Claims
- 1. A method of converting an organometallic precursor material to a metal-containing pattern adherent to a substrate, comprising:applying the organometallic precursor material in an amount sufficient to coat at least a portion of the substrate, wherein said organometallic precursor material is adapted to be converted to form a metal or metal oxide; pre-converting the organometallic precursor material by exposing the organometallic precursor material to a pre-conversion energy exposure dose such that the pre-converted precursor material is not converted to a degree sufficient to impair pattern resolution; pattern converting a portion of the pre-converted precursor material to convert this portion to a pattern-converted material to an extent sufficient to thereby form a pattern on the substrate; and developing the portion of the pre-converted precursor material that was not pattern-converted such that the pattern remains on the substrate after developing.
- 2. The method of claim 1, wherein the pattern conversion comprises exposing the pre-converted precursor material to a patterning energy exposure dose, which converts the pre-converted precursor material to metal or metal oxide that adheres to the substrate to an extent sufficient to thereby form a deposited pattern thereon.
- 3. The method of claim 2, wherein the pre-conversion energy exposure dose is selected to be about 20% or less of the combination of the pre-conversion energy exposure dose and the patterning energy exposure dose, such that the pre-converted precursor material is substantially developable.
- 4. The method of claim 2, wherein the pre-conversion energy exposure dose is selected to be from about 20% to about 50% of the combination of the pre-conversion energy exposure dose and the patterning energy exposure dose, such that the pre-converted precursor material is substantially developable.
- 5. The method of claim 1, wherein the pre-conversion, the pattern-conversion, or both, comprises photochemical metal organic deposition.
- 6. The method of claim 1, wherein the pre-conversion comprises forming a metal or metal oxide within the organometallic precursor material.
- 7. The method of claim 1, wherein the pre-conversion energy exposure dose is selected to be from about 30% to about 80% of a maximum pre-conversion energy exposure dose, wherein the maximum pre-conversion energy exposure dose is that energy dose above which the organometallic precursor material exposed to the pre-conversion energy exposure dose is no longer substantially developable or above which the organometallic precursor material exposed to the pre-conversion energy exposure dose adheres to the substrate to a degree sufficient to impair pattern resolution, wherein the organometallic precursor material exposed to the pre-conversion energy exposure dose is substantially developable.
- 8. The method of claim 1, wherein the pre-conversion energy exposure dose is selected to be about 50% or more of a maximum pre-conversion energy exposure dose, wherein the maximum pre-conversion energy exposure dose is that energy dose above which the organometallic precursor material exposed to the pre-conversion energy exposure dose is no longer substantially developable or above which the organometallic precursor material exposed to the pre-conversion energy exposure dose adheres to the substrate to a degree sufficient to impair pattern resolution, wherein the organometallic precursor material exposed to the pre-conversion energy exposure dose is substantially developable.
- 9. The method of claim 1, wherein the pre-conversion energy exposure dose is selected to be from about 60% to about 99% of a maximum pre-conversion energy exposure dose, wherein the maximum pre-conversion energy exposure dose is that energy dose above which the organometallic precursor material exposed to the pre-conversion energy exposure dose is no longer substantially developable or above which the organometallic precursor material exposed to the pre-conversion energy exposure dose adheres to the substrate to a degree sufficient to impair pattern resolution, wherein the organometallic precursor material exposed to the pre-conversion energy exposure dose is substantially developable.
- 10. A substrate containing a patterned metal or metal oxide layer formed according to the method of claim 1.
- 11. The method according to claim 1, wherein the pre-conversion comprises exposing the precursor material to a heat source, and wherein the pattern-conversion comprises exposing the pre-converted precursor material to a light source.
- 12. The method according to claim 1, wherein the pre-conversion comprises exposing the precursor material to a heat source, and wherein the pattern-conversion comprises exposing the pre-converted precursor material to an electron-beam source.
- 13. The method according to claim 1, wherein the pre-conversion comprises exposing the precursor material to an electron-beam source, and wherein the pattern-conversion comprises exposing the pre-converted precursor material to a light source.
- 14. The method according to claim 1, wherein the pre-conversion comprises exposing the precursor material to a light source, and wherein the pattern-conversion comprises exposing the pre-converted precursor material to a light source.
- 15. A method of converting an organometallic precursor material to a metal-containing pattern adherent to a substrate, comprising:applying the organometallic precursor material in an amount sufficient to coat at least a portion of the substrate, wherein said organometallic precursor material is adapted to be converted to form a metal or metal oxide; pre-converting the organometallic precursor material by exposing the organometallic precursor material to a pre-conversion energy exposure dose such that the pre-converted precursor material is not converted to a degree sufficient to impair pattern resolution; pattern converting a first portion of the pre-converted precursor material to convert this portion to a pattern-converted material to an extent sufficient to thereby form a first pattern on the substrate; pattern converting a second portion of the pre-converted precursor material to convert this portion to a pattern-converted material an extent sufficient to thereby form a second pattern on the substrate; and developing the second portion of the pre-converted precursor material that was pattern-converted such that the second pattern remains on the substrate after developing.
- 16. The method of claim 15, wherein the pattern conversion comprises exposing the pre-converted precursor material to a patterning energy exposure dose, which converts the pre-converted precursor material to metal or metal oxide that adheres to the substrate to an extent sufficient to thereby form a deposited pattern thereon.
- 17. The method of claim 16, wherein the pre-conversion energy exposure dose is selected to be about 20% or less of the combination of the pre-conversion energy exposure dose and the patterning energy exposure dose, such that the pre-converted precursor material is substantially developable.
- 18. The method of claim 16, wherein the pre-conversion energy exposure dose is selected to be from about 20% to about 50% of the combination of the pre-conversion energy exposure dose and the patterning energy exposure dose, such that the pre-converted precursor material is substantially developable.
- 19. The method of claim 15, wherein the pre-conversion, the pattern-conversion, or both, comprises photochemical metal organic deposition.
- 20. The method of claim 15, wherein the pre-conversion comprises forming a metal or metal oxide within the organometallic precursor material.
- 21. The method of claim 15, wherein the pre-conversion energy exposure dose is selected to be from about 30% to about 80% of a maximum pre-conversion energy exposure dose, wherein the maximum pre-conversion energy exposure dose is that energy dose above which the organometallic precursor material exposed to the pre-conversion energy exposure dose is no longer substantially developable or above which the organometallic precursor material exposed to the pre-conversion energy exposure dose adheres to the substrate to a degree sufficient to impair pattern resolution, wherein the organometallic precursor material exposed to the pre-conversion energy exposure dose is substantially developable.
- 22. The method of claim 15, wherein the pre-conversion energy exposure dose is selected to be about 50% or more of a maximum pre-conversion energy exposure dose, wherein the maximum pre-conversion energy exposure dose is that energy dose above which the organometallic precursor material exposed to the pre-conversion energy exposure dose is no longer substantially developable or above which the organometallic precursor material exposed to the pre-conversion energy exposure dose adheres to the substrate to a degree sufficient to impair pattern resolution, wherein the organometallic precursor material exposed to the pre-conversion energy exposure dose is substantially developable.
- 23. The method of claim 15, wherein the pre-conversion energy exposure dose is selected to be from about 60% to about 99% of a maximum pre-conversion energy exposure dose, wherein the maximum pre-conversion energy exposure dose is that energy dose above which the organometallic precursor material exposed to the pre-conversion energy exposure dose is no longer substantially developable or above which the organometallic precursor material exposed to the pre-conversion energy exposure dose adheres to the substrate to a degree sufficient to impair pattern resolution, wherein the organometallic precursor material exposed to the pre-conversion energy exposure dose is substantially developable.
- 24. A substrate containing a patterned metal or metal oxide layer formed according to the method of claim 15.
- 25. The method according to claim 15, wherein the pre-conversion comprises exposing the precursor material to a heat source, and wherein the pattern-conversion comprises exposing the pre-converted precursor material to a light source.
- 26. The method according to claim 15, wherein the pre-conversion comprises exposing the precursor material to a heat source, and wherein the pattern-conversion comprises exposing the pre-converted precursor material to an electron-beam source.
- 27. The method according to claim 15, wherein the pre-conversion comprises exposing the precursor material to an electron-beam source, and wherein the pattern-conversion comprises exposing the pre-converted precursor material to a light source.
- 28. The method according to claim 15, wherein the pre-conversion comprises exposing the precursor material to a light source, and wherein the pattern-conversion comprises exposing the pre-converted precursor material to a light source.
- 29. A method of selecting a pre-conversion energy exposure dose and a patterning energy exposure dose to be used in converting an organometallic precursor material to a metal-containing patterned layer comprising at least two pattern elements that are adherent to a substrate, which method comprises:determining a relationship between the pre-conversion energy exposure dose in the conversion and the amount of pre-converted precursor material that adheres to the substrate; and selecting a pre-conversion energy exposure dose that is less than a maximum pre-conversion energy exposure dose, wherein the maximum pre-conversion energy exposure dose is that energy dose above which the organometallic precursor material exposed to the pre-conversion energy exposure dose is no longer substantially developable or above which the organometallic precursor material exposed to the pre-conversion energy exposure dose adheres to the substrate to a degree sufficient to impair pattern resolution, such that the patterning energy exposure dose t yields an acceptable pattern resolution on the substrate, wherein the acceptable pattern resolution is such that the at least two elements of the metal-containing patterned layer are discrete and not connected by like material.
- 30. The method of claim 29, further comprising identifying a maximum pre-conversion energy exposure dose based on the dose-conversion relationship, such that the organometallic precursor material exposed to the pre-conversion energy exposure dose, but not to the patterning energy exposure dose is substantially removable during developing.
- 31. The method of claim 29, wherein the pre-conversion energy exposure dose is selected to be about 20% or less of the combination of the pre-conversion energy exposure dose and the patterning energy exposure dose, such that the pre-converted precursor material is substantially developable.
- 32. The method of claims 29, wherein the pre-conversion energy exposure dose is selected to be from about 20% to about 50% of the combination of the pre-conversion energy exposure dose and the patterning energy exposure dose, such that the pre-converted precursor material is substantially developable.
- 33. The method of claim 29, wherein the pre-conversion energy exposure dose is selected to be from about 30% to about 80% of a maximum pre-conversion energy exposure dose, wherein the maximum pre-conversion energy exposure dose is that energy dose above which the organometallic precursor material exposed to the pre-conversion energy exposure dose is no longer substantially developable or above which the organometallic precursor material exposed to the pre-conversion energy exposure dose adheres to the substrate to a degree sufficient to impair pattern resolution, wherein the organometallic precursor material exposed to the pre-conversion energy exposure dose is substantially developable.
- 34. The method of claim 29, wherein the pre-conversion energy exposure dose is selected to be about 50% or more of a maximum pre-conversion energy exposure dose, wherein the maximum pre-conversion energy exposure dose is that energy dose above which the organometallic precursor material exposed to the pre-conversion energy exposure dose is no longer substantially developable or above which the organometallic precursor material exposed to the pre-conversion energy exposure dose adheres to the substrate to a degree sufficient to impair pattern resolution, wherein the organometallic precursor material exposed to the pre-conversion energy exposure dose is substantially developable.
- 35. The method of claim 29, wherein the pre-conversion energy exposure dose is selected to be from about 60% to about 99% of a maximum pre-conversion energy exposure dose, wherein the maximum pre-conversion energy exposure dose is that energy dose above which the organometallic precursor material exposed to the pre-conversion energy exposure dose is no longer substantially developable or above which the organometallic precursor material exposed to the pre-conversion energy exposure dose adheres to the substrate to a degree sufficient to impair pattern resolution, wherein the organometallic precursor material exposed to the pre-conversion energy exposure dose is substantially developable.
PRIORITY INFORMATION
This application is a utility application based on Provisional Ser. No. 60/209,947, filed Jun. 6, 2000.
US Referenced Citations (15)
Non-Patent Literature Citations (1)
Entry |
Copy of the International Search Report (PCT/US02/17588), dated Sep. 11, 2002. |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/209947 |
Jun 2000 |
US |