Method of manufacturing low dielectric film by a vacuum ultraviolet chemical vapor deposition

Abstract
A method is used for forming a low relative permittivity dielectric film by a vacuum ultraviolet CVD. The film is a silicon organic film (e.g., SiOCH, SiC, SiCH, and SiOF films) that has a controlled relative permittivity and is formed at temperatures below 350° C. The method can control the content of carbon in the film to achieve a desired relative permittivity. A desired relative permittivity can be achieved by: {circle over (1)} controlling the type and flow rate of added gas (O2, N2O) that contains oxygen atoms; {circle over (2)} controlling the flow rate of TEOS; {circle over (3)} controlling the intensity of light emitted from the excimer lamp; {circle over (4)} elevating the temperatures of the synthetic quartz window and the gas flowing in the vacuum chamber, and controlling the distance between the synthetic quartz window and the wafer; and {circle over (5)} controlling the temperature of the wafer.
Description


BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention


[0002] The present invention relates to a method of manufacturing a low dielectric film by a vacuum ultraviolet CVD.


[0003] 2. Description of the Related Art


[0004] A SiOF film and a SiOC film formed by a plasma CVD are among conventional low dielectric films for use in a 64 Mb DRAM or later semiconductor devices.


[0005] The aforementioned method involves thermal treatment at a temperature higher than 350° C. and the occurrence of plasma discharge, causing damages to semiconductor devices. With increasing micro fabrication and multi-level interconnect of semiconductor devices, the adverse effects of the conventional method cannot be ignored in manufacturing reliable semiconductor devices.



SUMMARY OF THE INVENTION

[0006] The present invention was made in view of the aforementioned drawbacks of the conventional art. An object of the invention is to provide a vacuum ultraviolet CVD method in which an insulating film in the form of a low dielectric film can be manufactured at a temperature lower than 350° C., the insulating film being equivalent to or better than Si organic films (e.g., SiOF film, and SiOC film) formed by a plasma CVD.


[0007] A method is used for forming a low relative permittivity dielectric film (SiOCH film, SiC film, SiCH film, and SiOF film) by a vacuum ultraviolet CVD. The dielectric film is a silicon organic film that has a controlled relative permittivity and is formed at temperatures below 350° C. The method can control the content of carbon in the insulating film to achieve a desired relative permittivity. That is, a desired relative permittivity can be obtained by: {circle over (1)} controlling the type and flow rate of added gas (e.g., O2, N2O) that contains oxygen atoms; {circle over (2)} controlling the flow rate of TEOS (tetraethyl orthosilicate); {circle over (3)} controlling the intensity of light emitted from an excimer lamp; {circle over (4)} elevating the temperatures of the synthetic quartz window and the gas flowing in a vacuum chamber, and controlling the distance between the synthetic quartz window and the wafer; and {circle over (5)} controlling the temperature of the wafer.


[0008] Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific example, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.







BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention will become fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:


[0010]
FIG. 1 is a cross-sectional view of a vacuum ultraviolet CVD apparatus;


[0011] FIGS. 2A-2C illustrate the content of C when a gas (O2 or N2O) is added to vaporized TEOS and when a gas is not added to the vaporized TEOS, measured by a Fourier transform infrared spectroscopy;


[0012]
FIG. 3 illustrates the relationship between content of organic group in percentage and relative dielectric constant of SOG (spin on glass);


[0013]
FIG. 4 plots TEOS pressure as the abscissa and peak area as the ordinate for CH-group and OH-group by the FT-IR;


[0014] FIGS. 5A-5B illustrate the content of carbon for different light intensities, measured by the FT-IR using the Newly Instrument IR-EPOCH;


[0015]
FIG. 6 illustrates the content of carbon for different gaps, measured by the FT-IR;


[0016] FIGS. 7 illustrates factors and corresponding effects obtained by observing the peak value of C (is) by the X-ray photoelectron spectroscopy;


[0017]
FIG. 8 illustrates the relationship between wave number (cm−1) and absorbance for different types of excimer lamp measured by the FT-IR when TEOS alone is used; and


[0018]
FIG. 9 illustrates the relationship between wave length and energy for the different types of excimer lamps.







DETAILED DESCRIPTION OF THE INVENTION

[0019] The present invention will be described in detail with reference to the accompanying drawings.



First Embodiment

[0020]
FIG. 1 is a cross-sectional view of a vacuum ultraviolet CVD apparatus.


[0021] Referring to FIG. 1, an excimer lamp 1 is mounted above the vacuum chamber 3 with a synthetic quartz window 2 disposed therebetween. A wafer 6 is placed on a susceptor 7 in the chamber 3. A material gas or source gas 5 is introduced into the vacuum chamber 3 so that vacuum ultraviolet 11 illuminates the wafer 6 to form a low dielectric film on the wafer 6.


[0022] The Xe2 excimer lamp 1 was turned on and vaporized TEOS (tetraethyl ortho silicate: Si(OC2H5)4) was introduced into the vacuum chamber 3 with O2 or N2O (i.e., added gas) added to TEOS, thereby forming a low dielectric film on a 6-in. silicon wafer 6. The process was carried out for 15 minutes. The flow rate of TEOS was 100 sccm. The partial pressure of TEOS was 300 mTorr. The temperature of the wafer 6 was room temperature, and the light intensity of the excimer lamp was 12 mW/cm2 immediately below the synthetic window 2.


[0023] The wafer 6 was disposed 15 mm below the synthetic quartz window 2. The light intensity under the synthetic quartz window 2 was measured by using a light meter (UIT-150/VUVS-172, manufactured by Ushio Denki).


[0024] FIGS. 2A-2C illustrate the content of carbon C when a gas (O2 or N2O) is added to the vaporized TEOS and when a gas is not added to the vaporized TEOS, the content of carbon being measured by a Fourier transform infrared spectroscopy (referred to as FT-IR hereinafter) using the Newly Instrument IR-EPOCH. FIG. 2A illustrates the relationship between wave number (cm−1) and absorbance when a low dielectric film was formed by a conventional photo CVD. FIG. 2B illustrates the relationship between wave number (cm−1) and absorbance when a low dielectric film was formed using a conventional photo CVD by adding N2O gas to TEOS. FIG. 2C illustrates the relationship between wave number (cm−1) and absorbance when a low dielectric film was formed using a conventional photo CVD by adding O2 gas to TEOS.


[0025] As is clear from FIGS. 2A-2C, the photon energy emitted from the excimer lamp 1 converts oxygen O contained in the added gas into active oxygen to substitute OH group for CH group. Thus, selecting a type of an oxygen-containing gas to be added to TEOS and controlling the flow rate of the oxygen-containing gas allows the content of carbon C in the low dielectric film to be controlled.


[0026]
FIG. 3 illustrates the general relationship between the content of organic group in percentage and the relative permittivity of SOG (spin on glass) (Polymer Resin for Electronics “Technical trend of polymer having a low dielectric constant” published by TORE Research Center, issued on Sep. 1, 1999)


[0027] As is apparent from FIG. 3, the organic content determines relative dielectric constant. This fact suggests that relative dielectric constant of the insulating film 10 can be controlled by the aforementioned method.



Second Embodiment

[0028] A second embodiment uses the same vacuum ultraviolet CVD apparatus as the first embodiment. The Xe2 excimer lamp 1 was turned on and vaporized TEOS was introduced into the vacuum chamber 3, thereby forming a low dielectric film on a 6-in. silicon wafer 6. The process was carried out for 50-420 minutes. A flow rate of TEOS was 5-50 sccm. The pressure of TEOS was 25-150 mTorr. The temperature of the wafer 6 was maintained at room temperature. The thickness of the formed low dielectric film was measured at a center of the 6-in. wafer 6 using a PROMETRIX thickness meter (model UV1250SE manufactured by KLA-Tencor Corporation).


[0029] The light intensity was 12 mW/cm2 immediately below a 20 mm thick synthetic quartz window 2. The wafer 6 was 15-mm below the synthetic quartz window 2. The light intensity under the synthetic quartz window 2 was measured by using a light meter (UIT-150/VUVS-172, manufactured by Ushio Denki).


[0030]
FIG. 4 plots TEOS pressure as the abscissa and peak area as the ordinate for CH-group (containing C) and OH-group when the wafer was examined by the FT-IR. The film thickness varies depending on process time, and the pressure and flow rate of TEOS. Thus, the process time was adjusted so that all the films were 3000 Å thick.


[0031] Referring to FIG. 4, Curve A shows a case of —OH (reacted group) 3813-3192 cm−1 and Curve B shows a case of CH (non-reacted group) 3063-2850 cm−1.


[0032] As is clear form FIG. 4, the lower the flow rate of TEOS becomes, the more efficiently the photon energy of the excimer lamp 1 decomposes the TEOS, i.e., CH group decreases and OH group increases. Conversely, the lower the flow rate of TEOS becomes, the less efficiently the photon energy of the excimer lamp 1 decomposes the TEOS, causing CH group (non-reacted group) to increase. This implies that controlling the flow rate of TEOS can control the content of carbon C in the insulating film 10, thereby controlling the relative dielectric constant of the insulating film 10.



Third Embodiment

[0033] A third embodiment uses the same vacuum ultraviolet CVD apparatus as the first embodiment. The Xe2 excimer lamp 1 was turned on and vaporized TEOS was introduced into the vacuum chamber 3, thereby forming a low dielectric film on a 6-in. silicon wafer 6. The process was carried out for 15 minutes. A flow rate of the TEOS was 100 sccm. The pressure of TEOS was 300 mTorr. The temperature of the wafer 6 was room temperature. The process was carried out for light intensities of 10 mW/cm2 and 30 mW/cm2, respectively, measured immediately below the 20-mm thick synthetic quartz window 2.


[0034] The wafer 6 was located 15 mm below the synthetic quartz window 2. The light intensity below the synthetic quartz window 2 was measured by using a light meter (UIT-150/VUVS-172, manufactured by Ushio Denki).


[0035] FIGS. 5A-5B illustrate the content of carbon C in the insulating film for different light intensities, measured by the FT-IR using the Newly Instrument IR-EPOCH. FIG. 5A illustrates the relationship between wave number (cm−1) and absorbance when TEOS alone was used with a normal output of the excimer lamp 1. FIG. 5B illustrates the relationship between wave number (cm−1) and absorbance when TEOS alone was used with a high output of the excimer lamp 1.


[0036] As is clear from FIGS. 5A and 5B, the higher the intensity of the light emitted from the excimer lamp 1 becomes, the more efficiently the photon energy of the excimer lamp 1 decomposes the TEOS, i.e., CH group decreases and OH group increases. Conversely, the lower the intensity of the light emitted from the excimer lamp 1 becomes, the less efficiently the photon energy of the excimer lamp 1 decomposes the TEOS, causing the increase in CH group.


[0037] This implies that controlling the flow rate of TEOS can control the content of carbon C in the insulating film 10, thereby controlling the relative dielectric constant of the insulating film 10.



Fourth Embodiment

[0038] A fourth embodiment uses the same vacuum ultraviolet CVD apparatus as the first embodiment. The Xe2 excimer lamp 1 was turned on and vaporized TEOS was introduced into the vacuum chamber 3, thereby forming a low dielectric film on a 6-in. silicon wafer 6. The process was carried out for 15 minutes. The flow rate of TEOS was 50 sccm and the flow rate of O2 was 50 sccm. The partial pressure of TEOS was 600 mTorr, and the light intensity immediately below the 20-mm thick synthetic quartz window 2 was 12 mW/cm2. A heater was disposed on the synthetic quartz window 2 to warm up the synthetic quartz window 2 such that the temperature immediately below the synthetic quartz window 2 was 200° C.


[0039] The relationship between the wave number and absorbance was investigated for different gaps between the synthetic quartz window 2 and the wafer 6, the gaps ranging from 15 mm to 70 mm. The susceptor 7 on which the wafer 6 is carried is maintained at room temperature by circulating a coolant. The light intensity under the synthetic quartz window 2 was measured by using a light meter (UIT-150/VUVS-172, manufactured by Ushio Denki).


[0040]
FIG. 6 illustrates the content of carbon C in the insulating film 10 for different gaps, and plots wave number (cm−1) as the abscissa and absorbance as the ordinate. The content of carbon was measured by the FT-IR. Curve A shows the content of carbon when the gap was 70 mm and the temperature of the synthetic quartz window was 200° C. Curve B shows the content of carbon when the gap was 50 mm and the temperature of the synthetic quartz window was 200° C. Curve C shows the content of carbon when the gap was 20 mm and the temperature of the synthetic quartz window was 200° C. Curve D shows the content of carbon when the gap was 15 mm and the temperature of the synthetic quartz window was 200° C. Curve E shows the content of carbon when the gap was 20 mm and the temperature of the synthetic quartz window was not elevated.


[0041] As is apparent from FIG. 6, the smaller the gap becomes, the more OH group becomes and the more CH group becomes just as when no increase in window temperature is observed. Thus, the insulating film 10 contains more carbon C such that a peak value of CH3 is observed even at a wave number of around 1400 cm−1. Conversely, the larger the gap becomes, the less CH group becomes. This implies that controlling the gap between the synthetic quartz window 2 and the wafer 6 allows controlling of the content of carbon C in the insulating film 10, thereby controlling relative dielectric constant in the insulating film 10.



Fifth Embodiment

[0042] A fifth embodiment uses the same vacuum ultraviolet CVD apparatus as the first embodiment. The Xe2 excimer lamp 1 was turned on and vaporized TEOS was introduced into the vacuum chamber 3, thereby forming a low dielectric film on a 1-in. silicon wafer 6. The process was carried out for 30 minutes. The flow rate of TEOS before evaporation was 0.15-0.5 sccm, the chamber pressure was 0.75-1.5 Torr, and the light intensity immediately below a 3-mm thick MgF2 window was about 8 mW/cm2.


[0043] The process was carried out for three different temperatures, i.e., 25° C., 50° C., and 100° C., of the susceptor 7 on which the wafer 6 is carried. The light intensity immediately below the synthetic quartz window 2 was measured by using a light meter (UIT-150/VUVS-172, manufactured by Ushio Denki).


[0044]
FIG. 7 illustrates the relation between the temperature of the susceptor and the corresponding effects obtained by Taguchi Method. FIG. 7 plots the temperature of the susceptor as the abscissa and peak values of C (1s) measured by the X-ray photoelectron spectroscopy (referred to as XPS) as the ordinate. The larger the value of C(1s)-10log(1/P−1), the larger the C peak. The term C(1s) indicates a subshell in K-shell of carbon atom.


[0045] As is apparent from FIG. 7, the lower the temperature of the susceptor becomes, the less efficiently the photon energy of the excimer lamp 1 decomposes TEOS, i.e., more content of carbon C in the film 10. Conversely, the higher the temperature of the susceptor becomes, the more efficiently the photon energy of the excimer lamp 1 decomposes TEOS, so that the content of carbon C decreases. This implies that controlling the susceptor temperature allows controlling of the content of C, relative dielectric constant.



Sixth Embodiment

[0046]
FIG. 8 illustrates the relationship between wave number (cm−1) and absorbance for different types of excimer lamp measured by the FT-IR when TEOS alone is used. When TEOS is used alone, the use of Xe lamp results in the largest increase in CH group.


[0047]
FIG. 9 illustrates the relationship between wave length and energy for the different types of excimer lamps.


[0048] As shown in FIG. 9, the excimer lamp emits different photon energy depending on the wavelength of gas contained in the excimer lamp. The respective gases exhibit different absorbance bands of photon energy of the excimer lamp. As a result, the relative dielectric constant of the insulating film 10 can be controlled by selecting the type of source gas and the wavelength of excimer lamp.


[0049] As described above, the present invention provides a method in which a low dielectric constant film having a controlled relative dielectric constant can be manufactured at temperatures below 350° C. That is, the vacuum ultraviolet CVD using TEOS can control the content of carbon C in the insulating film 10 by:


[0050] {circle over (1)} controlling the type and flow rate of added gas (e.g., O2, N2O) that contains oxygen atoms,


[0051] {circle over (2)} controlling the flow rate of TEOS,


[0052] {circle over (3)} controlling the intensity of light emitted from the excimer lamp,


[0053] {circle over (4)} elevating the temperature of the synthetic quartz window and the gas flowing through the vacuum chamber, and controlling the distance between the synthetic quartz window and the wafer, and


[0054] {circle over (5)} controlling the temperature of the wafer.



Applications of the Invention

[0055] The invention can find a variety of applications including isolation between elements and insulation between elements. The method also finds its applications (high dielectric constant films and low dielectric constant films) in the vacuum ultraviolet CVD that uses organic source gas other than TEOS.


[0056] The embodiment has been described with respect to vacuum ultraviolet of an excimer lamp but the method can equally be used using an excimer laser.


[0057] The present invention offers a method of manufacturing an insulating film at low temperatures below 350° C., the insulation film having a low dielectric constant that is at least equivalent to a silicon organic film (e.g., SiOF film and SiOC film) formed by the plasma CVD.


[0058] The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art intended to be included within the scope of the following claims.


Claims
  • 1. A method of manufacturing a low relative permittivity dielectric film in the form of silicon organic film by a vacuum ultraviolet CVD, the method comprising the steps of: placing a wafer in a vacuum chamber having a window; causing a first gas that contains silicon to flow through the vacuum chamber; exposing the wafer to light emitted from an excimer lamp trough the window; and maintaining an atmosphere in the chamber at a temperature lower than 350° C.
  • 2. The method according to claim 1, wherein the silicon organic film is one of a SiOCH film, a SiC film, a SiCH film, and a SiOF film.
  • 3. The method according to claim 1, further comprising: adding a second gas to the source gas, the additional gas containing oxygen atoms therein; selecting a type of the second gas; and controlling a flow rate of the second gas.
  • 4. The method according to claim 1, further comprising: controlling a flow rate of the first gas.
  • 5. The method according to claim 1, further comprising: controlling a light intensity of the light emitted from the excimer lamp.
  • 6. The method according to claim 1, further comprising: elevating a temperature of the atmosphere in the chamber to a high temperature; and controlling a distance between the window and the wafer.
  • 7. The method according to claim 1, further comprising: controlling a temperature of the wafer.
  • 8. The method according to claim 1, further comprising: selecting a type of the first gas and a wavelength of the light emitted from the excimer lamp.
Priority Claims (1)
Number Date Country Kind
260357/00 Aug 2000 JP