Methods, systems, and devices relating to force control surgical systems

Abstract
The various embodiments herein relate to robotic surgical systems and devices that use force and/or torque sensors to measure forces applied at various components of the system or device. Certain implementations include robotic surgical devices having one or more force/torque sensors that detect or measure one or more forces applied at or on one or more arms. Other embodiments relate to systems having a robotic surgical device that has one or more sensors and an external controller that has one or more motors such that the sensors transmit information that is used at the controller to actuate the motors to provide haptic feedback to a user.
Description
FIELD OF THE INVENTION

The various embodiments disclosed herein relate to robotic surgical systems and devices that use force and/or torque sensors to measure forces applied at various components of the system or device. Some exemplary implementations relate to various robotic surgical devices having one or more force/torque sensors that detect or measure one or more forces applied at or on one or more arms. Other embodiments relate to various systems that have a robotic surgical device and a controller, wherein the device has one or more sensors and the controller has one or more motors such that the sensors transmit information that is used at the controller to actuate the motors to provide haptic feedback to a user.


BACKGROUND OF THE INVENTION

Robotic surgical systems have surgical robotic devices or components positioned within a target cavity of a patient such that one or more arms or other components of such a device are configured to perform a procedure within the cavity. In these systems, an external controller is operably coupled to the surgical device such that a user can control or manipulate the device within the patient's cavity via the external controller. One disadvantage of such systems is the lack of tactile feedback for the user during the procedure. That is, the surgeon cannot “feel” the amount of force being applied by or on the arms or components of the surgical device within the patient's cavity in the same way that a surgeon would get some tactile feedback using standard laparoscopic tools (involving long tools inserted through trocars that are positioned into the cavity through incisions).


There is a need in the art for improved robotic surgical systems that can detect and/or measure forces applied at or on robotic surgical devices positioned within a patient and/or provide haptic feedback to the user at the external controller.


BRIEF SUMMARY OF THE INVENTION

Discussed herein are various robotic surgical devices, each having one or more force or torque sensors to measure force or torque applied to certain portions of the device. Additionally, surgical systems are also disclosed, each having an external controller that works in conjunction with sensors on a robotic surgical device to provide haptic feedback to a user.


In Example 1, a robotic surgical device comprises a device body configured to be positioned through an incision into a cavity of a patient, a first shoulder component operably coupled to the device body, a first arm operably coupled to the first shoulder component, and a force sensor operably coupled with the first arm. The first arm is configured to be positioned entirely within the cavity of the patient. The force sensor is positioned to measure an amount of force applied by the first arm.


Example 2 relates to the robotic surgical device according to Example 1, wherein the force sensor is disposed between the device body and the first shoulder component.


Example 3 relates to the robotic surgical device according to Example 1, wherein the force sensor is disposed on the first arm.


Example 4 relates to the robotic surgical device according to Example 3, wherein the first arm comprises an upper arm component and a forearm component, wherein the force sensor is disposed on the forearm component.


Example 5 relates to the robotic surgical device according to Example 1, wherein the first arm comprises an upper arm component and a forearm component, wherein the forearm component is operably coupled to the upper arm component at an elbow joint, wherein the forearm component comprises a link operably coupled at a distal end to the force sensor and operably coupled at a proximal end to an elbow joint.


Example 6 relates to the robotic surgical device according to Example 5, further comprising an interface plate disposed between the force sensor and the link.


Example 7 relates to the robotic surgical device according to Example 1, wherein the force sensor is positioned to measure the amount of force applied at a distal-most point on the first arm.


In Example 8, a robotic surgical system comprises a robotic surgical device configured to be positioned into a cavity of a patient through an incision, a processor, and a user controller operably coupled to the processor. The robotic surgical device comprises a device body, at least one arm operably coupled to the body, and at least one sensor operably coupled to the device. The processor is operably coupled to the at least one sensor. The user controller comprises a base, an upper arm component operably coupled to the base at a shoulder joint, a forearm component operably coupled to the upper arm component at an elbow joint, and a grasper operably coupled to the forearm component at a wrist joint. The shoulder joint comprises a first actuator operably coupled to the processor. The elbow joint comprises a second actuator operably coupled to the processor. The wrist joint comprises a third actuator operably coupled to the processor. The at least one sensor is configured to sense force or torque at the robotic surgical device and transmit force or torque information to the processor. The processor is configured to calculate the force or torque being applied at the robotic surgical device and transmit instructions to actuate at least one of the first, second, or third actuator based on the force or torque, thereby providing haptic feedback at the controller.


Example 9 relates to the robotic surgical system according to Example 8, wherein the at least one sensor is a force sensor operably coupled to the at least one arm.


Example 10 relates to the robotic surgical system according to Example 8, wherein the at least one sensor is a torque sensor operably coupled to a joint of the at least one arm.


Example 11 relates to the robotic surgical system according to Example 8, wherein the at least one sensor is a force sensor positioned between the device body and the at least one arm.


Example 12 relates to the robotic surgical system according to Example 8, wherein the at least one sensor is a force sensor disposed within the device body.


In Example 8, a robotic surgical device comprises a device body configured to be positioned through an incision into a cavity of a patient, a first arm operably coupled to the device body, a force sensor, and an end effector operably coupled to the actuator. The first arm comprises an actuator disposed within the first arm. Further, the first arm is configured to be positioned entirely within the cavity of the patient. The force sensor is operably coupled to the actuator. The end effector is positioned at a distal end of the first arm.


Example 14 relates to the robotic surgical device according to Example 13, further comprising a push/pull rod comprising a distal portion and a proximal portion, wherein the push/pull rod is operably coupled to the actuator at the proximal portion and further wherein the push/pull rod is operably coupled to the end effector at the distal portion.


Example 15 relates to the robotic surgical device according to Example 14, wherein the force sensor is disposed proximal to the actuator and is operably coupled to the proximal portion of the push/pull rod.


Example 16 relates to the robotic surgical device according to Example 14, wherein the end effector is a grasper, wherein the grasper comprises an open configuration when the push/pull rod is urged to a distal position, and further wherein the grasper comprises a closed configuration when the push/pull rod is urged to a proximal position.


Example 17 relates to the robotic surgical device according to Example 14, wherein the force sensor is operably coupled to the push/pull rod such that the force sensor is positioned along the length of the push/pull rod.


Example 18 relates to the robotic surgical device according to Example 13, wherein the end effector is a grasper.


Example 19 relates to the robotic surgical device according to Example 13, further comprising a shaft operably coupled to the end effector and a first gear operably coupled to the shaft, wherein the actuator comprises a second gear operably coupled to the first gear.


Example 20 relates to the robotic surgical device according to Example 19, wherein actuation of the actuator causes the shaft to rotate, thereby causing the end effector to rotate.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of a robotic surgical device with a force sensor, according to one embodiment.



FIG. 1B is an exploded perspective view of a portion of the robotic surgical device of FIG. 1A.



FIG. 2 is a perspective view of a robotic surgical device with a force sensor, according to another embodiment.



FIG. 3A is a side view of certain components of an arm of a robotic surgical device with a force sensor, according to one embodiment.



FIG. 3B is an exploded side view of certain components of the arm of FIG. 3A.



FIG. 3C is a side view of certain components of the arm of FIG. 3A.



FIG. 4 is a schematic depiction of an electronics package relating to the output of data from a sensor, according to one embodiment.



FIG. 5A is a perspective view of a controller, according to one embodiment.



FIG. 5B is an exploded perspective view of a portion of the controller of FIG. 5A.



FIG. 5C is a side view of the controller of FIG. 5A.



FIG. 6 is a schematic flow chart relating to a surgical system having an external controller and a robotic device, according to one embodiment.



FIG. 7 is a perspective view of an arm of a robotic surgical device with a force sensor, according to one embodiment.



FIG. 8 is a perspective view of an arm of a robotic surgical device with a force sensor, according to another embodiment.



FIG. 9 is a perspective view of an arm of a robotic surgical device with a force sensor, according to a further embodiment.



FIG. 10A is a perspective view of an end effector of a robotic surgical device with a force sensor, according to one embodiment.



FIG. 10B is a perspective view of an end effector of a robotic surgical device with a force sensor, according to another embodiment.





DETAILED DESCRIPTION

The various embodiments herein relate to a surgical device configured to detect and measure the amount of force applied by the arm of the device. In certain embodiments, the surgical device is a robotic device with a robotic arm and at least one force sensor configured to detect the amount of force. In one embodiment, the force that is measured is the amount of force applied to the distal end of the robotic arm (also referred to herein as the “endpoint”). The information relating to the amount of force is then transmitted from the sensor to an external controller.



FIGS. 1A and 1B depict one embodiment of a robotic surgical device 10 having a body 12 and two robotic arms 14, 16. The body 12 has two shoulders: a right shoulder 18 and a left shoulder 20. The right arm 14 is coupled to the right shoulder, and the left arm 16 is coupled to the left shoulder 20. In this implementation, the force sensor 22 is operably coupled to the body 12 between the body 12 and the left shoulder 20. As best shown in FIG. 1B, the distal portion of the body 12 in one embodiment has a recessed portion 8 defined therein as shown, and sensor 22 is positioned in the recessed portion 8 and coupled to the body 12 in that recessed portion 8.


Further, in certain implementations, the sensor 22 is coupled at its proximal end to a proximal connection component 24 and at its distal end to a distal connection component 26. In the embodiment depicted in FIG. 1B, the proximal connection component 24 is a proximal recessed component or proximal female connection component (also referred to herein as a “cup”) 24 that is configured to receive and couple to the proximal end of the sensor. Further, the distal connection component 26 is a distal plate 26 have at least one projection (or “pin”) 26A disposed on the proximal face of the plate 26 that is configured to mate with an appropriate opening (not shown) in the distal end of the sensor 22. In addition, the proximal connection component 24 has a projection 24A on its proximal face that is configured to mate with an appropriate opening (not shown) in the body 12. Plus, the distal plate 26 is configured to be received in a recessed portion or female connection 28 in the shoulder 20. In this embodiment, the proximal connection component 24 and distal connection component 26 can provide a substantially rigid coupling of the sensor 22 to the body 12 and shoulder 20. In alternative embodiments, the device 10 can have no shoulder components and the force sensor 22 can be positioned instead between the body 12 and the left arm 16 (rather than between the body 12 and the shoulder 20).


According to one implementation, this configuration results in the sensor 22 being positioned close to the incision in the patient when the device 10 is positioned correctly for purposes of a procedure. Given the position of the force sensor 22 proximal to the shoulder 20, it is understood that the sensor 22 will be subject to greater forces (due to the weight and length of the left arm 16) in comparison to a sensor positioned somewhere along or in a portion of the arm 16 itself. It is further understood that the position of the sensor 22 will also result in the sensor's 22 force detection being influenced by any forces applied anywhere along the length of the arm 16. The force sensor 22 is configured to detect and collect data relating to the amount of force being applied by the arm 16 during a procedure. In certain embodiments, the data is used to calculate the amount of force being applied at the most distal point on the arm 36 (the endpoint).


In one specific implementation, the force sensor 22 is a force torque sensor 22. Alternatively, the sensor 22 can be any known force or torque sensor as described in further detail elsewhere herein.


An alternative embodiment of a robotic device 30 with a force sensor 40 is depicted in FIG. 2. This device 30 also has a body 32 and right 34 and left 36 arms. This specific example is focused on the right arm 34, but it is understood that the description applies equally to the left arm 36 as well. In this particular implementation as shown, the sensor 40 is positioned near the distal end of the forearm 34B of the right arm 34. The proximity of the sensor 40 to the endpoint 42 (where the force is being measured) allows for the use of a smaller sensor 40 (due to the lesser forces being applied to the sensor 40 due to its position), thereby requiring less space in the forearm 34B and allowing for the possibility of a smaller forearm 34B. Further, according to one embodiment, the positioning of the force sensor 40 so close to the endpoint 42 eliminates the influence of any forces applied to the arm proximal to the sensor 40, thereby eliminating any irrelevant data created by such forces.


Alternatively, it is understood that the sensor 40 could be positioned anywhere on or within any of the components of either arm 34, 36 of this device 30 or any other device described or contemplated herein. For example, with respect to the right arm 34, a force sensor could be positioned within or on the right shoulder 38, the right upper arm 34A, or the right forearm 34B. Alternatively, the sensor could be positioned on or within any part of the left arm 36. Alternatively, the device 30 can have at least one sensor in each arm 34, 36. That is, in addition to the sensor 40 in the forearm 34B of the right arm 34, the device 30 can also have at least one sensor (not shown) on or in any component of the left arm 36. In a further alternative, each arm 34, 36 can have two or more sensors. In yet another implementation, the arms 34, 36 can each have multiple sensors such that the sensors detect and collect redundant data. The redundant data can then be filtered using known methods such as, but not limited to, Kalman filtering, to provide a more robust calculation of the forces being applied by the surgical device 30 to the tissue of the patient.


In one embodiment, the force sensor (such as force sensors 22 or 40) are force/torque sensors. According to another implementation, the force sensor is any sensor that can directly or indirectly measure the force at any point on the surgical device. Alternatively, any force sensor disclosed or contemplated herein can be any known sensor that can provide six degrees of force measurement. In another embodiment, the force sensor can be any known sensor that provides at least one dimension of force sensing. In a further alternative, the force sensor (including either of force sensors 22 or 40) can be a collection, group, arrangement, or set of two or more sensors that can provide six degrees of force measurement. In yet another alternative, the force information can be gathered by measuring the amount of torque at one or more of the joints of the arm of the device. For example, in one embodiment, the amount of torque can be measured at both the shoulder joint (between the shoulder 38 and the upper arm 34A) and the elbow joint (between the upper arm 34A and the forearm 34B) and that information can be used to calculate the amount of force being applied by the arm 34. In one implementation, the amount of torque is measured using any known torque sensor. Alternatively, the torque can be measured by measuring the motor current or be measuring the windup in the joint (or joints) by comparing absolute position sensor data to incremental position data. In a further alternative, the amount of joint torque can be measured using any other known method for measuring torque.


It is understood that any of the sensors disclosed or contemplated herein can be commercially available sensors or custom sensors. In accordance with one implementation, the force sensor is a known force/torque sensor called Nano17™, which is commercially available from ATI Industrial Automation, located in Apex, NC Alternatively, the sensor is a known reaction torque sensor called TFF400™, which is commercially available from Futek Advanced Sensor Technology, Inc., located in Irvine, CA.


The force data collected by the force sensor(s) (or torque data collected by the torque sensor(s)) can be transmitted to a processor present in the robotic device (such as device 10 or 30) or in the external controller (not shown) and used to calculate the force being applied at the endpoint of the arm (or torque at the joint(s)). This will be described in further detail below. Known information relating to the dimensions of the robotic components and the kinematic arrangement of those components (such as the arm components) is incorporated into the calculation to determine the force at the endpoint (or torque at the joint(s)). Given that the calculation utilizes the dimensions of the components, the sensor(s) can be positioned anywhere along the robotic arm or even in the device body (as in FIG. 1) so long as the position is taken into account in the calculation.



FIGS. 3A, 3B, and 3C depict various aspects of a forearm 50 having a force sensor 52, according to another implementation. The forearm 50 has a motor housing 54, a front plate (also referred to herein as a “faceplate”) 56, two motors 58, 60, and an end effector 62 which is a grasper tool 62. The motor housing 54 has the two motors 58, 60 at least partially disposed therein and is coupled at its distal end to the front plate 56. The forearm 50 also has a base link 64 that is configured to operably couple the sensor 52 to the elbow of the arm (not shown) as will be described in further detail below. The sensor 52 is positioned in the distal-most position in the forearm 50.


As best shown in FIGS. 3A and 3B, the base link 64 has a body 64A made up of two rod-like pieces 64A1, 64A2 (as best shown in FIG. 3A), an interface plate 64B at the distal end of the link 64, and an end plate 64C at the proximal end having a coupling component 64D. The interface plate 64B is configured to couple to the sensor 52. In one implementation, the plate 64B is rigidly coupled to the sensor 52. The body 64A has space between and adjacent to the rod-like pieces 64A1, 64A2 that can be configured to receive or provide space for on-board electronic components and wiring (not shown). The electronic components can include, but are not limited to, local motor driving boards, absolute positioning sensor boards, biometric sensor boards, and measurement boards to access the sensor data collected by the sensor 52. The coupling component 64D is configured to couple to the elbow joint (not shown) and/or the upper arm (not shown) of the device. In one embodiment, the coupling component 64D as shown is a projection 64D that defines a circular hole configured to receive and couple to an articulate shaft (not shown) of the upper arm (not shown). Alternatively, the coupling component 64D can be any known mechanism, component, or apparatus for coupling a forearm to an upper arm or elbow of a medical device.


In one implementation, the base link 64 is physically separate from and not rigidly coupled to the motor housing 54. This separation of the two components allows forces applied to the grasper 62 to be transferred through the front plate 56 and into the sensor 52 and reduces the diffusion of such forces. According to certain embodiments, the base link 64 is a cantilevered link 64 that allows the sensor 52 to measure the force applied on the arm 50, and in some cases, the distal endpoint of the end effector 62. Alternatively, the link 64 need not be a cantilevered link 64, but instead can have one or more components that apply a known amount of force thereon. Regardless, the base link 64 allows the sensor 52 to accurately measure the force of interest.


As best shown in FIG. 3C, the motor configuration made up of the two motors 58, 60 is similar to a grasper end effector motor configuration as disclosed in U.S. Provisional Application 61/663,194, filed on Jun. 22, 2012, which is hereby incorporated herein by reference in its entirety. In this particular embodiment, the motor 60 is an open/close motor 60 that is rotationally fixed to motor gear 66, which is threadably coupled to driven gear 68, which is supported by two bearings 70A, 70B. In one embodiment, the bearings 70A, 70B are constrained by the motor housing 54. The driven gear 68 defines a lumen (not shown) having internal threads (not shown). An externally-threaded drive rod 72 is positioned in the lumen of the driven gear 68 such that the driven gear 68 is operably coupled to the rod 72. Due to the coupling of the internal threads of the driven gear 68 with the external threads of the rod 72, rotation of the driven gear 68 causes the drive rod 72 to move laterally back and forth along the longitudinal axis of the drive rod 72. The drive rod 72 is operably coupled to the grasper arms 62A, 62B at the pivot point 74 on the grasper yoke 76 such that the lateral movement of the drive rod 72 causes the grasper arms 62A, 62B to open and close.


The motor 58 is a rotational motor 58 that is rotationally fixed to motor gear 78, which is threadably coupled to driven gear 80, which is supported by two bearings 82A, 82B. In one embodiment, the bearings 82A, 82B are constrained by the motor housing 54. The driven gear 80 is rotationally fixed to the grasper yoke 76, which is rotationally fixed to the grasper arms 62A, 62B such that rotation of the rotational motor 58 causes rotation of the grasper tool 62.


In one embodiment, the motors 58, 60 are both 6 mm motors. Alternatively, the motors 58, 60 are known brushed or brushless motors. The motors 58, 60 can be any motors ranging in size from about 2 mm to about 15 mm in diameter, so long as the motors 58, 60 provide sufficient force and speed profiles to achieve desired results. In accordance with one implementation, the motors 58, 60 are coreless brushed motors called 0615 (6 mm) or 0816 (8 mm), which are commercially available from Micromo, located in Clearwater, Florida. Alternatively, the motors 58, 60 are brushless motors called EC 6 mm and EC 10 mm, which are commercially available from Maxon Motor, located in Fall River, Massachusetts. In a further alternative, the motors 58, 60 can be any known motors used in medical devices.


As mentioned above, in use, any force sensor disclosed or contemplated herein (including, for example, any one or more of the force sensors 22, 40, 52 discussed and depicted above, or one or more torque sensors as also discussed above) is configured to detect and collect the amount of force (or torque) applied by the arm or arms of a surgical device.


As mentioned above, the information collected by the one or more sensors can then be outputted to a processor of some kind, such as a microprocessor in an external controller in communication with the surgical device. In one implementation, the data output occurs via an electronics package 80 as shown schematically in FIG. 4. In this embodiment, the representative single sensor 82 outputs (or transmits) analog or digital signals that are proportional to the amount of force detected by the sensor 82. The electronics package 80 can interpret and/or transmit these signals. The electronics package 80, according to one implementation, has a conditioning unit 84, a signal converting unit 86, and a transmission unit 88. It is understood that the sensor 82, the conditioning unit 84, the signal converting unit 86, the transmission unit 88, and computer 90 are all coupled to each other via at least one communication line. The communication line can be any line that can be used to carry signals from one component to another.


The conditioning unit 84 is configured to provide more robust or easier-to-detect signals. According to one embodiment, the conditioning unit 84 can be figured to filter, shift, amplify, or provide any other conditioning procedure to signals. The signal converting unit 86 is configured to convert analog signals to digital signals so that they can be used in a digital processor or computer. According to one embodiment, the signal converting unit 86 is an analog-to-digital converter (“ADC”). The transmission unit 88 is configured to transmit the signals from the electronics package 80 to the computer 90.


In one implementation, if the output signals from the sensor 82 are digital signals, they can be transmitted or outputted to the conditioning unit 84 (where they are amplified or otherwise conditioned) and then transmitted directly to the transmission unit 88, which transmits the signals to the computer 90. Alternatively, in those embodiments in which the output signals are analog, the signals can be conditioned via the conditioning unit 84 and also converted into digital signals via the signal converting unit 86 before being transmitted by the transmission unit 88 to the computer 90.


For purposes of this application, it is understood that the term “computer” is intended to mean any device that can be programmed to carry out arithmetic or logical operations. As such, “computer” encompasses any microprocessor, digital signal processor, or any other computer platform. This obviously would include any microprocessor, processor, or other type of computer incorporated into any external controller or user interface that is operably coupled to the surgical device.


According to one embodiment, the electronics package 80 is positioned on or in the surgical device (such as either of devices 10 or 30 as discussed above) and the computer 90 is positioned at a location that is external to the surgical device and the patient. Alternatively, both the electronics package 80 and the computer 90 are positioned on or in the robot. In yet another alternative, both the electronics package 80 and the computer 90 are positioned at some location external to the surgical device.


The computer 90 is configured to utilize the data for many end-user applications, including, for example, haptics, data collection for surgeon performance analytics, or for training purposes where the data is recorded and played back to trainees. In certain embodiments, the computer 90 uses the data to calculate the amount of force applied at the endpoint of one of the arms on the surgical device. Alternatively, the computer 90 can calculate the amount of force at any point on either of the arms.


In a further embodiment, the data can also be used for implementing methods of controlling the surgical device. That is, the information relating to the amount of force being applied by an arm of a device can be used to control that arm. In one example, if the arm contacts a cavity wall or an organ in the cavity, the force sensor 82 will sense the force applied to the arm as a result of this contact and the computer 90 can utilize that information to actuate the arm to perform some action to remedy the problem. For example, the computer 90 can actuate the arm to stop moving, shut down, reposition itself away from the point of contract, or take any other action to correct the problem. Various control methods that can be used by the computer 90 include force control, hybrid (force and position) control, admittance control, impedance control, or any combination of these or other known methods. In some embodiments, these methods can be used in conjunction with any combination of the existing position, velocity, acceleration, or current (torque control) control methods.


According to another implementation, the computer 90 can be configured to transmit the data to one or more other computers that can utilize the data for any of the applications described above or other applications.


Other embodiments of a surgical system relate to external controller embodiments having one or more force sensors (or other related types of sensors, such as torque sensors) that can be used to control a surgical device. FIGS. 5A, 5B, and 5C depict an external controller 100 having a known configuration similar to various commercial embodiments. This particular controller 100 has a controller arm 102 made up of an upper arm (also referred to as a first or upper link, rod, or tube) 102A and a forearm (also referred to as a second or lower link, rod, or tube) 102B. The upper arm 102A is rotatably coupled to a base 104 at a shoulder joint (also referred to as a first joint) 106 and the lower arm 102B is rotatably coupled to the upper arm 102A at an elbow joint (also referred to as a second joint) 108. A grasper 110 is rotatably coupled to the lower arm 102B at a wrist joint 112 and is configured to be grasped by a user (such as a surgeon).


As best shown in FIG. 5A, according to one implementation, the shoulder joint 106 is actually made up of two different joints: a rotating yaw joint 106A and a rotating pitch joint 106B. The rotating yaw joint 106A has a fixed joint component 106A1 coupled to the base 104 and a rotatable joint component 106A2 that is rotatably coupled to the fixed joint component 106A1 and rotates around an axis parallel to the longitudinal axis of the rotatable joint component 106A2 (and perpendicular to the plane of the base 104). The rotating pitch joint 106B has a fixed joint component 106B1 coupled to the rotatable joint component 106A2 and a rotatable joint component 106B2 that is rotatably coupled to the fixed joint component 106B1 and rotates around an axis parallel to the plane of the base 104.


Continuing with FIG. 5A, the wrist joint 112 is actually made up of three joints 112A, 112B, 112C. The first wrist joint 112A is a rotatable coupling at the lower arm 102B such that the wrist link 112D rotates around an axis parallel to the longitudinal axis of the lower arm 102B. The second wrist joint 112B is a rotatable coupling of the wrist link 112E to the wrist link 112D such that the wrist link 112E rotates around an axis that is perpendicular to the plane of the wrist link 112D. The third wrist joint 112C is a rotatable coupling of the grasper 110 to the wrist link 112E such that the grasper 110 rotates around an axis perpendicular to the plane of the wrist link 112E. These three joints 112A, 112B, 112C provide three axes of rotation. According to one implementation, the three axes of rotation of the three joints 112A, 112B, 112C all pass through a specific point.


In this embodiment, the grasper 110 has a pinch mechanism 116 made up of two finger loops 116A, 116B. In one implementation, the grasper 110 has a configuration that is substantially similar to the grasper used in the Da Vinci® system.


The controller 100 in this implementation also has motors that operate to provide haptic feedback. More specifically, the shoulder joint 106 has at least one motor positioned within the joint 106 (or otherwise operably coupled thereto). In one example, the motor 111 is coupled to or positioned within the joint 106 and operably coupled to the joint 106 such that the motor 111 can actuate the movement of the rotating yaw joint 106A. In another example, the motor 113 is coupled to the joint 106 and operably coupled thereto such that the motor 113 can actuate the movement of the rotating pitch joint 106B. Similarly, the elbow joint 108 also has at least one motor positioned within the joint 108 (or otherwise operably coupled thereto). In one example, the motor 109 is coupled to the joint 108 as shown. Alternatively, the motor 107 is disposed within the forearm 102B and operably coupled to the joint 108. Further, the wrist joint 112 can also have one or more motors operably coupled to one or more of the wrist joints 112A, 112B, 112C. For example, a motor 105 can be disposed within the forearm 102B that is operably coupled to the wrist link 112D such that the motor 105 can actuate the movement of the wrist link 112D. Alternatively, a motor 103 can be operably coupled to the wrist joint 112B to actuate the movement of the wrist link 112E. In a further alternative, a motor 101 can be operably coupled to the wrist joint 112C to actuate the movement of the grasper 110. In operation, it is understood that the motors are used to provide haptic feedback to the user or surgeon during a procedure. That is, the one or more force sensors (or torque sensors), such as any of the sensors discussed above, operably coupled to the surgical device sense force applied to at least one arm of the device (or torque at one or more joints) and that information is transmitted back to a processor as discussed above. The processor can use that information to calculate the force or torque being applied and transmit instructions based on that information to the motors in the controller 100 to actuate those motors to generate similar force or torque in the controller 100 that can be felt by the user or surgeon at the grasper 110, thereby giving the user or surgeon feedback in the form of force (resistance) similar to the feedback the surgeon or user would receive if she or he was holding the actual surgical device component experiencing the force.


In one embodiment, the motors in the controller 100 are known brushed or brushless motors. The motors can be any motors ranging in size from about 4 mm to about 30 mm in diameter, so long as the motors provide sufficient force and speed profiles to achieve desired results. In accordance with one implementation, the motors are any motors within that size range that are commercially available from Micromo, located in Clearwater, Florida or from Maxon Motor, located in Fall River, Massachusetts. In a further alternative, the motors can be any known motors of appropriate size used in medical devices or related controller components.


According to one implementation as best shown in FIG. 5B, the controller 100 has a force sensor 120 associated with the shoulder joint 106. More specifically, in one embodiment, the sensor 120 has a first component 120A coupled to the base 104 and a second component 120B coupled to the fixed joint component 106A1. In use, the sensor 120 detects any force applied to either the fixed joint component 106A1 or the base 104. The sensor 120 also has a connection component 120C that extends from the sensor 120 to a computer or other type of processor. Alternatively, one or more sensors can be positioned anywhere on or within the controller 100 at any location between the base 104 and the finger loops 116A, 116B. In accordance with another aspect, a single six-axis force sensor is positioned within or coupled to the yaw joint 106A (like sensor 120) and a separate sensor (not shown) is positioned on the grasper 110. Using analytical or iterative methods, force data from the sensor 120 at the yaw joint 106A and known information about the structural parameters of the controller 100 can be used by a processor to determine internal and external forces while the separate sensor on the grasper 110 can be used to determine grasping pressures or other relevant information. In a further implementation, separate sensors can be positioned at every joint 106, 108, 112 and provide feedback. In yet another embodiment, a single sensor is positioned somewhere on or operably coupled to the grasper 110.


In operation, it is understood that the one or more force sensors on the controller 100 are configured to sense force applied to the controller 100 by the user or surgeon, and that information is transmitted back to a processor as discussed above. The processor can use that information to calculate the force or torque being applied at the controller 100 and take that information into account for purposes of creating appropriate haptic feedback to the user at the controller 100 using the one or more motors described above that are operably coupled to the controller 100, thereby helping to ensure that the appropriate amount of force is being applied to the user's hand during use of the controller 100.


It is understood that the one or more sensors used with a controller (such as the controller 10) can be any of the force or torque sensors discussed above in relation to the surgical device embodiments. It is further understood that one or more sensors can be operably coupled in a similar fashion in similar configurations with any known controller having any known configuration that is capable of at least one directional force.



FIG. 6 depicts a schematic representation of a surgical system 130 having an external controller 132 that is operably coupled to a surgical device 142. The external controller 132 can be any known controller (including, for example, the controller 100 discussed above) having at least one force sensor 134, along with at least one set of actuators or motors chosen from at least one of the following: motor drivers 136, motor brakes 138, and/or some other known type of actuators 140. The surgical device 142 can be any known surgical device (including, for example, either of the devices 10, 30 discussed above) having a control system 144 (typically in the form of a microprocessor or other type of computer) and at least one force sensor 146. As a result, this system 130 allows a surgeon 162 (or other user) to use the controller 132 to operate the surgical device 142 while the force sensors 134, 148 provide the system with force information that allows the system to provide haptic feedback to the surgeon 162 through the controller 132.


In use, the surgeon manipulates the controller 132 to control the surgical device 142. As a result of that manipulation, the controller 132 transmit information to the control system 144 in the surgical device 142. In one embodiment, the information transmitted by the controller 132 constitutes measurements relating to the physical position of the arm (or arms) of the controller 132. The information is used by the control system 144 to actuate the arm (or arms) of the surgical device 142 to move as desired by the surgeon 162. The force sensor 146 operates as discussed above with respect to sensors 22, 40, 52 by sensing the force applied to the device 142. In this implementation, the sensor 146 outputs that information to a haptic control process or application 158 running on a processor or computer 148 (which can be the same as the computer 90 discussed above or a similar processor, microprocessor, or computer) to determine the desired haptic forces (the amount of feedback force desired to be provided to the surgeon 162) via known methods such as, for example, proportional or exponential force feedback, impedance control, admittance control, or hybrid control.


According to one embodiment, the workspace limitations of the surgical device 142 can also be taken into account in this system 130. That is, the workspace limitation information can be saved in the device control system 144 (and provided to the haptic control algorithms 158) or it can be stored in the processor 148. In one embodiment, the information is modeled as an inward force that simulates a wall. Regardless, the information is used to transmit information to the controller that actuates one or more of the actuators 136, 138, 140 to generate forces at the controller 132 that help to prevent the surgeon 162 from exceeding the workspace of the surgical device 142. In one embodiment, the information actuates the actuator(s) 136, 138, 140 to provide direct force or vibration at the controller 132. Alternatively, the system can provide visual cues to the surgeon 162.


In one implementation, the computer 148 can also be configured to compensate for the outside forces in the system caused by gravity, friction, and inertia. That is, the force sensor 134 associated with the controller 132 detects and collects information about all forces being applied to the controller 132, not just the forces applied by the surgeon 162. This force information is provided to the computer 148 in one lump sum that includes all such forces. In this embodiment, the system 130 can take one or more of the outside forces into account and compensate for or “cancel out” those outside forces.


For example, one implementation of the system 130 allows for compensation for gravity. That is, the processor 148 can use structural and positional information about the controller 132 to calculate the effect of gravity on the controller 132 and effectively “subtract” that amount of force or otherwise “cancel out” that amount of force from the force detected by the sensor 134. As a result, in an ideal embodiment of the system 130, when the surgeon removes her hands from the controller 132, the controller 132 should not fall but instead should appear weightless as a result of the compensation for gravity.


Another implementation allows for dynamic compensation. That is, the processor 148 can use structural and positional information about the controller 132 to calculate the effect of inertia and other dynamic forces on the controller 132 during use and effectively “subtract” or otherwise “cancel out” that amount of force from the force detected by the sensor 134. As a result, rapid movements by the surgeon 162 would not create reaction forces provided as haptic feedback to the surgeon 162 and the effect would be that the mass of the controller 132 would not impose any forces on the system 130.


In a further embodiment, the system 130 can allow for friction compensation. That is, the processor 148 can use one or more force sensors in the controller 132 to detect any unexpected forces experienced by the controller 132 when force is applied to the handles of the controller 132 by the surgeon 162. Those unexpected forces can then be effectively “subtracted” from the force detected by the sensor 134. The result is a frictionless system that exhibits little resistance to movement.


In one embodiment, the system 130 can have only one form of compensation, such as, for example, gravity compensation. Alternatively, the system 130 can have two forms of compensation. In a further alternative, the system 130 can compensate for all three types of external forces: gravity, dynamic forces, and friction.


Once the computer has added up the total amount of the outside/unwanted forces to be compensated for, that amount is subtracted from the total amount of force information provided by the force sensor 134. The result of the calculation is the “error” between the amount of force actually applied to the controller 132 by the surgeon 162 and the amount of force that was desired. Information about this “error” amount is provided to a haptic control system or application 160 that actuates one or more of the actuators (the motor drivers 136, the motor brakes 138, and/or the other actuators) in the controller 132 to add or subtract that amount of force needed based on the error, thereby providing the haptic feedback to the surgeon 162. Hence, the haptic control system 160 determines the appropriate amount of haptic forces to generate in the controller 132.


Another force-sensing grasper 180 embodiment is depicted in FIG. 7. In this implementation, the force being measured is the force applied along the drivetrain of the end effector. That is, the force sensor is integrated into the actuation component(s) or motor(s) of the end effector to measure directly the force applied by that component/motor (those components/motors) to the end effector. The end effector 180 is configured to transmit force feedback information to the surgical system, wherein the force feedback information is any information relating to the force which the end effector 180 is applying during use of the end effector 180. In certain implementations, this information can be used to adjust the amount of force being applied when it is determined that the force is too great or insufficient for the action being performed.


In this specific embodiment as shown, as mentioned above, the end effector 180 is a grasper end effector 180 having a grasper tool 182. The actuation system provided for this grasper end effector 180 in the embodiment as shown is merely an exemplary, known system and constitutes only one of many types and configurations of actuation systems that can be used for actuating a grasper tool 182, including the various systems discussed in the embodiments above. As shown, the grasper end effector 180 is configured to have two degrees of freedom. That is, the grasper tool 182 rotates about its long axis and moves between an open configuration and a closed configuration. To achieve movement of the grasper tool 182 between the open and closed configurations, the grasper end effector 180 has a shaft 184 that contains a threaded inner push/pull rod (not shown) that is coupled to the actuator or motor 186 (shown in FIG. 7 as a motor and gearhead) via the gears 188. The shaft 184 has an internal lumen (not shown) defined within the shaft 184, and the lumen has internal threads that match up with the external threads on the push/pull rod (not shown). In use, the motor 186 actuates the rotation of the gears 188, which causes the inner push/pull rod (not shown) to rotate. In contrast, the shaft 184 is restrained such that it cannot rotate. In one embodiment, the shaft 184 is fixed rotationally via a clamp 190. Thus, the meshing of the threads of the rod with the internal threads of the shaft 184 means that the rotation of the rod within the restrained shaft 184 causes the rod to translate laterally, thereby causing the grasper tool 182 to move between its open and closed positions.


In one embodiment, the force-sensing grasper 180 operates to sense the amount of force being applied by the grasper tool 182 by measuring the amount of axial force being transmitted through the push/pull rod (not shown) in the shaft 184. More specifically, the device has a sensor 192 that is positioned such that it can measure the force generated through the coupling of the gears 188 and the push/pull rod (not shown) coupled to the shaft 184. That is, the sensor 192 is positioned in FIG. 7 such that it is operably coupled to a proximal portion of the push/pull rod. In one embodiment, the sensor 192 measures tension and compression. According to one exemplary implementation, the sensor 192 is a force sensor 192 that measures axial loading. For example, the sensor 192 can be one of the ELFS Series of load cells available from Entran Sensors & Electronics in Fairfield, NJ. Alternatively, the sensor 192 can be any known type of force sensor.



FIG. 8 depicts another embodiment of a force-sensing end effector 200. In this embodiment, the sensor 202 is positioned on the push/pull rod (not shown) proximal to the clamp 190. In one embodiment, the sensor 202 is positioned on or in operable coupling with the push/pull rod (not shown) within the shaft 184. Alternatively, the sensor 202 is positioned on or externally to the shaft 184, but still operably coupled to the push/pull rod. The sensor 202 is configured to measure the force applied to the push/pull rod (not shown).



FIG. 9 depicts yet another implementation of a force-sensing end effector 210. In this embodiment, the sensor 212 is operably coupled to the motor 186 such that the sensor 212 measures the current consumed by the motor 186. The information relating to the current can be used to determine the amount of force being applied by the grasper tool 182.



FIGS. 10A and 10B depict two additional embodiments of force-sensing end effectors 220, 222 that measure contact force at the graspers (rather than measuring directly the force applied by the actuator(s)/motor(s)). In the embodiment shown in FIG. 10A, a sensor 224 is positioned on the grasper tool 182 itself. More specifically, the sensor 224 is positioned on the internal face of one of the two jaws of the tool 182 such that the sensor 224 measures the contact force on the internal face of the jaw. Alternatively, as shown in FIG. 10B, a sensor 226 can be positioned on an external face of a jaw of the grasper tool 182 near the pivot axis of the tool 182 such that the sensor 226 measures the deflection of the grasper. Using the deflection information, the force applied to the tool 182 can be determined.


Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. A robotic surgical system comprising: (a) a robotic surgical device comprising: (i) an elongate tubular body sized and shaped to be positioned into a cavity of a patient such that a distal portion is disposed within the cavity of the patient and a proximal portion is disposed externally to the cavity of the patient;(ii) a shoulder component coupled to the elongate tubular body at the distal portion of the elongate tubular body;(iii) an arm operably coupled to the shoulder component, the shoulder component and the arm being configured to be positioned entirely within the cavity of the patient;(iv) a sensor operably coupled to the device; and(v) an end effector operably coupled to the arm, the end effector positioned at a distal end of the arm;(b) a processor operably coupled to the sensor; and(c) a user controller operably coupled to the processor, the user controller comprising: (i) a base;(ii) a controller arm operably coupled to the base;(iii) a grasper operably coupled to the controller arm; and(iv) at least one actuator associated with the user controller, the at least one actuator operably coupled to the processor,wherein the sensor is configured to sense force or torque at the robotic surgical device and transmit force or torque information to the processor, andwherein the processor is configured to calculate the force or torque being applied at the robotic surgical device and transmit instructions to actuate at least one of the at least one actuator based on the force or torque, thereby providing haptic feedback at the controller.
  • 2. The robotic surgical system of claim 1, wherein the sensor is disposed between the device body and the shoulder component.
  • 3. The robotic surgical system of claim 1, wherein the sensor is disposed on the arm.
  • 4. The robotic surgical system of claim 3, wherein the arm comprises an upper arm component and a forearm component, wherein the sensor is disposed on the forearm component.
  • 5. The robotic surgical system of claim 1, wherein the arm comprises an upper arm component and a forearm component, wherein the forearm component is operably coupled to the upper arm component at an elbow joint, wherein the forearm component comprises a link operably coupled at a distal end to the sensor and operably coupled at a proximal end to the elbow joint.
  • 6. The robotic surgical system of claim 5, further comprising an interface plate disposed between the sensor and the link.
  • 7. The robotic surgical system of claim 1, wherein the sensor is positioned to measure the amount of force applied at a distal-most point on the arm.
  • 8. A robotic surgical system comprising: (a) a robotic surgical device comprising: (i) an elongate body sized and shaped to be positioned into a cavity of a patient;(ii) a shoulder joint disposed at a distal portion of the elongate body;(iii) an arm operably coupled to the shoulder joint, the arm comprising an arm actuator disposed within the arm, wherein the arm is configured to be positioned entirely within the cavity of the patient;(iv) a sensor operably coupled to the device; and(v) an end effector operably coupled to the arm, the end effector positioned at a distal end of the arm;(b) a processor operably coupled to the sensor; and(c) a user controller operably coupled to the processor, the user controller comprising: (i) a controller upper arm;(ii) a controller forearm operably coupled to the controller upper arm;(iii) a controller grasper operably coupled to the controller forearm; and(iv) at least one actuator associated with the user controller, the at least one actuator operably coupled to the processor,wherein the sensor is configured to sense force or torque at the robotic surgical device and transmit force or torque information to the processor, andwherein the processor is configured to calculate the force or torque being applied at the robotic surgical device and transmit instructions to actuate at least one of the at least one actuator based on the force or torque, thereby providing haptic feedback at the controller.
  • 9. The robotic surgical system of claim 8, further comprising a push/pull rod comprising a distal portion and a proximal portion, wherein the push/pull rod is operably coupled to the arm actuator at the proximal portion and further wherein the push/pull rod is operably coupled to the end effector at the distal portion.
  • 10. The robotic surgical system of claim 9, wherein the sensor is disposed proximal to the arm actuator and is operably coupled to the proximal portion of the push/pull rod.
  • 11. The robotic surgical system of claim 9, wherein the end effector is a device grasper, wherein the device grasper comprises an open configuration when the push/pull rod is urged to a distal position, and further wherein the device grasper comprises a closed configuration when the push/pull rod is urged to a proximal position.
  • 12. The robotic surgical system of claim 9, wherein the sensor is operably coupled to the push/pull rod such that the sensor is positioned along the length of the push/pull rod.
  • 13. The robotic surgical system of claim 8, further comprising a shaft operably coupled to the end effector and a first gear operably coupled to the shaft, wherein the arm actuator comprises a second gear operably coupled to the first gear.
  • 14. The robotic surgical system of claim 13, wherein actuation of the arm actuator causes the shaft to rotate, thereby causing the end effector to rotate.
  • 15. A robotic surgical system comprising: (a) a robotic surgical device comprising: (i) an elongate tubular body;(ii) at least one shoulder coupled to the elongate tubular body at a distal portion of the elongate tubular body;(iii) at least one arm operably coupled to the at least one shoulder, wherein the at least one arm is configured to be positionable entirely within the cavity of the patient;(iv) a sensor operably coupled to the at least one shoulder or the at least one arm of the device; and(v) at least one end effector operably coupled to the at least one arm, the at least one end effector positioned at a distal end of the at least one arm;(b) a processor operably coupled to the sensor; and(c) a user controller operably coupled to the processor, the user controller comprising: (i) a controller arm;(ii) a controller grasper operably coupled to the controller arm; and(iii) at least one actuator associated with the user controller, the at least one actuator operably coupled to the processor,wherein the sensor is configured to sense force or torque at the robotic surgical device and transmit force or torque information to the processor,wherein the processor is configured to calculate the force or torque being applied at the robotic surgical device and transmit instructions to actuate the at least one actuator based on the force or torque, thereby providing haptic feedback at the controller.
  • 16. The robotic surgical system of claim 15, wherein the sensor is a force sensor operably coupled to the at least one arm.
  • 17. The robotic surgical system of claim 15, wherein the sensor is a torque sensor operably coupled to a joint of the at least one arm.
  • 18. The robotic surgical system of claim 15, wherein the sensor is a force sensor positioned between the device body and the at least one arm.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority as a continuation of U.S. application Ser. No. 15/894,489, filed Feb. 12, 2018 and entitled “Methods, Systems, and Devices Relating to Force Control Surgical Systems;” which claims priority as a continuation of U.S. application Ser. No. 14/210,934, filed Mar. 14, 2014 and entitled “Methods, Systems, and Devices Relating to Force Control Surgical Systems” which Issued on Feb. 13, 2018 as U.S. Pat. No. 9,888,966, which claims priority to U.S. Provisional Application 61/781,594, filed on Mar. 14, 2013 and entitled “Methods, Systems, and Devices Relating to Force Control Surgical Systems,” which is hereby incorporated herein by reference in its entirety.

GOVERNMENT SUPPORT

This invention was made with government support under Grant No. DGE1041000, awarded by the National Science Foundation; Grant No. NNX09AO71A, awarded by the National Aeronautics and Space Administration; Grant No. NNX10AJ26G, awarded by the National Aeronautics and Space Administration; and Grant No. W81XWH-09-2-0185, awarded by the U.S. Army Medical Research and Materiel Command. The government has certain rights in the invention.

US Referenced Citations (672)
Number Name Date Kind
2858947 Chapman, Jr. Nov 1958 A
3817403 Glachet et al. Jun 1974 A
3870264 Robinson Mar 1975 A
3922930 Fletcher et al. Dec 1975 A
3971266 Inakura et al. Jul 1976 A
3989952 Timberlake et al. Nov 1976 A
4246661 Pinson Jan 1981 A
4258716 Sutherland Mar 1981 A
4278077 Mizumoto Jul 1981 A
4353677 Susnjara et al. Oct 1982 A
4538594 Boebel et al. Sep 1985 A
4568311 Miyaki Feb 1986 A
4623183 Aomori Nov 1986 A
4636138 Gorman Jan 1987 A
4645409 Gorman Feb 1987 A
4684313 Minematsu et al. Aug 1987 A
4736645 Zimmer Apr 1988 A
4762455 Coughlan et al. Aug 1988 A
4771652 Zimmer Sep 1988 A
4852391 Ruch et al. Aug 1989 A
4854808 Bisiach Aug 1989 A
4896015 Taboada et al. Jan 1990 A
4897014 Tietze Jan 1990 A
4922755 Oshiro et al. May 1990 A
4922782 Kawai May 1990 A
4984959 Kato Jan 1991 A
4990050 Tsuge et al. Feb 1991 A
5019968 Wang et al. May 1991 A
5036724 Rosheim Aug 1991 A
5108140 Bartholet Apr 1992 A
5172639 Wiesman et al. Dec 1992 A
5176649 Wakabayashi Jan 1993 A
5178032 Zona et al. Jan 1993 A
5187032 Sasaki et al. Feb 1993 A
5187796 Wang et al. Feb 1993 A
5195388 Zona et al. Mar 1993 A
5201325 McEwen et al. Apr 1993 A
5217003 Wilk Jun 1993 A
5263382 Brooks et al. Nov 1993 A
5271384 McEwen et al. Dec 1993 A
5284096 Pelrine et al. Feb 1994 A
5297443 Wentz Mar 1994 A
5297536 Wilk Mar 1994 A
5304899 Sasaki et al. Apr 1994 A
5305653 Ohtani et al. Apr 1994 A
5307447 Asano et al. Apr 1994 A
5353807 DeMarco Oct 1994 A
5363935 Schempf et al. Nov 1994 A
5372147 Lathrop, Jr. et al. Dec 1994 A
5382885 Salcudean et al. Jan 1995 A
5441494 Oritz Jan 1995 A
5388528 Pelrine et al. Feb 1995 A
5397323 Taylor et al. Mar 1995 A
5436542 Petelin et al. Jul 1995 A
5456673 Ziegler et al. Oct 1995 A
5458131 Wilk Oct 1995 A
5458583 McNeely et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5471515 Fossum et al. Nov 1995 A
5515478 Wang May 1996 A
5524180 Wang et al. Jun 1996 A
5553198 Wang et al. Sep 1996 A
5562448 Mushabac Oct 1996 A
5588442 Scovil et al. Dec 1996 A
5620417 Jang et al. Apr 1997 A
5623582 Rosenberg Apr 1997 A
5624380 Takayama et al. Apr 1997 A
5624398 Smith et al. Apr 1997 A
5632761 Smith et al. May 1997 A
5645520 Nakamura et al. Jul 1997 A
5657429 Wang et al. Aug 1997 A
5657584 Hamlin Aug 1997 A
5667354 Nakazawa Sep 1997 A
5672168 de la Torre et al. Sep 1997 A
5674030 Sigel Oct 1997 A
5728599 Rosteker et al. Mar 1998 A
5736821 Suyama et al. Apr 1998 A
5754741 Wang et al. May 1998 A
5762458 Wang et al. Jun 1998 A
5769640 Jacobus et al. Jun 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5807377 Madhani et al. Sep 1998 A
5808665 Green Sep 1998 A
5815640 Wang et al. Sep 1998 A
5825982 Wright et al. Oct 1998 A
5833656 Smith et al. Nov 1998 A
5841950 Wang et al. Nov 1998 A
5845646 Lemelson Dec 1998 A
5855583 Wang et al. Jan 1999 A
5876325 Mizuno et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878783 Smart Mar 1999 A
5895377 Smith et al. Apr 1999 A
5895417 Pomeranz et al. Apr 1999 A
5906591 Dario et al. May 1999 A
5907664 Wang et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911036 Wright et al. Jun 1999 A
5954692 Smith et al. Sep 1999 A
5971976 Wang et al. Oct 1999 A
5993467 Yoon Nov 1999 A
6001108 Wang et al. Dec 1999 A
6007550 Wang et al. Dec 1999 A
6030365 Laufer Feb 2000 A
6031371 Smart Feb 2000 A
6058323 Lemelson May 2000 A
6063095 Wang et al. May 2000 A
6066090 Yoon May 2000 A
6086529 Arndt Jul 2000 A
6102850 Wang et al. Aug 2000 A
6106521 Blewett et al. Aug 2000 A
6107795 Smart Aug 2000 A
6132368 Cooper Oct 2000 A
6132441 Grace Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6156006 Brosens et al. Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6162171 Ng et al. Dec 2000 A
D438617 Cooper et al. Mar 2001 S
6206903 Ramans Mar 2001 B1
D441076 Cooper et al. Apr 2001 S
6223100 Green Apr 2001 B1
D441862 Cooper et al. May 2001 S
6238415 Sepetka et al. May 2001 B1
6240312 Alfano et al. May 2001 B1
6241730 Alby Jun 2001 B1
6244809 Wang et al. Jun 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
D444555 Cooper et al. Jul 2001 S
6286514 Lemelson Sep 2001 B1
6292678 Hall et al. Sep 2001 B1
6293282 Lemelson Sep 2001 B1
6296635 Smith et al. Oct 2001 B1
6309397 Julian et al. Oct 2001 B1
6309403 Minor et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6321106 Lemelson Nov 2001 B1
6327492 Lemelson Dec 2001 B1
6331181 Tiemey et al. Dec 2001 B1
6346072 Cooper Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6394998 Wallace et al. May 2002 B1
6398726 Ramans et al. Jun 2002 B1
6400980 Lemelson Jun 2002 B1
6408224 Lemelson Jun 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6436107 Wang et al. Aug 2002 B1
6441577 Blumenkranz et al. Aug 2002 B2
6450104 Grant et al. Sep 2002 B1
6450992 Cassidy Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6454758 Thompson et al. Sep 2002 B1
6459926 Nowlin et al. Oct 2002 B1
6463361 Wang et al. Oct 2002 B1
6468203 Belson Oct 2002 B2
6468265 Evans et al. Oct 2002 B1
6470236 Ohtsuki Oct 2002 B2
6491691 Morley et al. Dec 2002 B1
6491701 Nemeyer et al. Dec 2002 B2
6493608 Niemeyer et al. Dec 2002 B1
6496099 Wang et al. Dec 2002 B2
6497651 Kan et al. Dec 2002 B1
6508413 Bauer et al. Jan 2003 B2
6512345 Borenstein Jan 2003 B2
6522906 Salisbury, Jr. et al. Feb 2003 B1
6544276 Azizi Apr 2003 B1
6548982 Papanikolopoulos et al. Apr 2003 B1
6554790 Moll Apr 2003 B1
6565554 Niemeyer May 2003 B1
6574355 Green Jun 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6591239 McCall et al. Jul 2003 B1
6594552 Nowlin et al. Jul 2003 B1
6610007 Belson et al. Aug 2003 B2
6620173 Gerbi et al. Sep 2003 B2
6642836 Wang et al. Nov 2003 B1
6645196 Nixon et al. Nov 2003 B1
6646541 Wang et al. Nov 2003 B1
6648814 Kim et al. Nov 2003 B2
6659939 Moll et al. Dec 2003 B2
6661571 Shioda et al. Dec 2003 B1
6671581 Niemeyer et al. Dec 2003 B2
6676684 Morley et al. Jan 2004 B1
6684129 Salisbury, Jr. et al. Jan 2004 B2
6685648 Flaherty et al. Feb 2004 B2
6685698 Morley et al. Feb 2004 B2
6687571 Byme et al. Feb 2004 B1
6692485 Brock et al. Feb 2004 B1
6699177 Wang et al. Mar 2004 B1
6699235 Wallace et al. Mar 2004 B2
6702734 Kim et al. Mar 2004 B2
6702805 Stuart Mar 2004 B1
6714839 Salisbury, Jr. et al. Mar 2004 B2
6714841 Wright et al. Mar 2004 B1
6719684 Kim et al. Apr 2004 B2
6720988 Gere et al. Apr 2004 B1
6726699 Wright et al. Apr 2004 B1
6728599 Wright et al. Apr 2004 B2
6730021 Vassiliades, Jr. et al. May 2004 B2
6731988 Green May 2004 B1
6746443 Morley et al. Jun 2004 B1
6764441 Chiel et al. Jul 2004 B2
6764445 Ramans et al. Jul 2004 B2
6766204 Niemeyer et al. Jul 2004 B2
6770081 Cooper et al. Aug 2004 B1
6774597 Borenstein Aug 2004 B1
6776165 Jin Aug 2004 B2
6780184 Tanrisever Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6785593 Wang et al. Aug 2004 B2
6788018 Blumenkranz Sep 2004 B1
6792663 Krzyzanowski Sep 2004 B2
6793653 Sanchez et al. Sep 2004 B2
6799065 Niemeyer Sep 2004 B1
6799088 Wang et al. Sep 2004 B2
6801325 Farr et al. Oct 2004 B2
6804581 Wang et al. Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6817972 Snow Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6817975 Farr et al. Nov 2004 B1
6820653 Schempf et al. Nov 2004 B1
6824508 Kim et al. Nov 2004 B2
6824510 Kim et al. Nov 2004 B2
6826977 Grover et al. Dec 2004 B2
6832988 Sprout Dec 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6836703 Wang et al. Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6843793 Brock et al. Jan 2005 B2
6852107 Wang et al. Feb 2005 B2
6853879 Sunaoshi Feb 2005 B2
6858003 Evans et al. Feb 2005 B2
6860346 Burt et al. Mar 2005 B2
6860877 Sanchez et al. Mar 2005 B1
6866671 Tiemey et al. Mar 2005 B2
6870343 Borenstein et al. Mar 2005 B2
6871117 Wang et al. Mar 2005 B2
6871563 Choset et al. Mar 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892112 Wang et al. May 2005 B2
6899705 Niemeyer May 2005 B2
6902560 Morley et al. Jun 2005 B1
6905460 Wang et al. Jun 2005 B2
6905491 Wang et al. Jun 2005 B1
6911916 Wang et al. Jun 2005 B1
6917176 Schempf et al. Jul 2005 B2
6933695 Blumenkranz Aug 2005 B2
6936001 Snow Aug 2005 B1
6936003 Iddan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6943663 Wang et al. Sep 2005 B2
6949096 Davison et al. Sep 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6963792 Green Nov 2005 B1
6965812 Wang et al. Nov 2005 B2
6974411 Belson Dec 2005 B2
6974449 Niemeyer Dec 2005 B2
6979423 Moll Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6984205 Gazdzinski Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994703 Wang et al. Feb 2006 B2
6994708 Manzo Feb 2006 B2
6997908 Carrillo, Jr. et al. Feb 2006 B2
6999852 Green Feb 2006 B2
7025064 Wang et al. Apr 2006 B2
7027892 Wang et al. Apr 2006 B2
7033344 Imran Apr 2006 B2
7039453 Mullick May 2006 B2
7042184 Oleynikov et al. May 2006 B2
7048745 Tierney et al. May 2006 B2
7053752 Wang et al. May 2006 B2
7063682 Whayne et al. Jun 2006 B1
7066879 Fowler et al. Jun 2006 B2
7066926 Wallace et al. Jun 2006 B2
7074179 Wang et al. Jul 2006 B2
7077446 Kameda et al. Jul 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7105000 McBrayer Sep 2006 B2
7107090 Salisbury, Jr. et al. Sep 2006 B2
7109678 Kraus et al. Sep 2006 B2
7118582 Wang et al. Oct 2006 B1
7121781 Sanchez et al. Oct 2006 B2
7125403 Julian et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7147650 Lee Dec 2006 B2
7155315 Niemeyer et al. Dec 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7163525 Franer Jan 2007 B2
7169141 Brock et al. Jan 2007 B2
7182025 Ghorbel et al. Feb 2007 B2
7182089 Ries Feb 2007 B2
7199545 Oleynikov et al. Apr 2007 B2
7206626 Quaid, III Apr 2007 B2
7206627 Abovitz et al. Apr 2007 B2
7210364 Ghorbel et al. May 2007 B2
7214230 Brock et al. May 2007 B2
7217240 Snow May 2007 B2
7239940 Wang et al. Jul 2007 B2
7250028 Julian et al. Jul 2007 B2
7259652 Wang et al. Aug 2007 B2
7273488 Nakamura et al. Sep 2007 B2
7311107 Harel et al. Dec 2007 B2
7339341 Oleynikov et al. Mar 2008 B2
7372229 Farritor et al. May 2008 B2
7403836 Aoyama Jul 2008 B2
7438702 Hart et al. Oct 2008 B2
7447537 Funda et al. Nov 2008 B1
7492116 Oleynikov et al. Feb 2009 B2
7566300 Devierre et al. Jul 2009 B2
7574250 Niemeyer Aug 2009 B2
7637905 Saadat et al. Dec 2009 B2
7645230 Mikkaichi et al. Jan 2010 B2
7655004 Long Feb 2010 B2
7670329 Flaherty et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7731727 Sauer Jun 2010 B2
7734375 Buehler et al. Jun 2010 B2
7762825 Burbank et al. Jul 2010 B2
7772796 Farritor et al. Aug 2010 B2
7785251 Wilk Aug 2010 B2
7785294 Hueil et al. Aug 2010 B2
7785333 Miyamoto et al. Aug 2010 B2
7789825 Nobis et al. Sep 2010 B2
7789861 Franer Sep 2010 B2
7794494 Sahatjian et al. Sep 2010 B2
7865266 Moll et al. Jan 2011 B2
7960935 Farritor et al. Jun 2011 B2
7979157 Anvari Jul 2011 B2
8021358 Doyle et al. Sep 2011 B2
8179073 Farritor et al. May 2012 B2
8231610 Jo et al. Jul 2012 B2
8343171 Farritor et al. Jan 2013 B2
8353897 Doyle et al. Jan 2013 B2
8377045 Schena Feb 2013 B2
8430851 Mcginley et al. Apr 2013 B2
8604742 Farritor et al. Dec 2013 B2
8636686 Minnelli et al. Jan 2014 B2
8679096 Farritor et al. Mar 2014 B2
8827337 Murata et al. Sep 2014 B2
8828024 Farritor et al. Sep 2014 B2
8834488 Farritor et al. Sep 2014 B2
8864652 Diolaiti et al. Oct 2014 B2
8888687 Ostrovsky et al. Nov 2014 B2
8986196 Larkin et al. Mar 2015 B2
9010214 Markvicka et al. Apr 2015 B2
9089256 Tognaccini et al. Jul 2015 B2
9089353 Farritor et al. Jul 2015 B2
9138129 Diolaiti Sep 2015 B2
9198728 Wang et al. Dec 2015 B2
9516996 Diolaiti et al. Dec 2016 B2
9649020 Finlay May 2017 B2
9717563 Tognaccini et al. Aug 2017 B2
9743987 Farritor et al. Aug 2017 B2
9757187 Farritor et al. Sep 2017 B2
9770305 Farritor et al. Sep 2017 B2
9789608 Itkowitz et al. Oct 2017 B2
9814640 Khaligh Nov 2017 B1
9816641 Bock-Aronson et al. Nov 2017 B2
9849586 Rosheim Dec 2017 B2
9857786 Cristiano Jan 2018 B2
9888966 Farritor et al. Feb 2018 B2
10008017 Itkowitz et al. Jun 2018 B2
10111711 Farritor et al. Oct 2018 B2
10137575 Itkowitz et al. Nov 2018 B2
10159533 Moll et al. Dec 2018 B2
10220522 Rockrohr Mar 2019 B2
10258425 Mustufa et al. Apr 2019 B2
10307199 Farritor et al. Jun 2019 B2
10342561 Farritor et al. Jul 2019 B2
10368952 Tognaccini et al. Aug 2019 B2
10398516 Jackson et al. Sep 2019 B2
10470828 Markvicka et al. Nov 2019 B2
10507066 Dimaio et al. Dec 2019 B2
10555775 Hoffman et al. Feb 2020 B2
10582973 Wilson et al. Mar 2020 B2
10695137 Farritor et al. Jun 2020 B2
10729503 Cameron Aug 2020 B2
10737394 Itkowitz et al. Aug 2020 B2
10751136 Farritor et al. Aug 2020 B2
10751883 Nahum Aug 2020 B2
10806538 Farritor et al. Oct 2020 B2
10966700 Farritor et al. Apr 2021 B2
11032125 Farritor et al. Jun 2021 B2
11298195 Ye et al. Apr 2022 B2
11382702 Tognaccini et al. Jul 2022 B2
11529201 Mondry et al. Dec 2022 B2
11595242 Farritor et al. Feb 2023 B2
20010018591 Brock et al. Aug 2001 A1
20010049497 Kalloo et al. Dec 2001 A1
20020003173 Bauer et al. Jan 2002 A1
20020013601 Nobles et al. Jan 2002 A1
20020026186 Woloszko et al. Feb 2002 A1
20020038077 de la Torre et al. Mar 2002 A1
20020065507 Zando-Azizi May 2002 A1
20020091374 Cooper Jun 2002 A1
20020103417 Gazdzinski Aug 2002 A1
20020111535 Kim et al. Aug 2002 A1
20020120254 Julian et al. Aug 2002 A1
20020128552 Nowlin et al. Sep 2002 A1
20020140392 Borenstein et al. Oct 2002 A1
20020147487 Sundquist et al. Oct 2002 A1
20020151906 Demarais et al. Oct 2002 A1
20020156347 Kim et al. Oct 2002 A1
20020171385 Kim et al. Nov 2002 A1
20020173700 Kim et al. Nov 2002 A1
20020190682 Schempf et al. Dec 2002 A1
20030020810 Takizawa et al. Jan 2003 A1
20030045888 Brock et al. Mar 2003 A1
20030065250 Chiel et al. Apr 2003 A1
20030089267 Ghorbel et al. May 2003 A1
20030092964 Kim et al. May 2003 A1
20030097129 Davison et al. May 2003 A1
20030100817 Wang et al. May 2003 A1
20030109780 Coste-Maniere et al. Jun 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030135203 Wang Jul 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030144656 Ocel et al. Jul 2003 A1
20030159535 Grover et al. Aug 2003 A1
20030167000 Mullick Sep 2003 A1
20030172871 Scherer Sep 2003 A1
20030179308 Zamorano et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030225479 Waled Dec 2003 A1
20030229268 Uchiyama et al. Dec 2003 A1
20030229338 Irion et al. Dec 2003 A1
20030230372 Schmidt Dec 2003 A1
20040024311 Quaid Feb 2004 A1
20040034282 Quaid Feb 2004 A1
20040034283 Quaid Feb 2004 A1
20040034302 Abovitz et al. Feb 2004 A1
20040050394 Jin Mar 2004 A1
20040070822 Shioda et al. Apr 2004 A1
20040099175 Perrot et al. May 2004 A1
20040102772 Baxter et al. May 2004 A1
20040106916 Quaid et al. Jun 2004 A1
20040111113 Nakamura et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138552 Harel et al. Jul 2004 A1
20040140786 Borenstein Jul 2004 A1
20040153057 Davison Aug 2004 A1
20040173116 Ghorbel et al. Sep 2004 A1
20040176664 Iddan Sep 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040225229 Viola Nov 2004 A1
20040254680 Sunaoshi Dec 2004 A1
20040267326 Ocel et al. Dec 2004 A1
20050014994 Fowler et al. Jan 2005 A1
20050021069 Feuer et al. Jan 2005 A1
20050029978 Oleynikov et al. Feb 2005 A1
20050043583 Killmann et al. Feb 2005 A1
20050049462 Kanazawa Mar 2005 A1
20050054901 Yoshino Mar 2005 A1
20050054902 Konno Mar 2005 A1
20050064378 Toly Mar 2005 A1
20050065400 Banik et al. Mar 2005 A1
20050070850 Albrecht Mar 2005 A1
20050083460 Hattori et al. Apr 2005 A1
20050095650 Julius et al. May 2005 A1
20050096502 Khalili May 2005 A1
20050143644 Gilad et al. Jun 2005 A1
20050154376 Riviere et al. Jul 2005 A1
20050165449 Cadeddu et al. Jul 2005 A1
20050177026 Hoeg et al. Aug 2005 A1
20050234294 Saadat et al. Oct 2005 A1
20050234435 Layer Oct 2005 A1
20050272977 Saadat et al. Dec 2005 A1
20050283137 Doyle et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20050288665 Woloszko Dec 2005 A1
20060020272 Gildenberg Jan 2006 A1
20060046226 Bergler et al. Mar 2006 A1
20060079889 Scott Apr 2006 A1
20060100501 Berkelman et al. May 2006 A1
20060119304 Farritor et al. Jun 2006 A1
20060149135 Paz Jul 2006 A1
20060152591 Lin Jul 2006 A1
20060155263 Lipow Jul 2006 A1
20060189845 Maahs et al. Aug 2006 A1
20060195015 Mullick et al. Aug 2006 A1
20060196301 Oleynikov et al. Sep 2006 A1
20060198619 Oleynikov et al. Sep 2006 A1
20060241570 Wilk Oct 2006 A1
20060241732 Denker Oct 2006 A1
20060253109 Chu Nov 2006 A1
20060258938 Hoffman et al. Nov 2006 A1
20060258954 Timberlake et al. Nov 2006 A1
20060261770 Kishi et al. Nov 2006 A1
20070032701 Fowler et al. Feb 2007 A1
20070043397 Ocel et al. Feb 2007 A1
20070055342 Wu et al. Mar 2007 A1
20070080658 Farritor et al. Apr 2007 A1
20070088277 Mcginley et al. Apr 2007 A1
20070088340 Brock et al. Apr 2007 A1
20070106113 Ravo May 2007 A1
20070106317 Shelton et al. May 2007 A1
20070123748 Meglan May 2007 A1
20070135803 Belson Jun 2007 A1
20070142725 Hardin et al. Jun 2007 A1
20070156019 Arkin et al. Jul 2007 A1
20070156211 Ferren et al. Jul 2007 A1
20070167955 De La Menardiere et al. Jul 2007 A1
20070225633 Ferren et al. Sep 2007 A1
20070225634 Ferren et al. Sep 2007 A1
20070241714 Oleynikov et al. Oct 2007 A1
20070244520 Ferren et al. Oct 2007 A1
20070250064 Darois et al. Oct 2007 A1
20070255273 Fernandez et al. Nov 2007 A1
20070287884 Schena Dec 2007 A1
20080004634 Farritor et al. Jan 2008 A1
20080015565 Davison Jan 2008 A1
20080015566 Livneh Jan 2008 A1
20080021440 Solomon Jan 2008 A1
20080033569 Ferren et al. Feb 2008 A1
20080045803 Williams et al. Feb 2008 A1
20080058835 Farritor et al. Mar 2008 A1
20080058989 Oleynikov et al. Mar 2008 A1
20080071289 Cooper et al. Mar 2008 A1
20080071290 Larkin et al. Mar 2008 A1
20080103440 Ferren et al. May 2008 A1
20080109014 de la Pena May 2008 A1
20080111513 Farritor et al. May 2008 A1
20080119870 Williams et al. May 2008 A1
20080132890 Woloszko et al. Jun 2008 A1
20080161804 Rioux et al. Jun 2008 A1
20080164079 Ferren et al. Jul 2008 A1
20080168639 Otake et al. Jul 2008 A1
20080183033 Bem et al. Jul 2008 A1
20080221591 Farritor et al. Sep 2008 A1
20080269557 Marescaux et al. Oct 2008 A1
20080269562 Marescaux et al. Oct 2008 A1
20090002414 Shibata et al. Jan 2009 A1
20090012532 Blackwell et al. Jan 2009 A1
20090020724 Paffrath Jan 2009 A1
20090024142 Ruiz Morales Jan 2009 A1
20090048612 Farritor et al. Feb 2009 A1
20090054909 Farritor et al. Feb 2009 A1
20090069821 Farritor et al. Mar 2009 A1
20090076536 Rentschler et al. Mar 2009 A1
20090137952 Ramamurthy et al. May 2009 A1
20090143787 De La Pena Jun 2009 A9
20090163929 Yeung et al. Jun 2009 A1
20090171373 Farritor et al. Jul 2009 A1
20090192524 Itkowitz et al. Jul 2009 A1
20090234369 Bax et al. Sep 2009 A1
20090236400 Cole et al. Sep 2009 A1
20090240246 Devill et al. Sep 2009 A1
20090247821 Rogers Oct 2009 A1
20090248038 Blumenkranz Oct 2009 A1
20090281377 Newell et al. Nov 2009 A1
20090299143 Conlon et al. Dec 2009 A1
20090305210 Guru et al. Dec 2009 A1
20090326322 Diolaiti Dec 2009 A1
20100010294 Conlon et al. Jan 2010 A1
20100016659 Weitzner et al. Jan 2010 A1
20100016853 Burbank Jan 2010 A1
20100026347 Iizuka Feb 2010 A1
20100042097 Newton et al. Feb 2010 A1
20100056863 Dejima et al. Mar 2010 A1
20100069710 Yamatani et al. Mar 2010 A1
20100069940 Miller et al. Mar 2010 A1
20100081875 Fowler et al. Apr 2010 A1
20100101346 Johnson et al. Apr 2010 A1
20100130986 Mailloux et al. May 2010 A1
20100139436 Kawashima et al. Jun 2010 A1
20100185212 Sholev Jul 2010 A1
20100198231 Manzo et al. Aug 2010 A1
20100204713 Ruiz Morales Aug 2010 A1
20100245549 Allen et al. Sep 2010 A1
20100250000 Blumenkranz et al. Sep 2010 A1
20100262162 Omori Oct 2010 A1
20100263470 Bannasch et al. Oct 2010 A1
20100274079 Kim et al. Oct 2010 A1
20100292691 Brogna Nov 2010 A1
20100301095 Shelton, IV et al. Dec 2010 A1
20100318059 Farritor et al. Dec 2010 A1
20100331856 Carlson et al. Dec 2010 A1
20110015569 Kirschenman et al. Jan 2011 A1
20110020779 Hannaford et al. Jan 2011 A1
20110071347 Rogers Mar 2011 A1
20110071544 Steger et al. Mar 2011 A1
20110075693 Kuramochi et al. Mar 2011 A1
20110077478 Freeman et al. Mar 2011 A1
20110082365 Mcgrogan et al. Apr 2011 A1
20110098529 Ostrovsky et al. Apr 2011 A1
20110107866 Oka et al. May 2011 A1
20110152615 Schostek et al. Jun 2011 A1
20110224605 Farritor et al. Sep 2011 A1
20110230894 Simaan et al. Sep 2011 A1
20110237890 Farritor et al. Sep 2011 A1
20110238079 Hannaford et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110264078 Lipow et al. Oct 2011 A1
20110270443 Kamiya et al. Nov 2011 A1
20110276046 Heimbecher et al. Nov 2011 A1
20120016175 Roberts et al. Jan 2012 A1
20120029727 Malik Feb 2012 A1
20120035582 Nelson et al. Feb 2012 A1
20120059392 Diolaiti Mar 2012 A1
20120078053 Phee et al. Mar 2012 A1
20120109150 Quaid et al. May 2012 A1
20120116362 Kieturakis May 2012 A1
20120179168 Farritor et al. Jul 2012 A1
20120221147 Goldberg et al. Aug 2012 A1
20120253515 Coste-Maniere et al. Oct 2012 A1
20130001970 Suyama et al. Jan 2013 A1
20130041360 Farritor et al. Feb 2013 A1
20130055560 Nakasugi et al. Mar 2013 A1
20130125696 Long May 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130178867 Farritor et al. Jul 2013 A1
20130282023 Burbank et al. Oct 2013 A1
20130304084 Beira et al. Nov 2013 A1
20130325030 Hourtash et al. Dec 2013 A1
20130325181 Moore Dec 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20130345718 Crawford et al. Dec 2013 A1
20140039515 Mondry et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140055489 Itkowitz et al. Feb 2014 A1
20140058205 Frederick et al. Feb 2014 A1
20140100587 Farritor et al. Apr 2014 A1
20140137687 Nogami et al. May 2014 A1
20140195052 Tsusaka Jul 2014 A1
20140221749 Grant et al. Aug 2014 A1
20140232824 Dimaio et al. Aug 2014 A1
20140276944 Farritor et al. Sep 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20140371762 Farritor et al. Dec 2014 A1
20150051446 Farritor et al. Feb 2015 A1
20150057537 Dillon et al. Feb 2015 A1
20150157191 Phee et al. Jun 2015 A1
20150223896 Farritor et al. Aug 2015 A1
20150297299 Yeung et al. Oct 2015 A1
20160066999 Forgione et al. Mar 2016 A1
20160135898 Frederick et al. May 2016 A1
20160291571 Cristiano Oct 2016 A1
20160303745 Rockrohr Oct 2016 A1
20170014197 Mccrea et al. Jan 2017 A1
20170035526 Farritor et al. Feb 2017 A1
20170078583 Haggerty et al. Mar 2017 A1
20170252096 Felder et al. Sep 2017 A1
20170354470 Farritor et al. Dec 2017 A1
20180132956 Cameron May 2018 A1
20180153578 Cooper et al. Jun 2018 A1
20180153634 Zemlok Jun 2018 A1
20180338777 Bonadio et al. Nov 2018 A1
20190059983 Germain et al. Feb 2019 A1
20190090965 Farritor et al. Mar 2019 A1
20190209262 Mustufa et al. Jul 2019 A1
20190327394 Ramirez Luna et al. Oct 2019 A1
20200138534 Garcia Kilroy et al. May 2020 A1
20200214775 Farritor et al. Jul 2020 A1
20200330175 Cameron Oct 2020 A1
20200368915 Itkowitz et al. Nov 2020 A1
Foreign Referenced Citations (97)
Number Date Country
102499759 Jun 2012 CN
102821918 Dec 2012 CN
104523309 Apr 2015 CN
104582600 Apr 2015 CN
104622528 May 2015 CN
204337044 May 2015 CN
105025826 Nov 2015 CN
102010040405 Mar 2012 DE
105656 Apr 1984 EP
279591 Aug 1988 EP
1354670 Oct 2003 EP
2286756 Feb 2011 EP
2286756 Feb 2011 EP
2329787 Jun 2011 EP
2563261 Mar 2013 EP
2684528 Jan 2014 EP
2123225 Dec 2014 EP
2815705 Dec 2014 EP
2881046 Jun 2015 EP
2937047 Oct 2015 EP
S59059371 Apr 1984 JP
S61165061 Jul 1986 JP
S62068293 Mar 1987 JP
H04144533 May 1992 JP
05-115425 May 1993 JP
2006508049 Sep 1994 JP
H06507809 Sep 1994 JP
H06508049 Sep 1994 JP
07-016235 Jan 1995 JP
07-136173 May 1995 JP
7306155 Nov 1995 JP
08-224248 Sep 1996 JP
2001500510 Jan 2001 JP
2001505810 May 2001 JP
2002000524 Jan 2002 JP
2003220065 Aug 2003 JP
2004144533 May 2004 JP
2004-180781 Jul 2004 JP
2004283940 Oct 2004 JP
2004322310 Nov 2004 JP
2004329292 Nov 2004 JP
2006507809 Mar 2006 JP
2009106606 May 2009 JP
2009297809 Dec 2009 JP
2010533045 Oct 2010 JP
2010536436 Dec 2010 JP
2011504794 Feb 2011 JP
2011045500 Mar 2011 JP
2011115591 Jun 2011 JP
2012504017 Feb 2012 JP
2012176489 Sep 2012 JP
5418704 Feb 2014 JP
2015526171 Sep 2015 JP
2016213937 Dec 2016 JP
2017113837 Jun 2017 JP
199221291 May 1991 WO
2001089405 Nov 2001 WO
2002082979 Oct 2002 WO
2002100256 Dec 2002 WO
2005009211 Jul 2004 WO
2005044095 May 2005 WO
2006052927 Aug 2005 WO
2006005075 Jan 2006 WO
2006079108 Jan 2006 WO
2006079108 Jul 2006 WO
2007011654 Jan 2007 WO
2007111571 Oct 2007 WO
2007149559 Dec 2007 WO
2009014917 Jan 2009 WO
2009023851 Feb 2009 WO
2009144729 Dec 2009 WO
2009158164 Dec 2009 WO
2010039394 Apr 2010 WO
2010042611 Apr 2010 WO
2010046823 Apr 2010 WO
2010050771 May 2010 WO
2010083480 Jul 2010 WO
2011075693 Jun 2011 WO
2011118646 Sep 2011 WO
2011135503 Nov 2011 WO
WO-2011135503 Nov 2011 WO
2011163520 Dec 2011 WO
2013009887 Jan 2013 WO
2013052137 Apr 2013 WO
2013106569 Jul 2013 WO
2014011238 Jan 2014 WO
2014025399 Feb 2014 WO
2014144220 Sep 2014 WO
2014146090 Sep 2014 WO
2015009949 Jan 2015 WO
2015031777 Mar 2015 WO
2015088655 Jun 2015 WO
2016077478 May 2016 WO
2017024081 Feb 2017 WO
2017064303 Apr 2017 WO
2017201310 Nov 2017 WO
2018045036 Mar 2018 WO
Non-Patent Literature Citations (160)
Entry
Abbou et al., “Laparoscopic Radical Prostatectomy with a Remote Controlled Robot,” The Journal of Urology, Jun. 2001; 165: 1964-1966.
Albers et al., Design and development process of a humanoid robot upper body through experimentation, 2004, IEEE, p. 77-92 (Year: 2004).
Crystal Eyes, http://www.reald.com, 2007 (Stereo 3D visualization for CAVEs, theaters and immersive environments), 1 pg.
Definition of Individually. Dictionary.com, retrieved on Aug. 9, 2016; Retrieved from the Internet: < http://www.dictionary.com/browse/individually>, 1 page.
Glukhovsky et al., “The development and application of wireless capsule endoscopy,” Int. J. Med. Robot. Comput. Assist. Surgery, 2004; 1(1): 114-123.
Gong et al., “Wireless endoscopy,” Gastrointestinal Endoscopy 2000; 51 (6): 725-729.
Gopura et al., Mechanical designs of active upper-limb exoskeleton robots: State-of-the-art and design difficulties, 2009, IEEE, p. 178-187 (Year: 2009).
Gopura et al., A brief review on upper extremity robotic exoskeleton systems, 2011, IEEE, p. 346-351 (Year: 2011).
Guo et al., “Micro Active Guide Wire Catheter System—Characteristic Evaluation, Electrical Model* and Operability Evaluation of Micro Active Catheter,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Apr. 1996; 2226-2231.
Guo et al., “Fish-like Underwater Microrobot with 3 DOF,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002; 738-743.
Hanly et al., “Robotic Abdominal Surgery,” The American Journal of Surgery, 2004; 188 (Suppl. to Oct. 1994); 19S-26S.
Hanly et al., “Value of the SAGES Learning Center in introducing new technology,” Surgical Endoscopy, 2004; 19(4): 477-483.
Heikkinen et al., “Comparison of laparoscopic and open Nissen fundoplication two years after operation: A prospective randomized trial,” Surgical Endoscopy, 2000; 14:1019-1023.
Hissink, “Olympus Medical develops capsule camera technology,” Dec. 2004, accessed Aug. 29, 2007, http://www.letsgodigital.org, 3 pp.
Horgan et al., “Technical Report: Robots in Laparoscopic Surgery,” Journal of Laparoendoscopic & Advanced Surgical Techniques, 2001; 11(6): 415-419.
Ishiyama et al., “Spiral-type Micro-machine for Medical Applications,” 2000 International Symposium on Micromechatronics and Human Science, 2000; 65-69.
Jagannath et al., “Peroral transgastric endoscopic ligation of fallopian tubes with long-term survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 61 (3): 449-453.
Kalloo et al., “Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity,” Gastrointestinal Endoscopy, 2004; 60(1): 114-117.
Kang et al., “Robotic Assistants Aid Surgeons During Minimally Invasive Procedures,” IEEE Engineering in Medicine and Biology, Jan.-Feb. 2001: 94-104.
Kantsevoy et al., “Transgastric endoscopic splenectomy,” Surgical Endoscopy, 2006; 20: 522-525.
Kantsevoy et al., “Endoscopic gastrojejunostomy with survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 62(2): 287-292.
Kazemier et al. (1998), “Vascular Injuries During Laparoscopy,” J. Am. Coli. Surg. 186(5): 604-5.
Keller et al., Design of the pediatric arm rehabilitation robot ChARMin, 2014, IEEE, p. 530-535 (Year: 2014).
Kim, “Early Experience with Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using da Vinci,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1): 33-40.
Ko et al., “Per-Oral transgastric abdominal surgery,” Chinese Journal of Digestive Diseases, 2006; 7: 67-70.
Lafullarde et al., “Laparoscopic Nissen Fundoplication: Five-year Results and Beyond,” Arch/Surg, Feb. 2001; 136: 180-184.
Leggett et al. (2002), “Aortic injury during laparoscopic Fundoplication,” Surg. Endoscopy 16(2): 362.
Li et al. (2000), “Microvascular Anastomoses Performed in Rats Using a Microsurgical Telemanipulator,” Comp. Aid. Surg., 5: 326-332.
Liem et al., “Comparison of Conventional Anterior Surgery and Laparoscopic Surgery for Inguinal-hernia Repair,” New England Journal of Medicine, 1997; 336 (22):1541-1547.
Lou Cubrich, “A Four-DOF Laparo-Endoscopic Single Site Platform for Rapidly-Developing Next Generation Surgical Robotics”, Journal of Medical Robotics Research, vol. 1, No. 4, 2016, 165006-1-165006-15.
Macfarlane et al., “Force-Feedback Grasper Helps Restore the Sense of Touch in Minimally Invasive Surgery,” Journal of Gastrointestinal Surgery, 1999; 3: 278-285.
Mack et al., “Present Role of Thoracoscopy in the Diagnosis and Treatment of Diseases of the Chest,” Ann Thorac Surgery, 1992; 54: 403-409.
Mack, “Minimally Invasive and Robotic Surgery,” JAMA, Feb. 2001; 285(5): 568-572.
Mei et al., “Wireless Drive and Control of a Swimming Microrobot,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002: 1131-1136.
Menciassi et al., “Robotic Solutions and Mechanisms for a Semi-Autonomous Endoscope,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Oct. 2002; 1379-1384.
Melvin et al., “Computer-Enhanced vs. Standard Laparoscopic Antireflux Surgery,” J Gastrointest Surg 2002; 6: 11-16.
Menciassi et al., “Locomotion of a Leffed Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results,” IEEE Int. Conf. on Engineering in Medicine and Biology, San Francisco, CA, pp. 2767-2770, Sep. 2004.
Menciassi et al., “Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract,” J. Micromech. Microeng, 2005; 15: 2045-2055.
Meron, “The development of the swallowable video capsule (M2A),” Gastrointestinal Endoscopy 2000; 52 6: 817-819.
Micron, http://www.micron.com, 2006, ¼-inch VGA NTSC/PAL CMOS Digital Image Sensor, 98 pp.
Midday Jeff et al., “Material Handling System for Robotic natural Orifice Surgery,”, Proceedings of the 2011 Design of medical Devices Conference, Apr. 12-14, 2011, Minneapolis, MN 4 pages.
Miller, Ph.D., et al., “In-Vivo Stereoscopic Imaging System with 5 Degrees-of-Freedom for Minimal Access Surgery,” Dept. of Computer Science and Dept. of Surgery, Columbia University, New York, NY, 7 pp. , 2004.
Munro (2002), “Laparoscopic access: complications, technologies, and techniques,” Curro Opin. Obstet. Gynecol., 14(4): 365-74.
Nio et al., “Efficiency of manual vs robotical (Zeus) assisted laparoscopic surgery in the performance of standardized tasks,” Surg Endosc, 2002; 16: 412-415.
Oleynikov et al., “In Vivo Camera Robots Provide Improved Vision for Laparoscopic Surgery,” Computer Assisted Radiology and Surgery (CARS), Chicago, IL, Jun. 23-26, 2004b.
Oleynikov et al., “Miniature Robots Can Assist in Laparoscopic Cholecystectomy,” Journal of Surgical Endoscopy, 19-4: 473-476, 2005.
Oleynikov et al., “In Vivo Robotic Laparoscopy,” Surgical Innovation, Jun. 2005, 12(2): 177-181.
O'Neill, “Surgeon takes new route to gallbladder,” The Oregonian, Jun. 2007; 2 pp.
Orlando et al. (2003), “Needle and Trocar Injuries in Diagnostic Laparoscopy under Local Anesthesia: What Is the True Incidence of These Complications?” Journal of Laparoendoscopic & Advanced Surgical Techniques, 13(3): 181-184.
Palm. William. “Rapid Prototyping Primer” May 1998 (revised Jul. 30, 2002) (http://www.me.psu.edu/lamancusa/rapidpro/primer/chapter2.htm), 12 pages.
Franzino, “The Laprotek Surgical System and the Next Generation of Robotics,” Surg Clin North Am, 2003 83(6): 1317-1320.
Franklin et al., “Prospective Comparison of Open vs. Laparoscopic Colon Surgery for Carcinoma: Five-Year Results,” Dis Colon Rectum, 1996; 39: S35-S46.
Flynn et al, “Tomorrow's surgery: micromotors and microrobots for minimally invasive procedures,” Minimally Invasive Surgery & Allied Technologies, 1998; 7(4): 343-352.
Fireman et al., “Diagnosing small bowel Crohn's desease with wireless capsule endoscopy,” Gut 2003; 52: 390-392.
Fearing et al., “Wing Transmission for a Micromechanical Flying Insect,” Proceedings of the 2000 IEEE International Conference to Robotics & Automation, Apr. 2000; 1509-1516.
Faraz et al., “Engineering Approaches to Mechanical and Robotic Design for Minimaly Invasive Surgery (MIS),” Kluwer Academic Publishers (Boston), 2000, 13pp.
Falcone et al., “Robotic Surgery,” Clin. Obstet. Gynecol. 2003, 46(1): 37-43.
Fraulob et al., “Miniature assistance module for robot-assisted heart surgery,” Biomed. Tech. 2002, 47 Suppl. 1, Pt. 1: 12-15.
Fukuda et al., “Mechanism and Swimming Experiment of Micro Mobile Robot in Water,” Proceedings of the 1994 EEE International Conference on Robotics and Automation, 1994: 814-819.
Fukuda et al., “Micro Active Catheter System with Multi Degrees of Freedom,” Proceedings of the IEEE International Conference on Robotics and Automation, May 1994, pp. 2290-2295.
Fuller et al., “Laparoscopic Trocar Injuries: A Report from a U.S. Food and Drug Administration (FDA) Center for Devices and Radiological Health (CDRH) Systematic Technology Assessment of Medical Products (STAMP) Committe,” U.S. Food and Drug Adminstration, available at http://www.fdaJ:?;ov, Finalized: Nov. 7, 2003; Updated: Jun. 24, 2005, 11 pp.
Dumpert et al., “Improving in Vivo Robot Visioin Quality,” from the Proceedings of Medicine Meets Virtual Realtiy, Long Beach, CA, Jan. 26-29, 2005. 1 pg.
Dakin et al., “Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems,” Surg Endosc., 2003; 17: 574-579.
Cuschieri, “Technology for Minimal Access Surgery,” BMJ, 1999, 319: 1-6.
Grady, “Doctors Try New Surgery for Gallbladder Removal,” The New York Times, Apr. 20, 2007, 3 pp.
Choi et al., “Flexure-based Manipulator for Active Handheld Microsurgical Instrument,” Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Sep. 2005, 4pp.
Chanthasopeephan et al., (2003), “Measuring Forces in Liver Cutting: New Equipment and Experimenal Results,” Annals of Biomedical Engineering 31: 1372-1382.
Cavusoglu et al., “Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications,” Industrial Robot: An International Journal, 2003; 30(1): 22-29.
Guber et al., “Miniaturized Instrument Systems for Minimally Invasive Diagnosis and Therapy,” Biomedizinische Technic. 2002, Band 47, Erganmngsband 1: 198-201.
Park et al., “Experimental studies of transgastric gallbladder surgery: cholecystectomy and cholecystogastric anastomosis (videos),” Gastrointestinal Endoscopy, 2005; 61 (4): 601-606.
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-abdominal Camera and Retractor,” Ann Surg, Mar. 2007; 245(3): 379-384.
Patronik et al., “Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions,” MICCAI, 2004, pp. 9-16.
Patronik et al., “Development of a Tethered Epicardial Crawler for Minimally Invasive Cardiac Therapies,” IEEE, pp. 239-240, 2004.
Patronik et al., “Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart,” Computer Aided Surgery, 10(4): 225-232, Jul. 2005.
Peirs et al., “A miniature manipulator for integration in a self-propelling endoscope,” Sensors and Actuators A, 2001, 92: 343-349.
Peters, “Minimally Invasive Colectomy: Are the Potential Benefits Realized?” Dis Colon Rectum 1993; 36: 751-756.
Phee et al., “Development of Microrobotic Devices for Locomotion in the Human Gastrointestinal Tract,” International Conference on Computational Intelligence, Robotics and Autonomous Systems (CI RAS 2001), Nov. 28-30, 2001, Singapore, 6 pages.
Phee et al., “Analysis and Development of Locomotion Devices for the Gastrointestinal Tract,” IEEE Transactions on Biomedical Engineering, vol. 49, No. 6, Jun. 2002: 613-616.
Platt et al., “In Vivo Robotic Cameras can Enhance Imaging Capability During Laparoscopic Surgery,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, Apr. 13-16, 2005; 1 pg.
Qian Huan et al., “Multi-joint Single-wound Minimally Invasive Abdominal Surgery Robot Design,” Mechanical Design and Manufacturing, May 8, 2014, pp. 134-137.
Rentschler et al., “In vivo Mobile Surgical Robotic Task Assistance,” 1 pg.
Rentschler et al., “Theoretical and Experimental Analysis of In Vivo Wheeled Mobility,” ASME Design Engineering Technical Conferences: 28th Biennial Mechanisms and Robotics Conference, Salt Lake City, Utah, Sep. 28-Oct. 2, 2004; pp. 1-9.
Rentschler et al., “In Vivo Robots for Laparoscopic Surgery,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, ISO Press, Newport Beach, CA, 2004a, 98: 316-322.
Rentschler et al., “Toward In Vivo Mobility,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, ISO Press, Long Beach, CA, 2005a, III: 397-403.
Rentschler et al., “Mobile In Vivo Robots Can Assist in Abdominal Exploration,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, Apr. 13-16, 2005b.
Rentschler et al., “Modeling, Analysis, and Experimental Study of In Vivo Wheeled Robotic Mobility,” IEEE Transactions on Robotics, 22 (2): 308-321, 2005c.
Rentschler et al., “Miniature in vivo robots for remote and harsh environments,” IEEE Transaction on Information Technology in Biomedicine, Jan. 2006; 12(1): pp. 66-75.
Rentschler et al., “Mechanical Design of Robotic In Vivo Wheeled Mobility,” ASME Journal of Mechanical Design, 2006a; pp. 1-11, Accepted.
Rentschler et al., “Mobile In Vivo Camera Robots Provide Sole Visual Feedback for Abdominal Exploration and Cholecystectomy,” Journal of Surgical Endoscopy, 20-1: 135-138, 2006b.
Rentschler et al., “Natural Orifice Surgery with an Endoluminal Mobile Robot,” The Society of American Gastrointestinal Endoscopic Surgeons, Dallas, TX, April 2006d.
Rentschler et al., “Mobile In Vivo Biopsy and Camera Robot,” Studies in Health and Infonnatics Medicine Meets Virtual Reality, vol. 119: 449-454, IOS Press, Long Beach, CA, 2006e.
Rentschler et al., “Mobile In Vivo Biopsy Robot,” IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006; 4155-4160.
Rentschler et al., “In vivo Robotics during the NEEMO 9 Mission,” Medicine Meets Virtual Reality, Feb. 2007; 1 pg.
Rentschler et al., “An In Vivo Mobile Robot for Surgical Vision and Task Assistance,” Journal of Medical Devices, Mar. 2007; vol. 1: 23-29.
Riviere et al., “Toward Active Tremor Canceling in Handheld Microsurgical Instruments,” IEEE Transactions on Robotics and Automation, Oct. 2003, 19(5): 793-800.
Rosen et al., “Force Controlled and Teleoperated Endoscopic, Grasper for Minimally Invasive Surgery-Experimental Performance Evaluation,” IEEE Transactions of Biomedical Engineering, Oct. 1999; 46(10): 1212-1221.
Rosen et al., “Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents' Learning Curve Using Hidden Markov Model,” Computer Aided Surgery, vol. 7, pp. 49-61, 2002.
Rosen et al., “The Blue DRAGON—A System of Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proc. of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1876-1881, May 2002.
Rosen et al., Objective Evaluation of Laparoscopic Skills Based on Haptic Information and Tool/Tissue Interactions, Computer Aided Surgery, vol. 7, Issue 1, pp. 49-61, Jul. 2002.
Rosen et al., “Spherical Mechanism Analysis of a Surgical Robot for Minimally Invasive Surgery—Analytical and Experimental Approaches,” Studies in Health Technology and Infonnatics-Medicine Meets Virtual Reality, pp. 442-448, Jan. 2005.
Ruurda et al., “Feasibility of Robot-Assisted Laparoscopic Surgery,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):41-45.
Ruurda et al., “Robot-Assisted surgical systems: a new era in laparoscopic surgery,” Ann R. Coll Surg Engl. 2002; 84: 223-226.
Sackier et al., “Robotically assisted laparoscopic surgery,” Surgical Endoscopy, 1994; 8:63-6.
Salky, “What is the Penetration of Endoscopic Techniques into Surgical Practice?” Digestive Surgery 2000; 17:422-426.
Satava, “Surgical Robotics: The Early Chronicles,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):6-16.
Schippers et al. (1996), “Requirements and Possibilities of Computer-Assisted Endoscopic Surgery,” In: Computer Integrated Surgery: Technology and Clinical Applications, pp. 561-565.
Schurr et al., “Robotics and Telemanipulation Technologies for Endoscopic Surgery,” Surgical Endoscopy, 2000; 14:375-381.
Schwartz, “In the Lab: Robots that Slink and Squirm,” The New York Times, Mar. 27, 2007, 4 pp.
Sharp LL-151-3D, http://www.sharp3d.com, 2006, 2 pp.
Slatkin et al., “The Development of a Robotic Endoscope,” Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 162-171, 1995.
Smart Pill “Fastastic Voyage: Smart Pill to Expand Testing,” http://www.smartpilldiagnostics.com, Apr. 13, 2005, 1 pg.
Sodeyama et al., A shoulder structure of muscle-driven humanoid with shoulder blades, 2005, IEEE, p. 1-6 (Year: 2005).
Southern Surgeons Club (1991), “A prospective analysis of 1518 laparoscopic cholecystectomies,” N. Eng. 1 Med. 324 (16): 1073-1078.
Stefanini et al., “Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular Compliant and Slippery Environment,” Int. Journal of Robotics Research, vol. 25, No. 5-6, pp. 551-560, May-Jun. 2006.
Stiff et al., “Long-term Pain: Less Common After Laparoscopic than Open Cholecystectomy,” British Journal of Surgery, 1994; 81: 1368-1370.
Strong et al., “Efficacy of Novel Robotic Camera vs. a Standard Laproscopic Camera,” Surgical Innovation vol. 12, No. 4, Dec. 2005, Westminster Publications, Inc., pp. 315-318.
Suzumori et al., “Development of Flexible Microactuator and its Applications to Robotics Mechanisms,” Proceedings of the IEEE International Conference on Robotics and Automation, 1991: 1622-1627.
Taylor et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Eng Med Biol, 1995; 279-87.
Tendick et al. (1993), “Sensing and Manipulation Problems in Endoscopic Surgery: Experiment, Analysis, and Observation,” Presence 2(1): 66-81.
Tendick et al., “Applications of Micromechatronics in Minimally Invasive Surgery,” IEEE/ASME Transactions on Mechatronics, 1998; 3(1): 34-42.
Thomann et al., “The Design of a new type of Micro Robot for the Intestinal Inspection,” Proceedings of the 2002 IEEE Intl. Conference on Intelligent Robots and Systems, Oct. 2002: 1385-1390.
U.S. Appl. No. 60/180,960, filed Feb. 2000.
U.S. Appl. No. 60/956,032, filed Aug. 15, 2007.
U.S. Appl. No. 60/983,445, filed Oct. 29, 2007.
U.S. Appl. No. 60/990,062, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,076, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,086, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,106, filed Nov. 26, 2007.
U.S. Appl. No. 60/990,470, filed Nov. 27, 2007.
U.S. Appl. No. 61/025,346, filed Feb. 1, 2008.
U.S. Appl. No. 61/030,588, filed Feb. 22, 2008.
U.S. Appl. No. 61/030,617, filed Feb. 22, 2008.
Worn et al., “Espirit Project No. 33915: Miniaturised Robot for Micro Manipulation (MINIMAN),” Nov. 1998, http://www.ipr.ira.ujka.de/-microbot/miniman.
Way et al., editors, “Fundamentals of Laparoscopic Surgery,” Churchill Livingstone Inc., 1995; 14 pp.
Wolfe et al. (1991), Endoscopic Cholecystectomy: An analysis of Complications, Arch. Surg. 1991; 126: 1192-1196.
Xu et al., “System Design of an Insertable Robotic Effector Platform for Single Access (SPA) Surgery”, The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 11-15, 2009, St. Louis MO USA pp. 5546-5552.
Yu, BSN, RN, “M2ATM Capsule Endoscopy a Breakthrough Diagnostic Tool for Small Intestine Imagining,” vol. 25, No. 1, 2001, Gastroenterology Nursing, pp. 24-27.
Yu et al., “Microrobotic Cell Injection,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, May 2001: 620-625.
Lehman et al., Dexterous miniature in vivo robot for NOTES, 2009, IEEE, p. 244-249.
Mihelj et al., ARMin II—7 DoF rehabilitation robot: mechanics and kinematics, 2007, IEEE, p. 4120-4125.
Zhang et al., Cooperative robotic assistant for laparoscopic surgery: CoBRASurge, 2009, IEEE, p. 5540-5545.
Abbott et al., “Design of an Endoluminal NOTES Robotic System,” from the Proceedings of the 2007 IEEE/RSJ Int'l Conf. on Intelligent Robot Systems, San Diego, CA, Oct. 29-Nov. 2, 2007, pp. 410-416.
Allendorf et al., “Postoperative Immune Function Varies Inversely with the Degree of Surgical Trauma in a Murine Model,” Surgical Endoscopy 1997; 11:427-430.
Ang, “Active Tremor Compensation in Handheld Instrument for Microsurgery.” Doctoral Dissertation, tech report CMU-RI-TR-04-28, Robotics Institute, Carnegie Mellon Unviersity, May 2004, 167pp.
Atmel 80C5X2 Core, http://www.atmel.com, 2006, 186pp.
Bailey et al., “Complications of Laparoscopic Surgery,” Quality Medical Publishers, Inc., 1995, 25pp.
Ballantyne, “Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring,” Surgical Endoscopy, 2002; 16: 1389-1402.
Bauer et al., “Case Report: Remote Percutaneous Renal Percutaneous Renal Access Using a New Automated Telesurgical Robotic System,” Telemedicine Journal and e-Health 2001; (4): 341-347.
Begos et al., “Laparoscopic Cholecystectomy: From Gimmick to Gold Standard,” J Clin Gastroenterol, 1994; 19(4): 325-330.
Berg et al., “Surgery with Cooperative Robots,” Medicine Meets Virtual Reality, Feb. 2007, 1 pg.
Breda et al., “Future developments and perspectives in laparoscopy,” Eur. Urology 2001; 40(1): 84-91.
Breedveld et al., “Design of Steerable Endoscopes to Improve the Visual Perception of Depth During Laparoscopic Surgery,” ASME, Jan. 2004; vol. 126, pp. 1-5.
Breedveld et al., “Locomotion through the Intestine by means of Rolling Stents,” Proceedings of the ASME Design Engineering Technical Conferences, 2004, pp. 1-7.
Calafiore et al., Multiple Arterial Conduits Without Cardiopulmonary Bypass: Early Angiographic Results,: Ann Thorac Surg, 1999; 67: 450-456.
Camarillo et al., “Robotic Technology in Surgery: Past, Present and Future,” The American Journal of Surgery. 2004; 188: 28-15.
Cavusoglu et al., “Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments,” In McLaughlin, M.L., Hespanha, J.P., and Sukhatme, G., editors. Touch in virtual environments, IMSC Series in Multimedia 2001, 28pp.
Dumpert et al., “Stereoscopic In Vivo Surgical Robots,” IEEE Sensors Special Issue on In Vivo Sensors for Medicine, Jan. 2007, 10 pp.
Green, “Telepresence Surgery”, Jan. 1, 1995, Publisher: IEEE Engineering in Medicine and Biology.
Cleary et al., “State of the Art in Surgical Rootics: Clinical Applications and Technology Challenges”, “Computer Aided Surgery”, Jan. 1, 2002, pp. 312-328, vol. 6.
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Jan. 1, 2002, pp. 1-17.
Related Publications (1)
Number Date Country
20200330172 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
61781594 Mar 2013 US
Continuations (2)
Number Date Country
Parent 15894489 Feb 2018 US
Child 16922560 US
Parent 14210934 Mar 2014 US
Child 15894489 US