Information
-
Patent Application
-
20030143845
-
Publication Number
20030143845
-
Date Filed
December 04, 200222 years ago
-
Date Published
July 31, 200321 years ago
-
Inventors
-
Original Assignees
-
CPC
-
US Classifications
-
International Classifications
Abstract
The present invention provides a mask forming method that can reduce manufacturing cost.
Description
FIELD OF THE INVENTION
[0001] The present invention relates to manufacturing fields of semiconductor devices, liquid crystal devices and other elemental devices including stacked thin film layers. The present invention also relates to fields of high-density packages and more particularly to a mask forming method for forming a pattern using liquid material for patterning in the vicinity of atmospheric pressure, without requiring a reduced-pressure environment when manufacturing devices. Moreover, the present invention relates to a semiconductor device manufactured by the mask forming method.
PRIOR ART
[0002] Conventionally, a wiring pattern is formed over elements after the elements are formed on the surface of a wafer substrate in manufacturing a semiconductor device.
[0003]
FIG. 15 and FIG. 16 show a process of a conventional patterning. When wiring is formed, for example, on the surface of a semiconductor wafer 1 shown in FIG. 15(1), a layer for wiring 2 is formed by a plasma CVD method on the surface of the semiconductor wafer 1 where an insulating layer not shown in the figures is formed, as shown in FIG. 15(2). The layer for wiring 2 may be formed by sputtering.
[0004] After the layer for wiring 2 is formed over the semiconductor wafer 1 as described above, the upper surface of the layer for wiring 2 is coated with photoresist so as to form a resist layer. Subsequently, the semiconductor wafer with the resist layer is brought in a step of being exposed to light and a photo-etching step such that a patterned resist layer 3 shown in FIG. 15(3) is formed.
[0005] Furthermore, the semiconductor wafer 1 is brought in a dry etching step as shown in FIG. 16(1), and the layer for wiring 2 is etched using the resist layer 3 as a mask which is shown in FIG. 16(2). After the layer for wiring 2 is left only under the resist layer 3, a solvent removes the resist layer 3 located over the layer for wiring 2.
[0006] The above process allows a wiring pattern 4 to be formed on the surface of the semiconductor wafer 1.
[0007] However, the above manufacturing process and a semiconductor device manufactured by the process cause the following problems.
[0008] Specifically, since most of the conventional process steps are performed in a vacuum (reduced-pressure environment), vacuum-processing equipment is essential for the above manufacturing process steps. The vacuum-processing equipment consumes the considerable amount of energy including energy for fundamental units for processing surrounding exhaust air and cooling water when performing the vacuum process. The consumed energy undesirably corresponds to 60% or more of the energy required for the entire manufacturing process.
[0009] The following constituent elements of a vacuum-processing equipment can be considered as factors for increase in consumed energy. Such constituent elements include a chamber load lock for transporting a work from an atmospheric pressure environment to a vacuum condition, a plurality of dry pumps or turbopumps for evacuating a processing chamber, footprint enlarged in association with pluralized chambers to enhance throughput, the resulting expansion of clean room area, and increased fundamental facilities to maintain these constituent elements.
[0010] Although film formation has been conventionally performed by sputtering or CVD under reduced pressure, it is being advanced to develop a method for forming a film using liquid material for patterning under atmospheric pressure in light of the above problems.
[0011] Further, in the conventional process, a material layer for pattering formed on the entire surface of a member to be processed is etched so as to form a pattern. However, this etching undesirably consumes the considerable amount of energy.
[0012] In view of the above conventional problems, the present invention is intended for providing a mask forming method, which forms a pattern using liquid material for patterning.
[0013] Moreover, the present invention is intended for providing a method of forming a mask capable of improving adhesiveness to a member to be processed. The present invention is also intended for providing a method of forming a mask capable of improving patterning performance of the mask as well as pattern forming performance of a material for patterning.
[0014] Also, the present invention is intended for providing a method of removing a mask manufactured by the above mask forming method. Moreover, the present invention is intended for providing semiconductor devices, electric circuits, display modules, color filters, and emissive devices manufactured by the above mask forming method and the mask removing method.
DISCLOSURE OF THE INVENTION
[0015] In order to achieve the above goals, the mask forming method of the present invention forms a mask on the surface of a member to be processed in order to form a desired pattern using liquid material for patterning. The method also comprises: a mask-material layer forming step of forming a mask-material layer on the entire surface of the member to be processed; a patterning step of patterning by removing the mask-material layer in a pattern-formation area; a film forming step of forming the desired pattern by applying the liquid material for patterning; a heating step of drying and baking the liquid material for patterning; and a mask removing step of removing the mask.
[0016] Here, the mask-material layer forming step, in case of a wet-type method, may employ an ink-jet method, an LSMCD method, a spin method, or spray, dip or direct coating (CAP Coat). On the other hand, the mask-material layer forming step, in case of a dry-type method, may employ a plasma CVD method, a plasma polymerization method (MOCVD, atmospheric pressure CVD, P-CVD, optical CVD, thermal CVD), a deposition method, a sputtering method, ion plating, or electron rays irradiation.
[0017] In the patterning step, electric current is applied to a conductive material pattern formed on the surface of the member to be processed in electrolytic solution such as carbonated water so as to electrolyze and remove the mask-material layer on the conductive material pattern. Consequently, it is possible to implement patterning along the conductive material pattern with simple process. Therefore, the manufacturing cost can be reduced.
[0018] Moreover, the mask forming method forms the mask for forming a predetermined pattern above the surface of the member to be processed and comprises a heating step of heating the mask-material layer before or after the pattern forming step. The heating treatment improves mechanical strength of the mask and restrains interfusion of the mask material with the liquid material.
[0019] The heating step may employ reduced-pressure drying in gas atmosphere activated by plasma, electron gun or photoexcitation method or in inert gas atmosphere, microwave heating, high-frequency heating, lamp-heating using a method of steps for rising temperature, or heating medium heating using a method of steps for rising temperature.
[0020] Also, a step of cleansing the surface of the member to be processed may be provided prior to the mask-material layer forming step. This prevents interfusion of impurities.
[0021] The cleansing step in case of a wet-type method may employ cleansing using ultrapure water, oxidization cleansing using ozone water, detergent cleansing using surfactant, light-etching using hydrogen fluoride, or organic cleansing. The cleansing step in case of a dry-type method may employ ultraviolet cleansing, oxidization cleansing using ozone gas, or light-etching using gas activated by plasma, election gun or photoexcitation method.
[0022] A step of a lyophilic surface treatment may be implemented prior to the mask-material layer forming step so as to render the entire surface of the member to be processed lyophilic to the mask material. Consequently, it is possible to enhance adhesiveness of the mask.
[0023] A step of a lyophobic surface treatment may be implemented prior to the mask-material layer forming step so as to render the entire surface of the member to be processed lyophobic against the mask material. Consequently, it is possible to enhance stripping properties of the mask.
[0024] A step of the lyophilic treatment may be implemented prior to the mask-material layer forming step so as to render the surface of the member to be processed in the pattern-formation area lyophilic to the mask material. Consequently, it is possible to enhance adhesiveness of the mask to the pattern-formation area, thereby improving the patterning performance.
[0025] A step of lyophobic surface treatment may be implemented prior to the mask material layer forming step so as to render the surface of the member to be processed excluding the pattern-formation area lyophobic against the mask material. Consequently, it is possible to enhance stripping properties of the mask with respect to the member to be processed excluding the pattern formation area, thereby improving the patterning performance.
[0026] Further, before the process of forming the mask material a step of lyophilic surface treatment may be implemented prior to the mask-material layer forming step so as to render the surface of the member to be processed in the pattern-formation area lyophilic to the mask material, while a step of the lyophobic surface treatment may be provided so as to render the surface of the member to be processed excluding the pattern-formation area lyophobic against the mask material.
[0027] Consequently, it is possible to enhance adhesiveness of the mask with respect to the member to be processed in the pattern-formation area and also to enhance stripping properties of the mask with respect to the member to be processed excluding the pattern-formation area. Then, the patterning performance can be improved.
[0028] Further, before the process of patterning, a step of a lyophilic surface treatment may be implemented so as to render the surface of the mask material layer in the pattern-formation area lyophilic to a mask removing material.
[0029] Consequently, the pattern-formation area readily conforms to the mask removing material, thereby shortening the patterning process time. Therefore, the manufacturing cost can be reduced.
[0030] Further, before the process of patterning, a step of the lyophobic surface treatment may be implemented so as to render the surface of the mask material layer excluding the pattern-formation area lyophobic against the mask removing material. Consequently, the area excluding the pattern formation area repels the mask removing material thereby improving the patterning performance.
[0031] Further, a step of surface lyophilic treatment may be implemented prior to the patterning step so as to render the surface of the mask-material layer in the pattern-formation area lyophilic to the mask removing material. Also, a step of the lyophobic surface treatment may be implemented so as to render the surface of the mask-material layer excluding the pattern-formation area lyophobic against the mask removing material. Consequently, it is possible to shorten the patterning process time, thereby improving the patterning performance.
[0032] Further, a step of the lyophobic surface treatment may be implemented prior to the patterning step so as to render the entire surface of the mask material layer lyophobic against the material for patterning. Also, the patterning step removes the mask material in the pattern-formation area, which has been subjected to the lyophobic surface treatment. Therefore, it is possible to improve the pattern forming performance by liquid material for patterning.
[0033] Further, a step of the lyophilic surface treatment may be implemented prior to the heating step so as to render the surface of the member to be processed in the pattern-formation area lyophilic to the material for patterning. Consequently, it is possible to shorten the time of forming the pattern using the material for patterning, thereby reducing the manufacturing cost.
[0034] Further, a step of the lyophobic surface treatment may be implemented prior to the heating step so as to render the surface of the mask-material layer excluding the pattern formation area lyophobic against the material for patterning. Consequently, it is possible to improve the pattern forming performance by the liquid material for patterning.
[0035] Further, before the process of heating, a step of the lyophilic surface treatment may be implemented so as to render the surface of the member to be processed in the pattern-formation area lyophilic to the material for patterning, while a step of the lyophobic surface treatment may be implemented so as to render the surface of the mask-material layer excluding the pattern-formation area lyophobic against the material for patterning. Consequently, it is possible to shorten the time of forming the pattern using the material for patterning, thereby improving the pattern forming performance by the liquid material for pattering.
[0036] Further, a step of the lyophilic surface treatment may be implemented after the heating step so as to render the surface of the member to be processed in the pattern-formation area lyophilic to the material for patterning.
[0037] Consequently, it is possible to shorten the time of forming the pattern using the material for patterning, thereby reducing the manufacturing cost.
[0038] Further, a step of the lyophobic surface treatment may be implemented after the heating step so as to render the surface of the mask-material layer excluding the pattern-formation area lyophobic against the material for patterning. Consequently, it is possible to improve the patterning performance by the liquid material for patterning.
[0039] Further, a step of the lyophilic surface treatment may be implemented after the heating step so as to render the surface of the member to be processed in the pattern-formation area lyophilic to the material for pattering. Also, a step of the lyophobic surface treatment may be implemented so as to render the surface of the mask-material layer excluding the pattern-formation area lyophobic against the material for patterning. Consequently, it is possible to shorten the time of forming the pattern using the material for patterning and to improve the pattern forming performance by the liquid material for patterning.
[0040] Here, the step of the lyophilic surface treatment in case of a wet-type method may employ water-deionizing treatment, oxidization treatment using ozone water, treatment using acid such as hydrogen fluoride, treatment using alkali, dip treatment using surfactant such as anion, nonion, or cation, treatment using silane, alminate or titanate coupling agent, SAM film formation, or treatment using organic solvent. Also, the step of the lyophilic surface treatment in case of a dry-type method may employ ultraviolet treatment, oxidization treatment using ozone gas generated by plasma, an electron gun, or photoexcitation method, electron rays irradiation, deposition of silane coupling agent, or plasma polymerization such as polyethylene.
[0041] Further, the step of the lyophobic surface treatment in case of a wet-type method may employ dip treatment using surfactant such as anion, nonion, or cation, treatment using silane, alminate or titanate coupling agent, or SAM film formation. The step of the lyophobic surface treatment in case of a dry-type method may employ fluoride treatment using plasma, an electron gun, or photoexcitation method, plasma polymerization of fluoroplastic film or silicone film, oxidization treatment using ozone gas generated by plasma, an electron gun or photoexcitation method, or deposition of silane coupling agent.
[0042] Here, the mask material may be obtained by applying the fluoride treatment to the surface of an organic matter such as fluoroplastic polymerized film, fluorine compound, and resist. Also, the electromagnetic waves may be replaced by ultraviolet rays. Consequently, the mask material itself has the lyophobic property and also can be easily treated to have the lyophilic property.
[0043] Further, the member to be processed may be maintained in inert gas atmosphere in each of the above steps. The member to be processed may be maintained in inert gas atmosphere when transported between the respective steps. Consequently, it is possible to prevent oxidization and corrosion of the mask material.
[0044] Further, the member to be processed may be maintained in active gas atmosphere in each of the above steps. The member to be processed may be maintained in active gas atmosphere when transported between the respective steps. Consequently, it is possible to prevent oxidization and reduction of the mask material.
[0045] On the other hand, the mask removing method of the present invention comprises a step of removing the mask after applying the liquid material for patterning so as to form the predetermined pattern using the mask manufactured by any one of the above mask manufacturing methods.
[0046] Here, the mask removing step of a wet-type method may employ oxidization treatment using ozone water, organic cleansing using acetone or resist peeling agent, or supercritical treatment using carbon dioxide. The mask removing step of a dry-type method may employ ultraviolet rays irradiation, or ashing using gas activated by plasma, an electron gun or photoexcitation method.
[0047] Further, a step of removing the remainder of the material for patterning on the surface of the mask may be provided prior to the mask removing step. Consequently, it is possible to shorten the process time of the mask removing step, thereby reducing the manufacturing cost.
[0048] Here, the remainder removing step of a wet-type method may employ spin etch or CMP. Also, the remainder removing step of a dry-type method may employ etch back using gas activated by plasma, electron gun or photoexcitation method.
[0049] A step of molding the surface of the pattern may be provided prior to the mask removing step. Consequently, it is possible to mold the pattern into a predetermined shape without damaging it.
[0050] The molding step of a wet-type method may be performed by removing a coating film on the upper face of the mask using spin etch or CMP. The molding step of a dry type method may employ etch back using gas activated by plasma, electron gun, or by photoexcitation method.
[0051] A step of cleansing the member to be processed may be provided prior to the mask removing step. Consequently, it is possible to prevent interfusion of impurities.
[0052] Here, the cleansing step of a wet-type method may employ cleansing using purified water, oxidization cleansing using ozone water, acid-alkali cleansing (RCA cleansing), organic cleansing (IPA), light etching using hydrogen fluoride, or supercritical treatment using carbon dioxide. The cleansing step of a dry-type method may employ ultraviolet cleansing, oxidization cleansing using ozone gas, or ashing using gas activated by plasma, electron gun or photoexcitation method.
[0053] Further, a step of the lyophilic surface treatment may be implemented prior to the mask removing step so as to impart a property lyophilic to the mask removing material. Consequently, it is possible to provide conformity to the mask removing material and to shorten the time of removing the mask. Therefore, the manufacturing cost can be reduced.
[0054] The step of the lyophilic surface treatment of a wet-type method may employ water-deionizing treatment, oxidization using ozone water, or acid-alkali cleansing (RCA cleansing). The step of the lyophilic surface treatment of a dry-type method may employ ultraviolet treatment, oxidization treatment using ozone gas generated by plasma, electron gun, or photoexcitation method, deposition of silane coupling agent, or plasma polymerization.
[0055] A step of implementing preliminary heating on the mask is provided prior to the mask removing step. Also, it is preferable that the step of implementing the preliminary heating on the mask be performed prior to the mask removing step. Consequently, it is possible to shorten the time of removing the mask thereby reducing the manufacturing cost.
[0056] The step of implementing the preliminary heating can be performed by lamp heating or resistance heating.
[0057] Moreover, the removing step may be performed by heating the mask-material layer through the member to be processed while simultaneously irradiating the member with electromagnetic waves. Alternatively, the removing step may be performed by heating the mask-material layer through the member to be processed after irradiating the member with electromagnetic waves. The mask-material layer may also be directly heated, not through the member to be processed. Consequently, it is possible to shorten the patterning time.
[0058] Further, a step of molding the surface of the pattern may be provided after the mask removing step. Consequently, it is possible to improve precision in processing the pattern.
[0059] Here, a step of repairing damage on the pattern may be provided after the mask removing step. Consequently, it is possible to improve the physical properties of the pattern.
[0060] Here, the repairing step may employ microwave heating, high-frequency heating, lamp heating, or heating-medium heating.
[0061] Further, a step of the lyophilic surface treatment may be implemented after the mask removing step so as to impart the property lyophilic to a material of a film to be formed next to the pattern. Consequently, it is possible to improve adhesiveness to the next film.
[0062] Here, the step of the surface treatment of a wet-type method may employ water-deionizing treatment, oxidization treatment using ozone water, acid-alkali treatment, dip treatment using surfactant such as anion, nonion, or cation, treatment using silane, alminate or titanate coupling agent, SAM film formation, or treatment using organic solvent. Also, the step of the surface treatment of a dry-type method may employ ultraviolet treatment, oxidization treatment using ozone gas generated by plasma, an electron gun, or photoexcitation method, electron rays irradiation, deposition of silane coupling agent, or plasma polymerization such as polyethylene.
[0063] Further, the member to be processed may be maintained in inert gas atmosphere in each of the above steps. Also, the member to be processed may be maintained in inert gas atmosphere when transported between the respective steps. Consequently, it is possible to prevent oxidization and corrosion of the mask material.
[0064] Further, the member to be processed may be maintained in active gas atmosphere in each of the above steps. Also, the member to be processed may be maintained in active gas atmosphere when transported between the respective steps. Consequently, it is possible to prevent oxidization and reduction of the mask material.
[0065] Further, prior to the mask-material layer forming step, a step of the lyophilic surface treatment may be implemented so as to render the surface of the member to be processed in the pattern-formation area lyophilic to the mask material while a step of the lyophobic surface treatment may be implemented so as to render the surface of the member to be processed excluding the pattern-formation area lyophobic against the mask material. Consequently, it is possible to improve adhesiveness of the mask to the pattern-formation area of the member to be processed as well as stripping property of the mask with respect to the member to be processed excluding the pattern-formation area. Therefore, the patterning performance can be enhanced.
[0066] Further, a step of the lyophilic surface treatment may be implemented prior to the patterning step so as to render the surface of the mask-material layer in the pattern-formation area lyophilic to the mask removing material. Consequently, the mask-material layer in the pattern-formation area readily conforms to the mask removing material thereby shortening the patterning process time. Therefore, the manufacturing cost can be reduced.
[0067] Further, a step of the lyophobic surface treatment may be implemented prior to the patterning step so as to render the surface of the mask-material layer excluding the pattern-formation area lyophobic against the mask removing material. Consequently, the mask-material layer excluding the pattern-formation area repels the mask removing material, thereby improving the patterning performance.
[0068] Further, prior to the patterning step, a step of the lyophilic surface treatment may be implemented so as to render the surface of the mask-material layer in the pattern-formation area lyophilic to the mask removing material while a step of the lyophobic surface treatment may be implemented so as to render the surface of the mask-material layer excluding the pattern-formation area lyophobic to the mask removing material. Consequently, it is possible to shorten the patterning process time, thereby improving the patterning performance.
[0069] Also, the above lyophilic surface treatment and/or the lyophobic surface treatment may be performed prior to the patterning step of the wet-type method.
[0070] Here, a direct draw step may be performed by introducing source gas of the mask material to the surface of the member to be processed and also irradiating electromagnetic waves to the surface of the member to be processed in the pattern-formation area in order to prevent formation of the mask-material layer in the pattern-formation area. Consequently, it is possible to reduce the number of steps and reduce the manufacturing cost.
[0071] Further, the lyophobic surface treatment may be performed by forming a fluoroplastic polymerized film. The lyophobic surface treatment may be performed by conducting fluoride treatment on the surface. Moreover, the lyophilic surface treatment may be performed by irradiating electromagnetic waves. The electromagnetic waves may be replaced by ultraviolet rays. Consequently, it is possible to easily perform the lyophobic surface treatment and the lyophilic surface treatment. Therefore, the manufacturing cost can be reduced.
[0072] Further, the lyophilic surface treatment may be performed after the patterning step by exposing the member to be processed to gas including fluorine and irradiating the member to be processed with electromagnetic waves so as to render the surface of the member to be processed in the pattern-formation area lyophilic to the material for patterning. Simultaneously, the lyophobic surface treatment may be performed so as to render the surface of the member to be processed excluding the pattern-formation area lyophobic against the material for patterning. Consequently, it is possible to reduce the number of steps and thus reduce the manufacturing cost.
[0073] On the other hand, a semiconductor device of the present invention is manufactured by any one of the above mask forming methods and/or by any one of the above mask removing methods. Consequently, it is possible to manufacture the semiconductor device with the above-mentioned effects.
[0074] Further, an electric circuit of the present invention is manufactured by any one of the mask forming methods and/or by any one of the mask removing methods. Consequently, it is possible to manufacture the electric circuit with the above-mentioned effects.
[0075] Further, a display module of the present invention is manufactured by any one of the above mask forming methods and/or by any one of the mask removing methods. Consequently, it is possible to manufacture the display module with the above-mentioned effects.
[0076] Further, an emissive device of the present invention is manufactured by any one of the above mask forming methods and/or by any one of the mask removing methods. Consequently, it is possible to manufacture the emissive device with the above-mentioned effects.
BRIEF DESCRIPTION OF THE DRAWINGS
[0077]
FIG. 1 is a first explanatory diagram illustrating a mask forming method according to a first embodiment.
[0078]
FIG. 2 is a second explanatory diagram illustrating the mask forming method according to the first embodiment.
[0079]
FIG. 3 is a flowchart of the mask forming method according to the first embodiment.
[0080]
FIG. 4 is an explanatory diagram illustrating a polymerized film forming device.
[0081]
FIG. 5 is an explanatory diagram illustrating an electrolyzing device.
[0082]
FIG. 6 is an explanatory diagram illustrating a mask-removing device according to the first embodiment.
[0083]
FIG. 7 is a graph illustrating changes of contact angels at the surface of a substrate to be processed when the substrate provided with a fluoroplastic polymerized film is irradiated with ultraviolet rays and simultaneously heated in varying temperatures.
[0084]
FIG. 8 is a graph illustrating changes of contact angles at the surface of a substrate to be processed when the substrate provided with a fluoroplastic polymerized film is heated in varying temperatures after irradiated with ultraviolet rays.
[0085]
FIG. 9 is a first explanatory diagram illustrating a process of forming an organic electroluminescence(EL) element according to the first embodiment.
[0086]
FIG. 10 is a second explanatory diagram illustrating the process of forming the organic electroluminescence(EL) element according to the first embodiment.
[0087]
FIG. 11 is a third explanatory diagram illustrating the process of forming the organic electroluminescence(EL) element according to the first embodiment.
[0088]
FIG. 12 is a flowchart illustrating a mask forming method and a mask removing method according to a third embodiment.
[0089]
FIG. 13 is an explanatory diagram illustrating a direct imager.
[0090]
FIG. 14 is a flowchart of a mask forming method according to a fourth embodiment.
[0091]
FIG. 15 is a drawing of a first step of a conventional patterning.
[0092]
FIG. 16 is a drawing of a second step of the conventional patterning.
REFERENCE NUMERALS
[0093]
1
|
|
10
member to be processed
|
102
supplying pipe
|
104
processed gas supply unit
|
106
liquid organic matter
|
108
container
|
110
heating medium
|
112
flow volume control valve
|
114
flow volume control valve
|
116
carrier pipe
|
118
carrier gas supply unit
|
120
flow volume control valve
|
122
pipe
|
124
second processed gas supply unit
|
130
polymerized film forming device
|
131
processing chamber
|
132
processing stage
|
134
high-frequency electrode
|
135
high-frequency power soune
|
304
metal pattern
|
306
insulating film
|
308
polymerized film
|
310
new pattern
|
330
electrolyzing device
|
331
container
|
334
electrode
|
335
power source
|
338
electrolytic solution
|
430
mask-removing device
|
431
fluorite
|
432
processing chamber
|
433
processing stage
|
435
processed gas supply route
|
436
processed gas exhaust mute
|
438
sealing member
|
440
ultraviolet lamp
|
441
glass plate
|
442
ultraviolet lamp chamber
|
502
supplying pipe
|
504
processed gas supply unit
|
506
liquid organic matter
|
508
container
|
510
heating medium
|
512
flow volume control valve
|
514
flow volume control valve
|
516
carrier pipe
|
518
carrier gas pipe
|
520
flow volume control valve
|
522
pipe
|
524
second processed gas supply unit
|
530
lyophobic surface treatment device
|
531
processing chamber
|
532
stage
|
533
plasma chamber
|
534
ceunter electrode
|
535
supplying pipe
|
536
high-frequency power source
|
538
source gas
|
541
ultraviolet lamp chamber
|
542
ultraviolet lamp
|
543
nitrogen gas
|
544
fluorite
|
548
ultraviolet ray
|
600
glass substrate
|
601
transparent electrode
|
602
light-shielding member
|
603
fluoroplastic polymerized him
|
604
hole injection member
|
605
self-emissive member
|
606
electron transport member
|
607
electrode
|
|
BEST MODE FOR CARRYING OUT THE PRESENT INVENTION
[0094] With reference to the accompanying drawings, preferred embodiments will be explained in detail as to a mask forming method, a mask removing method, a semiconductor device, an electric circuit, a display module and an emissive device according to the present invention. The following embodiments only serve as one of the aspects of the present invention, and the present invention is not therefore limited to the following embodiments.
First Embodiment
[0095] First of all, a mask forming method is explained as a first embodiment. The mask forming method according to the first embodiment performs patterning by conducting electric current to a metal pattern 304 in electrolytic solution and then electrolyzing a mask-material layer on the metal pattern 304 to remove it. The patterning is for forming a new pattern 310 shown in FIG. 2(2) on the metal pattern 304, which is formed on the surface of a member to be processed 10 shown in FIG. 1(1). The method includes a first step of forming the mask-material layer over the entire surface of the member to be processed, a second step of heating the mask-material layer, a third step of patterning by removing the mask-material layer that remains in a pattern-formation area in the electrolytic solution and a forth step of heating the mask-material layer. Here, the member to be processed in the first embodiment may be a silicon wafer.
[0096] The mask forming method is first explained as following with taking the member to be processed 10 as an example. Here, the member to be processed 10 is provided with the metal pattern 304 such as wiring on the surface thereof and with an insulating layer 306 on the surface thereof excluding a metal pattern formation area, as shown in FIG. 1(1). FIG. 3 shows a flowchart illustrating this example.
[0097] First, the member to be processed is cleansed, and the surface thereof is treated to have the property lyophilic to liquid (S350). A cleansing unit for the member to be processed repeats cleansing using ultrapure water or chemicals with functions such as maceration, oscillation, supersonic vibration and spray in case of a wet-type method. It is also possible to use a cleansing unit that introduces hydrogen fluoride into a chamber where the member to be processed is placed so as to etch an oxide film on the surface of the member to be processed. On the other hand, in case of a dry-type method, ultraviolet rays are irradiated onto the member to be processed in the atmosphere including oxygen and react with an organic matter attached to the surface to remove this organic matter.
[0098] Next, a fluoroplastic polymerized film 308 is formed over the surface of the member to be processed as a mask material, as shown in FIG. 1(2) (S352). Besides the fluoroplastic polymerized film, it is also possible to use a lyophobic material such as a silicone polymerized film as a mask. However, it is preferable to use a material that exhibits volatility to electromagnetic waves. Liquid organic matter including straight-chain PFC such as C4F10 and C8F18 is used as an ingredient of the fluoroplastic polymerized film. When the straight-chain PFC gas is made to be plasma-state, the straight-chain PFC becomes active. The straight-chain PFC then reaches the surface of the member to be processed and polymerizes with the surface, such that the fluoroplastic polymerized film is formed over the surface of the member to be processed.
[0099] Forming the fluoroplastic polymerized film uses such a polymerized film forming device as below. FIG. 4 shows an explanatory diagram of the polymerized film forming device. A lyophobic surface treatment device 130 includes a processing chamber 131 so as to place the member to be processed 10 such as silicone wafer on a processing stage 132 in the processing chamber 131. Moreover, the device includes high-frequency electrodes 134 over and under the processing chamber 131, and they are connected to a high-frequency power source 135.
[0100] Moreover, a processed gas supply unit 104 is connected to the processing chamber 131 through a supplying pipe 102 provided with a flow volume control valve 112. The processed gas supply unit 104 includes a container 108 that stores liquid organic matter 106 including straight-chain PFC such as C4F10 and C8F18. The container 108 is provided with a heating medium 110 as a heating head in order to heat and vaporize the liquid organic matter 106. Also, a carrier gas supply unit 118 is connected to the processing chamber 131 through a carrier pipe 116 provided with a flow volume control valve 114 on the lower course side of the flow volume control valve 112 provided for the supplying pipe 102. Inert gas such as nitrogen and argon is used as carrier gas.
[0101] A second processed gas supply unit 124 may be connected to the supplying pipe 102 through a pipe 122 provided with a flow volume control valve 120 as shown by the dotted line of FIG. 4. In that case, CF4 is supplied and added to vapor of the liquid organic matter 106 as the second processed gas from the second processed gas supply unit 124. The mixed gas of the organic matter vapor and CF4 is made to be plasma-state in the processing clamber 131. Then, activated fluorine reacts with vapor of the liquid organic matter 106 and gets incorporated into a fluorine-eliminated portion of a film polymerized over the surface of the member to be processed 10, thereby improving lyophobic property of the polymerized film.
[0102] Next, the fluoroplastic polymerized film is patterned by electrolysis (S354).
[0103]
FIG. 5 shows an explanatory diagram of an electrolyzing device. An electrolyzing device 330 includes a container 331 filled with electrolytic solution 338. The electrolytic solution is satisfactory as long as it is ion-resolved, and carbonated water or plating liquid may be used. An electrode 334 is provided in the electrolytic solution 338, and the member to be processed 10 can also be immersed therein. Also, a power source 335 is provided so as to apply voltage between the metal pattern 304 of the immersed member to be processed 10 and the electrode 334. Specifically, the member to be processed 10 is first immersed in the electrolytic solution 338 of the electolyzing device 330 shown in FIG. 5. Next, voltage is applied between the metal pattern 304 on the surface of the member to be processed 10 and the electrode 334. Consequently, the polymerized film 308 on the metal pattern 304 is electolyzed and then removed. The polymerized film 308 is thereby patterned along the metal pattern 304, as shown in FIG. 1(3).
[0104] Also, the lyophilic surface treatment may be implemented prior to the electrolysis so as to render the fluoroplastic polymerized film in the pattern-formation area lyophilic to the electrolytic solution. More specifically, part of the polymerized film is decomposed and removed by irradiating ultraviolet rays onto the polymerized film 308 in the pattern-formation area. Consequently, the electrolytic solution readily conforms to the polymerized film. The patterning is thus promoted, thereby shortening the process time.
[0105] Moreover, the lyophilic surface treatment by ultraviolet irradiation may be added so as to give the lyophilic property to the pattern-formation area after the electrolysis (S380). This improves adhesiveness between the surface of the member to be processed and the material for patterning.
[0106] Also, the fluoroplastic polymerized film may be heated. The heating treatment is performed with a baking furnace. The kind of the baking furnace differs according to the heating method to be employed. The baking furnace employing a convective method flows air or nitrogen gas heated by a heating medium into the inside thereof and then heats the surface of the mask-material layer. An irradiation method irradiates infrared light or micro waves from above the mask-material layer, such that the mask-material layer absorbs it to be heated. In contrast with these methods, a conduction method utilizes heat conduction from a heating element below the member to be processed in order to apply heat and readily keeps the temperature of the member constant. Moreover, it is possible to release low molecular weight organic matter contained inside the furnace in a short period of time by employing a structure of decreasing pressure inside the furnace. Consequently, the low molecular weight organic matter contained in the polymerized film can be vaporized and removed, thereby preventing the low molecular weight organic matter from getting mixed in the material for patterning in a film forming process as will be described later.
[0107] Also, the lyophilic surface treatment may be implemented prior to the electrolysis in order to render the fluoroplastic polymerized film in the pattern-formation area lyophilic to the electrolytic solution. Concretely, part of the polymerized film is decomposed and removed by irradiating ultraviolet rays onto the polymerized film 308 in the pattern-formation area. Consequently, the electrolytic solution readily conforms to the polymerized film. The patterning is thus promoted, thereby shortening the process time.
[0108] The mask for the material for patterning is formed in the above manners.
[0109] Subsequently, solution of material for patterning is supplied over the surface of the member to be processed so as to form a film as shown in FIG. 2(1) (S356). Also, since the fluoroplastic polymerized film is lyophobic against the material for patterning, the material for patterning does not get accumulated on the mask material. Next, the solution of material for patterning is dried and subsequently heated. The fluoroplastic polymerized film 308 as the mask material is then removed so as to realize the complete state shown in FIG. 2(2).
Second Embodiment
[0110] Next, mask removing step according to the second embodiment is implemented by irradiating the polymerized film with ultraviolet rays. The member to be processed 10 is placed in a processing chamber 432 of a surface-reforming device 430 shown in FIG. 6, and an ultraviolet lamp 440 is placed above the processing chamber 432. The ultraviolet lamp 440 is placed inside an ultraviolet lamp chamber 442, where nitrogen gas can be replaceable, because it would be burned when lighted in the atmospheric air. The wall surface of the ultraviolet lamp chamber 442 on the side of the processing chamber 432 is formed of a glass plate 441 that transmits ultraviolet rays, such that the member to be processed 10 can be irradiated with ultraviolet rays. On the other hand, the wall surface of the processing chamber 432 on the side of the ultraviolet lamp chamber 442 is formed of a fluorite 431 that transmits ultraviolet rays. This configuration allows the member to be processed to be irradiated with ultraviolet rays and also prevents the glass plate 441 from getting eroded by excited active species of fluorine, which is supplied to the processing chamber 432. Next, inert gas such as N2 gas is introduced into the processing chamber 432 from a processed gas supply route 435, and the surface of the member to be processed 10 is irradiated with ultraviolet rays, thereby cutting bond of the fluoroplastic polymerized film and removing the film.
[0111] When employing a mask material which can further be decomposed by heat such as the fluoroplastic polymerized film, applying heat can shorten the patterning time. For example, FIG. 7 shows contact angles at the surface of a substrate to be processed provided with the fluoroplastic polymerized film when the substrate is heated in various degrees of temperature while simultaneously being irradiated with ultraviolet rays. Also, the wavelength of irradiated ultraviolet rays is 172 nm, and patterning time is set equal for each substrate temperature in FIG. 7. Also, a lower contact angle at the substrate surface after patterning indicates a greater degree of decomposition and removal of the lyophobic fluoroplastic polymerized film. As shown in FIG. 7, the contact angle is remarkably lowered when the substrate temperature is set to 120° C. or more, in comparison with the case that the substrate temperature is set to 25° C. of the room temperature. Therefore, the patterning time can be shortened.
[0112] It is also possible to shorten the process time by implementing heat treatment after the mask material is irradiated with ultraviolet rays. For example, FIG. 8 shows contact angles at the surface of the substrate to be processed provided with the fluoroplastic polymerized film when the substrate is heated in various degrees of temperature after being irradiated with ultraviolet rays in room temperature. Here, the wavelength of irradiated ultraviolet rays is 172 nm, and the time for irradiating ultraviolet rays and that for heating are equal, respectively, for each substrate temperature m FIG. 8.
[0113] As shown in FIG. 8, the contact angle is remarkably lowered when the substrate temperature is set to 120° C. or more, in comparison with the ease that the substrate temperature is set to 25° C. of the room temperature. Therefore, the patterning time can be shortened.
[0114] Moreover, the polymerized film may be burned and removed away by being exposed to activated ozone gas or oxygen gas. In that case, the fluoroplastic polymerized film is decomposed and removed by carbon dioxide gas and fluorine gas.
[0115] Also, it is preferable that only a mask-material layer with a small heat capacity be heated in the above heat treatment from the viewpoint of energy saving.
[0116] Moreover, section molding, which smoothes the surface of a formed pattern, may be implemented, keeping the pattern to a predetermined height before or after the removal of the polymerized film. Precision of the pattern process is thereby improved. The molding step can be implemented by etch back or Chemical Mechanical Polishing (CMP). Also, it is preferable to repair the pattern when it is damaged due to molding. The properties of the pattern are thereby improved.
[0117] When forming a protective film as a film next to the formed pattern, it is also preferable to implement the lyophilic surface treatment for imparting the property lyophilic to this next film after the removal of the polymerized film. Consequently, it is possible to improve adhesiveness to the next film.
[0118] In each of the above steps, the member to be processed may be maintained in inert gas atmosphere. Also, the member to be processed may be maintained in inert gas atmosphere when being transported between the respective steps. This prevents oxidization and corrosion of the mask material.
[0119] Types of devices for transporting the member to be processed from a unit to another includes a sheet-feeding type for transporting a wafer one by one and a batch type for transporting plural units of the members to be processed being accommodated in a cassette. Air-transport and belt-transport can be given as examples of the sheet-feeding type. The air transport blows air diagonally upwards from the backside of the member to be processed in order to float the member while giving the member thrust in a certain direction. On the other hand, the batch type transports cassettes storing the members to be processed using an automated guided vehicle (AGV) or a robot. In each of the above steps, the member to be processed may be maintained in active gas atmosphere. Also, the member to be processed may be maintained in active gas atmosphere when transported between the above respective steps. This prevents oxidization and reduction of the mask material.
[0120] In the above mask forming method of the first embodiment, patterning is implemented by conducting electric current to the metal pattern formed on the surface of the member to be processed electrolytic solution and then electrolyzing the mask-material layer on the metal pattern to remove it. Consequently, it is possible to easily perform patterning along the metal pattern. Therefore, the manufacturing cost can be reduced.
[0121] A structure, in which a functional thin film is formed on a substrate by the pattern forming method of the present invention, may be applied to, for example, semiconductor devices, electric circuits, display modules and emissive devices.
EXAMPLE 2
[0122] As the second example, FIG. 9 through FIG. 11 simply illustrate one example of a process of forming a thin film of organic electroluminescence (EL) used as an emissive layer of an emissive element. This process comprises forming an electrode 607 located oppositely to a transparent conductive member 601 formed on a glass substrate 600 and sandwiching an emissive member 605.
[0123] First of all, the transparent conductive member 601 is deposited on the entire surface of the glass substrate 600 and etched to form a desired pattern as shown in FIG. 9(1) to FIG. 9(3).
[0124] Preferably, the glass substrate 600 is cleansed with a wet-type or a dry-type method as explained in the first Example.
[0125] Moreover, the pattern is formed by etching after the transparent conductive member 601 is formed on the entire surface in this Example. On the other hand, it may be also possible to employ a method of implementing the lyophobic surface treatment on the substrate excluding the pattern-formation area and coating only the pattern-formation area with the transparent conductive member 601 in the form of liquid. In that case, the lyophilic surface treatment is preferably implemented on the pattern-formation area.
[0126] Next, a light-shielding member 602 is formed over the entire surface of the glass substrate 600, but the light-shielding member remaining in a pixel aperture area is removed in order to form a desired pattern as shown in FIG. 9(4) and FIG. 9(5).
[0127] Subsequently, a fluoroplastic polymerized film 603 is formed over the entire surface of the glass substrate 600 as shown in FIG. 9(6). The fluoroplastic polymerized film 603 is formed by the method for forming the fluoroplastic polymerized film shown in the first Example.
[0128] Then, the fluoroplastic polymerized film 603 in the pixel aperture area is removed, thereby forming a desired pattern as shown in FIG. 10(7). Here, the mask-material layer on the pattern of the transparent conductive member 601 may be electrolyzed and removed by conducting electric current to the pattern of the transparent conductive member 601 formed on the glass substrate 600 in electrolytic solution. Consequently, it is possible to easily implement the patterning along the conductive material pattern. Therefore, manufacturing cost can be reduced.
[0129] In addition, the lyophobic surface treatment step of a wet-type method may employ dip treatment using surfactant such as anion, nonion, or cation, treatment using silane, alminate or titanate coupling agent, or SAM film formation. Also, the lyophobic surface treatment step of a dry-type method may employ fluoride treatment using plasma, an electron gun, or photoexcitation method, plasma polymerization of fluoroplastic film or silicone film, oxidization treatment using ozone gas generated by plasma, an electron gun or photoexcitation method, or deposition of silane coupling agent.
[0130] Moreover, it is possible to enhance mechanical adhesiveness of a lyophobic film by cleansing the surface prior to the lyophobic surface treatment process. When employing a wet-type method, the cleansing can be performed by water-deionizing treatment, oxidization using ozone water, or acid-alkali cleansing (RCA cleansing). When employing a dry-type method, the cleansing can be performed by ultraviolet treatment, oxidization treatment using ozone gas generated by plasma, an electron gun, or photoexcitation method, deposition of silane coupling agent, or plasma polymerization.
[0131] Also, it is possible to shorten the time of forming the pattern by heating the glass substrate 600 during the pattern formation as described in the first Example.
[0132] Furthermore, the glass substrate 600 is heated for 5 minutes in 120° C. after forming the pattern so as to remove low molecular weight portion in the fluoroplastic polymerized film 603 as described in the first Example.
[0133] Next, a hole injection member 604 in the form of liquid is applied to the glass substrate 600 and then dried and baked as shown in FIG. 10(8) and FIG. 10(9). The hole injection member 604 is thus formed.
[0134] The hole injection member 604 is supplied by a wet-type method such as an ink-jet method, an LSMCD method, a spin method, spray, dip or direct coating (CAP Coat). How to apply the member is not an essential issue of the present embodiment.
[0135] Next, an emissive member 605 in the form of liquid is applied to the glass substrate 600 and then dried and baked as shown in FIG. 10(10) and FIG. 10(11). The emissive member 605 is thus formed.
[0136] Subsequently, an electron transport member 606 in the form of liquid is applied to the glass substrate 600 and then dried and baked as shown in FIG. 11(12) and FIG. 11(13). The emissive member 606 is thus formed.
[0137] Then, electrode 607 in the form of liquid is applied to the glass substrate 600 and then dried and baked as shown in FIG. 11(14) and FIG. 11(15). The electrode 607 is thus formed.
[0138] Lastly, a mask removing step is implemented by irradiating the fluoroplastic polymerized film 603 with ultraviolet rays as shown in FIG. 11(16). Ultraviolet rays cut the bond of the fluoroplastic polymerized film 603 to remove it.
[0139] When using a mask material, which can be further decomposed by heat, the patterning time can be shortened by heating as shown in the first Example.
[0140] The process time can also be shortened by performing heat treatment after the mask material is irradiated with ultraviolet rays. Therefore, the patterning time can be shortened.
[0141] Moreover, the polymerized film may be burned and removed away by being exposed to activated ozone gas or oxygen gas. In that case, the fluoroplastic polymerized film 603 is decomposed and removed by carbon dioxide gas and fluorine gas.
[0142] Also, it is preferable that only a mask-material layer with a small heat capacity be heated in the above heat treatment from the viewpoint of energy saving.
[0143] A mask removing step of a wet-type method may employ oxidization treatment using ozone water, organic cleansing using acetone or resist-peeling agent, or supercritical treatment using carbon dioxide. A mask removing step of a dry-type method may employ ashing using gas activated by plasma, an electron gun or photoexcitation method instead of the ultraviolet ray irradiation explained in the present Example.
[0144] Moreover, section molding, which smoothes the surface of the formed pattern, may be implemented, keeping the pattern to a predetermined height before or after the removal of the polymerized film. Precision of pattern process is thereby improved. The molding step can be implemented by etch back or Chemical Mechanical Polishing (CMP). Also, it is preferable to repair the pattern when it is damaged due to molding. The properties of the pattern are thereby improved.
[0145] A self-emissive device can be formed in the above manner.
[0146] Also, when forming a protective film as a film next to the formed pattern, it is preferable to implement the lyophilic surface treatment for imparting the property lyophilic to the next film after the removal of the polymerized film. Consequently, it is possible to improve adhesiveness to the next film.
[0147] Although the electrode 607 is in the form of liquid material in the present Example, it may be formed on the entire surface of the substrate by a dry-type plasma CVD method, plasma polymerization method (MOCVD, atmospheric pressure CVD, P-CVD, optical CVD, thermal CVD), deposition method, or sputtering method. Then, the electrode 607 is etched. The electrode 607 is thus formed.
[0148] Moreover, the lyophobic surface treatment is performed once in the present Example; however, the treatment can be performed prior to each step of forming a member to which liquid material is applied.
[0149] Also, performing cleansing prior to each step improves adhesiveness of a film.
[0150] The above mask removing step may follow a step of removing the remainder of the material for patterning on the surface of the mask. The remainder removing step of a wet-type method can be performed by spin etching or by CME. This can shorten the process time of the mask removing step, and the manufacturing cost can be reduced.
[0151] In each of the above steps, the member to be formed may be maintained in inert gas atmosphere. Also, the member to be processed may be maintained in inert gas atmosphere when being transported between the respective steps. This prevents oxidization and corrosion of the mask material.
[0152] In each of the above steps, the member to be processed may be maintained in active gas atmosphere. Also, the member to be processed may be maintained in active gas atmosphere when transported between the above respective steps. This prevents oxidization and reduction of the mask material.
Third Embodiment
[0153] Next, the third embodiment is explained. According to a mask forming method of the third embodiment, gas including fluorine is introduced onto the surface of the member to be processed after the step of patterning mask-material layer of the first embodiment, while the surface of the member to be processed is irradiated with ultraviolet rays. As a result, the mask forming method of the third embodiment implements a surface-reforming step. The surface-reforming step performs the lyophilic surface treatment to render the surface of the member to be processed in the pattern-formation area lyophilic to a material for patterning, while simultaneously conducting the lyophobic surface treatment to render the surface of the member to be processed excluding the pattern-formation area lyophobic against the material for patterning. Explanation is omitted as to the same configurations as those in the first or the second embodiment.
[0154] The surface-reforming device is the same as that of the explanatory diagram shown in FIG. 6. However, the processed gas supply route 435 and a processed gas exhaust route 436 are formed in front of and/or behind the processing chamber 432. The surface-reforming device is different in that gas including fluorine activated outside by so to speak remote plasma is supplied to the inside of the processing chamber 432 through the processed gas supply route. Moreover, the processed gas exhaust route 436 is connected to a scrubber not shown in the drawing and excludes exhaust gas.
[0155] At the same time, the ultraviolet lamp 440 is placed above the processing chamber 432. The ultraviolet lamp 440 is placed inside the ultraviolet lamp chamber 442, where nitrogen gas is replaceable, because it would be burned when lighted in the atmospheric air. The wall surface of the ultraviolet lamp chamber 442 on the side of the processing chamber 432 is formed of the glass plate 441 that transmits ultraviolet rays, such that the member to be processed 10 can be irradiated with ultraviolet rays. On the other hand, the wall surface of the processing chamber 432 on the side of the ultraviolet lamp chamber 442 is formed of the fluorite 431 that transmits ultraviolet rays. This configuration allows the member to be processed to be irradiated with ultraviolet rays and also prevents the glass plate 441 from getting eroded by excited active species of fluorine, which is supplied to the processing chamber 432.
[0156] Next, steps of the mask forming method and a mask removing method of the third embodiment are explained in detail in the process order. FIG. 12 shows a flowchart illustrating the mask forming method and the mask removing method of the third embodiment.
[0157] First of all, the mask firming method is explained. The method is the same as that of the first embodiment up to the patterning step.
[0158] Next, the surface of a resist is reformed (S452). More specifically, the surface of the patterned resist is fluoridize. First, the member to be processed 10 is placed inside the processing chamber 432 of the surface-reforming device 430 shown in FIG. 6. Next, gas including fluorine such as CF4 gas, which is activated in advance by remote plasma, is introduced to the inside of the processing chamber 432 from the processed gas supply route 435. Then, excited active species of fluorine react with an organic matter such as resist and generate fluorine compound lyophobic against the surface of the organic matter. Remote plasma can activate gas including fluorine not only by the method of applying high-frequency voltage but also by the method of irradiating electron rays or ultraviolet rays. At the same time, the pattern-formation area does not take on lyophobic despite of being exposed to gas including activated fluorine because a silicon oxide film is exposed on the pattern-formation area.
[0159] Simultaneously, the surface of the member to be processed 10 is irradiated with ultraviolet rays. Then, this facilitates reaction between excited active species of fluorine and the resist film, thereby giving a strong lyophobic property to the surface of the resist film. On the other hand, the fluorine compound is removed from the surface of the silicon oxide film on the pattern-formation area, and the silicon oxide film actively maintains its inherent lyophilic property.
[0160] The lyophilic surface treatment by irradiating ultraviolet rays may be added in order to further apply the lyophilic property to the pattern-formation area (S480). This improves adhesiveness between the member to be processed and the material for patterning.
[0161] Also, it is preferable to reform the surface of the above-mentioned resist before heating the resist. This is because it is possible to implement the fluoride treatment easily by having fluorine to react with the resist at any time before the resist ends its reaction due to heating process.
[0162] The mask for the material for patterning can be formed in the above manner.
[0163] According to the mask forming method of the third embodiment, gas including fluorine is introduced onto the surface of the member to be processed while the member to be processed is irradiated with ultraviolet rays. Consequently, the mask forming method performs a step of the lyophilic surface treatment to render the surface of the member to be processed in the pattern-formation area lyophilic to the material for patterning, while performing a step of the lyophobic surface treatment to render the surface of the member to be processed excluding the pattern-formation area lyophobic against the material for patterning. Accordingly, the number of steps is decreased, and the manufacturing cost can be reduced.
[0164] The method of selectively reforming the surface is explained above, taking the member to be processed including the resist and the silicon oxide on the surface thereof as an example. However, the present embodiment is not limited to the above and is widely applicable to a member to be processed including an organic matter other than a resist and an oxide other than a silicon oxide on the surface thereof.
Forth Embodiment
[0165] The following explains the forth embodiment. A mask forming method of the forth embodiment introduces source gas of the mask material onto the surface of the member to be processed and irradiates ultraviolet rays to the surface of the member to be processed in the pattern-formation area. Hence, the method prevents formation of the mask-material layer in the pattern-formation area and directly draws the mask-material layer on the surface of the member to be processed excluding the pattern-formation area. Explanation of the same configuration as those in the first through third embodiments is omitted.
[0166] The above-mentioned formation of the fluoroplastic polymerized film and irradiation of ultraviolet rays are performed using such a lyophobic surface treatment device as below. FIG. 13 shows an explanatory diagram of a direct imager. A lyophobic surface treatment device 530 includes a processing chamber 531, and a stage 532 capable of mounting the member to be processed 10 is formed inside the processing chamber 531. Also, a mask 30 can be placed above the stage. Moreover, an ultraviolet lamp 542 is arranged above the chamber 531. The ultraviolet lamp 542 is placed inside an ultraviolet lamp chamber 541, where nitrogen gas 543 is replaceable, because it would be burned when lighted in the atmospheric air. The boundary between the ultraviolet lamp chamber 541 and the processing chamber 531 is formed of a fluorite 544 that transmits ultraviolet rays, such that the member to be processed can be irradiated with ultraviolet rays. Also, the member to be processed is prevented from getting eroded by excited active species of fluorine, which is supplied to the processing chamber 531.
[0167] A plasma chamber 533 is connected to the processing chamber 531 through a supplying pipe 535. The plasma chamber is formed between counter electrodes 534, and a high-frequency power source 536 is connected to the counter electrodes 534. A processed gas supply unit 504 is connected to the plasma chamber 533 through a supplying pipe 502 provided with a flow volume control valve 512. The processed gas supply unit 504 includes a container 508 that stores liquid organic matter 506 including straight-chain PFC such as fluorinert. The container 508 is provided with a heating medium 510 which serves as a heating head, such that the liquid organic matter 506 is heated and vaporized. A carrier gas supply unit 518 is connected to the plasma chamber 533 through a carrier pipe 516 provided with a flow volume control valve 514 on the lower course side of the flow volume control valve 512 of the supplying pipe 502. Inert gas such as nitrogen or argon is used as carrier gas. Moreover, as indicated by the dotted lines of FIG. 13, a second processed gas supply unit 524 is connected to the supplying pipe 502 through a pipe 522 provided with a flow volume control valve 520. Then, CF4 is supplied and added from the second processed gas supply unit 524 to vapor of the liquid organic matter 506 as the second processed gas.
[0168] Next, steps of the mask forming method and the mask removing method of the forth embodiment are explained in detail in process order. FIG. 14 shows a flowchart of the mask forming method of the forth embodiment.
[0169] The mask forming method is first explained. First, the member to be processed is cleansed, and the surface thereof is treated to have the lyophilic property (S550).
[0170] Subsequently, the polymerized film is formed and pattered simultaneously (S552). Specifically, the member to be processed 10 is set on the stage 532 of the lyophobic surface treatment device 530 as shown in FIG. 13, and the mask 30 is placed above the stage 532. Next, the ultraviolet lamp 542 is lighted on so as to irradiate the member to be processed 10 with ultraviolet rays 548. As described above, since the mask 30 is light-transmissive only in the portion thereof corresponding to the pattern-formation area of the member to be processed 10, only the pattern-formation area is irradiated with ultraviolet rays 548 through the mask 30.
[0171] At the same time, activated source gas 538 is supplied to the inside of the chamber so as to form the fluoroplastic polymerized film over the surface of the member to be processed 10. More specifically, the liquid organic matter 506 including straight-chain PFC is heated and vaporized so as to be introduced into the plasma chamber 533 together with carrier gas. Also, low molecular weight PFC gas such as CF4 may be added as required. When high-frequency voltage is applied to vapor of straight-chain PFC within the plasma chamber 533, bond of straight-chain PFC is partially cut to be active. The activated straight-chain PFC is supplied to the processing chamber 531. Straight-chain PFC can be activated by irradiation of electron rays or ultraviolet rays instead of the application of high-frequency voltage.
[0172] In the above manner, active straight-chain PFC polymerizes over the surface of the member to be processed 10 excluding the pattern-formation area by reaching there so as to form the fluoroplastic polymerized film. The thickness of the polymerized film is set to 100 angstrom or less. On the other hand, polymerization is prevented with ultraviolet rays in the pattern-formation area, and/or bond of the formed polymerized film is cut with ultraviolet rays, thereby preventing formation of the fluoroplastic polymerized film. In addition, organic matters attached to the pattern-formation area such as resist are removed, thereby applying the lyophilic property to the area.
[0173] Moreover, the lyophilic surface treatment using irradiation of ultraviolet rays may be added in order to further apply the lyophilic property to the pattern-formation area (S580). This improves adhesiveness of the member to be processed and the material for patterning.
[0174] Also, the fluoroplastic polymerized film may be heated (S582). This allows a low molecular weight organic matter contained in the polymerized film to be vaporized and removed, such that the low molecular weight organic matter is prevented from getting mixed in the material for patterning in the later film forming step. The heating treatment may be performed simultaneously with formation of the polymerized film.
[0175] The mask for the material for patterning is formed in the above manner.
[0176] According to the mask forming method of the above forth embodiment, source gas of the mask material is introduced onto the surface of the member to be processed while ultraviolet rays are irradiated onto the surface of the member to be processed in the pattern-formation area. Consequently, the mask forming method implements a step of direct draw, preventing formation of the mask-material layer in the pattern-formation area. Hence, the number of steps can be decreased, and the manufacturing cost can be reduced.
[0177] The above explains the method of performing direct draw by irradiating light simultaneously with the formation of the polymerized film. Besides that, a hard mask may be mounted on the surface of the member to be processed, including an opening portion except in the pattern-formation area, and the polymerized film is formed in the opening portion, such that direct draw is performed.
[0178] The mask material may be irradiated with light simultaneously while being directly drawn so as to be hardened. Light may be simultaneously irradiated while the mask material is supplied, such that the mask material irradiated with light is hardened while being directly drawn. In that case, the member to be processed may also be heated.
[0179] A structure, in which a functional thin film is formed on a substrate by the pattern forming method of the present invention, may be applied to semiconductor devices, electric circuits, display modules and emissive devices. The thickness of the functional thin film may arbitrarily be set depending on how the fine structure is used; however, the thickness is preferably 0.02 to 4 μm.
[0180] Applying the pattern forming method of the present invention to those mentioned above yields high quality, and the outcome is superior to that of prior art also in light of simplified manufacturing process and manufacturing cost.
Claims
- 1) a mask forming method comprising:
a mask-material layer forming step of forming a lyophobic mask-material layer over an entire surface of a member to be processed so as to form a desired pattern using liquid material for pattering; a patterning step of patterning by removing the mask-material layer in a pattern-formation area; a film forming step of forming the desired pattern by coating the liquid material for pattering; a heating step of drying and baking the liquid material for patterning; and a mask removing step of removing a mask, wherein;
an electric current is conducted to a conductive material pattern formed on the surface of the member to be processed in electrolytic solution, thereby electrolyzing and removing the mask-material layer on the conductive material pattern in the patterning step.
- 2) The mask forming method according to claim 1, wherein the mask-material layer forming step and the patterning step expose the member to be processed to gas including fluorine and irradiate the member to be processed with electromagnetic waves so as to implement a lyophihic surface treatment such that the surface of the member to be processed in the pattern-formation area is rendered lyophilic to the material for patterning, while simultaneously implementing a lyophobic surface treatment such that the surface of the member to be processed excluding the pattern-formation area is rendered lyophobic against the material for patterning.
- 3) The mask forming method according to claim 1 or claim 2, further comprising a step of cleansing the surface of the member to be processed prior to the mask-material layer forming step.
- 4) The mask forming method according to claim 1 or claim 2, further comprising a step of implementing the lyophilic surface treatment prior to the mask-material layer forming step so as to render the entire surface of the member to be processed lyophilic to the mask-material layer.
- 5) The mask forming method according to claim 1 or claim 2, further comprising a step of implementing the lyophobic surface treatment prior to the mask-material layer forming step so as to render the entire surface of the member to be processed lyophobic against the mask material-layer.
- 6) The mask forming method according to claim 1 or claim 2, further comprising:
a step of implementing the lyophilic surface treatment prior to the mask-material layer forming step so as to render the surface of the member to be processed in the patter-formation area lyophilic to the mask-material layer; and a step of implementing the lyophobic surface treatment so as to render the surface of the member to be processed excluding the pattern-formation area lyophobic against the mask-material layer.
- 7) The mask forming method according to any one of claim 1 through claim 6, further comprising a step of implementing the lyophilic surface treatment prior to the patterning step so as to render a surface of the mask-material layer in the pattern-formation area lyophilic to a mask removing material.
- 8) The mask forming method according to any one of claim 1 through claim 6, further comprising a step of implementing the lyophobic surface treatment prior to the patterning step so as to render a surface of the mask-material layer excluding the pattern-formation area lyophobic against a mask removing material.
- 9) The mask forming method according to any one of claim 1 through claim 6, further comprising:
a step of implementing the lyophilic surface treatment prior to the patterning step so as to render a surface of the mask-material layer in the pattern-formation area lyophilic to a mask removing material; and a step of implementing the lyophobic surface treatment so as to render the surface of the mask-material layer excluding the pattern-formation area lyophobic against the mask removing material.
- 10) The mask forming method according to claim 1 or claim 2, further comprising a step of implementing the lyophobic surface treatment prior to the patterning step so as to render an entire surface of the mask-material layer lyophobic against the material for patterning.
- 11) The mask forming method according to claim 1 or claim 2, further comprising a step of implementing heat treatment before or after the patterning step.
- 12) The mask removing method according to claim 1 or claim 2, further comprising a step of removing a remainder of the material for patterning on a surface of the mask prior to the mask removing step.
- 13) The mask removing method according to claim 1 or claim 2, further comprising a step of molding a surface of the pattern prior to the mask removing step.
- 14) The mask removing method according to claim 1 or claim 2, further comprising a step of cleansing the member to be processed prior to the mask removing step.
- 15) The mask removing method according to claim 1 or claim 2, further comprising a step of implementing the lyophilic surface treatment so as to impart a property lyophilic to a mask removing material prior to the mask removing step.
- 16) The mask removing method according to claim 1 or claim 2, further comprising a step of implementing preliminary heating on the mask prior to the mask removing step.
- 17) The mask removing method according to claim 1 or claim 2, further comprising a step of molding a surface of the pattern after the mask removing step.
- 18) The mask removing method according to claim 1 or claim 2, further comprising a step of repairing damage on the pattern after the mask removing step.
- 19) The mask removing method according to claim 1 or claim 2, further comprising a step of implementing the lyophilic surface treatment so as to impart a property lyophilic to a material of a film to be formed next to the pattern after the mask removing step.
- 20) The mask removing method according to claim 1 or claim 2, wherein the member to be processed is maintained in inert gas atmosphere when implementing each of the steps.
- 21) The mask removing method according to claim 1 or claim 2, wherein the member to be processed is maintained in inert gas atmosphere when transported between the respective steps.
- 22) The mask removing method according to claim 1 or claim 2, wherein the member to be processed is maintained in active gas atmosphere when implementing each of the steps.
- 23) The mask removing method according to claim 1 or claim 2, wherein the member to be processed is maintained in active gas atmosphere when transported between the respective steps.
- 24) A semiconductor device manufactured by the mask forming method and/or the mask removing method according to any one of claim 1 through claim 30.
- 25) An electric circuit manufactured by the mask forming method and/or the mask removing method according to any one of claim 1 through claim 30.
- 26) A display module manufactured by the mask forming method and/or the mask removing method according to any one of claim 1 through claim 30.
- 27) A color filter manufactured by the mask forming method and/or the mask removing method according to any one of claim 1 through claim 30.
- 28) An emissive device manufactured by the mask forming method and the mask removing method according to any one of claim 1 through claim 30.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2001-373081 |
Dec 2001 |
JP |
|