JP |
1154511 | Jun 1989 | JP |
1290221 | Jun 1989 | JP |
1236657 | Sep 1989 | JP |
1245512 | Sep 1989 | JP |
1264218 | Oct 1989 | JP |
1270593 | Oct 1989 | JP |
1272108 | Oct 1989 | JP |
1290222 | Nov 1989 | JP |
1296673 | Nov 1989 | JP |
1303770 | Dec 1989 | JP |
1305894 | Dec 1989 | JP |
1313927 | Dec 1989 | JP |
2012814 | Jan 1990 | JP |
2014513 | Jan 1990 | JP |
2017634 | Jan 1990 | JP |
2063115 | Mar 1990 | JP |
2074029 | Mar 1990 | JP |
2074587 | Mar 1990 | JP |
2106822 | Apr 1990 | JP |
2129913 | May 1990 | JP |
2162717 | Jun 1990 | JP |
2172895 | Jul 1990 | JP |
2196092 | Aug 1990 | JP |
2203517 | Aug 1990 | JP |
2230690 | Sep 1990 | JP |
2230722 | Sep 1990 | JP |
02-246161 | Oct 1990 | JP |
2264491 | Oct 1990 | JP |
2283084 | Nov 1990 | JP |
2304916 | Dec 1990 | JP |
3019211 | Jan 1991 | JP |
3022569 | Jan 1991 | JP |
3023294 | Jan 1991 | JP |
3023299 | Jan 1991 | JP |
3044967 | Feb 1991 | JP |
3048421 | Mar 1991 | JP |
3070124 | Mar 1991 | JP |
3185716 | Aug 1991 | JP |
3208885 | Sep 1991 | JP |
3234025 | Oct 1991 | JP |
3286522 | Dec 1991 | JP |
3286531 | Dec 1991 | JP |
4031391 | Feb 1992 | JP |
4031396 | Feb 1992 | JP |
4100292 | Apr 1992 | JP |
4111418 | Apr 1992 | JP |
4132214 | May 1992 | JP |
4132681 | May 1992 | JP |
4151822 | May 1992 | JP |
4162418 | Jun 1992 | JP |
4175299 | Jun 1992 | JP |
4186824 | Jul 1992 | JP |
4212411 | Aug 1992 | JP |
4260696 | Sep 1992 | JP |
4273120 | Sep 1992 | JP |
4285167 | Oct 1992 | JP |
4291916 | Oct 1992 | JP |
4325500 | Nov 1992 | JP |
4328874 | Nov 1992 | JP |
5029228 | Feb 1993 | JP |
5047665 | Feb 1993 | JP |
5047668 | Feb 1993 | JP |
5074717 | Mar 1993 | JP |
5074724 | Mar 1993 | JP |
5102189 | Apr 1993 | JP |
5047666 | Jun 1993 | JP |
5160152 | Jun 1993 | JP |
5175143 | Jul 1993 | JP |
5175145 | Jul 1993 | JP |
5182906 | Jul 1993 | JP |
5186295 | Jul 1993 | JP |
5206036 | Aug 1993 | JP |
5234899 | Sep 1993 | JP |
5235047 | Sep 1993 | JP |
5251339 | Sep 1993 | JP |
5270997 | Oct 1993 | JP |
5283336 | Oct 1993 | JP |
5291152 | Nov 1993 | JP |
5304334 | Nov 1993 | JP |
5343327 | Dec 1993 | JP |
5343685 | Dec 1993 | JP |
6045606 | Feb 1994 | JP |
6132236 | May 1994 | JP |
6177381 | Jun 1994 | JP |
6196809 | Jul 1994 | JP |
6222388 | Aug 1994 | JP |
6224138 | Aug 1994 | JP |
6230421 | Aug 1994 | JP |
6252057 | Sep 1994 | JP |
6291048 | Oct 1994 | JP |
7070752 | Mar 1995 | JP |
7086269 | Mar 1995 | JP |
8181076 | Jul 1996 | JP |
8245291 | Sep 1996 | JP |
8264530 | Oct 1996 | JP |
9260786 | Oct 1997 | JP |
9293681 | Nov 1997 | JP |
10188840 | Jul 1998 | JP |
10190128 | Jul 1998 | JP |
10-308283 | Nov 1998 | JP |
11269652 | Oct 1999 | JP |
2000-031387 | Jan 2000 | JP |
2000-058777 | Feb 2000 | JP |
2000068072 | Mar 2000 | JP |
2000087029 | Mar 2000 | JP |
2000138094 | May 2000 | JP |
2000212752 | Aug 2000 | JP |
2000218445 | Aug 2000 | JP |
2000319772 | Nov 2000 | JP |
2000340883 | Dec 2000 | JP |
2000353666 | Dec 2000 | JP |
2001020075 | Jan 2001 | JP |
200162244 | Mar 2001 | JP |
2001-172767 | Jun 2001 | JP |
2001152339 | Jun 2001 | JP |
2001189312 | Jul 2001 | JP |
2001-220294 | Aug 2001 | JP |
2001217206 | Aug 2001 | JP |
2001220287 | Aug 2001 | JP |
2001-254181 | Sep 2001 | JP |
2001240972 | Sep 2001 | JP |
2001284042 | Oct 2001 | JP |
2001303251 | Oct 2001 | JP |
2001328900 | Nov 2001 | JP |
9002216 | Mar 1990 | WO |
9110510 | Jul 1991 | WO |
9302110 | Feb 1993 | WO |
9617107 | Jun 1996 | WO |
9618756 | Jun 1996 | WO |
9806889 | Feb 1998 | WO |
9851838 | Nov 1998 | WO |
9901595 | Jan 1999 | WO |
9913504 | Mar 1999 | WO |
9929924 | Jun 1999 | WO |
9941423 | Aug 1999 | WO |
9965064 | Dec 1999 | WO |
0011721 | Mar 2000 | WO |
0015865 | Mar 2000 | WO |
0015881 | Mar 2000 | WO |
0016377 | Mar 2000 | WO |
0054320 | Sep 2000 | WO |
0063957 | Oct 2000 | WO |
0079019 | Dec 2000 | WO |
0079576 | Dec 2000 | WO |
0115220 | Mar 2001 | WO |
0117692 | Mar 2001 | WO |
0127346 | Apr 2001 | WO |
0127347 | Apr 2001 | WO |
0129280 | Apr 2001 | WO |
0129891 | Apr 2001 | WO |
0129893 | Apr 2001 | WO |
0136702 | May 2001 | WO |
0140541 | Jun 2001 | WO |
0166832 | Sep 2001 | WO |
0208488 | Jan 2002 | WO |
0245871 | Jun 2002 | WO |
0323835 | Mar 2003 | WO |
Entry |
---|
Notice of Allowance for U.S. Appl. No. 14/152,730 dated Jun. 9, 2016. |
“Applications of Integrated processing”, Solid State Technology, US, Cowan Pub., vol. 37, No. 12 (Dec. 1, 1994), pp. 45-47. |
Bader, et al. “Integrated Processing Equipment”, Solid State Technology, Cowan Pub., vol. 33, No. 5 (May 1, 1990), pp. 149-154. |
Bedair, S.M. “Atomic layer epitaxy deposition processes”, J. Vac. Sci. Techol. 12(1) (Jan./Feb. 1994). |
Choi, et al. “Stability of TiB.sub.2 as a Diffusion Barrier on Silicon”, J. Electrochem. Soc. 138(10) (Oct. 1991), pp. 3062-3067. |
Choi, et al. “The effect of annealing on resistivity of low pressure chemical vapor deposited titanium diboride”, J. Appl. Phys. 69(11) (Jun. 1, 1991), pp. 7853-7861. |
Eisenbraum, et al. “Atomic Layer Deposition (ALD) of Tantalum-based materials for zero thickness copper barrier applications,” Proceedings of the IEEE 2001 International Interconnect Technology Conference (Cat. No. 01EX461) 2001. |
Elers, et al. “NbCl.sub.5 as a precursor in atomic layer epitaxy”, Appl. Surf. Sci., vol. 82/83 (1994), pp. 468-474. |
George, et al. “Atomic layer controlled deposition of SiO.sub.2 and Al.sub.2O.sub.3 using ABAB . . . binary reaction sequence chemistry”, Appl. Surf. Sci., vol. 82/83 (1994), pp. 460-467. |
George, et al. “Surface Chemistry for Atomic Layer Growth”, J. Phys. Chem., vol. 100 (1996), pp. 13121-13131. |
Hultman, et al. “Review of the thermal and mechanical stability of TiN-based thin films”, Zeitschrift Fur Metallkunde, 90(10) (Oct. 1999), pp. 803-813. |
IBM Tech. Disc. Bull. Knowledge-Based Dynamic Scheduler in Distributed Computer Control, (Jun. 1990), pp. 80-84. |
IBM Tech. Disc. Bull. “Multiprocessor and Multi-tasking Architecture for Tool Control of the Advanced via Inspection Tools” (May 1992), pp. 190-191. |
Jeong, et al. “Plasma-assisted Atomic Layer Growth of High-Quality Aluminum Oxide Thin Films,” Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes, vol. 40, No. 1, Jan. 2001. |
Jeong, et al., “Growth and Characterization of Aluminum Oxide Al.sub.2O.sub.3 Thin Films by Plasma-assisted Atomic Layer ontrolled Deposition,” J. Korean Inst. Met. Mater., vol. 38, No. 10, Oct. 2000. |
Juppo, et al., “Deposition of Copper Films by an Alternate Supply of CuCl and Zn,” Journal of Vacuum Science & Technology, vol. 15, No. 4 (Jul. 1997), pp. 2330-2333. |
Kitigawa, et al. “Hydrogen-mediated low-temperature epitaxy of Si in plasma-enhanced chemical vapor deposition”, Applied Surface Science (2000), pp. 30-34. |
Klaus, et al. “Atomic Layer Deposition of SiO.sub.2 Using Catalyzed and Uncatalyzed Self-Limiting Surface Reactions”, Surface Review & Letters, vol. 6, Nos. 3&4 (1999), pp. 435-448. |
Klaus, et al. “Atomically controlled growth of tungsten and tungsten nitride using sequential surface reactions”. Appl. Surf. Sci., vol. 162-163 (Jul. 1999), pp. 479-491. |
Lee, C. “The Preparation of Titanium-Based Thin Film by CVD Using Titanium Chlorides as Precursors”, Chemical Vapor Deposition, vol. 5, No. 2, (Mar. 1999), pp. 69-73. |
Lee, et al. “Pulsed nucleation for ultra-high aspect ratio tungsten plugfill”, Novellus Systems, Inc. (2001), pp. 1-2. |
Martensson, et al. “Atomic Layer Epitaxy of Copper on Tantalum”, Chemical Vapor Deposition, 3(1) (Feb. 1, 1997), pp. 45-50. |
Martensson, et al. “Atomic Layer Epitaxy of Copper, Growth & Selectivity in the Cu (II)-2,2,6,6-Tetramethyl-3, 5-Heptanedionate/H.sub.2 Process”, J. Electrochem. Soc. ,145(8) (Aug. 1998), pp. 2926-2931. |
Martensson, et al. “Cu(THD).sub.2 as Copper Source in Atomic Layer Epitaxy” , Electrochemical Society Proceedings vol. 97-25, (1998), pp. 1529-1536. |
Maydan, et al. “Cluster Tools for Fabrication of Advanced devices,” Jap. J. of Applied Physics, Extended Abstracts, 22nd Conference Solid State Devices and Materials (1990), pp. 849-852 XP000178141. |
McGeachin, S., “Synthesis and properties of some .beta.-diketimines derived from acetylacetone, and their metal ,complexes”, Canadian J. of Chemistry, vol. 46 (1968), pp. 1903-1912. |
Min, et al. “Atomic layer deposition of TiN thin films by sequential introduction of Ti precursor and NH.sub.3”, Symp.: Advanced Interconnects and Contact Materials and Processes for Future Integrated Circuits (Apr. 13-16, 1998), pp. 337-342. |
Min, et al. “Chemical Vapor Deposition of Ti—Si—N Films with Alternating Source Supply”, Mat., Res. Soc. Symp. Proc., vol. 564 (Apr. 5, 1999), pp. 207-210. |
Min, et al. “Metal-Organic Atomic-Layer Deposition of Titanium-Silicon-Nitride Films”, Applied Physics Letters, American Inst. of Physics, vol. 75(11) (Sep. 13, 1999). |
Niinisto, et al. “Synthesis of oxide thin films and overlayers by atomic layer epitaxy for advanced applications”, Mat. Sci. & Eng., vol. B41 (1996), pp. 23-29. |
Ohba, et al. “Thermal Decomposition of Methylhydrazine and Deposition Properties of CVD TiN Thin Films”, Conference Proceedings, Advanced Metallization for ULSI Applications in 1993 (1994), pp. 143-149. |
Paranjpe, et al. “Atomic Layer Deposition of AlO.sub.x for Thin Film Head Gap Applications,” J. Elec. Soc., vol. 148, No. 9 Sep. 2001 pp. G465-G471. |
Ritala, et al. “Atomic Layer Epitaxy Growth of TiN Thin Films”, J. Electrochem. Soc., 142(8) (Aug. 1995), pp. 2731-2737. |
Ritala, et al. “Perfectly conformal TiN and Al.sub.2O.sub.3 films deposited by atomic layer deposition”, Chemical Vapor Deposition, vol. 5(1) (Jan. 1999), pp. 7-9. |
Rossnagel, et al. “Plasma-enhanced Atomic Layer Deposition of Ta and Ti for Interconnect Diffusion Barriers,” J. Vacuum Sci. & Tech. B., vol. 18, No. 4 (Jul. 2000), pp. 2016-2020. |
Scheper, et al. “Low-temperature deposition of titanium nitride films from dialkylhydrazine-based precursors”, Materials Science in Semiconductor Processing 2 (1999), pp. 149-157. |
Solanki, et al. “Atomic Layer deposition of Copper Seed Layers”, Electrochemical and Solid State Letters, 3(10) (2000), pp. 479-480. |
Suzuki, et al. “A 0.2-.mu.m contact filing by 450.degree. C.-hydrazine-reduced TiN film with low resistivity”, IEDM 92-979, pp. 11.8.1-11.8.3. |
Suzuki, et al. “LPCVD-TiN Using Hydrazine and TiCl.sub.4”, VMIC Conference (Jun. 8-9, 1993), pp. 418-423. |
Wise, et al. “Diethyldiethoxysilane as a new precursor for SiO.sub.2 growth on silicon”, Mat. Res. Soc. Symp. Proc., vol. 334 (1994), pp. 37-43. |
Yamaga, et al. “Atomic layer epitaxy of ZnS by a new gas supplying system in a low-pressure metalorganic vapor phase epitaxy”, J. of Crystal Growth 117 (1992), pp. 152-155. |
Yamaguchi, et al. “Atomic-layer chemical-vapor-deposition of silicon dioxide films with extremely low hydrogen content”, Appl. Surf. Sci., vol. 130-132 (1998) , pp. 202-207. |
European Search Report dated Sep. 23, 2005 from European Application No. 03257169.7. |
Office Action for U.S. Appl. No. 13/012,341 dated Jul. 17, 2012. |
Final Office Action for U.S. Appl. No. 13/012,341 dated Nov. 19, 2012. |
Office Action for U.S. Appl. No. 13/012,341 dated May 14, 2013. |
Final Office Action for U.S. Appl. No. 13/012,341 dated Sep. 10, 2013. |
Office Action for U.S. Appl. No. 10/993,924 dated Mar. 29, 2017. |
Office Action for U.S. Appl. No. 10/016,300 dated Jun. 20, 2003. |
Final Office Action for U.S. Appl. No. 10/016,300 dated Dec. 17, 2003. |
Number | Date | Country | |
---|---|---|---|
20170241020 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
60305970 | Jul 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14152730 | Jan 2014 | US |
Child | 15452293 | US | |
Parent | 13012341 | Jan 2011 | US |
Child | 14152730 | US | |
Parent | 10993924 | Nov 2004 | US |
Child | 13012341 | US | |
Parent | 10016300 | Dec 2001 | US |
Child | 10993924 | US |