Methods for performing medical procedures using a surgical robot

Information

  • Patent Grant
  • 11690687
  • Patent Number
    11,690,687
  • Date Filed
    Tuesday, December 10, 2019
    4 years ago
  • Date Issued
    Tuesday, July 4, 2023
    10 months ago
Abstract
Embodiments are directed to a medical robot system including a robot coupled to an end-effectuator element with the robot configured to control movement and positioning of the end-effectuator in relation to the patient. One embodiment is a method for removing bone with a robot system comprising: taking a two-dimensional slice through a computed tomography scan volume of target anatomy; placing a perimeter on a pathway to the target anatomy; and controlling a drill assembly with the robot system to remove bone along the pathway in the intersection of the perimeter and the two-dimensional slice.
Description
BACKGROUND

Embodiments are directed to a medical robot system. More particularly, embodiments are directed to a medical robot system including a robot coupled to an end-effectuator element with the robot configured to control movement and positioning of the end-effectuator in relation to the patient.


Various medical procedures require the precise localization of a three-dimensional position of a surgical instrument within the body in order to effect optimized treatment. For example, some surgical procedures to fuse vertebrae require that a surgeon drill multiple holes into the bone structure at specific locations. To achieve high levels of mechanical integrity in the fusing system, and to balance the forces created in the bone structure, it is necessary that the holes are drilled at the correct location. Vertebrae, like most bone structures, have complex shapes made up of non-planar curved surfaces making precise and perpendicular drilling difficult. Conventionally, a surgeon manually holds and positions a drill guide tube by using a guidance system to overlay the drill tube's position onto a three dimensional image of the bone structure. This manual process is both tedious and time consuming. The success of the surgery is largely dependent upon the dexterity of the surgeon who performs it.


Robotic systems have been employed to help reduce tedious and time consuming processes. Many of the current robots used in surgical applications are specifically intended for magnifying/steadying surgical movements or providing a template for milling the bone surface. However, these robots are suboptimal for drilling holes and other related tasks.


Consequently, there is a need for a robot system that minimizes human and robotic error while allowing fast and efficient surgical access. The ability to perform operations on a patient with a robot system and computer software will greatly diminish the adverse effects upon the patient. The application of the robot system and the techniques used with the robot system may enhance the overall surgical operation and the results of the operation.


SUMMARY

Embodiments are directed to a method for removing bone with a robot system. The method may comprise extracting a two-dimensional slice from a three-dimensional computed tomography scan of a vertebra. The method may further comprise defining a perimeter on a pathway through the vertebra. The method may further comprise controlling a drill assembly with the robot system to remove bone from the pathway in the intersection of the perimeter and the two-dimensional slice.


Additional embodiments are directed to a method for inserting a tubular element into a patient with a robot system. The method may comprise loading computed tomography scans on to the robot system. The method may further comprise programming a route for the tubular element to travel through the patient to a section of the vertebra on a display, wherein the display may manipulate the robot system. The method may further comprise controlling the tubular element with the robot system to guide the tubular element along the programmed route through the patient.


Additional embodiments are directed to a method for aligning vertebrae for a surgical procedure using a robot system. The method may comprise inserting a tubular element into a patient and next to a disc space between adjacent vertebral bodies. The method may comprise attaching the tubular element to an end-effectuator of the robot system. The method may further comprise controlling a vertebral alignment tool with the robot system to insert the vertebral alignment tool through the tubular element such that vertebral alignment tool is inserted between the adjacent vertebral bodies to distract the adjacent vertebral bodies.


The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other embodiments for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent embodiments do not depart from the spirit and scope of the invention as set forth in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:



FIG. 1 illustrates a partial perspective view of a room in which a medical procedure is taking place by using a surgical robot;



FIG. 2 illustrates a perspective view of a surgical robot according to an embodiment of the invention;



FIG. 3 illustrates a perspective view of a robot system including a camera arm in accordance with one embodiment of the invention;



FIG. 4 illustrates a front-side perspective view of a robot system including a camera arm in a stored position in accordance with one embodiment of the invention;



FIG. 5 illustrates a rear-side perspective view of a robot system including a camera arm in a stored position in accordance with one embodiment of the invention;



FIG. 6 illustrates a side cross-sectional view of a bony structure and critical structure with a milling bit inside a cannula positioned adjacent to the bony structure in accordance with one embodiment of the invention;



FIG. 7a illustrates a side cross-sectional view of a bony structure and a milling bit with a programmed perimeter in accordance with one embodiment of the invention;



FIG. 7b illustrates a top end cross-sectional view of the same bony structure as FIG. 7a with a programmed perimeter in accordance with one embodiment of the invention;



FIG. 8a illustrates a side cross-sectional view of a bony structure with a 2D slice through the bony structure indicated in accordance with one embodiment of the invention;



FIG. 8b illustrates a top end cross-sectional view of the 2D slice through the bony structure confined to the programmed perimeter in accordance with one embodiment of the invention;



FIG. 9 illustrates a side cross-sectional view of a bony structure with the milling bit extending out of a cannula removing bone in accordance with one embodiment of the invention;



FIG. 10 illustrates a side cross-sectional view of a bony structure with the milling bit extending out of a cannula and removing bone from around a critical structure in accordance with one embodiment of the invention;



FIG. 11 illustrates a computerized display used to program the route of tubular element by a robot system in accordance with one embodiment of the invention;



FIG. 12 illustrates a center tool held by an end-effectuator and positioned next to an intervertebral disc space in accordance with one embodiment of the invention;



FIG. 13a illustrates the spacer being removed from the end-effectuator in accordance with one embodiment of the invention;



FIG. 13b illustrates a first dilator being positioned over a center tool in accordance with one embodiment of the invention;



FIG. 13c illustrates a second dilator being positioned over a previously positioned dilator in accordance with one embodiment of the invention;



FIG. 13d illustrates a third dilator being positioned over a previously positioned dilator in accordance with one embodiment of the invention;



FIG. 13e illustrates the removal of a center tool and other dilators, with the largest dilator remaining in the patient in accordance with one embodiment of the invention;



FIG. 14 illustrates a vertebral alignment tool with a working channel in accordance with one embodiment of the invention;



FIG. 15 illustrate a vertebral alignment tool positioned outside two vertebral bodies in accordance with one embodiment of the invention;



FIG. 16 illustrates a vertebral alignment tool inserted into an intervertebral disc space, thereby aligning two vertebral bodies in accordance with one embodiment of the invention;



FIG. 17 illustrates a view looking down a tubular element with a vertebral alignment tool positioned inside the tubular element in accordance with one embodiment of the invention;



FIG. 18 illustrate an axial anatomical view of a vertebra with a tubular element and inserted interbody device in accordance with one embodiment of the invention;



FIG. 19 illustrates an axial view of a vertebra with a tubular element and inserted interbody device with the distance and angle needed to correctly position the interbody device in accordance with one embodiment of the invention;



FIG. 20 illustrates a perspective view of a surgical robot according to an embodiment of the invention; and



FIG. 21 illustrates a perspective view of a surgical robot separated in two structures according to an embodiment of the invention.





DETAILED DESCRIPTION

In an embodiment, as illustrated in FIGS. 1-5, a surgical robot system 1 is disclosed in a room 10 where a medical procedure is occurring. In some embodiments, surgical robot system 1 may comprise a surgical robot 15, a display means 29, and a housing 27 to enclose a robot arm 23, and an end-effectuator 30 coupled to robot arm 23 controlled by at least one motor (not illustrated). In some embodiments a display means 29 may be attached to surgical robot 15, whereas in other embodiments, a display means 29 may be detached from surgical robot 15, either within surgical room 10 or in a remote location. In some embodiments, end-effectuator 30 may comprise a surgical instrument 35. In other embodiments, end-effectuator 30 may be coupled to surgical instrument 35. As used herein, the term “end-effectuator” is used interchangeably with the term “effectuator element.” In some embodiments, end-effectuator 30 may comprise any known structure for effecting the movement of surgical instrument 35 in a desired manner.


In some embodiments, prior to performance of an invasive procedure, a three-dimensional (“3D”) image scan may be taken of a desired surgical area of patient 18 and sent to a computer platform in communication with surgical robot 15. In some embodiments, a physician may then program a desired point of insertion and trajectory for surgical instrument 35 to reach a desired anatomical target within or upon the body of patient 18. In some embodiments, the desired point of insertion and trajectory may be planned on the 3D image scan, which in some embodiments, may be displayed on display means 29. In some embodiments, a physician may plan the trajectory and desired insertion point (if any) on a computed tomography scan (hereinafter referred to as “CT scan”) of patient 18. In some embodiments, the CT scan may be an isocentric C-arm type scan, an O-arm type scan, or intraoperative CT scan as is known in the art. However, in some embodiments, any known 3D image scan may be used in accordance with the embodiments of robot system 1 described herein.


In some embodiments, surgical robot system 1 may comprise a local positioning system (“LPS”) subassembly to track the position of surgical instrument 35. In some embodiments, robot system 1 includes at least one mounted camera 56. For example, FIG. 3 illustrates a perspective view of a robot system 1 including a camera arm 55 in accordance with one embodiment of the invention. In some embodiments, to overcome issues with line of sight, it is possible to mount cameras 56 for tracking patient 18 and robot 15 on an arm 50 extending from the robot. As shown in FIG. 3, in some embodiments, arm 50 is coupled to a camera arm 55 via a joint 60, and arm 50 is coupled to robot system 1 via joint 65. In some embodiments, camera arm 55 may be positioned above a patient (for example, above patient 18 lying on a bed or stretcher as illustrated in FIG. 3). In this position, in some embodiments, it might be less likely for the surgeon to block the camera 56 when robot system 1 is in use (for example, during a surgery and/or patient examination). Further, in some embodiments, the joints 60, 65 may be used to sense the current position of the cameras 56 (i.e. the position of the camera arm 55). Moreover, in some embodiments, the exact position of end-effectuator 30 in the camera's 56 coordinate system may be calculated based on monitored counts on each robot axis, and in some embodiments, cameras 56 would therefore only have to collect data from tracked markers (not illustrated) on patient 18 to exactly calculate end-effectuator position relative to the anatomy.


Some embodiments include an arm 50 and camera arm 55 that may fold into a compact configuration for transportation of robot system 1. For example, FIG. 4 illustrates a front-side perspective view of a robot system including a camera arm 55 in a stored position, and FIG. 5 illustrates a rear-side perspective view of a robot system including a camera arm 55 in a stored position in accordance with one embodiment of the invention.


In some embodiments, surgical robot system 1 may comprise a control device 100. In some embodiments, the processor of control device 100 may be configured to perform time of flight calculations of radiofrequency signals emitted at the surgical instrument 35 or end-effectuator 30 and received by wall-mounted receivers 5. Further, in some embodiments, robot system 1 may be configured to provide a geometrical description of the location of at least one bony structure such as a vertebra with respect to an operative end of surgical instrument 35 or end-effectuator 30 that is utilized to perform or assist in performing an invasive procedure. In some further embodiments, the position of vertebrae, as well as the dimensional profile of surgical instrument 35 or effectuator element 30 may be displayed on a monitor (for example on display means 29). In one embodiment, end-effectuator 30 may be a tubular element 80 (for example a cannula 121, dilator 200, probe 190, or guide tube) that is positioned at a desired location with respect to, for example, patient's 18 spine to facilitate the performance of a spinal surgery. In some embodiments, tubular element 80 may be aligned with a z axis defined by a corresponding robot motor (not illustrated) or, for example, may be disposed at a selected angle relative to the z-axis. In either case, the processor of control device 100 (i.e. a computer) may be configured to account for the orientation of tubular element 80 and the position of vertebrae. In some embodiments, the memory of control device 100 (i.e. a computer) may store software for performing the calculations and/or analyses required to perform many of the surgical method steps set forth herein. The software or a computer program may be provided on a tangible computer readable storage media, which is non-transitory in nature.


Another embodiment of the disclosed surgical robot system 1 involves the utilization of a robot 15 that is capable of moving end-effectuator 30 along x-, y-, and z-axes. In this embodiment, an x-axis may be orthogonal to a y-axis and the z-axis, the y-axis may be orthogonal to the x-axis and the z-axis, and the z-axis may be orthogonal to x-axis and y-axis. In some embodiments, robot 15 may be configured to effect movement of end-effectuator 30 along one axis independently of the other axes. For example, in some embodiments, robot 15 may cause end-effectuator 30 to move a given distance along the x-axis without causing any significant movement of end-effectuator 30 along the y-axis or the z-axis.


In some further embodiments, end-effectuator 30 may be configured for selective rotation about one or more of the x-axis, y-axis, and z-axis (such that one or more of the Cardanic Euler Angles (e.g., roll, pitch, and/or yaw) associated with end-effectuator 30 may be selectively controlled). In some embodiments, during operation, end-effectuator 30 and/or surgical instrument 35 may be aligned with a selected orientation axis that may be selectively varied and monitored by an agent (i.e. control device 100) that may operate surgical robot system 1. In some embodiments, selective control of the axial rotation and orientation of end-effectuator 30 may permit performance of medical procedures with significantly improved accuracy compared to conventional robots that utilize, for example, a six degree of freedom robot arm 23 comprising only rotational axes.


In some embodiments, as illustrated in FIG. 1, robot arm 23 may be positioned above the body of patient 18, with end-effectuator 30 selectively angled relative to the z-axis toward body of patient 18. In this aspect, in some embodiments, robotic surgical system 1 may comprise systems for stabilizing robotic arm 23, end-effectuator 30, and/or surgical instrument 35 at their respective positions in the event of power failure. In some embodiments, robotic arm 23, end-effectuator 30, and/or surgical instrument 35 may comprise a conventional worm-drive mechanism (not illustrated) coupled to robotic arm 23, configured to effect movement of robotic arm 23 along the z-axis. In some embodiments, the system for stabilizing robotic arm 23, end-effectuator 30, and/or surgical instrument 35 may comprise a counterbalance coupled to robotic arm 23. In another embodiment, the means for maintaining robotic arm 23, end-effectuator 30, and/or surgical instrument 35 may comprise a conventional brake mechanism (not illustrated) that is coupled to at least a portion of robotic arm 23, such as, for example, end-effectuator 30, and that is configured for activation in response to a loss of power or “power off” condition of surgical robot 15.


In some embodiments, control device 100 is also in communication with surgical robot 15. In some embodiments, a conventional processor (not illustrated) of control device 100 may be configured to effect movement of surgical robot 15 according to a preplanned trajectory selected prior to the procedure. For example, in some embodiments, controlling device 100 may use robotic guidance software (not illustrated) and robotic guidance data storage (not illustrated) to effect movement of surgical robot 15.


In some embodiments, the position of surgical instrument 35 may be dynamically updated so that surgical robot 15 is aware of the location of surgical instrument 35 at all times during the procedure. Consequently, in some embodiments, surgical robot 15 may move surgical instrument 35 to the desired position quickly, with minimal damage to patient 18, and without any further assistance from a surgeon (unless the surgeon so desires). In some further embodiments, surgical robot 15 may be configured to correct the path of surgical instrument 35 if surgical instrument 35 strays from the selected, preplanned trajectory.


In some embodiments, surgical robot 15 may be configured to permit stoppage, modification, and/or manual control of the movement of end-effectuator 30 and/or surgical instrument 35. Thus, in use, in some embodiments, an agent (e.g., surgeon, a physician or other user) that may operate robot system 1 has the option to stop, modify, or manually control the autonomous movement of end-effectuator 30 and/or surgical instrument 35. Further, in some embodiments, tolerance controls may be preprogrammed into surgical robot 15 and/or control device 100 (such that the movement of the end-effectuator 30 and/or surgical instrument 35 is adjusted in response to specified conditions being met). For example, in some embodiments, if surgical robot 15 cannot detect the position of surgical instrument 35 because of a malfunction in the LPS system, then surgical robot 15 may be configured to stop movement of end-effectuator 30 and/or surgical instrument 35. In some embodiments, if surgical robot 15 detects a resistance, such as a force resistance or a torque resistance above a tolerance level, then surgical robot 15 may be configured to stop movement of end-effectuator 30 and/or surgical instrument 35.


In some embodiments, control device 100, as further described herein, may be located within surgical robot 15, or, alternatively, in another location within surgical room 10 or in a remote location. In some embodiments, control device 100 may be positioned in operative communication with cameras 56, for tracking, and surgical robot 15.


In some further embodiments, surgical robot 15 may also be used with existing conventional guidance systems. Thus, alternative conventional guidance systems beyond those specifically disclosed herein are within the scope and spirit of the invention. For instance, a conventional optical tracking system (not illustrated) for tracking the location of the surgical device, or a commercially available infrared optical tracking system (not illustrated), such as Optotrak® (Optotrak® is a registered trademark of Northern Digital Inc. Northern Digital, Waterloo, Ontario, Mayada), may be used to track patient's 18 movement and robot's base 25 location and/or intermediate axis location, and used with surgical robot system 1. In some embodiments in which surgical robot system 1 comprises a conventional infrared or visible light optical tracking system (not illustrated), surgical robot system 1 may comprise conventional optical markers attached to selected locations on end-effectuator 30 and/or surgical instrument 35 that are configured to emit or reflect light. In some embodiments, the light emitted from and/or reflected by the markers may be read by cameras 56 and/or optical sensors and the location of the object may be calculated through triangulation methods (such as stereo-photogrammetry).


Illustrated in FIG. 2, it is seen that, in some embodiments, surgical robot 15 may comprise a base 25 connected to wheels 31. The size and mobility of these embodiments may enable the surgical robot to be readily moved from patient to patient and room to room as desired. As shown, in some embodiments, surgical robot 15 may further comprise a case 40 that is slidably attached to base 25 such that case 40 may slide up and down along the z-axis substantially perpendicular to the surface on which base 25 sits. In some embodiments, surgical robot 15 may include a display means 29, and a housing 27 which contains robot arm 23.


As described earlier, end-effectuator 30 may comprise a surgical instrument 35, whereas in other embodiments, end-effectuator 30 may be coupled to surgical instrument 35. In some embodiments, arm 23 may be connected to end-effectuator 30, with surgical instrument 35 being removably attached to end-effectuator 30.


In some embodiments, robot system 1 may be used in common spinal surgery procedures such as Transforaminal Lumbar Interbody Fixation (“TLIF”), Posterior Lumbar Interbody Fixation (“PLIF”), Lateral Lumbar Interbody Fixation (“LLIF”), laminectomy or foraminotomy procedures. Robot system 1 may be used in any of the above mentioned approaches where bone removal may be needed. Specifically, robot system 1 may be able to target selected areas of bone for milling. Robot system 1 may further be registered to patient 18. In some embodiments, the means for registering may comprise radio-opaque fiducial markers and optical tracking markers rigidly attached to a patient-mounted fixture. Locations of fixture's fiducial markers on the 3D image may be related to tracked locations of the fixture's optical tracking markers to co-register camera 56 and medical image coordinate systems. In still further embodiments, cameras 56 may be used for tracking the location of the end-effectuator 30 or surgical instrument 35 in relation to the patient. Cameras 56 that may be used are to be similar to those used by the StealthStation® S7®, StealthStation i7™, or StealthStation iNav®, which track light-emitting or reflective markers using stereophotogrammetry. (StealthStation® S7®, StealthStation i7™, or StealthStation iNav® are registered trademarks of Medtronic, Inc.) Cameras 56 may be located on camera arm 55, see FIG. 2, or stationed around patient 18. Once registered to patient 18, robot system 1 may very accurately gauge its end-effectuator's 30 location relative to any layer of bone viewable on a CT.


Embodiments of spine surgery techniques may include creating an access channel between two vertebral bodies or through bone. FIG. 6 illustrates a cannula assembly 120 that may be used to create an access channel through the tissue of patient 18 to target anatomy in accordance with one embodiment of robot system 1. In the illustrated embodiment, the cannula assembly 120 comprises a cannula 121 configured to allow passage of various instruments and materials through the pathway to target anatomy. The cannula may have an inside diameter just large enough to pass a drill bit or needle, or an inside diameter large enough to pass implants such as interbody grafts used in TLIF, PLIF, or LLIF. Cannula 121 may have a proximal end 122 and a distal end 123. Cannula assembly 120 further may include a drill assembly which may be removed from cannula 121. As illustrated in FIG. 6, drill shaft 151 may be positioned in cannula 121 with milling bit 160 positioned at distal end 123. Drill assembly (not pictured) may further comprise a motor, a body, and parts known to one of ordinary skill in the art. In an embodiment, cannula assembly 120 may further comprise a handle (not illustrated) disposed on the proximal end 122 of cannula 121. In an embodiment, cannula assembly 120 may be a trocar-tipped cannula. By way of example, cannula assembly 120 may be a diamond, scoop, bevel, or trocar tipped cannula.


To create an access channel, the surgeon, for example, may make an incision in the back of patient 18. Distal end 123 of cannula 121 may be inserted into the incision. The surgeon may then apply longitudinal force to cannula assembly 120 while rotating the handle to advance cannula 121 through the soft tissue of patient 18 and cause distal end 123 to abut or penetrate into a bony structure. In an embodiment, cannula 121 may be inserted into the vertebral body through a pedicle (not illustrated). Once cannula 121 has been inserted to the necessary depth, the handle may be removed, leaving cannula 121. In this manner, cannula 121 may provide an access channel into the target site.


In a similar method, to form an access channel, the surgeon may make an incision in the back of patient 18. Proximal end 122 of cannula 121 may be attached to robot system 1 by way of end-effectuator 30. As described above, CT scans of patient 18 may be loaded to control device 100. Once loaded, control device 100 may register robot system 1, end-effectuator 30, CT scans of patient 18, and the current position of patient 18 on control device 100. Once registration on control device 100 is complete, the surgeon may program robot system 1 to align cannula 121 to a desired trajectory line 400 through patient 18 to a target site. As illustrated in FIG. 11, the surgeon may designate a trajectory line 400 on control device 100, using display means 29, to reach the interbody space between two vertebral bodies. The robot system 1 may then control the cannula 121 to place the cannula 121 into patient 18 along the programmed trajectory. The surgeon may then insert a probe (not illustrated) through cannula 121 to monitor nerve activity. If adjustments to the trajectory are needed the surgeon may alter trajectory line 400 on control device 100 to an alternate position by means of control device 100, through an interface on display means 29. Robot system 1 may then immediately shift trajectory line 400 along new trajectory line 400. Control device 100 may be enabled to automatically shift trajectory line 400 away from neural activity, as provided by the probe, which may have reached a critical threshold. This automatic shift may allow tubular element 80 to reach the intervertebral disc space with a greater ability of avoiding nerves and causing nerve damage.


While cannula assembly 120 may be suited for creating an access channel to vertebral bodies or intervertebral disc spaces in all regions of the vertebral column, cannula assembly 120 may be particularly suited for access in the middle and lower areas of the thoracic region. If access is desired from the middle of the thoracic region and above, a device having a tapered cannula (not illustrated) may be used. While the tapered cannula may be particularly suited for accessing the middle of the thoracic region and above, it should be understood that the tapered cannula may also be used to create an access channel to vertebral bodies in all regions of the vertebral column.


After cannula 121 has been inserted and correctly positioned inside the body of patient 18, a drill assembly 500 may be inserted into cannula 121. The drill assembly 500 may comprise drill shaft 151, milling bit 160, and may further comprise a motor, a body, and parts known to one of ordinary skill in the art. Drill assembly 500 may attach to end-effectuator 30 by any suitable means. Furthermore, drill assembly 500 may be attached to end-effectuator 30 before insertion of cannula 121 or after insertion of cannula 121 into patient 18. As illustrated in FIGS. 7a and 7b, a surgeon may use control device 100 to define a perimeter 110 around an area within which the surgeon may desire to remove some bone with drill assembly 500. Perimeter 110 may be of any suitable shape or design the surgeon chooses. Without limitation, a suitable perimeter shape may be round, square, rectangular, any surgeon hand drawn enclosure, or any combination thereof. In one embodiment, perimeter may match the circular shape of the outer diameter of the cannula. As illustrated in FIG. 7a, a side view of the bony structure illustrates the outer edges of perimeter 110. An end-on view, as illustrated in FIG. 7b, illustrates the area of perimeter 110 in which milling bit 160 may operate. Uploading perimeter 110 into control device 100 may instruct end-effectuator 30 to prevent milling bit 160 from moving outside perimeter 110.


After perimeter 110 is loaded, control device 100 may then proceed to remove bone. By way of example, the control device 100 of the robot system 1 may control the drill assembly 500 for bone removal. In some embodiments, the control device 100 may turn on the drill assembly 500. Turning “on” the drill assembly may rotate milling bit 160 at about 500 to about 30,000 RPM, for example. Before removing bone, control device 100 may assess the demarcation between bone and soft tissue on a 2D reformatted slice (reslice) of uploaded CT volume of the anatomy inside patient 18. As illustrated in FIGS. 8a and 8b, reslice plane 170 may be perpendicular to the approach pathway but could alternately be perpendicular to the axis of the drill shaft 151, the axis of the cannula 121, or any suitable axis. Surgeon may instruct control device 100 to iteratively move reslice plane 170 distally down the axis of approach and distal to milling bit 160 before milling bit 160 advances. Control device 100 may display an image of reslice plane 170 as it advances. As illustrated in FIG. 8, the surgeon may halt advancement and display of the reslice plane 170 at a position where the first bone is to be encountered. Control device 100 may be used to monitor exact location of drill bit 160 relative to the anatomy while surgeon advances cannula 121 to a known position relative to reslice plane 170 and drill bit 160. In one embodiment, this known position may be proximal to the reslice plane by the head depth of the drill bit 160. As illustrated in FIG. 8b, an end-on view illustrates the cross section of reslice plane 170 and perimeter 110. The area in white is bone that may be removed by milling bit 160 and the area in black is soft tissue. In one embodiment, grayscale thresholding may be used to automatically assess and delineate white from black regions, providing data to control device 100 to automatically set boundaries for allowing or preventing drilling in different regions in this plane and bounded by perimeter 110. In another embodiment, the surgeon uses a software interface to manually mark bone and soft tissue areas on reslice plane 170. In one embodiment, control device 100 may enable drill shaft's 151 position to be moved laterally while maintaining angular orientation. Control device 100 may also only allow the drill bit to advance distally past the cannula tip if it is in the region in white but not in the region in black. In another embodiment, control device 100 may enable rotation of drill shaft 151 and may have it coupled with translation so that milling bit 160 position stays in reslice plane 170. Control device 100, with perimeter 110, may prevent drilling in any region that is not bone and allow removal of bone that is present within the cross section of perimeter 110 and reslice plane 170. The milling bit 160 may be advanced to remove bone distal to the cannula 121. In one embodiment, to limit bone removal to a region that has been viewed on resliced CT, the milling bit 160 is advanced only until it reaches the reslice plane 170. As illustrated in FIG. 9, because the milling bit diameter is larger than the drill shaft diameter, milling bit 160 may be advanced to remove bone lateral to cannula 121 by the distance from the outer edge of the drill shaft 151 to the outer edge of the milling bit 160. This feature may allow for milling bit 160 to remove enough bone for cannula 121 to advance through or past the bony structure after bone is removed from in front of the cannula's leading edge. After removal of bone between cannula tip and reslice plane 170, which may be assessed by recording the area removed manually or on control device 100 by monitoring the registered position of end-effectuator and path of the bit, the surgeon may manually advance the cannula 121 into vacated space 185. A new reslice plane 170 on the CT scan of patient 18 may then be assessed from the existing CT scan volume by control device 100. In other embodiments, robot system 1 may assess multiple reslice planes 170 of the CT scan of patient 18 at the same time. The use of multiple reslice planes 170 may “look ahead” of milling bit 160. Viewing sequential slices in the path ahead of the current cannula location may alert the surgeon to a critical structure 180 that would harm patient 18 if removed by milling bit 160. As illustrated on FIG. 9, the milling bit 160, which is connected to end-effectuator 30, may be advanced into or past bony structures in advance of the cannula 121. The milling bit 160 may remove bone allowing the cannula 121 to be advanced into or past the bony structure. Without the bone structures to block it, the cannula 121 would be pushed past soft tissues, which were not drilled, pushing these tissues aside as commonly occurs with cannula insertion.


As illustrated in FIG. 10, a reslice plane 170 may eventually reveal critical structure 180. Control device 100 may alert the surgeon to critical structure 180. A critical structure 180 may be, but is not limited to a nerve, blood vessel, tumor, fracture, muscle, tendon, or any combination thereof into which one of ordinary skill in the art would not want to drill. The surgeon may then create a second perimeter 115. Second perimeter 115 may be plotted around critical structure 180. Second perimeter 115 may be of any suitable shape or design the surgeon chooses. Without limitation, a suitable shape may be round, square, rectangular, any surgeon hand drawn enclosure, or any combination thereof. Second perimeter 115 may be loaded into control device 100. Control device 100 may then prevent milling bit 160 or cannula 121 from entering the area defined by second perimeter 115. This second perimeter may allow for milling bit 160 to continue removing bone from around critical structure 180 without harming critical structure 180. As illustrated in FIG. 10, critical structure 180 may prevent cannula 121 from advancing farther into the patient. In this respect, the critical structure is treated differently than soft tissues appearing as black on the reslice plane—with the soft tissues, the surgeon continues to advance the cannula forward and pushes them aside whereas with a critical structure, cannula advancement must stop. Milling bit 160 may continue to remove bone farther into the bony structure by staying within the bounds of perimeter 110, outside of second perimeter 115.


In some embodiments, robot system 1 may be used during LLIF operations. Current technology requires an LLIF access portal to be established. Portal placement is normally accomplished by a surgeon who inserts a probe from a lateral approach and guides the probe toward the disc space, adjusting the path as needed to steer the probe away from nerves in the psoas muscle and exiting the spine. As illustrated in FIG. 12, robot system 1 may be used to move or guide manual movement of a center tool 190 through patient 18 during a LLIF procedure. Further illustrated in FIG. 12 are end-effectuator 30, spacer 210, dilator 200, and trajectory line 400. End-effectuator 30 is attached to robot system 1 and may be used to guide center tool 190 or hold center tool 190 and dilators 200 in place. End-effectuator 30 may grasp center tool 190 or dilators 200 by way of spacer 210 or any other means known to one skilled in the art. Spacer 210 may be removed and replaced as necessary to properly attach center tool 190 or dilators 200 to end-effectuator 30. As described above, patient 18 and CT scan volume of patient 18 may be registered together through control device 100. The surgeon may then plot trajectory line 400 on control device 100 through display means 29, which may display key anatomical views generated from the CT scans. Robot system 1 may align trajectory line 400 based upon the surgeon's inputs. The surgeon may insert a probe (not illustrated) through center tool 190 to monitor nerve activity as center tool 190 is maneuvered through patient 18 by robot system 1. If an adjustment to trajectory line 400 of center tool 190 is required, the surgeon may re-plot trajectory line 400 to an alternate position on control device 100, through display means 29. Robot system 1 may immediately correct trajectory line 400 of center tool 190, based upon re-plotting of trajectory line 400. Furthermore, control device 100 may be programmed to automatically shift trajectory line 400 of center tool 190 away from areas where neural activity has reached a critical threshold as measured by the probe inserted in center tool 190. After placement of center tool 190 against an intervertebral disc space, dilators 200 may be used to expand the working space available to a surgeon.


As illustrated in FIGS. 13a, 13b, 13c, 13d, and 13e, after center tool 190 has reached the intended intervertebral disc space, one or more dilators 200a, 200b, or 200c may be maneuvered down the length of center tool 190 to the intervertebral disc space. Center tool 190 and dilators 200 may be held in position by spacer 210. Spacer 210 may align center tool 190 and dilators 200 to end-effectuator 30. As illustrated in FIG. 13a, spacer 210 may be removed to allow for the insertion of dilators 200a, 200b, and 200c. As illustrated in FIG. 13a, center tool 190 may be positioned against the intervertebral disc space in patient 18 by end-effectuator 30. After center tool 190 has been positioned, spacer 210 may be removed for the insertion of dilators to increase the work space available to a surgeon. Illustrated in FIG. 13b, dilator 200a, which may have inside diameter slightly larger than outside diameter of center tool 190, may be placed around center tool 190 and moved down center tool 190 until adjacent to the intervertebral disc space in patient 18. FIG. 13c illustrates the same process in FIG. 13b with dilator 200b being slightly larger and moved along dilator 200a. FIG. 13d illustrates the same process in FIG. 13c with dilator 200c being slightly larger and moved along dilator 200b. These steps may be repeated multiple times as desired by the surgeon (additional steps may not be pictured). As illustrated in FIG. 13e, after dilators 200a, 200b, and 200c have been placed, center tool 190 and dilators 200a and 200b may be removed. This removal may leave dilator 200c attached to end-effectuator 30, creating a working space for a surgeon to operate in.



FIG. 14 illustrates a vertebral alignment tool 250, which may be used after insertion of tubular element 80, in certain embodiments. Vertebral alignment tool 250 may be used to prepare the intervertebral disc space of patient 18 for further surgical operations. As illustrated in FIG. 14, vertebral alignment tool 250 may comprise a body 251, a penetrating end 252, and a working channel 253. Body 251 may be of any suitable width to fit within tubular element 80. Body 251 may be any suitable length to traverse the length of tubular element 80 and have a sufficient amount of body 251 exposed outside tubular element 80 for robot system 1, through end-effectuator 30, or a surgeon to manipulate vertebral alignment tool 250 inside tubular element 80 for placement between vertebral body 600 and vertebral body 601, in disc space 602. Body 251 may be of any shape (i.e. square, rectangular, round, polyhedral, etc.) that may distract (i.e. separate vertebral body 600 and vertebral body 601) vertebral body 600 and vertebral body 601. Penetrating end 252 may be attached to body 251 at one end of body 251. Penetrating end 252 may comprise two individual projections which may have tapered ends that come to a point. Both projections may be of any desirable length or width so as to prevent interference with working channel 253. Working channel 253 may traverse the interior length of body 251. Working channel 253 may be of any shape (i.e. square, rectangular, round, polyhedral, etc.) desired by a surgeon. Furthermore, working channel 253 may allow for surgical tools to pass through body 251 and penetrating end 252 to enter the disc space for surgical operations.



FIGS. 15 and 16 illustrate body 251, which may be the width of tubular element 80 (i.e. cannula, dilator, or guide tube) used during the operation. As illustrated in FIG. 15, angled end 252 is positioned between two adjacent vertebral bodies 600, 601, which may not be prepared for surgical operations. As illustrated in FIG. 16, vertebral alignment tool 250 may be moved into disc space 602 between adjacent vertebral bodies 600, 601, distracting adjacent vertebral bodies 600, 601 for surgical operations. The pointed tip of penetrating end 252 penetrates through the soft tissue and annulus and into the disc space 602. The vertebral bodies 600, 601 may slide along the tapering of angled end 252, coming to rest upon body 251. With the vertebral body alignment tool 250, the surgeon may employ tools down working channel 253 of vertebral alignment tool 250 for surgical operations.


Illustrated in FIG. 17 is a view looking through working channel 253 of vertebral alignment tool 250 in accordance with some embodiments. The orientation of the vertebral bodies 600, 601 relative to tubular element 80 may be known, and therefore, it is possible to insert vertebral alignment tool 250 into the disc space in proper alignment with the vertebral bodies 600, 601 to allow entry between vertebral bodies 600, 601. A locking dial portal (not illustrated), may be used on the proximal end of end-effectuator 30, allowing robot system 1 to hold vertebral alignment tool 250 in place. The dial, (not illustrated), may move to a new radial position through end-effectuator 30 by control device 100. Through registration of the robot system 1 to CT image volume, as described earlier, and with additional spatial information from the position of the dial, exact orientation and position of the vertebral alignment tool 250 relative to the anatomy is known. Control device 100 may then insert or guide vertebral body tool 250 between two vertebral bodies 600, 601 using end-effectuator 30. Control device 100 may track the movement of the vertebral bodies 600, 601 and control the depth and movement of vertebral alignment tool 250 until the vertebral bodies 600, 601 may be in a parallel configuration. A drill assembly 500, with a depth stop (not illustrated), or other disc removal tool such as Kerrison or pituitary rongeurs may be safely inserted into the disc space 603, through working channel 253, between the vertebral bodies 600, 601 to remove disc material.


After the surgeon has completed the operation, control device 100 may remove vertebral alignment tool 250 using end-effectuator 30. Control device 100 may monitor the movement of the vertebral bodies and remove the vertebral alignment tool 250 in a manner that may not harm the vertebral bodies. Similarly, the surgeon may remove the end-effectuator 30 from vertebral alignment tool 250 and remove vertebral alignment tool 250 manually. This method may be employed to remove any cannula 121, dilators 200, or drill assembly safely from the patient 18, after surgery.


Knowing the exact orientation of the disc space, by registration of patient 18 to robot system 1 (as discussed above), it may be possible to insert an interbody device 260 through tubular element 80, as illustrated in FIG. 18, during XLIF with much better knowledge and real-time feedback about the actual final positioning of the implant than is currently possible. As the interbody device 260 advances through tubular element 80 and into the disc space, a representation may be displayed on control device 100 through display means 29 with an axial view of the vertebral body 700, especially the disc space, and current location of the interbody device 260 overlaid, as illustrated in FIG. 18.


Another method for keeping track of the orientation of interbody device 260 is the dialable portal (not illustrated) as described above in the method of inserting vertebral alignment tool 250 using end-effectuator 30 of robot system 1. Such a portal would enable the user to control the orientation of the interbody device 260 during insertion and with feedback to control device 100 about the portal's angular orientation, either automatic through a sensor or manually entered by surgeon or technician, the orientation of the interbody device may be continuously monitored. An insertion tool (not illustrated) may have a sliding mechanism, which may be attached to end-effectuator 30, to orient the tool as is dictated by the portal.


In FIG. 18, the interbody device 260 is intentionally illustrated malpositioned to clarify the degrees of freedom for which adjustment may be needed to fully seat interbody device 260 in the desired resting position. A surgeon advancing interbody device 260 from the lateral approach, predominantly moving interbody device 260 from a left to right position, may manipulate interbody device 260 as required to fully seat interbody device 260 in the desired resting position. Additionally, a means for manipulating predominantly the anterior-posterior position of interbody device 260 and a means of manipulating the rotational orientation of interbody device 260 in the plane may be required. One method for achieving the desired insertion is for the surgeon to dial in the necessary anteroposterior offset and the necessary rotation offset in robot system 1 integrated with tubular element 80, then to focus on advancing interbody device 260 through tubular element 80 until the desired depth of insertion is achieved. It may be necessary to displace interbody device 260 by the linear and rotational offset after advancing interbody device 260 and the insertion tool (not illustrated) far enough that interbody device 260 is clear of the distal end of tubular element 80 but before detaching interbody device 260 from the insertion tool. The desired final insertion depth may be controlled by an adjustable stop on the proximal end of tubular element 80 or by the user stopping when the user visually identifies interbody device 260 is far enough inserted on control device 100 through display means 29. Similarly, the angulation and linear offset of the interbody device 260 may be imposed after robot system 1 detects that at least some portion of interbody device 260 is clear of the distal end of tubular element 80 or after the user visually see the interbody device 260 is far enough inserted, on control device 100 through display means 29, that the displacement may not cause interbody device 260 to collide with tubular element 80. Detection of position and setting of robot system 1 may be automatically or manually controlled. That is, control device 100 may provide a surgeon with the anteroposterior distance “d” and the rotation angle “α”, as illustrated in FIG. 19, that are required to reach the target after the surgeon has completed planning of the desired final location of interbody device 260 on control device 100 through display means 29. Alternately, control device 100 may automatically detect the required offsets and send a signal through robot system 1 to end-effectuator 30 to adjust to the appropriate offset positions.



FIGS. 20 and 21 further illustrate embodiments of surgical robot system 1 that may be used for any surgical procedure described above. FIG. 20 illustrates surgical robot system 1 in a stowed position. In the stowed position, surgical robot system 1 may be maneuvered into any surgical room, storage room, or down any hallway. Robot system 1 may comprise of a base 25, a surgical robot 15, a support structure 28, a housing 27, a display means 29, and a robot arm 23. Robot system 1 may further comprise a plurality of arms 50, a joint 65, a joint 60, and a camera arm 55. Robot system 1 may be maneuvered using a plurality of wheels 31 which may attach to robot system 1 through a wheel base 26. Wheel base 26 may support robot system 1. As illustrated in FIG. 20, a first structure 200 and a second structure 205 may be attached to form robot system 1. First structure 200 may comprise of a base 25, a surgical robot 15, a support structure 28, a housing 27, a display means 29, and a robot arm 23. The second structure 205 may further comprise a plurality of arms 50, a joint 60, a joint 65, a camera 56, and camera arm 55.



FIG. 21 illustrates an embodiment of surgical robot system 1 in a deployed state, wherein structures 200 and 205 are separated from each other. First structure 200 may comprise a base 25, a surgical robot 15, a support structure 28, a housing 27, a display means 29, and a robot arm 23. Support structure 28 may support display means 29, housing 27, and robot arm 23. An end effectuator 30 (not pictured) may attach to robot arm 23 by any suitable means. End effectuator 30 may attach by any suitable means to any surgical tools described above (i.e. a cannula or drill assembly). Robot arm 23, end effectuator 30, and any attached surgical tools may operate according to any above described disclosure. Support structure 28 may rotate 360 degrees along the y-axis in relation to surgical robot 15. Robot arm 23 may further rotate or maneuver along the y-axis and x-axis, in relation to housing 27. Surgical robot 15 may move laterally along the y-axis in relation to base 25.


A second structure 205, illustrated in FIG. 21, may comprise a camera 56, a camera arm 55, a joint 60, a joint 65, a plurality of arms 50, a wheel base 26, and a plurality of wheels 31. Structure 205 may be positioned away from structure 200 by a surgeon in preparation for surgery. The surgeon my position structure 205 in any manner in relation to structure 200 to relay information from camera 56 to surgical robot 15. The second structure 205 may position camera 56 above a patient (not illustrated), or position camera 56 in any relation to the patient. Camera 56 may send information from second structure 205 to first structure 200. The information transmitted may be received by surgical robot 15 and transmitted to display means 29 for display.


Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations may be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A method for removing bone with a robot system comprising: providing an end effectuator to which a drill has been attached;receiving a defined perimeter on a desired trajectory through the anatomy to be drilled;retrieving a slice plane from a 3-D CT image scan volume, the retrieved slice plane being a two-dimensional slice lateral to a longitudinal axis of the drill attached to the end effectuator and being near the distal end of the drill; andcontrolling the drill to remove bone from the desired trajectory in the intersection of the defined perimeter and the slice plane;continuously retrieve a slice plane distally down the desired trajectory;for each retrieved slice plane, performing the following steps: repositioning the end effectuator such that the each retrieved slice plane is near the distal end of the drill; andcontrolling the drill to remove bone from the desired trajectory in the intersection of the defined perimeter and the each retrieved slice plane,wherein the each retrieved slice plane is a reformatted slice of the 3-D CT image scan volume, andwherein every one of the each retrieved slice plane is the two-dimensional slice perpendicular to the desired trajectory.
  • 2. The method of claim 1, further comprising defining, by a user, a perimeter on a pathway through the anatomy.
  • 3. The method of claim 1, further comprising displaying, on a display device, the each retrieved slice plane as the end effectuator is repositioned.
  • 4. The method of claim 1, wherein the end effectuator includes a tube, further comprising inserting the drill through the end effectuator tube.
  • 5. The method of claim 1, under the control of the robot system, automatically demarcating drilling area and non-drilling soft tissue area in the intersection of the defined perimeter and the each retrieved slice plane.
  • 6. The method of claim 5, wherein the step of automatically demarcating includes demarcating using grayscale thresholding.
  • 7. The method of claim 5, wherein the step of drilling includes controlling the drill to drill only in the drilling area under the control of the robot system.
  • 8. The method of claim 1, under the control of the robot system, further comprising: automatically demarcating drilling area and non-drilling soft tissue area in the intersection of the defined perimeter and the each retrieved slice plane using gray scale thresholding; andwherein the step of drilling includes controlling the drill to drill only in the drilling area.
  • 9. The method of claim 1, further comprising: identifying a critical structure to avoid in the slice plane; andplacing a second perimeter around the identified critical structure within the first parameter.
  • 10. The method of claim 9, controlling the drill to remove bone only within the second perimeter.
  • 11. A method for inserting a tubular element into a patient with a robot system comprising: loading a 3-D computed tomography scan volume onto a control device of the robot system, the robot system further including a tubular element through which a drill is received;programming a route for the tubular element to travel through the patient to a target anatomical location on a display, wherein the control device is configured to manipulate the tubular element;controlling the tubular element with the robot system to guide the tubular element along the programmed route through the patient,wherein the control device calculates a two-dimensional slice plane perpendicular to a longitudinal axis of the drill attached to the tubular element and iteratively recalculates a slice plane distally down the programmed route and distal to the tubular element as the tubular element is advanced,wherein each calculated slice plane is a two-dimensional slice perpendicular to the programmed route and to the longitudinal axis of the drill, and wherein each calculated slice plane is a reformatted slice of the 3-D computed tomography scan volume.
  • 12. The method of claim 11, further comprising altering by a surgeon the programmed route while the robot system is moving the tubular element through the patient.
  • 13. The method of claim 11, further comprising: continuously sensing neural activity through a neural sensing probe inserted into the tubular element; andautomatically changing the programmed route based upon the neural activity sensed by the neural probe.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/476,101 filed on Sep. 3, 2014, now U.S. Pat. No. 10,531,927, which is a continuation of U.S. application Ser. No. 14/475,998 filed on Sep. 3, 2014 (abandoned), which is a continuation-in-part of U.S. application Ser. No. 13/924,505, entitled “Surgical Robot Platform,” filed on Jun. 21, 2013, now U.S. Pat. No. 9,782,229, which claims priority to U.S. Application No. 61/800,527 filed on Mar. 15, 2013, and claims priority to U.S. Provisional Patent Application No. 61/662,702 filed on Jun. 21, 2012, all of which are incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (694)
Number Name Date Kind
4150293 Franke Apr 1979 A
5246010 Gazzara et al. Sep 1993 A
5354314 Hardy et al. Oct 1994 A
5397323 Taylor et al. Mar 1995 A
5531227 Schneider Jul 1996 A
5598453 Baba et al. Jan 1997 A
5638819 Manwaring Jun 1997 A
5772594 Barrick Jun 1998 A
5791908 Gillio Aug 1998 A
5820559 Ng et al. Oct 1998 A
5825982 Wright et al. Oct 1998 A
5887121 Funda et al. Mar 1999 A
5911449 Daniele et al. Jun 1999 A
5951475 Gueziec et al. Sep 1999 A
5987960 Messner et al. Nov 1999 A
6012216 Esteves et al. Jan 2000 A
6031888 Ivan et al. Feb 2000 A
6033415 Mittelstadt et al. Mar 2000 A
6080181 Jensen et al. Jun 2000 A
6106511 Jensen Aug 2000 A
6122541 Cosman et al. Sep 2000 A
6144875 Schweikard et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6167145 Foley et al. Dec 2000 A
6167292 Badano et al. Dec 2000 A
6201984 Funda et al. Mar 2001 B1
6203196 Meyer et al. Mar 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6212419 Blume et al. Apr 2001 B1
6231565 Tovey et al. May 2001 B1
6236875 Bucholz et al. May 2001 B1
6246900 Cosman et al. Jun 2001 B1
6276471 Kratzenberg et al. Aug 2001 B1
6301495 Gueziec et al. Oct 2001 B1
6306126 Montezuma Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6314311 Williams et al. Nov 2001 B1
6320929 Von Der Haar Nov 2001 B1
6322567 Mittelstadt et al. Nov 2001 B1
6325808 Bernard et al. Dec 2001 B1
6340363 Bolger et al. Jan 2002 B1
6377011 Ben-Ur Apr 2002 B1
6379302 Kessman et al. Apr 2002 B1
6402762 Hunter et al. Jun 2002 B2
6424885 Niemeyer et al. Jul 2002 B1
6447503 Wynne et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6477400 Barrick Nov 2002 B1
6484049 Seeley et al. Nov 2002 B1
6487267 Wolter Nov 2002 B1
6490467 Bucholz et al. Dec 2002 B1
6490475 Seeley et al. Dec 2002 B1
6499488 Hunter et al. Dec 2002 B1
6501981 Schweikard et al. Dec 2002 B1
6507751 Blume et al. Jan 2003 B2
6535756 Simon et al. Mar 2003 B1
6560354 Maurer, Jr. et al. May 2003 B1
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6614453 Suri et al. Sep 2003 B1
6614871 Kobiki et al. Sep 2003 B1
6619840 Rasche et al. Sep 2003 B2
6636757 Jascob et al. Oct 2003 B1
6645196 Nixon et al. Nov 2003 B1
6666579 Jensen Dec 2003 B2
6669635 Kessman et al. Dec 2003 B2
6701173 Nowinski et al. Mar 2004 B2
6711431 Sarin et al. Mar 2004 B2
6725080 Melkent Apr 2004 B2
6757068 Foxlin Jun 2004 B2
6782287 Grzeszczuk et al. Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6804581 Wang et al. Oct 2004 B2
6823207 Jensen et al. Nov 2004 B1
6827351 Graziani et al. Dec 2004 B2
6837892 Shoham Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6856826 Seeley et al. Feb 2005 B2
6856827 Seeley et al. Feb 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892090 Verard et al. May 2005 B2
6920347 Simon et al. Jul 2005 B2
6922632 Foxlin Jul 2005 B2
6968224 Kessman et al. Nov 2005 B2
6978166 Foley et al. Dec 2005 B2
6988009 Grimm et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6996487 Jutras et al. Feb 2006 B2
6999852 Green Feb 2006 B2
7007699 Martinelli et al. Mar 2006 B2
7016457 Senzig et al. Mar 2006 B1
7043961 Pandey et al. May 2006 B2
7062006 Pelc et al. Jun 2006 B1
7063705 Young et al. Jun 2006 B2
7072707 Galloway, Jr. et al. Jul 2006 B2
7083615 Peterson et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7099428 Clinthorne et al. Aug 2006 B2
7108421 Gregerson et al. Sep 2006 B2
7130676 Barrick Oct 2006 B2
7139418 Abovitz et al. Nov 2006 B2
7139601 Bucholz et al. Nov 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7164968 Treat et al. Jan 2007 B2
7167738 Schweikard et al. Jan 2007 B2
7169141 Brock et al. Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7194120 Wicker et al. Mar 2007 B2
7197107 Arai et al. Mar 2007 B2
7231014 Levy Jun 2007 B2
7231063 Naimark et al. Jun 2007 B2
7239940 Wang et al. Jul 2007 B2
7248914 Hastings et al. Jul 2007 B2
7301648 Foxlin Nov 2007 B2
7302288 Schellenberg Nov 2007 B1
7313430 Urquhart et al. Dec 2007 B2
7318805 Schweikard et al. Jan 2008 B2
7318827 Leitner et al. Jan 2008 B2
7319897 Leitner et al. Jan 2008 B2
7324623 Heuscher et al. Jan 2008 B2
7327865 Fu et al. Feb 2008 B2
7331967 Lee et al. Feb 2008 B2
7333642 Green Feb 2008 B2
7339341 Oleynikov et al. Mar 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7379790 Toth et al. May 2008 B2
7386365 Nixon Jun 2008 B2
7422592 Morley et al. Sep 2008 B2
7435216 Kwon et al. Oct 2008 B2
7440793 Chauhan et al. Oct 2008 B2
7460637 Clinthorne et al. Dec 2008 B2
7466303 Yi et al. Dec 2008 B2
7493153 Ahmed et al. Feb 2009 B2
7505617 Fu et al. Mar 2009 B2
7533892 Schena et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7555331 Viswanathan Jun 2009 B2
7567834 Clayton et al. Jul 2009 B2
7594912 Cooper et al. Sep 2009 B2
7606613 Simon et al. Oct 2009 B2
7607440 Coste-Maniere et al. Oct 2009 B2
7623902 Pacheco Nov 2009 B2
7630752 Viswanathan Dec 2009 B2
7630753 Simon et al. Dec 2009 B2
7643862 Schoenefeld Jan 2010 B2
7660623 Hunter et al. Feb 2010 B2
7661881 Gregerson et al. Feb 2010 B2
7683331 Chang Mar 2010 B2
7683332 Chang Mar 2010 B2
7689320 Prisco et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7702379 Avinash et al. Apr 2010 B2
7702477 Tuemmler et al. Apr 2010 B2
7711083 Heigl et al. May 2010 B2
7711406 Kuhn et al. May 2010 B2
7720523 Omernick et al. May 2010 B2
7725253 Foxlin May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7742801 Neubauer et al. Jun 2010 B2
7751865 Jascob et al. Jul 2010 B2
7760849 Zhang Jul 2010 B2
7762825 Burbank et al. Jul 2010 B2
7763015 Cooper et al. Jul 2010 B2
7787699 Mahesh et al. Aug 2010 B2
7796728 Bergfjord Sep 2010 B2
7813838 Sommer Oct 2010 B2
7818044 Dukesherer et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7831294 Viswanathan Nov 2010 B2
7834484 Sartor Nov 2010 B2
7835557 Kendrick et al. Nov 2010 B2
7835778 Foley et al. Nov 2010 B2
7835784 Mire et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7840256 Lakin et al. Nov 2010 B2
7843158 Prisco Nov 2010 B2
7844320 Shahidi Nov 2010 B2
7853305 Simon et al. Dec 2010 B2
7853313 Thompson Dec 2010 B2
7865269 Prisco et al. Jan 2011 B2
D631966 Perloff et al. Feb 2011 S
7879045 Gielen et al. Feb 2011 B2
7881767 Strommer et al. Feb 2011 B2
7881770 Melkent et al. Feb 2011 B2
7886743 Cooper et al. Feb 2011 B2
RE42194 Foley et al. Mar 2011 E
RE42226 Foley et al. Mar 2011 E
7900524 Calloway et al. Mar 2011 B2
7907166 Lamprecht et al. Mar 2011 B2
7909122 Schena et al. Mar 2011 B2
7925653 Saptharishi Apr 2011 B2
7930065 Larkin et al. Apr 2011 B2
7935130 Willliams May 2011 B2
7940999 Liao et al. May 2011 B2
7945012 Ye et al. May 2011 B2
7945021 Shapiro et al. May 2011 B2
7953470 Vetter et al. May 2011 B2
7954397 Choi et al. Jun 2011 B2
7971341 Dukesherer et al. Jul 2011 B2
7974674 Hauck et al. Jul 2011 B2
7974677 Mire et al. Jul 2011 B2
7974681 Wallace et al. Jul 2011 B2
7979157 Anvari Jul 2011 B2
7983733 Viswanathan Jul 2011 B2
7988215 Seibold Aug 2011 B2
7996110 Lipow et al. Aug 2011 B2
8004121 Sartor Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8010177 Csavoy et al. Aug 2011 B2
8019045 Kato Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
8035685 Jensen Oct 2011 B2
8046054 Kim et al. Oct 2011 B2
8046057 Clarke Oct 2011 B2
8052688 Wolf, II Nov 2011 B2
8054184 Cline et al. Nov 2011 B2
8054752 Druke et al. Nov 2011 B2
8057397 Li et al. Nov 2011 B2
8057407 Martinelli et al. Nov 2011 B2
8062288 Cooper et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8066524 Burbank et al. Nov 2011 B2
8073335 Labonville et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8086299 Adler et al. Dec 2011 B2
8092370 Roberts et al. Jan 2012 B2
8098914 Liao et al. Jan 2012 B2
8100950 St. Clair et al. Jan 2012 B2
8105320 Manzo Jan 2012 B2
8108025 Csavoy et al. Jan 2012 B2
8109877 Moctezuma de la Barrera et al. Feb 2012 B2
8112292 Simon Feb 2012 B2
8116430 Shapiro et al. Feb 2012 B1
8120301 Goldberg et al. Feb 2012 B2
8121249 Wang et al. Feb 2012 B2
8123675 Funda et al. Feb 2012 B2
8133229 Bonutti Mar 2012 B1
8142420 Schena Mar 2012 B2
8147494 Leitner et al. Apr 2012 B2
8150494 Simon et al. Apr 2012 B2
8150497 Gielen et al. Apr 2012 B2
8150498 Gielen et al. Apr 2012 B2
8165658 Waynik et al. Apr 2012 B2
8170313 Kendrick et al. May 2012 B2
8179073 Farritor et al. May 2012 B2
8182476 Julian et al. May 2012 B2
8184880 Zhao et al. May 2012 B2
8202278 Orban, III et al. Jun 2012 B2
8206304 Douglas Jun 2012 B1
8208708 Homan et al. Jun 2012 B2
8208988 Jensen Jun 2012 B2
8219177 Smith et al. Jul 2012 B2
8219178 Smith et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8224024 Foxlin et al. Jul 2012 B2
8224484 Swarup et al. Jul 2012 B2
8225798 Baldwin et al. Jul 2012 B2
8228368 Zhao et al. Jul 2012 B2
8231610 Jo et al. Jul 2012 B2
8263933 Hartmann et al. Jul 2012 B2
8239001 Verard et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8248413 Gattani et al. Aug 2012 B2
8256319 Cooper et al. Sep 2012 B2
8271069 Jascob et al. Sep 2012 B2
8271130 Hourtash Sep 2012 B2
8281670 Larkin et al. Oct 2012 B2
8282653 Nelson et al. Oct 2012 B2
8301226 Csavoy et al. Oct 2012 B2
8311611 Csavoy et al. Nov 2012 B2
8320991 Jascob et al. Nov 2012 B2
8332012 Kienzle, III Dec 2012 B2
8333755 Cooper et al. Dec 2012 B2
8335552 Stiles Dec 2012 B2
8335557 Maschke Dec 2012 B2
8348931 Cooper et al. Jan 2013 B2
8353963 Glerum Jan 2013 B2
8358818 Miga et al. Jan 2013 B2
8359730 Burg et al. Jan 2013 B2
8374673 Adcox et al. Feb 2013 B2
8374723 Zhao et al. Feb 2013 B2
8379791 Forthmann et al. Feb 2013 B2
8386019 Camus et al. Feb 2013 B2
8392022 Ortmaier et al. Mar 2013 B2
8394099 Patwardhan Mar 2013 B2
8395342 Prisco Mar 2013 B2
8398634 Manzo et al. Mar 2013 B2
8400094 Schena Mar 2013 B2
8414957 Enzerink et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8450694 Baviera et al. May 2013 B2
8452447 Nixon May 2013 B2
RE44305 Foley et al. Jun 2013 E
8462911 Vesel et al. Jun 2013 B2
8465476 Rogers et al. Jun 2013 B2
8465771 Wan et al. Jun 2013 B2
8467851 Mire et al. Jun 2013 B2
8467852 Csavoy et al. Jun 2013 B2
8469947 Devengenzo et al. Jun 2013 B2
RE44392 Hynes Jul 2013 E
8483434 Buehner et al. Jul 2013 B2
8483800 Jensen et al. Jul 2013 B2
8486532 Enzerink et al. Jul 2013 B2
8489235 Moll et al. Jul 2013 B2
8500722 Cooper Aug 2013 B2
8500728 Newton et al. Aug 2013 B2
8504201 Moll et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506556 Schena Aug 2013 B2
8508173 Goldberg et al. Aug 2013 B2
8512318 Tovey et al. Aug 2013 B2
8515576 Lipow et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8526688 Groszmann et al. Sep 2013 B2
8526700 Isaacs Sep 2013 B2
8527094 Kumar et al. Sep 2013 B2
8528440 Morley et al. Sep 2013 B2
8532741 Heruth et al. Sep 2013 B2
8541970 Nowlin et al. Sep 2013 B2
8548563 Simon et al. Oct 2013 B2
8549732 Burg et al. Oct 2013 B2
8551114 Ramos de la Pena Oct 2013 B2
8551116 Julian et al. Oct 2013 B2
8556807 Scott et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8560118 Green et al. Oct 2013 B2
8561473 Blumenkranz Oct 2013 B2
8562594 Cooper et al. Oct 2013 B2
8571638 Shoham Oct 2013 B2
8571710 Coste-Maniere et al. Oct 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574303 Sharkey et al. Nov 2013 B2
8585420 Burbank et al. Nov 2013 B2
8594841 Zhao et al. Nov 2013 B2
8597198 Sanborn et al. Dec 2013 B2
8600478 Verard et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8611985 Lavallee et al. Dec 2013 B2
8613230 Blumenkranz et al. Dec 2013 B2
8621939 Blumenkranz et al. Jan 2014 B2
8624537 Nowlin et al. Jan 2014 B2
8630389 Kato Jan 2014 B2
8634897 Simon et al. Jan 2014 B2
8634957 Toth et al. Jan 2014 B2
8638056 Goldberg et al. Jan 2014 B2
8638057 Goldberg et al. Jan 2014 B2
8639000 Zhao et al. Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8644907 Hartmann et al. Feb 2014 B2
8657809 Schoepp Feb 2014 B2
8660635 Simon et al. Feb 2014 B2
8666544 Moll et al. Mar 2014 B2
8675939 Moctezuma de la Barrera Mar 2014 B2
8678647 Gregerson et al. Mar 2014 B2
8679125 Smith et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8682413 Lloyd Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8693730 Umasuthan et al. Apr 2014 B2
8694075 Groszmann et al. Apr 2014 B2
8696458 Foxlin et al. Apr 2014 B2
8700123 Okamura et al. Apr 2014 B2
8706086 Glerum Apr 2014 B2
8706185 Foley et al. Apr 2014 B2
8706301 Zhao et al. Apr 2014 B2
8717430 Simon et al. May 2014 B2
8727618 Maschke et al. May 2014 B2
8734432 Tuma et al. May 2014 B2
8738115 Amberg et al. May 2014 B2
8738181 Greer et al. May 2014 B2
8740882 Jun et al. Jun 2014 B2
8746252 McGrogan et al. Jun 2014 B2
8749189 Nowlin et al. Jun 2014 B2
8749190 Nowlin et al. Jun 2014 B2
8761930 Nixon Jun 2014 B2
8764448 Yang et al. Jul 2014 B2
8771170 Mesallum et al. Jul 2014 B2
8781186 Clements et al. Jul 2014 B2
8781630 Banks et al. Jul 2014 B2
8784385 Boyden et al. Jul 2014 B2
8786241 Nowlin et al. Jul 2014 B2
8787520 Baba Jul 2014 B2
8792704 Isaacs Jul 2014 B2
8798231 Notohara et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8812077 Dempsey Aug 2014 B2
8814793 Brabrand Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8818105 Myronenko et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821511 Von Jako et al. Sep 2014 B2
8823308 Nowlin et al. Sep 2014 B2
8827996 Scott et al. Sep 2014 B2
8828024 Farritor et al. Sep 2014 B2
8830224 Zhao et al. Sep 2014 B2
8834489 Cooper et al. Sep 2014 B2
8834490 Bonutti Sep 2014 B2
8838270 Druke et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8855822 Bartol et al. Oct 2014 B2
8858598 Seifert et al. Oct 2014 B2
8860753 Bhandarkar et al. Oct 2014 B2
8864751 Prisco et al. Oct 2014 B2
8864798 Weiman et al. Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8867703 Shapiro et al. Oct 2014 B2
8870880 Himmelberger et al. Oct 2014 B2
8876866 Zappacosta et al. Nov 2014 B2
8880223 Raj et al. Nov 2014 B2
8882803 Iott et al. Nov 2014 B2
8883210 Truncale et al. Nov 2014 B1
8888821 Rezach et al. Nov 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8894652 Seifert et al. Nov 2014 B2
8894688 Suh Nov 2014 B2
8894691 Iott et al. Nov 2014 B2
8906069 Hansell et al. Dec 2014 B2
8964934 Ein-Gal Feb 2015 B2
8992580 Bar et al. Mar 2015 B2
8996169 Lightcap et al. Mar 2015 B2
9001963 Sowards-Emmerd et al. Apr 2015 B2
9002076 Khadem et al. Apr 2015 B2
9044190 Rubner et al. Jun 2015 B2
9107683 Hourtash et al. Aug 2015 B2
9125556 Zehavi et al. Sep 2015 B2
9131986 Greer et al. Sep 2015 B2
9215968 Schostek et al. Dec 2015 B2
9308050 Kostrzewski et al. Apr 2016 B2
9380984 Li et al. Jul 2016 B2
9393039 Lechner et al. Jul 2016 B2
9398886 Gregerson et al. Jul 2016 B2
9398890 Dong et al. Jul 2016 B2
9414859 Ballard et al. Aug 2016 B2
9420975 Gutfleisch et al. Aug 2016 B2
9492235 Hourtash et al. Nov 2016 B2
9592096 Maillet et al. Mar 2017 B2
9750465 Engel et al. Sep 2017 B2
9757203 Hourtash et al. Sep 2017 B2
9795354 Menegaz et al. Oct 2017 B2
9814535 Bar et al. Nov 2017 B2
9820783 Donner et al. Nov 2017 B2
9833265 Donner et al. Nov 2017 B2
9848922 Tohmeh et al. Dec 2017 B2
9925011 Gombert et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
10034717 Miller et al. Jul 2018 B2
20010036302 Miller Nov 2001 A1
20020035321 Bucholz et al. Mar 2002 A1
20030055049 Brock Mar 2003 A1
20030153829 Sarin et al. Aug 2003 A1
20040024311 Quaid Feb 2004 A1
20040068172 Nowinski et al. Apr 2004 A1
20040076259 Jensen et al. Apr 2004 A1
20050096502 Khalili May 2005 A1
20050143651 Verard et al. Jun 2005 A1
20050171558 Abovitz et al. Aug 2005 A1
20050245820 Sarin Nov 2005 A1
20060100610 Wallace et al. May 2006 A1
20060173329 Marquart et al. Aug 2006 A1
20060184396 Dennis et al. Aug 2006 A1
20060241416 Marquart et al. Oct 2006 A1
20060291612 Nishide et al. Dec 2006 A1
20070015987 Benlloch Baviera et al. Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070038059 Sheffer et al. Feb 2007 A1
20070073133 Schoenefeld Mar 2007 A1
20070156121 Millman et al. Jul 2007 A1
20070156157 Nahum et al. Jul 2007 A1
20070167712 Keglovich et al. Jul 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20080004523 Jensen Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080033283 Dellaca et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080108912 Node-Langlois May 2008 A1
20080108991 Von Jako May 2008 A1
20080109012 Falco et al. May 2008 A1
20080144906 Allred et al. Jun 2008 A1
20080161680 Von Jako et al. Jul 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080177203 von Jako Jul 2008 A1
20080214922 Hartmann et al. Sep 2008 A1
20080228068 Viswanathan et al. Sep 2008 A1
20080228196 Wang et al. Sep 2008 A1
20080235052 Node-Langlois et al. Sep 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080287771 Anderson Nov 2008 A1
20080287781 Revie et al. Nov 2008 A1
20080300477 Lloyd et al. Dec 2008 A1
20080300478 Zuhars et al. Dec 2008 A1
20080302950 Park et al. Dec 2008 A1
20080306490 Lakin et al. Dec 2008 A1
20080319311 Hamadeh Dec 2008 A1
20090012509 Csavoy et al. Jan 2009 A1
20090030428 Omori et al. Jan 2009 A1
20090080737 Battle et al. Mar 2009 A1
20090185655 Koken et al. Jul 2009 A1
20090198121 Hoheisel Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090228019 Gross et al. Sep 2009 A1
20090259123 Navab et al. Oct 2009 A1
20090259230 Khadem et al. Oct 2009 A1
20090264899 Appenrodt et al. Oct 2009 A1
20090281417 Hartmann et al. Nov 2009 A1
20100022874 Wang et al. Jan 2010 A1
20100039506 Sarvestani et al. Feb 2010 A1
20100125286 Wang et al. May 2010 A1
20100130986 Mailloux et al. May 2010 A1
20100228117 Hartmann Sep 2010 A1
20100228265 Prisco Sep 2010 A1
20100249571 Jensen et al. Sep 2010 A1
20100274120 Heuscher Oct 2010 A1
20100280363 Skarda et al. Nov 2010 A1
20100331858 Simaan et al. Dec 2010 A1
20110022229 Jang et al. Jan 2011 A1
20110077504 Fischer et al. Mar 2011 A1
20110098553 Robbins et al. Apr 2011 A1
20110137152 Li Jun 2011 A1
20110213384 Jeong Sep 2011 A1
20110224684 Larkin et al. Sep 2011 A1
20110224685 Larkin et al. Sep 2011 A1
20110224686 Larkin et al. Sep 2011 A1
20110224687 Larkin et al. Sep 2011 A1
20110224688 Larkin et al. Sep 2011 A1
20110224689 Larkin et al. Sep 2011 A1
20110224825 Larkin et al. Sep 2011 A1
20110230967 O'Halloran et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110276058 Choi et al. Nov 2011 A1
20110282189 Graumann Nov 2011 A1
20110286573 Schretter et al. Nov 2011 A1
20110295062 Gratacos Solsona et al. Dec 2011 A1
20110295370 Suh et al. Dec 2011 A1
20110306986 Lee et al. Dec 2011 A1
20120035507 George et al. Feb 2012 A1
20120046668 Gantes Feb 2012 A1
20120051498 Koishi Mar 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059248 Holsing et al. Mar 2012 A1
20120071753 Hunter et al. Mar 2012 A1
20120108954 Schulhauser et al. May 2012 A1
20120136372 Amat Girbau et al. May 2012 A1
20120143084 Shoham Jun 2012 A1
20120184839 Woerlein Jul 2012 A1
20120197182 Millman et al. Aug 2012 A1
20120226145 Chang et al. Sep 2012 A1
20120235909 Birkenbach et al. Sep 2012 A1
20120245596 Meenink Sep 2012 A1
20120253332 Moll Oct 2012 A1
20120253360 White et al. Oct 2012 A1
20120256092 Zingerman Oct 2012 A1
20120294498 Popovic Nov 2012 A1
20120296203 Hartmann et al. Nov 2012 A1
20130006267 Odermatt et al. Jan 2013 A1
20130016889 Myronenko et al. Jan 2013 A1
20130030571 Ruiz Morales et al. Jan 2013 A1
20130035583 Park et al. Feb 2013 A1
20130060146 Yang et al. Mar 2013 A1
20130060337 Petersheim et al. Mar 2013 A1
20130094742 Feilkas Apr 2013 A1
20130096574 Kang et al. Apr 2013 A1
20130113791 Isaacs et al. May 2013 A1
20130116706 Lee et al. May 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130144307 Jeong et al. Jun 2013 A1
20130158542 Manzo et al. Jun 2013 A1
20130165937 Patwardhan Jun 2013 A1
20130178867 Farritor et al. Jul 2013 A1
20130178868 Roh Jul 2013 A1
20130178870 Schena Jul 2013 A1
20130204271 Brisson et al. Aug 2013 A1
20130211419 Jensen Aug 2013 A1
20130211420 Jensen Aug 2013 A1
20130218142 Tuma et al. Aug 2013 A1
20130223702 Holsing et al. Aug 2013 A1
20130225942 Holsing et al. Aug 2013 A1
20130225943 Holsing et al. Aug 2013 A1
20130231556 Holsing et al. Sep 2013 A1
20130237995 Lee et al. Sep 2013 A1
20130245375 DiMaio et al. Sep 2013 A1
20130261640 Kim et al. Oct 2013 A1
20130272488 Bailey et al. Oct 2013 A1
20130272489 Dickman et al. Oct 2013 A1
20130274761 Devengenzo et al. Oct 2013 A1
20130281821 Liu et al. Oct 2013 A1
20130296884 Taylor et al. Nov 2013 A1
20130303887 Holsing et al. Nov 2013 A1
20130307955 Deitz et al. Nov 2013 A1
20130317521 Choi et al. Nov 2013 A1
20130325033 Schena et al. Dec 2013 A1
20130325035 Hauck et al. Dec 2013 A1
20130331686 Freysinger et al. Dec 2013 A1
20130331858 Devengenzo et al. Dec 2013 A1
20130331861 Yoon Dec 2013 A1
20130342578 Isaacs Dec 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20130345718 Crawford et al. Dec 2013 A1
20130345757 Stad Dec 2013 A1
20140001235 Shelton, IV Jan 2014 A1
20140012131 Heruth et al. Jan 2014 A1
20140031664 Kang et al. Jan 2014 A1
20140046128 Lee et al. Feb 2014 A1
20140046132 Hoeg et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140049629 Siewerdsen et al. Feb 2014 A1
20140058406 Tsekos Feb 2014 A1
20140066944 Taylor et al. Mar 2014 A1
20140073914 Lavallee et al. Mar 2014 A1
20140080086 Chen Mar 2014 A1
20140081128 Verard et al. Mar 2014 A1
20140088612 Bartol et al. Mar 2014 A1
20140094694 Moctezuma de la Barrera Apr 2014 A1
20140094851 Gordon Apr 2014 A1
20140096369 Matsumoto et al. Apr 2014 A1
20140100587 Farritor et al. Apr 2014 A1
20140121676 Kostrzewski et al. May 2014 A1
20140128882 Kwak et al. May 2014 A1
20140135796 Simon et al. May 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140142592 Moon et al. May 2014 A1
20140148692 Hartmann et al. May 2014 A1
20140163581 Devengenzo et al. Jun 2014 A1
20140171781 Stiles Jun 2014 A1
20140171900 Stiles Jun 2014 A1
20140171965 Loh et al. Jun 2014 A1
20140180308 von Grunberg Jun 2014 A1
20140180309 Seeber et al. Jun 2014 A1
20140187915 Yaroshenko et al. Jul 2014 A1
20140188132 Kang Jul 2014 A1
20140194699 Roh et al. Jul 2014 A1
20140130810 Azizian et al. Aug 2014 A1
20140221819 Sarment Aug 2014 A1
20140222023 Kim et al. Aug 2014 A1
20140228631 Kwak et al. Aug 2014 A1
20140234804 Huang et al. Aug 2014 A1
20140257328 Kim et al. Sep 2014 A1
20140257329 Jang et al. Sep 2014 A1
20140257330 Choi et al. Sep 2014 A1
20140275760 Lee et al. Sep 2014 A1
20140275955 Crawford et al. Sep 2014 A1
20140275985 Walker et al. Sep 2014 A1
20140276931 Parihar et al. Sep 2014 A1
20140276940 Seo Sep 2014 A1
20140276944 Farritor et al. Sep 2014 A1
20140288413 Hwang et al. Sep 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140305995 Shelton, IV et al. Oct 2014 A1
20140309659 Roh et al. Oct 2014 A1
20140316436 Bar et al. Oct 2014 A1
20140323803 Hoffman et al. Oct 2014 A1
20140324070 Min et al. Oct 2014 A1
20140330288 Date et al. Nov 2014 A1
20140364720 Darrow et al. Dec 2014 A1
20140371577 Maillet et al. Dec 2014 A1
20140379130 Lee et al. Dec 2014 A1
20150039034 Frankel et al. Feb 2015 A1
20150085970 Bouhnik et al. Mar 2015 A1
20150146847 Liu May 2015 A1
20150150524 Yorkston et al. Jun 2015 A1
20150196261 Funk Jul 2015 A1
20150213633 Chang et al. Jul 2015 A1
20150335480 Alvarez et al. Nov 2015 A1
20150342647 Frankel et al. Dec 2015 A1
20160005194 Schretter et al. Jan 2016 A1
20160166329 Langan et al. Jun 2016 A1
20160235480 Scholl et al. Aug 2016 A1
20160249990 Glozman et al. Sep 2016 A1
20160302871 Gregerson et al. Oct 2016 A1
20160320322 Suzuki Nov 2016 A1
20160331335 Gregerson et al. Nov 2016 A1
20170135770 Scholl et al. May 2017 A1
20170143284 Sehnert et al. May 2017 A1
20170143426 Isaacs et al. May 2017 A1
20170156816 Ibrahim Jun 2017 A1
20170202629 Maillet et al. Jul 2017 A1
20170212723 Atarot et al. Jul 2017 A1
20170215825 Johnson et al. Aug 2017 A1
20170215826 Johnson et al. Aug 2017 A1
20170215827 Johnson et al. Aug 2017 A1
20170231710 Scholl et al. Aug 2017 A1
20170258426 Risher-Kelly et al. Sep 2017 A1
20170273748 Hourtash et al. Sep 2017 A1
20170296277 Hourtash et al. Oct 2017 A1
20170360493 Zucher et al. Dec 2017 A1
Foreign Referenced Citations (7)
Number Date Country
0744633 Nov 1996 EP
2286729 Feb 2011 EP
898843 Apr 1996 JP
8313304 Nov 1996 JP
2008538184 Oct 2008 JP
02071369 Sep 2002 WO
2012018816 Feb 2012 WO
Non-Patent Literature Citations (4)
Entry
US 8,231,638 B2, 07/2012, Swarup et al. (withdrawn)
Edward Ramsden, Hall Effect Sensors; Theory and Application (2nd Edition), pp. 107-130, http://store.elsevier.com/Hall-Effect-Sensors/Edward-Ramsden/isbn-9780080523743/. Feb. 28, 2006.
Shuanghui, Hao et al., Study on a novel absolute magnetic encoder, Robotice and Biomemetics, 2009, ROBIO, 2009. IEEE, International Conference on IEEE. pp. 1773-1776, Feb. 22, 2009.
Eric M. Yeatmann et al., “Use of Scanned Detection in Optical Position Encoders”, IEEE, Transactions of Instrumentation and Measurement. vol. 53, No. 1, pp. 37-44. http://www3.imperial.ac.uk/pls/portallive/docs/1/375913.PDF. Feb. 28, 2004.
Related Publications (1)
Number Date Country
20200179065 A1 Jun 2020 US
Provisional Applications (2)
Number Date Country
61800527 Mar 2013 US
61662702 Jun 2012 US
Continuations (2)
Number Date Country
Parent 14476101 Sep 2014 US
Child 16708545 US
Parent 14475998 Sep 2014 US
Child 14476101 US
Continuation in Parts (1)
Number Date Country
Parent 13924505 Jun 2013 US
Child 14475998 US