Field of the Invention
The present invention generally relates to a method of atomic layer etching (ALE), particularly to a method of ALE using a functional group-containing fluorocarbon etchant.
Description of the Related Art
Atomic layer etching (ALE) is cyclic, atomic layer-level etching using an etchant gas adsorbed on a target film and reacted with excited reaction species, as disclosed in Japanese Patent Laid-open Publication No. 2013-235912 and No. 2014-522104. As compared with conventional etching technology, ALE can perform precise, atomic layer-level continuous etching on a sub-nanometer order to form fine, narrow convex-concave patterns and may be suitable for e.g., double-patterning processes. As an etchant gas, Cl2, HCl, CHF3, CH2F2, CH3F, H2, BCL3, SiCl4, Br2, HBr, NF3, CF4, C2F6, C4F8, SF6, O2, SO2, COS, etc. are known. However, it is revealed that in-plane uniformity of etching of a film on a substrate by ALE is not satisfactory when etching an oxide or nitride mineral film such as silicon oxide or nitride film.
Any discussion of problems and solutions in relation to the related art has been included in this disclosure solely for the purposes of providing a context for the present invention, and should not be taken as an admission that any or all of the discussion was known at the time the invention was made.
When etching Si or GaAs by ALE using Cl2 as an etchant gas, relatively good in-plane uniformity of etching can be obtained. However, when etching a silicon oxide or silicon nitride film by ALE using a fluorocarbon such as C4F8 as an etchant gas, good in-plane uniformity of etching is not obtained. This is because the etchant gas is adsorbed on a surface of a substrate through physical adsorption, not chemical adsorption, despite the fact that conventionally, the adsorption of an etchant gas is sometimes called “chemisorption.” That is, conventional ALE etches a metal or silicon oxide or nitride film by etchant gas physically adsorbed on its surface, wherein the adsorbed etchant gas reacts with excited species, and also by etchant gas which remains in the reaction space after being purged, causing gas-phase etching. As a result, in-plane uniformity of etching suffers. If an etchant gas is chemisorbed on a surface of a substrate, the adsorption is “chemisorption” which is chemical saturation adsorption which is a self-limiting adsorption reaction process, wherein the amount of deposited etchant gas molecules is determined by the number of reactive surface sites and is independent of the precursor exposure after saturation, and a supply of the etchant gas is such that the reactive surface sites are saturated thereby per cycle (i.e., the etchant gas adsorbed on a surface per cycle has a one-molecule thickness on principle). When chemisorption of an etchant gas on a substrate surface occurs, high in-plane uniformity of etching can be achieved. Conventional ALE, even though it calls adsorption “chemisorption,” in fact adsorbs an etchant gas on a substrate surface (e.g., SiO2 and SiN) by physical adsorption. If adsorption of an etchant gas is chemisorption, in-plane uniformity of etching should logically be high and also the etch rate per cycle should not be affected by the flow rate of the etchant gas or the duration of a pulse of etchant gas flow after the surface is saturated by etchant gas molecules. However, none of conventional etchant gases satisfies the above.
In some embodiments, a fluorocarbon which contains a functional group with a polarity is used as an etchant gas. The functional group-containing fluorocarbon has a structure where a fluorocarbon constitutes a basic skeleton, and at least one reactive functional group is attached thereto as a terminal group. The functional group includes a hydroxyl group (—OH) and an amino group (—NH2), for example, and the etchant gas is chemically adsorbed on a surface of a substrate based on the principle of substitution reaction or hydrogen bonding, etc. The adsorption of the etchant gas takes place by the terminal group on the substrate surface, and since the fluorocarbon basic skeleton itself is non-reactive to adsorption reaction, only one layer of the etchant gas molecules can be formed on the substrate surface. In this disclosure, chemical adsorption is referred to as chemisorption or self-limiting adsorption.
In some embodiments, by adsorbing an etchant gas on a surface of a metal or silicon oxide or nitride substrate (e.g., SiO2 substrate) in a self-limiting manner, ALE cycles (e.g., plasma-enhanced ALE or PEALE, thermal ALE, radical ALE) are performed to etch the surface, thereby improving in-plane uniformity of etching. In some embodiments, such an etchant is typically liquid at room temperature, the etchant is introduced into a reaction chamber using a flow-path switching (FPS) method wherein a carrier gas can continuously flow into the reaction chamber and can carry etchant gas in pulses by switching a main line and a detour line provided with a reservoir storing a liquid etchant precursor.
Additionally, since the functional group-containing fluorocarbon can effectively be chemisorbed on a metal or silicon oxide or nitrate film, deposition of a film containing fluorocarbon can be conducted by ALD, in place of etching, by using a proper reactant gas such as hydrogen in an excited state (e.g., Ar/H2 plasma).
For purposes of summarizing aspects of the invention and the advantages achieved over the related art, certain objects and advantages of the invention are described in this disclosure. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
Further aspects, features and advantages of this invention will become apparent from the detailed description which follows.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of necessary fee.
These and other features of this invention will now be described with reference to the drawings of preferred embodiments which are intended to illustrate and not to limit the invention. The drawings are greatly simplified for illustrative purposes and are not necessarily to scale.
In this disclosure, “gas” may include vaporized solid and/or liquid and may be constituted by a single gas or a mixture of gases. In this disclosure, a process gas introduced to a reaction chamber through a showerhead may be comprised of, consist essentially of, or consist of an etchant gas and an additive gas. The additive gas typically includes a dilution gas for diluting the etchant gas and reacting with the etchant gas when in an excited state. The etchant gas can be introduced with a carrier gas such as a noble gas. Also, a gas other than the process gas, i.e., a gas introduced without passing through the showerhead, may be used for, e.g., sealing the reaction space, which includes a seal gas such as a noble gas. In some embodiments, the term “etchant gas” refers generally to at least one gaseous or vaporized compound that participates in etching reaction that etches a layer on a substrate, and particularly to at least one compound that chemisorbs onto the layer in a non-excited state and etches the layer when being activated, whereas the term “reactant gas” refers to at least one gaseous or vaporized compound that contributes to activation of the etchant gas or catalyzes an etching reaction by the etchant gas. The term “etchant gas” refers to an active gas without a carrier gas, or a mixture of an active gas and a carrier gas, depending on the context. The dilution gas and/or carrier gas can serve as “reactant gas”. The term “carrier gas” refers to an inert or inactive gas in a non-excited state which carries an etchant gas to the reaction space in a mixed state and enters the reaction space as a mixed gas including the etchant gas. The inert gas and the etchant gas can converge as a mixed gas anywhere upstream of the reaction space, e.g., (a) in an etchant gas line upstream of a mass flow controller provided in the etchant gas line, wherein the inert gas is provided as a carrier gas or purge gas flowing through the etchant gas line, (b) in an etchant gas line downstream of a mass flow controller provided in the etchant gas line but upstream of a gas manifold where all or main process gases converge, wherein the inert gas is provided as a part of the etchant gas (as a carrier gas or purge gas), and/or (c) in a gas manifold where all or main process gases converge, wherein the inert gas flows in a reactant gas line as a reactant gas or purge gas upstream of the gas manifold. In the above, typically, (a) is rare. Thus, the inert gas can serve as a carrier gas (as a part of etchant gas) and/or at least a part of a reactant gas, wherein the above gases can serve also as purge gases.
In some embodiments, “film” refers to a layer continuously extending in a direction perpendicular to a thickness direction substantially without pinholes to cover an entire target or concerned surface, or simply a layer covering a target or concerned surface. In some embodiments, “layer” refers to a structure having a certain thickness formed on a surface or a synonym of film or a non-film structure. A film or layer may be constituted by a discrete single film or layer having certain characteristics or multiple films or layers, and a boundary between adjacent films or layers may or may not be clear and may be established based on physical, chemical, and/or any other characteristics, formation processes or sequence, and/or functions or purposes of the adjacent films or layers.
Further, in this disclosure, any two numbers of a variable can constitute a workable range of the variable as the workable range can be determined based on routine work, and any ranges indicated may include or exclude the endpoints. Additionally, any values of variables indicated (regardless of whether they are indicated with “about” or not) may refer to precise values or approximate values and include equivalents, and may refer to average, median, representative, majority, etc. in some embodiments. Additionally, the terms “constituted by” and “having” refer independently to “typically or broadly comprising”, “comprising”, “consisting essentially of”, or “consisting of” in some embodiments. Further, an article “a” or “an” refers to a species or a genus including multiple species. In this disclosure, any defined meanings do not necessarily exclude ordinary and customary meanings in some embodiments.
In the present disclosure where conditions and/or structures are not specified, the skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation. In all of the disclosed embodiments, any element used in an embodiment can be replaced with any elements equivalent thereto, including those explicitly, necessarily, or inherently disclosed herein, for the intended purposes. Further, the present invention can equally be applied to apparatuses and methods.
The embodiments will be explained with respect to preferred embodiments. However, the present invention is not limited to the preferred embodiments.
Some embodiments provide a method for etching a layer on a substrate placed in a reaction space by an atomic layer etching (ALE) process which comprises at least one etching cycle, wherein an etching cycle comprises: (i) continuously providing a noble gas (e.g., flowing at least as a carrier gas for an etchant gas) into the reaction space; (ii) providing a pulse of an etchant gas (e.g., into the continuous noble gas flow upstream of the reaction space) to chemisorb the etchant gas in an unexcited state in a self-limiting manner on a surface of the substrate in the reaction space, said etchant gas being a fluorocarbon gas containing a functional group with a polarity, said surface of the substrate being constituted by an oxide or nitride mineral (referred to also as “an oxide or nitride ceramic”); and (iii) providing a pulse of a reactive species of a noble gas in the reaction space to contact the etchant gas-chemisorbed surface of the substrate with the reactive species so that the surface of the layer on the substrate is etched. In the above, the term “continuously” refers to without interruption in space (e.g., uninterrupted supply over the substrate), without interruption in flow (e.g., uninterrupted inflow), and/or at a constant rate (the term need not satisfy all of the foregoing simultaneously), depending on the embodiment. In some embodiments, “continuous” flow has a constant flow rate (alternatively, even though the flow is “continuous”, its flow rate may be changed with time). The term “chemisorption” refers to adsorption of gas molecules chemically on a surface of a film by force stronger than Van der Waals force, i.e., physical adsorption. In some embodiments, chemisorption includes not only adsorption as a result of chemical reaction between terminal groups of gas molecules and the film surface, but also adsorption via hydrogen bonding or bonding equivalent thereto including electrostatic adsorption using the polarity of the terminal groups of the gas molecules. In some embodiments, chemisorption means adsorption which is stronger than physical adsorption. The term “self-limiting manner” refers to a manner wherein the amount of deposited gas molecules is determined by the number of reactive surface sites and is independent of the gas exposure after saturation, and a supply of the gas is such that the reactive surface sites are saturated thereby per cycle (i.e., the gas adsorbed on a surface per cycle has a one-molecule thickness on principle).
In some embodiments, the functional group contained in the etchant gas is selected from the group consisting of a hydroxyl group, amino group, ether group, ketone group, and carboxyl group. For example, when the etchant gas is CF3CH2OH and the substrate surface is constituted by silicon oxide, chemisorption of the etchant gas on a substrate surface may take place through the following chemical reaction:
CF3CH2—OH+Si—OH→CF3CH2—O—Si+H2O
Since the functional group has a polarity, it can be adsorbed on a substrate surface using the polarity. Preferably, the functional group contains oxygen or nitrogen. In some embodiments, the etchant gas is a perfluorocarbon gas. In some embodiments, the etchant gas is CF3ROH, C3F7ROH, C3F7RNH2, and/or (CF3R)2O wherein R represents an alkylene group having 1, 2, 3, or 4 carbon atoms. For example, the etchant gas is selected from the group consisting of CF3CH2OH, C3F7CH2OH, C3F7CH2NH2, and/or (CF3CH2)2O. Preferably, the etchant gas contains more than three fluorine atoms in its molecule. In some embodiments, no gas other than the etchant gas flows as an etchant gas throughout the ALE process. Alternatively, in some embodiments, any of known etchant gases such as Cl2, HCl, CHF3, CH2F2, CH3F, H2, BCL3, SiCl4, Br2, HBr, NF3, CF4, C2F6, C4F8, SF6, O2, SO2, and COS can be used as a secondary etchant gas in combination with the functional group-containing fluorocarbon.
In some embodiments, while providing the reactive species of the noble gas, no reactive species of O2, H2, or N2 are present in the reaction space. When the adsorbed etchant gas reacts with excited species of the noble gas, fluorine radicals (F*) are generated, which are the main etching component. However, when reactive species of O2, H2, or N2 are present in the reaction space, the reactive species react with fluorine radicals, interfering with or inhibiting the etching reaction. For example, an Ar/O2 plasma or Ar/H2 plasma does not cause etching reaction, and a N2 plasma can cause etching reaction but only at an extremely low etching rate. In some embodiments, the above reactive species may be added to the reaction space when the etchant gas contains more fluorine atoms, or after the cycle of providing the reactive species of the noble gas.
In some embodiments, the pulse of the reactive species of the noble gas is provided by applying a pulse of RF power discharge between electrodes disposed in the reaction space, between which the substrate is placed. The noble gas can be excited by applying a pulse of RF power in-situ or can be provided to the reaction space as noble gas radicals by a remote plasma unit. Alternatively, the noble gas can be excited thermally in the reaction space. In some embodiments, the noble gas is He, Ne, Ar, Kr, and/or Xe, preferably Ar and/or He.
In some embodiments, the oxide or nitride mineral constituting the surface of the substrate is a metal or silicon oxide or nitride, typically those selected from the group consisting of SiO2, SiON, SiN, TiO, TiON, TiN, Al2O3, and AlN. Any suitable substrate which can be etched by radical fluorine (such as those containing —OH groups on its surface) can be a target. In some embodiments, SiC may be a target.
In some embodiments, prior to the ALE process, a film is deposited on a substrate in the reaction space by atomic layer deposition (ALD), wherein the film on the substrate constitutes the surface of the substrate subjected to the ALE process, wherein the ALD process and the ALE process are conducted continuously in the reaction space. In some embodiments, the reaction space is controlled at a constant pressure throughout the ALD process and the ALE process.
In some embodiments, a purging period is taken between the pulse of the etchant gas and the pulse of the reactive species of the noble gas to remove excess etchant gas from the reaction space, and a purging period is taken after the pulse of the reactive species of the noble gas to remove by-products from the reaction space.
In some embodiments, the layer of the substrate has a recess pattern. In some embodiments, the surface of the substrate is etched isotropically. The etching is “isotropic” when conformality of etched surfaces, which is a percentage calculated by dividing the etched thickness at a sidewall by the etched thickness at a top surface, is 100%±10%.
Additionally, since the functional group-containing fluorocarbon can effectively be chemisorbed on a metal/silicon oxide or nitrate film, deposition of a film containing fluorocarbon (e.g., CxFy film) can be conducted by ALD, in place of etching, by using a proper reactant gas such as hydrogen in an excited state (e.g., Ar/H2 plasma).
Some embodiments will be explained with respect to the drawings. However, the present invention is not limited to the embodiments.
In some embodiments, the process sequence may be set as illustrated in
In some embodiments, the process sequence may be set as illustrated in
When the reactive species of noble gas are produced using a remote plasma unit, “RF” in the sequence illustrated in
In the sequence illustrated in
In some embodiments, the carrier gas for the Si-precursor is fed to the reaction chamber through the same gas inlet port, wherein the carrier gas, which flows from a gas source through a line fluidically connected to a reservoir of the Si-precursor in the PEALD cycle, bypasses the reservoir and enters into the reaction chamber through the gas inlet port in the PEALE cycle at a constant flow rate. The dilution gas can also be fed at a constant flow rate throughout the continuous fabrication process constituted by the PEALD cycles and the PEALE cycles. Accordingly, the fluctuation of pressure in the reaction chamber can effectively be avoided when changing the PEALD cycle to the PEALE cycle in the reaction chamber.
In some embodiments, PEALD may be conducted under conditions shown in Table 2 below.
Typically, the thickness of the dielectric film to be etched is in a range of about 50 nm to about 500 nm (a desired film thickness can be selected as deemed appropriate according to the application and purpose of film, etc.). The dielectric film may be used for double-patterning.
In the sequence illustrated in
The precursor may be provided with the aid of a carrier gas. Since ALD is a self-limiting adsorption reaction process, the number of deposited precursor molecules is determined by the number of reactive surface sites and is independent of the precursor exposure after saturation, and a supply of the precursor is such that the reactive surface sites are saturated thereby per cycle. A plasma for deposition may be generated in situ, for example, in an ammonia gas that flows continuously throughout the deposition cycle. In other embodiments the plasma may be generated remotely and provided to the reaction chamber.
As mentioned above, each pulse or phase of each deposition cycle is preferably self-limiting. An excess of reactants is supplied in each phase to saturate the susceptible structure surfaces. Surface saturation ensures reactant occupation of all available reactive sites (subject, for example, to physical size or “steric hindrance” restraints) and thus ensures excellent step coverage. In some embodiments the pulse time of one or more of the reactants can be reduced such that complete saturation is not achieved and less than a monolayer is adsorbed on the substrate surface.
The process cycle can be performed using any suitable apparatus including an apparatus illustrated in
In some embodiments, in the apparatus depicted in
In some embodiments, a dual chamber reactor (two sections or compartments for processing wafers disposed closely to each other) can be used, wherein a reactant gas and a noble gas can be supplied through a shared line whereas a precursor gas is supplied through unshared lines.
In some embodiments, the PEALE cycle can be performed using the same apparatus as for the PEALD cycle, which is illustrated in
A skilled artisan will appreciate that the apparatus includes one or more controller(s) (not shown) programmed or otherwise configured to cause the deposition and reactor cleaning processes described elsewhere herein to be conducted. The controller(s) are communicated with the various power sources, heating systems, pumps, robotics, and gas flow controllers or valves of the reactor, as will be appreciated by the skilled artisan.
The present invention is further explained with reference to working examples below. However, the examples are not intended to limit the present invention. In the examples where conditions and/or structures are not specified, the skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation. Also, the numbers applied in the specific examples can be modified by a range of at least ±50% in some embodiments, and the numbers are approximate.
A silicon oxide film was formed by PEALD on a 300-mm substrate. In Examples 1 and 2 and Comparative Example 1, PEALE was conducted on the silicon oxide film under the conditions shown in Table 3 below using the PEALE apparatus illustrated in
In Examples 1 and 2 and Comparative Example 1, the etching rate per cycle (EPC) was determined when the feed time (supply time) of etchant gas was changed. The results are shown in
As discussed above, when the feed time of the etchant gas was 0.1 second for Examples 1 (F=3) and 2 (F=6), the EPCs were approximately 0.04 nm/cycle and approximately 0.09 nm/cycle, respectively, i.e., the EPC increased when the number of fluorine atoms (F) in gas molecules were increased. By using an etchant gas having a higher number of fluorine atoms in its molecules, EPC can be increased.
The ALE process was performed in Example 3 and Comparative Example 2 according to Example 1 and Comparative Example 1 above, respectively, except that the 300-mm substrate had a patterned surface having an aspect ratio of about 2 and an opening width of about 30 nm, and the feed time of the etchant gas was 0.1 second for Example 3 and 0.2. seconds for Comparative Example 2. The results are shown in Table 4 below and
In Table 4, the numbers in the parentheses indicate reductions in thickness as compared with the initial thicknesses.
The ALE process was performed in Example 4 and Comparative Example 4 according to Example 1 (CF3CH2OH) and Comparative Example 1 (C2F6) above, respectively, except that the feed time of the etchant gas was 0.1 second for Example 4 and 0.2 seconds for Comparative Example 3. The results are shown in Table 5 below and
As shown in Table 5 and
It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
D56051 | Cohn | Aug 1920 | S |
2161626 | Loughner et al. | Jun 1939 | A |
2745640 | Cushman | May 1956 | A |
2990045 | Root | Sep 1959 | A |
3089507 | Drake et al. | May 1963 | A |
3094396 | Sylvester et al. | Jun 1963 | A |
3232437 | Hultgren | Feb 1966 | A |
3833492 | Bollyky | Sep 1974 | A |
3854443 | Baerg | Dec 1974 | A |
3862397 | Anderson et al. | Jan 1975 | A |
3887790 | Ferguson | Jun 1975 | A |
4054071 | Patejak | Oct 1977 | A |
4058430 | Suntola et al. | Nov 1977 | A |
4134425 | Gussefeld et al. | Jan 1979 | A |
4145699 | Hu et al. | Mar 1979 | A |
4176630 | Elmer | Dec 1979 | A |
4181330 | Kojima | Jan 1980 | A |
4194536 | Stine et al. | Mar 1980 | A |
4322592 | Martin | Mar 1982 | A |
4389973 | Suntola et al. | Jun 1983 | A |
4393013 | McMenamin | Jul 1983 | A |
4401507 | Engle | Aug 1983 | A |
4414492 | Hanlet | Nov 1983 | A |
4436674 | McMenamin | Mar 1984 | A |
4479831 | Sandow | Oct 1984 | A |
4499354 | Hill et al. | Feb 1985 | A |
4512113 | Budinger | Apr 1985 | A |
4570328 | Price et al. | Feb 1986 | A |
4579623 | Suzuki et al. | Apr 1986 | A |
D288556 | Wallgren | Mar 1987 | S |
4653541 | Oehlschlaeger et al. | Mar 1987 | A |
4654226 | Jackson et al. | Mar 1987 | A |
4681134 | Paris | Jul 1987 | A |
4718637 | Contin | Jan 1988 | A |
4722298 | Rubin et al. | Feb 1988 | A |
4735259 | Vincent | Apr 1988 | A |
4753192 | Goldsmith et al. | Jun 1988 | A |
4756794 | Yoder | Jul 1988 | A |
4780169 | Stark et al. | Oct 1988 | A |
4789294 | Sato et al. | Dec 1988 | A |
4821674 | deBoer et al. | Apr 1989 | A |
4827430 | Aid et al. | May 1989 | A |
4837185 | Yau et al. | Jun 1989 | A |
4854263 | Chang et al. | Aug 1989 | A |
4857139 | Tashiro et al. | Aug 1989 | A |
4857382 | Liu et al. | Aug 1989 | A |
4882199 | Sadoway et al. | Nov 1989 | A |
4976996 | Monkowski et al. | Dec 1990 | A |
4978567 | Miller | Dec 1990 | A |
4984904 | Nakano et al. | Jan 1991 | A |
4985114 | Okudaira | Jan 1991 | A |
4986215 | Yamada | Jan 1991 | A |
4987856 | Hey | Jan 1991 | A |
4991614 | Hammel | Feb 1991 | A |
5013691 | Lory et al. | May 1991 | A |
5027746 | Frijlink | Jul 1991 | A |
5028366 | Harakal et al. | Jul 1991 | A |
5060322 | Delepine | Oct 1991 | A |
5062386 | Christensen | Nov 1991 | A |
5065698 | Koike | Nov 1991 | A |
5074017 | Toya et al. | Dec 1991 | A |
5098638 | Sawada | Mar 1992 | A |
5104514 | Quartarone | Apr 1992 | A |
5116018 | Friemoth et al. | May 1992 | A |
D327534 | Manville | Jun 1992 | S |
5119760 | McMillan et al. | Jun 1992 | A |
5167716 | Boitnott et al. | Dec 1992 | A |
5178682 | Tsukamoto et al. | Jan 1993 | A |
5183511 | Yamazaki et al. | Feb 1993 | A |
5192717 | Kawakami et al. | Mar 1993 | A |
5194401 | Adams et al. | Mar 1993 | A |
5199603 | Prescott | Apr 1993 | A |
5221556 | Hawkins et al. | Jun 1993 | A |
5242539 | Kumihashi et al. | Sep 1993 | A |
5243195 | Nishi | Sep 1993 | A |
5246500 | Samata et al. | Sep 1993 | A |
5271967 | Kramer et al. | Dec 1993 | A |
5288684 | Yamazaki et al. | Feb 1994 | A |
5306946 | Yamamoto | Apr 1994 | A |
5315092 | Takahashi et al. | May 1994 | A |
5326427 | Jerbic | Jul 1994 | A |
5336327 | Lee | Aug 1994 | A |
5354580 | Goela et al. | Oct 1994 | A |
5356478 | Chen et al. | Oct 1994 | A |
5360269 | Ogawa et al. | Nov 1994 | A |
5380367 | Bertone | Jan 1995 | A |
5382311 | Ishikawa et al. | Jan 1995 | A |
5404082 | Hernandez et al. | Apr 1995 | A |
5413813 | Cruse et al. | May 1995 | A |
5415753 | Hurwitt et al. | May 1995 | A |
5421893 | Perlov | Jun 1995 | A |
5422139 | Fischer | Jun 1995 | A |
5430011 | Tanaka et al. | Jul 1995 | A |
5494494 | Mizuno et al. | Feb 1996 | A |
5496408 | Motoda et al. | Mar 1996 | A |
5504042 | Cho et al. | Apr 1996 | A |
5518549 | Hellwig | May 1996 | A |
5527417 | Iida et al. | Jun 1996 | A |
5531835 | Fodor et al. | Jul 1996 | A |
5574247 | Nishitani et al. | Nov 1996 | A |
5577331 | Suzuki | Nov 1996 | A |
5589002 | Su | Dec 1996 | A |
5589110 | Motoda et al. | Dec 1996 | A |
5595606 | Fujikawa et al. | Jan 1997 | A |
5601641 | Stephens | Feb 1997 | A |
5604410 | Vollkommer et al. | Feb 1997 | A |
5616947 | Tamura | Apr 1997 | A |
5621982 | Yamashita | Apr 1997 | A |
5632919 | MacCracken et al. | May 1997 | A |
D380527 | Velez | Jul 1997 | S |
5679215 | Barnes et al. | Oct 1997 | A |
5681779 | Pasch et al. | Oct 1997 | A |
5683517 | Shan | Nov 1997 | A |
5695567 | Kordina | Dec 1997 | A |
5718574 | Shimazu | Feb 1998 | A |
5724748 | Brooks | Mar 1998 | A |
5728223 | Murakarni et al. | Mar 1998 | A |
5730801 | Tepman et al. | Mar 1998 | A |
5732744 | Barr et al. | Mar 1998 | A |
5736314 | Hayes et al. | Apr 1998 | A |
5777838 | Tamagawa et al. | Jul 1998 | A |
5781693 | Balance et al. | Jul 1998 | A |
5796074 | Edelstein et al. | Aug 1998 | A |
5801104 | Schuegraf et al. | Sep 1998 | A |
5819434 | Herchen et al. | Oct 1998 | A |
5827757 | Robinson, Jr. et al. | Oct 1998 | A |
5836483 | Disel | Nov 1998 | A |
5837320 | Hampden-Smith et al. | Nov 1998 | A |
5852879 | Schumaier | Dec 1998 | A |
5853484 | Jeong | Dec 1998 | A |
5855680 | Soininen et al. | Jan 1999 | A |
5855681 | Maydan et al. | Jan 1999 | A |
5873942 | Park | Feb 1999 | A |
5877095 | Tamura et al. | Mar 1999 | A |
D409894 | McClurg | May 1999 | S |
5908672 | Ryu | Jun 1999 | A |
5916365 | Sherman | Jun 1999 | A |
5920798 | Higuchi et al. | Jul 1999 | A |
5968275 | Lee et al. | Oct 1999 | A |
5975492 | Brenes | Nov 1999 | A |
5979506 | Aarseth | Nov 1999 | A |
5997588 | Goodwin | Dec 1999 | A |
5997768 | Scully | Dec 1999 | A |
D419652 | Hall et al. | Jan 2000 | S |
6013553 | Wallace | Jan 2000 | A |
6015465 | Kholodenko et al. | Jan 2000 | A |
6017779 | Miyasaka | Jan 2000 | A |
6024799 | Chen | Feb 2000 | A |
6035101 | Sajoto et al. | Mar 2000 | A |
6042652 | Hyun | Mar 2000 | A |
6044860 | Nue | Apr 2000 | A |
6050506 | Guo et al. | Apr 2000 | A |
6060691 | Minami et al. | May 2000 | A |
6074443 | Venkatesh | Jun 2000 | A |
6083321 | Lei et al. | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6099302 | Hong et al. | Aug 2000 | A |
6122036 | Yamasaki et al. | Sep 2000 | A |
6124600 | Moroishi et al. | Sep 2000 | A |
6125789 | Gupta et al. | Oct 2000 | A |
6129044 | Zhao et al. | Oct 2000 | A |
6134807 | Komino | Oct 2000 | A |
6137240 | Bogdan et al. | Oct 2000 | A |
6140252 | Cho et al. | Oct 2000 | A |
6148761 | Majewski et al. | Nov 2000 | A |
6160244 | Ohashi | Dec 2000 | A |
6161500 | Kopacz et al. | Dec 2000 | A |
6162323 | Koshimizu et al. | Dec 2000 | A |
6180979 | Hofmann et al. | Jan 2001 | B1 |
6187691 | Fukuda | Feb 2001 | B1 |
6190634 | Lieber et al. | Feb 2001 | B1 |
6194037 | Terasaki et al. | Feb 2001 | B1 |
6201999 | Jevtic | Mar 2001 | B1 |
6207932 | Yoo | Mar 2001 | B1 |
6212789 | Kato | Apr 2001 | B1 |
6218288 | Li et al. | Apr 2001 | B1 |
6242359 | Misra | Jun 2001 | B1 |
6250250 | Maishev et al. | Jun 2001 | B1 |
6271148 | Kao | Aug 2001 | B1 |
6274878 | Li et al. | Aug 2001 | B1 |
6281098 | Wang | Aug 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
D449873 | Bronson | Oct 2001 | S |
6296909 | Spitsberg | Oct 2001 | B1 |
6299133 | Waragai et al. | Oct 2001 | B2 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6303523 | Cheung | Oct 2001 | B2 |
6305898 | Yamagishi et al. | Oct 2001 | B1 |
6312525 | Bright et al. | Nov 2001 | B1 |
6315512 | Tabrizi et al. | Nov 2001 | B1 |
D451893 | Robson | Dec 2001 | S |
D452220 | Robson | Dec 2001 | S |
6325858 | Wengert | Dec 2001 | B1 |
6326597 | Lubomirsky et al. | Dec 2001 | B1 |
6329297 | Balish | Dec 2001 | B1 |
6342427 | Choi et al. | Jan 2002 | B1 |
6347636 | Xia | Feb 2002 | B1 |
6352945 | Matsuki | Mar 2002 | B1 |
6367410 | Leahey et al. | Apr 2002 | B1 |
6368987 | Kopacz et al. | Apr 2002 | B1 |
6370796 | Zucker | Apr 2002 | B1 |
6372583 | Tyagi | Apr 2002 | B1 |
6374831 | Chandran | Apr 2002 | B1 |
6375312 | Ikeda et al. | Apr 2002 | B1 |
D457609 | Piano | May 2002 | S |
6383566 | Zagdoun | May 2002 | B1 |
6383955 | Matsuki | May 2002 | B1 |
6387207 | Janakiraman | May 2002 | B1 |
6391803 | Kim et al. | May 2002 | B1 |
6398184 | Sowada et al. | Jun 2002 | B1 |
6410459 | Blalock et al. | Jun 2002 | B2 |
6413321 | Kim et al. | Jul 2002 | B1 |
6413583 | Moghadam et al. | Jul 2002 | B1 |
6420279 | Ono et al. | Jul 2002 | B1 |
D461233 | Whalen | Aug 2002 | S |
D461882 | Piano | Aug 2002 | S |
6435798 | Satoh | Aug 2002 | B1 |
6436819 | Zhang | Aug 2002 | B1 |
6437444 | Andideh | Aug 2002 | B2 |
6445574 | Saw et al. | Sep 2002 | B1 |
6446573 | Hirayama et al. | Sep 2002 | B2 |
6450757 | Saeki | Sep 2002 | B1 |
6454860 | Metzner et al. | Sep 2002 | B2 |
6455445 | Matsuki | Sep 2002 | B2 |
6461435 | Littau et al. | Oct 2002 | B1 |
6468924 | Lee | Oct 2002 | B2 |
6472266 | Yu et al. | Oct 2002 | B1 |
6475276 | Elers et al. | Nov 2002 | B1 |
6475930 | Junker et al. | Nov 2002 | B1 |
6478872 | Chae et al. | Nov 2002 | B1 |
6482331 | Lu et al. | Nov 2002 | B2 |
6482663 | Bucklund | Nov 2002 | B1 |
6483989 | Okada et al. | Nov 2002 | B1 |
6494065 | Babbitt | Dec 2002 | B2 |
6499533 | Yamada | Dec 2002 | B2 |
6503562 | Saito et al. | Jan 2003 | B1 |
6503826 | Oda | Jan 2003 | B1 |
6511539 | Raaijmakers | Jan 2003 | B1 |
6521295 | Remington | Feb 2003 | B1 |
6521547 | Chang et al. | Feb 2003 | B1 |
6528430 | Kwan | Mar 2003 | B2 |
6528767 | Bagley et al. | Mar 2003 | B2 |
6531193 | Fonash et al. | Mar 2003 | B2 |
6531412 | Conti et al. | Mar 2003 | B2 |
6534395 | Werkhoven et al. | Mar 2003 | B2 |
6558755 | Berry et al. | May 2003 | B2 |
6569239 | Arai et al. | May 2003 | B2 |
6573030 | Fairbairn et al. | Jun 2003 | B1 |
6576062 | Matsuse | Jun 2003 | B2 |
6576064 | Griffiths et al. | Jun 2003 | B2 |
6576300 | Berry et al. | Jun 2003 | B1 |
6579833 | McNallan et al. | Jun 2003 | B1 |
6583048 | Vincent et al. | Jun 2003 | B1 |
6590251 | Kang et al. | Jul 2003 | B2 |
6594550 | Okrah | Jul 2003 | B1 |
6598559 | Vellore et al. | Jul 2003 | B1 |
6627503 | Ma et al. | Sep 2003 | B2 |
6632478 | Gaillard et al. | Oct 2003 | B2 |
6633364 | Hayashi | Oct 2003 | B2 |
6635117 | Kinnard et al. | Oct 2003 | B1 |
6638839 | Deng et al. | Oct 2003 | B2 |
6645304 | Yamaguchi | Nov 2003 | B2 |
6648974 | Ogliari et al. | Nov 2003 | B1 |
6649921 | Cekic et al. | Nov 2003 | B1 |
6652924 | Sherman | Nov 2003 | B2 |
6673196 | Oyabu | Jan 2004 | B1 |
6682973 | Paton et al. | Jan 2004 | B1 |
D486891 | Cronce | Feb 2004 | S |
6688784 | Templeton | Feb 2004 | B1 |
6689220 | Nguyen | Feb 2004 | B1 |
6692575 | Omstead et al. | Feb 2004 | B1 |
6692576 | Halpin et al. | Feb 2004 | B2 |
6699003 | Saeki | Mar 2004 | B2 |
6709989 | Ramdani et al. | Mar 2004 | B2 |
6710364 | Guldi et al. | Mar 2004 | B2 |
6713824 | Mikata | Mar 2004 | B1 |
6716571 | Gabriel | Apr 2004 | B2 |
6723642 | Lim et al. | Apr 2004 | B1 |
6730614 | Lim et al. | May 2004 | B1 |
6734090 | Agarwala et al. | May 2004 | B2 |
6740853 | Johnson et al. | May 2004 | B1 |
6743475 | Skarp et al. | Jun 2004 | B2 |
6743738 | Todd et al. | Jun 2004 | B2 |
6753507 | Fure et al. | Jun 2004 | B2 |
6756318 | Nguyen et al. | Jun 2004 | B2 |
6759098 | Han | Jul 2004 | B2 |
6760981 | Leap | Jul 2004 | B2 |
6784108 | Donohoe et al. | Aug 2004 | B1 |
D497977 | Engelbrektsson | Nov 2004 | S |
6815350 | Kim et al. | Nov 2004 | B2 |
6820570 | Kilpela et al. | Nov 2004 | B2 |
6821910 | Adomaitis et al. | Nov 2004 | B2 |
6824665 | Shelnut et al. | Nov 2004 | B2 |
6825134 | Law et al. | Nov 2004 | B2 |
6846515 | Vrtis | Jan 2005 | B2 |
6847014 | Benjamin et al. | Jan 2005 | B1 |
6858524 | Haukka et al. | Feb 2005 | B2 |
6858547 | Metzner | Feb 2005 | B2 |
6863019 | Shamouilian | Mar 2005 | B2 |
6864041 | Brown | Mar 2005 | B2 |
6872258 | Park et al. | Mar 2005 | B2 |
6872259 | Strang | Mar 2005 | B2 |
6874247 | Hsu | Apr 2005 | B1 |
6874480 | Ismailov | Apr 2005 | B1 |
6875677 | Conley, Jr. et al. | Apr 2005 | B1 |
6876017 | Goodner | Apr 2005 | B2 |
6884066 | Nguyen et al. | Apr 2005 | B2 |
6884319 | Kim | Apr 2005 | B2 |
6889864 | Lindfors et al. | May 2005 | B2 |
6895158 | Alyward et al. | May 2005 | B2 |
6899507 | Yamagishi et al. | May 2005 | B2 |
6909839 | Wang et al. | Jun 2005 | B2 |
6911092 | Sneh | Jun 2005 | B2 |
6913796 | Albano et al. | Jul 2005 | B2 |
6930059 | Conley, Jr. et al. | Aug 2005 | B2 |
6935269 | Lee et al. | Aug 2005 | B2 |
6939817 | Sandhu et al. | Sep 2005 | B2 |
6951587 | Narushima | Oct 2005 | B1 |
6953609 | Carollo | Oct 2005 | B2 |
6955836 | Kumagai et al. | Oct 2005 | B2 |
6972478 | Waite et al. | Dec 2005 | B1 |
6974781 | Timmermans et al. | Dec 2005 | B2 |
6976822 | Woodruff | Dec 2005 | B2 |
6984595 | Yamazaki | Jan 2006 | B1 |
6990430 | Hosek | Jan 2006 | B2 |
7021881 | Yamagishi | Apr 2006 | B2 |
7045430 | Ahn et al. | May 2006 | B2 |
7049247 | Gates et al. | May 2006 | B2 |
7053009 | Conley, Jr. et al. | May 2006 | B2 |
7055875 | Bonora | Jun 2006 | B2 |
7071051 | Jeon et al. | Jul 2006 | B1 |
7084079 | Conti et al. | Aug 2006 | B2 |
7088003 | Gates et al. | Aug 2006 | B2 |
7092287 | Beulens et al. | Aug 2006 | B2 |
7098149 | Lukas | Aug 2006 | B2 |
7109098 | Ramaswamy et al. | Sep 2006 | B1 |
7115838 | Kurara et al. | Oct 2006 | B2 |
7122085 | Shero et al. | Oct 2006 | B2 |
7122222 | Xiao et al. | Oct 2006 | B2 |
7129165 | Basol et al. | Oct 2006 | B2 |
7132360 | Schaeffer et al. | Nov 2006 | B2 |
7135421 | Ahn et al. | Nov 2006 | B2 |
7143897 | Guzman et al. | Dec 2006 | B1 |
7147766 | Uzoh et al. | Dec 2006 | B2 |
7153542 | Nguyen et al. | Dec 2006 | B2 |
7163721 | Zhang et al. | Jan 2007 | B2 |
7163900 | Weber | Jan 2007 | B2 |
7172497 | Basol et al. | Feb 2007 | B2 |
7192824 | Ahn et al. | Mar 2007 | B2 |
7192892 | Ahn et al. | Mar 2007 | B2 |
7195693 | Cowans | Mar 2007 | B2 |
7201943 | Park et al. | Apr 2007 | B2 |
7204887 | Kawamura et al. | Apr 2007 | B2 |
7205246 | MacNeil et al. | Apr 2007 | B2 |
7205247 | Lee et al. | Apr 2007 | B2 |
7207763 | Lee | Apr 2007 | B2 |
7208389 | Tipton et al. | Apr 2007 | B1 |
7211524 | Ryu et al. | May 2007 | B2 |
7234476 | Arai | Jun 2007 | B2 |
7235137 | Kitayama et al. | Jun 2007 | B2 |
7235482 | Wu | Jun 2007 | B2 |
7235501 | Ahn et al. | Jun 2007 | B2 |
7238596 | Kouvetakis et al. | Jul 2007 | B2 |
7265061 | Cho et al. | Sep 2007 | B1 |
D553104 | Oohashi et al. | Oct 2007 | S |
7290813 | Bonora | Nov 2007 | B2 |
7294582 | Haverkort et al. | Nov 2007 | B2 |
7297641 | Todd et al. | Nov 2007 | B2 |
7298009 | Yan et al. | Nov 2007 | B2 |
D557226 | Uchino et al. | Dec 2007 | S |
7307178 | Kiyomori et al. | Dec 2007 | B2 |
7312148 | Ramaswamy et al. | Dec 2007 | B2 |
7312162 | Ramaswamy et al. | Dec 2007 | B2 |
7312494 | Ahn et al. | Dec 2007 | B2 |
7323401 | Ramaswamy et al. | Jan 2008 | B2 |
7326657 | Xia et al. | Feb 2008 | B2 |
7327948 | Shrinivasan | Feb 2008 | B1 |
7329947 | Adachi et al. | Feb 2008 | B2 |
7335611 | Ramaswamy et al. | Feb 2008 | B2 |
7354847 | Chan et al. | Apr 2008 | B2 |
7357138 | Ji et al. | Apr 2008 | B2 |
7381644 | Soubramonium et al. | Jun 2008 | B1 |
7393418 | Yokogawa | Jul 2008 | B2 |
7393736 | Ahn et al. | Jul 2008 | B2 |
7393765 | Hanawa et al. | Jul 2008 | B2 |
7396491 | Marking et al. | Jul 2008 | B2 |
7399388 | Moghadam et al. | Jul 2008 | B2 |
7402534 | Mahajani | Jul 2008 | B2 |
7405166 | Liang et al. | Jul 2008 | B2 |
7405454 | Ahn et al. | Jul 2008 | B2 |
D575713 | Ratcliffe | Aug 2008 | S |
7411352 | Madocks | Aug 2008 | B2 |
7414281 | Fastow | Aug 2008 | B1 |
7416989 | Liu et al. | Aug 2008 | B1 |
7422653 | Blahnik et al. | Sep 2008 | B2 |
7422775 | Ramaswamy et al. | Sep 2008 | B2 |
7429532 | Ramaswamy et al. | Sep 2008 | B2 |
7431966 | Derderian et al. | Oct 2008 | B2 |
7437060 | Wang et al. | Oct 2008 | B2 |
7442275 | Cowans | Oct 2008 | B2 |
7476291 | Wang et al. | Jan 2009 | B2 |
7479198 | Guffrey | Jan 2009 | B2 |
D585968 | Elkins et al. | Feb 2009 | S |
7489389 | Shibazaki | Feb 2009 | B2 |
7494882 | Vitale | Feb 2009 | B2 |
7498242 | Kumar et al. | Mar 2009 | B2 |
7501292 | Matsushita et al. | Mar 2009 | B2 |
7503980 | Kida et al. | Mar 2009 | B2 |
D590933 | Vansell | Apr 2009 | S |
7514375 | Shanker et al. | Apr 2009 | B1 |
D593969 | Li | Jun 2009 | S |
7541297 | Mallick et al. | Jun 2009 | B2 |
7547363 | Tomiyasu et al. | Jun 2009 | B2 |
7550396 | Frohberg et al. | Jun 2009 | B2 |
7566891 | Rocha-Alvarez et al. | Jul 2009 | B2 |
7575968 | Sadaka et al. | Aug 2009 | B2 |
7579785 | Shinmen et al. | Aug 2009 | B2 |
7582555 | Lang | Sep 2009 | B1 |
7589003 | Kouvetakis et al. | Sep 2009 | B2 |
7589029 | Derderian et al. | Sep 2009 | B2 |
D602575 | Breda | Oct 2009 | S |
7598513 | Kouvetakis et al. | Oct 2009 | B2 |
7601223 | Lindfors et al. | Oct 2009 | B2 |
7601225 | Tuominen et al. | Oct 2009 | B2 |
7611751 | Elers | Nov 2009 | B2 |
7611980 | Wells et al. | Nov 2009 | B2 |
7618226 | Takizawa | Nov 2009 | B2 |
D606952 | Lee | Dec 2009 | S |
7629277 | Ghatnagar | Dec 2009 | B2 |
7632549 | Goundar | Dec 2009 | B2 |
7640142 | Tachikawa et al. | Dec 2009 | B2 |
7651583 | Kent et al. | Jan 2010 | B2 |
7651961 | Clark | Jan 2010 | B2 |
D609652 | Nagasaka | Feb 2010 | S |
D609655 | Sugimoto | Feb 2010 | S |
7678197 | Maki | Mar 2010 | B2 |
7678715 | Mungekar et al. | Mar 2010 | B2 |
7682657 | Sherman | Mar 2010 | B2 |
D613829 | Griffin et al. | Apr 2010 | S |
D614153 | Fondurulia et al. | Apr 2010 | S |
D614267 | Breda | Apr 2010 | S |
D614268 | Breda | Apr 2010 | S |
D614593 | Lee | Apr 2010 | S |
7690881 | Yamagishi | Apr 2010 | B2 |
7691205 | Ikedo | Apr 2010 | B2 |
7713874 | Milligan | May 2010 | B2 |
7720560 | Menser et al. | May 2010 | B2 |
7723648 | Tsukamoto et al. | May 2010 | B2 |
7727864 | Elers | Jun 2010 | B2 |
7732343 | Niroomand et al. | Jun 2010 | B2 |
7740705 | Li | Jun 2010 | B2 |
7745346 | Hausmann et al. | Jun 2010 | B2 |
7748760 | Kushida | Jul 2010 | B2 |
7754621 | Putjkonen | Jul 2010 | B2 |
7763869 | Matsushita et al. | Jul 2010 | B2 |
7767262 | Clark | Aug 2010 | B2 |
7771796 | Kohno et al. | Aug 2010 | B2 |
7780440 | Shibagaki et al. | Aug 2010 | B2 |
7789965 | Matsushita et al. | Sep 2010 | B2 |
7790633 | Tarafdar et al. | Sep 2010 | B1 |
7803722 | Liang | Sep 2010 | B2 |
7807578 | Bencher et al. | Oct 2010 | B2 |
7816278 | Reed et al. | Oct 2010 | B2 |
7824492 | Tois et al. | Nov 2010 | B2 |
7825040 | Fukazawa et al. | Nov 2010 | B1 |
7833353 | Furukawahara et al. | Nov 2010 | B2 |
7838084 | Derderian et al. | Nov 2010 | B2 |
7842518 | Miyajima | Nov 2010 | B2 |
7842622 | Lee et al. | Nov 2010 | B1 |
D629874 | Hermans | Dec 2010 | S |
7851019 | Tuominen et al. | Dec 2010 | B2 |
7851232 | van Schravendijk et al. | Dec 2010 | B2 |
7865070 | Nakamura | Jan 2011 | B2 |
7884918 | Hattori | Feb 2011 | B2 |
7888233 | Gauri | Feb 2011 | B1 |
D634719 | Yasuda et al. | Mar 2011 | S |
7897215 | Fair et al. | Mar 2011 | B1 |
7902582 | Forbes et al. | Mar 2011 | B2 |
7910288 | Abatchev et al. | Mar 2011 | B2 |
7915139 | Lang | Mar 2011 | B1 |
7919416 | Lee et al. | Apr 2011 | B2 |
7925378 | Gilchrist et al. | Apr 2011 | B2 |
7935940 | Smargiassi | May 2011 | B1 |
7939447 | Bauer et al. | May 2011 | B2 |
7955516 | Chandrachood et al. | Jun 2011 | B2 |
7963736 | Takizawa et al. | Jun 2011 | B2 |
7972980 | Lee et al. | Jul 2011 | B2 |
7981751 | Zhu et al. | Jul 2011 | B2 |
D643055 | Takahashi | Aug 2011 | S |
7992318 | Kawaji | Aug 2011 | B2 |
7994721 | Espiau et al. | Aug 2011 | B2 |
7998875 | DeYoung | Aug 2011 | B2 |
8003174 | Fukazawa | Aug 2011 | B2 |
8004198 | Bakre et al. | Aug 2011 | B2 |
8020315 | Nishimura | Sep 2011 | B2 |
8030129 | Jeong | Oct 2011 | B2 |
8038835 | Hayashi et al. | Oct 2011 | B2 |
8041197 | Kasai et al. | Oct 2011 | B2 |
8041450 | Takizawa et al. | Oct 2011 | B2 |
8043972 | Liu et al. | Oct 2011 | B1 |
8055378 | Numakura | Nov 2011 | B2 |
8060252 | Gage et al. | Nov 2011 | B2 |
8071451 | Berry | Dec 2011 | B2 |
8071452 | Raisanen | Dec 2011 | B2 |
8072578 | Yasuda et al. | Dec 2011 | B2 |
8076230 | Wei | Dec 2011 | B2 |
8076237 | Uzoh | Dec 2011 | B2 |
8082946 | Laverdiere et al. | Dec 2011 | B2 |
D652896 | Gether | Jan 2012 | S |
8092604 | Tomiyasu et al. | Jan 2012 | B2 |
D653734 | Sisk | Feb 2012 | S |
D654884 | Honma | Feb 2012 | S |
D655055 | Toll | Feb 2012 | S |
8119466 | Avouris | Feb 2012 | B2 |
8137462 | Fondurulia et al. | Mar 2012 | B2 |
8137465 | Shrinivasan et al. | Mar 2012 | B1 |
8138676 | Mills | Mar 2012 | B2 |
8142862 | Lee et al. | Mar 2012 | B2 |
8143174 | Xia et al. | Mar 2012 | B2 |
8147242 | Shibagaki et al. | Apr 2012 | B2 |
8173554 | Lee et al. | May 2012 | B2 |
8187951 | Wang | May 2012 | B1 |
8192901 | Kageyama | Jun 2012 | B2 |
8196234 | Glunk | Jun 2012 | B2 |
8197915 | Oka et al. | Jun 2012 | B2 |
8216380 | White et al. | Jul 2012 | B2 |
8231799 | Bera et al. | Jul 2012 | B2 |
D665055 | Yanagisawa et al. | Aug 2012 | S |
8241991 | Hsieh et al. | Aug 2012 | B2 |
8242031 | Mallick et al. | Aug 2012 | B2 |
8252114 | Vukovic | Aug 2012 | B2 |
8252659 | Huyghebaert et al. | Aug 2012 | B2 |
8252691 | Beynet et al. | Aug 2012 | B2 |
8272516 | Salvador | Sep 2012 | B2 |
8278176 | Bauer et al. | Oct 2012 | B2 |
8282769 | Iizuka | Oct 2012 | B2 |
8287648 | Reed et al. | Oct 2012 | B2 |
8293016 | Bahng et al. | Oct 2012 | B2 |
8298951 | Nakano | Oct 2012 | B1 |
8307472 | Saxon et al. | Nov 2012 | B1 |
8309173 | Tuominen et al. | Nov 2012 | B2 |
8323413 | Son | Dec 2012 | B2 |
8329599 | Fukazawa et al. | Dec 2012 | B2 |
8334219 | Lee et al. | Dec 2012 | B2 |
D676943 | Kluss | Feb 2013 | S |
8367528 | Bauer et al. | Feb 2013 | B2 |
8372204 | Nakamura | Feb 2013 | B2 |
8393091 | Kawamoto | Mar 2013 | B2 |
8394466 | Hong et al. | Mar 2013 | B2 |
8415259 | Lee et al. | Apr 2013 | B2 |
8440259 | Chiang et al. | May 2013 | B2 |
8444120 | Gregg et al. | May 2013 | B2 |
8445075 | Xu et al. | May 2013 | B2 |
8465811 | Ueda | Jun 2013 | B2 |
8466411 | Arai | Jun 2013 | B2 |
8470187 | Ha | Jun 2013 | B2 |
8484846 | Dhindsa | Jul 2013 | B2 |
8492170 | Xie et al. | Jul 2013 | B2 |
8496756 | Cruse et al. | Jul 2013 | B2 |
8506713 | Takagi | Aug 2013 | B2 |
8535767 | Kimura | Sep 2013 | B1 |
D691974 | Osada et al. | Oct 2013 | S |
8551892 | Nakano | Oct 2013 | B2 |
8563443 | Fukazawa | Oct 2013 | B2 |
8569184 | Oka | Oct 2013 | B2 |
8591659 | Fang et al. | Nov 2013 | B1 |
8592005 | Ueda | Nov 2013 | B2 |
8608885 | Goto et al. | Dec 2013 | B2 |
8617411 | Singh | Dec 2013 | B2 |
8633115 | Chang et al. | Jan 2014 | B2 |
8647722 | Kobayashi et al. | Feb 2014 | B2 |
8664627 | Ishikawa et al. | Mar 2014 | B1 |
8667654 | Gros-Jean | Mar 2014 | B2 |
8668957 | Dussarrat et al. | Mar 2014 | B2 |
8669185 | Onizawa | Mar 2014 | B2 |
8683943 | Onodera et al. | Apr 2014 | B2 |
8711338 | Liu et al. | Apr 2014 | B2 |
D705745 | Kurs et al. | May 2014 | S |
8720965 | Hino et al. | May 2014 | B2 |
8722546 | Fukazawa et al. | May 2014 | B2 |
8726837 | Patalay et al. | May 2014 | B2 |
8728832 | Raisanen et al. | May 2014 | B2 |
8742668 | Nakano et al. | Jun 2014 | B2 |
8764085 | Urabe | Jul 2014 | B2 |
8784950 | Fukazawa et al. | Jul 2014 | B2 |
8784951 | Fukazawa et al. | Jul 2014 | B2 |
8785215 | Kobayashi et al. | Jul 2014 | B2 |
8790749 | Omori et al. | Jul 2014 | B2 |
8802201 | Raisanen et al. | Aug 2014 | B2 |
8820809 | Ando et al. | Sep 2014 | B2 |
8821640 | Cleary et al. | Sep 2014 | B2 |
8841182 | Chen et al. | Sep 2014 | B1 |
8845806 | Aida et al. | Sep 2014 | B2 |
D715410 | Lohmann | Oct 2014 | S |
8864202 | Schrameyer | Oct 2014 | B1 |
D716742 | Jang et al. | Nov 2014 | S |
8877655 | Shero et al. | Nov 2014 | B2 |
8883270 | Shero et al. | Nov 2014 | B2 |
8901016 | Ha et al. | Dec 2014 | B2 |
8911826 | Adachi et al. | Dec 2014 | B2 |
8912101 | Tsuji et al. | Dec 2014 | B2 |
D720838 | Yamagishi et al. | Jan 2015 | S |
8933375 | Dunn et al. | Jan 2015 | B2 |
8940646 | Chandrasekharan | Jan 2015 | B1 |
D723153 | Borkholder | Feb 2015 | S |
8946830 | Jung et al. | Feb 2015 | B2 |
8956983 | Swaminathan | Feb 2015 | B2 |
D724553 | Choi | Mar 2015 | S |
D724701 | Yamagishi et al. | Mar 2015 | S |
D725168 | Yamagishi | Mar 2015 | S |
8967608 | Mitsumori et al. | Mar 2015 | B2 |
8986456 | Fondurulia et al. | Mar 2015 | B2 |
8991887 | Shin et al. | Mar 2015 | B2 |
8993054 | Jung et al. | Mar 2015 | B2 |
D726365 | Weigensberg | Apr 2015 | S |
D726884 | Yamagishi et al. | Apr 2015 | S |
9005539 | Halpin et al. | Apr 2015 | B2 |
9017481 | Pettinger et al. | Apr 2015 | B1 |
9018093 | Tsuji et al. | Apr 2015 | B2 |
9018111 | Milligan et al. | Apr 2015 | B2 |
9021985 | Alokozai et al. | May 2015 | B2 |
9023737 | Beynet et al. | May 2015 | B2 |
9029253 | Milligan et al. | May 2015 | B2 |
9029272 | Nakano | May 2015 | B1 |
D732145 | Yamagishi | Jun 2015 | S |
D732644 | Yamagishi et al. | Jun 2015 | S |
D733261 | Yamagishi et al. | Jun 2015 | S |
D733843 | Yamagishi et al. | Jul 2015 | S |
D734377 | Hirakida | Jul 2015 | S |
D735836 | Yamagishi | Aug 2015 | S |
9096931 | Yednak et al. | Aug 2015 | B2 |
9117657 | Nakano et al. | Aug 2015 | B2 |
9117866 | Marquardt et al. | Aug 2015 | B2 |
D739222 | Chadbourne | Sep 2015 | S |
9123510 | Nakano et al. | Sep 2015 | B2 |
9136108 | Matsushita et al. | Sep 2015 | B2 |
9142393 | Okabe et al. | Sep 2015 | B2 |
9169975 | Sarin et al. | Oct 2015 | B2 |
9171714 | Mori | Oct 2015 | B2 |
9171716 | Fukuda | Oct 2015 | B2 |
D743513 | Yamagishi | Nov 2015 | S |
9177784 | Raisanen et al. | Nov 2015 | B2 |
9190263 | Ishikawa et al. | Nov 2015 | B2 |
9196483 | Lee et al. | Nov 2015 | B1 |
9202727 | Dunn et al. | Dec 2015 | B2 |
9228259 | Haukka et al. | Jan 2016 | B2 |
9240412 | Xie et al. | Jan 2016 | B2 |
20010017103 | Takeshita et al. | Aug 2001 | A1 |
20010018267 | Shinriki et al. | Aug 2001 | A1 |
20010019777 | Tanaka et al. | Sep 2001 | A1 |
20010019900 | Hasegawa | Sep 2001 | A1 |
20010028924 | Sherman | Oct 2001 | A1 |
20010046765 | Cappellani et al. | Nov 2001 | A1 |
20010049202 | Maeda et al. | Dec 2001 | A1 |
20020001974 | Chan | Jan 2002 | A1 |
20020011210 | Satoh et al. | Jan 2002 | A1 |
20020014204 | Pyo | Feb 2002 | A1 |
20020064592 | Datta et al. | May 2002 | A1 |
20020076507 | Chiang et al. | Jun 2002 | A1 |
20020079714 | Soucy et al. | Jun 2002 | A1 |
20020088542 | Nishikawa et al. | Jul 2002 | A1 |
20020098627 | Pomarede et al. | Jul 2002 | A1 |
20020108670 | Baker et al. | Aug 2002 | A1 |
20020110991 | Li | Aug 2002 | A1 |
20020114886 | Chou et al. | Aug 2002 | A1 |
20020115252 | Haukka et al. | Aug 2002 | A1 |
20020172768 | Endo et al. | Nov 2002 | A1 |
20020187650 | Blalock et al. | Dec 2002 | A1 |
20020197849 | Mandal | Dec 2002 | A1 |
20030003635 | Paranjpe et al. | Jan 2003 | A1 |
20030010452 | Park et al. | Jan 2003 | A1 |
20030012632 | Saeki | Jan 2003 | A1 |
20030019428 | Ku et al. | Jan 2003 | A1 |
20030019580 | Strang | Jan 2003 | A1 |
20030025146 | Narwankar et al. | Feb 2003 | A1 |
20030040158 | Saitoh | Feb 2003 | A1 |
20030042419 | Katsumata et al. | Mar 2003 | A1 |
20030049375 | Nguyen et al. | Mar 2003 | A1 |
20030054670 | Wang et al. | Mar 2003 | A1 |
20030059535 | Luo et al. | Mar 2003 | A1 |
20030059980 | Chen et al. | Mar 2003 | A1 |
20030066826 | Lee et al. | Apr 2003 | A1 |
20030075925 | Lindfors et al. | Apr 2003 | A1 |
20030082307 | Chung et al. | May 2003 | A1 |
20030091938 | Fairbairn et al. | May 2003 | A1 |
20030094133 | Yoshidome et al. | May 2003 | A1 |
20030111963 | Tolmachev et al. | Jun 2003 | A1 |
20030134038 | Paranjpe | Jul 2003 | A1 |
20030141820 | White et al. | Jul 2003 | A1 |
20030157436 | Manger et al. | Aug 2003 | A1 |
20030168001 | Sneh | Sep 2003 | A1 |
20030170583 | Nakashima | Sep 2003 | A1 |
20030180458 | Sneh | Sep 2003 | A1 |
20030183156 | Dando | Oct 2003 | A1 |
20030192875 | Bieker et al. | Oct 2003 | A1 |
20030198587 | Kaloyeros | Oct 2003 | A1 |
20030209323 | Yokogaki | Nov 2003 | A1 |
20030228772 | Cowans | Dec 2003 | A1 |
20030232138 | Tuominen et al. | Dec 2003 | A1 |
20040009679 | Yeo et al. | Jan 2004 | A1 |
20040013577 | Ganguli et al. | Jan 2004 | A1 |
20040013818 | Moon et al. | Jan 2004 | A1 |
20040016637 | Yang | Jan 2004 | A1 |
20040018307 | Park et al. | Jan 2004 | A1 |
20040018750 | Sophie et al. | Jan 2004 | A1 |
20040023516 | Londergan et al. | Feb 2004 | A1 |
20040029052 | Park et al. | Feb 2004 | A1 |
20040036129 | Forbes et al. | Feb 2004 | A1 |
20040063289 | Ohta | Apr 2004 | A1 |
20040071897 | Verplancken et al. | Apr 2004 | A1 |
20040077182 | Lim et al. | Apr 2004 | A1 |
20040079960 | Shakuda | Apr 2004 | A1 |
20040080697 | Song | Apr 2004 | A1 |
20040082171 | Shin et al. | Apr 2004 | A1 |
20040101622 | Park et al. | May 2004 | A1 |
20040103914 | Cheng et al. | Jun 2004 | A1 |
20040106249 | Huotari | Jun 2004 | A1 |
20040124549 | Curran | Jul 2004 | A1 |
20040134429 | Yamanaka | Jul 2004 | A1 |
20040144980 | Ahn et al. | Jul 2004 | A1 |
20040146644 | Xia et al. | Jul 2004 | A1 |
20040168627 | Conley et al. | Sep 2004 | A1 |
20040169032 | Murayama et al. | Sep 2004 | A1 |
20040198069 | Metzner et al. | Oct 2004 | A1 |
20040200499 | Harvey et al. | Oct 2004 | A1 |
20040209477 | Buxbaum et al. | Oct 2004 | A1 |
20040212947 | Nguyen | Oct 2004 | A1 |
20040214445 | Shimizu et al. | Oct 2004 | A1 |
20040219793 | Hishiya et al. | Nov 2004 | A1 |
20040221807 | Verghese et al. | Nov 2004 | A1 |
20040247779 | Selvamanickam et al. | Dec 2004 | A1 |
20040261712 | Hayashi et al. | Dec 2004 | A1 |
20040266011 | Lee et al. | Dec 2004 | A1 |
20050003662 | Jursich et al. | Jan 2005 | A1 |
20050008799 | Tomiyasu et al. | Jan 2005 | A1 |
20050019026 | Wang et al. | Jan 2005 | A1 |
20050020071 | Sonobe et al. | Jan 2005 | A1 |
20050023624 | Ahn et al. | Feb 2005 | A1 |
20050034674 | Ono | Feb 2005 | A1 |
20050037154 | Koh et al. | Feb 2005 | A1 |
20050051093 | Makino et al. | Mar 2005 | A1 |
20050054228 | March | Mar 2005 | A1 |
20050059262 | Yin et al. | Mar 2005 | A1 |
20050064207 | Senzaki et al. | Mar 2005 | A1 |
20050064719 | Liu | Mar 2005 | A1 |
20050066893 | Soininen | Mar 2005 | A1 |
20050069651 | Miyoshi | Mar 2005 | A1 |
20050070123 | Hirano | Mar 2005 | A1 |
20050070729 | Kiyomori et al. | Mar 2005 | A1 |
20050072357 | Shero et al. | Apr 2005 | A1 |
20050074983 | Shinriki et al. | Apr 2005 | A1 |
20050092249 | Kilpela et al. | May 2005 | A1 |
20050095770 | Kumagai et al. | May 2005 | A1 |
20050100669 | Kools et al. | May 2005 | A1 |
20050101154 | Huang | May 2005 | A1 |
20050106893 | Wilk | May 2005 | A1 |
20050110069 | Kil et al. | May 2005 | A1 |
20050120962 | Ushioda et al. | Jun 2005 | A1 |
20050123690 | Derderian et al. | Jun 2005 | A1 |
20050133161 | Carpenter et al. | Jun 2005 | A1 |
20050142361 | Nakanishi et al. | Jun 2005 | A1 |
20050145338 | Park et al. | Jul 2005 | A1 |
20050153571 | Senzaki | Jul 2005 | A1 |
20050173003 | Laverdiere et al. | Aug 2005 | A1 |
20050181535 | Yun et al. | Aug 2005 | A1 |
20050187647 | Wang et al. | Aug 2005 | A1 |
20050191828 | Al-Bayati et al. | Sep 2005 | A1 |
20050199013 | Vandroux et al. | Sep 2005 | A1 |
20050208718 | Lim et al. | Sep 2005 | A1 |
20050212119 | Shero | Sep 2005 | A1 |
20050214457 | Schmitt et al. | Sep 2005 | A1 |
20050214458 | Meiere | Sep 2005 | A1 |
20050218462 | Ahn et al. | Oct 2005 | A1 |
20050221618 | AmRhein et al. | Oct 2005 | A1 |
20050223994 | Blomiley et al. | Oct 2005 | A1 |
20050227502 | Schmitt et al. | Oct 2005 | A1 |
20050229848 | Shinriki | Oct 2005 | A1 |
20050229972 | Hoshi et al. | Oct 2005 | A1 |
20050241176 | Shero et al. | Nov 2005 | A1 |
20050241763 | Huang et al. | Nov 2005 | A1 |
20050255257 | Choi et al. | Nov 2005 | A1 |
20050258280 | Goto et al. | Nov 2005 | A1 |
20050260347 | Narwankar et al. | Nov 2005 | A1 |
20050260850 | Loke | Nov 2005 | A1 |
20050263075 | Wang et al. | Dec 2005 | A1 |
20050263932 | Heugel | Dec 2005 | A1 |
20050271813 | Kher et al. | Dec 2005 | A1 |
20050274323 | Seidel et al. | Dec 2005 | A1 |
20050282101 | Adachi | Dec 2005 | A1 |
20050287725 | Kitagawa | Dec 2005 | A1 |
20050287771 | Seamons et al. | Dec 2005 | A1 |
20060013946 | Park et al. | Jan 2006 | A1 |
20060014384 | Lee et al. | Jan 2006 | A1 |
20060014397 | Seamons et al. | Jan 2006 | A1 |
20060016783 | Wu et al. | Jan 2006 | A1 |
20060019033 | Muthukrishnan et al. | Jan 2006 | A1 |
20060019502 | Park et al. | Jan 2006 | A1 |
20060021703 | Umotoy et al. | Feb 2006 | A1 |
20060024439 | Tuominen et al. | Feb 2006 | A2 |
20060046518 | Hill et al. | Mar 2006 | A1 |
20060051520 | Behle et al. | Mar 2006 | A1 |
20060051925 | Ahn et al. | Mar 2006 | A1 |
20060060930 | Metz et al. | Mar 2006 | A1 |
20060062910 | Meiere | Mar 2006 | A1 |
20060063346 | Lee et al. | Mar 2006 | A1 |
20060068121 | Lee et al. | Mar 2006 | A1 |
20060068125 | Radhakrishnan | Mar 2006 | A1 |
20060105566 | Waldfried et al. | May 2006 | A1 |
20060110934 | Fukuchi | May 2006 | A1 |
20060113675 | Chang et al. | Jun 2006 | A1 |
20060113806 | Tsuji et al. | Jun 2006 | A1 |
20060128168 | Ahn et al. | Jun 2006 | A1 |
20060130767 | Herchen | Jun 2006 | A1 |
20060137609 | Puchacz et al. | Jun 2006 | A1 |
20060147626 | Blomberg | Jul 2006 | A1 |
20060148180 | Ahn et al. | Jul 2006 | A1 |
20060163612 | Kouvetakis et al. | Jul 2006 | A1 |
20060172531 | Lin et al. | Aug 2006 | A1 |
20060191555 | Yoshida et al. | Aug 2006 | A1 |
20060193979 | Meiere et al. | Aug 2006 | A1 |
20060199357 | Wan et al. | Sep 2006 | A1 |
20060205223 | Smayling | Sep 2006 | A1 |
20060208215 | Metzner et al. | Sep 2006 | A1 |
20060213439 | Ishizaka | Sep 2006 | A1 |
20060223301 | Vanhaelemeersch et al. | Oct 2006 | A1 |
20060226117 | Bertram et al. | Oct 2006 | A1 |
20060228888 | Lee et al. | Oct 2006 | A1 |
20060236934 | Choi et al. | Oct 2006 | A1 |
20060240574 | Yoshie | Oct 2006 | A1 |
20060240662 | Conley et al. | Oct 2006 | A1 |
20060251827 | Nowak et al. | Nov 2006 | A1 |
20060257563 | Doh et al. | Nov 2006 | A1 |
20060257584 | Derderian et al. | Nov 2006 | A1 |
20060258078 | Lee et al. | Nov 2006 | A1 |
20060258173 | Xiao et al. | Nov 2006 | A1 |
20060260545 | Ramaswamy et al. | Nov 2006 | A1 |
20060264060 | Ramaswamy et al. | Nov 2006 | A1 |
20060264066 | Bartholomew | Nov 2006 | A1 |
20060266289 | Verghese et al. | Nov 2006 | A1 |
20060269692 | Balseanu | Nov 2006 | A1 |
20060278524 | Stowell | Dec 2006 | A1 |
20070006806 | Imai | Jan 2007 | A1 |
20070010072 | Bailey et al. | Jan 2007 | A1 |
20070020953 | Tsai et al. | Jan 2007 | A1 |
20070022954 | Iizuka et al. | Feb 2007 | A1 |
20070028842 | Inagawa et al. | Feb 2007 | A1 |
20070031598 | Okuyama et al. | Feb 2007 | A1 |
20070031599 | Gschwandtner et al. | Feb 2007 | A1 |
20070032082 | Ramaswamy et al. | Feb 2007 | A1 |
20070037412 | Dip et al. | Feb 2007 | A1 |
20070042117 | Kupurao et al. | Feb 2007 | A1 |
20070049053 | Mahajani | Mar 2007 | A1 |
20070054499 | Jang | Mar 2007 | A1 |
20070059948 | Metzner et al. | Mar 2007 | A1 |
20070062453 | Ishikawa | Mar 2007 | A1 |
20070065578 | McDougall | Mar 2007 | A1 |
20070066010 | Ando | Mar 2007 | A1 |
20070066079 | Kloster et al. | Mar 2007 | A1 |
20070077355 | Chacin et al. | Apr 2007 | A1 |
20070082132 | Shinriki | Apr 2007 | A1 |
20070084405 | Kim | Apr 2007 | A1 |
20070096194 | Streck et al. | May 2007 | A1 |
20070098527 | Hall et al. | May 2007 | A1 |
20070107845 | Ishizawa et al. | May 2007 | A1 |
20070111545 | Lee et al. | May 2007 | A1 |
20070116873 | Li et al. | May 2007 | A1 |
20070123037 | Lee et al. | May 2007 | A1 |
20070125762 | Cui et al. | Jun 2007 | A1 |
20070128538 | Fairbairn et al. | Jun 2007 | A1 |
20070134942 | Ahn et al. | Jun 2007 | A1 |
20070146621 | Yeom | Jun 2007 | A1 |
20070148990 | Deboer et al. | Jun 2007 | A1 |
20070155138 | Tomasini et al. | Jul 2007 | A1 |
20070158026 | Amikura | Jul 2007 | A1 |
20070163440 | Kim et al. | Jul 2007 | A1 |
20070166457 | Yamoto et al. | Jul 2007 | A1 |
20070166966 | Todd et al. | Jul 2007 | A1 |
20070166999 | Vaarstra | Jul 2007 | A1 |
20070173071 | Afzali-Ardakani et al. | Jul 2007 | A1 |
20070175393 | Nishimura et al. | Aug 2007 | A1 |
20070175397 | Tomiyasu et al. | Aug 2007 | A1 |
20070186952 | Honda et al. | Aug 2007 | A1 |
20070207275 | Nowak et al. | Sep 2007 | A1 |
20070209590 | Li | Sep 2007 | A1 |
20070210890 | Hsu et al. | Sep 2007 | A1 |
20070215048 | Suzuki et al. | Sep 2007 | A1 |
20070218200 | Suzuki et al. | Sep 2007 | A1 |
20070218705 | Matsuki et al. | Sep 2007 | A1 |
20070224777 | Hamelin | Sep 2007 | A1 |
20070224833 | Morisada et al. | Sep 2007 | A1 |
20070232031 | Singh et al. | Oct 2007 | A1 |
20070232071 | Balseanu et al. | Oct 2007 | A1 |
20070232501 | Tonomura | Oct 2007 | A1 |
20070234955 | Suzuki et al. | Oct 2007 | A1 |
20070237697 | Clark | Oct 2007 | A1 |
20070241688 | DeVancentis et al. | Oct 2007 | A1 |
20070248767 | Okura et al. | Oct 2007 | A1 |
20070249131 | Allen et al. | Oct 2007 | A1 |
20070251444 | Gros-Jean et al. | Nov 2007 | A1 |
20070252244 | Srividya et al. | Nov 2007 | A1 |
20070252532 | DeVancentis et al. | Nov 2007 | A1 |
20070264807 | Leone et al. | Nov 2007 | A1 |
20070275166 | Thridandam et al. | Nov 2007 | A1 |
20070277735 | Mokhesi et al. | Dec 2007 | A1 |
20070281496 | Ingle et al. | Dec 2007 | A1 |
20070298362 | Rocha-Alvarez et al. | Dec 2007 | A1 |
20080003824 | Padhi et al. | Jan 2008 | A1 |
20080003838 | Haukka et al. | Jan 2008 | A1 |
20080006208 | Ueno et al. | Jan 2008 | A1 |
20080023436 | Gros-Jean et al. | Jan 2008 | A1 |
20080026574 | Brcka | Jan 2008 | A1 |
20080026597 | Munro et al. | Jan 2008 | A1 |
20080029790 | Ahn et al. | Feb 2008 | A1 |
20080036354 | Letz et al. | Feb 2008 | A1 |
20080038485 | Fukazawa et al. | Feb 2008 | A1 |
20080054332 | Kim et al. | Mar 2008 | A1 |
20080054813 | Espiau et al. | Mar 2008 | A1 |
20080057659 | Forbes et al. | Mar 2008 | A1 |
20080061667 | Gaertner et al. | Mar 2008 | A1 |
20080066778 | Matsushita et al. | Mar 2008 | A1 |
20080069955 | Hong et al. | Mar 2008 | A1 |
20080075881 | Won et al. | Mar 2008 | A1 |
20080076266 | Fukazawa et al. | Mar 2008 | A1 |
20080081104 | Hasebe et al. | Apr 2008 | A1 |
20080081113 | Clark | Apr 2008 | A1 |
20080081121 | Morita et al. | Apr 2008 | A1 |
20080085226 | Fondurulia et al. | Apr 2008 | A1 |
20080092815 | Chen et al. | Apr 2008 | A1 |
20080113094 | Casper | May 2008 | A1 |
20080113096 | Mahajani | May 2008 | A1 |
20080113097 | Mahajani et al. | May 2008 | A1 |
20080124197 | van der Meulen et al. | May 2008 | A1 |
20080124908 | Forbes et al. | May 2008 | A1 |
20080124946 | Xiao et al. | May 2008 | A1 |
20080133154 | Krauss et al. | Jun 2008 | A1 |
20080149031 | Chu et al. | Jun 2008 | A1 |
20080152463 | Chidambaram et al. | Jun 2008 | A1 |
20080153311 | Padhi et al. | Jun 2008 | A1 |
20080173240 | Furukawahara et al. | Jul 2008 | A1 |
20080173326 | Gu et al. | Jul 2008 | A1 |
20080176375 | Erben et al. | Jul 2008 | A1 |
20080178805 | Paterson et al. | Jul 2008 | A1 |
20080179715 | Coppa | Jul 2008 | A1 |
20080182075 | Chopra et al. | Jul 2008 | A1 |
20080182390 | Lemmi et al. | Jul 2008 | A1 |
20080191193 | Li et al. | Aug 2008 | A1 |
20080199977 | Weigel et al. | Aug 2008 | A1 |
20080203487 | Hohage et al. | Aug 2008 | A1 |
20080211423 | Shinmen et al. | Sep 2008 | A1 |
20080211526 | Shinma | Sep 2008 | A1 |
20080216077 | Emani et al. | Sep 2008 | A1 |
20080220619 | Matsushita et al. | Sep 2008 | A1 |
20080224240 | Ahn et al. | Sep 2008 | A1 |
20080233288 | Clark | Sep 2008 | A1 |
20080237572 | Chui et al. | Oct 2008 | A1 |
20080241384 | Jeong | Oct 2008 | A1 |
20080242116 | Clark | Oct 2008 | A1 |
20080248310 | Kim et al. | Oct 2008 | A1 |
20080257494 | Hayashi et al. | Oct 2008 | A1 |
20080261413 | Mahajani | Oct 2008 | A1 |
20080264337 | Sano et al. | Oct 2008 | A1 |
20080267598 | Nakamura | Oct 2008 | A1 |
20080277715 | Ohmi et al. | Nov 2008 | A1 |
20080282970 | Heys et al. | Nov 2008 | A1 |
20080295872 | Riker et al. | Dec 2008 | A1 |
20080299326 | Fukazawa | Dec 2008 | A1 |
20080302303 | Choi et al. | Dec 2008 | A1 |
20080305246 | Choi et al. | Dec 2008 | A1 |
20080305443 | Nakamura | Dec 2008 | A1 |
20080315292 | Ji et al. | Dec 2008 | A1 |
20080317972 | Hendriks | Dec 2008 | A1 |
20090000550 | Tran et al. | Jan 2009 | A1 |
20090000551 | Choi et al. | Jan 2009 | A1 |
20090011608 | Nabatame | Jan 2009 | A1 |
20090020072 | Mizunaga et al. | Jan 2009 | A1 |
20090023229 | Matsushita | Jan 2009 | A1 |
20090029528 | Sanchez et al. | Jan 2009 | A1 |
20090029564 | Yamashita et al. | Jan 2009 | A1 |
20090033907 | Watson | Feb 2009 | A1 |
20090035947 | Horii | Feb 2009 | A1 |
20090041952 | Yoon et al. | Feb 2009 | A1 |
20090041984 | Mayers et al. | Feb 2009 | A1 |
20090045829 | Awazu | Feb 2009 | A1 |
20090050621 | Awazu | Feb 2009 | A1 |
20090061644 | Chiang et al. | Mar 2009 | A1 |
20090061647 | Mallick et al. | Mar 2009 | A1 |
20090085156 | Dewey et al. | Apr 2009 | A1 |
20090090382 | Morisada | Apr 2009 | A1 |
20090093094 | Ye et al. | Apr 2009 | A1 |
20090095221 | Tam et al. | Apr 2009 | A1 |
20090104789 | Mallick et al. | Apr 2009 | A1 |
20090107404 | Ogliari et al. | Apr 2009 | A1 |
20090120580 | Kagoshima et al. | May 2009 | A1 |
20090122293 | Shibazaki | May 2009 | A1 |
20090136668 | Gregg et al. | May 2009 | A1 |
20090136683 | Fukasawa et al. | May 2009 | A1 |
20090139657 | Lee et al. | Jun 2009 | A1 |
20090142935 | Fukazawa et al. | Jun 2009 | A1 |
20090146322 | Weling et al. | Jun 2009 | A1 |
20090156015 | Park et al. | Jun 2009 | A1 |
20090163038 | Miyoshi | Jun 2009 | A1 |
20090209081 | Matero | Aug 2009 | A1 |
20090211523 | Kuppurao et al. | Aug 2009 | A1 |
20090211525 | Sarigiannis et al. | Aug 2009 | A1 |
20090239386 | Suzaki et al. | Sep 2009 | A1 |
20090242957 | Ma et al. | Oct 2009 | A1 |
20090246374 | Vukovic | Oct 2009 | A1 |
20090246399 | Goundar | Oct 2009 | A1 |
20090246971 | Reid et al. | Oct 2009 | A1 |
20090250955 | Aoki | Oct 2009 | A1 |
20090261331 | Yang et al. | Oct 2009 | A1 |
20090269506 | Okura | Oct 2009 | A1 |
20090275205 | Kiehlbauch et al. | Nov 2009 | A1 |
20090277510 | Shikata | Nov 2009 | A1 |
20090283041 | Tomiyasu et al. | Nov 2009 | A1 |
20090283217 | Lubomirsky et al. | Nov 2009 | A1 |
20090286400 | Heo et al. | Nov 2009 | A1 |
20090286402 | Xia et al. | Nov 2009 | A1 |
20090289300 | Sasaki et al. | Nov 2009 | A1 |
20090304558 | Patton | Dec 2009 | A1 |
20090311857 | Todd et al. | Dec 2009 | A1 |
20100001409 | Humbert et al. | Jan 2010 | A1 |
20100006031 | Choi et al. | Jan 2010 | A1 |
20100014479 | Kim | Jan 2010 | A1 |
20100015813 | McGinnis et al. | Jan 2010 | A1 |
20100024727 | Kim et al. | Feb 2010 | A1 |
20100025796 | Dabiran | Feb 2010 | A1 |
20100040441 | Obikane | Feb 2010 | A1 |
20100041179 | Lee | Feb 2010 | A1 |
20100041243 | Cheng et al. | Feb 2010 | A1 |
20100055312 | Kato et al. | Mar 2010 | A1 |
20100055442 | Kellock | Mar 2010 | A1 |
20100075507 | Chang et al. | Mar 2010 | A1 |
20100089320 | Kim | Apr 2010 | A1 |
20100093187 | Lee et al. | Apr 2010 | A1 |
20100102417 | Ganguli et al. | Apr 2010 | A1 |
20100116209 | Kato | May 2010 | A1 |
20100124610 | Aikawa et al. | May 2010 | A1 |
20100124618 | Kobayashi et al. | May 2010 | A1 |
20100124621 | Kobayashi et al. | May 2010 | A1 |
20100126605 | Stones | May 2010 | A1 |
20100130017 | Luo et al. | May 2010 | A1 |
20100134023 | Mills | Jun 2010 | A1 |
20100136216 | Tsuei et al. | Jun 2010 | A1 |
20100140221 | Kikuchi et al. | Jun 2010 | A1 |
20100144162 | Lee et al. | Jun 2010 | A1 |
20100151206 | Wu et al. | Jun 2010 | A1 |
20100159638 | Jeong | Jun 2010 | A1 |
20100162752 | Tabata et al. | Jul 2010 | A1 |
20100170441 | Won et al. | Jul 2010 | A1 |
20100178137 | Chintalapati et al. | Jul 2010 | A1 |
20100178423 | Shimizu et al. | Jul 2010 | A1 |
20100184302 | Lee et al. | Jul 2010 | A1 |
20100193501 | Zucker et al. | Aug 2010 | A1 |
20100195392 | Freeman | Aug 2010 | A1 |
20100221452 | Kang | Sep 2010 | A1 |
20100230051 | Iizuka | Sep 2010 | A1 |
20100233886 | Yang et al. | Sep 2010 | A1 |
20100243166 | Hayashi et al. | Sep 2010 | A1 |
20100244688 | Braun et al. | Sep 2010 | A1 |
20100255198 | Cleary et al. | Oct 2010 | A1 |
20100255625 | De Vries | Oct 2010 | A1 |
20100259152 | Yasuda et al. | Oct 2010 | A1 |
20100270675 | Harada | Oct 2010 | A1 |
20100275846 | Kitagawa | Nov 2010 | A1 |
20100285319 | Kwak et al. | Nov 2010 | A1 |
20100294199 | Tran et al. | Nov 2010 | A1 |
20100301752 | Bakre et al. | Dec 2010 | A1 |
20100304047 | Yang et al. | Dec 2010 | A1 |
20100307415 | Shero et al. | Dec 2010 | A1 |
20100317198 | Antonelli | Dec 2010 | A1 |
20100322604 | Fondurulia et al. | Dec 2010 | A1 |
20110000619 | Suh | Jan 2011 | A1 |
20110006402 | Zhou | Jan 2011 | A1 |
20110006406 | Urbanowicz et al. | Jan 2011 | A1 |
20110014795 | Lee | Jan 2011 | A1 |
20110027999 | Sparks et al. | Feb 2011 | A1 |
20110034039 | Liang et al. | Feb 2011 | A1 |
20110048642 | Mihara et al. | Mar 2011 | A1 |
20110052833 | Hanawa et al. | Mar 2011 | A1 |
20110056513 | Hombach et al. | Mar 2011 | A1 |
20110056626 | Brown et al. | Mar 2011 | A1 |
20110061810 | Ganguly et al. | Mar 2011 | A1 |
20110070380 | Shero et al. | Mar 2011 | A1 |
20110081519 | Dillingh | Apr 2011 | A1 |
20110086516 | Lee et al. | Apr 2011 | A1 |
20110089469 | Merckling | Apr 2011 | A1 |
20110097901 | Banna et al. | Apr 2011 | A1 |
20110107512 | Gilbert | May 2011 | A1 |
20110108194 | Yoshioka et al. | May 2011 | A1 |
20110108741 | Ingram | May 2011 | A1 |
20110108929 | Meng | May 2011 | A1 |
20110117490 | Bae et al. | May 2011 | A1 |
20110117737 | Agarwala et al. | May 2011 | A1 |
20110124196 | Lee | May 2011 | A1 |
20110139748 | Donnelly et al. | Jun 2011 | A1 |
20110143032 | Vrtis et al. | Jun 2011 | A1 |
20110143461 | Fish et al. | Jun 2011 | A1 |
20110159202 | Matsushita | Jun 2011 | A1 |
20110159673 | Hanawa et al. | Jun 2011 | A1 |
20110175011 | Ehrne et al. | Jul 2011 | A1 |
20110183079 | Jackson et al. | Jul 2011 | A1 |
20110183269 | Zhu | Jul 2011 | A1 |
20110192820 | Yeom et al. | Aug 2011 | A1 |
20110198736 | Shero et al. | Aug 2011 | A1 |
20110210468 | Shannon et al. | Sep 2011 | A1 |
20110220874 | Hanrath | Sep 2011 | A1 |
20110236600 | Fox et al. | Sep 2011 | A1 |
20110239936 | Suzaki et al. | Oct 2011 | A1 |
20110254052 | Kouvetakis | Oct 2011 | A1 |
20110256675 | Avouris | Oct 2011 | A1 |
20110256726 | Lavoie et al. | Oct 2011 | A1 |
20110256727 | Beynet et al. | Oct 2011 | A1 |
20110256734 | Hausmann et al. | Oct 2011 | A1 |
20110265549 | Cruse et al. | Nov 2011 | A1 |
20110265951 | Xu et al. | Nov 2011 | A1 |
20110275166 | Shero et al. | Nov 2011 | A1 |
20110281417 | Gordon et al. | Nov 2011 | A1 |
20110283933 | Makarov et al. | Nov 2011 | A1 |
20110294075 | Chen et al. | Dec 2011 | A1 |
20110308460 | Hong et al. | Dec 2011 | A1 |
20120003500 | Yoshida et al. | Jan 2012 | A1 |
20120006489 | Okita | Jan 2012 | A1 |
20120024479 | Palagashvili et al. | Feb 2012 | A1 |
20120032311 | Gates | Feb 2012 | A1 |
20120043556 | Dube et al. | Feb 2012 | A1 |
20120052681 | Marsh | Mar 2012 | A1 |
20120070136 | Koelmel et al. | Mar 2012 | A1 |
20120070997 | Larson | Mar 2012 | A1 |
20120090704 | Laverdiere et al. | Apr 2012 | A1 |
20120098107 | Raisanen et al. | Apr 2012 | A1 |
20120100464 | Kageyama | Apr 2012 | A1 |
20120103264 | Choi et al. | May 2012 | A1 |
20120103939 | Wu et al. | May 2012 | A1 |
20120107607 | Takaki et al. | May 2012 | A1 |
20120114877 | Lee | May 2012 | A1 |
20120121823 | Chhabra | May 2012 | A1 |
20120122302 | Weisman et al. | May 2012 | A1 |
20120128897 | Xiao et al. | May 2012 | A1 |
20120135145 | Je et al. | May 2012 | A1 |
20120156108 | Fondurulia et al. | Jun 2012 | A1 |
20120160172 | Wamura et al. | Jun 2012 | A1 |
20120164327 | Sato | Jun 2012 | A1 |
20120164837 | Tan et al. | Jun 2012 | A1 |
20120164842 | Watanabe | Jun 2012 | A1 |
20120171391 | Won | Jul 2012 | A1 |
20120171874 | Thridandam et al. | Jul 2012 | A1 |
20120207456 | Kim et al. | Aug 2012 | A1 |
20120212121 | Lin | Aug 2012 | A1 |
20120214318 | Fukazawa et al. | Aug 2012 | A1 |
20120220139 | Lee et al. | Aug 2012 | A1 |
20120225561 | Watanabe | Sep 2012 | A1 |
20120240858 | Taniyama et al. | Sep 2012 | A1 |
20120263876 | Haukka et al. | Oct 2012 | A1 |
20120270339 | Xie et al. | Oct 2012 | A1 |
20120270393 | Pore et al. | Oct 2012 | A1 |
20120289053 | Holland et al. | Nov 2012 | A1 |
20120295427 | Bauer | Nov 2012 | A1 |
20120304935 | Oosterlaken et al. | Dec 2012 | A1 |
20120305196 | Mori et al. | Dec 2012 | A1 |
20120315113 | Hiroki | Dec 2012 | A1 |
20120318334 | Bedell et al. | Dec 2012 | A1 |
20120321786 | Satitpunwaycha et al. | Dec 2012 | A1 |
20120322252 | Son et al. | Dec 2012 | A1 |
20120325148 | Yamagishi et al. | Dec 2012 | A1 |
20120328780 | Yamagishi et al. | Dec 2012 | A1 |
20130005122 | Schwarzenbach et al. | Jan 2013 | A1 |
20130011983 | Tsai | Jan 2013 | A1 |
20130014697 | Kanayama | Jan 2013 | A1 |
20130014896 | Shoji et al. | Jan 2013 | A1 |
20130019944 | Hekmatshoar-Tabai et al. | Jan 2013 | A1 |
20130019945 | Hekmatshoar-Tabai et al. | Jan 2013 | A1 |
20130023129 | Reed | Jan 2013 | A1 |
20130048606 | Mao et al. | Feb 2013 | A1 |
20130064973 | Chen et al. | Mar 2013 | A1 |
20130068970 | Matsushita | Mar 2013 | A1 |
20130078392 | Xiao et al. | Mar 2013 | A1 |
20130081702 | Mohammed et al. | Apr 2013 | A1 |
20130084156 | Shimamoto | Apr 2013 | A1 |
20130084714 | Oka et al. | Apr 2013 | A1 |
20130104988 | Yednak et al. | May 2013 | A1 |
20130104992 | Yednak et al. | May 2013 | A1 |
20130115383 | Lu et al. | May 2013 | A1 |
20130115763 | Takamure et al. | May 2013 | A1 |
20130122712 | Kim et al. | May 2013 | A1 |
20130126515 | Shero et al. | May 2013 | A1 |
20130129577 | Halpin et al. | May 2013 | A1 |
20130134148 | Tachikawa | May 2013 | A1 |
20130168354 | Kanarik | Jul 2013 | A1 |
20130180448 | Sakaue et al. | Jul 2013 | A1 |
20130183814 | Huang et al. | Jul 2013 | A1 |
20130210241 | Lavoie et al. | Aug 2013 | A1 |
20130217239 | Mallick et al. | Aug 2013 | A1 |
20130217240 | Mallick et al. | Aug 2013 | A1 |
20130217241 | Underwood et al. | Aug 2013 | A1 |
20130217243 | Underwood et al. | Aug 2013 | A1 |
20130224964 | Fukazawa | Aug 2013 | A1 |
20130230814 | Dunn et al. | Sep 2013 | A1 |
20130256838 | Sanchez et al. | Oct 2013 | A1 |
20130264659 | Jung | Oct 2013 | A1 |
20130288480 | Sanchez et al. | Oct 2013 | A1 |
20130292047 | Tian et al. | Nov 2013 | A1 |
20130292676 | Milligan et al. | Nov 2013 | A1 |
20130292807 | Raisanen et al. | Nov 2013 | A1 |
20130295779 | Chandra et al. | Nov 2013 | A1 |
20130319290 | Xiao et al. | Dec 2013 | A1 |
20130323435 | Xiao et al. | Dec 2013 | A1 |
20130330165 | Wimplinger | Dec 2013 | A1 |
20130330911 | Huang et al. | Dec 2013 | A1 |
20130330933 | Fukazawa et al. | Dec 2013 | A1 |
20130337583 | Kobayashi et al. | Dec 2013 | A1 |
20140000843 | Dunn et al. | Jan 2014 | A1 |
20140014642 | Elliot et al. | Jan 2014 | A1 |
20140014644 | Akiba et al. | Jan 2014 | A1 |
20140020619 | Vincent et al. | Jan 2014 | A1 |
20140027884 | Tang et al. | Jan 2014 | A1 |
20140033978 | Adachi et al. | Feb 2014 | A1 |
20140036274 | Marquardt et al. | Feb 2014 | A1 |
20140048765 | Ma et al. | Feb 2014 | A1 |
20140056679 | Yamabe et al. | Feb 2014 | A1 |
20140060147 | Sarin et al. | Mar 2014 | A1 |
20140062304 | Nakano et al. | Mar 2014 | A1 |
20140067110 | Lawson et al. | Mar 2014 | A1 |
20140073143 | Alokozai et al. | Mar 2014 | A1 |
20140077240 | Roucka et al. | Mar 2014 | A1 |
20140084341 | Weeks | Mar 2014 | A1 |
20140087544 | Tolle | Mar 2014 | A1 |
20140094027 | Azumo et al. | Apr 2014 | A1 |
20140096716 | Chung et al. | Apr 2014 | A1 |
20140099798 | Tsuji | Apr 2014 | A1 |
20140103145 | White et al. | Apr 2014 | A1 |
20140116335 | Tsuji et al. | May 2014 | A1 |
20140120487 | Kaneko | May 2014 | A1 |
20140127907 | Yang | May 2014 | A1 |
20140141625 | Fuzazawa et al. | May 2014 | A1 |
20140159170 | Raisanen et al. | Jun 2014 | A1 |
20140174354 | Arai | Jun 2014 | A1 |
20140175054 | Carlson et al. | Jun 2014 | A1 |
20140182053 | Huang | Jul 2014 | A1 |
20140217065 | Winkler et al. | Aug 2014 | A1 |
20140220247 | Haukka et al. | Aug 2014 | A1 |
20140225065 | Rachmady et al. | Aug 2014 | A1 |
20140227072 | Lee et al. | Aug 2014 | A1 |
20140251953 | Winkler et al. | Sep 2014 | A1 |
20140251954 | Winkler et al. | Sep 2014 | A1 |
20140283747 | Kasai et al. | Sep 2014 | A1 |
20140346650 | Raisanen et al. | Nov 2014 | A1 |
20140349033 | Nonaka et al. | Nov 2014 | A1 |
20140363980 | Kawamata et al. | Dec 2014 | A1 |
20140363985 | Jang et al. | Dec 2014 | A1 |
20140367043 | Bishara et al. | Dec 2014 | A1 |
20150004316 | Thompson et al. | Jan 2015 | A1 |
20150004317 | Dussarrat et al. | Jan 2015 | A1 |
20150007770 | Chandrasekharan et al. | Jan 2015 | A1 |
20150014632 | Kim et al. | Jan 2015 | A1 |
20150021599 | Ridgeway | Jan 2015 | A1 |
20150024609 | Milligan et al. | Jan 2015 | A1 |
20150048485 | Tolle | Feb 2015 | A1 |
20150078874 | Sansoni | Mar 2015 | A1 |
20150086316 | Greenberg | Mar 2015 | A1 |
20150091057 | Xie et al. | Apr 2015 | A1 |
20150096973 | Dunn et al. | Apr 2015 | A1 |
20150099072 | Takamure et al. | Apr 2015 | A1 |
20150132212 | Winkler et al. | May 2015 | A1 |
20150140210 | Jung et al. | May 2015 | A1 |
20150147483 | Fukazawa | May 2015 | A1 |
20150147877 | Jung | May 2015 | A1 |
20150162168 | Oehrlein | Jun 2015 | A1 |
20150167159 | Halpin et al. | Jun 2015 | A1 |
20150170954 | Agarwal | Jun 2015 | A1 |
20150174768 | Rodnick | Jun 2015 | A1 |
20150184291 | Alokozai et al. | Jul 2015 | A1 |
20150187568 | Pettinger et al. | Jul 2015 | A1 |
20150217456 | Tsuji et al. | Aug 2015 | A1 |
20150240359 | Jdira et al. | Aug 2015 | A1 |
20150267295 | Hill et al. | Sep 2015 | A1 |
20150267297 | Shiba | Sep 2015 | A1 |
20150267299 | Hawkins | Sep 2015 | A1 |
20150267301 | Hill et al. | Sep 2015 | A1 |
20150284848 | Nakano et al. | Oct 2015 | A1 |
20150287626 | Arai | Oct 2015 | A1 |
20150308586 | Shugrue et al. | Oct 2015 | A1 |
20150315704 | Nakano et al. | Nov 2015 | A1 |
20160013024 | Milligan et al. | Jan 2016 | A1 |
20160024656 | White et al. | Jan 2016 | A1 |
20160051964 | Tolle et al. | Feb 2016 | A1 |
20160211147 | Fukazawa | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
1563483 | Jan 2005 | CN |
101330015 | Dec 2008 | CN |
101522943 | Sep 2009 | CN |
101423937 | Sep 2011 | CN |
102008052750 | Jun 2009 | DE |
2036600 | Mar 2009 | EP |
2426233 | Jul 2012 | EP |
03-044472 | Feb 1991 | JP |
H04115531 | Apr 1992 | JP |
06-53210 | Feb 1994 | JP |
07-130731 | May 1995 | JP |
07-034936 | Aug 1995 | JP |
7-272694 | Oct 1995 | JP |
H07283149 | Oct 1995 | JP |
08-181135 | Jul 1996 | JP |
H08335558 | Dec 1996 | JP |
10-064696 | Mar 1998 | JP |
10-0261620 | Sep 1998 | JP |
2845163 | Jan 1999 | JP |
2001-15698 | Jan 2001 | JP |
2001342570 | Dec 2001 | JP |
2004014952 | Jan 2004 | JP |
2004091848 | Mar 2004 | JP |
2004128019 | Apr 2004 | JP |
2004134553 | Apr 2004 | JP |
2004294638 | Oct 2004 | JP |
2004310019 | Nov 2004 | JP |
2004538374 | Dec 2004 | JP |
2005507030 | Mar 2005 | JP |
2006186271 | Jul 2006 | JP |
3140111 | Mar 2008 | JP |
2008060304 | Mar 2008 | JP |
2008527748 | Jul 2008 | JP |
2008202107 | Sep 2008 | JP |
2009016815 | Jan 2009 | JP |
2009099938 | May 2009 | JP |
2010067940 | Mar 2010 | JP |
2010097834 | Apr 2010 | JP |
2010205967 | Sep 2010 | JP |
2010251444 | Oct 2010 | JP |
2012089837 | May 2012 | JP |
2012146939 | Aug 2012 | JP |
20100020834 | Feb 2010 | KR |
I226380 | Jan 2005 | TW |
200701301 | Jan 2007 | TW |
9832893 | Jul 1998 | WO |
2004008827 | Jan 2004 | WO |
2004010467 | Jan 2004 | WO |
2006054854 | May 2006 | WO |
2006056091 | Jun 2006 | WO |
2006078666 | Jul 2006 | WO |
2006080782 | Aug 2006 | WO |
2006101857 | Sep 2006 | WO |
2007140376 | Dec 2007 | WO |
2010039363 | Apr 2010 | WO |
2010118051 | Oct 2010 | WO |
2011019950 | Feb 2011 | WO |
2013078065 | May 2013 | WO |
2013078066 | May 2013 | WO |
Entry |
---|
The Free Dictionary by Farlex; “Perfluorocarbon”, http://www.thefreedictionary.com/perfluorocarbon ; 2 pages; No date.available. |
Chemistry Stack Exchange, “Why is CF4 non-polar and CHF3 polar”; http://chemistry.stackexchange.com/questions/31604/why-is-cf4-non-polar-and-chf3-polar ; 3 pages ; No date available. |
Wikipedia, the Free Encyclopedia; “Fluoroform”; https://en.wikipedia.org/wiki/Fluoroform ; 5 pages; No date available. |
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596. |
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596. |
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596. |
USPTO; Non-Final Office Action dated Apr. 1, 2010 in U.S. Appl. No. 12/357,174. |
USPTO; Final Office Action dated Sep. 1, 2010 in U.S. Appl. No. 12/357,174. |
USPTO; Notice of Allowance dated Dec. 13, 2010 in U.S. Appl. No. 12/357,174. |
USPTO; Non-Final Office Action dated Dec. 29, 2010 in U.S. Appl. No. 12/362,023. |
USPTO Non-Final Office Action dated Jul. 26, 2011 in U.S. Appl. No. 12/416,809. |
USPTO; Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/416,809. |
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751. |
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751. |
USPTO; Notice of Allowance dated Oct. 1, 2010 in U.S. Appl. No. 12/467,017. |
USPTO; Non-Final Office Action dated Mar. 18, 2010 in U.S. Appl. No. 12/489,252. |
USPTO; Notice of Allowance dated Sep. 2, 2010 in U.S. Appl. No. 12/489,252. |
USPTO; Non-Final Office Action dated Dec. 15, 2010 in U.S. Appl. No. 12/553,759. |
USPTO; Final Office Action dated May 4, 2011 in U.S. Appl. No. 12/553,759. |
USPTO; Non-Final Office Action dated Sep. 6, 2011 in U.S. Appl. No. 12/553,759. |
USPTO; Notice of Allowance dated Jan. 24, 2012 in U.S. Appl. No. 12/553,759. |
USPTO; Non-Final Office Action dated Oct. 19, 2012 in U.S. Appl. No. 12/618,355. |
USPTO; Final Office Action dated May 8, 2013 in U.S. Appl. No. 12/618,355. |
USPTO; Non-Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 12/618,355. |
USPTO; Final Office Action dated Oct. 22, 2015 in U.S. Appl. No. 12/618,355. |
USPTO; Non-Final Office Action dated Feb. 16, 2012 in U.S. Appl. No. 12/618,419. |
USPTO; Final Office Action dated Jun. 22, 2012 in U.S. Appl. No. 12/618,419. |
USPTO; Non-Final Office Action dated Nov. 27, 2012 in U.S. Appl. No. 12/618,419. |
USPTO; Notice of Allowance dated Apr. 12, 2013 in U.S. Appl. No. 12/618,419. |
USPTO; Non-Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/718,731. |
USPTO; Notice of Allowance dated Mar. 16, 2012 in U.S. Appl. No. 12/718,731. |
USPTO; Restriction Requirement dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223. |
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223. |
USPTO; Non-Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 12/754,223. |
USPTO; Final Office Action dated Aug. 12, 2015 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037. |
USPTO; Final Office Action dated Oct. 21, 2013 in U.S. Appl. No. 12/763,037. |
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037. |
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037. |
USPTO; Non-Final Office Action dated Jan. 24, 2011 in U.S. Appl. No. 12/778,808. |
USPTO; Notice of Allowance dated May 9, 2011 in U.S. Appl. No. 12/778,808. |
USPTO; Notice of Allowance dated Oct. 12, 2012 in U.S. Appl. No. 12/832,739. |
USPTO; Non-Final Office Action dated Oct. 16, 2012 in U.S. Appl. No. 12/847,848. |
USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/847,848. |
USPTO; Notice of Allowance dated Jan. 16, 2014 in U.S. Appl. No. 12/847,848. |
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818. |
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818. |
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818. |
USPTO; Non-Final Office Action dated Jul. 11, 2012 in U.S. Appl. No. 12/875,889. |
USPTO; Notice of Allowance dated Jan. 4, 2013 in U.S. Appl. No. 12/875,889. |
USPTO; Notice of Allowance dated Jan. 9, 2012 in U.S. Appl. No. 12/901,323. |
USPTO; Non-Final Office Action dated Nov. 20, 2013 in U.S. Appl. No. 12/910,607. |
USPTO; Final Office Action dated Apr. 28, 2014 in U.S. Appl. No. 12/910,607. |
USPTO; Notice of Allowance dated Aug. 15, 2014 in U.S. Appl. No. 12/910,607. |
USPTO; Non-Final Office Action dated Oct. 24, 2012 in U.S. Appl. No. 12/940,906. |
USPTO; Final Office Action dated Feb. 13, 2013 in U.S. Appl. No. 12/940,906. |
USPTO; Notice of Allowance dated Apr. 23, 2013 in U.S. Appl. No. 12/940,906. |
USPTO; Non-Final Office Action dated Dec. 7, 2012 in U.S. Appl. No. 12/953,870. |
USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/953,870. |
USPTO; Non-Final Office Action dated Sep. 19, 2012 in U.S. Appl. No. 13/016,735. |
USPTO; Final Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/016,735. |
USPTO; Notice of Allowance dated Apr. 24, 2013 in U.S. Appl. No. 13/016,735. |
USPTO; Non-Final Office Action dated Apr. 4, 2012 in U.S. Appl. No. 13/030,438. |
USPTO; Final Office Action dated Aug. 22, 2012 in U.S. Appl. No. 13/030,438. |
USPTO; Notice of Allowance dated Oct. 24, 2012 in U.S. Appl. No. 13/030,438. |
USPTO; Non-Final Office Action dated Dec. 3, 2012 in U.S. Appl. No. 13/040,013. |
USPTO; Notice of Allowance dated May 3, 2013 in U.S. Appl. No. 13/040,013. |
USPTO; Notice of Allowance dated Sep. 13, 2012 in U.S. Appl. No. 13/085,698. |
USPTO; Non-Final Office Action dated Mar. 29, 2013 in U.S. Appl. No. 13/094,402. |
USPTO; Final Office Action dated Jul. 17, 2013 in U.S. Appl. No. 13/094,402. |
USPTO; Notice of Allowance dated Sep. 30, 2013 in U.S. Appl. No. 13/094,402. |
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980. |
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980. |
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980. |
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980. |
USPTO; Non-Final Office Action dated Jul. 17, 2014 in U.S. Appl. No. 13/154,271. |
USPTO; Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/154,271. |
USPTO; Non-Final Office Action dated May 27, 2015 in U.S. Appl. No. 13/154,271. |
USPTO; Final Office Action dated Nov. 23, 2015 in U.S. Appl. No. 13/154,271. |
USPTO; Notice of Allowance dated Feb. 10, 2016 in U.S. Appl. No. 13/154,271. |
USPTO; Non-Final Office Action dated Oct. 27, 2014 in U.S. Appl. No. 13/169,951. |
USPTO; Final Office Action dated May 26, 2015 in U.S. Appl. No. 13/169,591. |
USPTO; Non-Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 13/169,951. |
USPTO; Non-Final Office Action dated Jun. 24, 2014 in U.S. Appl. No. 13/181,407. |
USPTO; Final Office Action dated Sep. 24, 2014 in U.S. Appl. No. 13/181,407. |
USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/181,407. |
USPTO; Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 13/181,407. |
USPTO; Non-Final Office Action dated Jan. 23, 2013 in U.S. Appl. No. 13/184,351. |
USPTO; Final Office Action dated Jul. 29, 2013 in U.S. Appl. No. 13/184,351. |
USPTO; Non-Final Office Action dated Jul. 16, 2014 in U.S. Appl. No. 13/184,351. |
USPTO; Final Office Action dated Feb. 17, 2015 in U.S. Appl. No. 13/184,351. |
USPTO; Non-Final Office Action dated Aug. 10, 2015 in U.S. Appl. No. 13/184,351. |
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300. |
USPTO; Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/187,300. |
USPTO; Non-Final Office Action dated Apr. 7, 2016 in U.S. Appl. No. 13/187,300. |
USPTO; Non-Final Office Action dated Oct. 1, 2012 in U.S. Appl. No. 13/191,762. |
USPTO; Final Office Action dated Apr. 10, 2013 in U.S. Appl. No. 13/191,762. |
USPTO; Notice of Allowance dated Aug. 15, 2013 in U.S. Appl. No. 13/191,762. |
USPTO; Non-Final Office Action dated Oct. 22, 2012 in U.S. Appl. No. 13/238,960. |
USPTO; Final Office Action dated May 3, 2013 in U.S. Appl. No. 13/238,960. |
USPTO; Non-Final Office Action dated Apr. 26, 2013 in U.S. Appl. No. 13/250,721. |
USPTO; Notice of Allowance dated Sep. 11, 2013 in U.S. Appl. No. 13/250,721. |
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408. |
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408. |
USPTO; Non-Final Office Action dated Jun. 17, 2015 in U.S. Appl. No. 13/283,408. |
USPTO; Final Office Action dated Dec. 18, 2015 in U.S. Appl. No. 13/283,408. |
USPTO; Notice of Allowance dated Mar. 28, 2016 in U.S. Appl. No. 13/283,408. |
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642. |
USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642. |
USPTO; Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642. |
USPTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642. |
USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Final Office Action dated Mar. 20, 2015 in U.S. Appl. No. 13/312,591. |
USPTO; Notice of Allowance dated May 14, 2015 in U.S. Appl. No. 13/312,591. |
USPTO; Non-Final Office Action dated Apr. 9, 2014 in U.S. Appl. No. 13/333,420. |
USPTO; Notice of Allowance dated Sep. 15, 2014 in U.S. Appl. No. 13/333,420. |
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609. |
USPTo; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609. |
USPTO; Non-Final Office Action dated Oct. 10, 2012 in U.S. Appl. No. 13/406,791. |
USPTO; Final Office Action dated Jan. 31, 2013 in U.S. Appl. No. 13/406,791. |
USPTO; Non-Final Office Action dated Apr. 25, 2013 in U.S. Appl. No. 13/406,791. |
USPTO; Final Office Action dated Aug. 23, 2013 in U.S. Appl. No. 13/406,791. |
USPTO; Non-Final Office Action dated Dec. 4, 2013 in U.S. Appl. No. 13/406,791. |
USPTO; Final Office Action dated Apr. 21, 2014 in U.S. Appl. No. 13/406,791. |
USPTO; Non-Final Office Action dated Jan. 14, 2013 in U.S. Appl. No. 13/410,970. |
USPTO; Notice of Allowance dated Feb. 14, 2013 in U.S. Appl. No. 13/410,970. |
USPTO; Non-Final Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271. |
USPTO; Non-Final Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271. |
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271. |
USPTO; Notice of Allowance dated Oct. 6, 2015 in U.S. Appl. No. 13/411,271. |
USPTO; Restriction Requirement dated Oct. 29, 2013 in U.S. Appl. No. 13/439,528. |
USPTO; Office Action dated Feb. 4, 2014 in U.S. Appl. No. 13/439,528. |
USPTO; Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528. |
UPPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528. |
USPTO; Non-Final Office Action dated Apr. 11, 2013 in U.S. Appl. No. 13/450,368. |
USPTO; Notice of Allowance dated Jul. 17, 2013 in U.S. Appl. No. 13/450,368. |
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340. |
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340. |
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340. |
USPTO; Non-Final Office Action dated Oct. 17, 2013 in U.S. Appl. No. 13/493,897. |
USPTO; Notice of Allowance dated Mar. 20, 2014 in U.S. Appl. No. 13/493,897. |
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214. |
USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214. |
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214. |
USPTO; Non-Final Office Action dated Sep. 11, 2013 in U.S. Appl. No. 13/550,419. |
USPTO; Final Office Action dated Jan. 27, 2014 in U.S. Appl. No. 13/550,419. |
USPTO; Notice of Allowance dated May 29, 2014 in U.S. Appl. No. 13/550,419. |
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066. |
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Notice of Allowance dated Jun. 12, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Notice of Allowance dated Jul. 16, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Non-Final Office Action dated Nov. 7, 2013 in U.S. Appl. No. 13/565,564. |
USPTO; Final Office Action dated Feb. 28, 2014 in U.S. Appl. No. 13/565,564. |
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/565,564. |
USPTO; Notice of Allowance dated Nov. 3, 2014 in U.S. Appl. No. 13/565,564. |
USPTO; Non-Final Office Action dated Aug. 30, 2013 in U.S. Appl. No. 13/570,067. |
USPTO; Notice of Allowance dated Jan. 6, 2014 in U.S. Appl. No. 13/570,067. |
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043. |
USPTO; Final Office Action dated Mar. 13, 2015 in U.S. Appl. No. 13/597,043. |
USPTO; USPTO; Notice of Allowance dated Aug. 28, 2015 in U.S. Appl. No. 13/597,043. |
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108. |
USPTO; Final Office Action dated Jun. 1, 2015 in U.S. Appl. No. 13/597,108. |
USPTO; Non-Final Office Action dated Dec. 8, 2015 in U.S. Appl. No. 13/597,108. |
USPTO; Notice of Allowance dated Mar. 27, 2014 in U.S. Appl. No. 13/604,498. |
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538. |
USPTO; Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538. |
USPTO; Non-Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/646,403. |
USPTO; Final Office Action dated Oct. 15, 2015 in U.S. Appl. No. 13/646,403. |
USPTO; Notice of Allowance dated Feb. 2, 2016 in U.S. Appl. No. 13/646,403. |
USPTO; Non-Final Office Action dated May 15, 2014 in U.S. Appl. No. 13/646,471. |
USPTO; Final Office Action dated Aug. 18, 2014 in U.S. Appl. No. 13/646,471. |
USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/646,471. |
USPTO; Final Office Action dated Apr. 21, 2015 in U.S. Appl. No. 13/646,471. |
USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 13/646,471. |
USPTO; Final Office Action dated Jan. 22, 2016 in U.S. Appl. No. 13/646,471. |
USPTO; Non-Final Office Action dated May 28, 2015 in U.S. Appl. No. 13/651,144. |
USPTO; Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 13/651,144. |
USPTO; Non-Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 14/659,437. |
USPTO; Non-Final Office Action dated Jun. 18, 2015 in U.S. Appl. No. 13/665,366. |
USPTO; Non-Final Office Action dated Apr. 3, 2015 in U.S. Appl. No. 13/677,133. |
USPTO; Notice of Allowance dated Aug. 4, 2015 in U.S. Appl. No. 13/677,133. |
USPTO; Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151. |
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151. |
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151. |
USPTO; Non-Final Office Action dated Aug. 20, 2013 in U.S. Appl. No. 13/679,502. |
USPTO; Final Office Action dated Feb. 25, 2014 in U.S. Appl. No. 13/679,502. |
USPTO; Notice of Allowance dated May 2, 2014 in U.S. Appl. No. 13/679,502. |
USPTO; Non-Final Office Action dated Jul. 21, 2015 in U.S. Appl. No. 13/727,324. |
USPTO; Final Office Action dated Jan. 22, 2016 in U.S. Appl. No. 13/727,324. |
USPTO; Non-Final Office Action dated Oct. 24, 2013 in U.S. Appl. No. 13/749,878. |
USPTO; Non-Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/749,878. |
USPTO; Final Office Action dated Dec. 10, 2014 in U.S. Appl. No. 13/749,878. |
USPTO; Notice of Allowance Mar. 13, 2015 dated in U.S. Appl. No. 13/749,878. |
USPTO; Office Action dated Apr. 23, 2014 in U.S. Appl. No. 13/784,362. |
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362. |
USPTO; Non-Final Office Action dated Dec. 19, 2013 in U.S. Appl. No. 13/784,388. |
USPTO; Notice of Allowance dated Jun. 4, 2014 in U.S. Appl. No. 13/784,388. |
USPTO; Restriction Requirement dated May 8, 2014 in U.S. Appl. No. 13/791,246. |
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246. |
USPTO; Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 13/791,246. |
USPTO; Non-Final Office Action dated Oct. 26, 2015 in U.S. Appl. No. 13/791,246. |
USPTO; Final Office Action dated Apr. 20, 2016 in U.S. Appl. No. 13/791,246. |
USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 13/791,339. |
USPTO; Final Office Action dated Apr. 12, 2016 in U.S. Appl. No. 13/791,339. |
USPTO; Non-Final Office Action dated Mar. 21, 2014 in U.S. Appl. No. 13/799,708. |
USPTO; Notice of Allowance dated Oct. 31, 2014 in U.S. Appl. No. 13/799,708. |
USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708. |
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708. |
USPTO; Notice of Allowance dated Mar. 10, 2015 in U.S. Appl. No. 13/874,708. |
USPTO; Notice of Allowance dated Apr. 10, 2014 in U.S. Appl. No. 13/901,341. |
USPTO; Notice of Allowance dated Jun. 6, 2014 in U.S. Appl. No. 13/901,341. |
USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/901,372. |
USPTO; Final Office Action dated Apr. 16, 2015 in U.S. Appl. No. 13/901,372. |
USPTO; Non-Final Office Action dated Jul. 8, 2015 in U.S. Appl. No. 13/901,400. |
USPTO; Final Office Action dated Jan. 14, 2016 in U.S. Appl. No. 13/901,400. |
USPTO; Notice of Allowance dated Aug. 5, 2015 in U.S. Appl. No. 13/901,372. |
USPTO; Non-Final Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/912,666. |
USPTO; Final Office Action dated Sep. 25, 2014 in U.S. Appl. No. 13/912,666. |
USPTO; Non-Final Office Action dated Jan. 26, 2015 in U.S. Appl. No. 13/912,666. |
USPTO; Notice of Allowance dated Jun. 25, 2015 in U.S. Appl. No. 13/912,666. |
USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/915,732. |
USPTO; Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 13/915,732. |
USPTO; Notice of Allowance dated Jun. 19, 2015 in U.S. Appl. No. 13/915,732. |
USPTO; Notice of Allowance dated Mar. 17, 2015 in U.S. Appl. No. 13/923,197. |
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134. |
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134. |
USPTO; Restriction Requirement dated Apr. 30, 2015 in U.S. Appl. No. 13/941,216. |
USPTO; Non-Final Office Action dated Jul. 30, 2015 in U.S. Appl. No. 13/941,216. |
USPTO; Restriction Requirement dated Sep. 16, 2014 in U.S. Appl. No. 13/948,055. |
USPTO; Non-Final Office Action dated Oct. 30, 2014 in U.S. Appl. No. 13/948,055. |
USPTO; Non-Final Office Action dated Jun. 29, 2015 in U.S. Appl. No. 13/966,782. |
USPTO; Final Office Action dated Jan. 4, 2016 in U.S. Appl. No. 13/966,782. |
USPTO; Notice of Allowance dated Oct. 7, 2015 in U.S. Appl. No. 13/973,777. |
USPTO; Non-Final Office Action dated Feb. 20, 2015 in U.S. Appl. No. 14/018,231. |
USPTO; Notice of Allowance dated Jul. 20, 2015 in U.S. Appl. No. 14/018,231. |
USPTO; Restriction Requirement Action dated Jan. 28, 2015 in U.S. Appl. No. 14/018,345. |
USPTO; Non-Final Office Action dated Apr. 7, 2015 in U.S. Appl. No. 14/018,345. |
USPTO; Final Office Action dated Sep. 14, 2015 in U.S. Appl. No. 14/018,345. |
USPTO; Notice of Allowance dated Jan. 14, 2016 in U.S. Appl. No. 14/018,345. |
USPTO; Notice of Allowance dated Mar. 17, 2016 in U.S. Appl. No. 14/018,345. |
USPTO; Non-Final Office Action dated Mar. 26, 2015 in U.S. Appl. No. 14/031,982. |
USPTO; Final Office Action dated Aug. 28, 2015 in U.S. Appl. No. 14/031,982. |
USPTO; Notice of Allowance dated Nov. 17, 2015 in U.S. Appl. No. 14/031,982. |
USPTO; Non-Final Office Action dated Apr. 28, 2015 in U.S. Appl. No. 14/040,196. |
USPTO; Notice of Allowance dated Sep. 11, 2015 in U.S. Appl. No. 14/040,196. |
USPTO; Non-Final Action dated Dec. 3, 2015 in U.S. Appl. No. 14/050,150. |
USPTO; Non-Final Office Action dated Dec. 15, 2014 in U.S. Appl. No. 14/065,114. |
USPTO; Final Office Action dated Jun. 19, 2015 in U.S. Appl. No. 14/065,114. |
USPTO; Non-Final Office Action dated Oct. 7, 2015 in U.S. Appl. No. 14/065,114. |
USPTO; Notice of Allowance dated Feb. 22, 2016 in U.S. Appl. No. 14/065,114. |
USPTO; Non-Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 14/069,244. |
USPTO; Notice of Allowance dated Mar. 25, 2015 in U.S. Appl. No. 14/069,244. |
USPTO; Non-Final Office Action dated Sep. 9, 2015 in U.S. Appl. No. 14/090,750. |
USPTO; Final Office Action dated Feb. 11, 2016 in U.S. Appl. No. 14/090,750. |
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/079,302. |
USPTO; Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 14/079,302. |
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/166,462. |
USPTO; Notice of Allowance dated Sep. 3, 2015 in U.S. Appl. No. 14/166,462. |
USPTO; Non-Final Office Action dated Nov. 17, 2015 in U.S. Appl. No. 14/172,220. |
USPTO; Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187. |
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187. |
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 14/183,187. |
USPTO; Final Office Action dated Jul. 10, 2015 in U.S. Appl. No. 14/183,187. |
USPTO; Non-Final Office Action dated Jan. 11, 2016 in U.S. Appl. No. 14/188,760. |
USPTO; Non-Final Office Action dated Oct. 8, 2015 in U.S. Appl. No. 14/218,374. |
USPTO; Final Office Action dated Feb. 23, 2016 in U.S. Appl. No. 14/218,374. |
USPTO; Non-Final Office Action dated Sep. 22, 2015 in U.S. Appl. No. 14/219,839. |
USPTO; Non-Final Office Action dated Nov. 25, 2015 in U.S. Appl. No. 14/219,879. |
USPTO; Final Office Action dated Mar. 25, 2016 in U.S. Appl. No. 14/219,839. |
USPTO; Non-Final Office Action dated Sep. 18, 2015 in U.S. Appl. No. 14/244,689. |
USPTO; Notice of Allowance dated Feb. 11, 2016 in U.S. Appl. No. 14/244,689. |
USPTO; Non-Final Office Action dated Oct. 7, 2015 in U.S. Appl. No. 14/246,969. |
USPTO; Non-Final Office Action dated Nov. 20, 2015 in U.S. Appl. No. 14/260,701. |
USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 14/268,348. |
USPTO; Non-Final Office Action dated Jan. 6, 2016 in U.S. Appl. No. 14/268,348. |
USPTO; Non-Final Office Action dated Oct. 20, 2015 in U.S. Appl. No. 14/281,477. |
USPTO1; Notice of Allowance dated Feb. 23, 2016 in U.S. Appl. No. 14/327,134. |
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058. |
USPTO; Final Office Action dated Jul. 14, 2015 in U.S. Appl. No. 14/457,058. |
USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 14/457,058. |
USPTO; Non-Final Office Action dated Nov. 24, 2015 in U.S. Appl. No. 14/498,036. |
USPTO; Final Office Action dated Apr. 5, 2016 in U.S. Appl. No. 14/498,036. |
USPTO; Non-Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 14/505,290. |
USPTO; Notice of Allowance dated Aug. 21, 2015 in U.S. Appl. No. 14/505,290. |
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044. |
USPTO; Final Office Action dated Jul. 16, 2015 in U.S. Appl. No. 14/563,044. |
USPTO; Notice of Allowance dated Oct. 15, 2015 in U.S. Appl. No. 14/563,044. |
USPTO; Notice of Allowance dated Dec. 2, 2015 in U.S. Appl. No. 14/563,044. |
USPTO; Non-Final Office Action dated Oct. 1, 2015 in U.S. Appl. No. 14/571,126. |
USPTO; Final Office Action dated Feb. 22, 2016 in U.S. Appl. No. 14/571,126. |
USPTO; Non-Final Office Action dated Nov. 25, 2015 in U.S. Appl. No. 14/598,532. |
USPTO; Non-Final Office Action dated Jan. 15, 2016 in U.S. Appl. No. 14/606,364. |
USPTO; Non-Final Office Action dated Mar. 3, 2016 in U.S. Appl. No. 14/622,603. |
USPTO; Non-Final Office Action dated Mar. 21, 2016 in U.S. Appl. No. 14/659,152. |
USPTO; Final Office Action dated Mar. 17, 2016 in U.S. Appl. No. 14/659,437. |
USPTO;Notice of Allowance dated Mar. 25, 2016 in U.S. Appl. No. 14/693,138. |
USPTO; Non-Final Office Action dated Mar. 30, 2016 in U.S. Appl. No. 14/808,979. |
USPTO; Non-Final Office Action dated Mar. 22, 2016 in U.S. Appl. No. 14/987,420. |
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 29/447,298. |
USPTO; Notice of Allowance dated Jul. 6, 2015 in U.S. Appl. No. 29/447,298. |
USPTO; Notice of Allowance dated Nov. 26, 2014 in U.S. Appl. No. 29/481,301. |
USPTO; Notice of Allowance dated Feb. 17, 2015 in U.S. Appl. No. 29/481,308. |
USPTO; Notice of Allowance dated Jan. 12, 2015 in U.S. Appl. No. 29/481,312. |
USPTO; Notice of Allowance dated Apr. 30, 2015 in U.S. Appl. No. 29/481,315. |
USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/511,011. |
USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/514,153. |
USPTO; Notice of Allowance dated Dec. 14, 2015 in U.S. Appl. No. 29/514,264. |
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126. |
PCT; International Preliminary Report on Patentability dated Oct. 11, 2011 Application No. PCT/US2010/030126. |
PCT; International Search report and Written Opinion dated Jan. 20, 2011 in Application No. PCT/US2010/045368. |
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343. |
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347. |
Chinese Patent Office; Office Action dated Jan. 10, 2013 in Application No. 201080015699.9. |
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9. |
Chinese Patent Office; Office Action dated May 24, 2013 in Application No. 201080036764.6. |
Chinese Patent Office; Office Action dated Jan. 2, 2014 in Application No. 201080036764.6. |
Chinese Patent Office; Office Action dated Jul. 1, 2014 in Application No. 201080036764.6. |
Chinese Patent Office; Office Action dated Feb. 8, 2014 in Application No. 201110155056. |
Chinese Patent Office; Office Action dated Sep. 16, 2014 in Application No. 201110155056. |
Chinese Patent Office; Office Action dated Feb. 9, 2015 in Application No. 201110155056. |
Japanese Patent Office; Office Action dated Jan. 25, 2014 in Application No. 2012-504786. |
Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786. |
Korean Patent Office; Office Action dated Dec. 10, 2015 in Application No. 10-2010-0028336. |
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511. |
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Taiwan Application No. 099127063. |
Bearzotti, et al., “Fast Humidity Response of a Metal Halide-Doped Novel Polymer,” Sensors and Actuators B, 7, pp. 451-454, (1992). |
Bhatnagar et al., “Copper Interconnect Advances to Meet Moore's Law Milestones,” Solid State Technology, 52, 10 (2009). |
Buriak, “Organometallic Chemistry on Silicon and Germanium Surfaces,” Chemical Reviews, 102, 5 (2002). |
Cant et al., “Chemisorption Sites on Porous Silica Glass and on Mixed-Oxide Catalysis,” Can. J. Chem. 46, 1373 (1968). |
Chang et al. “Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric,” IEEE Electron Device Letters, 30, 2, IEEE Electron Device Society 133-135 (2009). |
Chen et al., “A Self-Aligned Airgap Interconnect Scheme,” IEEE International Interconnect Technology Conference, 1-3, 146-148 (2009). |
Choi et al., “Improvement of Silicon Direct Bonding using Surfaces Activated by Hydrogen Plasma Treatment,” Journal of the Korean Physical Society, 37, 6, 878-881 (2000). |
Choi et al., “Low Temperature Formation of Silicon Oxide Thin Films by Atomic Layer Deposition Using NH3/O2 Plasma,” ECS Solid State Letters, 2(12) 114-116 (2013). |
Crowell, “Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies,” Journal of Vacuum Science & Technology A 21.5, S88-S95 (2003). |
Cui et al., “Impact of Reductive N2/H2 Plasma on Porous Low-Dielectric Constant SiCOH Thin Films,” Journal of Applied Physics 97, 113302, 1-8 (2005). |
Dingemans et al., “Comparison Between Aluminum Oxide Surface Passivation Films Deposited with Thermal Aid,” Plasma Aid and Pecvd, 35th IEEE PVCS, (Jun. 2010). |
Drummond et al., “Hydrophobic Radiofrequency Plasma-Deposited Polymer Films: Dielectric Properties and Surface Forces,” Colloids and Surfaces A, 129-130, 117-129 (2006). |
Easley et al., “Thermal Isolation of Microchip Reaction Chambers for Rapid Non-Contact DNA Amplification,” J. Micromech. Microeng. 17, 1758-1766 (2007). |
Ge et al., “Carbon Nanotube-Based Synthetic Gecko Tapes,” Department of Polymer Science, PNAS, 10792-10795 (2007). |
George et al., “Atomic Layer Deposition: An Overview,” Chem. Rev. 110, 111-131 (2010). |
Grill et al., “The Effect of Plasma Chemistry on the Damage Induced Porous SiCOH Dielectrics,” IBM Research Division, RC23683 (W0508-008), Materials Science, 1-19 (2005). |
Gupta et al., “Conversion of Metal Carbides to Carbide Derived Carbon by Reactive Ion Etching in Halogen Gas,” Proceedings of SPIE—The International Society for Optical Engineering and Nanotechnologies for Space Applications, ISSN: 0277-786X (2006). |
Heo et al., “Structural Characterization of Nanoporous Low-Dielectric Constant SiCOH Films Using Organosilane Precursors,” NSTI-Nanotech, vol. 4, 122-123 (2007). |
H.J. Yun et al., “Comparison of Atomic Scale Etching of Poly-Si in Inductively Coupled Ar and He Plasmas,” Korean Journal of Chemical Engineering, 24, 670-673 (2007). |
Jung et al., “Double Patterning of Contact Array with Carbon Polymer,” Proc. of SPIE, 6924, 69240C, 1-10 (2008). |
Katamreddy et al., “ALD and Characterization of Aluminum Oxide Deposited on Si(100) using Tris(diethylamino) Aluminum and Water Vapor,” Journal of the Electrochemical Society, 153 (10) C701-C706 (2006). |
Kim et al., “Passivation Effect on Low-k S/OC Dielectrics by H2 Plasma Treatment,” Journal of the Korean Physical Society, 40, 1, 94-98 (2002). |
Kim et al., “Characteristics of Low Tempemure High Quality Silicon Oxide by Plasma Enhanced Atomic Layer Deposition with In-Situ Plasma Densification Process,” The Electrochemical Society, ECS Transactions, College of Information and Communication Engineerign, Sungkyunkwan University, 53(1), 321-329 (2013). |
King, Plasma. Enhanced Atomic Layer Deposition of SiNx: H and SiO2, J. Vac. Sci. Technol., A29(4) (2011). |
Kobayshi et al. “Temperature Dependence of SiO2 Film Growth with Plasma-Enhanced Atomic Layer Deposition,” International Journal on the Science and Technology of Condensed Matter, 520, 3994-3998, (2012). |
Koo et al., “Characteristics of Al2O3 Thin Films Deposited Using Dimethylaluminum Isopropoxide and Trimethylaluminum Precursors by the Plasma-Enhanced Atomic-Layer Deposition Method,” Journal of Physical Society, 48, 1, 131-136 (2006). |
Koutsokeras et al. Texture and Microstructure Evolution in Single-Phase TixTal-xN Alloys of Rocksalt Structure. Journal of Applied Physics, 110, 043535-1-043535-6, (2011). |
Krenek et al. “IR Laser CVD of Nanodisperse Ge—Si—Sn Alloys Obtained by Dielectric Breakdown of GeH4/SiH4/SnH4 Mixtures”, NanoCon, Brno, Czech Republic, EU (2014). |
Kurosawa et al., “Synthesis and Characterization of Plasma-Polymerized Hexamethyldisiloxane Films,” Thin Solid Films, 506-507, 176-179 (2006). |
Lieberman, et al., “Principles of Plasma Discharges and Materials Processing,” Second Edition, 368-381. |
Lim et al., “Low-Temperature Growth of SiO2 Films by Plasma-Enhanced Atomic Layer Deposition,” ETRI Journal, 27 (1), 118-121 (2005). |
Liu et al., “Research, Design, and Experimen of End Effector for Wafer Transfer Robot,” Industrial Robot: An International Journal, 79-91 (2012). |
Mackus et al., “Optical Emission Spectroscopy as a Tool for Studying Optimizing, and Monitoring Plasma-Assisted Atomic Layer Deposition Process,” Journal of Vacuum Science and Technology, 7-87 (2010). |
Maeno, “Gecko Tape Using Carbon Nanotubes,” Nitto Denko Gihou, 47, 48-51. |
Maeng et al., “Electrical properties of atomic layer disposition Hf02 and Hf0xNy on Si Substrates with Various Crystal Orientations,” Journal of the Electrochemical Society, 155, Department of Materials Science and Engineering, Pohang University of Science and Technology, H267-H271 (2008). |
Marsik et al., “Effect of Ultraviolet Curing Wavelength on Low-k Dielectric Material Properties and Plasma Damage Resistance,” Sciencedirect.com, 519, 11, 3619-3626 (2011). |
Moeen, “Design, Modelling and Characterization of Si/SiGe Structures for IR Bolometer Applications,” KTH Royal Institute of Technology. Information and Communication Technology, Department of Integrated Devices and Circuits, Stockholm Sweden (2015). |
Morishige et al., “Thermal Desorption and Infrared Studies of Ammonia Amines and Pyridines Chemisorbed on Chromic Oxide,” J.Chem. Soc., Faraday Trans. 1, 78, 2947-2957 (1982). |
Mukai et al., “A Study of CD Budget in Spacer Patterning Technology,” Proc. of SPIE, 6924, 1-8 (2008). |
Nogueira et al., “Production of Highly Hydrophobic Films Using Low Frequency and High Density Plasma,” Revista Brasileira de Aplicacoes de Vacuo, 25(1), 45-53 (2006). |
Novaro et al., “Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis,” J. Chem. Phys. 68(5), 2337-2351 (1978). |
Radamson et al.,“Growth of Sn-alloyed Group IV Materials for Photonic and Electronic Applications”, Manufacturing Nano Structures, 5, 129-144,. |
Schmatz et al., “Unusual Isomerization Reactions in 1.3-Diaza-2-Silcyclopentanes,” Organometallics, 23, 1180-1182 (2004). |
Scientific and Technical Information Center EIC 2800 Search Report dated Feb. 16, 2012. |
S.D. Athavale et al., “Realization of Atomic Layer Etching of Silicon”, Journal of Vacuum Science and Technology B, 14, 3702-3705 (1996). |
Shamma et al., “PDL Oxide Enabled Doubling,” Proc. of SPIE, 6924, 69240D, 1-10 (2008). |
Varma, et al., “Effect of Metal Halides on Thermal, Mechanical, and Electrical Properties of Polypyromelitimide Films,” Journal of Applied Polymer Science, 32, 3987-4000, (1986). |
Wirths, et al, “SiGeSn Growth tudies Using Reduced Pressure Chemical Vapor Deposition Towards Optoeleconic Applications,” This Soid Films, 557, 183-187 (2014). |
Yun et al., “Behavior of Various Organosilicon Molecules in PECVD Processes for Hydrocarbon-Doped Silicon Oxide Films,” Solid State Phenomena, 124-126, 347-350 (2007). |
Number | Date | Country | |
---|---|---|---|
20170186621 A1 | Jun 2017 | US |