Embodiments disclosed herein relate generally to electronic devices and, more specifically, to near chip scale package electronic device structures and methods of fabricating the same.
Electronic devices such as semiconductor dies are conventionally enclosed in plastic packages that provide protection from hostile environments and enable electrical interconnection between the semiconductor die and an underlying substrate such as a printed circuit board (PCB) or motherboard. The elements of such a package include a metal leadframe, a semiconductor die, bonding material to attach the semiconductor die to the leadframe, bond wires that electrically connect pads on the semiconductor die to individual leads of the leadframe, and a hard plastic encapsulant material that covers at least some of the components and forms the exterior of the semiconductor package commonly referred to as the package body.
The lead frame is the central supporting structure of such a package, and typically is fabricated by chemically etching or mechanically stamping a metal strip. The lead frame typically includes a side frame defining an entire framework, a chip pad for mounting one or more semiconductor chips, one or more tie bars integrally connecting the side frame to the chip pad, and a plurality of leads extending from the side frame to the corners of the chip pad. A portion of the leadframe is internal to the package body or completely surrounded by the plastic encapsulant. Portions of the leads of the leadframe may extend externally from the package body or may be partially exposed therein for use in electrically connecting the package to another component. In certain semiconductor packages, a portion of the die pad of the leadframe also remains exposed within the package body.
There is a class of semiconductor packages referred to as near chip scale packages (CSP) that include very thin, fine pitch, and small area leadframes that approximate the size of the semiconductor chip. Such packages include the MicroLeadFrame® (MLF) style of packages, LFCSP, VQFN, and QFN—Quad Flat No-Lead packages. These packages typically have package body sizes in the 1 mm to 13 mm range and package heights in the 0.3 mm to 2.1 mm range. In order to enhance unit productivity, near chip scale packages such as MLF style packages are assembled in a matrix of multiple leadframes and encapsulated in an overmolding process. The individual MLF structures are then separated into individual packages typically using a sawing process, which cuts through the mold compound and the leadframes.
Several problems exist with current leadframe structures for near chip scale packages because of their reduced size and the way they are manufactured. Such problems include deformation or shifting of the leads during manufacturing where they become vertically tilted or curved or horizontally bent or curved. These defects can result in electrical shorts and device failures. Also, as each lead is pressed and cut during the sawing process, metal burrs result that can create a metal bridge between adjoining leads thus resulting in electrical shorts and device failure.
Accordingly, it is desirable to have a structure and method that provides a reinforced or strengthened leadframe for electronic packages, such as near chip scale packaged electronic devices. It is also desirable to have a structure a method that is cost effective, easy to integrate into assembly process flows, and reliable.
For simplicity and clarity of the illustration, elements in the figures are not necessarily drawn to scale, and the same reference numbers in different figures can denote the same elements. The use of the word about, approximately or substantially means that a value of an element has a parameter that is expected to be close to a stated value or position. However, as is well known in the art there are always minor variances that prevent the values or positions from being exactly as stated. Additionally, descriptions and details of well-known steps and elements may be omitted for simplicity of the description.
The aspects of the present invention and methods for achieving the aspects will be apparent by referring to the embodiments to be described herein with reference to the accompanying drawings. It is understood that the embodiments described herein are illustrative only and that the present invention is not limited thereto, but can be implemented in alternative forms. Also, it is understood that the features of the various embodiments described herein can be combined with each other, unless specifically noted otherwise.
In general, the present embodiments relate to lead frame structure including a micro lead frame for manufacturing a packaged electronic device, which includes stiffness reinforcing portions formed on one or more leads or other sections of the micro lead frame, thus reducing the deformation or shifting of the leads during manufacturing of the electronic package, particularly in the sawing or singulation process. Also, in some embodiments, the structure of the stiffness reinforcing portions provide an increase in the spacing or distance between adjacent leads thereby reducing electrical shorting defects caused by metal burrs, which result from singulation processes.
As shown in
As shown in
Bottom etched portions 13 are formed on inner leads 10 and top etched portions 23 are formed on outer leads 20 so that only the bottom surfaces of bond fingers 11 and the bottom surfaces of the bonds finger 21, which are full thickness, are exposed to the outside of the package after molding. Further, bottom etched portions 13 and top etched portions 23 are formed on the bottom and top of connecting bars 40 to minimize the material a saw blade must cut through thus making it easier to remove connecting bars 40 after the molding process. After connecting bars 40 are removed, inner 10 and outer leads 20 become isolated terminals for transmitting and receiving electrical signals.
There a several problems with the configuration of related micro lead frame 70 as described previously. Some of the problems are shown in
Referring now to
In some embodiments, the micro lead frame with stiffness reinforcing portions can include a plurality of long inner leads and shorter outer leads provided around a chip mounting plate, to which an electronic chip (e.g., a semiconductor device, an optical device, a passive device, a sensor device) is attached, in a staggered arrangement, with a connecting bar integrally connecting the respective inner and outer leads prior to sawing, wherein tops of the inner leads form a same plane without etching, a bottom etching portion is formed on an inner support bar provided on a rear end, except for a bond finger provided on a front end to which wire is bonded, among a bottom area of the inner lead, and simultaneously, a first stiffness reinforcing portion is integrally formed on a bottom of the connecting bar that corresponds to the inner support bar in a straight line, a bottom of the outer lead and a bottom of the connecting bar that corresponds to a rear portion of the outer lead in a straight line form a same plane without etching, a second stiffness reinforcing portion is formed throughout an outer support bar of the rear end and a top of the connecting bar following the outer support bar, except for the bond finger of the front end to which the wire is bonded, on a top of the outer lead. In some embodiments, the stiffness reinforcing structures can be formed by leaving predetermined parts or predetermined portions of the micro lead frame at full thickness compared to related micro lead frames, such as micro lead frame 70.
In some embodiments, micro lead frame 100 comprises inner leads 10 and outer leads 20 with inner leads 10 being longer than outer leads 20. The inner and outer leads 10 and 20 are arranged on all sides of a chip mounting plate 32 in such a way as to be adjacent thereto or in spaced relationship therewith, and are arranged in a staggered manner at a fine pitch (e.g., in some embodiments between about 0.25 millimeter (mm) and about 0.85 mm). Integrally connected to die pad 32 is a plurality of tie bars 34. In some embodiments, micro lead frame 100 includes four tie bars 34 that extend diagonally from respective ones of the four corner regions defined by die pad 32 and are integrally connected to side frames 30. In one embodiment, tie bars 34 are identically configured to each other, and extend diagonally outwardly at predetermined lengths from respective ones of the corner regions of the die pad 32, with the integral connection of tie bars 34 to side frames 30 effectively supporting the die pad 32 within the interior of micro lead frame 100.
As further illustrated in
Side frames 30 are integrally connected to connecting bars 40, which circumvent and are spaced apart from die pad 32. In some embodiments of micro lead frame 100, connecting bars 40 are provided in the form of a substantially quadrangular (e.g., square) ring which interconnects to side frames 30. In some embodiments, connecting bars 40 define four peripheral segments that extend in spaced, generally parallel relation to respective ones of the peripheral edge segments of die pad 32. In a fabrication process for electronic package 200, which will be described in more detail below, connecting bars 40 are singulated or removed from micro lead frame 100 to electrically isolate other structural features of micro lead frame 100 from each other.
In one embodiment, inner leads 10 are preferably segregated into four (4) sets, with each set of the inner leads 10 extending generally perpendicularly from a corresponding one of the peripheral segments of connecting bars 40 inwardly toward a respective one of the peripheral edge segments of die pad 32. Each of inner leads 10 is sized such that the inner, proximate end thereof is spaced a predetermined distance from the corresponding peripheral edge segment of die pad 32. From the cross-sectional view illustrated in
In
As illustrated in
In accordance with the present embodiment and illustrated in
It is understood that stiffness reinforcing portions 61 can have other shapes and forms configured to increase the stiffness or rigidness of inner leads 10. In some embodiments, the portion of the connecting bar 40 on which stiffness reinforcing portions 61 are formed has the full thickness in the same manner as bond fingers 11 of inner leads 10. In other embodiments, stiffness reinforcing portions 61 can have a thickness exceeding the full thickness of micro lead frame 100, thus increasing stiffness. Thus, in accordance with the present embodiments, portions of connecting bars 40 that adjoin the distal ends of inner support bars 12 where first stiffness reinforcing portions 61 are formed having the full thickness in the same manner as bond fingers 11 of inner leads 10 and in some embodiments having the original thickness of micro lead frame 100. This increases the stiffness or rigidity of inner leads 10 compared to related micro lead frames. In accordance with the present embodiment, stiffness reinforcing portions 61 are configured to reduce the likelihood that inner leads 10 are deformed in subsequent processing. Specifically, this configuration reduces the likelihood that inner leads 10 are vertically tilted and deformed during subsequent processing such as during sawing or singulation processes.
In related micro lead frame 70 and as shown in
Micro lead frame 100 further includes a plurality of outer leads 20. Like inner leads 10, in one embodiment outer leads 20 are segregated into four (4) sets, with each set of outer leads 20 extending generally perpendicularly from a corresponding one of the peripheral segments of each connecting bar 40 toward a respective one of the peripheral edge segments of the die pad 32. Each of outer leads 20 is sized such that the inner, proximate end thereof is spaced a predetermined distance from the corresponding peripheral edge segment of die pad 32. From the cross-sectional view illustrated in
As is apparent from
As illustrated in
In some embodiments, stiffness reinforcing portions 62 are of the full thickness of micro lead frame 100. Therefore, outer support bars 22 and connecting bars 40 wherein stiffness reinforcing portions 62 are formed have the full thickness in the same manner as bond fingers 21 of outer leads 20, thus increasing the stiffness or rigidity of micro lead frame 100. In other embodiments, stiffness reinforcing portions 62 can have a thickness exceeding the full thickness of the rest of micro lead frame 100. In accordance with the present embodiment, stiffness reinforcing portions 62 are configured to reduce the likelihood that outer leads 20 are deformed in subsequent processing. It is understood that stiffness reinforcing portion 62 can have other shapes and forms that provide a reinforcement effect for outer leads 20 or other sections of micro lead frame 100 as described herein.
In related micro lead frame 70 and as shown in
Electronic package 200 using micro lead frame 100 of the present embodiment can be manufactured as illustrated in
An electronic chip 50, such as a semiconductor chip can be attached to die pad 32, using, for example, an epoxy that can be thermally and/or electrically conductive. In some embodiments, bonding pads on electronic chip 50 are connected to bond fingers 11 of inner leads 10 using an electrically conductive wire 52, and connected to bond fingers 21 of outer leads 20 using other electrically conductive wires 52. In one embodiment, conductive wires 52 can be gold. In other embodiments, conductive wires 52 can be copper or other conductive materials as known to those of ordinary skill in the art. In some embodiments, a molding process, such as an over-molding process, can be used to encapsulate or seal electronic chip 50, conductive wires 52, and portions of inner leads 10 and outer leads 20 with molding compound resin to form a package body 54. In some embodiments, a singulation process, such as a sawing process, is used to separate the electronic packages from a matrix of micro lead frames 100 along separation or singulation lines 42. As illustrated in
In some embodiments, during the sawing process the saw blade moves along the singulation lines 42 to remove the molding compound resin molded within singulation lines 42 as well as connecting bars 40 so that electronic packages are separated into individual units. In some embodiments, the bottom surfaces of bond fingers 11 and bond fingers 21 remain or are exposed outside of the package body and reside substantially on the same plane as bottom surface 542 of package body 54, so as to provide means for bringing electrical signals into and out of electronic device 200 and to dissipate heat. Further, in some embodiments, bottom surface 112 of die pad 32 is also exposed outside of the package body to provide obtain a heat dissipating effect.
From all of the foregoing, one skilled in the art can determine that according to one embodiment, an electronic packaged device (for example, element 200) comprises a die pad (for example, element 32) having peripheral edge segments. A plurality of first leads (for example, element 10) is segregated into at least two sets that extend along respective ones of at least two peripheral edge segments of the die pad in spaced relation thereto, wherein each first lead includes a first bond finger (for example, element 11) proximate to the die pad and a first support bar (for example, element 12) extending outward from a distal end of the first bond finger in a direction away from the die pad, and wherein the first support bar includes a recessed bottom surface (for example, element 60). A plurality of second leads (for example, element 20) is segregated into at least two sets that extend along the respective ones of at least two peripheral edge segments of the die pad in spaced relation thereto, wherein each second lead includes a second bond finger (for example, element 21) proximate to the die pad and a second support bar (for example, element 22) extending outward from a distal end of the second bond finger in a direction away from the bond pad, and wherein the second support bar is shorter than the first support bar, and wherein the second support bar includes a stiffness reinforcing structure (for example, element 62) extending along a top surface that is configured to reduce movement of the second lead during assembly. An electronic die (for example, element 50) is attached to the die pad and electrically connected to at least some of the first leads and the second leads. A package body (for example, element 54) defines generally planar bottom and side surfaces (for example, elements 542, 541), the package body at least partially encapsulating the first leads, the second leads and the electronic die such that at least portions of the first leads and at least portions of the second leads are exposed in the bottom and side surfaces of the package body.
In another embodiment of the electronic packaged device, at least a portion of the stiffness reinforcing structure (for example, element 62) can be exposed in a side surface (for example, element 541) of the package body. In a further, embodiment the stiffness reinforcing structure can comprise an inverted T-shape in a cross-sectional view (for example, element 500) that is narrow at an upper portion (for example, element 501) and wide at a lower portion (for example, element 502). In another embodiment, the second support bar having the inverted T-shape cross-section can be exposed in a side surface (for example, element 541) of the package body. In a further embodiment, the first support bar has a top surface (for example, element 121) that is devoid of a stiffness reinforcing structure, the first bond finger has a recessed portion (for example, element 211) on an end proximate to the die pad, and the second bond finger has a recessed portion (for example, element 221) on an end proximate to the die pad. In another embodiment the first support bar can have a first cross-sectional shape in an end view, and the second support bar can have a view second cross-sectional shape in an end view that is different than the first cross-sectional shape. In yet another embodiment, the second cross-sectional shape is other than a square shape or a rectangular shape. In a further embodiment, the first bond finger and the second bond finger reside substantially on the same plane. In a still further embodiment, the stiffness reinforcing structure is defined by two opposed and spaced apart recessed portions (for example, element 63) in the second support bar. In a further embodiment, the first bond finger and the second bond finger can be spaced having a pitch less than approximately 0.85 millimeters, the first bond finger and the second bond finger can have a thickness less than approximately 0.25 millimeters, and the electronic packaged device is configured as a near chip scale packaged device.
Those skilled in the art will also appreciate that according to another embodiment, a method for forming an electronic packaged device (for example, element 200) includes providing a lead frame (for example, element 100) comprising: a die pad (for example, element 32), a connecting bar (for example, element 40) spaced apart from a peripheral edge segment of the die pad and generally parallel to the peripheral edge segment, a plurality of first leads (for example, element 10) that extend along the peripheral edge segment in spaced relation thereto, each first lead comprising: a first bond finger (for example, element 11) proximate to the die pad, and a first support bar (for example, element 12) extending from a distal end of the first bond finger and integrally connected to the connecting bar, the first support bar having a recessed bottom surface (for example, element 60), and a plurality of second leads (for example, element 20) that extend along the peripheral edge segment in spaced relation thereto, each second lead comprising: a second bond finger (for example, element 21) proximate to the die pad, and a second support bar (for example, element 22) extending outward from a distal end of the second bond finger of the second bond finger and integrally connected to the connecting bar, the second support bar having shorter length than the first support bar, wherein the connecting bar has a first stiffness reinforcing structure (for example, element 61) at a predetermined location on a bottom surface proximate to a distal end of the first support bar, and the second support bar includes a second stiffness reinforcing structure (for example, element 62) extending along a predetermined location of a top surface. The method includes attaching an electronic die (for example, element 50) to the die pad. The method includes forming a package body (for example, element 54) defining a generally planar bottom surface (for example, element 542), the package body at least partially encapsulating the first leads, the second leads and the electronic die such that at least portions of the first leads and portions of the second leads are exposed in the bottom surface of the package body. The method includes removing the connecting bar, wherein the first stiffness reinforcing structure and second stiffness reinforcing structure are configured to reduce movement of the first leads and the second leads during the removing step, and wherein the second stiffness reinforcing structure is exposed in a side surface (for example, element 541) of the package body after the removing step.
Those skilled in the art will also appreciate that according to a further embodiment of the described method, removing the connecting bar includes removing the first stiffness reinforcing structure. In a further embodiment, the method can include providing the first stiffness reinforcing structure comprising a rectangular flat plate (for example, element 64) with at least one protrusion (for example, element 65) extending from the flat plate onto a portion of the first support bar adjoining the connecting bar, providing the first bond finger and the second bond finger having thickness less than about 0.25 millimeters, and sawing the connecting bar. In yet a further embodiment, the method can include providing the second stiffness reinforcing structure extending only partially onto the connecting bar so that a portion of the connecting bar (for example, element 67) has a full thickness adjacent the second inner connect bar. In a still further embodiment, the method can include providing the second stiffness reinforcing structure having an inverted T-shape (for example, element 500) in a cross-sectional view.
Those skilled in the art will also appreciate that according to another embodiment, an electronic packaged device (for example, element 200) comprises: a die pad (for example, element 32) having a peripheral edge segment; a first lead (for example, element 10) along the peripheral edge segment in spaced relation thereto, wherein the first lead comprises: a first bond finger (for example, element 11) proximate to the die pad, and a first support bar (for example, element 12) extending from a distal end of the first bond finger in a direction away the die pad, wherein the first support bar includes a recessed bottom surface (for example, element 60). A second lead (for example, element 20) is along the peripheral edge segment in spaced relation thereto, wherein the second lead comprises: a second bond finger (for example, element 21) proximate to the die pad, and a second support bar (for example, element 22) extending from a distal end of the second bond finger in a direction away from the die pad, wherein the second support bar is shorter than the first support bar, and the second support bar includes a stiffness reinforcing structure (for example, element 62) along a top surface (for example, element 231) that is configured to reduce movement of the second leads during assembly. An electronic die (for example, element 50) is attached to the die pad and electrically connected (for example elements 52) to the first lead and to the second lead. A package body (for example, element 54) defining a generally planar bottom surface (for example, element 542) and side surfaces (for example, element 541) the package body at least partially encapsulating the first lead, the second lead, and the electronic die such that at least portions of the first bond finger and at least portions of the second bond finger are exposed in the bottom surface and the side surfaces of the package body, and wherein at least a portion of the stiffness reinforcing structure is exposed in one of the side surfaces.
Those skilled in the art will also appreciate that according to a further embodiment of the described structure, the stiffness reinforcing structure is bounded on two sides by recessed regions (for example, element 63) formed along the top surface of the second support bar. In another embodiment, a distal end of the second support bar is exposed in a side surface of the package body and has a first cross-sectional shape; a distal end of the first support bar is exposed in the side surface adjacent to the second support bar and has a second cross-sectional shape; and the first cross-sectional shape is different than the second cross-sectional shape. In a further embodiment, the first cross-sectional shape is an inverted T-shape (for example, element 500). In a still further embodiment, at least a portion of the die pad (for example, element 112) is exposed in the bottom surface of the package body; the first cross-sectional shape is a shape other than a square shape or a rectangle shape; the first support bar has a top surface devoid of a stiffness reinforcing structure; the first bond finger has a recessed portion (for example, element 211) on an end proximate to the die pad; and the second bond finger has a recessed portion (for example, element 221) on an end proximate to the die pad. In a further embodiment, the stiffness reinforcing structure is placed at predetermined portions of the lead frame.
Those skilled in the art will appreciate that according to a still further embodiment, A micro lead frame (for example, element 100) with a stiffness reinforcing portion formed and predetermined locations thereon (for example, element 61, 62), comprises: a plurality of long inner leads (for example, element 10) and shorter outer leads (for example, element 20) are provided around a chip mounting plate (for example, element 32), to which a semiconductor chip (for example, element 50) is attached, in a staggered arrangement, with a connecting bar (for example, element 40) integrally connecting the respective inner and outer leads prior to sawing, wherein tops of the inner leads form a same plane without etching, a bottom etching portion (for example, element 60) is formed on an inner support bar provided on a rear end, except for a bond finger (for example, element 11) provided on a front end to which wire (for example, element 52) is bonded, among a bottom area of the inner lead, and simultaneously, a first stiffness reinforcing portion (for example, element 61) is integrally formed on a bottom of the connecting bar that corresponds to the inner support bar in a straight line, a bottom of the outer lead and a bottom of the connecting bar that corresponds to a rear portion of the outer lead in a straight line form a same plane without etching, a second stiffness reinforcing portion (for example, element 62) is formed throughout an outer support bar (for example, element 22) of the rear end and a top of the connecting bar following the outer support bar, except for the bond finger (for example, element 21) of the front end to which the wire (for example, element 52) is bonded, on a top of the outer lead.
In another embodiment of the described the structure, the connecting bar on which the first stiffness reinforcing portion is formed has a full thickness in a same manner as the bond finger of the inner lead having the full thickness, or has a thickness exceeding the full thickness. In a further embodiment, the first stiffness reinforcing portion comprises a rectangular flat plate (for example, element 64), and several protrusions (for example, element 65) extending from upper and lower portions of the flat plate. In a still further embodiment, the outer support bar provided on the rear end of the outer lead on which the second stiffness reinforcing portion is formed and the connecting bar following the outer support bar have a full thickness in a same manner as the bond finger of the outer lead having the full thickness, or having a thickness exceeding the full thickness. In yet another embodiment, the second stiffness reinforcing portion comprises a vertical bar (for example, element 67) extending from the outer support bar of the outer lead to a central portion of the connecting bar, and a horizontal bar (for example, element 66) perpendicularly intersecting the vertical bar in a cross form. In another embodiment, top etching portions (for example, element 63) are formed on left and right sides of the vertical bar of the second stiffness reinforcing portion and upper and lower sides of the horizontal bar thereof. In a further embodiment, the top etching portions allow the outer support bar of the outer lead and the connecting bar following the outer support bar, on which the second stiffness reinforcing portion is formed, to have an inverted T-shaped cross-section (for example, element 500), which is narrow at an upper position (for example, element 501) and wide at a lower position (for example, element 502).
In view of all the above, it is evident that a novel structure and method is disclosed. Included in one embodiment, among other features, is a micro lead frame having stiffness reinforcing structures placed at predetermined locations on connective bars and/or lead structures. The stiffness reinforcement structures are configured to reduce deformation of the leads (for example, shifting, bending or tilting defects) during assembly. Additionally, the stiffness reinforcing structures can be formed with cross-sectional shapes that reduce electrical shorting defects caused by burr formation during singulation processes. Among other things, this improves the reliability of electronic devices assembled into micro lead frame or near chip scale packages. In some embodiments, the stiffness reinforcement structures are formed at predetermined locations on the micro lead frame by maintaining portions of the connecting bar and the leads at full thickness compared to related micro lead frames that include recessed portions on all portions of the lead support bars and all portions of the connecting bars that adjoin the lead support bars. Additionally, the shapes and predetermined locations of the stiffness reinforcing structures as described herein do not detrimentally impact the singulation process used to remove the connecting bars. For example, saw blade life is not notably reduced.
While the subject matter of the invention is described with specific preferred embodiments and example embodiments, the foregoing drawings and descriptions thereof depict only typical embodiments of the subject matter, and are not therefore to be considered limiting of its scope. It is evident that many alternatives and variations will be apparent to those skilled in the art. For example, an outer portion of the die pad can recessed or half-etched and portions of the leads can be pulled back from the side surface of the package body. The portions that are pulled back can be filled with epoxy mold compound or can be exposed. Also, package body 54 can be formed by overmolding and saw-through techniques, formed by cavity molding and punch techniques, or formed by other techniques as known to those of ordinary skill in the art.
As the claims hereinafter reflect, inventive aspects may lie in less than all features of a single foregoing disclosed embodiment. Thus, the hereinafter expressed claims are hereby expressly incorporated into this Detailed Description of the Drawings, with each claim standing on its own as a separate embodiment of the invention. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and form different embodiments, as would be understood by those skilled in the art.
The present application is a continuation application of U.S. Ser. No. 14/268,877 filed on May 2, 2014, entitled MICRO LEAD FRAME STRUCTURE HAVING REINFORCING PORTIONS AND METHOD and issued as U.S. Pat. No. 9,184,118 on Nov. 10, 2015, which claims priority to Korean Patent Application No. 10-2013-0049217 filed on May 2, 2013, which are expressly incorporated by reference herein in their entirety to provide continuity of disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2596993 | Gookin | May 1952 | A |
3435815 | Forcier | Apr 1969 | A |
3734660 | Davies et al. | May 1973 | A |
3838984 | Crane et al. | Oct 1974 | A |
4054238 | Lloyd et al. | Oct 1977 | A |
4189342 | Kock | Feb 1980 | A |
4221925 | Finley et al. | Sep 1980 | A |
4258381 | Inaba et al. | Mar 1981 | A |
4289922 | Devlin | Sep 1981 | A |
4301464 | Otsuki et al. | Nov 1981 | A |
4332537 | Slepcevic | Jun 1982 | A |
4417266 | Grabbe et al. | Nov 1983 | A |
4451224 | Harding et al. | May 1984 | A |
4530152 | Roche et al. | Jul 1985 | A |
4541003 | Otsuka et al. | Sep 1985 | A |
4646710 | Schmid et al. | Mar 1987 | A |
4707724 | Suzuki et al. | Nov 1987 | A |
4727633 | Herrick et al. | Mar 1988 | A |
4737839 | Burt et al. | Apr 1988 | A |
4756080 | Thorp et al. | Jul 1988 | A |
4812896 | Rothgery | Mar 1989 | A |
4862245 | Pashby et al. | Aug 1989 | A |
4862246 | Masuda et al. | Aug 1989 | A |
4907067 | Derryberry et al. | Mar 1990 | A |
4920074 | Shimizu et al. | Apr 1990 | A |
4935803 | Kalfus et al. | Jun 1990 | A |
4942454 | Mori et al. | Jul 1990 | A |
4987475 | Schlesinger et al. | Jan 1991 | A |
5018003 | Yasunaga et al. | May 1991 | A |
5029386 | Chao et al. | Jul 1991 | A |
5041902 | McShane et al. | Aug 1991 | A |
5057900 | Yamazaki et al. | Oct 1991 | A |
5059379 | Tsutsumi et al. | Oct 1991 | A |
5065223 | Matsuki et al. | Nov 1991 | A |
5070039 | Johnson et al. | Dec 1991 | A |
5087961 | Long et al. | Feb 1992 | A |
5091341 | Asada et al. | Feb 1992 | A |
5096852 | Hobson et al. | Mar 1992 | A |
5118298 | Murphy | Jun 1992 | A |
5122860 | Kikuchi et al. | Jun 1992 | A |
5134773 | LeMaire et al. | Aug 1992 | A |
5151039 | Murphy | Sep 1992 | A |
5157475 | Yamaguchi et al. | Oct 1992 | A |
5157480 | McShane et al. | Oct 1992 | A |
5168368 | Gow et al. | Dec 1992 | A |
5172213 | Zimmerman et al. | Dec 1992 | A |
5172214 | Casto et al. | Dec 1992 | A |
5175060 | Enomoto et al. | Dec 1992 | A |
5200362 | Lin et al. | Apr 1993 | A |
5200809 | Kwon et al. | Apr 1993 | A |
5214845 | King et al. | Jun 1993 | A |
5216278 | Lin et al. | Jun 1993 | A |
5218231 | Kudo et al. | Jun 1993 | A |
5221642 | Burns et al. | Jun 1993 | A |
5250841 | Sloan et al. | Oct 1993 | A |
5252853 | Michii et al. | Oct 1993 | A |
5258094 | Furui et al. | Nov 1993 | A |
5266834 | Nishi et al. | Nov 1993 | A |
5273938 | Lin et al. | Dec 1993 | A |
5277972 | Sakumoto | Jan 1994 | A |
5278446 | Nagaraj et al. | Jan 1994 | A |
5279029 | Burns et al. | Jan 1994 | A |
5281849 | Singh Deo et al. | Jan 1994 | A |
5285352 | Pastore et al. | Feb 1994 | A |
5294897 | Notani et al. | Mar 1994 | A |
5327008 | Djennas et al. | Jul 1994 | A |
5332864 | Liang et al. | Jul 1994 | A |
5335771 | Murphy et al. | Aug 1994 | A |
5336931 | Juskey et al. | Aug 1994 | A |
5343076 | Katayama et al. | Aug 1994 | A |
5358905 | Chiu et al. | Oct 1994 | A |
5365106 | Watanabe et al. | Nov 1994 | A |
5381042 | Lerner et al. | Jan 1995 | A |
5391439 | Tomita et al. | Feb 1995 | A |
5406124 | Morita et al. | Apr 1995 | A |
5410180 | Fujii et al. | Apr 1995 | A |
5414299 | Wang et al. | May 1995 | A |
5417905 | Lemaire et al. | May 1995 | A |
5424576 | Djennas et al. | Jun 1995 | A |
5428248 | Cha et al. | Jun 1995 | A |
5435057 | Bindra et al. | Jul 1995 | A |
5444301 | Song et al. | Aug 1995 | A |
5452511 | Chang | Sep 1995 | A |
5454905 | Fogelson | Oct 1995 | A |
5467032 | Lee | Nov 1995 | A |
5474958 | Djennas et al. | Dec 1995 | A |
5484274 | Neu et al. | Jan 1996 | A |
5493151 | Asada et al. | Feb 1996 | A |
5508556 | Lin et al. | Apr 1996 | A |
5517056 | Bigler et al. | May 1996 | A |
5521429 | Aono et al. | May 1996 | A |
5528076 | Pavio et al. | Jun 1996 | A |
5534467 | Rostoker et al. | Jul 1996 | A |
5539251 | Iverson et al. | Jul 1996 | A |
5543657 | Diffenderfer et al. | Aug 1996 | A |
5544412 | Romero et al. | Aug 1996 | A |
5545923 | Barber et al. | Aug 1996 | A |
5581122 | Chao et al. | Dec 1996 | A |
5592019 | Ueda et al. | Jan 1997 | A |
5592025 | Clark et al. | Jan 1997 | A |
5594274 | Suetaki et al. | Jan 1997 | A |
5595934 | Kim et al. | Jan 1997 | A |
5604376 | Hamburgen et al. | Feb 1997 | A |
5608265 | Kitano et al. | Mar 1997 | A |
5608267 | Mahulikar et al. | Mar 1997 | A |
5625222 | Yoneda et al. | Apr 1997 | A |
5633528 | Abbott | May 1997 | A |
5637922 | Fillion et al. | Jun 1997 | A |
5639990 | Nishihara et al. | Jun 1997 | A |
5640047 | Nakashima et al. | Jun 1997 | A |
5641997 | Ohta et al. | Jun 1997 | A |
5643433 | Fukase et al. | Jul 1997 | A |
5644169 | Chun et al. | Jul 1997 | A |
5646831 | Manteghi et al. | Jul 1997 | A |
5650663 | Parthasarathi et al. | Jul 1997 | A |
5661088 | Tessier et al. | Aug 1997 | A |
5665996 | Williams et al. | Sep 1997 | A |
5673479 | Hawthorne et al. | Oct 1997 | A |
5683806 | Sakumoto et al. | Nov 1997 | A |
5683943 | Yamada et al. | Nov 1997 | A |
5689135 | Ball et al. | Nov 1997 | A |
5696666 | Miles et al. | Dec 1997 | A |
5701034 | Marrs et al. | Dec 1997 | A |
5703407 | Hori et al. | Dec 1997 | A |
5710064 | Song et al. | Jan 1998 | A |
5723899 | Shin et al. | Mar 1998 | A |
5724233 | Honda et al. | Mar 1998 | A |
5726493 | Yamashita et al. | Mar 1998 | A |
5736432 | Mackessy et al. | Apr 1998 | A |
5745984 | Cole et al. | May 1998 | A |
5753532 | Sim et al. | May 1998 | A |
5753977 | Kusaka et al. | May 1998 | A |
5766972 | Takahashi et al. | Jun 1998 | A |
5767566 | Suda et al. | Jun 1998 | A |
5770888 | Song et al. | Jun 1998 | A |
5776798 | Quan et al. | Jul 1998 | A |
5783861 | Son et al. | Jul 1998 | A |
5801440 | Chu et al. | Sep 1998 | A |
5814877 | Diffenderfer et al. | Sep 1998 | A |
5814881 | Alagaratnam et al. | Sep 1998 | A |
5814883 | Sawai et al. | Sep 1998 | A |
5814884 | Davis | Sep 1998 | A |
5817540 | Wark | Oct 1998 | A |
5818105 | Kouda et al. | Oct 1998 | A |
5821457 | Mosley et al. | Oct 1998 | A |
5821615 | Lee et al. | Oct 1998 | A |
5834830 | Cho et al. | Nov 1998 | A |
5835988 | Ishii et al. | Nov 1998 | A |
5844306 | Fujita et al. | Dec 1998 | A |
5854511 | Shin et al. | Dec 1998 | A |
5854512 | Manteghi et al. | Dec 1998 | A |
5856911 | Riley et al. | Jan 1999 | A |
5859471 | Kuraishi et al. | Jan 1999 | A |
5866939 | Shin et al. | Feb 1999 | A |
5866942 | Suzuki et al. | Feb 1999 | A |
5871782 | Choi | Feb 1999 | A |
5874784 | Aoki et al. | Feb 1999 | A |
5877043 | Alcoe et al. | Mar 1999 | A |
5886397 | Ewer et al. | Mar 1999 | A |
5909053 | Fukase | Jun 1999 | A |
5973935 | Schoenfeld et al. | Oct 1999 | A |
5977630 | Woodworth et al. | Nov 1999 | A |
RE36773 | Nomi et al. | Jul 2000 | E |
6107679 | Noguchi et al. | Aug 2000 | A |
6143981 | Glenn et al. | Nov 2000 | A |
6150709 | Shin et al. | Nov 2000 | A |
6166430 | Yamaguchi et al. | Dec 2000 | A |
6169329 | Farnworth et al. | Jan 2001 | B1 |
6177718 | Kozono | Jan 2001 | B1 |
6181002 | Juso et al. | Jan 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6184573 | Pu | Feb 2001 | B1 |
6194777 | Abbott et al. | Feb 2001 | B1 |
6197615 | Song et al. | Mar 2001 | B1 |
6198171 | Huang et al. | Mar 2001 | B1 |
6201186 | Daniels et al. | Mar 2001 | B1 |
6201292 | Yagi et al. | Mar 2001 | B1 |
6204554 | Ewer et al. | Mar 2001 | B1 |
6208020 | Minamio et al. | Mar 2001 | B1 |
6208021 | Ohuchi et al. | Mar 2001 | B1 |
6208023 | Nakayama et al. | Mar 2001 | B1 |
6211462 | Carter, Jr. et al. | Apr 2001 | B1 |
6218731 | Huang et al. | Apr 2001 | B1 |
6222258 | Asano et al. | Apr 2001 | B1 |
6222259 | Park et al. | Apr 2001 | B1 |
6225146 | Yamaguchi et al. | May 2001 | B1 |
6229200 | Mclellan et al. | May 2001 | B1 |
6229205 | Jeong et al. | May 2001 | B1 |
6238952 | Lin | May 2001 | B1 |
6239367 | Hsuan et al. | May 2001 | B1 |
6239384 | Smith et al. | May 2001 | B1 |
6242281 | Mclellan et al. | Jun 2001 | B1 |
6256200 | Lam et al. | Jul 2001 | B1 |
6258629 | Niones et al. | Jul 2001 | B1 |
6261864 | Jung et al. | Jul 2001 | B1 |
6281566 | Magni | Aug 2001 | B1 |
6281568 | Glenn et al. | Aug 2001 | B1 |
6282094 | Lo et al. | Aug 2001 | B1 |
6282095 | Houghton et al. | Aug 2001 | B1 |
6285075 | Combs et al. | Sep 2001 | B1 |
6291271 | Lee et al. | Sep 2001 | B1 |
6291273 | Miyaki et al. | Sep 2001 | B1 |
6294100 | Fan et al. | Sep 2001 | B1 |
6294830 | Fjelstad | Sep 2001 | B1 |
6295977 | Ripper et al. | Oct 2001 | B1 |
6297548 | Moden et al. | Oct 2001 | B1 |
6303984 | Corisis | Oct 2001 | B1 |
6303997 | Lee | Oct 2001 | B1 |
6306685 | Liu et al. | Oct 2001 | B1 |
6307272 | Takahashi et al. | Oct 2001 | B1 |
6309909 | Ohgiyama | Oct 2001 | B1 |
6316822 | Venkateshwaran et al. | Nov 2001 | B1 |
6316838 | Ozawa et al. | Nov 2001 | B1 |
6323550 | Martin et al. | Nov 2001 | B1 |
6326243 | Suzuya et al. | Dec 2001 | B1 |
6326244 | Brooks et al. | Dec 2001 | B1 |
6326678 | Karnezos et al. | Dec 2001 | B1 |
6335564 | Pour | Jan 2002 | B1 |
6337510 | Chun-Jen et al. | Jan 2002 | B1 |
6339252 | Niones et al. | Jan 2002 | B1 |
6339255 | Shin | Jan 2002 | B1 |
6342730 | Jung et al. | Jan 2002 | B1 |
6348726 | Bayan et al. | Feb 2002 | B1 |
6355502 | Kang et al. | Mar 2002 | B1 |
6359221 | Yamada et al. | Mar 2002 | B1 |
6362525 | Rahim | Mar 2002 | B1 |
6369447 | Mori | Apr 2002 | B2 |
6369454 | Chung | Apr 2002 | B1 |
6373127 | Baudouin et al. | Apr 2002 | B1 |
6377464 | Hashemi et al. | Apr 2002 | B1 |
6380048 | Boon et al. | Apr 2002 | B1 |
6384472 | Huang | May 2002 | B1 |
6388336 | Venkateshwaran et al. | May 2002 | B1 |
6395578 | Shin et al. | May 2002 | B1 |
6399415 | Bayan et al. | Jun 2002 | B1 |
6400004 | Fan et al. | Jun 2002 | B1 |
6410979 | Abe | Jun 2002 | B2 |
6414385 | Huang et al. | Jul 2002 | B1 |
6420779 | Sharma et al. | Jul 2002 | B1 |
6421013 | Chung | Jul 2002 | B1 |
6423643 | Furuhata et al. | Jul 2002 | B1 |
6429508 | Gang | Aug 2002 | B1 |
6437429 | Su et al. | Aug 2002 | B1 |
6444499 | Swiss et al. | Sep 2002 | B1 |
6448633 | Yee et al. | Sep 2002 | B1 |
6452279 | Shimoda | Sep 2002 | B2 |
6459148 | Chun-Jen et al. | Oct 2002 | B1 |
6464121 | Reijnders | Oct 2002 | B2 |
6465883 | Olofsson | Oct 2002 | B2 |
6472735 | Isaak | Oct 2002 | B2 |
6475646 | Park et al. | Nov 2002 | B2 |
6476469 | Hung et al. | Nov 2002 | B2 |
6476474 | Hung | Nov 2002 | B1 |
6482680 | Khor et al. | Nov 2002 | B1 |
6483178 | Chuang | Nov 2002 | B1 |
6492718 | Ohmori | Dec 2002 | B2 |
6495909 | Jung et al. | Dec 2002 | B2 |
6498099 | McLellan et al. | Dec 2002 | B1 |
6498392 | Azuma | Dec 2002 | B2 |
6501165 | Farnworth et al. | Dec 2002 | B1 |
6507096 | Gang | Jan 2003 | B2 |
6507120 | Lo et al. | Jan 2003 | B2 |
6518089 | Coyle | Feb 2003 | B2 |
6525942 | Huang et al. | Feb 2003 | B2 |
6528893 | Jung et al. | Mar 2003 | B2 |
6534849 | Gang | Mar 2003 | B1 |
6545332 | Huang | Apr 2003 | B2 |
6545345 | Glenn et al. | Apr 2003 | B1 |
6552421 | Kishimoto et al. | Apr 2003 | B2 |
6559525 | Huang | May 2003 | B2 |
6566168 | Gang | May 2003 | B2 |
6580161 | Kobayakawa | Jun 2003 | B2 |
6583503 | Akram et al. | Jun 2003 | B2 |
6585905 | Fan et al. | Jul 2003 | B1 |
6603196 | Lee et al. | Aug 2003 | B2 |
6624005 | DiCaprio et al. | Sep 2003 | B1 |
6627977 | Foster | Sep 2003 | B1 |
6646339 | Ku et al. | Nov 2003 | B1 |
6667546 | Huang et al. | Dec 2003 | B2 |
6677663 | Ku et al. | Jan 2004 | B1 |
6686649 | Mathews et al. | Feb 2004 | B1 |
6696752 | Su et al. | Feb 2004 | B2 |
6700189 | Shibata | Mar 2004 | B2 |
6713375 | Shenoy | Mar 2004 | B2 |
6757178 | Okabe et al. | Jun 2004 | B2 |
6800936 | Kosemura et al. | Oct 2004 | B2 |
6812552 | Islam et al. | Nov 2004 | B2 |
6818973 | Foster | Nov 2004 | B1 |
6838761 | Karnezos | Jan 2005 | B2 |
6858919 | Seo et al. | Feb 2005 | B2 |
6861288 | Shim et al. | Mar 2005 | B2 |
6867492 | Auburger et al. | Mar 2005 | B2 |
6876068 | Lee et al. | Apr 2005 | B1 |
6878571 | Isaak et al. | Apr 2005 | B2 |
6897552 | Nakao | May 2005 | B2 |
6906416 | Karnezos | Jun 2005 | B2 |
6927478 | Paek | Aug 2005 | B2 |
6933598 | Karnezos | Aug 2005 | B2 |
6946323 | Heo | Sep 2005 | B1 |
6967125 | Fee et al. | Nov 2005 | B2 |
6972481 | Karnezos | Dec 2005 | B2 |
6995459 | Lee et al. | Feb 2006 | B2 |
7002805 | Lee et al. | Feb 2006 | B2 |
7005327 | Kung et al. | Feb 2006 | B2 |
7015571 | Chang et al. | Mar 2006 | B2 |
7034387 | Karnezos | Apr 2006 | B2 |
7045396 | Crowley et al. | May 2006 | B2 |
7045887 | Karnezos | May 2006 | B2 |
7049691 | Karnezos | May 2006 | B2 |
7053469 | Koh et al. | May 2006 | B2 |
7053476 | Karnezos | May 2006 | B2 |
7053477 | Karnezos et al. | May 2006 | B2 |
7057269 | Karnezos | Jun 2006 | B2 |
7061088 | Karnezos | Jun 2006 | B2 |
7064426 | Karnezos | Jun 2006 | B2 |
7075816 | Fee et al. | Jul 2006 | B2 |
7101731 | Karnezos | Sep 2006 | B2 |
7102209 | Bayan et al. | Sep 2006 | B1 |
7109572 | Fee et al. | Sep 2006 | B2 |
7166494 | Karnezos | Jan 2007 | B2 |
7169642 | Karnezos | Jan 2007 | B2 |
7185426 | Hiner et al. | Mar 2007 | B1 |
7193298 | Hong et al. | Mar 2007 | B2 |
7202554 | Kim et al. | Apr 2007 | B1 |
7205647 | Karnezos | Apr 2007 | B2 |
7211471 | Foster | May 2007 | B1 |
7245007 | Foster | Jul 2007 | B1 |
7247519 | Karnezos et al. | Jul 2007 | B2 |
7253503 | Fusaro et al. | Aug 2007 | B1 |
7253511 | Karnezos et al. | Aug 2007 | B2 |
7271496 | Kim | Sep 2007 | B2 |
7279361 | Karnezos | Oct 2007 | B2 |
7288434 | Karnezos | Oct 2007 | B2 |
7288835 | Yim et al. | Oct 2007 | B2 |
7298037 | Yim et al. | Nov 2007 | B2 |
7298038 | Filoteo, Jr. et al. | Nov 2007 | B2 |
7306973 | Karnezos | Dec 2007 | B2 |
7312519 | Song et al. | Dec 2007 | B2 |
7375416 | Retuta et al. | May 2008 | B2 |
7982298 | Kang et al. | Jul 2011 | B1 |
8106495 | Kajiki | Jan 2012 | B2 |
9184118 | Jeon | Nov 2015 | B2 |
20010008305 | McLellan et al. | Jul 2001 | A1 |
20010014538 | Kwan et al. | Aug 2001 | A1 |
20020011654 | Kimura | Jan 2002 | A1 |
20020024122 | Jung et al. | Feb 2002 | A1 |
20020027297 | Ikenaga et al. | Mar 2002 | A1 |
20020038873 | Hiyoshi | Apr 2002 | A1 |
20020072147 | Sayanagi et al. | Jun 2002 | A1 |
20020111009 | Huang et al. | Aug 2002 | A1 |
20020140061 | Lee | Oct 2002 | A1 |
20020140068 | Lee et al. | Oct 2002 | A1 |
20020140081 | Chou et al. | Oct 2002 | A1 |
20020158318 | Chen | Oct 2002 | A1 |
20020163015 | Lee et al. | Nov 2002 | A1 |
20020167060 | Buijsman et al. | Nov 2002 | A1 |
20030001244 | Araki et al. | Jan 2003 | A1 |
20030006055 | Chien-Hung et al. | Jan 2003 | A1 |
20030030131 | Lee et al. | Feb 2003 | A1 |
20030059644 | Datta et al. | Mar 2003 | A1 |
20030064548 | Isaak | Apr 2003 | A1 |
20030073265 | Hu et al. | Apr 2003 | A1 |
20030102537 | McLellan et al. | Jun 2003 | A1 |
20030164554 | Fee et al. | Sep 2003 | A1 |
20030168719 | Cheng et al. | Sep 2003 | A1 |
20030178708 | Minamio et al. | Sep 2003 | A1 |
20030198032 | Collander et al. | Oct 2003 | A1 |
20040027788 | Chiu et al. | Feb 2004 | A1 |
20040056277 | Karnezos | Mar 2004 | A1 |
20040061212 | Karnezos | Apr 2004 | A1 |
20040061213 | Karnezos | Apr 2004 | A1 |
20040063242 | Karnezos | Apr 2004 | A1 |
20040063246 | Karnezos | Apr 2004 | A1 |
20040065963 | Karnezos | Apr 2004 | A1 |
20040080025 | Kasahara et al. | Apr 2004 | A1 |
20040089926 | Hsu et al. | May 2004 | A1 |
20040164387 | Ikenaga et al. | Aug 2004 | A1 |
20040253803 | Tomono et al. | Dec 2004 | A1 |
20050184377 | Takeuchi et al. | Aug 2005 | A1 |
20060087020 | Hirano et al. | Apr 2006 | A1 |
20060151858 | Ahn | Jul 2006 | A1 |
20060157843 | Hwang | Jul 2006 | A1 |
20060231928 | Dotta et al. | Oct 2006 | A1 |
20060231939 | Kawabata et al. | Oct 2006 | A1 |
20070023202 | Shibata et al. | Feb 2007 | A1 |
20070152313 | Periaman et al. | Jul 2007 | A1 |
20080142941 | Yew et al. | Jun 2008 | A1 |
20080230887 | Sun et al. | Sep 2008 | A1 |
20080272465 | Do et al. | Nov 2008 | A1 |
20090014851 | Choi et al. | Jan 2009 | A1 |
20090057918 | Kim | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
19734794 | Aug 1997 | DE |
0393997 | Oct 1990 | EP |
0459493 | Dec 1991 | EP |
0720225 | Mar 1996 | EP |
0720234 | Mar 1996 | EP |
0794572 | Oct 1997 | EP |
0844665 | May 1998 | EP |
0936671 | Aug 1999 | EP |
0989608 | Mar 2000 | EP |
1032037 | Aug 2000 | EP |
55163868 | Dec 1980 | JP |
5745959 | Mar 1982 | JP |
58160096 | Aug 1983 | JP |
59208756 | Nov 1984 | JP |
59227143 | Dec 1984 | JP |
60010756 | Jan 1985 | JP |
60116239 | Aug 1985 | JP |
60195957 | Oct 1985 | JP |
60231349 | Nov 1985 | JP |
6139555 | Feb 1986 | JP |
61248541 | Nov 1986 | JP |
629639 | Jan 1987 | JP |
6333854 | Feb 1988 | JP |
63067762 | Mar 1988 | JP |
63188964 | Aug 1988 | JP |
63205935 | Aug 1988 | JP |
63233555 | Sep 1988 | JP |
63249345 | Oct 1988 | JP |
63289951 | Nov 1988 | JP |
63316470 | Dec 1988 | JP |
64054749 | Mar 1989 | JP |
1106456 | Apr 1989 | JP |
1175250 | Jul 1989 | JP |
1205544 | Aug 1989 | JP |
1251747 | Oct 1989 | JP |
2129948 | May 1990 | JP |
369248 | Jul 1991 | JP |
3177060 | Aug 1991 | JP |
3289162 | Dec 1991 | JP |
4098864 | Mar 1992 | JP |
5129473 | May 1993 | JP |
5166992 | Jul 1993 | JP |
5283460 | Oct 1993 | JP |
6061401 | Mar 1994 | JP |
692076 | Apr 1994 | JP |
6140563 | May 1994 | JP |
6252333 | Sep 1994 | JP |
6260532 | Sep 1994 | JP |
7297344 | Nov 1995 | JP |
7312405 | Nov 1995 | JP |
8064364 | Mar 1996 | JP |
8083877 | Mar 1996 | JP |
8125066 | May 1996 | JP |
964284 | Jun 1996 | JP |
8222682 | Aug 1996 | JP |
8306853 | Nov 1996 | JP |
98205 | Jan 1997 | JP |
98206 | Jan 1997 | JP |
98207 | Jan 1997 | JP |
992775 | Apr 1997 | JP |
9260568 | Oct 1997 | JP |
9293822 | Nov 1997 | JP |
10022447 | Jan 1998 | JP |
10199934 | Jul 1998 | JP |
10256240 | Sep 1998 | JP |
11307675 | Nov 1999 | JP |
2000150765 | May 2000 | JP |
20010600648 | Mar 2001 | JP |
2002519848 | Jul 2002 | JP |
200203497 | Aug 2002 | JP |
941979 | Jan 1994 | KR |
19940010938 | May 1994 | KR |
19950018924 | Jun 1995 | KR |
19950044554 | Nov 1995 | KR |
199500418114 | Nov 1995 | KR |
19950052621 | Dec 1995 | KR |
1996074111 | Dec 1996 | KR |
9772358 | Nov 1997 | KR |
100220154 | Jun 1999 | KR |
20000072714 | Dec 2000 | KR |
20000086238 | Dec 2001 | KR |
20020049944 | Jun 2002 | KR |
9956316 | Nov 1999 | WO |
9967821 | Dec 1999 | WO |
Entry |
---|
National Semiconductor Corporation, “Leadless Leadframe Package,” Informational Pamphlet from webpage, 21 pages, Oct. 2002, www.national.com. |
Vishay, “4 Milliohms in the So-8: Vishay Siliconix Sets New Record for Power MOSFET On-Resistance,” Press Release from webpage, 3 pages, www.vishay.com/news/releases, Nov. 7, 2002. |
Patrick Mannion, “MOSFETs Break out of the Shackles of Wire Bonding,” Informational Packet, 5 pages, Electronic Design, Mar. 22, 1999 vol. 47, No. 6, www.elecdesign.com/1999/mar2299/ti/0322ti1.shtml. |
Number | Date | Country | |
---|---|---|---|
20150371933 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14268877 | May 2014 | US |
Child | 14839956 | US |