The present disclosure relates to a method of fabricating semiconductor devices with through silicon vias (TSVs). The present disclosure is particularly applicable to fabricating semiconductor devices with TSVs with wafer backside protection from copper contamination.
The integration of hundreds of millions of circuit elements, such as transistors, on a single integrated circuit necessitates further scaling down or micro-miniaturization of the physical dimensions of the circuit elements, including interconnection structures. Micro-miniaturization has engendered a dramatic increase in transistor engineering complexity, resulting in several problems.
One such problem is copper contamination at the backside surface of silicon wafers during TSV exposure by backgrind and reactive ion etch (RIE). The TSV exposure and RIE can cause copper ion migration into active device regions. This issue is especially problematic after wafer thinning.
A need therefore exists for methodology enabling formation of devices including TSVs with wafer backside protection from copper contamination, and the resulting device.
An aspect of the present disclosure is an efficient method of fabricating a semiconductor device with wafer backside protection from copper contamination.
Another aspect of the present disclosure is a semiconductor device including a wafer backside protection layer surrounding an exposed TSV.
Additional aspects and other features of the present disclosure will be set forth in the description which follows and in part will be apparent to those having ordinary skill in the art upon examination of the following or may be learned from the practice of the present disclosure. The advantages of the present disclosure may be realized and obtained as particularly pointed out in the appended claims.
According to the present disclosure, some technical effects may be achieved in part by a method including: exposing a passivation layer surrounding a bottom portion of a TSV in a silicon substrate, forming a silicon composite layer over the exposed passivation layer and over a bottom surface of the silicon substrate, forming a hardmask layer over the silicon composite layer and over the bottom surface of the silicon substrate, removing a section of the silicon composite layer around the bottom portion of the TSV using the hardmask layer as a mask, re-exposing the passivation layer, and removing the hardmask layer and the re-exposed passivation layer to expose a contact for the bottom portion of the TSV.
Aspects of the present disclosure include forming the hardmask layer of a spin-on resist or planarization film. An additional aspect includes removing the section of the silicon composite layer by wet etching, dry etching, or a combination thereof. Another aspect includes removing the hardmask layer and the passivation layer by wet etching, dry etching, or a combination thereof. Further aspects include forming an oxide layer over the bottom portion of the TSV and the bottom surface of the silicon substrate prior to forming the silicon composite layer, and removing the oxide layer over the bottom portion of the TSV concurrently with the hardmask layer and the passivation layer to expose a contact for the bottom portion of the TSV. Yet another aspect includes forming a mask with the hardmask layer by forming the hardmask layer over the entire silicon composite layer and planarizing down to the silicon composite layer over the bottom portion of the TSV to expose the section of the silicon composite layer. An additional aspect includes planarizing the hardmask layer by chemical mechanical polishing, wet etching, or a combination thereof, exposing the section of the silicon composite layer. Other aspects including removing a protective film under the passivation layer from a bottom surface of the TSV after removing the hardmask layer and the passivation layer to expose the contact for the bottom portion of the TSV. A further aspect includes forming the hardmask layer to a thickness of 1 μm to 3 μm.
Another aspect of the present disclosure includes backgrinding a bottom surface of a silicon substrate exposing a bottom portion of a TSV surrounded by a passivation layer and a protective layer, forming an oxide layer over the bottom portion of the TSV, forming a silicon composite layer over the bottom portion of the TSV and the bottom surface of the silicon substrate, forming a hardmask layer over the silicon composite layer, planarizing the hardmask layer down to the silicon composite layer over a bottom surface of the TSV, and removing a section of the silicon composite layer around the bottom portion of the TSV.
An additional aspect includes removing the passivation layer and the protective layer to expose a contact for the bottom surface of the TSV. Yet another aspect includes planarizing the hardmask layer by chemical mechanical polishing, wet etching, or a combination thereof to expose the section of the silicon composite layer.
Another aspect of the present disclosure is a device including: a silicon substrate, an exposed portion of a through silicon via (TSV) protruding out from a bottom surface of the silicon substrate, and a silicon composite layer covering the remaining bottom surface of the silicon substrate.
Aspects include a device including an oxide layer between the silicon substrate and the silicon composite layer. An additional aspect includes the oxide layer being formed to a thickness of 100 Å to 500 Å. A further aspect includes the silicon composite layer being formed of silicon nitride, silicon carbide, or a combination thereof. Another aspect includes the exposed portion of the TSV protruding 0.5 μm to 3 μm out from the bottom surface of the silicon substrate. An additional aspect includes the device including a protective film and a passivation layer between the TSV and the silicon substrate. A further aspect includes the passivation layer ending at the bottom surface of the silicon composite layer. Yet another aspect includes the protective layer extending down sides of the exposed portion of the TSV.
Additional aspects and technical effects of the present disclosure will become readily apparent to those skilled in the art from the following detailed description wherein embodiments of the present disclosure are described simply by way of illustration of the best mode contemplated to carry out the present disclosure. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the present disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of exemplary embodiments. It should be apparent, however, that exemplary embodiments may be practiced without these specific details or with an equivalent arrangement. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring exemplary embodiments. In addition, unless otherwise indicated, all numbers expressing quantities, ratios, and numerical properties of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.”
The present disclosure addresses and solves the current problem of semiconductor device failure because of copper contamination during backgrinding owing to no gettering layer at the back surface of thinned wafer semiconductors and from copper TSVs owing to poor step coverage of the barrier layer. In accordance with embodiments of the present disclosure, a backside wafer contamination protection layer is produced prior to exposing the bottom of the TSV.
Methodology in accordance with embodiments of the present disclosure includes exposing a passivation layer surrounding a bottom portion of a TSV in a silicon substrate. A silicon composite layer is then formed over the exposed passivation layer and over a bottom surface of the silicon substrate. Next, a hardmask layer of a spin-on resist or planarization film is formed over the silicon composite layer and over the bottom surface of the silicon substrate. A mask made using the hardmask layer may be formed by forming the hardmask layer over the entire silicon composite layer and planarizing down to the silicon composite layer over a bottom portion of the TSV to expose a section of the silicon composite layer. The section of the silicon composite layer around the bottom portion of the TSV is removed by wet etching, dry etching, or a combination thereof using the mask of the hardmask layer, re-exposing the passivation layer. Then, the hardmask layer and the re-exposed passivation layer are removed exposing a contact for the bottom portion of the TSV.
Still other aspects, features, and technical effects will be readily apparent to those skilled in this art from the following detailed description, wherein preferred embodiments are shown and described, simply by way of illustration of the best mode contemplated. The disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
Adverting to
Next, as illustrated in
Next, an oxide layer 301 is formed over the bottom portion 201 of the TSV 101 and the bottom surface of the silicon substrate 100, as illustrated in
Adverting to
As illustrated in
Adverting back to
Adverting to
As illustrated in
As shown in
The embodiments of the present disclosure achieve several technical effects, including preventing copper contamination at the backside of wafers during TSV exposure. Embodiments of the present disclosure enjoy utility in various industrial applications as, for example, microprocessors, smart phones, mobile phones, cellular handsets, set-top boxes, DVD recorders and players, automotive navigation, printers and peripherals, networking and telecom equipment, gaming systems, and digital cameras. The present disclosure therefore enjoys industrial applicability in any of various types of highly integrated semiconductor devices.
In the preceding description, the present disclosure is described with reference to specifically exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the present disclosure, as set forth in the claims. The specification and drawings are, accordingly, to be regarded as illustrative and not as restrictive. It is understood that the present disclosure is capable of using various other combinations and embodiments and is capable of any changes or modifications within the scope of the inventive concept as expressed herein.
This Application is a Divisional of U.S. application Ser. No. 13/542,256, filed Jul. 5, 2012, the content of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6734084 | Nemoto et al. | May 2004 | B1 |
7214615 | Miyazawa | May 2007 | B2 |
7902643 | Tuttle | Mar 2011 | B2 |
7910473 | Chen | Mar 2011 | B2 |
20020115290 | Halahan et al. | Aug 2002 | A1 |
20030219939 | Ahmed et al. | Nov 2003 | A1 |
20050029630 | Matsuo | Feb 2005 | A1 |
20050151228 | Tanida et al. | Jul 2005 | A1 |
20070032061 | Farnworth et al. | Feb 2007 | A1 |
20090243047 | Wolter et al. | Oct 2009 | A1 |
20100025852 | Ueki et al. | Feb 2010 | A1 |
20100038800 | Yoon et al. | Feb 2010 | A1 |
20100164117 | Chen | Jul 2010 | A1 |
20100178747 | Ellul et al. | Jul 2010 | A1 |
20110095435 | Volant et al. | Apr 2011 | A1 |
20120061827 | Fujita | Mar 2012 | A1 |
20120074584 | Lee et al. | Mar 2012 | A1 |
20120091520 | Nakamura | Apr 2012 | A1 |
20130049127 | Chen et al. | Feb 2013 | A1 |
20130113103 | West et al. | May 2013 | A1 |
20130140700 | Ohmi | Jun 2013 | A1 |
20130334699 | Kuo et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
2012020689 | Feb 2012 | WO |
Entry |
---|
K. Hozawa et al., “Impact of Backside Cu Contamination in the 3D Integration Process,” 2009 Symposium on VLSI Technology Digest of Technical Papers, IEEE, 2009, pp. 172-173. |
K. Lee et al., “Concerns of 3D Integration Technology Using TSV,” Conference Publication, 6th Annual SEMATECH Symposium Japan, Sep. 13-15, 2010, 21 pages. |
Number | Date | Country | |
---|---|---|---|
20150137359 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13542256 | Jul 2012 | US |
Child | 14575639 | US |