Method and apparatus for bipolar memory write-verify

Information

  • Patent Grant
  • 10163479
  • Patent Number
    10,163,479
  • Date Filed
    Monday, June 6, 2016
    8 years ago
  • Date Issued
    Tuesday, December 25, 2018
    6 years ago
Abstract
An advantageous write verify operation for bipolar memory devices is disclosed. The verify operation is performed under the same bias conditions as the write operation. Thus, the verify operation reduces disturb conditions caused when verify operation is performed in opposite bias to write operation. The advantageous write verify operation may be performed with control logic on source and bit lines. In another embodiment, the advantageous write operation is performed with mux coupled to control logic. The mux determines whether verify (0) or verify (1) operation should be performed based on data in a program latch. Moreover, the mux may select bias conditions for read operations based on a register bit. Trim circuits optionally provide guard banding and modify reference voltages for verify operations performed in opposite polarity to normal read operation.
Description
FIELD

The present patent document relates generally to random access memory (RAM). More particularly, the present patent document relates to write-verify operations in RAM comprising bipolar memory elements. The methods and devices described herein are particularly useful in spin-transfer torque magnetic memory (STT-MRAM) devices.


BACKGROUND

Magnetoresistive random-access memory (“MRAM”) is a non-volatile memory technology that stores data through magnetic storage elements. These elements are two ferromagnetic plates or electrodes that can hold a magnetic field and are separated by a non-magnetic material, such as a non-magnetic metal or insulator. This structure is known as a magnetic tunnel junction (“MTJ”). In general, one of the plates has its magnetization pinned (i.e., a “reference layer”), meaning that this layer has a higher coercivity than the other layer and requires a larger magnetic field or spin-polarized current to change the orientation of its magnetization. The second plate is typically referred to as the free layer and its magnetization direction can be changed by a smaller magnetic field or spin-polarized current relative to the reference layer.


MRAM devices store information by changing the orientation of the magnetization of the free layer. In particular, based on whether the free layer is in a parallel or anti-parallel alignment relative to the reference layer, either a “1” or a “0” can be stored in each MRAM cell. Due to the spin-polarized electron tunneling effect, the electrical resistance of the cell change due to the orientation of the magnetic fields of the two layers. The cell's resistance will be different for the parallel and anti-parallel states and thus the cell's resistance can be used to distinguish between a “1” and a “0”. One important feature of MRAM devices is that they are non-volatile memory devices, since they maintain the information even when the power is off. The two plates can be sub-micron in lateral size and the magnetization direction can still be stable with respect to thermal fluctuations.


MRAM devices are considered as the next generation structures for a wide range of memory applications. MRAM products based on spin torque transfer switching are already making its way into large data storage devices. Spin transfer torque magnetic random access memory (“STT-MRAM”) or spin transfer switching, uses spin-aligned (“polarized”) electrons to change the magnetization orientation of the free layer in the magnetic tunnel junction. In general, electrons possess a spin, a quantized number of angular momentum intrinsic to the electron. An electrical current is generally unpolarized, i.e., it consists of 50% spin up and 50% spin down electrons. Passing a current though a magnetic layer polarizes electrons with the spin orientation corresponding to the magnetization direction of the magnetic layer (i.e., polarizer), thus produces a spin-polarized current. If a spin-polarized current is passed to the magnetic region of a free layer in the magnetic tunnel junction device, the electrons will transfer a portion of their spin-angular momentum to the magnetization layer to produce a torque on the magnetization of the free layer. Thus, this spin transfer torque can switch the magnetization of the free layer, which, in effect, writes either a “1” or a “0” based on whether the free layer is in the parallel or anti-parallel states relative to the reference layer.


STT-MRAM devices belong to a class of devices relying on bipolar memory elements. Bipolar memory elements use currents to “write” data to a memory element. Depending on the direction of current flow, a logic high (1) or logic low (0) bit may be written to the memory element. Such bipolar memory devices may include MRAM, resistive random-access memory (RRAM), phase-change memory (PCM), among others. For example, RRAM devices may utilize memristors as a memory element. Current flowing in one direction may be used to write a logic (1) to the memristor. Current flowing in the opposite direction may be used to write a logic (0) to the memristor.


A typical MRAM device with a polarizer layer and an MTJ is shown in FIG. 1. FIG. 1 illustrates perpendicular magnetic tunnel junction (“MTJ”) stack 100 for a conventional STT-MRAM device. As shown, stack 100 includes one or more seed layers 110 provided at the bottom of stack 100 to initiate a desired crystalline growth in the above-deposited layers. Furthermore, MTJ 130 is deposited on top of SAF layer 120. MTJ 130 includes reference layer 132, which is a magnetic layer, a non-magnetic tunneling barrier layer (i.e., the insulator) 134, and the free layer 136, which is also a magnetic layer. It should be understood that reference layer 132 is actually part of SAF layer 120, but forms one of the ferromagnetic plates of MTJ 130 when the non-magnetic tunneling barrier layer 134 and free layer 136 are formed on reference layer 132. As shown in FIG. 1, magnetic reference layer 132 has a magnetization direction perpendicular to its plane. As also seen in FIG. 1, free layer 136 also has a magnetization direction perpendicular to its plane, but its direction can vary by 180 degrees.


The first magnetic layer 114 in the SAF layer 120 is disposed over seed layer 110. SAF layer 120 also has a antiferromagnetic coupling layer 116 disposed over the first magnetic layer 114. Furthermore, a nonmagnetic spacer 140 is disposed on top of MTJ 130 and an optional polarizer 150 is disposed on top of the nonmagnetic spacer 140. Polarizer 150 is a magnetic layer that in an embodiment has a magnetic direction in its plane, but is perpendicular to the magnetic direction of the reference layer 132 and free layer 136. Polarizer 150 is provided to polarize a current of electrons (“spin-aligned electrons”) applied to MTJ structure 100. Note that in other embodiments, polarizer 150, if present, can also have a magnetic direction perpendicular to its plane, just as the reference layer 132 and free layer 136. Further, one or more capping layers 160 can be provided on top of polarizer 150 to protect the layers below on MTJ stack 100. Finally, a hard mask 170 is deposited over capping layers 160 and is provided to pattern the underlying layers of the MTJ structure 100, using a reactive ion etch (RIE) process.


The resistance of the magnetic memory device is sensitive to the relative orientation of the magnetization vector of the free magnetic layer and the magnetization vector of the reference layer. The resistance of the magnetic memory device is highest when the magnetization vectors of the free magnetic layer and the reference layer, respectively, are in anti-parallel alignment. The resistance of the magnetic device is lowest when the magnetization vectors of the layers free magnetic layer and the reference layer, respectively, are in parallel alignment. Thus, a resistance measurement or its equivalent can determine the orientation of the magnetization vector of the free magnetic layer.


In an MRAM memory write operation, a verify operation can be used to check if a write operation has completed successfully and that the correct data has been written. Typically, a verify operation is performed in a similar fashion to a read operation. For example, a read could be implemented with a bias condition where the bit line is driven to a high potential, while the source line is driven to a low potential to generate current across the MTJ so that the resistance measurement can be made. A verify operation may also be implemented in other bipolar memory elements including RRAM and PCM among others.


In these devices, data is stored in program latches during both write and verify operations. Data stored in the latches (write buffer) determines the voltage condition on bit lines during write operations. In write operations, bit line and source line bias are dependent on the data stored. For example, if the data to be written is logic zero (0), the bit line can be driven high while the source line is driven low. If the data to be written is logic one (1), the opposite bias condition would need to exist in order to reverse the polarity of current flow across the MTJ. In this case for writing logic one (1), the source line would be driven high while the bit line would be driven low.


During either read or verify operations, the bit line is usually at a high voltage (but at a lower voltage than during a write operation) while the source line is at a low voltage, generally close to zero volts. Normally, a write verify operation can be implemented in a similar manner to a read operation. However, the operation presented above can result in what is known as a disturb condition, which occurs when a verify operation is performed after a write logic one (1) operation. In this case, the memory bit is written with the source being driven to a high voltage while the bit line is driven to a low voltage. Thus, during a verify operation, the data would be read with the opposite polarity of the bit line and source line than would normally be done during a read operation. Prior circuitry used for write, read, and verify operations is shown in FIGS. 2A and 2B.



FIG. 2A shows operation of exemplary bipolar memory device 200, in this case, an MRAM device, during write (0), verify, and read operations. Bipolar memory device 200 includes memory cell 202 coupled to source line 208 and bit line 210. Memory cell 202 comprises MTJ 204 and select transistor 206. Select transistor is further coupled to word line 212. MTJ 204 is coupled to bit line 210 and select transistor 206 is coupled to source line 208. One of ordinary skill in the art will understand that the opposite configuration is also possible. That is MTJ 204 could be coupled to source line 208 and select transistor 206 could be coupled to bit line 210.


During write (0), verify, and read operations, voltage node 214 on source line is driven low while voltage node 216 on bit line is driven high. The opposite bias conditions may also be applied for write (0), verify, and read operations and are dependent simply on naming convention for write (0). The reader will also appreciate that verify and read operations occur with the same bias conditions. Voltage node 214 may be driven to ground or otherwise held close to 0V. Voltage node 216 may be driven to a positive voltage. Voltage node 216 is driven to for example, 1.0 V for verify operations; 1.2 V for read operations; and a higher voltage for write operations. Voltage is applied to word line 212 to activate select transistor 206 to allow current i to flow between bit line and source line.


During write (0) operation, the voltage differential across memory cell 202 causes current i to flow. Current i causes the magnetization of free layer of MTJ 204 to align, or become parallel, with the reference layer of MTJ 204. During verify and read operation, the current i is not sufficient to alter the state of free layer and the bit stored in MTJ 204 may be ascertained.



FIG. 2B shows operation of exemplary bipolar memory device 250, in this example, an MRAM device, during write (1) operation. Bipolar memory device 250 includes memory cell 252 coupled to source line 258 and bit line 260. Memory cell 252 comprises MTJ 254 and select transistor 256. Select transistor is further coupled to word line 262. MTJ 254 is coupled to bit line 260 and select transistor 256 is coupled to source line 258. One or ordinary skill in the art will understand that the opposite configuration is also possible. That is MTJ 254 could be coupled to source line 258 and select transistor 256 could be coupled to bit line 260.


Bipolar memory device 250 of FIG. 2B is identical to bipolar memory device 200 of FIG. 2A except that polarity of voltages on source and bit lines are flipped. Thus, voltage node 264 on source line 258 is driven high and voltage node 266 bit line 260 is driven low. Voltage node 264 may also be at a slightly higher voltage for write (1) operation than corresponding voltage on the bit line during write (0) operation. This is because the voltage drop across select transistor 256 is higher in this configuration. Moreover, voltage on word line 262 is chosen to enable current flow. This opposite bias conditions causes current i to flow in the opposite direction from bipolar memory device 200 of FIG. 2A. This results in write (1) operation.


However, performing a write (1) operation as shown in FIG. 2B and then verify operation as shown in FIG. 2A results in disturb condition. This is because opposite bias voltages are applied to source and bit lines for write (1) and verify operations.


Thus, advantageous write-verify operation is necessary to reduce disturb conditions when verifying data bits in bipolar memory devices.


SUMMARY

Exemplary embodiments of the present disclosure are directed to advantageous write verify operations in bipolar memory devices. Moreover, the present disclosure discloses a beneficial read operation.


An advantageous write verify operation for bipolar memory devices is disclosed. The verify operation is performed under the same bias conditions as the write operation. Thus, the verify operation reduces disturb conditions caused when verify operation is performed in opposite bias to write operation.


In one embodiment, the method comprises writing a data bit into a memory cell. The memory cell comprises a bipolar memory element and a select transistor. The memory cell is coupled between a bit line and a source line. The write operation is performed by applying a first voltage across the source line and bit line to supply a first current to write the data bit into the memory cell. The first voltage differential may comprise a first polarity if a logic high is to be written to the memory cell. The first voltage differential may be a second polarity if a logic low is to be written to the memory cell.


The method may further comprise verifying the data bit written to the memory cell by applying a second voltage across the memory cell. The second voltage differential may be the first polarity if a logic high was written. Likewise, the second voltage differential may be the second polarity if a logic low was written.


In an embodiment, the first voltage differential may be applied using a first bias circuit couple to the source line and a second bias circuit coupled to the bit line. In an embodiment, the second voltage differential may likewise be applied with a first bias circuit coupled to the source line and a second bias circuit coupled to the bit line. In another embodiment, the verify operation may detect a logic level corresponding to the data bit in the bipolar memory element using a sense amplifier coupled to the source line. In another embodiment, the verify operation may detect a logic level corresponding to the data bit in the bipolar memory element using a sense amplifier coupled to the bit line. In another embodiment, the second voltage differential may applied by trimming a voltage applied when applying the second voltage differential. The second voltage differential being of opposite polarity to a voltage differential applied during a read operation.


In another embodiment, bias circuits coupled to a mux may apply the first voltage differential. The mux may be coupled to the source line and the bit line. The mux may select whether to drive the voltage high on the source line or the bit line based on data in a program latch. In another embodiment, bias circuits coupled to a mux may apply the second voltage differential. The mux may be coupled to the source line and the bit line. The mux may select whether to drive the voltage high on the source line or the bit line based on data in a program latch.


In another embodiment, an advantageous read operation is disclosed. The read operation may comprise reading a data bit written into the memory cell by applying a second voltage differential. The read operation may be performed by selecting whether to drive the source line or the bit line high based on a register bit in a mux coupled to the source line and the bit line. In an embodiment, the source line is selected to be driven high to perform the read operation. In another embodiment, the bit line is selected to be driven high to perform the read operation.


In embodiments, the bipolar memory element may comprise a magnetic tunnel junction, a perpendicular magnetic tunnel junction, a memristor, or chalcogenide glass.


The advantageous write verify operation may be performed with control logic on source and bit lines. In another embodiment, the advantageous write operation is performed with a multiplexer (mux) coupled to control logic. The mux determines whether verify (0) or verify (1) operation should be performed based on data in a program latch. Moreover, the mux may select bias conditions for read operations based on a register bit. Trim circuits optionally provide guard banding and modify reference voltages for verify operations performed in opposite polarity to normal read operation.


The present disclosure performs a verify operation for a bipolar memory device under the same bias conditions as a write operation. Thus, if a write (0) operation is performed with bit line high and source line low, the verify (0) operation is also performed with bit line high and source line low. Likewise, if a write (1) operation is performed with bit line low and source line high, the verify (1) operation may be also performed with bit line low and source line high. This is different compared to past verify operations that were performed under one bias condition, for example, with bit line high and source line low. If that was the case, the verify (1) operation was performed in opposite bias to the write (1) operation which resulted in a disturb condition.


Moreover, the present disclosure performs the verify operations utilizing several exemplary bipolar memory devices. In one embodiment, control of logic levels place on the source and bit lines can be implemented by coupling one or more bias circuits to each of the source and bit lines, respectively. In an alternative embodiment, the control of the logic levels placed on the source and bit lines can be implemented with bias circuits coupled to a mux. In an alternative embodiment, the bias circuits may be themselves be integrated into the sense amplifier.


In an embodiment, trimming circuits compensate for the fact that verify (1) operation, for example, is performed in opposite bias condition to a read operation. Because voltage drop across the transistor may be different depending upon the read/verify bias, trimming circuits may adjust the voltage as needed.


Because verify operations are performed similar to read operation, in an embodiment, the mux may select the direction of read operation based on a register bit. If read operation should be performed in verify (0) direction a register bit can determine that source line should be driven low while bit line should be driven high. If read operation should be performed in verify (1) direction a register bit can determine that source line should be driven high while bit line should be driven high.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included as part of the present specification, illustrate the presently preferred embodiments and together with the general description given above and the detailed description of the preferred embodiments given below serve to explain and teach the principles described herein.



FIG. 1 shows exemplary perpendicular magnetic tunnel junction stack (MTJ) 100.



FIG. 2A shows operation of exemplary bipolar memory device 200 during write (0), read, and verify operation.



FIG. 2B shows operation of exemplary bipolar memory device 250 during write (1) operation.



FIG. 3A shows operation of exemplary bipolar memory device 300 during write (0), read, and verify (0) operation.



FIG. 3B shows operation of exemplary bipolar memory device 350 during write (1) and verify (1) operation.



FIG. 4 shows exemplary bipolar memory device 400 having control logic.



FIG. 5 shows alternate embodiment for exemplary bipolar memory device 500 having control logic and mux.





DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to create and use a bipolar memory devices with an advantageous write verify operation. Each of the features and teachings disclosed herein can be utilized separately or in conjunction with other features to implement the disclosed apparatus and method. Representative examples utilizing many of these additional features and teachings, both separately and in combination, are described in further detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the claims. Therefore, combinations of features disclosed in the following detailed description may not be necessary to practice the teachings in the broadest sense, and are instead taught merely to describe particularly representative examples of the present teachings.


In the following description, for purposes of explanation only, specific nomenclature is set forth to provide a thorough understanding of the present teachings. However, it will be apparent to one skilled in the art that these specific details are not required to practice the present teachings. The features and advantages of the present disclosure are taught through exemplary STT-MRAM devices. However, one of ordinary skill in the art will understand that the teachings of the present disclosure apply to other bipolar memory elements including MRAM, RRAM, PCM, and RAM using other bipolar memory elements.



FIGS. 3A and 3B show bipolar memory devices 300 and 350 utilizing the advantageous write verify operation of the present disclosure. Note that FIGS. 3A-3B, 4 and 5 shown an in-plane MTJ where the magnetic direction of the free and reference layers are in the plane of the layers). The embodiments described herein are equally applicable to perpendicular MTJs (where the magnetic direction of the free and reference layers are out of the plane of the layers). The present disclosure enables a verify operation to occur in the same bias condition as a write operation. Thus, verify (0) occurs using the same bias conditions as write (0). Verify (1) likewise occurs in the same bias conditions as write (1). Bias conditions refer to the polarity of the voltage across a bipolar memory element rather than the value of the voltage. As will be explained in greater detail in the present disclosure, the absolute value of the voltage conditions may be different for write, verify and read operations.


Since data is known during a verify operation, a verify operation can be implemented with the same operational polarity as during the write operation. Doing so avoids disturb issues since the current flow is in the same direction for both write and verify operations. As is the case with a write operation, during a verify operation, the data (e.g., logic low (0) or logic high (1)) stored in the write latch/buffer will determine the bias condition (e.g., low voltage or high voltage on the source line and bit line). Note that the write latch/buffer is disposed adjacent to the memory array. There may or may not be decoding between the memory array and the write/latch buffer to reduce the total number of required write/latch buffers. In an alternative embodiment, write latch/buffer may be combined with the Sense Amplifier Block.



FIG. 3A shows operation of exemplary bipolar memory device 300 during write (0), verify (0), and read operations. Bipolar memory device 300 includes memory cell 302 coupled to source line 308 and bit line 310. Memory cell 302 comprises MTJ 304 and select transistor 306. Select transistor is further coupled to word line 312. MTJ 304 is coupled to bit line 310 and select transistor 306 is coupled to source line 308. One or ordinary skill in the art will understand that the opposite configuration is also possible. That is MTJ 304 could be coupled to source line 308 and select transistor 306 could be coupled to bit line 310.


During write (0), verify (0), and read operations, voltage node 314 on source line 308 is driven low while voltage node 316 on bit line 310 is driven high. The opposite bias conditions may also be applied for write (0), verify (0), and read operations and are dependent simply on naming convention for write (0). Voltage node 314 may be driven to ground or otherwise held close to 0V. Voltage node 316 may be driven to a positive voltage. Voltage node 316 is driven to, for example, 1.0 V for verify operations; 1.2 V for read operations; and a higher voltage for write operations. Note that verify operations are typically more stringent than read operations. This is to ensure that future read operations occur correctly. Thus, verify and read operations could also be completed at the same voltage, for example, 1.2 V. However, voltage for verify operation could be applied for less time, for example 18 ns, than is applied for read operations, for example, 20 ns. Alternatively read and verify could be performed at same voltage and timing, using different reference voltages for the two operations. Voltage is applied to word line 312 to activate select transistor 306 to allow current i to flow between bit line and source line.


Consistent with operation of exemplary bipolar memory device 350, during write (0) operation, current i causes the magnetization of free layer of MTJ 304 to align, or become parallel, with the reference layer of MTJ 304. One of ordinary skill in the art will understand that in other embodiments, current i could cause free layer of MTJ 304 to become anti-parallel with reference layer which would result in write (1) or (0) operation depending on naming conventions. During read operation, the current i is not sufficient to alter the state of free layer and the bit stored in MTJ 304 may be ascertained. Typically, verify voltage applied to voltage node 316 is lower than the voltage for read operation to ensure that future read operations are accurate. However, this may not necessarily be the case and verify voltage could be at the same voltage value as read voltage, but simply applied for a shorter time as discussed above.


In summary, when a logic low (0) is written, a high voltage will also be placed on the bit line and a low voltage will be placed on the source line. During the verify operation for this write operation, a high voltage will also be placed on the bit line while a low voltage will be placed on the source line.



FIG. 3B shows operation of exemplary bipolar memory device 350 during write (1) and verify (1) operations. Bipolar memory device 350 includes memory cell 352 coupled to source line 358 and bit line 360. Memory cell 352 comprises MTJ 354 and select transistor 356. Select transistor is further coupled to word line 362. MTJ 354 is coupled to bit line 360 and select transistor 306 is coupled to source line 308. One or ordinary skill in the art will understand that the opposite configuration is also possible. That is MTJ 354 could be coupled to source line 358 and select transistor 356 could be coupled to bit line 360.


Bipolar memory device 350 of FIG. 3B is identical to bipolar memory device 300 of FIG. 3A except that polarity of voltages of source and bit lines are flipped. Thus, voltage node 364 on source line 358 is driven high and voltage node 366 bit line 360 is driven low. Voltage node 364 may also be at a slightly higher voltage for write (1) operation than corresponding voltage on the bit line during write (0) operation. This is because of the voltage drop caused by select transistor 356. Voltage drop may also occur due to parasitic losses caused if bit line and source line were perpendicular (rather than parallel as shown in FIGS. 3A and 3B). Moreover, voltage across select transistor 362 is altered to enable current to flow. This opposite bias conditions causes current i to flow in the opposite direction from bipolar memory device 300 of FIG. 3A. This results in write (1) operation. Consistent with operation of exemplary bipolar memory device 350, during write (1) operation, current i causes the magnetization of free layer of MTJ 354 to become anti-parallel, with the reference layer of MTJ 304. One of ordinary skill in the art will understand that in other embodiments, current i could cause free layer of MTJ 354 to become parallel with reference layer which would result in write (1) or (0) operation depending on naming conventions. Verify (1) operation is also performed in the same bias conditions.


Unlike the situation where a logic low (0) is written, when a logic high (1) is written, low voltage was placed on the bit line and a high voltage was placed on the source line. During the verify operation for this write operation, unlike in past devices, a low voltage is also placed on the bit line while a high voltage is also placed on the source line. This is exactly the opposite of prior devices, and may provide for faster verify operations. Moreover, because write (1) and verify (1) operations are performed under the same polarity, such verify operations do not result in a disturb condition, since the bit line and source line does not need to change to opposite polarities when transitioning from a write operation to a verify operation. The bit line remains at a low voltage for both write and verify. Likewise, the source line remains at high voltage for both write and verify, although the voltage level itself should be lower than the voltage level on the source line during the write operation.



FIG. 4 shows bipolar memory device 400. The basic operation of bipolar memory device 400 during read, write, and verify operations has already been discussed in connection with FIGS. 3A and 3B. The operation of the control logic used to perform the read, write, and verify operations will be discussed in the context of FIG. 4.


Bipolar memory device 400 further includes control logic 414 coupled to source line 408. Moreover, bipolar memory device 400 includes control logic 416 coupled to bit line 410. Control logic 414 and 416 may comprise sense amplifier, bias circuits and program latches. As can be seen in FIG. 4, control of the logic levels placed on the source line 410 and bit line 408 can be implemented by coupling one or more bias circuits to each of the source and bit lines, respectively.


During write operations, bias circuits coupled to bit line 408 and source line 410 drive the voltage on bit and source lines as described in FIGS. 3A and 3B. The configuration of bias circuits to drive voltages is known to those having ordinary skill in the art. Moreover, sense amplifiers coupled to source and bit lines may be used to ascertain the logic level written to MTJ 404 during read and verify operations.


During write and verify operations, program latch coupled to bias circuits may be used to determine the voltages to be placed on source and bit lines. That is program latch determines that logic high (1) should have been written to MTJ 404 during the previous write cycle. Bias circuits would then drive source line high and bit line low as described in FIG. 3B to perform write (1) and verify (1) operations.


Bias circuits may optionally include trim circuits. Trim circuits perform a variety of functions. First, during verify (0) operation, trim circuits may reduce the voltage or the time that the voltage is applied for verify operation. That is because verify operation should be performed more stringently than read operation. Thus, trim circuits perform guard banding functions during verify operation. Moreover, verify (1) operation occurs at an opposite polarity to read operation. Thus, trim circuits may flip the voltage as applied during normal read operation in order to perform verify (1) operation. Because verify (1) operation as described in FIG. 3A results in voltage drop across select transistor, trim circuitry may also increase the voltage on source line as compared to the voltage applied to bit line during verify (0) operation. Thus, trim circuits trim the voltages applied to source and bit lines as necessary to perform verify operations. Either sense amplifier 414 on source line 408 or sense amplifier 416 on bit line 410 may be then be used to determine the logic level written to MTJ 404.


Designers of bipolar memory devices also commonly adjust trim circuits during testing to ensure proper operation of bipolar memory devices in the field. Typically, trim circuits are adjusted for process variation and temperature effects (PVT) to ensure that source and bit lines are driven to proper voltages. Moreover, trim circuits may be adjusted so that currents through bipolar memory devices to not damage components of bipolar memory devices such as select transistors and bipolar memory elements. Thus, trim circuits may be used to increase yields of bipolar memory devices after fabrication of a bipolar memory device.



FIG. 5 shows an alternative embodiment for exemplary bipolar memory device 500. The basic operation of bipolar memory device 500 during read, write, and verify operations has already been discussed in connection with FIGS. 3A and 3B. The operation of control logic and mux for performing the read, write, and verify operations will be discussed in the context of FIG. 5.


Bipolar memory device 500 further includes mux 514 coupled to source line 508 and bit line 510. Moreover, bipolar memory device 500 includes control logic 516 coupled to mux 514. Control logic 516 may comprise sense amplifier, bias circuits and program latches.


Control of the logic levels placed on the source and bit lines can be implemented with a single sense amplifier that is multiplexed, as is shown in FIG. 5. The select input to Mux 514 is the value being written to the MTJ 504 during the write operation that was in the program latch. Thus, during write and verify operation, mux 514 selects whether bit line or source line should be driven high by bias circuits in control logic 516. Thus, for example bias circuits in control logic 516 cause bit line to be driven high during write (0) operation and source line to be driven high during write (1) operation.


As described in the context of the embodiment shown in FIG. 4, the device should compensate for the fact that verification of a write logic level high (1) operation will result in the bit and source lines having opposite polarity than what is used during a read operation. Such compensation can be implemented by offsetting the voltage/current reference during a verify logic level high (1) operation, for example via bias circuits having trim circuits. This allows for compensation for the logic levels on the bit and source lines during a normal read operation. The write verify operation for a logic level high (1) will need to pass through a transistor whereas a normal read operation the bit line is driven high and thus voltage is not lost across the transistor. Alternately this compensation can also be implemented by shifting or recentering the voltage/current reference window for a verification of both writing a logic level low (0) and a logic level high (1). This can be implemented by shifting both trip points of a logic level high and a logic level low during write verify operations.


Mux 514 may also be used to determine whether read operation should be performed by driving source line high or bit line high. As previously discussed, read operation is implemented similarly to verify operation. Thus, although described as performed with bit line high and source line low in FIG. 3A, read operation could also be performed with bit line low and source line high, similar to verify (1) operation of FIG. 3B. Mux 514 selects whether bit line or source line should be driven high based on a register bit. For example, if read operations are performed more accurately with source line high and bit line low, register bit could be set to enable bias circuits to drive source line high for read operations. Other considerations such as power and reliability may also be taken into account when setting register bit.


The above description and drawings are only to be considered illustrative of specific embodiments, which achieve the features and advantages described herein. Modifications and substitutions to specific process conditions can be made. Accordingly, the embodiments in this patent document are not considered as being limited by the foregoing description and drawings.

Claims
  • 1. A method for writing data to a memory device, said method comprising: writing a bit of data into a memory cell, wherein said memory cell comprises a bit line and a source line, said writing comprising: applying a first differential voltage bias across said bit and source lines provided said data bit is a first logic value; andapplying a second differential voltage bias across said bit and source lines provided said data bit is a second logic value, wherein said second differential voltage bias is opposite in polarity to said first differential voltage bias; andverifying said bit of said memory cell by applying either said first or second differential voltage bias across said bit and source lines depending on the logic value of said bit.
  • 2. The method of claim 1, wherein said memory cell comprises a bipolar memory element.
  • 3. The method of claim 2 wherein said bipolar memory element comprises a magnetic tunnel junction.
  • 4. The method of claim 2 wherein said bipolar memory element comprises a memristor.
  • 5. The method of claim 2, the wherein the writing further comprises writing the bit into the bipolar memory element, wherein the bipolar memory element comprises chalcogenide glass.
  • 6. The method of claim 2, wherein said memory cell further comprises a first bias circuit and wherein further the applying the first voltage differential bias further comprises applying the first voltage differential bias with a first bias circuit coupled to the source line and a second bias circuit coupled to the bit line.
  • 7. The method of claim 2 further comprising detecting the logic value corresponding to the bit in the bipolar memory element, wherein the detecting is performed by a sense amplifier coupled to the source line.
  • 8. The method of claim 2 further comprising detecting the logic value corresponding to the data bit in the bipolar memory element, wherein the detecting is performed by a sense amplifier coupled to the bit line.
  • 9. The method as described in claim 1 wherein said verifying comprises: applying said first differential voltage bias across said bit and sources lines provided said data bit is a first logic value; andapplying said second differential voltage bias across said bit and sources lines provided said data bit is a second logic value, wherein said second differential voltage bias is opposite in polarity compared to said first differential voltage value.
  • 10. The method of claim 2, wherein said verifying further comprises reading said bit from a program latch.
  • 11. The method of claim 10, wherein the applying the second voltage differential bias further comprises applying the second voltage differential bias using a bias circuit coupled to a mux, wherein the mux is coupled to the source line and the bit line and wherein further the mux selects whether to drive the voltage high on the source line or the bit line based on data in said program latch.
  • 12. The method of claim 2 wherein said verifying further comprises detecting the logic value of said bit in the bipolar memory element using a sense amplifier coupled to the mux.
  • 13. A method for writing data to a spin-transfer torque magnetic memory (STT-MRAM) device, said method comprising: writing a bit of data into a memory cell, wherein said memory cell comprises a bit line and a source line and a magnetic tunnel junction (MTJ), said writing comprising: applying a first differential voltage bias across said bit and source lines provided said data bit is a first logic value; andapplying a second differential voltage bias across said bit and source lines provided said data bit is a second logic value, wherein said second differential voltage bias is opposite in polarity to said first differential voltage bias; andverifying said bit of said memory cell by applying either said first or second differential voltage bias across said bit and source lines depending on the logic value of said bit.
  • 14. The method of claim 13, wherein the applying the first voltage differential bias further comprises applying the first voltage differential bias using a first bias circuit coupled to the source line and a second bias circuit coupled to the bit line.
  • 15. The method of claim 13, wherein the applying the second voltage differential further comprises applying the second voltage differential with a first bias circuit coupled to the source line and a second bias circuit coupled to the bit line.
  • 16. The method of claim 13 wherein said verifying further comprises detecting said logic value corresponding to the bit in the MTJ, wherein the detecting is performed using a sense amplifier coupled to the source line.
  • 17. The method of claim 13 wherein said verifying further comprises detecting said logic value corresponding to the bit in the MTJ, wherein the detecting is performed using a sense amplifier coupled to the bit line.
  • 18. The method of claim 13, wherein said verifying comprises reading said logic value from a program latch and wherein further the applying the first voltage differential bias or said second voltage differential bias of said verifying further comprises applying the first or second voltage differential bias using a mux, wherein the mux is coupled to the source line and the bit line, wherein the mux selects whether to drive the voltage high on the source line or the bit line based on said program latch.
  • 19. The method of claim 18 further wherein said verifying comprises detecting the logic level corresponding to the bit in the MTJ using a sense amplifier coupled to the mux.
  • 20. The method of claim 13 wherein said verifying comprises: applying the first differential voltage bias across said bit and source lines provided said data bit is the first logic value; andapplying the second differential voltage bias across said bit and source lines provided said data bit is the second logic value.
  • 21. A method for writing data to a spin-transfer torque magnetic memory (STT-MRAM) device, said method comprising: writing a bit of data into a memory cell, wherein said memory cell comprises a bit line and a source line and a magnetic tunnel junction (MTJ), said writing comprising: applying a first differential voltage bias across said bit and source lines provided said data bit is a first logic value; andapplying a second differential voltage bias across said bit and source lines provided said data bit is a second logic value, wherein said second differential voltage bias is opposite in polarity to said first differential voltage bias; andverifying said bit of said memory cell, said verifying comprising: reading said bit of data from a latch; andapplying either said first or second differential voltage bias across said bit and source lines depending on the logic value of said bit.
  • 22. The method of claim 21, wherein said applying of said verifying further comprises: applying the first differential voltage bias across said bit and source lines provided said data bit is the first logic value; andapplying the second differential voltage bias across said bit and source lines provided said data bit is the second logic value.
  • 23. The method of claim 22, further comprising reading said bit from said memory cell, wherein said reading comprises applying either first differential voltage bias or second differential voltage bias across said bit and source lines.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of Provisional Application No. 62/205,178, filed Aug. 14, 2015. Priority to this provisional application is expressly claimed, and the disclosure of the provisional application is hereby incorporated herein by reference in its entirety.

US Referenced Citations (231)
Number Name Date Kind
341801 Fox May 1886 A
5541868 Prinz Jul 1996 A
5629549 Johnson May 1997 A
5640343 Gallagher et al. Jun 1997 A
5654566 Johnson Aug 1997 A
5691936 Sakakima et al. Nov 1997 A
5695846 Lange et al. Dec 1997 A
5695864 Slonczewski Dec 1997 A
5732016 Chen et al. Mar 1998 A
5856897 Mauri Jan 1999 A
5896252 Kanai Apr 1999 A
5966323 Chen et al. Oct 1999 A
6016269 Peterson et al. Jan 2000 A
6055179 Koganei et al. Apr 2000 A
6097579 Gill Aug 2000 A
6124711 Tanaka et al. Sep 2000 A
6134138 Lu et al. Oct 2000 A
6140838 Johnson Oct 2000 A
6154349 Kanai et al. Nov 2000 A
6172902 Wegrowe et al. Jan 2001 B1
6233172 Chen et al. May 2001 B1
6243288 Ishikawa et al. Jun 2001 B1
6252798 Satoh et al. Jun 2001 B1
6256223 Sun Jul 2001 B1
6292389 Chen et al. Sep 2001 B1
6347049 Childress et al. Feb 2002 B1
6376260 Chen et al. Apr 2002 B1
6385082 Abraham et al. May 2002 B1
6436526 Odagawa et al. Aug 2002 B1
6458603 Kersch et al. Oct 2002 B1
6493197 Ito et al. Dec 2002 B2
6522137 Sun et al. Feb 2003 B1
6532164 Redon et al. Mar 2003 B2
6538918 Swanson et al. Mar 2003 B2
6545906 Savtchenko et al. Apr 2003 B1
6563681 Sasaki et al. May 2003 B1
6566246 deFelipe et al. May 2003 B1
6603677 Redon et al. Aug 2003 B2
6653153 Doan et al. Nov 2003 B2
6654278 Engel et al. Nov 2003 B1
6677165 Lu et al. Jan 2004 B1
6710984 Yuasa et al. Mar 2004 B1
6713195 Wang et al. Mar 2004 B2
6714444 Huai et al. Mar 2004 B2
6744086 Daughton et al. Jun 2004 B2
6750491 Sharma et al. Jun 2004 B2
6765824 Kishi et al. Jul 2004 B2
6772036 You et al. Aug 2004 B2
6773515 Li et al. Aug 2004 B2
6777730 Daughton et al. Aug 2004 B2
6785159 Tuttle Aug 2004 B2
6812437 Levy et al. Nov 2004 B2
6829161 Huai et al. Dec 2004 B2
6835423 Chen et al. Dec 2004 B2
6838740 Huai et al. Jan 2005 B2
6842317 Sugita et al. Jan 2005 B2
6847547 Albert et al. Jan 2005 B2
6887719 Lu et al. May 2005 B2
6888742 Nguyen et al. May 2005 B1
6902807 Argoitia et al. Jun 2005 B1
6906369 Ross et al. Jun 2005 B2
6920063 Huai et al. Jul 2005 B2
6933155 Albert et al. Aug 2005 B2
6958927 Nguyen et al. Oct 2005 B1
6967863 Huai Nov 2005 B2
6980469 Kent et al. Dec 2005 B2
6985385 Nguyen et al. Jan 2006 B2
6992359 Nguyen et al. Jan 2006 B2
6995962 Saito et al. Feb 2006 B2
7002839 Kawabata et al. Feb 2006 B2
7005958 Wan Feb 2006 B2
7006375 Covington Feb 2006 B2
7009877 Huai et al. Mar 2006 B1
7041598 Sharma May 2006 B2
7045368 Hong et al. May 2006 B2
7170778 Kent et al. Jan 2007 B2
7190611 Nguyen et al. Mar 2007 B2
7203129 Lin et al. Apr 2007 B2
7227773 Nguyen et al. Jun 2007 B1
7262941 Li et al. Aug 2007 B2
7307876 Kent et al. Dec 2007 B2
7324387 Bergemont Jan 2008 B1
7335960 Han et al. Feb 2008 B2
7351594 Bae et al. Apr 2008 B2
7352021 Bae et al. Apr 2008 B2
7376006 Bednorz et al. May 2008 B2
7449345 Horng et al. Nov 2008 B2
7476919 Hong et al. Jan 2009 B2
7502249 Ding Mar 2009 B1
7573737 Kent et al. Aug 2009 B2
7598555 Papworth-Parkin Oct 2009 B1
7619431 DeWilde et al. Nov 2009 B2
7881095 Lu Feb 2011 B2
7911832 Kent et al. Mar 2011 B2
7936595 Han et al. May 2011 B2
7986544 Kent et al. Jul 2011 B2
8279666 Dieny et al. Oct 2012 B2
8334213 Mao Dec 2012 B2
8363465 Kent et al. Jan 2013 B2
8456883 Liu Jun 2013 B1
8492881 Kuroiwa et al. Jul 2013 B2
8535952 Ranjan et al. Sep 2013 B2
8574928 Satoh et al. Nov 2013 B2
8582353 Lee Nov 2013 B2
8617408 Balamane Dec 2013 B2
8716817 Saida May 2014 B2
8737137 Choy et al. May 2014 B1
8852760 Wang et al. Oct 2014 B2
9019754 Bedeschi Apr 2015 B1
9082888 Kent et al. Jul 2015 B2
9245608 Chen et al. Jan 2016 B2
9263667 Pinarbasi Feb 2016 B1
9337412 Pinarbasi et al. Mar 2016 B2
9362486 Kim et al. Jun 2016 B2
9378817 Kawai Jun 2016 B2
9406876 Pinarbasi Aug 2016 B2
9472282 Lee Oct 2016 B2
9472748 Kuo et al. Oct 2016 B2
9484527 Han et al. Nov 2016 B2
9548445 Lee et al. Jan 2017 B2
20020090533 Zhang et al. Jul 2002 A1
20020105823 Redon et al. Aug 2002 A1
20020132140 Igarashi et al. Sep 2002 A1
20030117840 Sharma et al. Jun 2003 A1
20030151944 Saito Aug 2003 A1
20030197984 Inomata et al. Oct 2003 A1
20030218903 Luo Nov 2003 A1
20040012994 Slaughter et al. Jan 2004 A1
20040061154 Huai et al. Apr 2004 A1
20040094785 Zhu et al. May 2004 A1
20040130936 Nguyen et al. Jul 2004 A1
20040257717 Sharma et al. Dec 2004 A1
20050041342 Huai et al. Feb 2005 A1
20050051820 Stojakovic et al. Mar 2005 A1
20050063222 Huai et al. Mar 2005 A1
20050104101 Sun et al. May 2005 A1
20050128842 Wei Jun 2005 A1
20050136600 Huai Jun 2005 A1
20050158881 Sharma Jul 2005 A1
20050174702 Gill Aug 2005 A1
20050180202 Huai et al. Aug 2005 A1
20050184839 Nguyen et al. Aug 2005 A1
20050201023 Huai et al. Sep 2005 A1
20050237787 Huai et al. Oct 2005 A1
20050280058 Pakala et al. Dec 2005 A1
20060018057 Huai Jan 2006 A1
20060049472 Diao et al. Mar 2006 A1
20060087880 Mancoff et al. Apr 2006 A1
20060092696 Bessho May 2006 A1
20060132990 Morise et al. Jun 2006 A1
20060227465 Inokuchi et al. Oct 2006 A1
20070019337 Apalkov et al. Jan 2007 A1
20070242501 Hung et al. Oct 2007 A1
20080049488 Rizzo Feb 2008 A1
20080112094 Kent et al. May 2008 A1
20080151614 Guo Jun 2008 A1
20080259508 Kent et al. Oct 2008 A2
20080297292 Viala et al. Dec 2008 A1
20090046501 Ranjan et al. Feb 2009 A1
20090072185 Raksha et al. Mar 2009 A1
20090091037 Assefa et al. Apr 2009 A1
20090098413 Kanegae Apr 2009 A1
20090161421 Cho et al. Jun 2009 A1
20090209102 Zhong et al. Aug 2009 A1
20090231909 Dieny et al. Sep 2009 A1
20100080040 Choi Apr 2010 A1
20100124091 Cowburn May 2010 A1
20100193891 Wang et al. Aug 2010 A1
20100232206 Li Sep 2010 A1
20100246254 Prejbeanu et al. Sep 2010 A1
20100271870 Zheng et al. Oct 2010 A1
20100290275 Park et al. Nov 2010 A1
20110001108 Greene Jan 2011 A1
20110032645 Noel et al. Feb 2011 A1
20110058412 Zheng et al. Mar 2011 A1
20110089511 Keshtbod et al. Apr 2011 A1
20110133298 Chen et al. Jun 2011 A1
20120052258 Op DeBeeck et al. Mar 2012 A1
20120069649 Ranjan et al. Mar 2012 A1
20120155156 Watts Jun 2012 A1
20120181642 Prejbeanu et al. Jul 2012 A1
20120188818 Ranjan et al. Jul 2012 A1
20120228728 Ueki et al. Sep 2012 A1
20120280336 Jan Nov 2012 A1
20120280339 Zhang et al. Nov 2012 A1
20120294078 Kent et al. Nov 2012 A1
20120299133 Son et al. Nov 2012 A1
20130001506 Sato et al. Jan 2013 A1
20130001652 Yoshikawa et al. Jan 2013 A1
20130021841 Zhou et al. Jan 2013 A1
20130075845 Chen et al. Mar 2013 A1
20130244344 Malmhall et al. Sep 2013 A1
20130267042 Satoh et al. Oct 2013 A1
20130270523 Wang et al. Oct 2013 A1
20130270661 Yi et al. Oct 2013 A1
20130307097 Yi et al. Nov 2013 A1
20130341801 Satoh et al. Dec 2013 A1
20140009994 Parkin et al. Jan 2014 A1
20140036573 Ishihara Feb 2014 A1
20140042571 Gan et al. Feb 2014 A1
20140048896 Huang et al. Feb 2014 A1
20140070341 Beach et al. Mar 2014 A1
20140103472 Kent et al. Apr 2014 A1
20140169085 Wang et al. Jun 2014 A1
20140177316 Otsuka et al. Jun 2014 A1
20140217531 Jan Aug 2014 A1
20140252439 Guo Sep 2014 A1
20140264671 Chepulskyy et al. Sep 2014 A1
20140321196 Ikeda Oct 2014 A1
20150056368 Wang et al. Feb 2015 A1
20150171316 Park et al. Jun 2015 A1
20150279904 Pinarbasi Oct 2015 A1
20160027999 Pinarbasi Jan 2016 A1
20160087193 Pinarbasi et al. Mar 2016 A1
20160093798 Kim et al. Mar 2016 A1
20160111634 Lee et al. Apr 2016 A1
20160126452 Kuo et al. May 2016 A1
20160126453 Chen et al. May 2016 A1
20160148685 Roy May 2016 A1
20160163965 Han et al. Jun 2016 A1
20160163973 Pinarbasi Jun 2016 A1
20160181508 Lee et al. Jun 2016 A1
20160218278 Pinarbasi et al. Jul 2016 A1
20160284762 Wang et al. Sep 2016 A1
20160315118 Kardasz et al. Oct 2016 A1
20160315259 Kardasz et al. Oct 2016 A1
20160372656 Pinarbasi et al. Dec 2016 A1
20170025472 Kim et al. Jan 2017 A1
20170033156 Gan et al. Feb 2017 A1
20170033283 Pinarbasi et al. Feb 2017 A1
20170084826 Zhou et al. Mar 2017 A1
Foreign Referenced Citations (35)
Number Date Country
2766141 Jan 2011 AL
105706259 Jun 2013 CN
1345277 Sep 2003 EP
2817998 Jun 2002 FR
2832542 May 2003 FR
2910716 Jun 2008 FR
H10-004012 Jan 1998 JP
H11-120758 Apr 1999 JP
H11-352867 Dec 1999 JP
2001-195878 Jul 2001 JP
2002-261352 Sep 2002 JP
2002-357489 Dec 2002 JP
2003-318461 Nov 2003 JP
2005-044848 Feb 2005 JP
2005-150482 Jun 2005 JP
2005-535111 Nov 2005 JP
2006-128579 May 2006 JP
2008-524830 Jul 2008 JP
2009-027177 Feb 2009 JP
2013-012546 Apr 2013 JP
2014-039061 Apr 2014 JP
2015-002352 Jan 2015 JP
5635666 Jan 2015 JP
10-2014-0115246 Sep 2014 KR
WO 2009-080636 Jul 2009 WO
WO 2011-005484 Jan 2011 WO
WO 2014-062681 Apr 2014 WO
WO-2015-153142 Oct 2015 WO
WO-2016-014326 Jan 2016 WO
WO-2016-048603 Mar 2016 WO
2016171800 Oct 2016 WO
2016171920 Oct 2016 WO
2016204835 Dec 2016 WO
2017019134 Feb 2017 WO
2017030647 Feb 2017 WO
Non-Patent Literature Citations (34)
Entry
R.H. Koch, et al., “Thermally Assisted Magnetization Reversal in Submicron-Sized Magnetic Thin Films”; Physical Review Letters; The American Physical Society; vol. 84, No. 23; Jun. 5, 2000, pp. 5419-5422 (4 pages).
K.J. Lee, et al., “Analytical investigation of spin-transfer dynamics using a perpendicular-to-plane polarizer”; Applied Physics Letters; American Institute of Physics; vol. 86, (2005); pp. 022505-1 to 022505-3 (3 pages).
Kirsten Martens, et al., “Thermally Induced Magnetic Switching in Thin Ferromagnetic Annuli”; NSF grants PHY-0351964 (DLS); 2005; 11 pages.
Kirsten Martens, et al., “Magnetic Reversal in Nanoscopic Ferromagnetic Rings”; NSF grants PHY-0351964 (DLS); 2006; 23 pages.
“Magnetic Technology Sprintronics, Media and Interface”; Data Storage Institute, R&D Highlights; Sep. 2010; 3 pages.
Andrew Kent, et al.; U.S. Appl. No. 61/715,111, filed Oct. 17, 2012, entitled “Inverted Orthogonal Spin Transfer Layer Stack”.
International Search Report and Written Opinion dated Jul. 10, 2015 in PCT/US2015/021580; 12 pages.
Kardasz, et al.; U.S. Appl. No. 14/866,359, filed Sep. 25, 2015, entitled “Spin Transfer Torque Structure for MRAM Devices Having a Spin Current Injection Capping Layer”.
International Search Report and Written Opinion dated Oct. 30, 2015 in PCT/US2015/040700; 11 pages.
International Search Report and Written Opinion dated Dec. 14, 2015 in PCT/US2015/047875; 13 pages.
Kardasz, et al.; U.S. Appl. No. 15/091,853, filed Apr. 6, 2016, entitled “High Annealing Temperature Perpendicular Magnetic Anisotropy Structure for Magnetic Random Access Memory”.
Pinarbasi, et al.; U.S. Appl. No. 15/093,367, filed Apr. 7, 2016, entitled “Magnetic Tunnel Junction Structure for MRAM Device”.
Pinarbasi, et al.; U.S. Appl. No. 15/097,576, filed Apr. 13, 2016, entitled “Polishing Stop Layer(s) for Processing Arrays of Semiconductor Elements”.
Pinarbasi, et al.; U.S. Appl. No. 15/157,783, filed May 18, 2016, entitled “Memory Cell Having Magnetic Tunnel Junction and Thermal Stability Enhancement Layer”.
Berger, et al.; U.S. Appl. No. 15/174,482, filed Jun. 6, 2016, entitled “Method and Apparatus for Bipolar Memory Write-Verify”.
International Search Report and Written Opinion dated Jun. 17, 2016 in PCT/US2016/021324; 9 pages.
International Search Report and Written Opinion dated Jun. 17, 2016 in PCT/US2016/021691; 9 pages.
International Search Report and Written Opinion dated Jul. 15, 2016 in PCT/US2016/026473; 9 pages.
International Search Report and Written Opinion dated Jul. 21, 2016 in PCT/US2016/027445; 10 pages.
Pinarbasi, et al.; U.S. Appl. No. 14/814,036, filed Jul. 30, 2016, entitled “Precessional Spin Current Structure for MRAM”.
International Search Report and Written Opinion dated Sep. 26, 2016 in PCT/US2016/037843; 10 pages.
S. Ikeda, et al.; “A perpendicular-anisotropy CoFeB—MgO magnetic tunnel junction”; Nature Materials, vol. 9, Sep. 2010; pp. 721-724 (4 pages).
Pinarbasi, et al.; U.S. Appl. No. 15/445,260, filed Feb. 28, 2017, entitled “Precessional Spin Current Structure for MRAM”.
Pinarbasi, et al.; U.S. Appl. No. 15/445,362, filed Feb. 28, 2017, entitled “Precessional Spin Current Structure for MRAM”.
NonFinal Office Action dated Jan. 20, 2016 in U.S. Appl. No. 14/242,419; 17 pages.
Final Office Action dated Jul. 9, 2015 in U.S. Appl. No. 14/242,419; 19 pages.
NonFinal Office Action dated Mar. 20, 2015 in U.S. Appl. No. 14/242,419; 18 pages.
NonFinal Office Action dated Sep. 11, 2015 in U.S. Appl. No. 14/492,943; 13 pages.
NonFinal Office Action dated Feb. 6, 2017 in U.S. Appl. No. 14/814,036; 22 pages.
NonFinal Office Action dated Dec. 9, 2017 in U.S. Appl. No. 14/866,359; 26 pages.
NonFinal Office Action dated Jan. 25, 2017 in U.S. Appl. No. 15/097,576; 17 pages.
NonFinal Office Action dated Dec. 23, 2016 in U.S. Appl. No. 15/093,367; 13 pages.
International Search Report and Written Opinion dated Apr. 7, 2017 in PCT/US2016/067444; 13 pages.
Notice of Allowance dated Apr. 21, 2017 in U.S. Appl. No. 15/157,783; 36 pages.
Related Publications (1)
Number Date Country
20170047107 A1 Feb 2017 US
Provisional Applications (1)
Number Date Country
62205178 Aug 2015 US