1. Technical Field
The present disclosure relates to a lid, the fabricating method thereof, and a MEMS (micro-electro-mechanical system) package made thereby, and more particularly, to a lid with metalized recess, the fabricating method thereof, and a MEMS package made thereby to have an enhanced shielding effect upon the MEMS.
2. Description of the Prior Art
MEMS devices, such as microphones, are in wide use in mobile communication devices, audio devices, etc. To achieve miniaturization, microphones for use as hearing aid units, typically known as condenser microphones, are downsized. However, the transducer therein is fragile and susceptible to physical damage. Furthermore, since signal transmission may be disturbed by the environment, the transducer should be protected from light and electromagnetic interferences. Moreover, favorable acoustic pressure is desired for the transducer to function properly, as far as prevention of light and electromagnetic interference is concerned. Please refer to
Referring to
The conventional condenser microphone provides a protective space defined by the first substrate 10, the through cavity 110 of the conductive plate 11, and the second substrate 12, so as to insulate the semiconductor chip 14 and the transducer 15 and achieve the shielding effect. However, the conductive adhesive layer 13 and the conductive plate 11 differ from each other in constituents, thus deteriorating the shielding effect of the side surface of the condenser microphone. Accordingly, a need is felt of overcoming the aforesaid drawbacks.
The present disclosure is directed to a lid, the fabricating method thereof, and a MEMS package made thereby with a view to boosting the shielding effect upon the MEMS device.
According to some embodiments of the present disclosure, there are provided a lid for use in a MEMS device and a relative manufacturing method, as defined in claims 1 and 12, respectively.
For instance, in one embodiment the lid comprises: a first board with opposite first and second surfaces, the first surface having a first metal layer disposed thereon, wherein a through cavity extends through the first board and the first metal layer; a second board with opposite third and fourth surfaces; an adhesive layer sandwiched between the second surface of the first board and the third surface of the second board to couple the first and second boards together such that the through cavity is unilaterally blocked by the third surface of the second board so as to form a recess from the through cavity; and a first conductor layer disposed on a bottom surface and a side surface of the recess, the side surface being adjacent to the bottom surface.
Furthermore, one embodiment for fabricating a lid for a MEMS device, comprises the steps of: providing a first board with a first surface having an initial metal layer thereon and an opposite second surface; roughening the initial metal layer of the first board so as to form a first metal layer from the initial metal layer; forming an adhesive layer on the second surface of the first board; forming a through cavity to penetrate the first metal layer, the first board, and the adhesive layer; providing a second board with opposite third and fourth surfaces, and coupling the third surface of the second board and the adhesive layer together thereby covering the through cavity unilaterally to form a recess from the through cavity, wherein the recess has a bottom surface and a side surface adjacent thereto; forming a first conductor layer on the bottom surface and side surface of the recess and the first metal layer.
As disclosed in the present description, in one or more embodiments the shielding effect of the lid is enhanced, not only because the recess is formed by coupling two boards—the first board and the second board—of the same material, but also because the inside of the recess is readily covered by a same layer or stack of layers, such as the first conductor layer.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
As described in the present disclosure, in some embodiments the shielding effect of the lid is enhanced, not only because the recess 201 is formed by coupling two boards, the first board 20 and the second board 23, of the same material, but also because the inside of the recess 201 is readily covered with the same material, such as the first conductor layer 25a.
Referring to
Referring to
In the embodiment as a microphone, hole 230 forms an acoustic port allowing entrance of sound waves. In other embodiments, hole 230 forms a port allowing entrance of a pressure wave or other quantity to be measured.
The use of BT-core material for both the first and second boards 20, 23 allows the use of production methods similar to those used in the manufacture of BGA (Ball Grid Array) substrate. This results in easy, reliable and cheap manufacture of the parts, using already installed technology and equipment, as well as allows employment of mass production techniques to further reduce costs. In addition, it is easier to adapt the design to different internal and external sizes without expensive tooling costs both at the supplier side and at the packaging stage. In particular, it is possible to have different recess sizes according to silicon properties of the component 29, to have the right combination for optimal frequency response and SNR (Signal-to-Noise Ratio).
It is to be appreciated that the steps of the illustrated method may be performed sequentially, in parallel, omitted, or in an order different from the order that is illustrated.
The acoustic transducer 70 comprises the MEMS chip 29a and the ASIC chip 29b. The MEMS chip 29a is basically constituted by a MEMS sensor responsive to acoustic stimuli, the ASIC chip 29b is configured for correctly biasing the MEMS chip 29a, for processing the generated capacitive variation signal and providing, on an output OUT of the acoustic transducer 70, a digital signal, which can subsequently be processed by a microcontroller of an associated electronic device.
The ASIC chip 29b includes: a preamplifier circuit 71, of an analog type, which is designed to interface directly with the MEMS chip 29a and has a preamplifier function for amplifying (and appropriately filtering) the capacitive variation signal generated by the MEMS chip 29a; a charge pump 73, which enables generation of an appropriate voltage for biasing the MEMS chip 29a; an analog-to-digital converter 74, for example of the sigma-delta type, configured for receiving a clock signal CK and a differential signal amplified by the preamplifier circuit 71 and converting it into a digital signal; a reference-signal generator circuit 75, connected to the analog-to-digital converter 74 and designed to supply a reference signal for the analog-to-digital conversion; and a driver 76, designed to operate as an interface between the analog-to-digital converter 74 and an external system, for example a microcontroller of an associated electronic device.
In addition, the acoustic transducer 70 may comprise a memory 78 (of a volatile or non-volatile type), for example externally programmable so as to enable use of the acoustic transducer 70 according to different configurations (for example, gain configurations).
The acoustic transducer 70 may be used in an electronic device 80, as shown in
Alternatively, the electronic device 80 can be a hydrophone capable of operating under water, or a hearing-aid device.
The electronic device 80 comprises a microprocessor 81 and an input/output interface 83, for example provided with a keyboard and a display, connected to the microprocessor 81. The acoustic transducer 70 communicates with the microprocessor 81 via a signal-processing block 85 (which can carry out further processing operations of the digital signal at output from the acoustic transducer 70). In addition, the electronic device 80 can comprise a loudspeaker 86, for generating sounds on an audio output (not shown), and an internal memory 87.
Finally, it is clear that numerous variations and modifications may be made to the lid, the manufacturing method and the MEMS device. The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.
Number | Date | Country | |
---|---|---|---|
Parent | 13475512 | May 2012 | US |
Child | 13646249 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IT2009/000527 | Nov 2009 | US |
Child | 13475512 | US |