MODULATORS OF KRAS EXPRESSION

Abstract
The present embodiments provide methods, compounds, and compositions for inhibiting KRAS expression, which can be useful for treating, preventing, or ameliorating a disease associated with KRAS.
Description
SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled BIOL0276WOSEQ_ST25.txt created Aug. 30, 2016, which is 567 kb in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.


FIELD

The present embodiments provide methods, compounds, and compositions for inhibiting KRAS expression, which can be useful for treating, preventing, or ameliorating a disease associated with KRAS.


BACKGROUND

Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) is one of three RAS protein family members (N, H and K-RAS) that are small membrane bound intracellular GTPase proteins. KRAS cycles between an inactive guanosine diphosphate (GDP)-bound state and an active guanosine triphosphate (GTP)-bound state. The process of exchanging the bound nucleotide is facilitated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). GEFs promote release of GDP from KRAS in exchange for GTP, resulting in active GTP-bound KRAS. GAPs promote hydrolysis of GTP to GDP, resulting in inactive GDP-bound KRAS. Active GTP-bound KRAS interacts with numerous effector proteins to stimulate signaling pathways regulating various cellular processes including proliferation and survival. Activating mutations render KRAS resistant to GAP-catalyzed hydrolysis of GTP and therefore lock the protein in an activated state.


KRAS is the most commonly mutated oncogene in human cancer. Approximately 30% of all human cancers have activating KRAS mutations with the highest incidence in colon, lung and pancreatic tumors, where KRAS mutation is also associated with poor prognosis.


SUMMARY

Despite the prevalent role of KRAS in several types of cancer, KRAS is considered an “undruggable” target and no inhibitors directly targeting KRAS have yet entered clinical development. The present embodiments provided herein are directed to potent and tolerable compounds and compositions for inhibiting KRAS expression, which can be useful for treating, preventing, ameliorating, or slowing progression of cancer.







DETAILED DESCRIPTION

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. Herein, the use of the singular includes the plural unless specifically stated otherwise. As used herein, the use of “or” means “and/or” unless stated otherwise. Furthermore, the use of the term “including” as well as other forms, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit, unless specifically stated otherwise.


The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this application, including, but not limited to, patents, patent applications, articles, books, treatises, and GenBank and NCBI reference sequence records are hereby expressly incorporated by reference for the portions of the document discussed herein, as well as in their entirety.


It is understood that the sequence set forth in each SEQ ID NO in the examples contained herein is independent of any modification to a sugar moiety, an internucleoside linkage, or a nucleobase. As such, compounds defined by a SEQ ID NO may comprise, independently, one or more modifications to a sugar moiety, an internucleoside linkage, or a nucleobase. Compounds described by ISIS number (ISIS #) indicate a combination of nucleobase sequence, chemical modification, and motif.


Unless otherwise indicated, the following terms have the following meanings:


“2′-deoxynucleoside” means a nucleoside comprising 2′-H(H) furanosyl sugar moiety, as found in naturally occurring deoxyribonucleic acids (DNA). In certain embodiments, a 2′-deoxynucleoside may comprise a modified nucleobase or may comprise an RNA nucleobase (e.g., uracil).


“2′-O-methoxyethyl” (also 2′-MOE and 2′-O(CH2)2—OCH3) refers to an O-methoxy-ethyl modification at the 2′ position of a sugar ring, e.g. a furanose ring. A 2′-O-methoxyethyl modified sugar is a modified sugar.


“2′-MOE nucleoside” (also 2′-O-methoxyethyl nucleoside) means a nucleoside comprising a 2′-MOE modified sugar moiety.


“2′-substituted nucleoside” or “2-modified nucleoside” means a nucleoside comprising a 2′-substituted or 2′-modified sugar moiety. As used herein, “2′-substituted” or “2-modified” in reference to a sugar moiety means a sugar moiety comprising a 2′-substituent group other than H or OH. “3′ target site” refers to the nucleotide of a target nucleic acid which is complementary to the 3′-most nucleotide of a particular compound.


“5′ target site” refers to the nucleotide of a target nucleic acid which is complementary to the 5′-most nucleotide of a particular compound.


“5-methylcytosine” means a cytosine with a methyl group attached to the 5 position.


“About” means within ±10% of a value. For example, if it is stated, “the compounds affected at least about 70% inhibition of KRAS”, it is implied that KRAS levels are inhibited within a range of 60% and 80%.


“Administration” or “administering” refers to routes of introducing a compound or composition provided herein to an individual to perform its intended function. An example of a route of administration that can be used includes, but is not limited to parenteral administration, such as subcutaneous, intravenous, or intramuscular injection or infusion.


“Administered concomitantly” or “co-administration” means administration of two or more compounds in any manner in which the pharmacological effects of both are manifest in the patient. Concomitant administration does not require that both compounds be administered in a single pharmaceutical composition, in the same dosage form, by the same route of administration, or at the same time. The effects of both compounds need not manifest themselves at the same time. The effects need only be overlapping for a period of time and need not be coextensive. Concomitant administration or co-administration encompasses administration in parallel or sequentially.


“Amelioration” refers to a lessening of at least one indicator, sign, or symptom of an associated disease, disorder, or condition. In certain embodiments, amelioration includes a delay or slowing in the progression of one or more indicators of a condition or disease. The severity of indicators may be determined by subjective or objective measures, which are known to those skilled in the art.


“Animal” refers to a human or non-human animal, including, but not limited to, mice, rats, rabbits, dogs, cats, pigs, and non-human primates, including, but not limited to, monkeys and chimpanzees.


“Antisense activity” means any detectable or measurable activity attributable to the hybridization of an antisense compound to its target nucleic acid. In certain embodiments, antisense activity is a decrease in the amount or expression of a target nucleic acid or protein encoded by such target nucleic acid compared to target nucleic acid levels or target protein levels in the absence of the antisense compound to the target.


“Antisense compound” means a compound comprising an antisense oligonucleotide and optionally one or more additional features, such as a conjugate group or terminal group. Examples of antisense compounds include single-stranded and double-stranded compounds, such as, antisense oligonucleotides, ribozymes, siRNAs, shRNAs, ssRNAs, and occupancy-based compounds.


“Antisense inhibition” means reduction of target nucleic acid levels in the presence of an antisense compound complementary to a target nucleic acid compared to target nucleic acid levels in the absence of the antisense compound.


“Antisense mechanisms” are all those mechanisms involving hybridization of a compound with target nucleic acid, wherein the outcome or effect of the hybridization is either target degradation or target occupancy with concomitant stalling of the cellular machinery involving, for example, transcription or splicing.


“Antisense oligonucleotide” means an oligonucleotide having a nucleobase sequence that is complementary to a target nucleic acid or region or segment thereof. In certain embodiments, an antisense oligonucleotide is specifically hybridizable to a target nucleic acid or region or segment thereof.


“Bicyclic nucleoside” or “BNA” means a nucleoside comprising a bicyclic sugar moiety. As used herein, “bicyclic sugar” or “bicyclic sugar moiety” means a modified sugar moiety comprising two rings, wherein the second ring is formed via a bridge connecting two of the atoms in the first ring thereby forming a bicyclic structure. In certain embodiments, the first ring of the bicyclic sugar moiety is a furanosyl moiety.


In certain embodiments, the bicyclic sugar moiety does not comprise a furanosyl moiety.


“Branching group” means a group of atoms having at least 3 positions that are capable of forming covalent linkages to at least 3 groups. In certain embodiments, a branching group provides a plurality of reactive sites for connecting tethered ligands to an oligonucleotide via a conjugate linker and/or a cleavable moiety.


“Cell-targeting moiety” means a conjugate group or portion of a conjugate group that is capable of binding to a particular cell type or particular cell types.


“cEt” or “constrained ethyl” means a bicyclic furanosyl sugar moiety comprising a bridge connecting the 4′-carbon and the 2′-carbon, wherein the bridge has the formula: 4′-CH(CH3)—O-2′.


“Chemical modification” in a compound describes the substitutions or changes through chemical reaction, of any of the units 3n the compound, “Modified nucleoside” means a nucleoside having, independently, a modified sugar moiety and/or modified nucleobase. “Modified oligonucleotide” means an oligonucleotide comprising at least one modified internucleoside linkage, a modified sugar, and/or a modified nucleobase.


“Chemically distinct region” refers to a region of an antisense compound that is in some way chemically different than another region of the same antisense compound. For example, a region having 2′-O-methoxyethyl nucleotides is chemically distinct from a region having nucleotides without 2′-O-methoxyethyl modifications.


“Chimeric antisense compounds” means antisense compounds that have at least 2 chemically distinct regions, each position having a plurality of subunits.


“Cleavable bond” means any chemical bond capable of being split. In certain embodiments, a cleavable bond is selected from among: an amide, a polyamide, an ester, an ether, one or both esters of a phosphodiester, a phosphate ester, a carbamate, a di-sulfide, or a peptide.


“Cleavable moiety” means a bond or group of atoms that is cleaved under physiological conditions, for example, inside a cell, an animal, or a human.


“Constrained ethyl nucleoside” (also cEt nucleoside) means a nucleoside comprising a bicyclic sugar moiety comprising a 4′-CH(CH3)—O-2′ bridge.


“Complementary” in reference to an oligonucleotide means the nucleobase sequence of such oligonucleotide or one or more regions thereof matches the nucleobase sequence of another oligonucleotide or nucleic acid or one or more regions thereof when the two nucleobase sequences are aligned in opposing directions. Nucleobase matches or complementary nucleobases, as described herein, are limited to adenine (A) and thymine (T), adenine (A) and uracil (U), cytosine (C) and guanine (G), and 5-methyl cytosine (mC) and guanine (G) unless otherwise specified. Complementary oligonucleotides and/or nucleic acids need not have nucleobase complementarity at each nucleoside and may include one or more nucleobase mismatches. By contrast, “fully complementary” or “100% complementary” in reference to oligonucleotides means that such oligonucleotides have nucleobase matches at each nucleoside without any nucleobase mismatches.


“Conjugate group” means a group of atoms that is attached to a parent compound, e.g., an oligonucleotide.


“Conjugate linker” means a group of atoms that connects a conjugate group to a parent compound, e.g., an oligonucleotide.


“Contiguous” in the context of an oligonucleotide refers to nucleosides, nucleobases, sugar moieties, or internucleoside linkages that are immediately adjacent to each other. For example, “contiguous nucleobases” means nucleobases that are immediately adjacent to each other.


“Designing” or “Designed to” refer to the process of designing an oligomeric compound that specifically hybridizes with a selected nucleic acid molecule.


“Differently modified” mean chemical modifications or chemical substituents that are different from one another, including absence of modifications. Thus, for example, a MOE nucleoside and an unmodified DNA nucleoside are “differently modified,” even though the DNA nucleoside is unmodified. Likewise, DNA and RNA are “differently modified,” even though both are naturally-occurring unmodified nucleosides. Nucleosides that are the same but for comprising different nucleobases are not differently modified. For example, a nucleoside comprising a 2′-OMe modified sugar and an unmodified adenine nucleobase and a nucleoside comprising a 2′-OMe modified sugar and an unmodified thymine nucleobase are not differently modified.


“Dose” means a specified quantity of a pharmaceutical agent provided in a single administration, or in a specified time period. In certain embodiments, a dose may be administered in two or more boluses, tablets, or injections. For example, in certain embodiments, where subcutaneous administration is desired, the desired dose may require a volume not easily accommodated by a single injection. In such embodiments, two or more injections may be used to achieve the desired dose. In certain embodiments, a dose may be administered in two or more injections to minimize injection site reaction in an individual. In other embodiments, the pharmaceutical agent is administered by infusion over an extended period of time or continuously. Doses may be stated as the amount of pharmaceutical agent per hour, day, week or month.


“Dosing regimen” is a combination of doses designed to achieve one or more desired effects.


“Double-stranded antisense compound” means an antisense compound comprising two oligomeric compounds that are complementary to each other and form a duplex, and wherein one of the two said oligomeric compounds comprises an antisense oligonucleotide.


“Effective amount” means the amount of compound sufficient to effectuate a desired physiological outcome in an individual in need of the agent. The effective amount may vary among individuals depending on the health and physical condition of the individual to be treated, the taxonomic group of the individuals to be treated, the formulation of the composition, assessment of the individual's medical condition, and other relevant factors.


“Efficacy” means the ability to produce a desired effect.


“Expression” includes all the functions by which a gene's coded information is converted into structures present and operating in a cell. Such structures include, but are not limited to the products of transcription and translation.


“Fully modified” in reference to an oligonucleotide means a modified oligonucleotide in which each nucleoside is modified. “Uniformly modified” in reference to an oligonucleotide means a fully modified oligonucleotide in which at least one modification of each nucleoside is the same. For example, the nucleosides of a uniformly modified oligonucleotide can each have a 2′-MOE modification but different nucleobase modifications, and the internucleoside linkages may be different.


“Gapmer” means a chimeric antisense compound in which an internal region having a plurality of nucleosides that support RNase H cleavage is positioned between external regions having one or more nucleosides, wherein the nucleosides comprising the internal region are chemically distinct from the nucleoside or nucleosides comprising the external regions. The internal region may be referred to as the “gap” and the external regions may be referred to as the “wings.”


“Hybridization” means the annealing of complementary oligonucleotides and/or nucleic acid molecules. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an antisense compound and a nucleic acid target. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an antisense oligonucleotide and a nucleic acid target.


“Immediately adjacent” means there are no intervening elements between the immediately adjacent elements of the same kind (e.g. no intervening nucleobases between the immediately adjacent nucleobases).


“Individual” means a human or non-human animal selected for treatment or therapy.


“Inhibiting the expression or activity” refers to a reduction or blockade of the expression or activity relative to the expression of activity in an untreated or control sample and does not necessarily indicate a total elimination of expression or activity.


“Internucleoside linkage” means a group or bond that forms a covalent linkage between adjacent nucleosides in an oligonucleotide. As used herein “modified internucleoside linkage” means any internucleoside linkage other than a naturally occurring, phosphate internucleoside linkage.


“KRAS” means any nucleic acid or protein of KRAS. “KRAS nucleic acid” means any nucleic acid encoding KRAS. For example, in certain embodiments, a KRAS nucleic acid includes a DNA sequence encoding KRAS, an RNA sequence transcribed from DNA encoding KRAS (including genomic DNA comprising introns and exons), including a non-protein encoding (i.e. non-coding) RNA sequence, and an mRNA sequence encoding KRAS. “KRAS mRNA” means an mRNA encoding a KRAS protein. “KRAS,” “K-ras,” “kras,” “k-ras,” “Ki-ras,” and “ki-ras” can be used interchangably without capitalizaiton or italicization of their spelling referring to nucleic acid or protein in a mutually exclusive manner unless specifically indicated to the contrary.


“KRAS specific inhibitor” refers to any agent capable of specifically inhibiting KRAS RNA and/or KRAS protein expression or activity at the molecular level. For example, KRAS specific inhibitors include nucleic acids (including antisense compounds), peptides, antibodies, small molecules, and other agents capable of inhibiting the expression of KRAS RNA and/or KRAS protein.


“Lengthened antisense oligonucleotides” are those that have one or more additional nucleosides relative to an antisense oligonucleotide disclosed herein, e.g. a parent oligonucleotide.


“Linearly modified sugar” or “linearly modified sugar moiety” means a modified sugar moiety that comprises an acyclic or non-bridging modification. Such linear modifications are distinct from bicyclic sugar modifications.


“Linked nucleosides” means adjacent nucleosides linked together by an internucleoside linkage.


“Mismatch” or “non-complementary” means a nucleobase of a first oligonucleotide that is not complementary to the corresponding nucleobase of a second oligonucleotide or target nucleic acid when the first and second oligonucleotides are aligned. For example, nucleobases including but not limited to a universal nucleobase, inosine, and hypoxanthine, are capable of hybridizing with at least one nucleobase but are still mismatched or non-complementary with respect to nucleobase to which it hybridized. As another example, a nucleobase of a first oligonucleotide that is not capable of hybridizing to the corresponding nucleobase of a second oligonucleotide or target nucleic acid when the first and second oligonucleotides are aligned is a mismatch or non-complementary nucleobase.


“Modulating” refers to changing or adjusting a feature in a cell, tissue, organ or organism. For example, modulating KRAS RNA can mean to increase or decrease the level of KRAS RNA and/or KRAS protein in a cell, tissue, organ or organism. A “modulator” effects the change in the cell, tissue, organ or organism. For example, a KRAS antisense compound can be a modulator that decreases the amount of KRAS RNA and/or KRAS protein in a cell, tissue, organ or organism.


“Monomer” refers to a single unit of an oligomer. Monomers include, but are not limited to, nucleosides and nucleotides.


“Motif” means the pattern of unmodified and/or modified sugar moieties, nucleobases, and/or internucleoside linkages, in an oligonucleotide.


“Natural” or “naturally occurring” means found in nature.


“Nucleic acid” refers to molecules composed of monomeric nucleotides. A nucleic acid includes, but is not limited to, ribonucleic acids (RNA), deoxyribonucleic acids (DNA), single-stranded nucleic acids, and double-stranded nucleic acids.


“Nucleobase” means a heterocyclic moiety capable of pairing with a base of another nucleic acid.


“Nucleobase sequence” means the order of contiguous nucleobases independent of any sugar, linkage, and/or nucleobase modification.


“Nucleoside” means a compound comprising a nucleobase and a sugar moiety. The nucleobase and sugar moiety are each, independently, unmodified or modified.


“Oligomeric compound” means a compound comprising a single oligonucleotide and optionally one or more additional features, such as a conjugate group or terminal group.


“Oligonucleotide” means a polymer of linked nucleosides each of which can be modified or unmodified, independent one from another.


“Parent oligonucleotide” means an oligonucleotide whose sequence is used as the basis of design for more oligonucleotides of similar sequence but with different lengths, motifs, and/or chemistries. The newly designed oligonucleotides may have the same or overlapping sequence as the parent oligonucleotide.


“Parenteral administration” means administration through injection or infusion. Parenteral administration includes subcutaneous administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration, or intracranial administration, e.g. intrathecal or intracerebroventricular administration.


“Pharmaceutically acceptable carrier or diluent” means any substance suitable for use in administering to an animal. For example, a pharmaceutically acceptable carrier can be a sterile aqueous solution, such as PBS or water-for-injection. As used herein “pharmaceutically acceptable salts” means physiologically and pharmaceutically acceptable salts of compounds, such as oligomeric compounds, i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.


“Pharmaceutical agent” means a compound that provides a therapeutic benefit when administered to an individual.


“Pharmaceutical composition” means a mixture of substances suitable for administering to an individual. For example, a pharmaceutical composition may comprise one or more compounds or salt thereof and a sterile aqueous solution.


“Phosphorothioate linkage” means a modified internucleoside linkage between nucleosides where the phosphodiester bond is modified by replacing one of the non-bridging oxygen atoms with a sulfur atom.


“Phosphorus moiety” means a group of atoms comprising a phosphorus atom. In certain embodiments, a phosphorus moiety comprises a mono-, di-, or tri-phosphate, or phosphorothioate.


“Portion” means a defined number of contiguous (i.e., linked) nucleobases of a nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of a target nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of an oligomeric compound.


“Prodrug” means a form of a compound which, when administered to an individual, is metabolized to another form. In certain embodiments, the metabolized form is the active, or more active, form of the compound (e.g., drug).


“Prophylactically effective amount” refers to an amount of a pharmaceutical agent that provides a prophylactic or preventative benefit to an animal.


“Region” is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic.


“RNAi compound” means a compound that acts, at least in part, through RISC or Ago2, but not through RNase H, to modulate a target nucleic acid and/or protein encoded by a target nucleic acid. RNAi compounds include, but are not limited to double-stranded siRNA, single-stranded RNA (ssRNA), and microRNA, including microRNA mimics.


“Segments” are defined as smaller or sub-portions of regions within a nucleic acid.


“Side effects” means physiological disease and/or conditions attributable to a treatment other than the desired effects. In certain embodiments, side effects include injection site reactions, liver function test abnormalities, renal function abnormalities, liver toxicity, renal toxicity, central nervous system abnormalities, myopathies, and malaise. For example, increased aminotransferase levels in serum may indicate liver toxicity or liver function abnormality. For example, increased bilirubin may indicate liver toxicity or liver function abnormality.


“Single-stranded” in reference to a compound means the compound has only one oligonucleotide. “Self-complementary” means an oligonucleotide that at least partially hybridizes to itself. A compound consisting of one oligonucleotide, wherein the oligonucleotide of the compound is self-complementary, is a single-stranded compound. A single-stranded antisense compound may be capable of binding to a complementary compound to form a duplex.


“Sites,” as used herein, are defined as unique nucleobase positions within a target nucleic acid.


“Specifically hybridizable” refers to an antisense compound having a sufficient degree of complementarity between an antisense oligonucleotide and a target nucleic acid to induce a desired effect, while exhibiting minimal or no effects on non-target nucleic acids. In certain embodiments, specific hybridization occurs under physiological conditions.


“Specifically inhibit” a target nucleic acid means to reduce or block expression of the target nucleic acid while exhibiting fewer, minimal, or no effects on non-target nucleic acids reduction and does not necessarily indicate a total elimination of the target nucleic acid's expression.


“Sugar moiety” means a group of atoms that can link a nucleobase to another group, such as an internucleoside linkage, conjugate group, or terminal group. In certain embodiments, a sugar moiety is attached to a nucleobase to form a nucleoside. As used herein, “unmodified sugar moiety” or “unmodified sugar” means a 2′-OH(H) furanosyl moiety, as found in RNA, or a 2′-H(H) moiety, as found in DNA. Unmodified sugar moieties have one hydrogen at each of the 1′, 3′, and 4′ positions, an oxygen at the 3′ position, and two hydrogens at the 5′ position. As used herein, “modified sugar moiety” or “modified sugar” means a modified furanosyl moiety comprising a non-hydrogen substituent in place of at least one hydrogen of an unmodified sugar moiety, or a sugar surrogate. In certain embodiments, a modified sugar moiety is a 2′-substituted sugar moiety. Such modified sugar moieties include bicyclic sugars and linearly modified sugars.


“Sugar surrogate” means a modified sugar moiety having other than a furanosyl moiety that can link a nucleobase to another group, such as an internucleoside linkage, conjugate group, or terminal group. Modified nucleosides comprising sugar surrogates can be incorporated into one or more positions within an oligonucleotide. In certain embodiments, such oligonucleotides are capable of hybridizing to complementary oligomeric compounds or nucleic acids.


“Target gene” refers to a gene encoding a target.


“Target nucleic acid,” “target RNA,” “target RNA transcript” and “nucleic acid target” all mean a nucleic acid capable of being targeted by antisense compounds.


“Target region” means a portion of a target nucleic acid to which one or more antisense compounds is targeted.


“Target segment” means the sequence of nucleotides of a target nucleic acid to which an antisense compound is targeted. “5′ target site” refers to the 5′-most nucleotide of a target segment. “3′ target site” refers to the 3′-most nucleotide of a target segment.


“Terminal group” means a chemical group or group of atoms that is covalently linked to a terminus of an oligonucleotide.


“Therapeutically effective amount” means an amount of a compound, pharmaceutical agent, or composition that provides a therapeutic benefit to an individual.


“Treat” refers to administering a compound or pharmaceutical composition to an animal in order to effect an alteration or improvement of a disease, disorder, or condition in the animal.


Certain Embodiments

Certain embodiments provide methods, compounds and compositions for inhibiting KRAS expression.


Certain embodiments provide compounds targeted to a KRAS nucleic acid. In certain embodiments, the KRAS nucleic acid has the sequence set forth in GENBANK Accession No. NM_004985.4 (herein incorporated by reference, disclosed herein as SEQ ID NO: 1); GENBANK Accession No. NT_009714.17_TRUNC_18116000_18166000_COMP (herein incorporated by reference, disclosed herein as SEQ ID NO: 2), or GENBANK Accession No. NM_033360.3 (herein incorporated by reference, disclosed herein as SEQ ID NO: 3). In certain embodiments, the compound is a single-stranded oligonucleotide. In certain embodiments, the compound is double-stranded.


Certain embodiments provide a compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the compound is a single-stranded oligonucleotide. In certain embodiments, the compound is double-stranded. In certain embodiments, the modified oligonucleotide consists of 10 to 30 linked nucleosides.


Certain embodiments provide a compound comprising a modified oligonucleotide consisting of 9 to 80 linked nucleosides and having a nucleobase sequence comprising at least 9 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the compound is a single-stranded oligonucleotide. In certain embodiments, the compound is double-stranded. In certain embodiments, the modified oligonucleotide consists of 10 to 30 linked nucleosides.


Certain embodiments provide a compound comprising a modified oligonucleotide consisting of 10 to 80 linked nucleosides and having a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the compound is a single-stranded oligonucleotide. In certain embodiments, the compound is double-stranded. In certain embodiments, the modified oligonucleotide consists of 10 to 30 linked nucleosides.


Certain embodiments provide a compound comprising a modified oligonucleotide consisting of 11 to 80 linked nucleosides and having a nucleobase sequence comprising at least 11 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the compound is a single-stranded oligonucleotide. In certain embodiments, the compound is double-stranded. In certain embodiments, the modified oligonucleotide consists of 11 to 30 linked nucleosides.


Certain embodiments provide a compound comprising a modified oligonucleotide consisting of 12 to 80 linked nucleosides and having a nucleobase sequence comprising at least 12 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the compound is a single-stranded oligonucleotide. In certain embodiments, the compound is double-stranded. In certain embodiments, the modified oligonucleotide consists of 12 to 30 linked nucleosides.


Certain embodiments provide a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides and having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the compound is a single-stranded oligonucleotide. In certain embodiments, the compound is double-stranded. In certain embodiments, the modified oligonucleotide consists of 16 to 30 linked nucleosides.


Certain embodiments provide a compound comprising a modified oligonucleotide consisting of the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the compound is a single-stranded oligonucleotide. In certain embodiments, the compound is double-stranded.


In certain embodiments, a compound comprises or consists of a modified oligonucleotide consisting of 8 to 80 linked nucleosides having at least an 8, 9, 10, 11, 12, 13, 14, 15, or 16 contiguous nucleobase portion complementary to an equal length portion within nucleotides 463-478, 877-892, 1129-1144, 1313-1328, 1447-1462, 1686-1701, 1690-1705, 1778-1793, 1915-1930, 1919-1934, 1920-1935, 2114-2129, 2115-2130, 2461-2476, 2462-2477, 2463-2478, 4035-4050 of SEQ ID NO: 1. In certain embodiments, the modified oligonucleotide consists of 10 to 30 linked nucleosides.


In certain embodiments, a compound comprises or consists of a modified oligonucleotide consisting of 8 to 80 linked nucleosides complementary within nucleotides 463-478, 877-892, 1129-1144, 1313-1328, 1447-1462, 1686-1701, 1690-1705, 1778-1793, 1915-1930, 1919-1934, 1920-1935, 2114-2129, 2115-2130, 2461-2476, 2462-2477, 2463-2478, 4035-4050 of SEQ ID NO: 1. In certain embodiments, the modified oligonucleotide consists of 10 to 30 linked nucleosides.


In certain embodiments, a compound comprises or consists of a modified oligonucleotide consisting of 8 to 80 linked nucleosides having a nucleobase sequence comprising at least an 8, 9, 10, 11, 12, 13, 14, 15, or 16 contiguous nucleobase portion of any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the modified oligonucleotide consists of 10 to 30 linked nucleosides.


In certain embodiments, a compound comprises or consists of a modified oligonucleotide consisting of 8 to 80 linked nucleosides having a nucleobase sequence comprising any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the modified oligonucleotide consists of 10 to 30 linked nucleosides.


In certain embodiments, a compound comprises or consists of a modified oligonucleotide having a nucleobase sequence consisting of any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158.


In certain embodiments, a compound comprises or consists of ISIS #651530, 651987, 695785, 695823, 651555, 651587, 695980, 695995, 696018, 696044, 716600, 746275, 716655, 716772, 740179, 740191, 740201, 740223, or 740233. Out of over 2,000 antisense oligonucleotides that were screened as described in the Examples section below, ISIS #651530, 651987, 695785, 695823, 651555, 651587, 695980, 695995, 696018, 696044, 716600, 746275, 716655, 716772, 740179, 740191, 740201, 740223, and 740233 emerged as the top lead compounds in terms of potency and/or tolerability.


In certain embodiments, any of the foregoing oligonucleotides comprises at least one modified internucleoside linkage, at least one modified sugar, and/or at least one modified nucleobase.


In certain embodiments, any of the foregoing oligonucleotides comprises at least one modified sugar. In certain embodiments, at least one modified sugar comprises a 2′-O-methoxyethyl group. In certain embodiments, at least one modified sugar is a bicyclic sugar, such as a 4′-CH(CH3)—O-2′ group, a 4′-CH2-O-2′ group, or a 4′-(CH2)2-O-2′group.


In certain embodiments, the modified oligonucleotide comprises at least one modified internucleoside linkage, such as a phosphorothioate internucleoside linkage.


In certain embodiments, any of the foregoing oligonucleotides comprises at least one modified nucleobase, such as 5-methylcytosine.


In certain embodiments, any of the foregoing oligonucleotides comprises:

    • a gap segment consisting of linked deoxynucleosides;
    • a 5′ wing segment consisting of linked nucleosides; and
    • a 3′ wing segment consisting of linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar. In certain embodiments, the oligonucleotide consists of 16 to 80 linked nucleosides having a nucleobase sequence comprising the sequence recited in any one of SEQ ID NOs: 13-2190. In certain embodiments, the oligonucleotide consists of 16 to 80 linked nucleosides having a nucleobase sequence comprising the sequence recited in any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the oligonucleotide consists of 16 to 30 linked nucleosides having a nucleobase sequence comprising the sequence recited in any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the oligonucleotide consists of 16 linked nucleosides having a nucleobase sequence consisting of the sequence recited in any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158.


In certain embodiments, a compound comprises or consists of a modified oligonucleotide consisting of 16-80 linked nucleobases having a nucleobase sequence comprising or consisting of the sequence recited in any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, and 854, wherein the modified oligonucleotide comprises a gap segment consisting of ten linked deoxynucleosides;


a 5′ wing segment consisting of three linked nucleosides; and


a 3′ wing segment consisting of three linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment, wherein each nucleoside of each wing segment comprises a constrained ethyl (cEt) nucleoside; wherein each internucleoside linkage is a phosphorothioate linkage and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In certain embodiments, a compound comprises or consists of a modified oligonucleotide consisting of 16-80 linked nucleobases having a nucleobase sequence comprising or consisting of the sequence recited in SEQ ID NO: 2130, wherein the modified oligonucleotide comprises


a gap segment consisting of nine linked deoxynucleosides;


a 5′ wing segment consisting of one linked nucleoside; and


a 3′ wing segment consisting of six linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, and 2′-O-methoxyethyl nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In certain embodiments, a compound comprises or consists of a modified oligonucleotide consisting of 16-80 linked nucleobases having a nucleobase sequence comprising or consisting of the sequence recited in any one of SEQ ID NOs: 804, 1028, and 2136, wherein the modified oligonucleotide comprises


a gap segment consisting of ten linked deoxynucleosides;


a 5′ wing segment consisting of two linked nucleosides; and


a 3′ wing segment consisting of four linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, and a 2′-O-methoxyethyl nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In certain embodiments, a compound comprises or consists of a modified oligonucleotide consisting of 16-80 linked nucleobases having a nucleobase sequence comprising or consisting of the sequence recited in SEQ ID NO: 2142, wherein the modified oligonucleotide comprises


a gap segment consisting of eight linked deoxynucleosides;


a 5′ wing segment consisting of two linked nucleosides; and


a 3′ wing segment consisting of six linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In certain embodiments, a compound comprises or consists of a modified oligonucleotide consisting of 16-80 linked nucleobases having a nucleobase sequence comprising or consisting of the sequence recited in SEQ ID NO: 2154, wherein the modified oligonucleotide comprises


a gap segment consisting of nine linked deoxynucleosides;


a 5′ wing segment consisting of two linked nucleosides; and


a 3′ wing segment consisting of five linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In certain embodiments, a compound comprises or consists of a modified oligonucleotide consisting of 16-80 linked nucleobases having a nucleobase sequence comprising or consisting of the sequence recited in SEQ ID NO: 2158, wherein the modified oligonucleotide comprises


a gap segment consisting of eight linked deoxynucleosides;


a 5′ wing segment consisting of three linked nucleosides; and


a 3′ wing segment consisting of five linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside, a cEt nucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a deoxynucleoside, a cEt nucleoside, a deoxynucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In certain embodiments, a compound comprises or consists of ISIS 651987, or a salt thereof, which has the following chemical structure:




embedded image


In certain embodiments, a compound comprises or consists of ISIS 696018, or a salt thereof, which has the following chemical structure:




embedded image


In certain embodiments, a compound comprises or consists of ISIS 696044, or a salt thereof, which has the following chemical structure:




embedded image


In certain embodiments, a compound comprises or consists of ISIS 716600, or a salt thereof, which has the following chemical structure:




embedded image


In certain embodiments, a compound comprises or consists of ISIS 716655, or a salt thereof, which has the following chemical structure:




embedded image


In certain embodiments, a compound comprises or consists of ISIS 740233, or a salt thereof, which has the following chemical structure:




embedded image


In certain embodiments, a compound comprises or consists of ISIS 746275, or a salt thereof, which has the following chemical structure:




embedded image


In any of the foregoing embodiments, the compound or oligonucleotide can be at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% complementary to a nucleic acid encoding KRAS.


In any of the foregoing embodiments, the compound can be a single-stranded oligonucleotide. In certain embodiments, the compound comprises deoxyribonucleotides. In certain embodiments, the compound is double-stranded. In certain embodiments, the compound is double-stranded and comprises ribonucleotides.


In any of the foregoing embodiments, the oligonucleotide can consist of 8 to 80, 16 to 80, 10 to 30, 12 to 50, 13 to 30, 13 to 50, 14 to 30, 14 to 50, 15 to 30, 15 to 50, 16 to 30, or 16 to 50 linked nucleosides.


In certain embodiments, a compound comprises a modified oligonucleotide described herein and a conjugate group. In certain embodiments, the conjugate group is linked to the modified oligonucleotide at the 5′ end of the modified oligonucleotide. In certain embodiments, the conjugate group is linked to the modified oligonucleotide at the 3′ end of the modified oligonucleotide. In certain embodiments, the conjugate group comprises at least one N-Acetylgalactosamine (GalNAc), at least two N-Acetylgalactosamines (GalNAcs), or at least three N-Acetylgalactosamines (GalNAcs).


In certain embodiments, compounds or compositions provided herein comprise a salt of the modified oligonucleotide. In certain embodiments, the salt is a sodium salt. In certain embodiments, the salt is a potassium salt.


In certain embodiments, the compounds or compositions as described herein are active by virtue of having at least one of an in vitro IC50 of less than 250 nM, less than 200 nM, less than 150 nM, less than 100 nM, less than 90 nM, less than 80 nM, less than 70 nM, less than 65 nM, less than 60 nM, less than 55 nM, less than 50 nM, less than 45 nM, less than 40 nM, less than 35 nM, less than 30 nM, less than 25 nM, or less than 20 nM.


In certain embodiments, the compounds or compositions as described herein are highly tolerable as demonstrated by having at least one of an increase an alanine transaminase (ALT) or aspartate transaminase (AST) value of no more than 4 fold, 3 fold, or 2 fold over control treated animals or an increase in liver, spleen, or kidney weight of no more than 30%, 20%, 15%, 12%, 10%, 5%, or 2% compared to control treated animals. In certain embodiments, the compounds or compositions as described herein are highly tolerable as demonstrated by having no increase of ALT or AST over control treated animals. In certain embodiments, the compounds or compositions as described herein are highly tolerable as demonstrated by having no increase in liver, spleen, or kidney weight over control treated animals.


Certain Indications

Certain embodiments provided herein relate to methods of inhibiting KRAS expression by administration of a KRAS specific inhibitor, such as a compound targeted to KRAS, which can be useful for treating, preventing, or ameliorating cancer in an individual. Examples of types of cancer include but are not limited to lung cancer (e.g. non-small cell lung carcinoma (NSCLC) and small-cell lung carcinoma (SCLC)), gastrointestinal cancer (e.g. large intestinal cancer, small intestinal cancer, and stomach cancer), colon cancer, colorectal cancer, bladder cancer, liver cancer, esophageal cancer, pancreatic cancer, biliary tract cancer, breast cancer, ovarian cancer, endometrial cancer, cervical cancer, prostate cancer, hematopoetic cancer (e.g. leukemia, myeloid leukemia, and lymphoma), brain cancer (e.g. glioblastoma), malignant peripheral nerve sheath tumor (MPNST), neurofibromatosis type 1 (NF1) mutant MPNST, or neurofibroma. In certain embodiments, the cancer has cancer cells expressing mutant KRAS.


In certain embodiments, a method of treating, preventing, or ameliorating cancer comprises administering to the individual a KRAS specific inhibitor, thereby treating, preventing, or ameliorating cancer. In certain embodiments, the cancer is lung cancer (e.g. non-small cell lung carcinoma (NSCLC) and small-cell lung carcinoma (SCLC)), gastrointestinal cancer (e.g. large intestinal cancer, small intestinal cancer, and stomach cancer), colon cancer, colorectal cancer, bladder cancer, liver cancer, esophageal cancer, pancreatic cancer, biliary tract cancer, breast cancer, ovarian cancer, endometrial cancer, cervical cancer, prostate cancer, hematopoetic cancer (e.g. leukemia, myeloid leukemia, and lymphoma), brain cancer (e.g. glioblastoma), malignant peripheral nerve sheath tumor (MPNST), neurofibromatosis type 1 (NF1) mutant MPNST, or neurofibroma. In certain embodiments, the cancer has cancer cells expressing mutant KRAS. In certain embodiments, the KRAS specific inhibitor is a compound targeted to KRAS, such as an antisense oligonucleotide targeted to KRAS. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides and having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides and having a nucleobase sequence consisting of the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence consisting of any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is ISIS #651530, 651987, 695785, 695823, 651555, 651587, 695980, 695995, 696018, 696044, 716600, 746275, 716655, 716772, 740179, 740191, 740201, 740223, or 740233. In certain embodiments, the KRAS specific inhibitor is ISIS #651987. In certain embodiments, the KRAS specific inhibitor is ISIS #746275. In any of the foregoing embodiments, the compound can be a single-stranded oligonucleotide. In any of the foregoing embodiments, the modified oligonucleotide can consist of 10 to 30 linked nucleosides. In certain embodiments, the compound is administered to the individual parenterally. In certain embodiments, administering the compound reduces the number of cancer cells in an individual, reduces the size of a tumor in an individual, reduces or inhibits growth or proliferation of a tumor in an individual, prevents metastasis or reduces the extent of metastasis, and/or extends the survival of an individual having cancer, including but not limited to progression free survival (PFS) or overall survival.


In certain embodiments, a method of inhibiting expression of KRAS in an individual having, or at risk of having, cancer comprises administering a KRAS specific inhibitor to the individual, thereby inhibiting expression of KRAS in the individual. In certain embodiments, the cancer expresses mutant KRAS. In certain embodiments, administering the inhibitor inhibits expression of KRAS in a tumor, such as a tumor in the lung, gastrointestinal system, bladder, liver, esophagus, pancreas, biliary tract, breast, ovary, endometrium, cervix, prostate, or brain. In certain embodiments, administering the KRAS specific inhibitor inhibits expression of mutant KRAS. In certain embodiments, administering the KRAS specific inhibitor selectively inhibits expression of mutant KRAS relative to wildtype KRAS. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides and having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides and having a nucleobase sequence consisting of the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence consisting of any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is ISIS #651530, 651987, 695785, 695823, 651555, 651587, 695980, 695995, 696018, 696044, 716600, 746275, 716655, 716772, 740179, 740191, 740201, 740223, or 740233. In certain embodiments, the KRAS specific inhibitor is ISIS #651987. In certain embodiments, the KRAS specific inhibitor is ISIS #746275. In any of the foregoing embodiments, the compound can be a single-stranded oligonucleotide. In any of the foregoing embodiments, the modified oligonucleotide can consist of 10 to 30 linked nucleosides.


In certain embodiments, a method of inhibiting expression of KRAS in a cell comprises contacting the cell with a KRAS specific inhibitor, thereby inhibiting expression of KRAS in the cell. In certain embodiments, the cell is a cancer cell. In certain embodiments, the cell is in the lung, gastrointestinal system, bladder, liver, esophagus, pancreas, biliary tract, breast, ovary, endometrium, cervix, prostate, or brain. In certain embodiments, the cell is in the lung, gastrointestinal system, bladder, liver, esophagus, pancreas, biliary tract, breast, ovary, endometrium, cervix, prostate, or brain of an individual who has, or is at risk of having cancer. In certain embodiments, the cancer cell expresses mutant KRAS and contacting the cancer cell with the KRAS specific inhibitor inhibits expression of mutant KRAS in the cancer cell. In certain embodiments, contacting the cancer cell with the KRAS specific inhibitor selectively inhibits expression of mutant KRAS. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides and having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides and having a nucleobase sequence consisting of the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence consisting of any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is ISIS #651530, 651987, 695785, 695823, 651555, 651587, 695980, 695995, 696018, 696044, 716600, 746275, 716655, 716772, 740179, 740191, 740201, 740223, or 740233. In certain embodiments, the KRAS specific inhibitor is ISIS #651987. In certain embodiments, the KRAS specific inhibitor is ISIS #746275. In any of the foregoing embodiments, the compound can be a single-stranded oligonucleotide. In any of the foregoing embodiments, the modified oligonucleotide can consist of 10 to 30 linked nucleosides.


In certain embodiments, a method of reducing the number of cancer cells in an individual, reducing the size of a tumor in an individual, reducing or inhibiting growth or proliferation of a tumor in an individual, preventing metastasis or reducing the extent of metastasis, and/or extending the survival (including but not limited to progression free survival (PFS) or overall survival) of an individual having cancer comprises administering a KRAS specific inhibitor to the individual. In certain embodiments, the inhibitor is a compound targeted to KRAS. In certain embodiments, the inhibitor is a compound targeted to mutant KRAS. In certain embodiments, the inhibitor is a compound selectively targeted to mutant KRAS. In certain embodiments, the cancer cells or tumor expresses mutant KRAS. In certain embodiments, administering the KRAS specific inhibitor to the individual selectively reduces the number of mutant KRAS expressing cancer cells, selectively reduces the size of a mutant KRAS expressing tumor, selectively reduces or inhibits growth or proliferation of a mutant KRAS expressing tumor, selectively prevents metastasis or reduces the extent of metastasis of a mutant KRAS expressing tumor, and/or selectively extends the survival of an individual having a mutant KRAS expressing cancer relative to cells, tumors, and cancer expressing wildtype KRAS. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides and having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides and having a nucleobase sequence consisting of the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence consisting of any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is ISIS #651530, 651987, 695785, 695823, 651555, 651587, 695980, 695995, 696018, 696044, 716600, 746275, 716655, 716772, 740179, 740191, 740201, 740223, or 740233. In certain embodiments, the KRAS specific inhibitor is ISIS #651987. In certain embodiments, the KRAS specific inhibitor is ISIS #746275. In any of the foregoing embodiments, the compound can be a single-stranded oligonucleotide. In any of the foregoing embodiments, the modified oligonucleotide can consist of 10 to 30 linked nucleosides. In certain embodiments, the compound is administered to the individual parenterally.


Certain embodiments are drawn to a KRAS specific inhibitor for use in treating cancer. In certain embodiments, the cancer is lung cancer (e.g. non-small cell lung carcinoma (NSCLC) and small-cell lung carcinoma (SCLC)), gastrointestinal cancer (e.g. large intestinal cancer, small intestinal cancer, and stomach cancer), colon cancer, colorectal cancer, bladder cancer, liver cancer, esophageal cancer, pancreatic cancer, biliary tract cancer, breast cancer, ovarian cancer, endometrial cancer, cervical cancer, prostate cancer, hematopoetic cancer (e.g. leukemia, myeloid leukemia, and lymphoma), brain cancer (e.g. glioblastoma), malignant peripheral nerve sheath tumor (MPNST), neurofibromatosis type 1 (NF1) mutant MPNST, or neurofibroma. In certain embodiments, the cancer expresses mutant KRAS. In certain embodiments, the inhibitor is a compound targeted to KRAS. In certain embodiments, the inhibitor is a compound targeted to mutant KRAS. In certain embodiments, the inhibitor is a compound selectively targeted to mutant KRAS. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides and having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides and having a nucleobase sequence consisting of the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence consisting of any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is ISIS #651530, 651987, 695785, 695823, 651555, 651587, 695980, 695995, 696018, 696044, 716600, 746275, 716655, 716772, 740179, 740191, 740201, 740223, or 740233. In certain embodiments, the KRAS specific inhibitor is ISIS #651987. In certain embodiments, the KRAS specific inhibitor is ISIS #746275. In any of the foregoing embodiments, the compound can be a single-stranded oligonucleotide. In any of the foregoing embodiments, the modified oligonucleotide can consist of 10 to 30 linked nucleosides. In certain embodiments, the compound is administered to the individual parenterally.


Certain embodiments are drawn to a KRAS specific inhibitor for use in reducing the number of cancer cells in an individual, reducing the size of a tumor in an individual, reducing or inhibiting growth or proliferation of a tumor in an individual, preventing metastasis or reducing the extent of metastasis, and/or extending the survival (including but not limited to progression free survival (PFS) or overall survival) of an individual having or at risk of having cancer. In certain embodiments, the cancer cells or tumor express mutant KRAS. In certain embodiments, the inhibitor is a compound targeted to KRAS. In certain embodiments, the inhibitor is a compound targeted to mutant KRAS. In certain embodiments, the inhibitor is a compound selectively targeted to mutant KRAS for use in selectively reducing the number of cancer cells in an individual, selectively reducing the size of a tumor in an individual, selectively reducing or inhibiting growth or proliferation of a tumor in an individual, selectively preventing metastasis or reducing the extent of metastasis, and/or selectively extending the survival (including but not limited to progression free survival (PFS) or overall survival) of an individual having or at risk of having cancer expressing mutant KRAS. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides and having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides and having a nucleobase sequence consisting of the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence consisting of any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is ISIS #651530, 651987, 695785, 695823, 651555, 651587, 695980, 695995, 696018, 696044, 716600, 746275, 716655, 716772, 740179, 740191, 740201, 740223, or 740233. In certain embodiments, the KRAS specific inhibitor is ISIS #651987. In certain embodiments, the KRAS specific inhibitor is ISIS #746275. In any of the foregoing embodiments, the compound can be a single-stranded oligonucleotide. In any of the foregoing embodiments, the modified oligonucleotide can consist of 10 to 30 linked nucleosides. In certain embodiments, the compound is administered to the individual parenterally.


Certain embodiments are drawn to use of a KRAS specific inhibitor for the manufacture of a medicament for treating cancer. Certain embodiments are drawn to use of a KRAS specific inhibitor for the preparation of a medicament for treating cancer. In certain embodiments, the cancer expresses mutant KRAS. In certain embodiments, the cancer is lung cancer (e.g. non-small cell lung carcinoma (NSCLC) and small-cell lung carcinoma (SCLC)), gastrointestinal cancer (e.g. large intestinal cancer, small intestinal cancer, and stomach cancer), colon cancer, colorectal cancer, bladder cancer, liver cancer, esophageal cancer, pancreatic cancer, biliary tract cancer, breast cancer, ovarian cancer, endometrial cancer, cervical cancer, prostate cancer, hematopoetic cancer (e.g. leukemia, myeloid leukemia, and lymphoma), brain cancer (e.g. glioblastoma), malignant peripheral nerve sheath tumor (MPNST), neurofibromatosis type 1 (NF1) mutant MPNST, or neurofibroma. In certain embodiments, the inhibitor is a compound targeted to KRAS. In certain embodiments, the inhibitor is a compound targeted to mutant KRAS. In certain embodiments, the inhibitor is a compound selectively targeted to mutant KRAS. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides and having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides and having a nucleobase sequence consisting of the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence consisting of any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is ISIS #651530, 651987, 695785, 695823, 651555, 651587, 695980, 695995, 696018, 696044, 716600, 746275, 716655, 716772, 740179, 740191, 740201, 740223, or 740233. In certain embodiments, the KRAS specific inhibitor is ISIS #651987. In certain embodiments, the KRAS specific inhibitor is ISIS #746275. In any of the foregoing embodiments, the compound can be a single-stranded oligonucleotide. In any of the foregoing embodiments, the modified oligonucleotide can consist of 10 to 30 linked nucleosides. In certain embodiments, the compound is administered to the individual parenterally.


Certain embodiments are drawn to use of a KRAS specific inhibitor for the manufacture or preparation of a medicament for use in reducing the number of cancer cells in an individual, reducing the size of a tumor in an individual, reducing or inhibiting growth or proliferation of a tumor in an individual, preventing metastasis or reducing the extent of metastasis, and/or extending the survival (including but not limited to progression free survival (PFS) or overall survival) in an individual having or at risk of having cancer. In certain embodiments, the cancer cells or tumor expresses mutant KRAS. In certain embodiments, the inhibitor is a compound targeted to KRAS. In certain embodiments, the inhibitor is a compound targeted to KRAS. In certain embodiments, the inhibitor is a compound targeted to mutant KRAS. In certain embodiments, the inhibitor is a compound selectively targeted to mutant KRAS for the manufacture or preparation of a medicament for use in selectively reducing the number of cancer cells in an individual, selectively reducing the size of a tumor in an individual, selectively reducing or inhibiting growth or proliferation of a tumor in an individual, selectively preventing metastasis or reducing the extent of metastasis, and/or selectively extending the survival (including but not limited to progression free survival (PFS) or overall survival) of an individual having or at risk of having cancer expressing mutant KRAS. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides and having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides and having a nucleobase sequence consisting of the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is a compound comprising a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence consisting of any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, 804, 854, 1028, 2130, 2136, 2142, 2154, and 2158. In certain embodiments, the KRAS specific inhibitor is ISIS #651530, 651987, 695785, 695823, 651555, 651587, 695980, 695995, 696018, 696044, 716600, 746275, 716655, 716772, 740179, 740191, 740201, 740223, or 740233. In certain embodiments, the KRAS specific inhibitor is ISIS #651987. In certain embodiments, the KRAS specific inhibitor is ISIS #746275. In any of the foregoing embodiments, the compound can be a single-stranded oligonucleotide. In any of the foregoing embodiments, the modified oligonucleotide can consist of 10 to 30 linked nucleosides. In certain embodiments, the compound is administered to the individual parenterally.


In any of the foregoing methods or uses, the KRAS specific inhibitor can be a compound targeted to KRAS, a compound targeted to mutant KRAS, or a compound selectively targeted to mutant KRAS. In certain embodiments, the compound is an antisense oligonucleotide, for example an antisense oligonucleotide consisting of 8 to 80 linked nucleosides, 10 to 30 linked nucleosides, 12 to 30 linked nucleosides, or 16 linked nucleosides. In certain embodiments, the antisense oligonucleotide is at least 80%, 85%, 90%, 95% or 100% complementary to any of the nucleobase sequences recited in SEQ ID NOs: 1-3. In certain embodiments, the antisense oligonucleotide comprises at least one modified internucleoside linkage, at least one modified sugar and/or at least one modified nucleobase. In certain embodiments, the modified internucleoside linkage is a phosphorothioate internucleoside linkage, the modified sugar is a bicyclic sugar or a 2′-O-methoxyethyl, and the modified nucleobase is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide comprises a gap segment consisting of linked deoxynucleosides; a 5′ wing segment consisting of linked nucleosides; and a 3′ wing segment consisting of linked nucleosides, wherein the gap segment is positioned immediately adjacent to and between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


In any of the foregoing embodiments, the antisense oligonucleotide consists of 12 to 30, 15 to 30, 15 to 25, 15 to 24, 16 to 24, 17 to 24, 18 to 24, 19 to 24, 20 to 24, 19 to 22, 20 to 22, 16 to 20, or 17 or 20 linked nucleosides. In certain aspects, the antisense oligonucleotide is at least 80%, 85%, 90%, 95% or 100% complementary to any of the nucleobase sequences recited in SEQ ID NOs: 1-3. In certain aspects, the antisense oligonucleotide comprises at least one modified internucleoside linkage, at least one modified sugar and/or at least one modified nucleobase. In certain aspects, the modified internucleoside linkage is a phosphorothioate internucleoside linkage, the modified sugar is a bicyclic sugar or a 2′-O-methoxyethyl, and the modified nucleobase is a 5-methylcytosine. In certain aspects, the modified oligonucleotide comprises a gap segment consisting of linked 2′-deoxynucleosides; a 5′ wing segment consisting of linked nucleosides; and a 3′ wing segment consisting of linked nucleosides, wherein the gap segment is positioned immediately adjacent to and between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


In any of the foregoing methods or uses, the KRAS specific inhibitor can be a compound comprising or consisting of a modified oligonucleotide consisting of 16 to 30 linked nucleosides having a nucleobase sequence comprising any one of SEQ ID NOs: 13-2190, wherein the modified oligonucleotide comprises:

    • a gap segment consisting of linked deoxynucleosides;
    • a 5′ wing segment consisting of linked nucleosides; and
    • a 3′ wing segment consisting of linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.


In any of the foregoing methods or uses, the KRAS specific inhibitor can be a compound comprising or consisting of a modified oligonucleotide having a nucleobase sequence comprising or consisting of the sequence recited in any one of SEQ ID NOs: 239, 272, 569, 607, 615, 621, 640, 655, 678, 715, 790, and 854, wherein the modified oligonucleotide comprises


a gap segment consisting of ten linked deoxynucleosides;


a 5′ wing segment consisting of three linked nucleosides; and


a 3′ wing segment consisting of three linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment, wherein each nucleoside of each wing segment comprises a constrained ethyl (cEt) nucleoside; wherein each internucleoside linkage is a phosphorothioate linkage and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-80 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In any of the foregoing methods or uses, the KRAS specific inhibitor can be a compound comprising or consisting of a modified oligonucleotide having a nucleobase sequence comprising or consisting of the sequence recited in SEQ ID NO: 2130, wherein the modified oligonucleotide comprises


a gap segment consisting of nine linked deoxynucleosides;


a 5′ wing segment consisting of one linked nucleoside; and


a 3′ wing segment consisting of six linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment;


wherein the 5′ wing segment comprises a cEt nucleoside; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, and 2′-O-methoxyethyl nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-80 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In any of the foregoing methods or uses, the KRAS specific inhibitor can be a compound comprising or consisting of a modified oligonucleotide having a nucleobase sequence comprising or consisting of the sequence recited in any one of SEQ ID NOs: 804, 1028, and 2136, wherein the modified oligonucleotide comprises


a gap segment consisting of ten linked deoxynucleosides;


a 5′ wing segment consisting of two linked nucleosides; and


a 3′ wing segment consisting of four linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment;


wherein the 5′ wing segment comprises a cEt nucleoside and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, and a 2′-O-methoxyethyl nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-80 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In any of the foregoing methods or uses, the KRAS specific inhibitor can be a compound comprising or consisting of a modified oligonucleotide having a nucleobase sequence comprising or consisting of the sequence recited in SEQ ID NO: 2142, wherein the modified oligonucleotide comprises


a gap segment consisting of eight linked deoxynucleosides;


a 5′ wing segment consisting of two linked nucleosides; and


a 3′ wing segment consisting of six linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-80 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In any of the foregoing methods or uses, the KRAS specific inhibitor can be a compound comprising or consisting of a modified oligonucleotide having a nucleobase sequence comprising or consisting of the sequence recited in SEQ ID NO: 2154, wherein the modified oligonucleotide comprises


a gap segment consisting of nine linked deoxynucleosides;


a 5′ wing segment consisting of two linked nucleosides; and


a 3′ wing segment consisting of five linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-80 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In any of the foregoing methods or uses, the KRAS specific inhibitor can be a compound comprising or consisting of a modified oligonucleotide having a nucleobase sequence comprising or consisting of the sequence recited in SEQ ID NO: 2158, wherein the modified oligonucleotide comprises


a gap segment consisting of eight linked deoxynucleosides;


a 5′ wing segment consisting of three linked nucleosides; and


a 3′ wing segment consisting of five linked nucleosides;


wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside, a cEt nucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a deoxynucleoside, a cEt nucleoside, a deoxynucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine. In certain embodiments, the modified oligonucleotide consists of 16-80 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16-30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.


In any of the foregoing methods or uses, the KRAS specific inhibitor can be administered parenterally. For example, in certain embodiments the KRAS specific inhibitor can be administered through injection or infusion. Parenteral administration includes subcutaneous administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration, or intracranial administration, e.g. intrathecal or intracerebroventricular administration.


Antisense Compounds

Antisense compounds are provided in certain embodiments. In certain embodiments, antisense compounds comprise at least one oligonucleotide. In certain embodiments, antisense compounds consist of an oligonucleotide. In certain embodiments, antisense compounds consist of an oligonucleotide attached to one or more conjugate groups. In certain embodiments, antisense compounds consist of an oligonucleotide attached to one or more conjugate groups via one or more conjugate linkers and/or a cleavable moiety. In certain embodiments, the oligonucleotide of an antisense compound is modified. In certain embodiments, the oligonucleotide of an antisense compound may have any nucleobase sequence. In certain embodiments, the oligonucleotide of an antisense compound is an antisense oligonucleotide having a nucleobase sequence that is complementary to a target nucleic acid. In certain embodiments, antisense oligonucleotides are complementary to a messenger RNA (mRNA).


In certain embodiments, an antisense compound has a nucleobase sequence that, when written in the 5′ to 3′ direction, comprises the reverse complement of the target segment of a target nucleic acid to which it is targeted.


In certain embodiments, an antisense compound is 10 to 30 subunits in length. In certain embodiments, an antisense compound is 12 to 30 subunits in length. In certain embodiments, an antisense compound is 12 to 22 subunits in length. In certain embodiments, an antisense compound is 14 to 30 subunits in length. In certain embodiments, an antisense compound is 14 to 20 subunits in length. In certain embodiments, an antisense compound is 15 to 30 subunits in length. In certain embodiments, an antisense compound is 15 to 20 subunits in length. In certain embodiments, an antisense compound is 16 to 30 subunits in length. In certain embodiments, an antisense compound is 16 to 20 subunits in length. In certain embodiments, an antisense compound is 17 to 30 subunits in length. In certain embodiments, an antisense compound is 17 to 20 subunits in length. In certain embodiments, an antisense compound is 18 to 30 subunits in length. In certain embodiments, an antisense compound is 18 to 21 subunits in length. In certain embodiments, an antisense compound is 18 to 20 subunits in length. In certain embodiments, an antisense compound is 20 to 30 subunits in length. In other words, such antisense compounds are from 12 to 30 linked subunits, 14 to 30 linked subunits, 14 to 20 subunits, 15 to 30 subunits, 15 to 20 subunits, 16 to 30 subunits, 16 to 20 subunits, 17 to 30 subunits, 17 to 20 subunits, 18 to 30 subunits, 18 to 20 subunits, 18 to 21 subunits, 20 to 30 subunits, or 12 to 22 linked subunits, respectively. In certain embodiments, an antisense compound is 14 subunits in length. In certain embodiments, an antisense compound is 16 subunits in length. In certain embodiments, an antisense compound is 17 subunits in length. In certain embodiments, an antisense compound is 18 subunits in length. In certain embodiments, an antisense compound is 19 subunits in length. In certain embodiments, an antisense compound is 20 subunits in length. In other embodiments, the antisense compound is 8 to 80, 12 to 50, 13 to 30, 13 to 50, 14 to 30, 14 to 50, 15 to 30, 15 to 50, 16 to 30, 16 to 50, 17 to 30, 17 to 50, 18 to 22, 18 to 24, 18 to 30, 18 to 50, 19 to 22, 19 to 30, 19 to 50, or 20 to 30 linked subunits. In certain such embodiments, the antisense compounds are 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 linked subunits in length, or a range defined by any two of the above values. In some embodiments the antisense compound is an antisense oligonucleotide, and the linked subunits are nucleotides, nucleosides, or nucleobases.


In certain embodiments, the antisense compound or oligomeric compound may further comprise additional features or elements, such as a conjugate group, that are attached to the oligonucleotide. In embodiments where a conjugate group comprises a nucleoside (i.e. a nucleoside that links the conjugate group to the oligonucleotide), the nucleoside of the conjugate group is not counted in the length of the oligonucleotide.


In certain embodiments antisense compounds may be shortened or truncated. For example, a single subunit may be deleted from the 5′ end (5′ truncation), or alternatively from the 3′ end (3′ truncation). A shortened or truncated antisense compound targeted to an KRAS nucleic acid may have two subunits deleted from the 5′ end, or alternatively may have two subunits deleted from the 3′ end, of the antisense compound. Alternatively, the deleted nucleosides may be dispersed throughout the antisense compound.


When a single additional subunit is present in a lengthened antisense compound, the additional subunit may be located at the 5′ or 3′ end of the antisense compound. When two or more additional subunits are present, the added subunits may be adjacent to each other, for example, in an antisense compound having two subunits added to the 5′ end (5′ addition), or alternatively to the 3′ end (3′ addition), of the antisense compound. Alternatively, the added subunits may be dispersed throughout the antisense compound, for example, in an antisense compound having one subunit added to the 5′ end and one subunit added to the 3′ end.


It is possible to increase or decrease the length of an antisense compound, such as an antisense oligonucleotide, and/or introduce mismatch bases without eliminating activity (Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992; Gautschi et al. J. Natl. Cancer Inst. 93:463-471, March 2001; Maher and Dolnick Nuc. Acid. Res. 16:3341-3358, 1988). However, seemingly small changes in oligonucleotide sequence, chemistry and motif can make large differences in one or more of the many properties required for clinical development (Seth et al. J. Med. Chem. 2009, 52, 10; Egli et al. J. Am. Chem. Soc. 2011, 133, 16642).


In certain embodiments, antisense compounds are single-stranded, consisting of one oligomeric compound. The oligonucleotide of such single-stranded antisense compounds is an antisense oligonucleotide. In certain embodiments, the antisense oligonucleotide of a single-stranded antisense compound is modified. In certain embodiments, the oligonucleotide of a single-stranded antisense compound or oligomeric compound comprises a self-complementary nucleobase sequence. In certain embodiments, antisense compounds are double-stranded, comprising two oligomeric compounds that form a duplex. In certain such embodiments, one oligomeric compound of a double-stranded antisense compound comprises one or more conjugate groups. In certain embodiments, each oligomeric compound of a double-stranded antisense compound comprises one or more conjugate groups. In certain embodiments, each oligonucleotide of a double-stranded antisense compound is a modified oligonucleotide. In certain embodiments, one oligonucleotide of a double-stranded antisense compound is a modified oligonucleotide. In certain embodiments, one oligonucleotide of a double-stranded antisense compound is an antisense oligonucleotide. In certain such embodiments, the antisense oligonucleotide is a modified oligonucleotide. Examples of single-stranded and double-stranded antisense compounds include but are not limited to antisense oligonucleotides, siRNAs, microRNA targeting oligonucleotides, and single-stranded RNAi compounds, such as small hairpin RNAs (shRNAs), single-stranded siRNAs (ssRNAs), and microRNA mimics.


In certain embodiments, antisense compounds are interfering RNA compounds (RNAi), which include double-stranded RNA compounds (also referred to as short-interfering RNA or siRNA) and single-stranded RNAi compounds (or ssRNA). Such compounds work at least in part through the RISC pathway to degrade and/or sequester a target nucleic acid (thus, include microRNA/microRNA-mimic compounds). As used herein, the term siRNA is meant to be equivalent to other terms used to describe nucleic acid molecules that are capable of mediating sequence specific RNAi, for example short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), short hairpin RNA (shRNA), short interfering oligonucleotide, short interfering nucleic acid, short interfering modified oligonucleotide, chemically modified siRNA, post-transcriptional gene silencing RNA (ptgsRNA), and others. In addition, as used herein, the term RNAi is meant to be equivalent to other terms used to describe sequence specific RNA interference, such as post transcriptional gene silencing, translational inhibition, or epigenetics.


In certain embodiments, a double-stranded compound can comprise any of the oligonucleotide sequences targeted to KRAS described herein. In certain embodiments, a double-stranded compound comprises a first strand comprising at least an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 contiguous nucleobase portion of any one of SEQ ID NOs: 13-2190 and a second strand. In certain embodiments, a double-stranded compound comprises a first strand comprising the nucleobase sequence of any one of SEQ ID NOs: 13-2190 and a second strand. In certain embodiments, the double-stranded compound comprises ribonucleotides in which the first strand has uracil (U) in place of thymine (T) in any one of SEQ ID NOs: 13-2190. In certain embodiments, a double-stranded compound comprises (i) a first strand comprising a nucleobase sequence complementary to the site on KRAS to which any of SEQ ID NOs: 13-2190 is targeted, and (ii) a second strand. In certain embodiments, the double-stranded compound comprises one or more modified nucleotides in which the 2′ position in the sugar contains a halogen (such as fluorine group; 2′-F) or contains an alkoxy group (such as a methoxy group; 2′-OMe). In certain embodiments, the double-stranded compound comprises at least one 2′-F sugar modification and at least one 2′-OMe sugar modification. In certain embodiments, the at least one 2′-F sugar modification and at least one 2′-OMe sugar modification are arranged in an alternating pattern for at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 contiguous nucleobases along a strand of the dsRNA compound. In certain embodiments, the double-stranded compound comprises one or more linkages between adjacent nucleotides other than a naturally-occurring phosphodiester linkage. Examples of such linkages include phosphoramide, phosphorothioate, and phosphorodithioate linkages. The double-stranded compounds may also be chemically modified nucleic acid molecules as taught in U.S. Pat. No. 6,673,661. In other embodiments, the dsRNA contains one or two capped strands, as disclosed, for example, by WO 00/63364, filed Apr. 19, 2000. In certain embodiments, the first strand of the double-stranded compound is an siRNA guide strand and the second strand of the double-stranded compound is an siRNA passenger strand. In certain embodiments, the second strand of the double-stranded compound is complementary to the first strand. In certain embodiments, each strand of the double-stranded compound consists of 16, 17, 18, 19, 20, 21, 22, or 23 linked nucleosides. In certain embodiments, the first or second strand of the double-stranded compound can comprise a conjugate group.


In certain embodiments, a single-stranded RNAi (ssRNAi) compound can comprise any of the oligonucleotide sequences targeted to KRAS described herein. In certain embodiments, an ssRNAi compound comprises at least an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 contiguous nucleobase portion of any one of SEQ ID NOs: 13-2190. In certain embodiments, an ssRNAi compound comprises the nucleobase sequence of any one of SEQ ID NOs: 13-2190. In certain embodiments, the ssRNAi compound comprises ribonucleotides in which uracil (U) is in place of thymine (T) in any one of SEQ ID NOs: 13-2190. In certain embodiments, an ssRNAi compound comprises a nucleobase sequence complementary to the site on KRAS to which any of SEQ ID NOs: 13-2190 is targeted. In certain embodiments, an ssRNAi compound comprises one or more modified nucleotides in which the 2′ position in the sugar contains a halogen (such as fluorine group; 2′-F) or contains an alkoxy group (such as a methoxy group; 2′-OMe). In certain embodiments, an ssRNAi compound comprises at least one 2′-F sugar modification and at least one 2′-OMe sugar modification. In certain embodiments, the at least one 2′-F sugar modification and at least one 2′-OMe sugar modification are arranged in an alternating pattern for at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 contiguous nucleobases along a strand of the ssRNAi compound. In certain embodiments, the ssRNAi compound comprises one or more linkages between adjacent nucleotides other than a naturally-occurring phosphodiester linkage. Examples of such linkages include phosphoramide, phosphorothioate, and phosphorodithioate linkages. The ssRNAi compounds may also be chemically modified nucleic acid molecules as taught in U.S. Pat. No. 6,673,661. In other embodiments, the ssRNAi contains a capped strand, as disclosed, for example, by WO 00/63364, filed Apr. 19, 2000. In certain embodiments, the ssRNAi compound consists of 16, 17, 18, 19, 20, 21, 22, or 23 linked nucleosides. In certain embodiments, the ssRNAi compound can comprise a conjugate group.


In certain embodiments, antisense compounds comprise modified oligonucleotides. Certain modified oligonucleotides have one or more asymmetric center and thus give rise to enantiomers, diastereomers, and other stereoisomeric configurations that may be defined, in terms of absolute stereochemistry, as (R) or (S), as α or β such as for sugar anomers, or as (D) or (L) such as for amino acids etc. Included in the modified oligonucleotides provided herein are all such possible isomers, including their racemic and optically pure forms, unless specified otherwise. Likewise, all cis- and trans-isomers and tautomeric forms are also included.


Certain Antisense Compound Mechanisms

In certain embodiments, antisense compounds are capable of hybridizing to a target nucleic acid, resulting in at least one antisense activity. In certain embodiments, antisense compounds specifically affect one or more target nucleic acid. Such specific antisense compounds comprises a nucleobase sequence that hybridizes to one or more target nucleic acid, resulting in one or more desired antisense activity and does not hybridize to one or more non-target nucleic acid or does not hybridize to one or more non-target nucleic acid in such a way that results in an undesired antisense activity.


In certain antisense activities, hybridization of an antisense compound to a target nucleic acid results in recruitment of a protein that cleaves the target nucleic acid. For example, certain antisense compounds result in RNase H mediated cleavage of the target nucleic acid. RNase H is a cellular endonuclease that cleaves the RNA strand of an RNA:DNA duplex. The DNA in such an RNA:DNA duplex need not be unmodified DNA. In certain embodiments, the invention provides antisense compounds that are sufficiently “DNA-like” to elicit RNase H activity. Further, in certain embodiments, one or more non-DNA-like nucleoside in the gap of a gapmer is tolerated.


In certain antisense activities, an antisense compound or a portion of an antisense compound is loaded into an RNA-induced silencing complex (RISC), ultimately resulting in cleavage of the target nucleic acid. For example, certain antisense compounds result in cleavage of the target nucleic acid by Argonaute. In certain embodiments, antisense compounds that are loaded into RISC are RNAi compounds.


In certain embodiments, hybridization of an antisense compound to a target nucleic acid does not result in recruitment of a protein that cleaves that target nucleic acid. In certain such embodiments, hybridization of the antisense compound to the target nucleic acid results in alteration of splicing of the target nucleic acid. In certain embodiments, hybridization of an antisense compound to a target nucleic acid results in inhibition of a binding interaction between the target nucleic acid and a protein or other nucleic acid. In certain such embodiments, hybridization of an antisense compound to a target nucleic acid results in alteration of translation of the target nucleic acid.


Antisense activities may be observed directly or indirectly. In certain embodiments, observation or detection of an antisense activity involves observation or detection of a change in an amount of a target nucleic acid or protein encoded by such target nucleic acid, a change in the ratio of splice variants of a nucleic acid or protein, and/or a phenotypic change in a cell or animal.


In certain embodiments, modified oligonucleotides having a gapmer sugar motif described herein have desirable properties compared to non-gapmer oligonucleotides or to gapmers having other sugar motifs. In certain circumstances, it is desirable to identify motifs resulting in a favorable combination of potent antisense activity and relatively low toxicity. In certain embodiments, compounds of the present invention have a favorable therapeutic index (measure of activity divided by measure of toxicity).


Target Nucleic Acids, Target Regions and Nucleotide Sequences

In certain embodiments, antisense compounds comprise or consist of an oligonucleotide comprising a region that is complementary to a target nucleic acid. In certain embodiments, the target nucleic acid is an endogenous RNA molecule. In certain embodiments, the target nucleic acid encodes a protein. In certain such embodiments, the target nucleic acid is selected from: an mRNA and a pre-mRNA, including intronic, exonic and untranslated regions. In certain embodiments, the target RNA is an mRNA. In certain embodiments, the target nucleic acid is a pre-mRNA. In certain such embodiments, the target region is entirely within an intron. In certain embodiments, the target region spans an intron/exon junction. In certain embodiments, the target region is at least 50% within an intron.


Nucleotide sequences that encode KRAS include, without limitation, GENBANK Accession No. NM_004985.4 (incorporated by reference, disclosed herein as SEQ ID NO: 1); GENBANK Accession No. NT_009714.17_TRUNC_18116000_18166000_COMP (incorporated by reference, disclosed herein as SEQ ID NO: 2), and GENBANK Accession No. NM_033360.3 (incorporated by reference, disclosed herein as SEQ ID NO: 3).


Hybridization

In some embodiments, hybridization occurs between an antisense compound disclosed herein and a KRAS nucleic acid. The most common mechanism of hybridization involves hydrogen bonding (e.g., Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding) between complementary nucleobases of the nucleic acid molecules.


Hybridization can occur under varying conditions. Hybridization conditions are sequence-dependent and are determined by the nature and composition of the nucleic acid molecules to be hybridized.


Methods of determining whether a sequence is specifically hybridizable to a target nucleic acid are well known in the art. In certain embodiments, the antisense compounds provided herein are specifically hybridizable with a KRAS nucleic acid.


Complementarity

An oligonucleotide is said to be complementary to another nucleic acid when the nucleobase sequence of such oligonucleotide or one or more regions thereof matches the nucleobase sequence of another oligonucleotide or nucleic acid or one or more regions thereof when the two nucleobase sequences are aligned in opposing directions. Nucleobase matches or complementary nucleobases, as described herein, are limited to adenine (A) and thymine (T), adenine (A) and uracil (U), cytosine (C) and guanine (G), and 5-methyl cytosine (mC) and guanine (G) unless otherwise specified. Complementary oligonucleotides and/or nucleic acids need not have nucleobase complementarity at each nucleoside and may include one or more nucleobase mismatches. An oligonucleotide is fully complementary or 100% complementary when such oligonucleotides have nucleobase matches at each nucleoside without any nucleobase mismatches.


Non-complementary nucleobases between an antisense compound and a KRAS nucleic acid may be tolerated provided that the antisense compound remains able to specifically hybridize to a target nucleic acid. Moreover, an antisense compound may hybridize over one or more segments of a KRAS nucleic acid such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure, mismatch or hairpin structure).


In certain embodiments, the antisense compounds provided herein, or a specified portion thereof, are, or are at least, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary to a KRAS nucleic acid, a target region, target segment, or specified portion thereof. Percent complementarity of an antisense compound with a target nucleic acid can be determined using routine methods.


For example, an antisense compound in which 18 of 20 nucleobases of the antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining non-complementary nucleobases may be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, an antisense compound which is 18 nucleobases in length having four non-complementary nucleobases which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403 410; Zhang and Madden, Genome Res., 1997, 7, 649 656). Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482 489).


In certain embodiments, the antisense compounds provided herein, or specified portions thereof, are fully complementary (i.e. 100% complementary) to a target nucleic acid, or specified portion thereof. For example, an antisense compound may be fully complementary to a KRAS nucleic acid, or a target region, or a target segment or target sequence thereof. As used herein, “fully complementary” means each nucleobase of an antisense compound is capable of precise base pairing with the corresponding nucleobases of a target nucleic acid. For example, a 20 nucleobase antisense compound is fully complementary to a target sequence that is 400 nucleobases long, so long as there is a corresponding 20 nucleobase portion of the target nucleic acid that is fully complementary to the antisense compound. Fully complementary can also be used in reference to a specified portion of the first and/or the second nucleic acid. For example, a 20 nucleobase portion of a 30 nucleobase antisense compound can be “fully complementary” to a target sequence that is 400 nucleobases long. The 20 nucleobase portion of the 30 nucleobase oligonucleotide is fully complementary to the target sequence if the target sequence has a corresponding 20 nucleobase portion wherein each nucleobase is complementary to the 20 nucleobase portion of the antisense compound. At the same time, the entire 30 nucleobase antisense compound may or may not be fully complementary to the target sequence, depending on whether the remaining 10 nucleobases of the antisense compound are also complementary to the target sequence.


In certain embodiments, antisense compounds comprise one or more mismatched nucleobases relative to the target nucleic acid. In certain such embodiments, antisense activity against the target is reduced by such mismatch, but activity against a non-target is reduced by a greater amount. Thus, in certain such embodiments selectivity of the antisense compound is improved. In certain embodiments, the mismatch is specifically positioned within an oligonucleotide having a gapmer motif. In certain such embodiments, the mismatch is at position 1, 2, 3, 4, 5, 6, 7, or 8 from the 5′-end of the gap region. In certain such embodiments, the mismatch is at position 9, 8, 7, 6, 5, 4, 3, 2, 1 from the 3′-end of the gap region. In certain such embodiments, the mismatch is at position 1, 2, 3, or 4 from the 5′-end of the wing region. In certain such embodiments, the mismatch is at position 4, 3, 2, or 1 from the 3′-end of the wing region.


The location of a non-complementary nucleobase may be at the 5′ end or 3′ end of the antisense compound. Alternatively, the non-complementary nucleobase or nucleobases may be at an internal position of the antisense compound. When two or more non-complementary nucleobases are present, they may be contiguous (i.e. linked) or non-contiguous. In one embodiment, a non-complementary nucleobase is located in the wing segment of a gapmer antisense oligonucleotide.


In certain embodiments, antisense compounds that are, or are up to 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleobases in length comprise no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid, such as a KRAS nucleic acid, or specified portion thereof.


In certain embodiments, antisense compounds that are, or are up to 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleobases in length comprise no more than 6, no more than 5, no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid, such as a KRAS nucleic acid, or specified portion thereof.


The antisense compounds provided also include those which are complementary to a portion of a target nucleic acid. As used herein, “portion” refers to a defined number of contiguous (i.e. linked) nucleobases within a region or segment of a target nucleic acid. A “portion” can also refer to a defined number of contiguous nucleobases of an antisense compound. In certain embodiments, the antisense compounds, are complementary to at least an 8 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 9 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 10 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least an 11 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 12 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 13 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 14 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 15 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 16 nucleobase portion of a target segment. Also contemplated are antisense compounds that are complementary to at least a 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more nucleobase portion of a target segment, or a range defined by any two of these values.


Identity

The antisense compounds provided herein may also have a defined percent identity to a particular nucleotide sequence, SEQ ID NO, or compound represented by a specific Isis number, or portion thereof. As used herein, an antisense compound is identical to the sequence disclosed herein if it has the same nucleobase pairing ability. For example, a RNA which contains uracil in place of thymidine in a disclosed DNA sequence would be considered identical to the DNA sequence since both uracil and thymidine pair with adenine. Shortened and lengthened versions of the antisense compounds described herein as well as compounds having non-identical bases relative to the antisense compounds provided herein also are contemplated. The non-identical bases may be adjacent to each other or dispersed throughout the antisense compound. Percent identity of an antisense compound is calculated according to the number of bases that have identical base pairing relative to the sequence to which it is being compared.


In certain embodiments, the antisense compounds, or portions thereof, are, or are at least, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to one or more of the antisense compounds or SEQ ID NOs, or a portion thereof, disclosed herein.


In certain embodiments, a portion of the antisense compound is compared to an equal length portion of the target nucleic acid. In certain embodiments, an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleobase portion is compared to an equal length portion of the target nucleic acid.


In certain embodiments, a portion of the antisense oligonucleotide is compared to an equal length portion of the target nucleic acid. In certain embodiments, an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleobase portion is compared to an equal length portion of the target nucleic acid.


Modifications

Modifications to antisense compounds encompass substitutions or changes to internucleoside linkages, sugar moieties, or nucleobases. Modified antisense compounds are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target, increased stability in the presence of nucleases, or increased inhibitory activity.


Chemically modified nucleosides may also be employed to increase the binding affinity of a shortened or truncated antisense oligonucleotide for its target nucleic acid. Consequently, comparable results can often be obtained with shorter antisense compounds that have such chemically modified nucleosides.


Modified Internucleoside Linkages

The naturally occurring internucleoside linkage of RNA and DNA is a 3′ to 5′ phosphodiester linkage. Antisense compounds having one or more modified, i.e. non-naturally occurring, internucleoside linkages are often selected over antisense compounds having naturally occurring internucleoside linkages because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for target nucleic acids, and increased stability in the presence of nucleases.


Oligonucleotides having modified internucleoside linkages include internucleoside linkages that retain a phosphorus atom as well as internucleoside linkages that do not have a phosphorus atom. Representative phosphorus containing internucleoside linkages include, but are not limited to, phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidate, and phosphorothioates. Methods of preparation of phosphorous-containing and non-phosphorous-containing linkages are well known.


In certain embodiments, nucleosides of modified oligonucleotides may be linked together using any internucleoside linkage. The two main classes of internucleoside linking groups are defined by the presence or absence of a phosphorus atom. Representative phosphorus-containing internucleoside linkages include but are not limited to phosphates, which contain a phosphodiester bond (“P═O”) (also referred to as unmodified or naturally occurring linkages), phosphotriesters, methylphosphonates, phosphoramidates, and phosphorothioates (“P═S”), and phosphorodithioates (“HS—P═S”). Representative non-phosphorus containing internucleoside linking groups include but are not limited to methylenemethylimino (—CH2-N(CH3)-O—CH2-), thiodiester (—O—C(═O)—S—), thionocarbamate (—O—C(═O)(NH)—S—); siloxane (—O—SiH2-O—); and N,N′-dimethylhydrazine (—CH2-N(CH3)-N(CH3)-). Modified internucleoside linkages, compared to naturally occurring phosphate linkages, can be used to alter, typically increase, nuclease resistance of the oligonucleotide. In certain embodiments, internucleoside linkages having a chiral atom can be prepared as a racemic mixture, or as separate enantiomers. Representative chiral internucleoside linkages include but are not limited to alkylphosphonates and phosphorothioates. Methods of preparation of phosphorous-containing and non-phosphorous-containing internucleoside linkages are well known to those skilled in the art.


Neutral internucleoside linkages include, without limitation, phosphotriesters, methylphosphonates, MMI (3′-CH2-N(CH3)-O-5′), amide-3 (3′-CH2-C(═O)—N(H)-5′), amide-4 (3′-CH2-N(H)—C(═O)-5′), formacetal (3′-O—CH2-O-5′), methoxypropyl, and thioformacetal (3′-S—CH2-O-5′). Further neutral internucleoside linkages include nonionic linkages comprising siloxane (dialkylsiloxane), carboxylate ester, carboxamide, sulfide, sulfonate ester and amides (See for example: Carbohydrate Modifications in Antisense Research; Y. S. Sanghvi and P. D. Cook, Eds., ACS Symposium Series 580; Chapters 3 and 4, 40-65). Further neutral internucleoside linkages include nonionic linkages comprising mixed N, O, S and CH2 component parts.


In certain embodiments, antisense compounds targeted to a KRAS nucleic acid comprise one or more modified internucleoside linkages. In certain embodiments, the modified internucleoside linkages are phosphorothioate linkages. In certain embodiments, each internucleoside linkage of an antisense compound is a phosphorothioate internucleoside linkage.


In certain embodiments, oligonucleotides comprise modified internucleoside linkages arranged along the oligonucleotide or region thereof in a defined pattern or modified internucleoside linkage motif. In certain embodiments, internucleoside linkages are arranged in a gapped motif. In such embodiments, the internucleoside linkages in each of two wing regions are different from the internucleoside linkages in the gap region. In certain embodiments the internucleoside linkages in the wings are phosphodiester and the internucleoside linkages in the gap are phosphorothioate. The nucleoside motif is independently selected, so such oligonucleotides having a gapped internucleoside linkage motif may or may not have a gapped nucleoside motif and if it does have a gapped nucleoside motif, the wing and gap lengths may or may not be the same.


In certain embodiments, oligonucleotides comprise a region having an alternating internucleoside linkage motif. In certain embodiments, oligonucleotides of the present invention comprise a region of uniformly modified internucleoside linkages. In certain such embodiments, the oligonucleotide comprises a region that is uniformly linked by phosphorothioate internucleoside linkages. In certain embodiments, the oligonucleotide is uniformly linked by phosphorothioate. In certain embodiments, each internucleoside linkage of the oligonucleotide is selected from phosphodiester and phosphorothioate. In certain embodiments, each internucleoside linkage of the oligonucleotide is selected from phosphodiester and phosphorothioate and at least one internucleoside linkage is phosphorothioate.


In certain embodiments, the oligonucleotide comprises at least 6 phosphorothioate internucleoside linkages. In certain embodiments, the oligonucleotide comprises at least 8 phosphorothioate internucleoside linkages. In certain embodiments, the oligonucleotide comprises at least 10 phosphorothioate internucleoside linkages. In certain embodiments, the oligonucleotide comprises at least one block of at least 6 consecutive phosphorothioate internucleoside linkages. In certain embodiments, the oligonucleotide comprises at least one block of at least 8 consecutive phosphorothioate internucleoside linkages. In certain embodiments, the oligonucleotide comprises at least one block of at least 10 consecutive phosphorothioate internucleoside linkages. In certain embodiments, the oligonucleotide comprises at least one block of at least 12 consecutive phosphorothioate internucleoside linkages. In certain such embodiments, at least one such block is located at the 3′ end of the oligonucleotide. In certain such embodiments, at least one such block is located within 3 nucleosides of the 3′ end of the oligonucleotide.


In certain embodiments, oligonucleotides comprise one or more methylphosponate linkages. In certain embodiments, oligonucleotides having a gapmer nucleoside motif comprise a linkage motif comprising all phosphorothioate linkages except for one or two methylphosponate linkages. In certain embodiments, one methylphosponate linkage is in the central gap of an oligonucleotide having a gapmer nucleoside motif.


In certain embodiments, it is desirable to arrange the number of phosphorothioate internucleoside linkages and phosphodiester internucleoside linkages to maintain nuclease resistance. In certain embodiments, it is desirable to arrange the number and position of phosphorothioate internucleoside linkages and the number and position of phosphodiester internucleoside linkages to maintain nuclease resistance. In certain embodiments, the number of phosphorothioate internucleoside linkages may be decreased and the number of phosphodiester internucleoside linkages may be increased. In certain embodiments, the number of phosphorothioate internucleoside linkages may be decreased and the number of phosphodiester internucleoside linkages may be increased while still maintaining nuclease resistance. In certain embodiments it is desirable to decrease the number of phosphorothioate internucleoside linkages while retaining nuclease resistance. In certain embodiments it is desirable to increase the number of phosphodiester internucleoside linkages while retaining nuclease resistance.


Modified Sugar Moieties

Antisense compounds can optionally contain one or more nucleosides wherein the sugar group has been modified. Such sugar modified nucleosides may impart enhanced nuclease stability, increased binding affinity, or some other beneficial biological property to the antisense compounds.


In certain embodiments, modified oligonucleotides comprise one or more modified nucleosides comprising a modified sugar moiety. Such modified oligonucleotides comprising one or more sugar-modified nucleosides may have desirable properties, such as enhanced nuclease stability or increased binding affinity with a target nucleic acid relative to oligonucleotides lacking such sugar-modified nucleosides. In certain embodiments, modified sugar moieties are linearly modified sugar moieties. In certain embodiments, modified sugar moieties are bicyclic or tricyclic sugar moieties. In certain embodiments, modified sugar moieties are sugar surrogates. Such sugar surrogates may comprise one or more substitutions corresponding to those of substituted sugar moieties.


In certain embodiments, modified sugar moieties are linearly modified sugar moieties comprising a furanosyl ring with one or more acyclic substituent, including but not limited to substituents at the 2′ and/or 5′ positions. Examples of 2′-substituent groups suitable for linearly modified sugar moieties include but are not limited to: 2′-F, 2′-OCH3 (“OMe” or “O-methyl”), and 2′-O(CH2)2OCH3 (“MOE”). In certain embodiments, 2′-substituent groups are selected from among: halo, allyl, amino, azido, SH, CN, OCN, CF3, OCF3, O—C1-C10 alkoxy, O—C1-C10 substituted alkoxy, O—C1-C10 alkyl, O—C1-C10 substituted alkyl, S-alkyl, N(Rm)-alkyl, O-alkenyl, S-alkenyl, N(Rm)-alkenyl, O-alkynyl, S-alkynyl, N(Rm)-alkynyl, O-alkylenyl-O-alkyl, alkynyl, alkaryl, aralkyl, O-alkaryl, O-aralkyl, O(CH2)2SCH3, O(CH2)2ON(Rm)(Rn) or OCH2C(═O)—N(Rm)(Rn), where each Rm and Rn is, independently, H, an amino protecting group, or substituted or unsubstituted C1-C10 alkyl. Certain embodiments of these 2′-substituent groups can be further substituted with one or more substituent groups independently selected from among: hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro (NO2), thiol, thioalkoxy, thioalkyl, halogen, alkyl, aryl, alkenyl and alkynyl. Examples of 5′-substituent groups suitable for linearly modified sugar moieties include but are not limited to: 5′-methyl (R or S), 5′-vinyl, and 5′-methoxy. In certain embodiments, linearly modified sugars comprise more than one non-bridging sugar substituent, for example, 2′-F-5′-methyl sugar moieties (see, e.g., PCT International Application WO 2008/101157, for additional 2′, 5′-bis substituted sugar moieties and nucleosides).


In certain embodiments, a 2′-substituted nucleoside or 2′-linearly modified nucleoside comprises a sugar moiety comprising a linear 2′-substituent group selected from: F, NH2, N3, OCF3, OCH3, O(CH2)3NH2, CH2CH═CH2, OCH2CH═CH2, OCH2CH2OCH3, O(CH2)2SCH3, O(CH2)20N(Rm)(Rn), O(CH2)2O(CH2)2N(CH3)2, and N-substituted acetamide (OCH2C(═O)—N(Rm)(Rn)), where each Rm and Rn is, independently, H, an amino protecting group, or substituted or unsubstituted C1-C10 alkyl.


In certain embodiments, a 2′-substituted nucleoside or 2′-linearly modified nucleoside comprises a sugar moiety comprising a linear 2′-substituent group selected from: F, OCF3, OCH3, OCH2CH2OCH3, O(CH2)2SCH3, O(CH2)20N(CH3)2, O(CH2)2O(CH2)2N(CH3)2, and OCH2C(═O)—N(H)CH3 (“NMA”).


In certain embodiments, a 2′-substituted nucleoside or 2′-linearly modified nucleoside comprises a sugar moiety comprising a linear 2′-substituent group selected from: F, OCH3, and OCH2CH2OCH3.


Nucleosides comprising modified sugar moieties, such as linearly modified sugar moieties, are referred to by the position(s) of the substitution(s) on the sugar moiety of the nucleoside. For example, nucleosides comprising 2′-substituted or 2-modified sugar moieties are referred to as 2′-substituted nucleosides or 2-modified nucleosides.


Certain modified sugar moieties comprise a bridging sugar substituent that forms a second ring resulting in a bicyclic sugar moiety. In certain such embodiments, the bicyclic sugar moiety comprises a bridge between the 4′ and the 2′ furanose ring atoms. Examples of such 4′ to 2′ bridging sugar substituents include but are not limited to: 4′-CH2-2′, 4′-(CH2)2-2′, 4′-(CH2)3-2′, 4′-CH2—O-2′ (“LNA”), 4′-CH2—S-2′, 4′-(CH2)2-O-2′ (“ENA”), 4′-CH(CH3)—O-2′ (referred to as “constrained ethyl” or “cEt” when in the S configuration), 4′-CH2—O—CH2-2′, 4′-CH2—N(R)-2′, 4′-CH(CH2OCH3)—O-2′ (“constrained MOE” or “cMOE”) and analogs thereof (see, e.g., U.S. Pat. No. 7,399,845), 4′-C(CH3)(CH3)—O-2′ and analogs thereof (see, e.g., WO2009/006478), 4′-CH2—N(OCH3)-2′ and analogs thereof (see, e.g., WO2008/150729), 4′-CH2—O—N(CH3)-2′ (see, e.g., US2004/0171570), 4′-CH2—C(H)(CH3)-2′ (see, e.g., Chattopadhyaya, et al., J. Org. Chem., 2009, 74, 118-134), 4′-CH2—C(═CH2)-2′ and analogs thereof (see, published PCT International Application WO 2008/154401), 4′-C(RaRb)—N(R)—O-2′, 4′-C(RaRb)—O—N(R)-2′, 4′-CH2—O—N(R)-2′, and 4′-CH2—N(R)—O-2′, wherein each R, Ra, and Rb is, independently, H, a protecting group, or C1-C12 alkyl (see, e.g. U.S. Pat. No. 7,427,672).


In certain embodiments, such 4′ to 2′ bridges independently comprise from 1 to 4 linked groups independently selected from: —[C(Ra)(Rb)]n—, —[C(Ra)(Rb)]n—O—, —C(Ra)═C(Rb)—, —C(Ra)═N—, —C(═NRa)—, —C(═O)—, —C(═S)—, —O—, —Si(Ra)2—, —S(═O)x—, and —N(Ra)—;


wherein:


x is 0, 1, or 2;


n is 1, 2, 3, or 4;


each Ra and Rb is, independently, H, a protecting group, hydroxyl, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, heterocycle radical, substituted heterocycle radical, heteroaryl, substituted heteroaryl, C5-C7 alicyclic radical, substituted C5-C7 alicyclic radical, halogen, OJ1, NJ1J2, SJ1, N3, COOJ1, acyl (C(═O)—H), substituted acyl, CN, sulfonyl (S(═O)2-Jr), or sulfoxyl (S(═O)-J1); and


each J1 and J2 is, independently, H, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, acyl (C(═O)—H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, Cr-Cu aminoalkyl, substituted C1-C12 aminoalkyl, or a protecting group.


Additional bicyclic sugar moieties are known in the art, for example: Freier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443, Albaek et al., J. Org. Chem., 2006, 71, 7731-7740, Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al., Proc. Natl. Acad. Sci. U.S.A, 2000, 97, 5633-5638; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J. Am. Chem. Soc., 20017, 129, 8362-8379; Elayadi et al., Curr. Opinion Invens. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8, 1-7; Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; U.S. Pat. Nos. 7,053,207, 6,268,490, 6,770,748, 6,794,499, 7,034,133, 6,525,191, 6,670,461, and 7,399,845; WO 2004/106356, WO 1994/14226, WO 2005/021570, and WO 2007/134181; U.S. Patent Publication Nos. U52004/0171570, U52007/0287831, and U52008/0039618; U.S. patent Ser. Nos. 12/129,154, 60/989,574, 61/026,995, 61/026,998, 61/056,564, 61/086,231, 61/097,787, and 61/099,844; and PCT International Applications Nos. PCT/US2008/064591, PCT/US2008/066154, and PCT/US2008/068922.


In certain embodiments, bicyclic sugar moieties and nucleosides incorporating such bicyclic sugar moieties are further defined by isomeric configuration. For example, an LNA nucleoside (described above) may be in the α-L configuration or in the β-D configuration.




embedded image


α-L-methyleneoxy (4′-CH2—O-2′) or α-L-LNA bicyclic nucleosides have been incorporated into antisense oligonucleotides that showed antisense activity (Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372). Herein, general descriptions of bicyclic nucleosides include both isomeric configurations. When the positions of specific bicyclic nucleosides (e.g., LNA or cEt) are identified in exemplified embodiments herein, they are in the β-D configuration, unless otherwise specified.


In certain embodiments, modified sugar moieties comprise one or more non-bridging sugar substituent and one or more bridging sugar substituent (e.g., 5′-substituted and 4′-2′ bridged sugars). (see, e.g., WO 2007/134181, wherein LNA nucleosides are further substituted with, for example, a 5′-methyl or a 5′-vinyl group, and see, e.g., U.S. Pat. Nos. 7,547,684; 7,750,131; 8,030,467; 8,268,980; 7,666, 854; and 8,088,746).


In certain embodiments, modified sugar moieties are sugar surrogates. In certain such embodiments, the oxygen atom of the sugar moiety is replaced, e.g., with a sulfur, carbon or nitrogen atom. In certain such embodiments, such modified sugar moieties also comprise bridging and/or non-bridging substituents as described above. For example, certain sugar surrogates comprise a 4′-sulfur atom and a substitution at the 2′-position (see, e.g., US2005/0130923) and/or the 5′ position.


In certain embodiments, sugar surrogates comprise rings having other than 5 atoms. For example, in certain embodiments, a sugar surrogate comprises a six-membered tetrahydropyran (“THP”). Such tetrahydropyrans may be further modified or substituted. Nucleosides comprising such modified tetrahydropyrans include but are not limited to hexitol nucleic acid (“HNA”), anitol nucleic acid (“ANA”), manitol nucleic acid (“MNA”) (see Leumann, C J. Bioorg. & Med. Chem. 2002, 10, 841-854), fluoro HNA:




embedded image


(“F-HNA”, see e.g., U.S. Pat. Nos. 8,088,904; 8,440,803; and 8,796,437, F-HNA can also be referred to as a F-THP or 3′-fluoro tetrahydropyran), and nucleosides comprising additional modified THP compounds having the formula:




embedded image


wherein, independently, for each of said modified THP nucleoside:


Bx is a nucleobase moiety;


T3 and T4 are each, independently, an internucleoside linking group linking the modified THP nucleoside to the remainder of an oligonucleotide or one of T3 and T4 is an internucleoside linking group linking the modified THP nucleoside to the remainder of an oligonucleotide and the other of T3 and T4 is H, a hydroxyl protecting group, a linked conjugate group, or a 5′ or 3′-terminal group;


q1, q2, q3, q4, q5, q6 and q7 are each, independently, H, C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl, or substituted C2-C6 alkynyl; and


each of R1 and R2 is independently selected from among: hydrogen, halogen, substituted or unsubstituted alkoxy, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2, and CN, wherein X is O, S or NJ1, and each J1, J2, and J3 is, independently, H or C1-C6 alkyl.


In certain embodiments, modified THP nucleosides are provided wherein q1, q2, q3, q4, q5, q6 and q7 are each H. In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is other than H. In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is methyl. In certain embodiments, modified THP nucleosides are provided wherein one of R1 and R2 is F. In certain embodiments, R1 is F and R2 is H, in certain embodiments, R1 is methoxy and R2 is H, and in certain embodiments, R1 is methoxyethoxy and R2 is H.


In certain embodiments, sugar surrogates comprise rings having more than 5 atoms and more than one heteroatom. For example, nucleosides comprising morpholino sugar moieties and their use in oligonucleotides have been reported (see, e.g., Braasch et al., Biochemistry, 2002, 41, 4503-4510 and U.S. Pat. Nos. 5,698,685; 5,166,315; 5,185,444; and 5,034,506). As used here, the term “morpholino” means a sugar surrogate having the following structure:




embedded image


In certain embodiments, morpholinos may be modified, for example by adding or altering various substituent groups from the above morpholino structure. Such sugar surrogates are referred to herein as “modified morpholinos.”


In certain embodiments, sugar surrogates comprise acyclic moieites. Examples of nucleosides and oligonucleotieds comprising such acyclic sugar surrogates include but are not limited to: peptide nucleic acid (“PNA”), acyclic butyl nucleic acid (see, e.g., Kumar et al., Org. Biomol. Chem., 2013, 11, 5853-5865), and nucleosides and oligonucleotides described in WO2011/133876.


Many other bicyclic and tricyclic sugar and sugar surrogate ring systems are known in the art that can be used in modified nucleosides (see, e.g., Leumann, J. C, Bioorganic & Medicinal Chemistry, 2002, 10, 841-854).


Modified Nucleobases

Nucleobase (or base) modifications or substitutions are structurally distinguishable from, yet functionally interchangeable with, naturally occurring or synthetic unmodified nucleobases. Both natural and modified nucleobases are capable of participating in hydrogen bonding. Such nucleobase modifications can impart nuclease stability, binding affinity or some other beneficial biological property to antisense compounds.


In certain embodiments, modified oligonucleotides comprise one or more nucleoside comprising an unmodified nucleobase. In certain embodiments, modified oligonucleotides comprise one or more nucleoside comprising a modified nucleobase. In certain embodiments, modified oligonucleotides comprise one or more nucleoside that does not comprise a nucleobase, referred to as an abasic nucleoside.


In certain embodiments, modified nucleobases are selected from: 5-substituted pyrimidines, 6-azapyrimi-idines, alkyl or alkynyl substituted pyrimidines, alkyl substituted purines, and N-2, N-6 and 0-6 substituted purines. In certain embodiments, modified nucleobases are selected from: 2-aminopropyladenine, 5-hydroxymethyl cytosine, 5-methylcytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-N-methylguanine, 6-N-methyladenine, 2-propyladenine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-propynyl (C≡C—CH3) uracil, 5-propynylcytosine, 6-azouracil, 6-azocytosine, 6-azothymine, 5-ribosyluracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl, 8-aza and other 8-substituted purines, 5-halo, particularly 5-bromo, 5-trifluoromethyl, 5-halouracil, and 5-halocytosine, 7-methylguanine, 7-methyladenine, 2-F-adenine, 2-aminoadenine, 7-deazaguanine, 7-deazaadenine, 3-deazaguanine, 3-deazaadenine, 6-N-benzoyladenine, 2-N-isobutyrylguanine, 4-N-benzoylcytosine, 4-N-benzoyluracil, 5-methyl 4-N-benzoylcytosine, 5-methyl 4-N-benzoyluracil, universal bases, hydrophobic bases, promiscuous bases, size-expanded bases, and fluorinated bases. Further modified nucleobases include tricyclic pyrimidines, such as 1,3-diazaphenoxazine-2-one, 1,3-diazaphenothiazine-2-one and 9-(2-aminoethoxy)-1,3-diazaphenoxazine-2-one (G-clamp). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, Kroschwitz, J. I., Ed., John Wiley & Sons, 1990, 858-859; Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613; Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, Crooke, S. T. and Lebleu, B., Eds., CRC Press, 1993, 273-288; and those disclosed in Chapters 6 and 15, Antisense Drug Technology, Crooke S. T., Ed., CRC Press, 2008, 163-166 and 442-443.


Publications that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include without limitation, Manoharan et al., U52003/0158403, Manoharan et al., U52003/0175906; Dinh et al., U.S. Pat. No. 4,845,205; Spielvogel et al., U.S. Pat. No. 5,130,302; Rogers et al., U.S. 5,134,066; Bischofberger et al., U.S. Pat. No. 5,175,273; Urdea et al., U.S. Pat. No. 5,367,066; Benner et al., U.S. Pat. No. 5,432,272; Matteucci et al., U.S. Pat. No. 5,434,257; Gmeiner et al., U.S. Pat. No. 5,457,187; Cook et al., U.S. Pat. No. 5,459,255; Froehler et al., U.S. Pat. No. 5,484,908; Matteucci et al., U.S. Pat. No. 5,502,177; Hawkins et al., U.S. Pat. No. 5,525,711; Haralambidis et al., U.S. Pat. No. 5,552,540; Cook et al., U.S. Pat. No. 5,587,469; Froehler et al., U.S. Pat. No. 5,594,121; Switzer et al., U.S. Pat. No. 5,596,091; Cook et al., U.S. Pat. No. 5,614,617; Froehler et al., U.S. Pat. No. 5,645,985; Cook et al., U.S. Pat. No. 5,681,941; Cook et al., U.S. Pat. No. 5,811,534; Cook et al., U.S. Pat. No. 5,750,692; Cook et al., U.S. Pat. No. 5,948,903; Cook et al., U.S. Pat. No. 5,587,470; Cook et al., U.S. Pat. No. 5,457,191; Matteucci et al., U.S. Pat. No. 5,763,588; Froehler et al., U.S. Pat. No. 5,830,653; Cook et al., U.S. Pat. No. 5,808,027; Cook et al., 6,166,199; and Matteucci et al., U.S. Pat. No. 6,005,096.


In certain embodiments, antisense compounds targeted to a KRAS nucleic acid comprise one or more modified nucleobases. In certain embodiments, the modified nucleobase is 5-methylcytosine. In certain embodiments, each cytosine is a 5-methylcytosine.


Certain Motifs

Oligonucleotides can have a motif, e.g. a pattern of unmodified and/or modified sugar moieties, nucleobases, and/or internucleoside linkages. In certain embodiments, modified oligonucleotides comprise one or more modified nucleoside comprising a modified sugar. In certain embodiments, modified oligonucleotides comprise one or more modified nucleosides comprising a modified nucleobase. In certain embodiments, modified oligonucleotides comprise one or more modified internucleoside linkage. In such embodiments, the modified, unmodified, and differently modified sugar moieties, nucleobases, and/or internucleoside linkages of a modified oligonucleotide define a pattern or motif. In certain embodiments, the patterns of sugar moieties, nucleobases, and internucleoside linkages are each independent of one another. Thus, a modified oligonucleotide may be described by its sugar motif, nucleobase motif and/or internucleoside linkage motif (as used herein, nucleobase motif describes the modifications to the nucleobases independent of the sequence of nucleobases).


1. Certain Sugar Motifs


In certain embodiments, oligonucleotides comprise one or more type of modified sugar and/or unmodified sugar moiety arranged along the oligonucleotide or region thereof in a defined pattern or sugar motif. In certain instances, such sugar motifs include but are not limited to any of the sugar modifications discussed herein.


In certain embodiments, modified oligonucleotides comprise or consist of a region having a gapmer motif, which comprises two external regions or “wings” and a central or internal region or “gap.” The three regions of a gapmer motif (the 5′-wing, the gap, and the 3′-wing) form a contiguous sequence of nucleosides wherein at least some of the sugar moieties of the nucleosides of each of the wings differ from at least some of the sugar moieties of the nucleosides of the gap. Specifically, at least the sugar moieties of the nucleosides of each wing that are closest to the gap (the 3′-most nucleoside of the 5′-wing and the 5′-most nucleoside of the 3′-wing) differ from the sugar moiety of the neighboring gap nucleosides, thus defining the boundary between the wings and the gap (i.e., the wing/gap junction). In certain embodiments, the sugar moieties within the gap are the same as one another. In certain embodiments, the gap includes one or more nucleoside having a sugar moiety that differs from the sugar moiety of one or more other nucleosides of the gap. In certain embodiments, the sugar motifs of the two wings are the same as one another (symmetric gapmer). In certain embodiments, the sugar motif of the 5′-wing differs from the sugar motif of the 3′-wing (asymmetric gapmer).


In certain embodiments, the wings of a gapmer comprise 1-5 nucleosides. In certain embodiments, the wings of a gapmer comprise 2-5 nucleosides. In certain embodiments, the wings of a gapmer comprise 3-5 nucleosides. In certain embodiments, the nucleosides of a gapmer are all modified nucleosides.


In certain embodiments, the gap of a gapmer comprises 7-12 nucleosides. In certain embodiments, the gap of a gapmer comprises 7-10 nucleosides. In certain embodiments, the gap of a gapmer comprises 8-10 nucleosides. In certain embodiments, the gap of a gapmer comprises 10 nucleosides. In certain embodiment, each nucleoside of the gap of a gapmer is an unmodified 2′-deoxy nucleoside.


In certain embodiments, the gapmer is a deoxy gapmer. In such embodiments, the nucleosides on the gap side of each wing/gap junction are unmodified 2′-deoxy nucleosides and the nucleosides on the wing sides of each wing/gap junction are modified nucleosides. In certain such embodiments, each nucleoside of the gap is an unmodified 2′-deoxy nucleoside. In certain such embodiments, each nucleoside of each wing is a modified nucleoside.


In certain embodiments, modified oligonucleotides comprise or consist of a region having a fully modified sugar motif. In such embodiments, each nucleoside of the fully modified region of the modified oligonucleotide comprises a modified sugar moiety. In certain such embodiments, each nucleoside to the entire modified oligonucleotide comprises a modified sugar moiety. In certain embodiments, modified oligonucleotides comprise or consist of a region having a fully modified sugar motif, wherein each nucleoside within the fully modified region comprises the same modified sugar moiety, referred to herein as a uniformly modified sugar motif. In certain embodiments, a fully modified oligonucleotide is a uniformly modified oligonucleotide. In certain embodiments, each nucleoside of a uniformly modified comprises the same 2′-modification.


2. Certain Nucleobase Motifs


In certain embodiments, oligonucleotides comprise modified and/or unmodified nucleobases arranged along the oligonucleotide or region thereof in a defined pattern or motif. In certain embodiments, each nucleobase is modified. In certain embodiments, none of the nucleobases are modified. In certain embodiments, each purine or each pyrimidine is modified. In certain embodiments, each adenine is modified. In certain embodiments, each guanine is modified. In certain embodiments, each thymine is modified. In certain embodiments, each uracil is modified. In certain embodiments, each cytosine is modified. In certain embodiments, some or all of the cytosine nucleobases in a modified oligonucleotide are 5-methylcytosines.


In certain embodiments, modified oligonucleotides comprise a block of modified nucleobases. In certain such embodiments, the block is at the 3′-end of the oligonucleotide. In certain embodiments the block is within 3 nucleosides of the 3′-end of the oligonucleotide. In certain embodiments, the block is at the 5′-end of the oligonucleotide. In certain embodiments the block is within 3 nucleosides of the 5′-end of the oligonucleotide.


In certain embodiments, oligonucleotides having a gapmer motif comprise a nucleoside comprising a modified nucleobase. In certain such embodiments, one nucleoside comprising a modified nucleobase is in the central gap of an oligonucleotide having a gapmer motif. In certain such embodiments, the sugar moiety of said nucleoside is a 2′-deoxyribosyl moiety. In certain embodiments, the modified nucleobase is selected from: a 2-thiopyrimidine and a 5-propynepyrimidine.


3. Certain Internucleoside Linkage Motifs


In certain embodiments, oligonucleotides comprise modified and/or unmodified internucleoside linkages arranged along the oligonucleotide or region thereof in a defined pattern or motif. In certain embodiments, essentially each internucleoside linking group is a phosphate internucleoside linkage (P═O). In certain embodiments, each internucleoside linking group of a modified oligonucleotide is a phosphorothioate (P═S). In certain embodiments, each internucleoside linking group of a modified oligonucleotide is independently selected from a phosphorothioate and phosphate internucleoside linkage. In certain embodiments, the sugar motif of a modified oligonucleotide is a gapmer and the internucleoside linkages within the gap are all modified. In certain such embodiments, some or all of the internucleoside linkages in the wings are unmodified phosphate linkages. In certain embodiments, the terminal internucleoside linkages are modified.


Certain Oligonucleotides

In certain embodiments, oligonucleotides are characterized by their motifs and overall lengths. In certain embodiments, such parameters are each independent of one another. Thus, unless otherwise indicated, each internucleoside linkage of an oligonucleotide having a gapmer motif may be modified or unmodified and may or may not follow the gapmer modification pattern of the sugar modifications. For example, the internucleoside linkages within the wing regions of a gapmer may be the same or different from one another and may be the same or different from the internucleoside linkages of the gap region. Likewise, such gapmer oligonucleotides may comprise one or more modified nucleobase independent of the gapmer pattern of the sugar modifications. Furthermore, unless otherwise indicated, each internucleoside linkage and each nucleobase of a fully modified oligonucleotide may be modified or unmodified. One of skill in the art will appreciate that such motifs may be combined to create a variety of oligonucleotides. Herein, if a description of an oligonucleotide is silent with respect to one or more parameter, such parameter is not limited. Thus, a modified oligonucleotide described only as having a gapmer motif without further description may have any length, internucleoside linkage motif, and nucleobase motif. Unless otherwise indicated, all modifications are independent of nucleobase sequence.


In certain embodiments, oligonucleotides have a nucleobase sequence that is complementary to a second oligonucleotide or a target nucleic acid. In certain such embodiments, a region of an oligonucleotide has a nucleobase sequence that is complementary to a second oligonucleotide or a target nucleic acid. In certain embodiments, the nucleobase sequence of a region or entire length of an oligonucleotide is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or 100% complementary to the second oligonucleotide or target nucleic acid. In certain embodiments, antisense compounds comprise two oligomeric compounds, wherein the two oligonucleotides of the oligomeric compounds are at least 80%, at least 90%, or 100% complementary to each other. In certain embodiments, one or both oligonucleotides of a double-stranded antisense compound comprise two nucleosides that are not complementary to the other oligonucleotide.


Certain Conjugate Groups and Terminal Groups

In certain embodiments, antisense compounds and oligomeric compounds comprise conjugate groups and/or terminal groups. In certain such embodiments, oligonucleotides are covalently attached to one or more conjugate group. In certain embodiments, conjugate groups modify one or more properties of the attached oligonucleotide, including but not limited to pharmacodynamics, pharmacokinetics, stability, binding, absorption, cellular distribution, cellular uptake, charge and clearance. In certain embodiments, conjugate groups impart a new property on the attached oligonucleotide, e.g., fluorophores or reporter groups that enable detection of the oligonucleotide. Conjugate groups and/or terminal groups may be added to oligonucleotides having any of the modifications or motifs described above. Thus, for example, an antisense compound or oligomeric compound comprising an oligonucleotide having a gapmer motif may also comprise a conjugate group.


Conjugate groups include, without limitation, intercalators, reporter molecules, polyamines, polyamides, peptides, carbohydrates, vitamin moieties, polyethylene glycols, thioethers, polyethers, cholesterols, thiocholesterols, cholic acid moieties, folate, lipids, phospholipids, biotin, phenazine, phenanthridine, anthraquinone, adamantane, acridine, fluoresceins, rhodamines, coumarins, fluorophores, and dyes. Certain conjugate groups have been described previously, for example: cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., do-decan-diol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937), a tocopherol group (Nishina et al., Molecular Therapy Nucleic Acids, 2015, 4, e220; doi:10.1038/mtna.2014.72 and Nishina et al., Molecular Therapy, 2008, 16, 734-740), or a GalNAc cluster (e.g., WO2014/179620).


In certain embodiments, a conjugate group comprises an active drug substance, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fen-bufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2,3,5-triiodobenzoic acid, fingolimod, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indo-methicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic.


Conjugate groups are attached directly or via an optional conjugate linker to a parent compound, such as an oligonucleotide. In certain embodiments, conjugate groups are directly attached to oligonucleotides. In certain embodiments, conjugate groups are indirectly attached to oligonucleotides via conjugate linkers. In certain embodiments, the conjugate linker comprises a chain structure, such as a hydrocarbyl chain, or an oligomer of repeating units such as ethylene glycol or amino acid units. In certain embodiments, conjugate groups comprise a cleavable moiety. In certain embodiments, conjugate groups are attached to oligonucleotides via a cleavable moiety. In certain embodiments, conjugate linkers comprise a cleavable moiety. In certain such embodiments, conjugate linkers are attached to oligonucleotides via a cleavable moiety. In certain embodiments, oligonucleotides comprise a cleavable moiety, wherein the cleavable moiety is a nucleoside is attached to a cleavable internucleoside linkage, such as a phosphate internucleoside linkage. In certain embodiments, a conjugate group comprises a nucleoside or oligonucleotide, wherein the nucleoside or oligonucleotide of the conjugate group is indirectly attached to a parent oligonucleotide.


In certain embodiments, a conjugate linker comprises one or more groups selected from alkyl, amino, oxo, amide, disulfide, polyethylene glycol, ether, thioether, and hydroxylamino. In certain such embodiments, the conjugate linker comprises groups selected from alkyl, amino, oxo, amide and ether groups. In certain embodiments, the conjugate linker comprises groups selected from alkyl and amide groups. In certain embodiments, the conjugate linker comprises groups selected from alkyl and ether groups. In certain embodiments, the conjugate linker comprises at least one phosphorus moiety. In certain embodiments, the conjugate linker comprises at least one phosphate group. In certain embodiments, the conjugate linker includes at least one neutral linking group.


In certain embodiments, conjugate linkers, including the conjugate linkers described above, are bifunctional linking moieties, e.g., those known in the art to be useful for attaching conjugate groups to parent compounds, such as the oligonucleotides provided herein. In general, a bifunctional linking moiety comprises at least two functional groups. One of the functional groups is selected to bind to a particular site on a parent compound and the other is selected to bind to a conjugate group. Examples of functional groups used in a bifunctional linking moiety include but are not limited to electrophiles for reacting with nucleophilic groups and nucleophiles for reacting with electrophilic groups. In certain embodiments, bifunctional linking moieties comprise one or more groups selected from amino, hydroxyl, carboxylic acid, thiol, alkyl, alkenyl, and alkynyl.


Examples of conjugate linkers include but are not limited to pyrrolidine, 8-amino-3,6-dioxaoctanoic acid (ADO), succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) and 6-aminohexanoic acid (AHEX or AHA). Other conjugate linkers include but are not limited to substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C2-C10 alkenyl or substituted or unsubstituted C2-C10 alkynyl, wherein a nonlimiting list of preferred substituent groups includes hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl.


In certain embodiments, a cleavable moiety is a cleavable bond. In certain embodiments, a cleavable moiety comprises a cleavable bond. In certain embodiments, a cleavable moiety is a group of atoms comprising at least one cleavable bond. In certain embodiments, a cleavable moiety comprises a group of atoms having one, two, three, four, or more than four cleavable bonds. In certain embodiments, a cleavable moiety is selectively cleaved inside a cell or subcellular compartment, such as a lysosome. In certain embodiments, a cleavable moiety is selectively cleaved by endogenous enzymes, such as nucleases.


In certain embodiments, a cleavable bond is selected from among: an amide, an ester, an ether, one or both esters of a phosphodiester, a phosphate ester, a carbamate, or a disulfide. In certain embodiments, a cleavable bond is one or both of the esters of a phosphodiester. In certain embodiments, a cleavable moiety comprises a phosphate or phosphodiester. In certain embodiments, the cleavable moiety is a phosphate linkage between an oligonucleotide and a conjugate linker or conjugate group.


In certain embodiments, a cleavable moiety is a nucleoside. In certain such embodiments, the unmodified or modified nucleoside comprises an optionally protected heterocyclic base selected from a purine, substituted purine, pyrimidine or substituted pyrimidine. In certain embodiments, a cleavable moiety is a nucleoside selected from uracil, thymine, cytosine, 4-N-benzoylcytosine, 5-methylcytosine, 4-N-benzoyl-5-methylcytosine, adenine, 6-N-benzoyladenine, guanine and 2-N-isobutyrylguanine. In certain embodiments, a cleavable moiety is 2′-deoxy nucleoside that is attached to either the 3′ or 5′-terminal nucleoside of an oligonucleotide by a phosphate internucleoside linkage and covalently attached to the conjugate linker or conjugate group by a phosphate or phosphorothioate linkage. In certain such embodiments, the cleavable moiety is 2′-deoxyadenosine.


Conjugate groups may be attached to either or both ends of an oligonucleotide and/or at any internal position. In certain embodiments, conjugate groups are attached to the 2′-position of a nucleoside of a modified oligonucleotide. In certain embodiments, conjugate groups that are attached to either or both ends of an oligonucleotide are terminal groups. In certain such embodiments, conjugate groups or terminal groups are attached at the 3′ and/or 5′-end of oligonucleotides. In certain such embodiments, conjugate groups (or terminal groups) are attached at the 3′-end of oligonucleotides. In certain embodiments, conjugate groups are attached near the 3′-end of oligonucleotides. In certain embodiments, conjugate groups (or terminal groups) are attached at the 5′-end of oligonucleotides. In certain embodiments, conjugate groups are attached near the 5′-end of oligonucleotides.


Examples of terminal groups include but are not limited to conjugate groups, capping groups, phosphate moieties, protecting groups, modified or unmodified nucleosides, and two or more nucleosides that are independently modified or unmodified.


In certain embodiments, a conjugate group is a cell-targeting moiety. In certain embodiments, a conjugate group, optional conjugate linker, and optional cleavable moiety have the general formula:




embedded image


wherein n is from 1 to about 3, m is 0 when n is 1, m is 1 when n is 2 or greater, j is 1 or 0, and k is 1 or 0.


In certain embodiments, n is 1, j is 1 and k is 0. In certain embodiments, n is 1, j is 0 and k is 1. In certain embodiments, n is 1, j is 1 and k is 1. In certain embodiments, n is 2, j is 1 and k is 0. In certain embodiments, n is 2, j is 0 and k is 1. In certain embodiments, n is 2, j is 1 and k is 1. In certain embodiments, n is 3, j is 1 and k is 0. In certain embodiments, n is 3, j is 0 and k is 1. In certain embodiments, n is 3, j is 1 and k is 1.


In certain embodiments, conjugate groups comprise cell-targeting moieties that have at least one tethered ligand. In certain embodiments, cell-targeting moieties comprise two tethered ligands covalently attached to a branching group. In certain embodiments, cell-targeting moieties comprise three tethered ligands covalently attached to a branching group.


In certain embodiments, the cell-targeting moiety comprises a branching group comprising one or more groups selected from alkyl, amino, oxo, amide, disulfide, polyethylene glycol, ether, thioether and hydroxylamino groups. In certain embodiments, the branching group comprises a branched aliphatic group comprising groups selected from alkyl, amino, oxo, amide, disulfide, polyethylene glycol, ether, thioether and hydroxylamino groups. In certain such embodiments, the branched aliphatic group comprises groups selected from alkyl, amino, oxo, amide and ether groups. In certain such embodiments, the branched aliphatic group comprises groups selected from alkyl, amino and ether groups. In certain such embodiments, the branched aliphatic group comprises groups selected from alkyl and ether groups. In certain embodiments, the branching group comprises a mono or polycyclic ring system.


In certain embodiments, each tether of a cell-targeting moiety comprises one or more groups selected from alkyl, substituted alkyl, ether, thioether, disulfide, amino, oxo, amide, phosphodiester, and polyethylene glycol, in any combination. In certain embodiments, each tether is a linear aliphatic group comprising one or more groups selected from alkyl, ether, thioether, disulfide, amino, oxo, amide, and polyethylene glycol, in any combination. In certain embodiments, each tether is a linear aliphatic group comprising one or more groups selected from alkyl, phosphodiester, ether, amino, oxo, and amide, in any combination. In certain embodiments, each tether is a linear aliphatic group comprising one or more groups selected from alkyl, ether, amino, oxo, and amid, in any combination. In certain embodiments, each tether is a linear aliphatic group comprising one or more groups selected from alkyl, amino, and oxo, in any combination. In certain embodiments, each tether is a linear aliphatic group comprising one or more groups selected from alkyl and oxo, in any combination. In certain embodiments, each tether is a linear aliphatic group comprising one or more groups selected from alkyl and phosphodiester, in any combination. In certain embodiments, each tether comprises at least one phosphorus linking group or neutral linking group. In certain embodiments, each tether comprises a chain from about 6 to about 20 atoms in length. In certain embodiments, each tether comprises a chain from about 10 to about 18 atoms in length. In certain embodiments, each tether comprises about 10 atoms in chain length.


In certain embodiments, each ligand of a cell-targeting moiety has an affinity for at least one type of receptor on a target cell. In certain embodiments, each ligand has an affinity for at least one type of receptor on the surface of a mammalian liver cell. In certain embodiments, each ligand has an affinity for the hepatic asialoglycoprotein receptor (ASGP-R). In certain embodiments, each ligand is a carbohydrate. In certain embodiments, each ligand is, independently selected from galactose, N-acetyl galactoseamine (GalNAc), mannose, glucose, glucoseamine and fucose. In certain embodiments, each ligand is N-acetyl galactoseamine (GalNAc). In certain embodiments, the cell-targeting moiety comprises 3 GalNAc ligands. In certain embodiments, the cell-targeting moiety comprises 2 GalNAc ligands. In certain embodiments, the cell-targeting moiety comprises 1 GalNAc ligand.


In certain embodiments, each ligand of a cell-targeting moiety is a carbohydrate, carbohydrate derivative, modified carbohydrate, polysaccharide, modified polysaccharide, or polysaccharide derivative. In certain such embodiments, the conjugate group comprises a carbohydrate cluster (see, e.g., Maier et al., “Synthesis of Antisense Oligonucleotides Conjugated to a Multivalent Carbohydrate Cluster for Cellular Targeting,” Bioconjugate Chemistry, 2003, 14, 18-29, or Rensen et al., “Design and Synthesis of Novel N-Acetylgalactosamine-Terminated Glycolipids for Targeting of Lipoproteins to the Hepatic Asiaglycoprotein Receptor,” J. Med. Chem. 2004, 47, 5798-5808, which are incorporated herein by reference in their entirety). In certain such embodiments, each ligand is an amino sugar or a thio sugar. For example, amino sugars may be selected from any number of compounds known in the art, such as sialic acid, α-D-galactosamine, β-muramic acid, 2-deoxy-2-methylamino-L-glucopyranose, 4,6-dideoxy-4-formamido-2,3-di-O-methyl-D-mannopyranose, 2-deoxy-2-sulfoamino-D-glucopyranose and N-sulfo-D-glucosamine, and N-glycoloyl-α-neuraminic acid. For example, thio sugars may be selected from 5-Thio-β-D-glucopyranose, methyl 2,3,4-tri-O-acetyl-1-thio-6-O-trityl-α-D-glucopyranoside, 4-thio-β-D-galactopyranose, and ethyl 3,4,6,7-tetra-O-acetyl-2-deoxy-1,5-dithio-α-D-gluco-heptopyranoside.


In certain embodiments, conjugate groups comprise a cell-targeting moiety having the formula:




embedded image


In certain embodiments, conjugate groups comprise a cell-targeting moiety having the formula:




embedded image


In certain embodiments, conjugate groups comprise a cell-targeting moiety having the formula:




embedded image


In certain embodiments, antisense compounds and oligomeric compounds comprise a conjugate group and conjugate linker described herein as “LICA-1”. LICA-1 has the formula:




embedded image


In certain embodiments, antisense compounds and oligomeric compounds comprising LICA-1 have the formula:




embedded image


wherein oligo is an oligonucleotide.


Representative publications that teach the preparation of certain of the above noted conjugate groups, oligomeric compounds and antisense compounds comprising conjugate groups, tethers, conjugate linkers, branching groups, ligands, cleavable moieties as well as other modifications include without limitation, U.S. Pat. No. 5,994,517, U.S. Pat. No. 6,300,319, U.S. Pat. No. 6,660,720, U.S. Pat. No. 6,906,182, U.S. Pat. No. 7,262,177, U.S. Pat. No. 7,491,805, U.S. Pat. No. 8,106,022, U.S. Pat. No. 7,723,509, US 2006/0148740, US 2011/0123520, WO 2013/033230 and WO 2012/037254, Biessen et al., J. Med. Chem. 1995, 38, 1846-1852, Lee et al., Bioorganic & Medicinal Chemistry 2011, 19, 2494-2500, Rensen et al., J. Biol. Chem. 2001, 276, 37577-37584, Rensen et al., J. Med. Chem. 2004, 47, 5798-5808, Sliedregt et al., J. Med. Chem. 1999, 42, 609-618, and Valentijn et al., Tetrahedron, 1997, 53, 759-770, each of which is incorporated by reference herein in its entirety.


In certain embodiments, antisense compounds and oligomeric compounds comprise modified oligonucleotides comprising a gapmer or fully modified motif and a conjugate group comprising at least one, two, or three GalNAc ligands. In certain embodiments antisense compounds and oligomeric compounds comprise a conjugate group found in any of the following references: Lee, Carbohydr Res, 1978, 67, 509-514; Connolly et al., J Biol Chem, 1982, 257, 939-945; Pavia et al., Int J Pep Protein Res, 1983, 22, 539-548; Lee et al., Biochem, 1984, 23, 4255-4261; Lee et al., Glycoconjugate J, 1987, 4, 317-328; Toyokuni et al., Tetrahedron Lett, 1990, 31, 2673-2676; Biessen et al., J Med Chem, 1995, 38, 1538-1546; Valentijn et al., Tetrahedron, 1997, 53, 759-770; Kim et al., Tetrahedron Lett, 1997, 38, 3487-3490; Lee et al., Bioconjug Chem, 1997, 8, 762-765; Kato et al., Glycobiol, 2001, 11, 821-829; Rensen et al., J Biol Chem, 2001, 276, 37577-37584; Lee et al., Methods Enzymol, 2003, 362, 38-43; Westerlind et al., Glycoconj J, 2004, 21, 227-241; Lee et al., Bioorg Med Chem Lett, 2006, 16(19), 5132-5135; Maierhofer et al., Bioorg Med Chem, 2007, 15, 7661-7676; Khorev et al., Bioorg Med Chem, 2008, 16, 5216-5231; Lee et al., Bioorg Med Chem, 2011, 19, 2494-2500; Kornilova et al., Analyt Biochem, 2012, 425, 43-46; Pujol et al., Angew Chemie Int Ed Engl, 2012, 51, 7445-7448; Biessen et al., J Med Chem, 1995, 38, 1846-1852; Sliedregt et al., J Med Chem, 1999, 42, 609-618; Rensen et al., J Med Chem, 2004, 47, 5798-5808; Rensen et al., Arterioscler Thromb Vasc Biol, 2006, 26, 169-175; van Rossenberg et al., Gene Ther, 2004, 11, 457-464; Sato et al., J Am Chem Soc, 2004, 126, 14013-14022; Lee et al., J Org Chem, 2012, 77, 7564-7571; Biessen et al., FASEB J, 2000, 14, 1784-1792; Rajur et al., Bioconjug Chem, 1997, 8, 935-940; Duff et al., Methods Enzymol, 2000, 313, 297-321; Maier et al., Bioconjug Chem, 2003, 14, 18-29; Jayaprakash et al., Org Lett, 2010, 12, 5410-5413; Manoharan, Antisense Nucleic Acid Drug Dev, 2002, 12, 103-128; Merwin et al., Bioconjug Chem, 1994, 5, 612-620; Tomiya et al., Bioorg Med Chem, 2013, 21, 5275-5281; International applications WO1998/013381; WO2011/038356; WO1997/046098; WO2008/098788; WO2004/101619; WO2012/037254; WO2011/120053; WO2011/100131; WO2011/163121; WO2012/177947; WO2013/033230; WO2013/075035; WO2012/083185; WO2012/083046; WO2009/082607; WO2009/134487; WO2010/144740; WO2010/148013; WO1997/020563; WO2010/088537; WO2002/043771; WO2010/129709; WO2012/068187; WO2009/126933; WO2004/024757; WO2010/054406; WO2012/089352; WO2012/089602; WO2013/166121; WO2013/165816; U.S. Pat. Nos. 4,751,219; 8,552,163; 6,908,903; 7,262,177; 5,994,517; 6,300,319; 8,106,022; 7,491,805; 7,491,805; 7,582,744; 8,137,695; 6,383,812; 6,525,031; 6,660,720; 7,723,509; 8,541,548; 8,344,125; 8,313,772; 8,349,308; 8,450,467; 8,501,930; 8,158,601; 7,262,177; 6,906,182; 6,620,916; 8,435,491; 8,404,862; 7,851,615; Published U.S. Patent Application Publications 052011/0097264; 052011/0097265; 052013/0004427; 052005/0164235; 052006/0148740; 052008/0281044; 052010/0240730; 052003/0119724; 052006/0183886; 052008/0206869; 052011/0269814; 052009/0286973; 052011/0207799; 052012/0136042; 052012/0165393; 052008/0281041; 052009/0203135; 052012/0035115; 052012/0095075; 052012/0101148; 052012/0128760; 052012/0157509; 052012/0230938; 052013/0109817; 052013/0121954; 052013/0178512; 052013/0236968; 052011/0123520; 052003/0077829; 052008/0108801; and U52009/0203132; each of which is incorporated by reference in its entirety.


Compositions and Methods for Formulating Pharmaceutical Compositions

Compounds may be admixed with pharmaceutically acceptable active or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions are dependent upon a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


In certain embodiments, the present invention provides pharmaceutical compositions comprising one or more compounds or a salt thereof. In certain such embodiments, the pharmaceutical composition comprises a suitable pharmaceutically acceptable diluent or carrier. In certain embodiments, a pharmaceutical composition comprises a sterile saline solution and one or more compounds. In certain embodiments, such pharmaceutical composition consists of a sterile saline solution and one or more compounds. In certain embodiments, the sterile saline is pharmaceutical grade saline. In certain embodiments, a pharmaceutical composition comprises one or more antisense compound and sterile water. In certain embodiments, a pharmaceutical composition consists of one compounds and sterile water. In certain embodiments, the sterile water is pharmaceutical grade water. In certain embodiments, a pharmaceutical composition comprises one or more compounds and phosphate-buffered saline (PBS). In certain embodiments, a pharmaceutical composition consists of one or more compounds and sterile PBS. In certain embodiments, the sterile PBS is pharmaceutical grade PBS. Compositions and methods for the formulation of pharmaceutical compositions are dependent upon a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


A compound targeted to KRAS nucleic acid can be utilized in pharmaceutical compositions by combining the compound with a suitable pharmaceutically acceptable diluent or carrier. In certain embodiments, a pharmaceutically acceptable diluent is water, such as sterile water suitable for injection. Accordingly, in one embodiment, employed in the methods described herein is a pharmaceutical composition comprising a compound targeted to KRAS nucleic acid and a pharmaceutically acceptable diluent. In certain embodiments, the pharmaceutically acceptable diluent is water. In certain embodiments, the compound is an antisense oligonucleotide provided herein.


Pharmaceutical compositions comprising compounds encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other oligonucleotide which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to pharmaceutically acceptable salts of compounds, prodrugs, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.


A prodrug can include the incorporation of additional nucleosides at one or both ends of a compound which are cleaved by endogenous nucleases within the body, to form the active compound. In certain embodiments, the compounds or compositions further comprise a pharmaceutically acceptable carrier or diluent.


EXAMPLES

The Examples below describe the screening process to identify lead compounds targeted to KRAS. Approximately 2,000 newly designed compounds were tested for their effect on human KRAS mRNA. New compounds were compared with a previously described compound, ISIS 6957, which was reported as one of the most potent antisense compounds in U.S. Pat. No. 6,784,290. Out of over 2,000 antisense oligonucleotides that were screened, ISIS #651530, 651987, 695785, 695823, 651555, 651587, 695980, 695995, 696018, 696044, 716600, 746275, 716655, 716772, 740179, 740191, 740201, 740223, and 740233 emerged as the top lead compounds.


Non-Limiting Disclosure and Incorporation by Reference

Although the sequence listing accompanying this filing identifies each sequence as either “RNA” or “DNA” as required, in reality, those sequences may be modified with any combination of chemical modifications. One of skill in the art will readily appreciate that such designation as “RNA” or “DNA” to describe modified oligonucleotides is, in certain instances, arbitrary. For example, an oligonucleotide comprising a nucleoside comprising a 2′-OH sugar moiety and a thymine base could be described as a DNA having a modified sugar (2′-OH for the natural 2′-H of DNA) or as an RNA having a modified base (thymine (methylated uracil) for natural uracil of RNA).


Accordingly, nucleic acid sequences provided herein, including, but not limited to those in the sequence listing, are intended to encompass nucleic acids containing any combination of natural or modified RNA and/or DNA, including, but not limited to such nucleic acids having modified nucleobases. By way of further example and without limitation, an oligonucleotide having the nucleobase sequence “ATCGATCG” encompasses any oligonucleotides having such nucleobase sequence, whether modified or unmodified, including, but not limited to, such compounds comprising RNA bases, such as those having sequence “AUCGAUCG” and those having some DNA bases and some RNA bases such as “AUCGATCG”.


While certain compounds, compositions and methods described herein have been described with specificity in accordance with certain embodiments, the following examples serve only to illustrate the compounds described herein and are not intended to limit the same. Each of the references recited in the present application is incorporated herein by reference in its entirety.


Example 1: Antisense Inhibition of Human K-Ras in SKOV3 Cells by cEt Gapmers

Antisense oligonucleotides were designed targeting a K-Ras nucleic acid and were tested for their effects on K-Ras mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured SKOV3 cells at a density of 20,000 cells per well were transfected using electroporation with 2,500 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS246 (forward sequence CCCAGGTGCGGGAGAGA, designated herein as SEQ ID NO: 4; reverse sequence GCTGTATCGTCAAGGCACTCTTG; designated herein as SEQ ID NO: 5; probe sequence CTTGTGGTAGTTGGAGCTGGTGGCGTAG, designated herein as SEQ ID NO: 6) was used to measure mRNA levels. K-Ras mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 3-10-3 cEt gapmers. The gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a cEt sugar modification. The internucleoside linkages throughout each gapmer are phosphorothioate (P═S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either a human K-Ras mRNA, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NM_004985.4), the human K-Ras genomic sequence, designated herein as SEQ ID NO: 2 (the complement of GENBANK Accession No. NT_009714.17 truncated from nucleotides 18116000 to Ser. No. 18/166,000), or a human K-Ras mRNA sequence, designated herein as SEQ ID NO: 3 (GENBANK Accession No. NM_033360.3). ‘N/A’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 1







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting SEQ ID NO: 1, 2,


and 3

















SEQ ID
SEQ ID
SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2
NO: 3
NO: 3


SEQ


ISIS
Start
Stop
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Site
Site
Sequence
Inhibition
NO



















540729
N/A
N/A
N/A
N/A
754
769
ACCCAGATTACATTAT
0
13





540731
669
684
43058
43073
793
808
TCGAATTTCTCGAACT
41
14





540733
830
845
43219
43234
954
969
GCTAAAACAAATGCTA
54
15





540741
346
361
25573
25588
346
361
CGAGAATATCCAAGAG
48
16





540743
356
371
25583
25598
356
371
CCTGCTGTGTCGAGAA
66
17





540745
358
373
25585
25600
358
373
GACCTGCTGTGTCGAG
52
18





540747
466
481
25693
25708
466
481
TATAATGGTGAATATC
37
19





540749
476
491
N/A
N/A
476
491
ATTTGTTCTCTATAAT
21
20





540751
586
601
27273
27288
586
601
AACTTCTTGCTAAGTC
43
21





540753
658
673
43047
43062
782
797
GAACTAATGTATAGAA
44
22





540755
789
804
43178
43193
913
928
TACCACTTGTACTAGT
74
23





540757
868
883
43257
43272
992
1007
CTAACAGTCTGCATGG
63
24





540759
934
949
43323
43338
1058
1073
AATACTGGCACTTAGA
42
25





540761
1072
1087
43461
43476
1196
1211
TGTTTCACACCAACAT
61
26





540763
1228
1243
43617
43632
1352
1367
TGCCTAGAAGAATCAT
58
27





540765
1291
1306
43680
43695
1415
1430
GACAAAACCTTTGTGA
54
28





540767
1316
1331
43705
43720
1440
1455
CCATGACTAATAGCAG
88
29





540769
1473
1488
43862
43877
1597
1612
ATACTGGGTCTGCCTT
79
30





540771
1507
1522
43896
43911
1631
1646
GCCCCAAAATGGTTGC
55
31





540773
1526
1541
43915
43930
1650
1665
TTAGTAGCATGTAAAT
46
32





540775
1637
1652
44026
44041
1761
1776
GAAAAGATTTAAAGTT
0
33





540777
1709
1724
44098
44113
1833
1848
GCTATAACTGGCCCAA
83
34





540779
1898
1913
44287
44302
2022
2037
ACCACAGAGTGAGATT
79
35





540781
2102
2117
44491
44506
2226
2241
GTTAATTTAACCAGTG
80
36





540783
2223
2238
44612
44627
2347
2362
TGCCATCTCACTTCAT
57
37





540785
2318
2333
44707
44722
2442
2457
TAGTAAGTGATGTCCT
73
38





540787
2460
2475
44849
44864
2584
2599
GTGTAACATAGGTTAA
75
39





540789
2490
2505
44879
44894
2614
2629
CAATTTTGCCCAAGAC
42
40





540791
2542
2557
44931
44946
2666
2681
GAAGAGTCCTAAAACG
50
41





540793
2571
2586
44960
44975
2695
2710
TAGGGAGGCAAGATGA
56
42





540795
2599
2614
44988
45003
2723
2738
TGCATCAAGTCATGGG
83
43





540797
2694
2709
45083
45098
2818
2833
TAGGGCATTTCTGATG
38
44





540799
2794
2809
45183
45198
2918
2933
GAGATGTTCAAAGCAT
49
45





540801
2818
2833
45207
45222
2942
2957
GTCGCTAATGGATTGG
92
46





540803
2879
2894
45268
45283
3003
3018
TAAATTCTCCTTCCAC
49
47





540805
2957
2972
45346
45361
3081
3096
ACAATGGAATGTATTA
40
48





540807
3335
3350
45777
45792
3459
3474
CGGTGACTGGCATCTG
76
49





540809
3388
3403
N/A
N/A
3512
3527
AGGACCGGGATTATGT
70
50





540811
3428
3443
45817
45832
3552
3567
GGCCTTAGTAAGATAT
28
51





540813
3673
3688
46062
46077
3797
3812
TGAATATCTGACATAC
60
52





540815
3780
3795
46169
46184
3904
3919
CTAGTTCAGGCACCTG
65
53





540817
3871
3886
46260
46275
3995
4010
CCTACCTAAACAGTGT
21
54





540819
3896
3911
46285
46300
4020
4035
CGAGGTACTGTGTAAG
82
55





540821
3926
3941
46315
46330
4050
4065
AGTATGGCCATTTCTT
74
56





540823
3954
3969
46343
46358
4078
4093
ATCCCCTCATAAGCAC
61
57





540825
4107
4122
46496
46511
4231
4246
AATAATTAGGTAACAT
17
58





540827
4205
4220
46594
46609
4329
4344
GTCTGCTATATTCTTC
69
59





540829
4240
4255
46629
46644
4364
4379
TACTTGGGAACATTCA
63
60





540831
4276
4291
46665
46680
4400
4415
TGCAGTGTGACTCAGT
76
61





540833
4278
4293
46667
46682
4402
4417
TATGCAGTGTGACTCA
78
62





540835
4284
4299
46673
46688
4408
4423
AATTCCTATGCAGTGT
67
63





540839
4343
4358
46732
46747
4467
4482
TAGGACAAAATTGTGC
75
64





540842
4365
4380
46754
46769
4489
4504
CACAAAGTTTCTATGT
29
65





540844
4531
4546
46920
46935
4655
4670
ATCATTACTTTTTGAC
17
66





540846
4579
4594
46968
46983
4703
4718
AAGGTAACTGCTGGGT
86
67





540848
4642
4657
47031
47046
4766
4781
CTCAATGCAGAATTCA
75
68





540850
4872
4887
47261
47276
4996
5011
ACCCAGTTAGCTCTGT
51
69





540852
4910
4925
47299
47314
5034
5049
AGACAGTGGAATTGGA
63
70





540854
4964
4979
47353
47368
5088
5103
AAGAAATTGGCACTCA
64
71





540856
4966
4981
47355
47370
5090
5105
GTAAGAAATTGGCACT
66
72





540858
4998
5013
47387
47402
5122
5137
AGGTAAACATGTTACA
72
73





540860
5089
5104
47478
47493
5213
5228
TCACACTGCATATGTC
57
74





540862
5091
5106
47480
47495
5215
5230
GATCACACTGCATATG
31
75





540868
N/A
N/A
17921
17936
N/A
N/A
GCCCTTACTTATATGC
13
76





540870
N/A
N/A
20681
20696
N/A
N/A
ATCTTGCCCACTGTTT
15
77





540872
N/A
N/A
25497
25512
N/A
N/A
AGTCTGGATTATTACA
19
78





540874
N/A
N/A
25507
25522
N/A
N/A
GGAGAAACACAGTCTG
16
79





540876
N/A
N/A
25700
25715
N/A
N/A
ACCCACCTATAATGGT
13
80





540878
N/A
N/A
34485
34500
N/A
N/A
GAAGCCAATAATTAAA
27
81





540880
N/A
N/A
34495
34510
N/A
N/A
GAGAGAATTGGAAGCC
74
82





540882
N/A
N/A
35991
36006
N/A
N/A
TTAAAGCTGGTATATT
34
83





540884
N/A
N/A
37456
37471
716
731
CAGCCAGGAGTCTTTT
26
84





540886
N/A
N/A
43024
43039
N/A
N/A
TCAACACCCTGAAATA
16
85
















TABLE 2







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting SEQ ID NO: 1, 2,


and 3

















SEQ ID
SEQ ID
SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2
NO: 3
NO: 3


SEQ


ISIS
Start
Stop
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Site
Site
Sequence
Inhibition
NO



















540728
N/A
N/A
37402
37417
662
677
TCCCTCACCAATGTAT
0
86





540730
N/A
N/A
N/A
N/A
759
774
TCAACACCCAGATTAC
7
87





540732
673
688
43062
43077
797
812
GTTTTCGAATTTCTCG
65
88





540734
1924
1939
44313
44328
2048
2063
AATGCTCTTGATTTGT
74
89





540742
351
366
25578
25593
351
366
TGTGTCGAGAATATCC
76
90





540744
357
372
25584
25599
357
372
ACCTGCTGTGTCGAGA
65
91





540746
359
374
25586
25601
359
374
TGACCTGCTGTGTCGA
18
92





540748
471
486
N/A
N/A
471
486
TTCTCTATAATGGTGA
55
93





540750
495
510
27182
27197
495
510
AGAGTCCTTAACTCTT
24
94





540752
601
616
27288
27303
601
616
TAAAAGGAATTCCATA
19
95





540754
777
792
43166
43181
901
916
TAGTATGCCTTAAGAA
55
96





540756
810
825
43199
43214
934
949
TTTAGTGTAATGTACA
72
97





540758
933
948
43322
43337
1057
1072
ATACTGGCACTTAGAG
40
98





540760
996
1011
43385
43400
1120
1135
AAATCTTAGGTATTCA
47
99





540762
1096
1111
43485
43500
1220
1235
GATGATTCAAAAGCTT
78
100





540764
1240
1255
43629
43644
1364
1379
TATAGGACATGATGCC
67
101





540766
1304
1319
43693
43708
1428
1443
GCAGTGGAAAGGAGAC
85
102





540768
1462
1477
43851
43866
1586
1601
GCCTTAACAGGAAAAG
58
103





540770
1488
1503
43877
43892
1612
1627
AATAATCCCCATTTCA
24
104





540772
1520
1535
43909
43924
1644
1659
GCATGTAAATATAGCC
61
105





540774
1606
1621
43995
44010
1730
1745
AGTCTGACACAGGGAG
87
106





540776
1680
1695
44069
44084
1804
1819
GTCACAAGCAGAATTA
70
107





540778
1841
1856
44230
44245
1965
1980
TTTTGACTAACCAATG
33
108





540780
1910
1925
44299
44314
2034
2049
GTCAGCAGGACCACCA
79
109





540782
2132
2147
44521
44536
2256
2271
TGGATCAGACTTGAAA
80
110





540784
2263
2278
44652
44667
2387
2402
GTCACCTTCTTCCTAG
61
111





540786
2441
2456
44830
44845
2565
2580
TTTACAGATTGTGCTG
60
112





540788
2485
2500
44874
44889
2609
2624
TTGCCCAAGACTGGCA
0
113





540790
2502
2517
44891
44906
2626
2641
TCACCTCTTGCACAAT
60
114





540792
2556
2571
44945
44960
2680
2695
ACACTAATATGGAAGA
55
115





540794
2583
2598
44972
44987
2707
2722
GCATGTGGAAGGTAGG
73
116





540796
2681
2696
45070
45085
2805
2820
ATGTGACTCAGTGGGA
83
117





540798
2738
2753
45127
45142
2862
2877
TATGGTATCTGTCAGA
80
118





540800
2806
2821
45195
45210
2930
2945
TTGGGCAGCAAAGAGA
39
119





540802
2848
2863
45237
45252
2972
2987
CTATTCATACCAGGTT
74
120





540804
2944
2959
45333
45348
3068
3083
TTACTGTTACCAGGAG
81
121





540806
2981
2996
45370
45385
3105
3120
GCATGAAGATTTCTGG
91
122





540808
3376
3391
45765
45780
3500
3515
ATGTCTCTTGTTTGGG
83
123





540810
3416
3431
45805
45820
3540
3555
ATATTACAGACCACAC
52
124





540812
3627
3642
46016
46031
3751
3766
GAATCACAGTTATGCC
78
125





540814
3688
3703
46077
46092
3812
3827
ACATTTGGGTCAATAT
46
126





540816
3834
3849
46223
46238
3958
3973
ATAGCAATTCAGAAAT
18
127





540818
3883
3898
46272
46287
4007
4022
AAGTCTTAACACCCTA
68
128





540820
3908
3923
46297
46312
4032
4047
TCTGTGTAGAAACGAG
76
129





540822
3942
3957
46331
46346
4066
4081
GCACTGCAGTTCCTGA
82
130





540824
4013
4028
46402
46417
4137
4152
TAATTAACCACTACCT
6
131





540826
4167
4182
46556
46571
4291
4306
TCTATGTAATTTAGCT
65
132





540828
4220
4235
46609
46624
4344
4359
AATGATACAATATACG
33
133





540830
4261
4276
46650
46665
4385
4400
TTAAATAGAGCCTAGA
28
134





540832
4277
4292
46666
46681
4401
4416
ATGCAGTGTGACTCAG
79
135





540834
4279
4294
46668
46683
4403
4418
CTATGCAGTGTGACTC
73
136





540836
4338
4353
46727
46742
4462
4477
CAAAATTGTGCAATGG
74
137





540840
4351
4366
46740
46755
4475
4490
GTATATATTAGGACAA
37
138





540843
4455
4470
46844
46859
4579
4594
TACTGTTTGAAGAAAA
9
139





540845
4546
4561
46935
46950
4670
4685
CACAATTATCAAGAAA
18
140





540847
4641
4656
47030
47045
4765
4780
TCAATGCAGAATTCAT
67
141





540849
4655
4670
47044
47059
4779
4794
AGCTATTCAGTTTCTC
30
142





540851
4887
4902
47276
47291
5011
5026
GGATAAAACACTGTAA
58
143





540853
4956
4971
47345
47360
5080
5095
GGCACTCAAAGGAAAA
60
144





540855
4965
4980
47354
47369
5089
5104
TAAGAAATTGGCACTC
48
145





540857
4993
5008
47382
47397
5117
5132
AACATGTTACATTAAG
43
146





540859
5006
5021
47395
47410
5130
5145
TACATTCCAGGTAAAC
51
147





540861
5090
5105
47479
47494
5214
5229
ATCACACTGCATATGT
50
148





540863
5132
5147
47521
47536
5256
5271
ACATTCCTAGGTCAGC
76
149





540867
N/A
N/A
9205
9220
N/A
N/A
AAACTTCCTTTTACAT
19
150





540869
N/A
N/A
17927
17942
N/A
N/A
TACTGAGCCCTTACTT
15
151





540871
N/A
N/A
25492
25507
N/A
N/A
GGATTATTACAGTGCA
16
152





540873
N/A
N/A
25502
25517
N/A
N/A
AACACAGTCTGGATTA
6
153





540875
N/A
N/A
25695
25710
N/A
N/A
CCTATAATGGTGAATA
32
154





540877
N/A
N/A
32700
32715
N/A
N/A
GATAAATGTGAACTAG
33
155





540879
N/A
N/A
34490
34505
N/A
N/A
AATTGGAAGCCAATAA
29
156





540881
N/A
N/A
34511
34526
N/A
N/A
TGTTTCCAGCAATGCA
59
157





540883
N/A
N/A
37365
37380
N/A
N/A
GCATTGTAAAACACAA
16
158





540885
N/A
N/A
37494
37509
N/A
N/A
TACCAGATTACATTAT
0
159









Example 2: Antisense Inhibition of Human K-Ras in Hep3B Cells by cEt Gapmers

Antisense oligonucleotides were designed targeting a K-Ras nucleic acid and were tested for their effects on K-Ras mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured Hep3B cells at a density of 20,000 cells per well were transfected using electroporation with 2,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3496_MGB (forward sequence GACACAAAACAGGCTCAGGACTT, designated herein as SEQ ID NO: 7; reverse sequence TCTTGTCTTTGCTGATGTTTCAATAA, designated herein as SEQ ID NO: 8; probe sequence AAGAAGTTATGGAATTCC, designated herein as SEQ ID NO: 9) was used to measure mRNA levels. K-Ras mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 3-10-3 cEt gapmers. The gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a cEt sugar modification. The internucleoside linkages throughout each gapmer are phosphorothioate (P═S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either SEQ ID NO: 1 or SEQ ID NO: 2. ‘N/A’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 3







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
87
122





651467
148
163
2159
2174
AGCCGCTGAGCCTCTG
35
160





651470
228
243
7594
7609
ACTCTTGCCTACGCCA
73
161





651474
336
351
25563
25578
CAAGAGACAGGTTTCT
24
162





651475
348
363
25575
25590
GTCGAGAATATCCAAG
77
163





651476
354
369
25581
25596
TGCTGTGTCGAGAATA
58
164





651477
420
435
25647
25662
TACACAAAGAAAGCCC
76
165





651487
690
705
43079
43094
GCTCATCTTTTCTTTA
26
166





651490
786
801
43175
43190
CACTTGTACTAGTATG
63
167





651491
792
807
43181
43196
AATTACCACTTGTACT
21
168





651494
882
897
43271
43286
ATTTAAGGTAAAAGCT
4
169





651506
1093
1108
43482
43497
GATTCAAAAGCTTCAT
79
170





651507
1099
1114
43488
43503
AGGGATGATTCAAAAG
63
171





651512
1157
1172
43546
43561
AAGGTCTCAACTGAAA
39
172





651514
1175
1190
43564
43579
TCAGTAAAAACCAATT
24
173





651515
1184
1199
43573
43588
CTCAATGTTTCAGTAA
28
174





651524
1301
1316
43690
43705
GTGGAAAGGAGACAAA
48
175





651921
95
110
2106
2121
TCCCAGTCCGAAATGG
25
176





651922
159
174
2170
2185
CCGCACCTGGGAGCCG
32
177





651923
183
198
7549
7564
AGTCATTTTCAGCAGG
87
178





651924
195
210
7561
7576
AAGTTTATATTCAGTC
70
179





651925
204
219
7570
7585
AACTACCACAAGTTTA
43
180





651926
237
252
7603
7618
CGTCAAGGCACTCTTG
75
181





651927
252
267
7618
7633
CTGAATTAGCTGTATC
63
182





651928
312
327
25539
25554
TACTACTTGCTTCCTG
59
183





651929
322
337
25549
25564
CTCCATCAATTACTAC
48
184





651930
439
454
25666
25681
TAGTATTATTTATGGC
77
185





651931
448
463
25675
25690
CAAATGATTTAGTATT
8
186





651932
457
472
25684
25699
GAATATCTTCAAATGA
23
187





651933
485
500
27172
27187
ACTCTTTTAATTTGTT
27
188





651934
528
543
27215
27230
TTTATTTCCTACTAGG
45
189





651935
540
555
27227
27242
AGGCAAATCACATTTA
79
190





651936
551
566
27238
27253
ACTGTTCTAGAAGGCA
75
191





651938
648
663
43037
43052
ATAGAAGGCATCATCA
42
192





651939
679
694
43068
43083
CTTTATGTTTTCGAAT
5
193





651940
732
747
43121
43136
ACACTTTGTCTTTGAC
61
194





651941
741
756
43130
43145
CATAATTACACACTTT
32
195





651942
756
771
43145
43160
TACAAATTGTATTTAC
0
196





651943
771
786
43160
43175
GCCTTAAGAAAAAAGT
38
197





651944
816
831
43205
43220
TAATAATTTAGTGTAA
9
198





651945
835
850
43224
43239
GTAATGCTAAAACAAA
12
199





651946
844
859
43233
43248
AAAAATTAGGTAATGC
0
200





651947
860
875
43249
43264
CTGCATGGAGCAGGAA
31
201





651948
873
888
43262
43277
AAAAGCTAACAGTCTG
56
202





651949
907
922
43296
43311
CTTCCACTGTCATTTT
59
203





651950
927
942
43316
43331
GCACTTAGAGGAAAAA
44
204





651951
942
957
43331
43346
ACTCTGGGAATACTGG
82
205





651952
958
973
43347
43362
TAGTTCAAAAACCAAA
6
206





651953
967
982
43356
43371
AGGCATTGCTAGTTCA
83
207





651954
976
991
43365
43380
CTTTTTCACAGGCATT
75
208





651955
989
1004
43378
43393
AGGTATTCAGTTTCTT
79
209





651956
1001
1016
43390
43405
GACAGAAATCTTAGGT
51
210





651957
1010
1025
N/A
N/A
AAACCCCAAGACAGAA
16
211





651958
1019
1034
N/A
N/A
ATGCACCAAAAACCCC
69
212





651959
1028
1043
43417
43432
ATCAACTGCATGCACC
85
213





651960
1037
1052
43426
43441
TAAGAAGTAATCAACT
11
214





651961
1054
1069
43443
43458
ACAATTGGTAAGAAAA
4
215





651962
1063
1078
43452
43467
CCAACATTCACAATTG
53
216





651963
1078
1093
43467
43482
TTAATTTGTTTCACAC
34
217





651964
1110
1125
43499
43514
AAACACAGAATAGGGA
21
218





651965
1119
1134
43508
43523
GACTAGATAAAACACA
67
219





651966
1128
1143
43517
43532
CATTTATGTGACTAGA
79
220





651967
1138
1153
43527
43542
GTAATTAATCCATTTA
53
221





651968
1147
1162
43536
43551
CTGAAATTAGTAATTA
6
222





651969
1166
1181
43555
43570
ACCAATTAGAAGGTCT
38
223





651970
1195
1210
43584
43599
ATTTGTGTTCCCTCAA
68
224





651971
1204
1219
43593
43608
AGCCCATAAATTTGTG
42
225





651972
1213
1228
43602
43617
TCATCAGGAAGCCCAT
83
226





651973
1222
1237
43611
43626
GAAGAATCATCATCAG
78
227





651974
1233
1248
43622
43637
CATGATGCCTAGAAGA
41
228





651975
1245
1260
43634
43649
CAAACTATAGGACATG
56
229





651976
1254
1269
43643
43658
CAGGGATGACAAACTA
63
230





651977
1264
1279
43653
43668
TTACATTCATCAGGGA
9
231





651978
1273
1288
43662
43677
AGTGTAACTTTACATT
41
232





651979
1283
1298
43672
43687
CTTTGTGAACAGTGTA
79
233





651980
1296
1311
43685
43700
AAGGAGACAAAACCTT
3
234
















TABLE 4







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540734
1924
1939
44313
44328
AATGCTCTTGATTTGT
71
89





540767
1316
1331
43705
43720
CCATGACTAATAGCAG
77
29





540777
1709
1724
44098
44113
GCTATAACTGGCCCAA
71
34





540779
1898
1913
44287
44302
ACCACAGAGTGAGATT
73
35





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
81
122





651526
1305
1320
43694
43709
AGCAGTGGAAAGGAGA
61
235





651527
1307
1322
43696
43711
ATAGCAGTGGAAAGGA
61
236





651528
1309
1324
43698
43713
TAATAGCAGTGGAAAG
24
237





651529
1311
1326
43700
43715
ACTAATAGCAGTGGAA
44
238





651530
1313
1328
43702
43717
TGACTAATAGCAGTGG
83
239





651531
1315
1330
43704
43719
CATGACTAATAGCAGT
56
240





651533
1319
1334
43708
43723
TGACCATGACTAATAG
52
241





651534
1321
1336
43710
43725
AGTGACCATGACTAAT
68
242





651537
1398
1413
43787
43802
CTTATAATAGTTTCCA
65
243





651542
1470
1485
43859
43874
CTGGGTCTGCCTTAAC
59
244





651543
1476
1491
43865
43880
TTCATACTGGGTCTGC
78
245





651547
1601
1616
43990
44005
GACACAGGGAGACTAC
67
246





651548
1603
1618
43992
44007
CTGACACAGGGAGACT
71
247





651551
1609
1624
43998
44013
AGCAGTCTGACACAGG
80
248





651557
1704
1719
44093
44108
AACTGGCCCAAATAAT
29
249





651558
1706
1721
44095
44110
ATAACTGGCCCAAATA
35
250





651559
1708
1723
44097
44112
CTATAACTGGCCCAAA
23
251





651560
1710
1725
44099
44114
AGCTATAACTGGCCCA
73
252





651561
1712
1727
44101
44116
TAAGCTATAACTGGCC
70
253





651562
1714
1729
44103
44118
AATAAGCTATAACTGG
30
254





651571
1816
1831
44205
44220
ACTGGATGACCGTGGG
63
255





651578
1897
1912
44286
44301
CCACAGAGTGAGATTG
67
256





651579
1899
1914
44288
44303
CACCACAGAGTGAGAT
48
257





651580
1901
1916
44290
44305
ACCACCACAGAGTGAG
72
258





651581
1903
1918
44292
44307
GGACCACCACAGAGTG
62
259





651583
1907
1922
44296
44311
AGCAGGACCACCACAG
52
260





651586
1913
1928
44302
44317
TTTGTCAGCAGGACCA
86
261





651589
1921
1936
44310
44325
GCTCTTGATTTGTCAG
68
262





651591
1927
1942
44316
44331
AGCAATGCTCTTGATT
49
263





651592
1929
1944
44318
44333
AAAGCAATGCTCTTGA
53
264





651595
2020
2035
44409
44424
ATGTCTTGGCACACCA
81
265





651981
1340
1355
43729
43744
AATATAATATTTTGGG
10
266





651982
1387
1402
43776
43791
TTCCATTGCCTTGTAA
49
267





651983
1408
1423
43797
43812
AGGAAATGGCCTTATA
50
268





651984
1419
1434
43808
43823
CTAATGTGAAAAGGAA
16
269





651985
1429
1444
43818
43833
AGTAATTTATCTAATG
5
270





651986
1438
1453
43827
43842
AGTCTTTATAGTAATT
42
271





651987
1447
1462
43836
43851
GCTATTAGGAGTCTTT
82
272





651988
1456
1471
43845
43860
ACAGGAAAAGCTATTA
51
273





651989
1481
1496
43870
43885
CCCATTTCATACTGGG
2
274





651990
1493
1508
43882
43897
GCTATAATAATCCCCA
86
275





651991
1502
1517
43891
43906
AAAATGGTTGCTATAA
0
276





651992
1513
1528
43902
43917
AATATAGCCCCAAAAT
22
277





651993
1531
1546
43920
43935
AAAATTTAGTAGCATG
13
278





651994
1561
1576
43950
43965
ATACTTGTTAAAATCT
23
279





651995
1570
1585
43959
43974
GAATTTTTTATACTTG
13
280





651996
1579
1594
43968
43983
TTCCTATGAGAATTTT
62
281





651997
1588
1603
43977
43992
TACATTTAATTCCTAT
4
282





651998
1620
1635
44009
44024
TACTATGAAAGAGCAG
78
283





651999
1629
1644
44018
44033
TTAAAGTTATACTATG
10
284





652000
1643
1658
44032
44047
GTTGAAGAAAAGATTT
15
285





652001
1652
1667
44041
44056
AAGACTCAAGTTGAAG
72
286





652002
1661
1676
44050
44065
CTATCTTCAAAGACTC
87
287





652003
1672
1687
44061
44076
CAGAATTAAAACTATC
15
288





652004
1685
1700
44074
44089
TTAATGTCACAAGCAG
88
289





652005
1699
1714
44088
44103
GCCCAAATAATCTTTT
47
290





652006
1723
1738
44112
44127
TCAACACCTAATAAGC
46
291





652007
1736
1751
44125
44140
AACCTTGGTCTCTTCA
77
292





652008
1758
1773
44147
44162
TTCACACAGGGCCTGG
65
293





652009
1767
1782
44156
44171
GCTCAAAGGTTCACAC
71
294





652010
1776
1791
44165
44180
TCTATGAAAGCTCAAA
51
295





652011
1785
1800
44174
44189
GTGAAACTCTCTATGA
55
296





652012
1794
1809
44183
44198
GTCCATGCTGTGAAAC
31
297





652013
1825
1840
44214
44229
CATGACAACACTGGAT
56
298





652014
1834
1849
44223
44238
TAACCAATGCATGACA
67
299





652015
1846
1861
44235
44250
CCCCATTTTGACTAAC
38
300





652016
1862
1877
44251
44266
AACTGCCCTAGTCCCT
61
301





652017
1871
1886
44260
44275
AGCTATCCAAACTGCC
44
302





652018
1880
1895
44269
44284
ATCTTGTTGAGCTATC
75
303





652019
1918
1933
44307
44322
CTTGATTTGTCAGCAG
80
304





652020
1990
2005
44379
44394
CAACTTTTGAGTTAAT
14
305





652021
2001
2016
44390
44405
CCCCAAAATCTCAACT
20
306





652022
2010
2025
44399
44414
ACACCACCACCCCAAA
46
307
















TABLE 5







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
83
122





651601
2099
2114
44488
44503
AATTTAACCAGTGTTA
40
308





651602
2105
2120
44494
44509
AATGTTAATTTAACCA
27
309





651604
2129
2144
44518
44533
ATCAGACTTGAAAAGT
58
310





651605
2135
2150
44524
44539
ATATGGATCAGACTTG
74
311





651623
2466
2481
44855
44870
AAGATGGTGTAACATA
68
312





651629
2600
2615
44989
45004
CTGCATCAAGTCATGG
73
313





651630
2602
2617
44991
45006
AACTGCATCAAGTCAT
64
314





651631
2604
2619
44993
45008
AAAACTGCATCAAGTC
72
315





651634
2634
2649
45023
45038
AATCTTATGGTTAGGG
85
316





651637
2676
2691
45065
45080
ACTCAGTGGGAAAACT
33
317





651638
2678
2693
45067
45082
TGACTCAGTGGGAAAA
59
318





651641
2684
2699
45073
45088
CTGATGTGACTCAGTG
76
319





651642
2686
2701
45075
45090
TTCTGATGTGACTCAG
65
320





651645
2733
2748
45122
45137
TATCTGTCAGATTCTC
83
321





651646
2735
2750
45124
45139
GGTATCTGTCAGATTC
89
322





651647
2737
2752
45126
45141
ATGGTATCTGTCAGAT
84
323





651649
2741
2756
45130
45145
CTTTATGGTATCTGTC
67
324





651650
2743
2758
45132
45147
CCCTTTATGGTATCTG
76
325





651659
2815
2830
45204
45219
GCTAATGGATTGGGCA
17
326





651660
2817
2832
45206
45221
TCGCTAATGGATTGGG
67
327





651662
2821
2836
45210
45225
ACTGTCGCTAATGGAT
43
328





652023
2047
2062
44436
44451
TCACTTCATTGTTTAA
70
329





652024
2056
2071
44445
44460
AAAACTTTTTCACTTC
62
330





652025
2065
2080
44454
44469
AGAGATTGTAAAACTT
21
331





652026
2074
2089
44463
44478
GCCAAACCTAGAGATT
42
332





652027
2083
2098
44472
44487
AGAGAACTAGCCAAAC
62
333





652028
2093
2108
44482
44497
ACCAGTGTTAAGAGAA
78
334





652029
2118
2133
44507
44522
AAAGTGTTTATGCAAT
49
335





652030
2146
2161
44535
44550
AGCATTATTAAATATG
14
336





652031
2176
2191
44565
44580
TCAAAAGGATTGTTTT
2
337





652032
2228
2243
44617
44632
CACCATGCCATCTCAC
47
338





652033
2237
2252
44626
44641
CTTTCACCTCACCATG
38
339





652034
2248
2263
44637
44652
GTCCAGTGATACTTTC
77
340





652035
2258
2273
44647
44662
CTTCTTCCTAGTCCAG
72
341





652036
2268
2283
44657
44672
CCTAAGTCACCTTCTT
47
342





652037
2277
2292
44666
44681
TATCTAGAACCTAAGT
8
343





652038
2286
2301
44675
44690
AAAGACACCTATCTAG
1
344





652039
2297
2312
44686
44701
TCAGAGTCCTAAAAGA
2
345





652040
2306
2321
44695
44710
TCCTCAAAATCAGAGT
42
346





652041
2323
2338
44712
44727
ATGGATAGTAAGTGAT
51
347





652042
2333
2348
44722
44737
ACATGAAGAAATGGAT
12
348





652043
2342
2357
44731
44746
CTTCTTTTAACATGAA
9
349





652044
2352
2367
44741
44756
TTTGAGATGACTTCTT
51
350





652045
2361
2376
44750
44765
AACTAAGAGTTTGAGA
17
351





652046
2385
2400
44774
44789
AATTACATAGTTGTAA
0
352





652047
2405
2420
44794
44809
CCTTATGTAAATGGAA
33
353





652048
2414
2429
44803
44818
TAAGTGTATCCTTATG
56
354





652049
2423
2438
44812
44827
CTTGACAAATAAGTGT
48
355





652050
2434
2449
44823
44838
ATTGTGCTGAGCTTGA
78
356





652051
2450
2465
44839
44854
GGTTAAAAATTTACAG
22
357





652052
2478
2493
44867
44882
AGACTGGCACTGAAGA
54
358





652053
2507
2522
44896
44911
AAACTTCACCTCTTGC
62
359





652054
2522
2537
44911
44926
TGGATATTCAAATATA
12
360





652055
2531
2546
44920
44935
AAACGAGAATGGATAT
28
361





652056
2547
2562
44936
44951
TGGAAGAAGAGTCCTA
14
362





652057
2561
2576
44950
44965
AGATGACACTAATATG
49
363





652058
2576
2591
44965
44980
GAAGGTAGGGAGGCAA
38
364





652059
2613
2628
45002
45017
ACAAGTATTAAAACTG
17
365





652060
2643
2658
45032
45047
GCAGCAGTAAATCTTA
60
366





652061
2652
2667
45041
45056
ATATCCACAGCAGCAG
70
367





652062
2662
2677
45051
45066
CTTCATGGAGATATCC
68
368





652063
2699
2714
45088
45103
AGATGTAGGGCATTTC
54
369





652064
2708
2723
45097
45112
GAGGAAATAAGATGTA
15
370





652065
2723
2738
45112
45127
ATTCTCTTGAGCCCTG
65
371





652066
2755
2770
45144
45159
ATTAGGTCAAATCCCT
72
372





652067
2764
2779
45153
45168
AAATTAGTGATTAGGT
32
373





652068
2773
2788
45162
45177
ACCACCTGAAAATTAG
24
374





652069
2785
2800
45174
45189
AAAGCATCAGCCACCA
46
375





652070
2799
2814
45188
45203
GCAAAGAGATGTTCAA
43
376





652071
2832
2847
45221
45236
TGAAAAATCCTACTGT
12
377





652072
2841
2856
45230
45245
TACCAGGTTTGAAAAA
23
378





652073
2864
2879
45253
45268
CTGGATAGGGTTCTGT
40
379





652074
2873
2888
45262
45277
CTCCTTCCACTGGATA
31
380





652075
2885
2900
45274
45289
CTTTATTAAATTCTCC
26
381





652076
2894
2909
45283
45298
CAGCACTATCTTTATT
33
382





652077
2906
2921
45295
45310
AAGGAATTCTTTCAGC
58
383





652078
2915
2930
45304
45319
AGATTACCTAAGGAAT
23
384









Example 3: Antisense Inhibition of Human K-Ras in A431 Cells by cEt Gapmers

Antisense oligonucleotides were designed targeting a K-Ras nucleic acid and were tested for their effects on K-Ras mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured A431 cells at a density of 5,000 cells per well were treated with 1,000 nM antisense oligonucleotide by free uptake. After a treatment period of approximately 24 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3496_MGB was used to measure mRNA levels. K-Ras mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 3-10-3 cEt gapmers. The gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a cEt sugar modification. The internucleoside linkages throughout each gapmer are phosphorothioate (P═S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either SEQ ID NO: 1 or SEQ ID NO: 2. ‘N/A’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 6







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
65
122





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
63
122





651530
1313
1328
43702
43717
TGACTAATAGCAGTGG
69
239





651538
1421
1436
43810
43825
ATCTAATGTGAAAAGG
8
385





651539
1427
1442
43816
43831
TAATTTATCTAATGTG
0
386





651540
1443
1458
43832
43847
TTAGGAGTCTTTATAG
33
387





651541
1449
1464
43838
43853
AAGCTATTAGGAGTCT
60
388





651544
1494
1509
43883
43898
TGCTATAATAATCCCC
47
389





651545
1582
1597
43971
43986
TAATTCCTATGAGAAT
18
390





651552
1611
1626
44000
44015
AGAGCAGTCTGACACA
40
391





651987
1447
1462
43836
43851
GCTATTAGGAGTCTTT
72
272





651990
1493
1508
43882
43897
GCTATAATAATCCCCA
53
275





663529
1522
1537
43911
43926
TAGCATGTAAATATAG
24
392





695897
1249
1264
43638
43653
ATGACAAACTATAGGA
34
393





695898
1251
1266
43640
43655
GGATGACAAACTATAG
35
394





695899
1256
1271
43645
43660
ATCAGGGATGACAAAC
15
395





695900
1258
1273
43647
43662
TCATCAGGGATGACAA
17
396





695901
1260
1275
43649
43664
ATTCATCAGGGATGAC
20
397





695902
1262
1277
43651
43666
ACATTCATCAGGGATG
0
398





695903
1269
1284
43658
43673
TAACTTTACATTCATC
21
399





695904
1275
1290
43664
43679
ACAGTGTAACTTTACA
38
400





695905
1277
1292
43666
43681
GAACAGTGTAACTTTA
26
401





695906
1279
1294
43668
43683
GTGAACAGTGTAACTT
44
402





695907
1281
1296
43670
43685
TTGTGAACAGTGTAAC
44
403





695908
1285
1300
43674
43689
ACCTTTGTGAACAGTG
48
404





695909
1287
1302
43676
43691
AAACCTTTGTGAACAG
48
405





695910
1289
1304
43678
43693
CAAAACCTTTGTGAAC
3
406





695911
1293
1308
43682
43697
GAGACAAAACCTTTGT
10
407





695912
1312
1327
43701
43716
GACTAATAGCAGTGGA
67
408





695913
1314
1329
43703
43718
ATGACTAATAGCAGTG
35
409





695914
1323
1338
43712
43727
AGAGTGACCATGACTA
42
410





695915
1385
1400
43774
43789
CCATTGCCTTGTAATT
37
411





695916
1391
1406
43780
43795
TAGTTTCCATTGCCTT
44
412





695917
1393
1408
43782
43797
AATAGTTTCCATTGCC
64
413





695918
1395
1410
43784
43799
ATAATAGTTTCCATTG
14
414





695919
1400
1415
43789
43804
GCCTTATAATAGTTTC
44
415





695920
1403
1418
43792
43807
ATGGCCTTATAATAGT
25
416





695921
1405
1420
43794
43809
AAATGGCCTTATAATA
0
417





695922
1439
1454
43828
43843
GAGTCTTTATAGTAAT
32
418





695923
1440
1455
43829
43844
GGAGTCTTTATAGTAA
45
419





695924
1441
1456
43830
43845
AGGAGTCTTTATAGTA
69
420





695925
1442
1457
43831
43846
TAGGAGTCTTTATAGT
48
421





695926
1444
1459
43833
43848
ATTAGGAGTCTTTATA
37
422





695927
1445
1460
43834
43849
TATTAGGAGTCTTTAT
18
423





695928
1446
1461
43835
43850
CTATTAGGAGTCTTTA
30
424





695929
1448
1463
43837
43852
AGCTATTAGGAGTCTT
29
425





695930
1450
1465
43839
43854
AAAGCTATTAGGAGTC
70
426





695931
1451
1466
43840
43855
AAAAGCTATTAGGAGT
29
427





695932
1452
1467
43841
43856
GAAAAGCTATTAGGAG
32
428





695933
1453
1468
43842
43857
GGAAAAGCTATTAGGA
43
429





695934
1454
1469
43843
43858
AGGAAAAGCTATTAGG
48
430





695935
1455
1470
43844
43859
CAGGAAAAGCTATTAG
47
431





695936
1464
1479
43853
43868
CTGCCTTAACAGGAAA
43
432





695937
1478
1493
43867
43882
ATTTCATACTGGGTCT
46
433





695938
1483
1498
43872
43887
TCCCCATTTCATACTG
14
434





695939
1492
1507
43881
43896
CTATAATAATCCCCAT
23
435





695940
1495
1510
43884
43899
TTGCTATAATAATCCC
57
436





695941
1496
1511
43885
43900
GTTGCTATAATAATCC
29
437





695942
1497
1512
43886
43901
GGTTGCTATAATAATC
35
438





695943
1498
1513
43887
43902
TGGTTGCTATAATAAT
0
439





695944
1499
1514
43888
43903
ATGGTTGCTATAATAA
26
440





695945
1500
1515
43889
43904
AATGGTTGCTATAATA
12
441





695946
1501
1516
43890
43905
AAATGGTTGCTATAAT
5
442





695947
1504
1519
43893
43908
CCAAAATGGTTGCTAT
18
443





695948
1516
1531
43905
43920
GTAAATATAGCCCCAA
45
444





695949
1518
1533
43907
43922
ATGTAAATATAGCCCC
36
445





695950
1524
1539
43913
43928
AGTAGCATGTAAATAT
28
446





695951
1528
1543
43917
43932
ATTTAGTAGCATGTAA
17
447





695952
1584
1599
43973
43988
TTTAATTCCTATGAGA
20
448





695953
1591
1606
43980
43995
GACTACATTTAATTCC
0
449





695954
1594
1609
43983
43998
GGAGACTACATTTAAT
12
450





695955
1597
1612
43986
44001
CAGGGAGACTACATTT
22
451





695956
1610
1625
43999
44014
GAGCAGTCTGACACAG
41
452





695957
1613
1628
44002
44017
AAAGAGCAGTCTGACA
36
453





695958
1614
1629
44003
44018
GAAAGAGCAGTCTGAC
49
454





695959
1615
1630
44004
44019
TGAAAGAGCAGTCTGA
36
455





695960
1616
1631
44005
44020
ATGAAAGAGCAGTCTG
41
456





695961
1617
1632
44006
44021
TATGAAAGAGCAGTCT
23
457





695962
1618
1633
44007
44022
CTATGAAAGAGCAGTC
33
458
















TABLE 7







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
58
122





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
63
122





651497
948
963
43337
43352
ACCAAAACTCTGGGAA
19
459





651498
959
974
43348
43363
CTAGTTCAAAAACCAA
0
460





651499
965
980
43354
43369
GCATTGCTAGTTCAAA
53
461





651501
1014
1029
N/A
N/A
CCAAAAACCCCAAGAC
33
462





651502
1026
1041
43415
43430
CAACTGCATGCACCAA
49
463





651503
1032
1047
43421
43436
AGTAATCAACTGCATG
35
464





651509
1124
1139
43513
43528
TATGTGACTAGATAAA
10
465





651510
1142
1157
43531
43546
ATTAGTAATTAATCCA
34
466





663502
1025
1040
43414
43429
AACTGCATGCACCAAA
30
467





695829
943
958
43332
43347
AACTCTGGGAATACTG
36
468





695830
944
959
43333
43348
AAACTCTGGGAATACT
6
469





695831
949
964
43338
43353
AACCAAAACTCTGGGA
5
470





695832
960
975
43349
43364
GCTAGTTCAAAAACCA
52
471





695833
962
977
43351
43366
TTGCTAGTTCAAAAAC
31
472





695834
963
978
43352
43367
ATTGCTAGTTCAAAAA
0
473





695835
964
979
43353
43368
CATTGCTAGTTCAAAA
32
474





695836
966
981
43355
43370
GGCATTGCTAGTTCAA
51
475





695837
970
985
43359
43374
CACAGGCATTGCTAGT
12
476





695838
971
986
43360
43375
TCACAGGCATTGCTAG
2
477





695839
972
987
43361
43376
TTCACAGGCATTGCTA
27
478





695840
994
1009
43383
43398
ATCTTAGGTATTCAGT
30
479





695841
999
1014
43388
43403
CAGAAATCTTAGGTAT
13
480





695842
1007
1022
43396
43411
CCCCAAGACAGAAATC
4
481





695843
1017
1032
N/A
N/A
GCACCAAAAACCCCAA
16
482





695844
1020
1035
N/A
N/A
CATGCACCAAAAACCC
29
483





695845
1023
1038
N/A
N/A
CTGCATGCACCAAAAA
12
484





695846
1024
1039
43413
43428
ACTGCATGCACCAAAA
14
485





695847
1027
1042
43416
43431
TCAACTGCATGCACCA
63
486





695848
1029
1044
43418
43433
AATCAACTGCATGCAC
14
487





695849
1030
1045
43419
43434
TAATCAACTGCATGCA
34
488





695850
1033
1048
43422
43437
AAGTAATCAACTGCAT
8
489





695851
1034
1049
43423
43438
GAAGTAATCAACTGCA
31
490





695852
1035
1050
43424
43439
AGAAGTAATCAACTGC
54
491





695853
1056
1071
43445
43460
TCACAATTGGTAAGAA
34
492





695854
1058
1073
43447
43462
ATTCACAATTGGTAAG
31
493





695855
1060
1075
43449
43464
ACATTCACAATTGGTA
13
494





695856
1065
1080
43454
43469
CACCAACATTCACAAT
32
495





695857
1068
1083
43457
43472
TCACACCAACATTCAC
20
496





695858
1070
1085
43459
43474
TTTCACACCAACATTC
10
497





695859
1074
1089
43463
43478
TTTGTTTCACACCAAC
36
498





695860
1076
1091
43465
43480
AATTTGTTTCACACCA
43
499





695861
1101
1116
43490
43505
ATAGGGATGATTCAAA
33
500





695862
1103
1118
43492
43507
GAATAGGGATGATTCA
6
501





695863
1105
1120
43494
43509
CAGAATAGGGATGATT
38
502





695864
1107
1122
43496
43511
CACAGAATAGGGATGA
29
503





695865
1121
1136
43510
43525
GTGACTAGATAAAACA
19
504





695866
1126
1141
43515
43530
TTTATGTGACTAGATA
26
505





695867
1130
1145
43519
43534
TCCATTTATGTGACTA
74
506





695868
1151
1166
43540
43555
TCAACTGAAATTAGTA
0
507





695869
1160
1175
43549
43564
TAGAAGGTCTCAACTG
28
508





695870
1162
1177
43551
43566
ATTAGAAGGTCTCAAC
0
509





695871
1164
1179
43553
43568
CAATTAGAAGGTCTCA
21
510





695872
1168
1183
43557
43572
AAACCAATTAGAAGGT
12
511





695873
1172
1187
43561
43576
GTAAAAACCAATTAGA
37
512





695874
1186
1201
43575
43590
CCCTCAATGTTTCAGT
10
513





695875
1188
1203
43577
43592
TTCCCTCAATGTTTCA
35
514





695876
1197
1212
43586
43601
AAATTTGTGTTCCCTC
39
515





695877
1199
1214
43588
43603
ATAAATTTGTGTTCCC
48
516





695878
1201
1216
43590
43605
CCATAAATTTGTGTTC
31
517





695879
1205
1220
43594
43609
AAGCCCATAAATTTGT
21
518





695880
1208
1223
43597
43612
AGGAAGCCCATAAATT
28
519





695881
1209
1224
43598
43613
CAGGAAGCCCATAAAT
37
520





695882
1210
1225
43599
43614
TCAGGAAGCCCATAAA
26
521





695883
1211
1226
43600
43615
ATCAGGAAGCCCATAA
55
522





695884
1212
1227
43601
43616
CATCAGGAAGCCCATA
48
523





695885
1214
1229
43603
43618
ATCATCAGGAAGCCCA
67
524





695886
1215
1230
43604
43619
CATCATCAGGAAGCCC
45
525





695887
1216
1231
43605
43620
TCATCATCAGGAAGCC
52
526





695888
1217
1232
43606
43621
ATCATCATCAGGAAGC
39
527





695889
1219
1234
43608
43623
GAATCATCATCAGGAA
50
528





695890
1220
1235
43609
43624
AGAATCATCATCAGGA
43
529





695891
1224
1239
43613
43628
TAGAAGAATCATCATC
27
530





695892
1226
1241
43615
43630
CCTAGAAGAATCATCA
40
531





695893
1235
1250
43624
43639
GACATGATGCCTAGAA
32
532





695894
1237
1252
43626
43641
AGGACATGATGCCTAG
4
533





695895
1242
1257
43631
43646
ACTATAGGACATGATG
27
534





695896
1247
1262
43636
43651
GACAAACTATAGGACA
14
535
















TABLE 8







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
51
122





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
58
122





651468
201
216
7567
7582
TACCACAAGTTTATAT
0
536





651472
258
273
7624
7639
ATGATTCTGAATTAGC
39
537





651478
451
466
25678
25693
CTTCAAATGATTTAGT
0
538





651479
460
475
25687
25702
GGTGAATATCTTCAAA
18
539





651483
572
587
27259
27274
TCCTGAGCCTGTTTTG
97
540





651486
651
666
43040
43055
TGTATAGAAGGCATCA
0
541





651489
738
753
43127
43142
AATTACACACTTTGTC
0
542





651495
909
924
43298
43313
AACTTCCACTGTCATT
7
543





663453
184
199
7550
7565
CAGTCATTTTCAGCAG
35
544





663455
255
270
7621
7636
ATTCTGAATTAGCTGT
41
545





663469
544
559
27231
27246
TAGAAGGCAAATCACA
13
546





663470
547
562
27234
27249
TTCTAGAAGGCAAATC
7
547





663472
553
568
27240
27255
CTACTGTTCTAGAAGG
5
548





663479
676
691
43065
43080
TATGTTTTCGAATTTC
0
549





667550
224
239
7590
7605
TTGCCTACGCCACCAG
5
550





695767
48
63
2059
2074
CACCTTCGCCGCCGCC
4
551





695768
67
82
2078
2093
GTACTGGCCGAGCCGC
0
552





695769
91
106
2102
2117
AGTCCGAAATGGCGGG
0
553





695770
120
135
2131
2146
CCTTCAGTGCCTGCGC
23
554





695771
123
138
2134
2149
CCGCCTTCAGTGCCTG
0
555





695772
156
171
2167
2182
CACCTGGGAGCCGCTG
0
556





695773
167
182
2178
2193
CCTCTCTCCCGCACCT
11
557





695774
180
195
7546
7561
CATTTTCAGCAGGCCT
0
558





695775
182
197
7548
7563
GTCATTTTCAGCAGGC
22
559





695776
232
247
7598
7613
AGGCACTCTTGCCTAC
0
560





695777
314
329
25541
25556
ATTACTACTTGCTTCC
17
561





695778
316
331
25543
25558
CAATTACTACTTGCTT
0
562





695779
318
333
25545
25560
ATCAATTACTACTTGC
9
563





695780
320
335
25547
25562
CCATCAATTACTACTT
4
564





695781
339
354
25566
25581
ATCCAAGAGACAGGTT
15
565





695782
343
358
25570
25585
GAATATCCAAGAGACA
6
566





695783
363
378
25590
25605
CTCTTGACCTGCTGTG
15
567





695784
367
382
25594
25609
ACTCCTCTTGACCTGC
18
568





695785
463
478
25690
25705
AATGGTGAATATCTTC
63
569





695786
469
484
N/A
N/A
CTCTATAATGGTGAAT
10
570





695787
492
507
27179
27194
GTCCTTAACTCTTTTA
0
571





695788
498
513
27185
27200
TTCAGAGTCCTTAACT
0
572





695789
542
557
27229
27244
GAAGGCAAATCACATT
16
573





695790
555
570
27242
27257
GTCTACTGTTCTAGAA
2
574





695791
580
595
27267
27282
TTGCTAAGTCCTGAGC
86
575





695792
583
598
27270
27285
TTCTTGCTAAGTCCTG
96
576





695793
588
603
27275
27290
ATAACTTCTTGCTAAG
18
577





695794
590
605
27277
27292
CCATAACTTCTTGCTA
48
578





695795
597
612
27284
27299
AGGAATTCCATAACTT
31
579





695796
599
614
27286
27301
AAAGGAATTCCATAAC
4
580





695797
615
630
27302
27317
TGCTGATGTTTCAATA
6
581





695798
654
669
43043
43058
TAATGTATAGAAGGCA
7
582





695799
656
671
43045
43060
ACTAATGTATAGAAGG
0
583





695800
660
675
43049
43064
TCGAACTAATGTATAG
2
584





695801
662
677
43051
43066
TCTCGAACTAATGTAT
0
585





695802
665
680
43054
43069
ATTTCTCGAACTAATG
0
586





695803
667
682
43056
43071
GAATTTCTCGAACTAA
0
587





695804
671
686
43060
43075
TTTCGAATTTCTCGAA
0
588





695805
681
696
43070
43085
TTCTTTATGTTTTCGA
7
589





695806
734
749
43123
43138
ACACACTTTGTCTTTG
8
590





695807
779
794
43168
43183
ACTAGTATGCCTTAAG
7
591





695808
781
796
43170
43185
GTACTAGTATGCCTTA
0
592





695809
783
798
43172
43187
TTGTACTAGTATGCCT
51
593





695810
794
809
43183
43198
AAAATTACCACTTGTA
1
594





695811
799
814
43188
43203
GTACAAAAATTACCAC
0
595





695812
807
822
43196
43211
AGTGTAATGTACAAAA
12
596





695813
814
829
43203
43218
ATAATTTAGTGTAATG
0
597





695814
818
833
43207
43222
GCTAATAATTTAGTGT
0
598





695815
820
835
43209
43224
ATGCTAATAATTTAGT
39
599





695816
837
852
43226
43241
AGGTAATGCTAAAACA
17
600





695817
839
854
43228
43243
TTAGGTAATGCTAAAA
0
601





695818
841
856
43230
43245
AATTAGGTAATGCTAA
0
602





695819
862
877
43251
43266
GTCTGCATGGAGCAGG
39
603





695820
866
881
43255
43270
AACAGTCTGCATGGAG
4
604





695821
870
885
43259
43274
AGCTAACAGTCTGCAT
10
605





695822
875
890
43264
43279
GTAAAAGCTAACAGTC
0
606





695823
877
892
43266
43281
AGGTAAAAGCTAACAG
52
607





695824
879
894
43268
43283
TAAGGTAAAAGCTAAC
4
608





695825
884
899
43273
43288
GCATTTAAGGTAAAAG
21
609





695826
912
927
43301
43316
AAAAACTTCCACTGTC
17
610





695827
929
944
43318
43333
TGGCACTTAGAGGAAA
1
611





695828
935
950
43324
43339
GAATACTGGCACTTAG
22
612
















TABLE 9







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
65
122





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
66
122





651553
1656
1671
44045
44060
TTCAAAGACTCAAGTT
27
613





651554
1662
1677
44051
44066
ACTATCTTCAAAGACT
33
614





651555
1686
1701
44075
44090
TTTAATGTCACAAGCA
68
615





651565
1740
1755
44129
44144
TTGCAACCTTGGTCTC
24
616





651568
1771
1786
44160
44175
GAAAGCTCAAAGGTTC
12
617





651572
1822
1837
44211
44226
GACAACACTGGATGAC
18
618





651573
1828
1843
44217
44232
ATGCATGACAACACTG
14
619





651585
1911
1926
44300
44315
TGTCAGCAGGACCACC
39
620





651587
1915
1930
44304
44319
GATTTGTCAGCAGGAC
63
621





651593
1992
2007
44381
44396
CTCAACTTTTGAGTTA
22
622





652004
1685
1700
44074
44089
TTAATGTCACAAGCAG
63
289





695963
1619
1634
44008
44023
ACTATGAAAGAGCAGT
2
623





695964
1622
1637
44011
44026
TATACTATGAAAGAGC
26
624





695965
1624
1639
44013
44028
GTTATACTATGAAAGA
48
625





695966
1633
1648
44022
44037
AGATTTAAAGTTATAC
6
626





695967
1650
1665
44039
44054
GACTCAAGTTGAAGAA
17
627





695968
1654
1669
44043
44058
CAAAGACTCAAGTTGA
20
628





695969
1655
1670
44044
44059
TCAAAGACTCAAGTTG
33
629





695970
1657
1672
44046
44061
CTTCAAAGACTCAAGT
26
630





695971
1658
1673
44047
44062
TCTTCAAAGACTCAAG
25
631





695972
1663
1678
44052
44067
AACTATCTTCAAAGAC
9
632





695973
1681
1696
44070
44085
TGTCACAAGCAGAATT
39
633





695974
1682
1697
44071
44086
ATGTCACAAGCAGAAT
25
634





695975
1683
1698
44072
44087
AATGTCACAAGCAGAA
53
635





695976
1684
1699
44073
44088
TAATGTCACAAGCAGA
61
636





695977
1687
1702
44076
44091
TTTTAATGTCACAAGC
58
637





695978
1688
1703
44077
44092
CTTTTAATGTCACAAG
2
638





695979
1689
1704
44078
44093
TCTTTTAATGTCACAA
38
639





695980
1690
1705
44079
44094
ATCTTTTAATGTCACA
64
640





695981
1691
1706
44080
44095
AATCTTTTAATGTCAC
57
641





695982
1692
1707
44081
44096
TAATCTTTTAATGTCA
0
642





695983
1693
1708
44082
44097
ATAATCTTTTAATGTC
6
643





695984
1716
1731
44105
44120
CTAATAAGCTATAACT
16
644





695985
1718
1733
44107
44122
ACCTAATAAGCTATAA
9
645





695986
1720
1735
44109
44124
ACACCTAATAAGCTAT
1
646





695987
1725
1740
44114
44129
CTTCAACACCTAATAA
4
647





695988
1727
1742
44116
44131
CTCTTCAACACCTAAT
27
648





695989
1729
1744
44118
44133
GTCTCTTCAACACCTA
52
649





695990
1744
1759
44133
44148
GGCCTTGCAACCTTGG
36
650





695991
1763
1778
44152
44167
AAAGGTTCACACAGGG
43
651





695992
1765
1780
44154
44169
TCAAAGGTTCACACAG
30
652





695993
1769
1784
44158
44173
AAGCTCAAAGGTTCAC
48
653





695994
1773
1788
44162
44177
ATGAAAGCTCAAAGGT
18
654





695995
1778
1793
44167
44182
TCTCTATGAAAGCTCA
60
655





695996
1780
1795
44169
44184
ACTCTCTATGAAAGCT
30
656





695997
1782
1797
44171
44186
AAACTCTCTATGAAAG
20
657





695998
1790
1805
44179
44194
ATGCTGTGAAACTCTC
64
658





695999
1792
1807
44181
44196
CCATGCTGTGAAACTC
35
659





696000
1798
1813
44187
44202
CACAGTCCATGCTGTG
17
660





696001
1800
1815
44189
44204
GACACAGTCCATGCTG
19
661





696002
1818
1833
44207
44222
ACACTGGATGACCGTG
6
662





696003
1820
1835
44209
44224
CAACACTGGATGACCG
35
663





696004
1830
1845
44219
44234
CAATGCATGACAACAC
31
664





696005
1832
1847
44221
44236
ACCAATGCATGACAAC
38
665





696006
1836
1851
44225
44240
ACTAACCAATGCATGA
25
666





696007
1838
1853
44227
44242
TGACTAACCAATGCAT
0
667





696008
1843
1858
44232
44247
CATTTTGACTAACCAA
7
668





696009
1865
1880
44254
44269
CCAAACTGCCCTAGTC
18
669





696010
1867
1882
44256
44271
ATCCAAACTGCCCTAG
19
670





696011
1875
1890
44264
44279
GTTGAGCTATCCAAAC
10
671





696012
1878
1893
44267
44282
CTTGTTGAGCTATCCA
74
672





696013
1882
1897
44271
44286
GTATCTTGTTGAGCTA
73
673





696014
1884
1899
44273
44288
TTGTATCTTGTTGAGC
52
674





696015
1912
1927
44301
44316
TTGTCAGCAGGACCAC
39
675





696016
1914
1929
44303
44318
ATTTGTCAGCAGGACC
56
676





696017
1917
1932
44306
44321
TTGATTTGTCAGCAGG
74
677





696018
1920
1935
44309
44324
CTCTTGATTTGTCAGC
67
678





696019
1994
2009
44383
44398
ATCTCAACTTTTGAGT
17
679





696020
2005
2020
44394
44409
ACCACCCCAAAATCTC
23
680





696021
2021
2036
44410
44425
AATGTCTTGGCACACC
46
681





696022
2022
2037
44411
44426
TAATGTCTTGGCACAC
49
682





696023
2023
2038
44412
44427
TTAATGTCTTGGCACA
23
683





696024
2024
2039
44413
44428
ATTAATGTCTTGGCAC
35
684





696025
2025
2040
44414
44429
AATTAATGTCTTGGCA
25
685





696026
2026
2041
44415
44430
AAATTAATGTCTTGGC
64
686





696027
2067
2082
44456
44471
CTAGAGATTGTAAAAC
11
687





696028
2069
2084
44458
44473
ACCTAGAGATTGTAAA
4
688
















TABLE 10







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
61
122





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
69
122





651597
2076
2091
44465
44480
TAGCCAAACCTAGAGA
7
689





651599
2088
2103
44477
44492
TGTTAAGAGAACTAGC
0
690





651600
2095
2110
44484
44499
TAACCAGTGTTAAGAG
37
691





651603
2120
2135
44509
44524
GAAAAGTGTTTATGCA
75
692





651610
2253
2268
44642
44657
TCCTAGTCCAGTGATA
12
693





651613
2281
2296
44670
44685
CACCTATCTAGAACCT
14
694





651616
2302
2317
44691
44706
CAAAATCAGAGTCCTA
44
695





651620
2418
2433
44807
44822
CAAATAAGTGTATCCT
45
696





651621
2424
2439
44813
44828
GCTTGACAAATAAGTG
24
697





651622
2452
2467
44841
44856
TAGGTTAAAAATTTAC
14
698





663561
2440
2455
44829
44844
TTACAGATTGTGCTGA
29
699





696029
2071
2086
44460
44475
AAACCTAGAGATTGTA
26
700





696030
2078
2093
44467
44482
ACTAGCCAAACCTAGA
14
701





696031
2080
2095
44469
44484
GAACTAGCCAAACCTA
17
702





696032
2084
2099
44473
44488
AAGAGAACTAGCCAAA
33
703





696033
2085
2100
44474
44489
TAAGAGAACTAGCCAA
21
704





696034
2086
2101
44475
44490
TTAAGAGAACTAGCCA
26
705





696035
2087
2102
44476
44491
GTTAAGAGAACTAGCC
22
706





696036
2089
2104
44478
44493
GTGTTAAGAGAACTAG
39
707





696037
2090
2105
44479
44494
AGTGTTAAGAGAACTA
0
708





696038
2091
2106
44480
44495
CAGTGTTAAGAGAACT
17
709





696039
2092
2107
44481
44496
CCAGTGTTAAGAGAAC
47
710





696040
2096
2111
44485
44500
TTAACCAGTGTTAAGA
19
711





696041
2097
2112
44486
44501
TTTAACCAGTGTTAAG
15
712





696042
2107
2122
44496
44511
GCAATGTTAATTTAAC
0
713





696043
2113
2128
44502
44517
GTTTATGCAATGTTAA
60
714





696044
2115
2130
44504
44519
GTGTTTATGCAATGTT
83
715





696045
2127
2142
44516
44531
CAGACTTGAAAAGTGT
0
716





696046
2137
2152
44526
44541
AAATATGGATCAGACT
11
717





696047
2139
2154
44528
44543
TTAAATATGGATCAGA
32
718





696048
2141
2156
44530
44545
TATTAAATATGGATCA
28
719





696049
2178
2193
44567
44582
TATCAAAAGGATTGTT
23
720





696050
2180
2195
44569
44584
TTTATCAAAAGGATTG
9
721





696051
2232
2247
44621
44636
ACCTCACCATGCCATC
41
722





696052
2239
2254
44628
44643
TACTTTCACCTCACCA
22
723





696053
2241
2256
44630
44645
GATACTTTCACCTCAC
36
724





696054
2246
2261
44635
44650
CCAGTGATACTTTCAC
35
725





696055
2249
2264
44638
44653
AGTCCAGTGATACTTT
15
726





696056
2250
2265
44639
44654
TAGTCCAGTGATACTT
22
727





696057
2251
2266
44640
44655
CTAGTCCAGTGATACT
20
728





696058
2254
2269
44643
44658
TTCCTAGTCCAGTGAT
12
729





696059
2261
2276
44650
44665
CACCTTCTTCCTAGTC
30
730





696060
2270
2285
44659
44674
AACCTAAGTCACCTTC
16
731





696061
2272
2287
44661
44676
AGAACCTAAGTCACCT
32
732





696062
2274
2289
44663
44678
CTAGAACCTAAGTCAC
24
733





696063
2279
2294
44668
44683
CCTATCTAGAACCTAA
21
734





696064
2284
2299
44673
44688
AGACACCTATCTAGAA
12
735





696065
2288
2303
44677
44692
TAAAAGACACCTATCT
36
736





696066
2290
2305
44679
44694
CCTAAAAGACACCTAT
16
737





696067
2292
2307
44681
44696
GTCCTAAAAGACACCT
18
738





696068
2295
2310
44684
44699
AGAGTCCTAAAAGACA
21
739





696069
2304
2319
44693
44708
CTCAAAATCAGAGTCC
38
740





696070
2308
2323
44697
44712
TGTCCTCAAAATCAGA
29
741





696071
2315
2330
44704
44719
TAAGTGATGTCCTCAA
38
742





696072
2320
2335
44709
44724
GATAGTAAGTGATGTC
31
743





696073
2325
2340
44714
44729
AAATGGATAGTAAGTG
14
744





696074
2329
2344
44718
44733
GAAGAAATGGATAGTA
52
745





696075
2344
2359
44733
44748
GACTTCTTTTAACATG
44
746





696076
2347
2362
44736
44751
GATGACTTCTTTTAAC
20
747





696077
2354
2369
44743
44758
AGTTTGAGATGACTTC
35
748





696078
2356
2371
44745
44760
AGAGTTTGAGATGACT
23
749





696079
2359
2374
44748
44763
CTAAGAGTTTGAGATG
41
750





696080
2387
2402
44776
44791
TAAATTACATAGTTGT
12
751





696081
2407
2422
44796
44811
ATCCTTATGTAAATGG
2
752





696082
2409
2424
44798
44813
GTATCCTTATGTAAAT
27
753





696083
2411
2426
44800
44815
GTGTATCCTTATGTAA
50
754





696084
2416
2431
44805
44820
AATAAGTGTATCCTTA
12
755





696085
2420
2435
44809
44824
GACAAATAAGTGTATC
52
756





696086
2425
2440
44814
44829
AGCTTGACAAATAAGT
31
757





696087
2426
2441
44815
44830
GAGCTTGACAAATAAG
21
758





696088
2429
2444
44818
44833
GCTGAGCTTGACAAAT
22
759





696089
2430
2445
44819
44834
TGCTGAGCTTGACAAA
27
760





696090
2435
2450
44824
44839
GATTGTGCTGAGCTTG
68
761





696091
2436
2451
44825
44840
AGATTGTGCTGAGCTT
59
762





696092
2438
2453
44827
44842
ACAGATTGTGCTGAGC
48
763





696093
2439
2454
44828
44843
TACAGATTGTGCTGAG
42
764





696094
2443
2458
44832
44847
AATTTACAGATTGTGC
22
765









Example 4: Antisense Inhibition of Human K-Ras in A431 Cells by cEt Gapmers

Antisense oligonucleotides were designed targeting a K-Ras nucleic acid and were tested for their effects on K-Ras mRNA in vitro. Cultured A431 cells at a density of 5,000 cells per well were with 1,000 nM antisense oligonucleotide by free uptake. After a treatment period of approximately 24 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS132 (forward sequence CAAGTAGTAATTGATGGAGAAACCTGTCT, designated herein as SEQ ID NO: 10; reverse sequence CTGGTCCCTCATTGCACTGTAC; designated herein as SEQ ID NO: 11; probe sequence TGGATATTCTCGACACAGCAGGTCAAGAGG, designated herein as SEQ ID NO: 12) was used to measure mRNA levels. K-Ras mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.


The newly designed chimeric antisense oligonucleotides in the Table below were designed as 3-10-3 cEt gapmers. The gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a cEt sugar modification. The internucleoside linkages throughout each gapmer are phosphorothioate (P═S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Table below is targeted to either SEQ ID NO: 1 or SEQ ID NO: 2. ‘N/A’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 11







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
50
122





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
53
122





651468
201
216
7567
7582
TACCACAAGTTTATAT
11
536





651472
258
273
7624
7639
ATGATTCTGAATTAGC
13
537





651478
451
466
25678
25693
CTTCAAATGATTTAGT
24
538





651479
460
475
25687
25702
GGTGAATATCTTCAAA
47
539





651483
572
587
27259
27274
TCCTGAGCCTGTTTTG
44
540





651486
651
666
43040
43055
TGTATAGAAGGCATCA
0
541





651489
738
753
43127
43142
AATTACACACTTTGTC
0
542





651495
909
924
43298
43313
AACTTCCACTGTCATT
14
543





663453
184
199
7550
7565
CAGTCATTTTCAGCAG
0
544





663455
255
270
7621
7636
ATTCTGAATTAGCTGT
31
545





663469
544
559
27231
27246
TAGAAGGCAAATCACA
18
546





663470
547
562
27234
27249
TTCTAGAAGGCAAATC
3
547





663472
553
568
27240
27255
CTACTGTTCTAGAAGG
16
548





663479
676
691
43065
43080
TATGTTTTCGAATTTC
0
549





667550
224
239
7590
7605
TTGCCTACGCCACCAG
0
550





695767
48
63
2059
2074
CACCTTCGCCGCCGCC
0
551





695768
67
82
2078
2093
GTACTGGCCGAGCCGC
5
552





695769
91
106
2102
2117
AGTCCGAAATGGCGGG
0
553





695770
120
135
2131
2146
CCTTCAGTGCCTGCGC
45
554





695771
123
138
2134
2149
CCGCCTTCAGTGCCTG
0
555





695772
156
171
2167
2182
CACCTGGGAGCCGCTG
0
556





695773
167
182
2178
2193
CCTCTCTCCCGCACCT
0
557





695774
180
195
7546
7561
CATTTTCAGCAGGCCT
0
558





695775
182
197
7548
7563
GTCATTTTCAGCAGGC
0
559





695776
232
247
7598
7613
AGGCACTCTTGCCTAC
0
560





695777
314
329
25541
25556
ATTACTACTTGCTTCC
0
561





695778
316
331
25543
25558
CAATTACTACTTGCTT
5
562





695779
318
333
25545
25560
ATCAATTACTACTTGC
13
563





695780
320
335
25547
25562
CCATCAATTACTACTT
17
564





695781
339
354
25566
25581
ATCCAAGAGACAGGTT
70
565





695782
343
358
25570
25585
GAATATCCAAGAGACA
52
566





695783
363
378
25590
25605
CTCTTGACCTGCTGTG
80
567





695784
367
382
25594
25609
ACTCCTCTTGACCTGC
96
568





695785
463
478
25690
25705
AATGGTGAATATCTTC
54
569





695786
469
484
N/A
N/A
CTCTATAATGGTGAAT
3
570





695787
492
507
27179
27194
GTCCTTAACTCTTTTA
6
571





695788
498
513
27185
27200
TTCAGAGTCCTTAACT
0
572





695789
542
557
27229
27244
GAAGGCAAATCACATT
18
573





695790
555
570
27242
27257
GTCTACTGTTCTAGAA
0
574





695791
580
595
27267
27282
TTGCTAAGTCCTGAGC
0
575





695792
583
598
27270
27285
TTCTTGCTAAGTCCTG
46
576





695793
588
603
27275
27290
ATAACTTCTTGCTAAG
20
577





695794
590
605
27277
27292
CCATAACTTCTTGCTA
0
578





695795
597
612
27284
27299
AGGAATTCCATAACTT
6
579





695796
599
614
27286
27301
AAAGGAATTCCATAAC
1
580





695797
615
630
27302
27317
TGCTGATGTTTCAATA
0
581





695798
654
669
43043
43058
TAATGTATAGAAGGCA
0
582





695799
656
671
43045
43060
ACTAATGTATAGAAGG
10
583





695800
660
675
43049
43064
TCGAACTAATGTATAG
0
584





695801
662
677
43051
43066
TCTCGAACTAATGTAT
0
585





695802
665
680
43054
43069
ATTTCTCGAACTAATG
0
586





695803
667
682
43056
43071
GAATTTCTCGAACTAA
4
587





695804
671
686
43060
43075
TTTCGAATTTCTCGAA
0
588





695805
681
696
43070
43085
TTCTTTATGTTTTCGA
0
589





695806
734
749
43123
43138
ACACACTTTGTCTTTG
8
590





695807
779
794
43168
43183
ACTAGTATGCCTTAAG
3
591





695808
781
796
43170
43185
GTACTAGTATGCCTTA
0
592





695809
783
798
43172
43187
TTGTACTAGTATGCCT
43
593





695810
794
809
43183
43198
AAAATTACCACTTGTA
2
594





695811
799
814
43188
43203
GTACAAAAATTACCAC
0
595





695812
807
822
43196
43211
AGTGTAATGTACAAAA
0
596





695813
814
829
43203
43218
ATAATTTAGTGTAATG
0
597





695814
818
833
43207
43222
GCTAATAATTTAGTGT
0
598





695815
820
835
43209
43224
ATGCTAATAATTTAGT
0
599





695816
837
852
43226
43241
AGGTAATGCTAAAACA
12
600





695817
839
854
43228
43243
TTAGGTAATGCTAAAA
0
601





695818
841
856
43230
43245
AATTAGGTAATGCTAA
0
602





695819
862
877
43251
43266
GTCTGCATGGAGCAGG
2
603





695820
866
881
43255
43270
AACAGTCTGCATGGAG
9
604





695821
870
885
43259
43274
AGCTAACAGTCTGCAT
0
605





695822
875
890
43264
43279
GTAAAAGCTAACAGTC
45
606





695823
877
892
43266
43281
AGGTAAAAGCTAACAG
52
607





695824
879
894
43268
43283
TAAGGTAAAAGCTAAC
0
608





695825
884
899
43273
43288
GCATTTAAGGTAAAAG
10
609





695826
912
927
43301
43316
AAAAACTTCCACTGTC
14
610





695827
929
944
43318
43333
TGGCACTTAGAGGAAA
19
611





695828
935
950
43324
43339
GAATACTGGCACTTAG
13
612









Example 5: Antisense Inhibition of Human K-Ras in A431 Cells by cEt Gapmers

Antisense oligonucleotides were designed targeting a K-Ras nucleic acid and were tested for their effects on K-Ras mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured A431cells at a density of 5,000 cells per well were treated with 2,000 nM antisense oligonucleotide by free uptake. After a treatment period of approximately 24 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3496_MGB was used to measure mRNA levels. K-Ras mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 3-10-3 cEt gapmers. The gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a cEt sugar modification. The internucleoside linkages throughout each gapmer are phosphorothioate (P═S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either SEQ ID NO: 1 or SEQ ID NO: 2. ‘N/A’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 12







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers


targeting SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540733
830
845
43219
43234
GCTAAAACAAATGCTA
33
15





540747
466
481
25693
25708
TATAATGGTGAATATC
7
19





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
62
122





651479
460
475
25687
25702
GGTGAATATCTTCAAA
28
539





651490
786
801
43175
43190
CACTTGTACTAGTATG
36
167





651499
965
980
43354
43369
GCATTGCTAGTTCAAA
46
461





651502
1026
1041
43415
43430
CAACTGCATGCACCAA
31
463





651529
1311
1326
43700
43715
ACTAATAGCAGTGGAA
27
238





651530
1313
1328
43702
43717
TGACTAATAGCAGTGG
58
239





651540
1443
1458
43832
43847
TTAGGAGTCTTTATAG
30
387





651541
1449
1464
43838
43853
AAGCTATTAGGAGTCT
65
388





651953
967
982
43356
43371
AGGCATTGCTAGTTCA
55
207





651959
1028
1043
43417
43432
ATCAACTGCATGCACC
42
213





651966
1128
1143
43517
43532
CATTTATGTGACTAGA
56
220





651967
1138
1153
43527
43542
GTAATTAATCCATTTA
15
221





651987
1447
1462
43836
43851
GCTATTAGGAGTCTTT
76
272





663467
461
476
25688
25703
TGGTGAATATCTTCAA
9
766





663485
819
834
43208
43223
TGCTAATAATTTAGTG
6
767





663486
823
838
43212
43227
CAAATGCTAATAATTT
0
768





695785
463
478
25690
25705
AATGGTGAATATCTTC
50
569





695808
781
796
43170
43185
GTACTAGTATGCCTTA
50
592





695809
783
798
43172
43187
TTGTACTAGTATGCCT
55
593





695814
818
833
43207
43222
GCTAATAATTTAGTGT
18
598





695815
820
835
43209
43224
ATGCTAATAATTTAGT
11
599





695822
875
890
43264
43279
GTAAAAGCTAACAGTC
21
606





695823
877
892
43266
43281
AGGTAAAAGCTAACAG
41
607





695824
879
894
43268
43283
TAAGGTAAAAGCTAAC
20
608





695835
964
979
43353
43368
CATTGCTAGTTCAAAA
9
474





695836
966
981
43355
43370
GGCATTGCTAGTTCAA
43
475





695847
1027
1042
43416
43431
TCAACTGCATGCACCA
52
486





695867
1130
1145
43519
43534
TCCATTTATGTGACTA
68
506





695912
1312
1327
43701
43716
GACTAATAGCAGTGGA
62
408





695913
1314
1329
43703
43718
ATGACTAATAGCAGTG
49
409





695916
1391
1406
43780
43795
TAGTTTCCATTGCCTT
16
412





695917
1393
1408
43782
43797
AATAGTTTCCATTGCC
56
413





695918
1395
1410
43784
43799
ATAATAGTTTCCATTG
8
414





695923
1440
1455
43829
43844
GGAGTCTTTATAGTAA
38
419





695924
1441
1456
43830
43845
AGGAGTCTTTATAGTA
66
420





695925
1442
1457
43831
43846
TAGGAGTCTTTATAGT
41
421





695926
1444
1459
43833
43848
ATTAGGAGTCTTTATA
20
422





695927
1445
1460
43834
43849
TATTAGGAGTCTTTAT
13
423





695928
1446
1461
43835
43850
CTATTAGGAGTCTTTA
34
424





695929
1448
1463
43837
43852
AGCTATTAGGAGTCTT
35
425





695930
1450
1465
43839
43854
AAAGCTATTAGGAGTC
65
426





695931
1451
1466
43840
43855
AAAAGCTATTAGGAGT
25
427





696286
3841
3856
46230
46245
GTTTCACATAGCAATT
29
769





696287
3844
3859
46233
46248
GTAGTTTCACATAGCA
46
770





696288
3846
3861
46235
46250
CTGTAGTTTCACATAG
25
771





716582
459
474
25686
25701
GTGAATATCTTCAAAT
0
772





716583
462
477
25689
25704
ATGGTGAATATCTTCA
64
773





716584
464
479
25691
25706
TAATGGTGAATATCTT
11
774





716585
465
480
25692
25707
ATAATGGTGAATATCT
41
775





716586
780
795
43169
43184
TACTAGTATGCCTTAA
16
776





716587
782
797
43171
43186
TGTACTAGTATGCCTT
66
777





716588
784
799
43173
43188
CTTGTACTAGTATGCC
59
778





716589
785
800
43174
43189
ACTTGTACTAGTATGC
51
779





716590
821
836
43210
43225
AATGCTAATAATTTAG
0
780





716591
822
837
43211
43226
AAATGCTAATAATTTA
13
781





716592
824
839
43213
43228
ACAAATGCTAATAATT
1
782





716593
825
840
43214
43229
AACAAATGCTAATAAT
0
783





716594
826
841
43215
43230
AAACAAATGCTAATAA
9
784





716595
827
842
43216
43231
AAAACAAATGCTAATA
12
785





716596
828
843
43217
43232
TAAAACAAATGCTAAT
5
786





716597
829
844
43218
43233
CTAAAACAAATGCTAA
15
787





716598
876
891
43265
43280
GGTAAAAGCTAACAGT
49
788





716599
878
893
43267
43282
AAGGTAAAAGCTAACA
21
789





716600
1129
1144
43518
43533
CCATTTATGTGACTAG
75
790





716601
1131
1146
43520
43535
ATCCATTTATGTGACT
38
791





716602
1132
1147
43521
43536
AATCCATTTATGTGAC
26
792





716603
1133
1148
43522
43537
TAATCCATTTATGTGA
31
793





716604
1134
1149
43523
43538
TTAATCCATTTATGTG
34
794





716605
1135
1150
43524
43539
ATTAATCCATTTATGT
3
795





716606
1136
1151
43525
43540
AATTAATCCATTTATG
16
796





716607
1137
1152
43526
43541
TAATTAATCCATTTAT
0
797





716608
1392
1407
43781
43796
ATAGTTTCCATTGCCT
65
798





716609
1394
1409
43783
43798
TAATAGTTTCCATTGC
53
799





716610
3842
3857
46231
46246
AGTTTCACATAGCAAT
38
800





716611
3843
3858
46232
46247
TAGTTTCACATAGCAA
51
801





716612
3845
3860
46234
46249
TGTAGTTTCACATAGC
59
802
















TABLE 13







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers


targeting SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540770
1488
1503
43877
43892
AATAATCCCCATTTCA
16
104





540772
1520
1535
43909
43924
GCATGTAAATATAGCC
11
105





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
60
122





651544
1494
1509
43883
43898
TGCTATAATAATCCCC
43
389





651555
1686
1701
44075
44090
TTTAATGTCACAAGCA
57
615





651569
1789
1804
44178
44193
TGCTGTGAAACTCTCT
27
803





651587
1915
1930
44304
44319
GATTTGTCAGCAGGAC
47
621





651588
1919
1934
44308
44323
TCTTGATTTGTCAGCA
62
804





651589
1921
1936
44310
44325
GCTCTTGATTTGTCAG
23
262





651990
1493
1508
43882
43897
GCTATAATAATCCCCA
56
275





652004
1685
1700
44074
44089
TTAATGTCACAAGCAG
52
289





652010
1776
1791
44165
44180
TCTATGAAAGCTCAAA
18
295





652011
1785
1800
44174
44189
GTGAAACTCTCTATGA
28
296





652018
1880
1895
44269
44284
ATCTTGTTGAGCTATC
40
303





652019
1918
1933
44307
44322
CTTGATTTGTCAGCAG
44
304





652023
2047
2062
44436
44451
TCACTTCATTGTTTAA
32
329





695867
1130
1145
43519
43534
TCCATTTATGTGACTA
63
506





695939
1492
1507
43881
43896
CTATAATAATCCCCAT
6
435





695940
1495
1510
43884
43899
TTGCTATAATAATCCC
39
436





695948
1516
1531
43905
43920
GTAAATATAGCCCCAA
29
444





695949
1518
1533
43907
43922
ATGTAAATATAGCCCC
28
445





695975
1683
1698
44072
44087
AATGTCACAAGCAGAA
49
635





695976
1684
1699
44073
44088
TAATGTCACAAGCAGA
52
636





695977
1687
1702
44076
44091
TTTTAATGTCACAAGC
52
637





695978
1688
1703
44077
44092
CTTTTAATGTCACAAG
9
638





695979
1689
1704
44078
44093
TCTTTTAATGTCACAA
46
639





695980
1690
1705
44079
44094
ATCTTTTAATGTCACA
58
640





695981
1691
1706
44080
44095
AATCTTTTAATGTCAC
44
641





695982
1692
1707
44081
44096
TAATCTTTTAATGTCA
7
642





695995
1778
1793
44167
44182
TCTCTATGAAAGCTCA
50
655





695996
1780
1795
44169
44184
ACTCTCTATGAAAGCT
29
656





695998
1790
1805
44179
44194
ATGCTGTGAAACTCTC
58
658





695999
1792
1807
44181
44196
CCATGCTGTGAAACTC
26
659





696011
1875
1890
44264
44279
GTTGAGCTATCCAAAC
2
671





696012
1878
1893
44267
44282
CTTGTTGAGCTATCCA
63
672





696013
1882
1897
44271
44286
GTATCTTGTTGAGCTA
56
673





696014
1884
1899
44273
44288
TTGTATCTTGTTGAGC
50
674





696016
1914
1929
44303
44318
ATTTGTCAGCAGGACC
35
676





696017
1917
1932
44306
44321
TTGATTTGTCAGCAGG
65
677





696018
1920
1935
44309
44324
CTCTTGATTTGTCAGC
53
678





696025
2025
2040
44414
44429
AATTAATGTCTTGGCA
12
685





696026
2026
2041
44415
44430
AAATTAATGTCTTGGC
47
686





696816
1519
1534
43908
43923
CATGTAAATATAGCCC
5
805





716613
1489
1504
43878
43893
TAATAATCCCCATTTC
9
806





716614
1490
1505
43879
43894
ATAATAATCCCCATTT
4
807





716615
1491
1506
43880
43895
TATAATAATCCCCATT
7
808





716616
1517
1532
43906
43921
TGTAAATATAGCCCCA
34
809





716617
1777
1792
44166
44181
CTCTATGAAAGCTCAA
39
810





716618
1779
1794
44168
44183
CTCTCTATGAAAGCTC
29
811





716619
1786
1801
44175
44190
TGTGAAACTCTCTATG
4
812





716620
1787
1802
44176
44191
CTGTGAAACTCTCTAT
29
813





716621
1788
1803
44177
44192
GCTGTGAAACTCTCTA
42
814





716622
1791
1806
44180
44195
CATGCTGTGAAACTCT
8
815





716623
1876
1891
44265
44280
TGTTGAGCTATCCAAA
37
816





716624
1877
1892
44266
44281
TTGTTGAGCTATCCAA
3
817





716625
1879
1894
44268
44283
TCTTGTTGAGCTATCC
56
818





716626
1881
1896
44270
44285
TATCTTGTTGAGCTAT
33
819





716627
1883
1898
44272
44287
TGTATCTTGTTGAGCT
31
820





716628
1916
1931
44305
44320
TGATTTGTCAGCAGGA
59
821





716629
2027
2042
44416
44431
AAAATTAATGTCTTGG
12
822





716630
2028
2043
44417
44432
AAAAATTAATGTCTTG
20
823





716631
2029
2044
44418
44433
AAAAAATTAATGTCTT
9
824





716632
2030
2045
44419
44434
AAAAAAATTAATGTCT
7
825





716633
2031
2046
44420
44435
AAAAAAAATTAATGTC
14
826





716634
2032
2047
44421
44436
AAAAAAAAATTAATGT
16
827





716635
2033
2048
44422
44437
AAAAAAAAAATTAATG
6
828





716636
2034
2049
44423
44438
TAAAAAAAAAATTAAT
1
829





716637
2035
2050
44424
44439
TTAAAAAAAAAATTAA
0
830





716638
2036
2051
44425
44440
TTTAAAAAAAAAATTA
3
831





716639
2037
2052
44426
44441
GTTTAAAAAAAAAATT
2
832





716640
2038
2053
44427
44442
TGTTTAAAAAAAAAAT
2
833





716641
2039
2054
44428
44443
TTGTTTAAAAAAAAAA
0
834





716642
2040
2055
44429
44444
ATTGTTTAAAAAAAAA
0
835





716643
2041
2056
44430
44445
CATTGTTTAAAAAAAA
0
836





716644
2042
2057
44431
44446
TCATTGTTTAAAAAAA
0
837





716645
2043
2058
44432
44447
TTCATTGTTTAAAAAA
6
838





716646
2044
2059
44433
44448
CTTCATTGTTTAAAAA
11
839





716647
2045
2060
44434
44449
ACTTCATTGTTTAAAA
0
840





716648
2046
2061
44435
44450
CACTTCATTGTTTAAA
12
841









Example 6: Antisense Inhibition of Human K-Ras in A431 Cells

Antisense oligonucleotides were designed targeting a K-Ras nucleic acid and were tested for their effects on K-Ras mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured A431cells at a density of 5,000 cells per well were treated with 2,000 nM antisense oligonucleotide by free uptake. After a treatment period of approximately 24 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3496_MGB was used to measure mRNA levels. K-Ras mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 3-10-3 cEt gapmers or deoxy, MOE, and (S)-cEt gapmers. The 3-10-3 cEt gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three nucleosides each. The deoxy, MOE and (S)-cEt oligonucleotides are 16 nucleosides in length wherein the nucleoside have either a MOE sugar modification, an (S)-cEt sugar modification, or a deoxy modification. The ‘Chemistry’ column describes the sugar modifications of each oligonucleotide. ‘k’ indicates an (S)-cEt sugar modification; ‘d’ indicates deoxyribose; the number after ‘d’ indicates the number of deoxynucleosides; and ‘e’ indicates a MOE modification. The internucleoside linkages throughout each gapmer are phosphorothioate (P═S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either SEQ ID NO: 1 or SEQ ID NO: 2. ‘N/A’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 14







Inhibition of K-Ras mRNA by gapmers


targeting SEQ ID NO: 1 and 2
















SEQ ID
SEQ ID
SEQ ID
SEQ ID







NO: 1
NO: 1
NO: 2
NO: 2



SEQ


ISIS
Start
Stop
Start
Stop


%
ID


NO
Site
Site
Site
Site
Sequence
Chemistry
Inhibition
NO


















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
kkk-d10-kkk
62
122





651600
2095
2110
44484
44499
TAACCAGTGTTAAGAG
kkk-d10-kkk
40
691





651603
2120
2135
44509
44524
GAAAAGTGTTTATGCA
kkk-d10-kkk
60
692





651633
2620
2635
45009
45024
GGGAATTACAAGTATT
kkk-d10-kkk
28
842





651634
2634
2649
45023
45038
AATCTTATGGTTAGGG
kkk-d10-kkk
45
316





651770
4332
4347
46721
46736
TGTGCAATGGTGACAA
kkk-d10-kkk
28
843





652019
1918
1933
44307
44322
CTTGATTTGTCAGCAG
kkk-d10-kkk
51
304





652028
2093
2108
44482
44497
ACCAGTGTTAAGAGAA
kkk-d10-kkk
60
334





652029
2118
2133
44507
44522
AAAGTGTTTATGCAAT
kkk-d10-kkk
29
335





695867
1130
1145
43519
43534
TCCATTTATGTGACTA
kkk-d10-kkk
70
506





696039
2092
2107
44481
44496
CCAGTGTTAAGAGAAC
kkk-d10-kkk
33
710





696042
2107
2122
44496
44511
GCAATGTTAATTTAAC
kkk-d10-kkk
17
713





696043
2113
2128
44502
44517
GTTTATGCAATGTTAA
kkk-d10-kkk
55
714





696044
2115
2130
44504
44519
GTGTTTATGCAATGTT
kkk-d10-kkk
79
715





696045
2127
2142
44516
44531
CAGACTTGAAAAGTGT
kkk-d10-kkk
24
716





696121
2635
2650
45024
45039
AAATCTTATGGTTAGG
kkk-d10-kkk
34
844





696357
4331
4346
46720
46735
GTGCAATGGTGACAAC
kkk-d10-kkk
38
845





696358
4334
4349
46723
46738
ATTGTGCAATGGTGAC
kkk-d10-kkk
57
846





696359
4336
4351
46725
46740
AAATTGTGCAATGGTG
kkk-d10-kkk
48
847





716649
2094
2109
44483
44498
AACCAGTGTTAAGAGA
kkk-d10-kkk
35
848





716650
2108
2123
44497
44512
TGCAATGTTAATTTAA
kkk-d10-kkk
13
849





716651
2109
2124
44498
44513
ATGCAATGTTAATTTA
kkk-d10-kkk
9
850





716652
2110
2125
44499
44514
TATGCAATGTTAATTT
kkk-d10-kkk
8
851





716653
2111
2126
44500
44515
TTATGCAATGTTAATT
kkk-d10-kkk
3
852





716654
2112
2127
44501
44516
TTTATGCAATGTTAAT
kkk-d10-kkk
34
853





716655
2114
2129
44503
44518
TGTTTATGCAATGTTA
kkk-d10-kkk
58
854





716656
2116
2131
44505
44520
AGTGTTTATGCAATGT
kkk-d10-kkk
69
855





716657
2117
2132
44506
44521
AAGTGTTTATGCAATG
kkk-d10-kkk
45
856





716658
2119
2134
44508
44523
AAAAGTGTTTATGCAA
kkk-d10-kkk
32
857





716659
2121
2136
44510
44525
TGAAAAGTGTTTATGC
kkk-d10-kkk
40
858





716660
2122
2137
44511
44526
TTGAAAAGTGTTTATG
kkk-d10-kkk
26
859





716661
2123
2138
44512
44527
CTTGAAAAGTGTTTAT
kkk-d10-kkk
0
860





716662
2124
2139
44513
44528
ACTTGAAAAGTGTTTA
kkk-d10-kkk
16
861





716663
2125
2140
44514
44529
GACTTGAAAAGTGTTT
kkk-d10-kkk
14
862





716664
2126
2141
44515
44530
AGACTTGAAAAGTGTT
kkk-d10-kkk
28
863





716665
2624
2639
45013
45028
TTAGGGGAATTACAAG
kkk-d10-kkk
23
864





716666
2626
2641
45015
45030
GGTTAGGGGAATTACA
kkk-d10-kkk
26
865





716667
2628
2643
45017
45032
ATGGTTAGGGGAATTA
kkk-d10-kkk
33
866





716668
2630
2645
45019
45034
TTATGGTTAGGGGAAT
kkk-d10-kkk
21
867





716669
2632
2647
45021
45036
TCTTATGGTTAGGGGA
kkk-d10-kkk
8
868





716670
2633
2648
45022
45037
ATCTTATGGTTAGGGG
kkk-d10-kkk
20
869





716671
4333
4348
46722
46737
TTGTGCAATGGTGACA
kkk-d10-kkk
29
870





716672
4335
4350
46724
46739
AATTGTGCAATGGTGA
kkk-d10-kkk
46
871





716719
1918
1933
44307
44322
CTTGATTTGTCAGCAG
kkk-d9-kkke
46
872





716720
2093
2108
44482
44497
ACCAGTGTTAAGAGAA
kkk-d9-kkke
44
873





716724
1918
1933
44307
44322
CTTGATTTGTCAGCAG
kkk-d8-kekek
41
874





716725
2093
2108
44482
44497
ACCAGTGTTAAGAGAA
kkk-d8-kekek
51
875





716729
1918
1933
44307
44322
CTTGATTTGTCAGCAG
kkk-d9-keke
46
876





716730
2093
2108
44482
44497
ACCAGTGTTAAGAGAA
kkk-d9-keke
40
877





716734
1918
1933
44307
44322
CTTGATTTGTCAGCAG
kk-d10-keke
54
878





716735
2093
2108
44482
44497
ACCAGTGTTAAGAGAA
kk-d10-keke
42
879





716739
1918
1933
44307
44322
CTTGATTTGTCAGCAG
kk-d9-kekek
49
880





716740
2093
2108
44482
44497
ACCAGTGTTAAGAGAA
kk-d9-kekek
49
881





716744
1918
1933
44307
44322
CTTGATTTGTCAGCAG
k-d10-kekek
45
882





716745
2093
2108
44482
44497
ACCAGTGTTAAGAGAA
k-d10-kekek
44
883





716749
1918
1933
44307
44322
CTTGATTTGTCAGCAG
k-d9-kekeke
44
884





716750
2093
2108
44482
44497
ACCAGTGTTAAGAGAA
k-d9-kekeke
50
885





716754
1918
1933
44307
44322
CTTGATTTGTCAGCAG
kk-d8-kekekk
33
886





716755
2093
2108
44482
44497
ACCAGTGTTAAGAGAA
kk-d8-kekekk
52
887





716759
1918
1933
44307
44322
CTTGATTTGTCAGCAG
kkk-d8-kdkdk
33
888





716760
2093
2108
44482
44497
ACCAGTGTTAAGAGAA
kkk-d8-kdkdk
50
889





716764
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kkk-d9-kkke
55
890





716765
2092
2107
44481
44496
CCAGTGTTAAGAGAAC
kkk-d9-kkke
55
891





716769
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kk-d10-keke
66
892





716770
2092
2107
44481
44496
CCAGTGTTAAGAGAAC
kk-d10-keke
42
893





716774
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kk-d9-kekek
23
894





716775
2092
2107
44481
44496
CCAGTGTTAAGAGAAC
kk-d9-kekek
43
895





716779
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kk-d8-kekekk
29
896





716780
2092
2107
44481
44496
CCAGTGTTAAGAGAAC
kk-d8-kekekk
53
897





716784
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kk-d9-kdkdk
53
898





716785
2092
2107
44481
44496
CCAGTGTTAAGAGAAC
kk-d9-kdkdk
38
899





716789
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kkk-d8-kekek
37
900





716790
2092
2107
44481
44496
CCAGTGTTAAGAGAAC
kkk-d8-kekek
37
901





716794
1916
1931
44305
44320
TGATTTGTCAGCAGGA
k-d10-kekek
47
902





716795
2091
2106
44480
44495
CAGTGTTAAGAGAACT
k-d10-kekek
23
903





716799
1916
1931
44305
44320
TGATTTGTCAGCAGGA
k-d9-kekeke
32
904





716800
2091
2106
44480
44495
CAGTGTTAAGAGAACT
k-d9-kekeke
40
905





716804
1916
1931
44305
44320
TGATTTGTCAGCAGGA
kk-d8-kekekk
32
906





716805
2091
2106
44480
44495
CAGTGTTAAGAGAACT
kk-d8-kekekk
35
907
















TABLE 15







Inhibition of K-Ras mRNA by gapmers


targeting SEQ ID NO: 1 and 2
















SEQ ID
SEQ ID
SEQ ID
SEQ ID







NO: 1
NO: 1
NO: 2
NO: 2



SEQ


ISIS
Start
Stop
Start
Stop


%
ID


NO
Site
Site
Site
Site
Sequence
Chemistry
Inhibition
NO


















540787
2460
2475
44849
44864
GTGTAACATAGGTTAA
kkk-d10-kkk
30
39





540797
2694
2709
45083
45098
TAGGGCATTTCTGATG
kkk-d10-kkk
20
44





540802
2848
2863
45237
45252
CTATTCATACCAGGTT
kkk-d10-kkk
33
120





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
kkk-d10-kkk
60
122





651609
2247
2262
44636
44651
TCCAGTGATACTTTCA
kkk-d10-kkk
51
908





651623
2466
2481
44855
44870
AAGATGGTGTAACATA
kkk-d10-kkk
30
312





651626
2527
2542
44916
44931
GAGAATGGATATTCAA
kkk-d10-kkk
8
909





651635
2654
2669
45043
45058
AGATATCCACAGCAGC
kkk-d10-kkk
58
910





651642
2686
2701
45075
45090
TTCTGATGTGACTCAG
kkk-d10-kkk
26
320





651653
2762
2777
45151
45166
ATTAGTGATTAGGTCA
kkk-d10-kkk
55
911





651666
2855
2870
45244
45259
GTTCTGTCTATTCATA
kkk-d10-kkk
31
912





652034
2248
2263
44637
44652
GTCCAGTGATACTTTC
kkk-d10-kkk
44
340





652050
2434
2449
44823
44838
ATTGTGCTGAGCTTGA
kkk-d10-kkk
51
356





652055
2531
2546
44920
44935
AAACGAGAATGGATAT
kkk-d10-kkk
12
361





652061
2652
2667
45041
45056
ATATCCACAGCAGCAG
kkk-d10-kkk
39
367





652067
2764
2779
45153
45168
AAATTAGTGATTAGGT
kkk-d10-kkk
5
373





663560
2437
2452
44826
44841
CAGATTGTGCTGAGCT
kkk-d10-kkk
29
913





695867
1130
1145
43519
43534
TCCATTTATGTGACTA
kkk-d10-kkk
57
506





695912
1312
1327
43701
43716
GACTAATAGCAGTGGA
kkk-d10-kkk
52
408





696044
2115
2130
44504
44519
GTGTTTATGCAATGTT
kkk-d10-kkk
72
715





696054
2246
2261
44635
44650
CCAGTGATACTTTCAC
kkk-d10-kkk
15
725





696055
2249
2264
44638
44653
AGTCCAGTGATACTTT
kkk-d10-kkk
8
726





696090
2435
2450
44824
44839
GATTGTGCTGAGCTTG
kkk-d10-kkk
63
761





696091
2436
2451
44825
44840
AGATTGTGCTGAGCTT
kkk-d10-kkk
39
762





696092
2438
2453
44827
44842
ACAGATTGTGCTGAGC
kkk-d10-kkk
46
763





696096
2463
2478
44852
44867
ATGGTGTAACATAGGT
kkk-d10-kkk
59
914





696108
2529
2544
44918
44933
ACGAGAATGGATATTC
kkk-d10-kkk
29
915





696116
2563
2578
44952
44967
CAAGATGACACTAATA
kkk-d10-kkk
18
916





696117
2565
2580
44954
44969
GGCAAGATGACACTAA
kkk-d10-kkk
30
917





696118
2567
2582
44956
44971
GAGGCAAGATGACACT
kkk-d10-kkk
0
918





696132
2656
2671
45045
45060
GGAGATATCCACAGCA
kkk-d10-kkk
0
919





696137
2688
2703
45077
45092
ATTTCTGATGTGACTC
kkk-d10-kkk
49
920





696138
2692
2707
45081
45096
GGGCATTTCTGATGTG
kkk-d10-kkk
7
921





696139
2697
2712
45086
45101
ATGTAGGGCATTTCTG
kkk-d10-kkk
9
922





696151
2759
2774
45148
45163
AGTGATTAGGTCAAAT
kkk-d10-kkk
23
923





696152
2761
2776
45150
45165
TTAGTGATTAGGTCAA
kkk-d10-kkk
59
924





696167
2850
2865
45239
45254
GTCTATTCATACCAGG
kkk-d10-kkk
60
925





716673
2461
2476
44850
44865
GGTGTAACATAGGTTA
kkk-d10-kkk
55
926





716674
2462
2477
44851
44866
TGGTGTAACATAGGTT
kkk-d10-kkk
58
927





716675
2464
2479
44853
44868
GATGGTGTAACATAGG
kkk-d10-kkk
60
928





716676
2465
2480
44854
44869
AGATGGTGTAACATAG
kkk-d10-kkk
39
929





716677
2528
2543
44917
44932
CGAGAATGGATATTCA
kkk-d10-kkk
14
930





716678
2530
2545
44919
44934
AACGAGAATGGATATT
kkk-d10-kkk
4
931





716679
2564
2579
44953
44968
GCAAGATGACACTAAT
kkk-d10-kkk
30
932





716680
2566
2581
44955
44970
AGGCAAGATGACACTA
kkk-d10-kkk
21
933





716681
2653
2668
45042
45057
GATATCCACAGCAGCA
kkk-d10-kkk
10
934





716682
2655
2670
45044
45059
GAGATATCCACAGCAG
kkk-d10-kkk
49
935





716683
2687
2702
45076
45091
TTTCTGATGTGACTCA
kkk-d10-kkk
57
936





716684
2689
2704
45078
45093
CATTTCTGATGTGACT
kkk-d10-kkk
32
937





716685
2690
2705
45079
45094
GCATTTCTGATGTGAC
kkk-d10-kkk
24
938





716686
2691
2706
45080
45095
GGCATTTCTGATGTGA
kkk-d10-kkk
8
939





716687
2695
2710
45084
45099
GTAGGGCATTTCTGAT
kkk-d10-kkk
14
940





716688
2696
2711
45085
45100
TGTAGGGCATTTCTGA
kkk-d10-kkk
0
941





716689
2698
2713
45087
45102
GATGTAGGGCATTTCT
kkk-d10-kkk
0
942





716690
2760
2775
45149
45164
TAGTGATTAGGTCAAA
kkk-d10-kkk
21
943





716691
2763
2778
45152
45167
AATTAGTGATTAGGTC
kkk-d10-kkk
32
944





716692
2849
2864
45238
45253
TCTATTCATACCAGGT
kkk-d10-kkk
26
945





716693
2851
2866
45240
45255
TGTCTATTCATACCAG
kkk-d10-kkk
16
946





716694
2852
2867
45241
45256
CTGTCTATTCATACCA
kkk-d10-kkk
34
947





716695
2853
2868
45242
45257
TCTGTCTATTCATACC
kkk-d10-kkk
12
948





716696
2854
2869
45243
45258
TTCTGTCTATTCATAC
kkk-d10-kkk
10
949





716721
2248
2263
44637
44652
GTCCAGTGATACTTTC
kkk-d9-kkke
48
950





716726
2248
2263
44637
44652
GTCCAGTGATACTTTC
kkk-d8-kekek
21
951





716731
2248
2263
44637
44652
GTCCAGTGATACTTTC
kkk-d9-keke
33
952





716736
2248
2263
44637
44652
GTCCAGTGATACTTTC
kk-d10-keke
39
953





716741
2248
2263
44637
44652
GTCCAGTGATACTTTC
kk-d9-kekek
43
954





716746
2248
2263
44637
44652
GTCCAGTGATACTTTC
k-d10-kekek
36
955





716751
2248
2263
44637
44652
GTCCAGTGATACTTTC
k-d9-kekeke
20
956





716756
2248
2263
44637
44652
GTCCAGTGATACTTTC
kk-d8-kekekk
22
957





716761
2248
2263
44637
44652
GTCCAGTGATACTTTC
kkk-d8-kdkdk
30
958





716766
2247
2262
44636
44651
TCCAGTGATACTTTCA
kkk-d9-kkke
47
959





716771
2247
2262
44636
44651
TCCAGTGATACTTTCA
kk-d10-keke
39
960





716776
2247
2262
44636
44651
TCCAGTGATACTTTCA
kk-d9-kekek
37
961





716781
2247
2262
44636
44651
TCCAGTGATACTTTCA
kk-d8-kekekk
24
962





716786
2247
2262
44636
44651
TCCAGTGATACTTTCA
kk-d9-kdkdk
35
963





716791
2247
2262
44636
44651
TCCAGTGATACTTTCA
kkk-d8-kekek
48
964





716796
2246
2261
44635
44650
CCAGTGATACTTTCAC
k-d10-kekek
0
965





716801
2246
2261
44635
44650
CCAGTGATACTTTCAC
k-d9-kekeke
16
966





716806
2246
2261
44635
44650
CCAGTGATACTTTCAC
kk-d8-kekekk
17
967
















TABLE 16







Inhibition of K-Ras mRNA by gapmers


targeting SEQ ID NO: 1 and 2
















SEQ ID
SEQ ID
SEQ ID
SEQ ID







NO: 1
NO: 1
NO: 2
NO: 2



SEQ


ISIS
Start
Stop
Start
Stop


%
ID


NO
Site
Site
Site
Site
Sequence
Chemistry
Inhibition
NO


















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
kkk-d10-kkk
66
122





540831
4276
4291
46665
46680
TGCAGTGTGACTCAGT
kkk-d10-kkk
55
61





651720
3715
3730
46104
46119
CTTATGCAGAGAAAAC
kkk-d10-kkk
8
968





651721
3721
3736
46110
46125
TAATTACTTATGCAGA
kkk-d10-kkk
17
969





651759
4273
4288
46662
46677
AGTGTGACTCAGTTAA
kkk-d10-kkk
53
970





651760
4274
4289
46663
46678
CAGTGTGACTCAGTTA
kkk-d10-kkk
53
971





651761
4275
4290
46664
46679
GCAGTGTGACTCAGTT
kkk-d10-kkk
48
972





651795
4620
4635
47009
47024
CCAGTATTAACACAGA
kkk-d10-kkk
37
973





652112
3722
3737
46111
46126
TTAATTACTTATGCAG
kkk-d10-kkk
32
974





652132
4036
4051
46425
46440
ACCATTCAAAGTTCAC
kkk-d10-kkk
34
975





652157
4524
4539
46913
46928
CTTTTTGACAAATGGA
kkk-d10-kkk
22
976





695867
1130
1145
43519
43534
TCCATTTATGTGACTA
kkk-d10-kkk
63
506





696271
3719
3734
46108
46123
ATTACTTATGCAGAGA
kkk-d10-kkk
60
977





696316
4029
4044
46418
46433
AAAGTTCACATAAAGG
kkk-d10-kkk
38
978





696317
4035
4050
46424
46439
CCATTCAAAGTTCACA
kkk-d10-kkk
42
979





696318
4037
4052
46426
46441
AACCATTCAAAGTTCA
kkk-d10-kkk
35
980





696377
4525
4540
46914
46929
ACTTTTTGACAAATGG
kkk-d10-kkk
46
981





696378
4530
4545
46919
46934
TCATTACTTTTTGACA
kkk-d10-kkk
4
982





696385
4617
4632
47006
47021
GTATTAACACAGAAGT
kkk-d10-kkk
0
983





696386
4622
4637
47011
47026
ATCCAGTATTAACACA
kkk-d10-kkk
0
984





696556
N/A
N/A
10213
10228
CTGAATTAGTCTCCAT
kkk-d10-kkk
48
985





716697
3716
3731
46105
46120
ACTTATGCAGAGAAAA
kkk-d10-kkk
37
986





716698
3717
3732
46106
46121
TACTTATGCAGAGAAA
kkk-d10-kkk
0
987





716699
3718
3733
46107
46122
TTACTTATGCAGAGAA
kkk-d10-kkk
46
988





716700
3720
3735
46109
46124
AATTACTTATGCAGAG
kkk-d10-kkk
44
989





716701
4030
4045
46419
46434
CAAAGTTCACATAAAG
kkk-d10-kkk
21
990





716702
4031
4046
46420
46435
TCAAAGTTCACATAAA
kkk-d10-kkk
19
991





716703
4032
4047
46421
46436
TTCAAAGTTCACATAA
kkk-d10-kkk
7
992





716704
4033
4048
46422
46437
ATTCAAAGTTCACATA
kkk-d10-kkk
0
993





716705
4034
4049
46423
46438
CATTCAAAGTTCACAT
kkk-d10-kkk
2
994





716706
4526
4541
46915
46930
TACTTTTTGACAAATG
kkk-d10-kkk
37
995





716707
4527
4542
46916
46931
TTACTTTTTGACAAAT
kkk-d10-kkk
0
996





716708
4528
4543
46917
46932
ATTACTTTTTGACAAA
kkk-d10-kkk
0
997





716709
4529
4544
46918
46933
CATTACTTTTTGACAA
kkk-d10-kkk
8
998





716710
4618
4633
47007
47022
AGTATTAACACAGAAG
kkk-d10-kkk
27
999





716711
4619
4634
47008
47023
CAGTATTAACACAGAA
kkk-d10-kkk
7
1000





716712
4621
4636
47010
47025
TCCAGTATTAACACAG
kkk-d10-kkk
34
1001





716713
N/A
N/A
10204
10219
TCTCCATTAGTAAATA
kkk-d10-kkk
13
1002





716714
N/A
N/A
10209
10224
ATTAGTCTCCATTAGT
kkk-d10-kkk
29
1003





716715
N/A
N/A
10212
10227
TGAATTAGTCTCCATT
kkk-d10-kkk
17
1004





716716
N/A
N/A
10214
10229
TCTGAATTAGTCTCCA
kkk-d10-kkk
62
1005





716717
N/A
N/A
10217
10232
AAATCTGAATTAGTCT
kkk-d10-kkk
25
1006





716718
N/A
N/A
10222
10237
CTTACAAATCTGAATT
kkk-d10-kkk
7
1007





716722
4036
4051
46425
46440
ACCATTCAAAGTTCAC
kkk-d9-kkke
42
1008





716723
4274
4289
46663
46678
CAGTGTGACTCAGTTA
kkk-d9-kkke
42
1009





716727
4036
4051
46425
46440
ACCATTCAAAGTTCAC
kkk-d8-kekek
26
1010





716728
4274
4289
46663
46678
CAGTGTGACTCAGTTA
kkk-d8-kekek
63
1011





716732
4036
4051
46425
46440
ACCATTCAAAGTTCAC
kkk-d9-keke
30
1012





716733
4274
4289
46663
46678
CAGTGTGACTCAGTTA
kkk-d9-keke
55
1013





716737
4036
4051
46425
46440
ACCATTCAAAGTTCAC
kk-d10-keke
41
1014





716738
4274
4289
46663
46678
CAGTGTGACTCAGTTA
kk-d10-keke
51
1015





716742
4036
4051
46425
46440
ACCATTCAAAGTTCAC
kk-d9-kekek
36
1016





716743
4274
4289
46663
46678
CAGTGTGACTCAGTTA
kk-d9-kekek
56
1017





716747
4036
4051
46425
46440
ACCATTCAAAGTTCAC
k-d10-kekek
18
1018





716748
4274
4289
46663
46678
CAGTGTGACTCAGTTA
k-d10-kekek
32
1019





716752
4036
4051
46425
46440
ACCATTCAAAGTTCAC
k-d9-kekeke
15
1020





716753
4274
4289
46663
46678
CAGTGTGACTCAGTTA
k-d9-kekeke
54
1021





716757
4036
4051
46425
46440
ACCATTCAAAGTTCAC
kk-d8-kekekk
7
1022





716758
4274
4289
46663
46678
CAGTGTGACTCAGTTA
kk-d8-kekekk
63
1023





716762
4036
4051
46425
46440
ACCATTCAAAGTTCAC
kkk-d8-kdkdk
12
1024





716763
4274
4289
46663
46678
CAGTGTGACTCAGTTA
kkk-d8-kdkdk
60
1025





716767
4035
4050
46424
46439
CCATTCAAAGTTCACA
kkk-d9-kkke
41
1026





716768
4273
4288
46662
46677
AGTGTGACTCAGTTAA
kkk-d9-kkke
15
1027





716772
4035
4050
46424
46439
CCATTCAAAGTTCACA
kk-d10-keke
63
1028





716773
4273
4288
46662
46677
AGTGTGACTCAGTTAA
kk-d10-keke
41
1029





716777
4035
4050
46424
46439
CCATTCAAAGTTCACA
kk-d9-kekek
36
1030





716778
4273
4288
46662
46677
AGTGTGACTCAGTTAA
kk-d9-kekek
48
1031





716782
4035
4050
46424
46439
CCATTCAAAGTTCACA
kk-d8-kekekk
57
1032





716783
4273
4288
46662
46677
AGTGTGACTCAGTTAA
kk-d8-kekekk
47
1033





716787
4035
4050
46424
46439
CCATTCAAAGTTCACA
kk-d9-kdkdk
31
1034





716788
4273
4288
46662
46677
AGTGTGACTCAGTTAA
kk-d9-kdkdk
38
1035





716792
4035
4050
46424
46439
CCATTCAAAGTTCACA
kkk-d8-kekek
39
1036





716793
4273
4288
46662
46677
AGTGTGACTCAGTTAA
kkk-d8-kekek
29
1037





716797
4034
4049
46423
46438
CATTCAAAGTTCACAT
k-d10-kekek
43
1038





716798
4272
4287
46661
46676
GTGTGACTCAGTTAAA
k-d10-kekek
30
1039





716802
4034
4049
46423
46438
CATTCAAAGTTCACAT
k-d9-kekeke
24
1040





716803
4272
4287
46661
46676
GTGTGACTCAGTTAAA
k-d9-kekeke
25
1041





716807
4034
4049
46423
46438
CATTCAAAGTTCACAT
kk-d8-kekekk
96
1042





716808
4272
4287
46661
46676
GTGTGACTCAGTTAAA
kk-d8-kekekk
38
1043









Example 7: Antisense Inhibition of Human K-Ras in A431 Cells by cEt Gapmers

Antisense oligonucleotides were designed targeting a K-Ras nucleic acid and were tested for their effects on K-Ras mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured A431cells at a density of 5,000 cells per well were treated with 1,000 nM antisense oligonucleotide by free uptake. After a treatment period of approximately 24 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3496_MGB was used to measure mRNA levels. K-Ras mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 3-10-3 cEt gapmers. The gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a cEt sugar modification. The internucleoside linkages throughout each gapmer are phosphorothioate (P═S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either SEQ ID NO: 1 or SEQ ID NO: 2. ‘N/A’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity. In case the sequence alignment for a target gene in a particular table is not shown, it is understood that none of the oligonucleotides presented in that table align with 100% complementarity with that target gene.









TABLE 17







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers


targeting SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
73
122





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
67
122





651626
2527
2542
44916
44931
GAGAATGGATATTCAA
26
909





651627
2533
2548
44922
44937
TAAAACGAGAATGGAT
11
1044





651633
2620
2635
45009
45024
GGGAATTACAAGTATT
38
842





651634
2634
2649
45023
45038
AATCTTATGGTTAGGG
63
316





651635
2654
2669
45043
45058
AGATATCCACAGCAGC
68
910





651636
2660
2675
45049
45064
TCATGGAGATATCCAC
35
1045





651644
2713
2728
45102
45117
GCCCTGAGGAAATAAG
11
1046





651651
2750
2765
45139
45154
GTCAAATCCCTTTATG
24
1047





651658
2813
2828
45202
45217
TAATGGATTGGGCAGC
41
1048





651663
2823
2838
45212
45227
CTACTGTCGCTAATGG
38
1049





696095
2458
2473
44847
44862
GTAACATAGGTTAAAA
18
1050





696096
2463
2478
44852
44867
ATGGTGTAACATAGGT
67
914





696097
2468
2483
44857
44872
TGAAGATGGTGTAACA
44
1051





696098
2470
2485
44859
44874
ACTGAAGATGGTGTAA
15
1052





696099
2474
2489
44863
44878
TGGCACTGAAGATGGT
46
1053





696100
2476
2491
44865
44880
ACTGGCACTGAAGATG
39
1054





696101
2480
2495
44869
44884
CAAGACTGGCACTGAA
32
1055





696102
2482
2497
44871
44886
CCCAAGACTGGCACTG
27
1056





696103
2488
2503
44877
44892
ATTTTGCCCAAGACTG
33
1057





696104
2492
2507
44881
44896
CACAATTTTGCCCAAG
36
1058





696105
2499
2514
44888
44903
CCTCTTGCACAATTTT
59
1059





696106
2504
2519
44893
44908
CTTCACCTCTTGCACA
28
1060





696107
2510
2525
44899
44914
TATAAACTTCACCTCT
17
1061





696108
2529
2544
44918
44933
ACGAGAATGGATATTC
58
915





696109
2535
2550
44924
44939
CCTAAAACGAGAATGG
10
1062





696110
2537
2552
44926
44941
GTCCTAAAACGAGAAT
22
1063





696111
2539
2554
44928
44943
GAGTCCTAAAACGAGA
39
1064





696112
2545
2560
44934
44949
GAAGAAGAGTCCTAAA
15
1065





696113
2549
2564
44938
44953
TATGGAAGAAGAGTCC
34
1066





696114
2553
2568
44942
44957
CTAATATGGAAGAAGA
10
1067





696115
2558
2573
44947
44962
TGACACTAATATGGAA
17
1068





696116
2563
2578
44952
44967
CAAGATGACACTAATA
18
916





696117
2565
2580
44954
44969
GGCAAGATGACACTAA
51
917





696118
2567
2582
44956
44971
GAGGCAAGATGACACT
18
918





696119
2585
2600
44974
44989
GGGCATGTGGAAGGTA
20
1069





696120
2609
2624
44998
45013
GTATTAAAACTGCATC
34
1070





696121
2635
2650
45024
45039
AAATCTTATGGTTAGG
40
844





696122
2636
2651
45025
45040
TAAATCTTATGGTTAG
13
1071





696123
2637
2652
45026
45041
GTAAATCTTATGGTTA
26
1072





696124
2638
2653
45027
45042
AGTAAATCTTATGGTT
28
1073





696125
2639
2654
45028
45043
CAGTAAATCTTATGGT
25
1074





696126
2640
2655
45029
45044
GCAGTAAATCTTATGG
50
1075





696127
2641
2656
45030
45045
AGCAGTAAATCTTATG
46
1076





696128
2642
2657
45031
45046
CAGCAGTAAATCTTAT
25
1077





696129
2645
2660
45034
45049
CAGCAGCAGTAAATCT
37
1078





696130
2647
2662
45036
45051
CACAGCAGCAGTAAAT
11
1079





696131
2649
2664
45038
45053
TCCACAGCAGCAGTAA
37
1080





696132
2656
2671
45045
45060
GGAGATATCCACAGCA
23
919





696133
2658
2673
45047
45062
ATGGAGATATCCACAG
17
1081





696134
2664
2679
45053
45068
AACTTCATGGAGATAT
38
1082





696135
2668
2683
45057
45072
GGAAAACTTCATGGAG
37
1083





696136
2671
2686
45060
45075
GTGGGAAAACTTCATG
12
1084





696137
2688
2703
45077
45092
ATTTCTGATGTGACTC
73
920





696138
2692
2707
45081
45096
GGGCATTTCTGATGTG
7
921





696139
2697
2712
45086
45101
ATGTAGGGCATTTCTG
24
922





696140
2701
2716
45090
45105
TAAGATGTAGGGCATT
30
1085





696141
2703
2718
45092
45107
AATAAGATGTAGGGCA
15
1086





696142
2705
2720
45094
45109
GAAATAAGATGTAGGG
26
1087





696143
2715
2730
45104
45119
GAGCCCTGAGGAAATA
19
1088





696144
2718
2733
45107
45122
CTTGAGCCCTGAGGAA
21
1089





696145
2727
2742
45116
45131
TCAGATTCTCTTGAGC
22
1090





696146
2728
2743
45117
45132
GTCAGATTCTCTTGAG
37
1091





696147
2729
2744
45118
45133
TGTCAGATTCTCTTGA
33
1092





696148
2732
2747
45121
45136
ATCTGTCAGATTCTCT
48
1093





696149
2745
2760
45134
45149
ATCCCTTTATGGTATC
14
1094





696150
2748
2763
45137
45152
CAAATCCCTTTATGGT
18
1095





696151
2759
2774
45148
45163
AGTGATTAGGTCAAAT
37
923





696152
2761
2776
45150
45165
TTAGTGATTAGGTCAA
74
924





696153
2766
2781
45155
45170
GAAAATTAGTGATTAG
34
1096





696154
2770
2785
45159
45174
ACCTGAAAATTAGTGA
24
1097





696155
2777
2792
45166
45181
AGCCACCACCTGAAAA
18
1098





696156
2787
2802
45176
45191
TCAAAGCATCAGCCAC
15
1099





696157
2801
2816
45190
45205
CAGCAAAGAGATGTTC
21
1100





696158
2808
2823
45197
45212
GATTGGGCAGCAAAGA
19
1101





696159
2811
2826
45200
45215
ATGGATTGGGCAGCAA
25
1102





696160
2825
2840
45214
45229
TCCTACTGTCGCTAAT
53
1103





696161
2827
2842
45216
45231
AATCCTACTGTCGCTA
37
1104
















TABLE 18







Inhibition of K-Ras mRNA by 3-10-3 cEt


gapmers targeting SEQ ID NO: 2













SEQ ID
SEQ ID






NO: 2
NO: 2


SEQ


ISIS
Start
Stop

% Inhi-
ID


NO
Site
Site
Sequence
bition
NO















540806
45370
45385
GCATGAAGATTTCTGG
50
122





540806
45370
45385
GCATGAAGATTTCTGG
51
122





663688
9544
9559
CCAGAGTCAAGTCTTC
31
1105





696498
4399
4414
ATTAGAGTTTGTGTAT
11
1106





696499
4885
4900
TTATAACAAGGTCTCA
0
1107





696500
4949
4964
CGGTAAATATTAATAA
0
1108





696501
4958
4973
TTTCCAATACGGTAAA
9
1109





696502
4960
4975
AATTTCCAATACGGTA
28
1110





696503
5169
5184
TAATAGATTGAATGCA
5
1111





696504
5280
5295
ACTAAGACTTTTCTGG
5
1112





696505
5482
5497
AAGTTAACAACCACTA
5
1113





696506
5562
5577
AATTGTATCACACACG
28
1114





696507
5572
5587
AGGCTAGAAAAATTGT
5
1115





696508
5694
5709
ATTGTAGATAAACACT
13
1116





696509
5734
5749
ATTATAGGATGAGTAG
1
1117





696510
5754
5769
GAGTAAATGCACAACT
0
1118





696511
5904
5919
GATTGTATAACAAACA
5
1119





696512
5994
6009
AGTGAATATATCTCAG
20
1120





696513
6002
6017
AAGATGCAAGTGAATA
4
1121





696514
6729
6744
AGAGAACTCCGAATTA
0
1122





696515
6988
7003
ATCAGATGAGAGTTGA
2
1123





696516
7188
7203
ACTCATGTAGAGACTT
6
1124





696517
7200
7215
TATCATGACTTCACTC
16
1125





696518
7250
7265
TAAATAGCCAGACTGC
12
1126





696519
7292
7307
TACATAGACAGTTCTT
24
1127





696520
7301
7316
CATAAATGCTACATAG
7
1128





696521
7351
7366
ATGAACTGTACTTCAT
0
1129





696522
7471
7486
ACTATCAAATACTCCA
26
1130





696523
7503
7518
ATATTAGAACATGTCA
0
1131





696524
7545
7560
ATTTTCAGCAGGCCTT
23
1132





696525
7666
7681
AACAAGATTTACCTCT
0
1133





696526
7790
7805
CAAGGTACATTTCAGA
38
1134





696527
7935
7950
CAGATAGGATACAAAT
3
1135





696528
7960
7975
CAATAAAAAGATTGTC
0
1136





696529
8011
8026
ACCTTTACATATGATG
4
1137





696530
8034
8049
TTTCACTAGTACAATT
6
1138





696531
8179
8194
AATAGTACCTTTATAT
0
1139





696532
8412
8427
CATCTGCTTGGGATGG
11
1140





696533
8415
8430
CCTCATCTGCTTGGGA
16
1141





696534
8610
8625
CCTAAGAAACAATCTA
16
1142





696535
8751
8766
ACTTTGACCTGTTCTA
2
1143





696536
8789
8804
TCTTCAAGACACTACA
7
1144





696537
8800
8815
CGCAAAGTGTCTCTTC
10
1145





696538
8815
8830
CAGAACTTGCCTCAGC
26
1146





696539
8885
8900
GATTAGTTATCTAATC
0
1147





696540
8996
9011
CTTAAAATTGGAAGCC
30
1148





696541
9060
9075
ATACAGAGACTATTGC
34
1149





696542
9091
9106
TACACATTGAATTAAC
3
1150





696543
9140
9155
ATTAAAATGGGTGCAC
8
1151





696544
9325
9340
CTGATTGGAAACAAAG
13
1152





696545
9542
9557
AGAGTCAAGTCTTCTG
0
1153





696546
9555
9570
ACCAATGCTTCCCAGA
30
1154





696547
9627
9642
AGATAATCTCAGATAC
11
1155





696548
9736
9751
CAACTATTTAACTACT
0
1156





696549
9813
9828
CAATGGCAGTGAAATC
21
1157





696550
9824
9839
ATCAAAACCTGCAATG
3
1158





696551
9876
9891
AGTCATATCCTTTCTA
15
1159





696552
9889
9904
TTCCAAAATGTGCAGT
34
1160





696553
10022
10037
AACAATAGCCACCCTC
20
1161





696554
10141
10156
CAAGAGTACAGTGCAA
46
1162





696555
10179
10194
TTTGAAAGATAGCTAA
0
1163





696556
10213
10228
CTGAATTAGTCTCCAT
61
985





696557
10504
10519
GATCTCTGAACTATAA
0
1164





696558
10734
10749
CCACAATAAAAGCATG
15
1165





696559
10761
10776
CATAATACTTGAACTG
29
1166





696560
10791
10806
TGAATAGGAAACTGTT
0
1167





696561
10823
10838
ACCAATCCAATGATTA
29
1168





696562
10841
10856
ACACTAAAGATGAAAC
6
1169





696563
10867
10882
GGTAAATAAATACTCT
26
1170





696564
11016
11031
TTACATAAGGCTTTTC
16
1171





696565
11079
11094
CAACCATCCCTCATTG
8
1172





696566
11082
11097
ACCCAACCATCCCTCA
3
1173





696567
11694
11709
ATACGAAATCAATCAT
12
1174





696568
11982
11997
AATTTGCCACTTCTGA
19
1175





696569
12000
12015
CAAAATGTGCACTTTC
0
1176





696570
12091
12106
TTCTTAATTTGACCTA
20
1177





696571
12131
12146
GACCAGTAAAGTTTTA
27
1178





696572
12288
12303
CTAGGATTAAGGAATT
9
1179





696573
12369
12384
AATCTGGTCTGTTTTG
32
1180
















TABLE 19







Inhibition of K-Ras mRNA by 3-10-3 cEt


gapmers targeting SEQ ID NO: 2













SEQ ID
SEQ ID






NO: 2
NO: 2


SEQ


ISIS
Start
Stop

% Inhi-
ID


NO
Site
Site
Sequence
bition
NO















540806
45370
45385
GCATGAAGATTTCTGG
69
122





540806
45370
45385
GCATGAAGATTTCTGG
73
122





696581
12559
12574
GATTCAACCAATTATG
29
1181





696582
12636
12651
TAATTAGCATGATTGC
14
1182





696583
12753
12768
TATTAAGATCCCAATA
0
1183





696584
12838
12853
TAGTACAGCGAATAGC
0
1184





696585
13223
13238
AAGCAGTGACACTGCT
0
1185





696586
13501
13516
CTCAAGGGTGAAAAAT
3
1186





696587
13593
13608
ATTTTTATGCAGCCAG
37
1187





696588
13672
13687
TAAGATAGCTTCCTGT
12
1188





696589
13684
13699
CTAATTCATATATAAG
0
1189





696590
13800
13815
AGTAAGTGTCTTTTTA
23
1190





696591
13944
13959
CCATAAAGTCTGAGGG
0
1191





696592
13993
14008
GTCAAAGGACATGTAG
13
1192





696593
14208
14223
AGTATATCTAAATCTA
0
1193





696594
14266
14281
ACTCAACACAAGGTGC
4
1194





696595
14514
14529
TACCTCTCATATTATT
4
1195





696596
14611
14626
CCACAAGTGATCACTT
0
1196





696597
14853
14868
GACATTCACTAAAAGT
0
1197





696598
15129
15144
TTTATATACTACACGC
37
1198





696599
15226
15241
TAAAACTGCATACAGG
4
1199





696600
15350
15365
TAGACTTGGGAGTCTT
0
1200





696601
15393
15408
TACATACATGTCTGGT
34
1201





696602
15716
15731
AATTAGCAGTTTTTAG
6
1202





696603
15840
15855
GCAAAAACATAGACGA
9
1203





696604
16077
16092
CAAAGACAGAGCTACC
0
1204





696605
16109
16124
TACCAAAACCACTTGG
0
1205





696606
16313
16328
GTTAAAAATGGGTGGA
11
1206





696607
16473
16488
CAGCATTCCCTGAATC
0
1207





696608
16495
16510
TCTGATAAACCCCAAA
9
1208





696609
16621
16636
CAAAATGTTTTGGCCC
0
1209





696610
16671
16686
GGGAGATCAGATTCAT
17
1210





696611
16679
16694
AATAGGAAGGGAGATC
14
1211





696612
16738
16753
GTATATTAAGTAAGGA
15
1212





696613
16784
16799
GTGAAACTGGACAATC
0
1213





696614
17106
17121
ATTTTTCCAAGGACCG
51
1214





696615
17204
17219
CATGTTGAGGACACAG
16
1215





696616
17383
17398
GTGGAAGAGACATGAA
15
1216





696617
17446
17461
AATCTAGGTGTCACAT
1
1217





696618
17600
17615
CACTTTCCGTTTATAA
1
1218





696619
17640
17655
CGAAAGGTTATTTAAA
4
1219





696620
17704
17719
CACCTGTAGGAAAAGA
5
1220





696621
17715
17730
CTGCTTAATAACACCT
20
1221





696622
17900
17915
ACTGTCATAAGCATAT
7
1222





696623
17902
17917
ATACTGTCATAAGCAT
23
1223





696624
17922
17937
AGCCCTTACTTATATG
0
1224





696625
18046
18061
TACATTCCAAGTATAG
0
1225





696626
18198
18213
ACCAGAACATCAAGTT
9
1226





696627
18203
18218
CATTAACCAGAACATC
7
1227





696628
18220
18235
TCAAGATAAGATAACC
7
1228





696629
18312
18327
CTTCTTTTACACTGAC
29
1229





696630
18523
18538
TACTACTATTCTATAA
0
1230





696631
18658
18673
TAAGACTAGGGAAAAG
30
1231





696632
19173
19188
CTACCTAACAGTCTTG
6
1232





696633
19192
19207
ACTCACCACTACACAC
0
1233





696634
19421
19436
ATGAACGAAGGTAGGT
24
1234





696635
19713
19728
CACAATATAGTCTCCA
38
1235





696636
19761
19776
GGCAATCTGCAGCAAT
9
1236





696637
19828
19843
CTACATCCAACCACCT
0
1237





696638
19926
19941
TTAACATGGCATCCTA
13
1238





696639
19934
19949
AGAGATTCTTAACATG
25
1239





696640
20250
20265
TAACTTAAACTAACTC
4
1240





696641
20285
20300
AATTTGTAGCCTTAGG
42
1241





696642
20289
20304
TACTAATTTGTAGCCT
9
1242





696643
20719
20734
CTAAATAAGGTTTCAG
7
1243





696644
20951
20966
TATACACACGGCATTG
0
1244





696645
21144
21159
CTTAGAAGTGCAATTA
18
1245





696646
21254
21269
GTTTCAAAGTAATCTA
0
1246





696647
21284
21299
TATCGATAGCAAAGTT
7
1247





696648
21398
21413
TCATAAGATGCTTCCA
10
1248





696649
21400
21415
TTTCATAAGATGCTTC
31
1249





696650
21437
21452
AACCTGTAATGTGGGA
31
1250





696651
21442
21457
TAGTCAACCTGTAATG
9
1251





696652
22061
22076
ATTTGAGCATTCAGTT
18
1252





696653
22728
22743
AAAGATGTCTAAGTGC
25
1253





696654
22748
22763
TTACAGTATAAGGAGA
36
1254





696655
22797
22812
GAGAAAGAATGGTCAT
0
1255





696656
23248
23263
AAGAAGCAGGGCTAAC
10
1256





696657
23428
23443
ACTATAAGATTAAGTA
13
1257
















TABLE 20







Inhibition of K-Ras mRNA by 3-10-3 cEt


gapmers targeting SEQ ID NO: 2













SEQ ID
SEQ ID






NO: 2
NO: 2

%
SEQ


ISIS
Start
Stop

In-
ID


NO
Site
Site
Sequence
hibition
NO















540806
45370
45385
GCATGAAGATTTCTGG
63
122





540806
45370
45385
GCATGAAGATTTCTGG
74
122





663670
37371
37386
CTCTCTGCATTGTAAA
31
1258





663729
37497
37512
ACTTACCAGATTACAT
3
1259





696733
34491
34506
GAATTGGAAGCCAATA
26
1260





696734
34493
34508
GAGAATTGGAAGCCAA
29
1261





696735
34496
34511
AGAGAGAATTGGAAGC
30
1262





696736
34502
34517
CAATGCAGAGAGAATT
1
1263





696737
34508
34523
TTCCAGCAATGCAGAG
1
1264





696738
34758
34773
CCAGGTAAAAGCTCAT
31
1265





696739
35416
35431
ATTCTAAGAGCAGTCT
16
1266





696740
35716
35731
TAATTTTTGCATGCAG
28
1267





696741
35718
35733
CTTAATTTTTGCATGC
22
1268





696742
35990
36005
TAAAGCTGGTATATTT
0
1269





696743
36111
36126
AGAAAAGCATACCATC
34
1270





696744
36181
36196
TCCAATCTAGAAAATT
9
1271





696745
36225
36240
ACAATCATATATTGGC
12
1272





696746
36329
36344
TTAGAACAGTGTTCAA
14
1273





696747
36668
36683
ATCCTTACTACAAGTT
15
1274





696748
36798
36813
TACAAGTGAAGCTGAG
30
1275





696749
37039
37054
TTAAAGCCTAAACTGA
2
1276





696750
37045
37060
CTGGAATTAAAGCCTA
0
1277





696751
37258
37273
TTTAAACAGACATCAG
8
1278





696752
37364
37379
CATTGTAAAACACAAC
1
1279





696753
37367
37382
CTGCATTGTAAAACAC
30
1280





696754
37373
37388
CACTCTCTGCATTGTA
12
1281





696755
37493
37508
ACCAGATTACATTATA
28
1282





696756
37495
37510
TTACCAGATTACATTA
8
1283





696757
37499
37514
AAACTTACCAGATTAC
6
1284





696758
37566
37581
AAAGTGGTTGCCACCT
14
1285





696759
37594
37609
AGTTAGAATACTACAC
7
1286





696760
37596
37611
CAAGTTAGAATACTAC
3
1287





696761
37715
37730
ATGCCAAATATAGATT
17
1288





696762
37880
37895
ATATTACTGCTGTCTA
26
1289





696763
37881
37896
AATATTACTGCTGTCT
11
1290





696764
38059
38074
GAAAAGAGGGCGGTAG
17
1291





696765
38181
38196
TGGTAAACCAAATAGG
35
1292





696766
38556
38571
CTATAGCTAAAATGAC
23
1293





696767
38587
38602
CTGCAACACATGTGGA
6
1294





696768
38623
38638
AAAGAGCTGGAGTGGT
15
1295





696769
38886
38901
AAGCATATAATAGTTA
6
1296





696770
38961
38976
ATTCTGGCTAAGATTT
0
1297





696771
39067
39082
GTTTAGAAACGAAAAT
10
1298





696772
39157
39172
ACAAACAATATGCATC
1
1299





696773
39196
39211
CTGTAATTTTATTGCC
18
1300





696774
39341
39356
AGTAGATTAGTACACC
32
1301





696775
39586
39601
ACAATAGGAGGAGAAA
16
1302





696776
39726
39741
AGTCACTGTATAAAAC
16
1303





696777
39750
39765
CAAACAATTGTGACAT
3
1304





696778
39820
39835
AATTACCAAGTATACT
21
1305





696779
40231
40246
CTTTTTCAGGACTAAG
8
1306





696780
40306
40321
CAACCTACACAGAGCA
9
1307





696781
40553
40568
AAAGATTCTAGGCTTA
11
1308





696782
40571
40586
ACTTCCTAAGATTCTG
5
1309





696783
40786
40801
GTGATAGAATCTTAAA
23
1310





696784
40945
40960
AAGGTTTGATTACATA
11
1311





696785
41190
41205
TTTAAGAGAGGTAAAC
0
1312





696786
41301
41316
TACTAAGATTAACGAT
23
1313





696787
41302
41317
CTACTAAGATTAACGA
7
1314





696788
41784
41799
CCACTTTAGGAACAAT
53
1315





696789
41810
41825
CAACACATTAAGTTGT
0
1316





696790
41812
41827
CCCAACACATTAAGTT
21
1317





696791
41844
41859
CTAGACAGCAGAGGGA
7
1318





696792
41994
42009
GTCAATTCTTGTCATG
34
1319





696793
42010
42025
CAAGATCCATACACAA
17
1320





696794
42086
42101
ACCTAATAATCTACAG
12
1321





696795
42094
42109
ACTTTTCAACCTAATA
0
1322





696796
42175
42190
TAGTCATTGTGACCAC
22
1323





696797
42312
42327
TAGCTAAATCATTTGA
20
1324





696798
42339
42354
ACTAATACCTCAGATT
30
1325





696799
42437
42452
TGATATATATTAAGGG
4
1326





696800
42662
42677
ACTTAATTGTCCTTAT
7
1327





696801
42664
42679
ACACTTAATTGTCCTT
28
1328





696802
42736
42751
CTTAATTTGCTACTAT
10
1329





696803
42764
42779
ATAAGGTAACGACTTT
18
1330





696804
42795
42810
GACAAGGATAACCAAT
18
1331





696805
42880
42895
TATATTAGGACTTTTA
5
1332





696806
42986
43001
ATATATACGATGGCTT
0
1333





696807
43412
43427
CTGCATGCACCAAAAG
15
1334









Example 7: Antisense Inhibition of Human K-Ras in Hep3B Cells by cEt Gapmers

Antisense oligonucleotides were designed targeting a K-Ras nucleic acid and were tested for their effects on K-Ras mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured Hep3B cells at a density of 20,000 cells per well were transfected using electroporation with 2,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3496_MGB was used to measure mRNA levels. K-Ras mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 3-10-3 cEt gapmers. The gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a cEt sugar modification. The internucleoside linkages throughout each gapmer are phosphorothioate (P═S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either SEQ ID NO: 1 or SEQ ID NO: 2. Certain oligonucleotides are targeted to SEQ ID NO: 3. ‘N/A’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity. In case the sequence alignment for a target gene in a particular table is not shown, it is understood that none of the oligonucleotides presented in that table align with 100% complementarity with that target gene.









TABLE 21







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
76
122





651672
2941
2956
45330
45345
CTGTTACCAGGAGTAG
75
1335





651675
2949
2964
45338
45353
ATGTATTACTGTTACC
72
1336





651677
2976
2991
45365
45380
AAGATTTCTGGTTACT
57
1337





651678
2978
2993
45367
45382
TGAAGATTTCTGGTTA
52
1338





651679
2980
2995
45369
45384
CATGAAGATTTCTGGT
51
1339





651681
2984
2999
45373
45388
ATTGCATGAAGATTTC
60
1340





651691
3379
3394
45768
45783
ATTATGTCTCTTGTTT
39
1341





651696
3481
3496
45870
45885
CTTCTTTGCAAAACTA
62
1342





651707
3622
3637
46011
46026
ACAGTTATGCCAAATA
67
1343





651708
3624
3639
46013
46028
TCACAGTTATGCCAAA
58
1344





651709
3626
3641
46015
46030
AATCACAGTTATGCCA
44
1345





651711
3630
3645
46019
46034
AAAGAATCACAGTTAT
17
1346





651712
3632
3647
46021
46036
TAAAAGAATCACAGTT
24
1347





651713
3642
3657
46031
46046
GTAATTGTCCTAAAAG
19
1348





651724
3786
3801
46175
46190
TGTGAACTAGTTCAGG
59
1349





651726
3800
3815
46189
46204
GAAGTTTCCTTGTCTG
68
1350





651732
3891
3906
46280
46295
TACTGTGTAAGTCTTA
60
1351





651733
3893
3908
46282
46297
GGTACTGTGTAAGTCT
76
1352





651734
3895
3910
46284
46299
GAGGTACTGTGTAAGT
58
1353





651736
3899
3914
46288
46303
AAACGAGGTACTGTGT
36
1354





651739
3939
3954
46328
46343
CTGCAGTTCCTGAAGT
17
1355





651741
3943
3958
46332
46347
AGCACTGCAGTTCCTG
72
1356





651742
3945
3960
46334
46349
TAAGCACTGCAGTTCC
65
1357





651743
3947
3962
46336
46351
CATAAGCACTGCAGTT
27
1358





652079
2925
2940
45314
45329
TCCTAGTTATAGATTA
44
1359





652080
2934
2949
45323
45338
CAGGAGTAGTCCTAGT
39
1360





652081
2962
2977
45351
45366
CTAAAACAATGGAATG
12
1361





652082
3004
3019
45393
45408
CATGAATTAAAGTATT
0
1362





652083
3013
3028
45402
45417
AGTAAGCTTCATGAAT
19
1363





652084
3038
3053
45427
45442
CGAGACTCTGACACCA
35
1364





652085
3271
3286
45660
45675
GTTTATGAGGCCAAGG
50
1365





652086
3280
3295
45669
45684
GCAAAACAGGTTTATG
59
1366





652087
3289
3304
45678
45693
ATGAGTTCTGCAAAAC
63
1367





652088
3325
3340
45714
45729
CATCTGGTAGGCACTC
62
1368





652089
3351
3366
45740
45755
TACCCAGTGCCTTGTG
15
1369





652090
3360
3375
45749
45764
GATACCATATACCCAG
64
1370





652091
3393
3408
45782
45797
ACCTAAGGACCGGGAT
30
1371





652092
3403
3418
45792
45807
CACTAGCACTACCTAA
8
1372





652093
3421
3436
45810
45825
GTAAGATATTACAGAC
56
1373





652094
3434
3449
45823
45838
ACCAAAGGCCTTAGTA
29
1374





652095
3469
3484
45858
45873
ACTAAAATACGCATCG
66
1375





652096
3490
3505
45879
45894
ACCAAACCCCTTCTTT
7
1376





652097
3500
3515
45889
45904
TGGCACAGAGACCAAA
8
1377





652098
3509
3524
45898
45913
TTATAGAGCTGGCACA
23
1378





652099
3518
3533
45907
45922
GCAAAACAATTATAGA
15
1379





652100
3538
3553
45927
45942
AGAGTTTCAGTGGAAT
74
1380





652101
3547
3562
45936
45951
CTTGATCGAAGAGTTT
73
1381





652102
3556
3571
45945
45960
ATAAAGTAGCTTGATC
31
1382





652103
3566
3581
45955
45970
AGTGATTTACATAAAG
38
1383





652104
3591
3606
45980
45995
CAAGTTTATTCCTTTA
57
1384





652105
3600
3615
45989
46004
CAATATAATCAAGTTT
0
1385





652106
3651
3666
46040
46055
ATGTGTACAGTAATTG
40
1386





652107
3661
3676
46050
46065
ATACACCTTAATGTGT
0
1387





652108
3678
3693
46067
46082
CAATATGAATATCTGA
17
1388





652109
3694
3709
46083
46098
TATTACACATTTGGGT
35
1389





652110
3703
3718
46092
46107
AAACTGGAATATTACA
16
1390





652111
3713
3728
46102
46117
TATGCAGAGAAAACTG
37
1391





652112
3722
3737
46111
46126
TTAATTACTTATGCAG
44
974





652113
3750
3765
46139
46154
GATAAAACTATTAATT
0
1392





652114
3759
3774
46148
46163
TTGTACCCAGATAAAA
21
1393





652115
3770
3785
46159
46174
CACCTGTTTATTTGTA
36
1394





652116
3809
3824
46198
46213
TTTTACATAGAAGTTT
24
1395





652117
3818
3833
46207
46222
CATAGTGATTTTTACA
43
1396





652118
3827
3842
46216
46231
TTCAGAAATCATAGTG
60
1397





652119
3839
3854
46228
46243
TTCACATAGCAATTCA
63
1398





652120
3848
3863
46237
46252
ATCTGTAGTTTCACAT
51
1399





652121
3857
3872
46246
46261
GTTCCAAAGATCTGTA
65
1400





652122
3876
3891
46265
46280
AACACCCTACCTAAAC
10
1401





652123
3931
3946
46320
46335
CCTGAAGTATGGCCAT
64
1402





652124
3959
3974
46348
46363
TAAATATCCCCTCATA
10
1403





652125
3968
3983
46357
46372
CAAGAGGCCTAAATAT
12
1404





652126
3977
3992
46366
46381
TCAAAAATTCAAGAGG
36
1405





652127
3986
4001
46375
46390
CCATCTACATCAAAAA
26
1406





652128
3995
4010
46384
46399
AAAAAATGCCCATCTA
21
1407





652129
4006
4021
46395
46410
CCACTACCTTAAAAAA
5
1408





652130
4018
4033
46407
46422
AAAGGTAATTAACCAC
0
1409





652131
4027
4042
46416
46431
AGTTCACATAAAGGTA
69
1410
















TABLE 22







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
77
122





540832
4277
4292
46666
46681
ATGCAGTGTGACTCAG
56
135





540834
4279
4294
46668
46683
CTATGCAGTGTGACTC
50
136





540836
4338
4353
46727
46742
CAAAATTGTGCAATGG
52
137





540839
4343
4358
46732
46747
TAGGACAAAATTGTGC
42
64





540846
4579
4594
46968
46983
AAGGTAACTGCTGGGT
69
67





651757
4267
4282
46656
46671
ACTCAGTTAAATAGAG
2
1411





651759
4273
4288
46662
46677
AGTGTGACTCAGTTAA
64
970





651760
4274
4289
46663
46678
CAGTGTGACTCAGTTA
72
971





651762
4280
4295
46669
46684
CCTATGCAGTGTGACT
51
1412





651763
4281
4296
46670
46685
TCCTATGCAGTGTGAC
48
1413





651764
4283
4298
46672
46687
ATTCCTATGCAGTGTG
55
1414





651765
4287
4302
46676
46691
CTAAATTCCTATGCAG
30
1415





651768
4308
4323
46697
46712
ATAACCTATAAAAGTT
8
1416





651771
4340
4355
46729
46744
GACAAAATTGTGCAAT
27
1417





651772
4342
4357
46731
46746
AGGACAAAATTGTGCA
60
1418





651773
4344
4359
46733
46748
TTAGGACAAAATTGTG
28
1419





651774
4346
4361
46735
46750
TATTAGGACAAAATTG
0
1420





651775
4348
4363
46737
46752
TATATTAGGACAAAAT
0
1421





651780
4472
4487
46861
46876
CCCTAAAAAAAGTTAT
3
1422





651786
4574
4589
46963
46978
AACTGCTGGGTTCTAA
34
1423





651787
4576
4591
46965
46980
GTAACTGCTGGGTTCT
49
1424





651790
4582
4597
46971
46986
TTTAAGGTAACTGCTG
41
1425





651796
4626
4641
47015
47030
TGCTATCCAGTATTAA
46
1426





651800
4731
4746
47120
47135
TCTTAATCTAGTTATG
3
1427





651801
4761
4776
47150
47165
GCACTTCAAACTATTA
70
1428





651808
4893
4908
47282
47297
ACTTTCGGATAAAACA
19
1429





652132
4036
4051
46425
46440
ACCATTCAAAGTTCAC
73
975





652133
4046
4061
46435
46450
CTTTTGTTAAACCATT
42
1430





652134
4071
4086
46460
46475
CTTTAAAATCTCTACA
0
1431





652135
4080
4095
46469
46484
ATTCTCCCCCTTTAAA
15
1432





652136
4112
4127
46501
46516
GCTGTAATAATTAGGT
52
1433





652137
4121
4136
46510
46525
GTCTTTAAGGCTGTAA
41
1434





652138
4134
4149
46523
46538
AACAAGGATTTTTGTC
0
1435





652139
4143
4158
46532
46547
AAAAACTTCAACAAGG
34
1436





652140
4172
4187
46561
46576
CTAAGTCTATGTAATT
0
1437





652141
4181
4196
46570
46585
TGTTAATGCCTAAGTC
21
1438





652142
4190
4205
46579
46594
CCACAAACATGTTAAT
12
1439





652143
4200
4215
46589
46604
CTATATTCTTCCACAA
43
1440





652144
4225
4240
46614
46629
ACTCAAATGATACAAT
0
1441





652145
4249
4264
46638
46653
TAGAATGCCTACTTGG
30
1442





652146
4298
4313
46687
46702
AAAGTTAGGTTCTAAA
4
1443





652147
4317
4332
46706
46721
ACAGTTTTGATAACCT
57
1444





652148
4327
4342
46716
46731
AATGGTGACAACAGTT
58
1445





652149
4374
4389
46763
46778
AACATGCCCCACAAAG
20
1446





652150
4383
4398
46772
46787
CTGTAACTTAACATGC
28
1447





652151
4403
4418
46792
46807
ATGAGATGAACTTGTG
60
1448





652152
4412
4427
46801
46816
GGAATACAAATGAGAT
43
1449





652153
4461
4476
46850
46865
GTTATATACTGTTTGA
59
1450





652154
4496
4511
46885
46900
GTTTTTGCTGTCTAAA
53
1451





652155
4505
4520
46894
46909
CTTCAGATAGTTTTTG
39
1452





652156
4514
4529
46903
46918
AATGGAAATCTTCAGA
49
1453





652157
4524
4539
46913
46928
CTTTTTGACAAATGGA
71
976





652158
4537
4552
46926
46941
CAAGAAATCATTACTT
0
1454





652159
4551
4566
46940
46955
TACTACACAATTATCA
20
1455





652160
4561
4576
46950
46965
TAAAAAACATTACTAC
0
1456





652161
4606
4621
46995
47010
GAAGTTACTAAATATA
0
1457





652162
4615
4630
47004
47019
ATTAACACAGAAGTTA
22
1458





652163
4635
4650
47024
47039
CAGAATTCATGCTATC
64
1459





652164
4647
4662
47036
47051
AGTTTCTCAATGCAGA
32
1460





652165
4660
4675
47049
47064
ATGACAGCTATTCAGT
47
1461





652166
4670
4685
47059
47074
GTTTCATTTTATGACA
36
1462





652167
4681
4696
47070
47085
TTAGAAAGAAAGTTTC
0
1463





652168
4693
4708
47082
47097
GAGTATCTTTCTTTAG
28
1464





652169
4702
4717
47091
47106
AACTCATGTGAGTATC
54
1465





652170
4711
4726
47100
47115
TTCTTCAAGAACTCAT
44
1466





652171
4722
4737
47111
47126
AGTTATGACTATTCTT
31
1467





652172
4740
4755
47129
47144
AAACACAGATCTTAAT
0
1468





652173
4752
4767
47141
47156
ACTATTAAACTAAAAC
8
1469





652174
4770
4785
47159
47174
CCCAAACAGGCACTTC
62
1470





652175
4779
4794
47168
47183
TATCATTATCCCAAAC
4
1471





652176
4788
4803
47177
47192
TAAATTACCTATCATT
0
1472





652177
4800
4815
47189
47204
CCTAAATTCATCTAAA
0
1473





652178
4821
4836
47210
47225
CTGCAGATAACTTTTT
12
1474





652179
4831
4846
47220
47235
CTCAACATATCTGCAG
9
1475





652180
4877
4892
47266
47281
CTGTAACCCAGTTAGC
43
1476





652181
4902
4917
47291
47306
GAATTGGAAACTTTCG
29
1477





652182
4915
4930
47304
47319
ACACAAGACAGTGGAA
36
1478
















TABLE 23







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
78
122





651824
5227
5242
47616
47631
CAAATTTTAGATCACT
5
1479





651827
N/A
N/A
37388
37403
ATAAAAAGCATCCTCC
27
1480





651831
N/A
N/A
37463
37478
TTTCACACAGCCAGGA
34
1481





652183
4971
4986
47360
47375
TACTAGTAAGAAATTG
9
1482





652184
4980
4995
47369
47384
AAGAAATAGTACTAGT
26
1483





652185
5013
5028
47402
47417
GTTAAAATACATTCCA
42
1484





652186
5028
5043
47417
47432
CACTATACAAAAATAG
4
1485





652187
5037
5052
47426
47441
TTCAGTTTACACTATA
45
1486





652188
5048
5063
47437
47452
AATGTGCATGTTTCAG
46
1487





652189
5061
5076
47450
47465
GCACAATGTACAAAAT
11
1488





652190
5076
5091
47465
47480
GTCCCACAAAAGAAAG
18
1489





652191
5097
5112
47486
47501
CAACTGGATCACACTG
27
1490





652192
5108
5123
47497
47512
ATGATGGAAAACAACT
19
1491





652193
5118
5133
47507
47522
GCGCAACCAAATGATG
12
1492





652194
5137
5152
47526
47541
GACCAACATTCCTAGG
24
1493





652195
5146
5161
47535
47550
GTTTGATATGACCAAC
33
1494





652196
5159
5174
47548
47563
GGTCATTTTTAATGTT
30
1495





652197
5168
5183
47557
47572
TAAAAGAGTGGTCATT
0
1496





652198
5200
5215
47589
47604
ACTCCTATAAACATTT
22
1497





652199
5209
5224
47598
47613
ACAGCACATACTCCTA
49
1498





652200
5218
5233
47607
47622
GATCACTTCACAGCAC
41
1499





652201
5249
5264
47638
47653
ACAGTTCATGACAAAA
40
1500





652202
5259
5274
47648
47663
TAGGAGTAGTACAGTT
17
1501





652203
5268
5283
47657
47672
TACAATAATTAGGAGT
4
1502





652206
N/A
N/A
37417
37432
CTGTATTGTCGGATCT
62
1503





652207
N/A
N/A
37430
37445
GATTTTTTTCAATCTG
36
1504





652208
N/A
N/A
37486
37501
TACATTATAATGCATT
21
1505





652209
N/A
N/A
2653
2668
ATGCAGCAGGGAAGGC
6
1506





652210
N/A
N/A
4249
4264
TCCAAAGGAGTCTTAC
47
1507





652211
N/A
N/A
7796
7811
GAAACCCAAGGTACAT
67
1508





652212
N/A
N/A
8388
8403
CTCCATGACCTTCAAG
49
1509





652213
N/A
N/A
9042
9057
AGGCAGTCTACTTCAA
44
1510





652214
N/A
N/A
9464
9479
CCAAATAAAGGCTTAA
0
1511





652215
N/A
N/A
10358
10373
TACAAGTAAAGGTGAT
27
1512





652216
N/A
N/A
10751
10766
GAACTGAATTATAAGT
31
1513





652217
N/A
N/A
11315
11330
TATCAAGGTTTGGATC
37
1514





652218
N/A
N/A
11502
11517
TAAAATTGCTGTGTGT
37
1515





652219
N/A
N/A
11687
11702
ATCAATCATATAAGAC
45
1516





652220
N/A
N/A
12032
12047
TCACAACTATTCTACA
15
1517





652221
N/A
N/A
12408
12423
CTAGAGATACCTAAAA
11
1518





652222
N/A
N/A
13439
13454
AATCTATGTTACTTAG
19
1519





652223
N/A
N/A
13991
14006
CAAAGGACATGTAGTT
35
1520





652224
N/A
N/A
14347
14362
AGCCCAATGGTATAAG
20
1521





652225
N/A
N/A
14965
14980
ATCACAGGGAAGGATA
6
1522





652226
N/A
N/A
15751
15766
AATAATCAGAGTGGAC
20
1523





652227
N/A
N/A
16942
16957
ACAGGAGCTAAGGCAA
13
1524





652228
N/A
N/A
17144
17159
AACTTTTCCGGCATCA
23
1525





652229
N/A
N/A
17450
17465
TGAAAATCTAGGTGTC
31
1526





652230
N/A
N/A
17739
17754
AGTATTGTAAGGACTT
41
1527





652231
N/A
N/A
17984
17999
TAACTTTTACTAAAGG
4
1528





652232
N/A
N/A
18104
18119
ACTCAGGCAGTGACTC
38
1529





652233
N/A
N/A
18935
18950
ATGTAACAGTGTGCAA
41
1530





652234
N/A
N/A
18964
18979
GAATGTTCACGACAAA
58
1531





652235
N/A
N/A
19258
19273
AATTGTTTAAGTCTAT
1
1532





652236
N/A
N/A
19785
19800
GTCCATGATAACTATT
37
1533





652237
N/A
N/A
21645
21660
GTACAGATTGGCCAGG
32
1534





652238
N/A
N/A
25871
25886
ACTCCACTGCTCTAAT
8
1535





652239
N/A
N/A
26391
26406
ACTAGACTATACAGTA
7
1536





652240
N/A
N/A
26720
26735
CTAGAAAGATTTTGAT
0
1537





652241
N/A
N/A
31136
31151
AAGTTAGGGCATAAAA
17
1538





652242
N/A
N/A
31818
31833
TATTAAAGTTAGCCTG
34
1539





652243
N/A
N/A
33116
33131
GTTCAAAATATTGATC
18
1540





652244
N/A
N/A
33201
33216
AAAAACCACTACTTGG
22
1541





652245
N/A
N/A
34689
34704
AAGTTATAATGTCAAT
6
1542





652246
N/A
N/A
35767
35782
ACAGAGAATTGGCAAC
48
1543





652247
N/A
N/A
35770
35785
CACACAGAGAATTGGC
71
1544





652248
N/A
N/A
35803
35818
CACCAGTACCATTTGC
36
1545





652249
N/A
N/A
36056
36071
ATATATAGTGCAAATT
15
1546





652250
N/A
N/A
36325
36340
AACAGTGTTCAATCAT
57
1547





652251
N/A
N/A
36875
36890
TCTCAAAGGTGAGTCA
41
1548





652252
N/A
N/A
37321
37336
AGTAATTTACTGGGAA
35
1549





652253
N/A
N/A
38872
38887
TAAGAATAGTATTCTG
2
1550





652254
N/A
N/A
41315
41330
CTCCTTTACTGTACTA
23
1551





652255
N/A
N/A
42293
42308
GTCTTATAGTTTACCA
55
1552





652256
N/A
N/A
42551
42566
GTAAAATCCATTGGAT
15
1553
















TABLE 24







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID







NO: 1
NO: 1
NO: 2
SEQ ID


SEQ


ISIS
Start
Stop
Start
2: Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
74
122





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
85
122





651666
2855
2870
45244
45259
GTTCTGTCTATTCATA
43
912





651673
2943
2958
45332
45347
TACTGTTACCAGGAGT
44
1554





651674
2945
2960
45334
45349
ATTACTGTTACCAGGA
69
1555





651676
2965
2980
45354
45369
TTACTAAAACAATGGA
14
1556





651683
3008
3023
45397
45412
GCTTCATGAATTAAAG
23
1557





651692
3381
3396
45770
45785
GGATTATGTCTCTTGT
68
1558





651693
3400
3415
45789
45804
TAGCACTACCTAAGGA
2
1559





696162
2829
2844
45218
45233
AAAATCCTACTGTCGC
50
1560





696163
2835
2850
45224
45239
GTTTGAAAAATCCTAC
12
1561





696164
2838
2853
45227
45242
CAGGTTTGAAAAATCC
57
1562





696165
2843
2858
45232
45247
CATACCAGGTTTGAAA
37
1563





696166
2845
2860
45234
45249
TTCATACCAGGTTTGA
50
1564





696167
2850
2865
45239
45254
GTCTATTCATACCAGG
79
925





696168
2860
2875
45249
45264
ATAGGGTTCTGTCTAT
5
1565





696169
2866
2881
45255
45270
CACTGGATAGGGTTCT
51
1566





696170
2869
2884
45258
45273
TTCCACTGGATAGGGT
31
1567





696171
2871
2886
45260
45275
CCTTCCACTGGATAGG
3
1568





696172
2876
2891
45265
45280
ATTCTCCTTCCACTGG
42
1569





696173
2892
2907
45281
45296
GCACTATCTTTATTAA
19
1570





696174
2898
2913
45287
45302
CTTTCAGCACTATCTT
48
1571





696175
2900
2915
45289
45304
TTCTTTCAGCACTATC
51
1572





696176
2903
2918
45292
45307
GAATTCTTTCAGCACT
73
1573





696177
2909
2924
45298
45313
CCTAAGGAATTCTTTC
42
1574





696178
2911
2926
45300
45315
TACCTAAGGAATTCTT
33
1575





696179
2913
2928
45302
45317
ATTACCTAAGGAATTC
21
1576





696180
2917
2932
45306
45321
ATAGATTACCTAAGGA
37
1577





696181
2919
2934
45308
45323
TTATAGATTACCTAAG
14
1578





696182
2921
2936
45310
45325
AGTTATAGATTACCTA
10
1579





696183
2923
2938
45312
45327
CTAGTTATAGATTACC
34
1580





696184
2927
2942
45316
45331
AGTCCTAGTTATAGAT
35
1581





696185
2930
2945
45319
45334
AGTAGTCCTAGTTATA
44
1582





696186
2935
2950
45324
45339
CCAGGAGTAGTCCTAG
42
1583





696187
2936
2951
45325
45340
ACCAGGAGTAGTCCTA
62
1584





696188
2937
2952
45326
45341
TACCAGGAGTAGTCCT
45
1585





696189
2938
2953
45327
45342
TTACCAGGAGTAGTCC
46
1586





696190
2940
2955
45329
45344
TGTTACCAGGAGTAGT
35
1587





696191
2942
2957
45331
45346
ACTGTTACCAGGAGTA
29
1588





696192
2946
2961
45335
45350
TATTACTGTTACCAGG
68
1589





696193
2951
2966
45340
45355
GAATGTATTACTGTTA
56
1590





696194
2954
2969
45343
45358
ATGGAATGTATTACTG
52
1591





696195
2967
2982
45356
45371
GGTTACTAAAACAATG
27
1592





696196
2969
2984
45358
45373
CTGGTTACTAAAACAA
42
1593





696197
2973
2988
45362
45377
ATTTCTGGTTACTAAA
18
1594





696198
2983
2998
45372
45387
TTGCATGAAGATTTCT
59
1595





696199
2987
3002
45376
45391
TTCATTGCATGAAGAT
40
1596





696200
2989
3004
45378
45393
TTTTCATTGCATGAAG
39
1597





696201
3011
3026
45400
45415
TAAGCTTCATGAATTA
19
1598





696202
3273
3288
45662
45677
AGGTTTATGAGGCCAA
36
1599





696203
3276
3291
45665
45680
AACAGGTTTATGAGGC
50
1600





696204
3285
3300
45674
45689
GTTCTGCAAAACAGGT
64
1601





696205
3287
3302
45676
45691
GAGTTCTGCAAAACAG
57
1602





696206
3342
3357
N/A
N/A
CCTTGTGCGGTGACTG
11
1603





696207
3354
3369
45743
45758
ATATACCCAGTGCCTT
14
1604





696208
3356
3371
45745
45760
CCATATACCCAGTGCC
55
1605





696209
3358
3373
45747
45762
TACCATATACCCAGTG
47
1606





696210
3383
3398
45772
45787
CGGGATTATGTCTCTT
69
1607





696211
3390
3405
45779
45794
TAAGGACCGGGATTAT
19
1608





696212
3395
3410
45784
45799
CTACCTAAGGACCGGG
51
1609





696213
3397
3412
45786
45801
CACTACCTAAGGACCG
32
1610





696214
3405
3420
45794
45809
CACACTAGCACTACCT
41
1611





696215
3407
3422
45796
45811
ACCACACTAGCACTAC
48
1612





696216
3409
3424
45798
45813
AGACCACACTAGCACT
48
1613





696217
3411
3426
45800
45815
ACAGACCACACTAGCA
43
1614





696218
3413
3428
45802
45817
TTACAGACCACACTAG
16
1615





696219
3418
3433
45807
45822
AGATATTACAGACCAC
76
1616





696220
3423
3438
45812
45827
TAGTAAGATATTACAG
24
1617





696221
3425
3440
45814
45829
CTTAGTAAGATATTAC
5
1618





696222
3430
3445
45819
45834
AAGGCCTTAGTAAGAT
25
1619





696223
3432
3447
45821
45836
CAAAGGCCTTAGTAAG
18
1620





696224
3436
3451
45825
45840
ATACCAAAGGCCTTAG
48
1621





696225
3438
3453
45827
45842
GTATACCAAAGGCCTT
49
1622





696226
3471
3486
45860
45875
AAACTAAAATACGCAT
2
1623





696227
3473
3488
45862
45877
CAAAACTAAAATACGC
34
1624





696228
3486
3501
45875
45890
AACCCCTTCTTTGCAA
34
1625





696229
3492
3507
45881
45896
AGACCAAACCCCTTCT
45
1626





696230
3494
3509
45883
45898
AGAGACCAAACCCCTT
35
1627





696231
3496
3511
45885
45900
ACAGAGACCAAACCCC
28
1628
















TABLE 25







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting


SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID







NO: 1
NO: 1
NO: 2
SEQ ID


SEQ


ISIS
Start
Stop
Start
2: Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
44
122





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
58
122





651703
3548
3563
45937
45952
GCTTGATCGAAGAGTT
62
1629





651704
3554
3569
45943
45958
AAAGTAGCTTGATCGA
69
1630





651705
3568
3583
45957
45972
GAAGTGATTTACATAA
40
1631





651706
3595
3610
45984
45999
TAATCAAGTTTATTCC
40
1632





651719
3700
3715
46089
46104
CTGGAATATTACACAT
48
1633





651720
3715
3730
46104
46119
CTTATGCAGAGAAAAC
26
968





651727
3806
3821
46195
46210
TACATAGAAGTTTCCT
38
1634





651728
3812
3827
46201
46216
GATTTTTACATAGAAG
18
1635





651730
3859
3874
46248
46263
GTGTTCCAAAGATCTG
59
1636





696232
3498
3513
45887
45902
GCACAGAGACCAAACC
31
1637





696233
3507
3522
45896
45911
ATAGAGCTGGCACAGA
33
1638





696234
3511
3526
45900
45915
AATTATAGAGCTGGCA
29
1639





696235
3513
3528
45902
45917
ACAATTATAGAGCTGG
53
1640





696236
3515
3530
45904
45919
AAACAATTATAGAGCT
8
1641





696237
3536
3551
45925
45940
AGTTTCAGTGGAATCG
66
1642





696238
3537
3552
45926
45941
GAGTTTCAGTGGAATC
56
1643





696239
3543
3558
45932
45947
ATCGAAGAGTTTCAGT
49
1644





696240
3544
3559
45933
45948
GATCGAAGAGTTTCAG
51
1645





696241
3549
3564
45938
45953
AGCTTGATCGAAGAGT
71
1646





696242
3550
3565
45939
45954
TAGCTTGATCGAAGAG
62
1647





696243
3551
3566
45940
45955
GTAGCTTGATCGAAGA
53
1648





696244
3552
3567
45941
45956
AGTAGCTTGATCGAAG
56
1649





696245
3553
3568
45942
45957
AAGTAGCTTGATCGAA
50
1650





696246
3558
3573
45947
45962
ACATAAAGTAGCTTGA
21
1651





696247
3560
3575
45949
45964
TTACATAAAGTAGCTT
37
1652





696248
3563
3578
45952
45967
GATTTACATAAAGTAG
11
1653





696249
3572
3587
45961
45976
CAATGAAGTGATTTAC
34
1654





696250
3593
3608
45982
45997
ATCAAGTTTATTCCTT
57
1655





696251
3594
3609
45983
45998
AATCAAGTTTATTCCT
46
1656





696252
3596
3611
45985
46000
ATAATCAAGTTTATTC
23
1657





696253
3636
3651
46025
46040
GTCCTAAAAGAATCAC
46
1658





696254
3639
3654
46028
46043
ATTGTCCTAAAAGAAT
41
1659





696255
3644
3659
46033
46048
CAGTAATTGTCCTAAA
35
1660





696256
3646
3661
46035
46050
TACAGTAATTGTCCTA
48
1661





696257
3649
3664
46038
46053
GTGTACAGTAATTGTC
43
1662





696258
3653
3668
46042
46057
TAATGTGTACAGTAAT
0
1663





696259
3655
3670
46044
46059
CTTAATGTGTACAGTA
46
1664





696260
3657
3672
46046
46061
ACCTTAATGTGTACAG
39
1665





696261
3659
3674
46048
46063
ACACCTTAATGTGTAC
15
1666





696262
3663
3678
46052
46067
ACATACACCTTAATGT
0
1667





696263
3665
3680
46054
46069
TGACATACACCTTAAT
37
1668





696264
3667
3682
46056
46071
TCTGACATACACCTTA
33
1669





696265
3669
3684
46058
46073
TATCTGACATACACCT
50
1670





696266
3671
3686
46060
46075
AATATCTGACATACAC
39
1671





696267
3680
3695
46069
46084
GTCAATATGAATATCT
53
1672





696268
3686
3701
46075
46090
ATTTGGGTCAATATGA
31
1673





696269
3690
3705
46079
46094
ACACATTTGGGTCAAT
37
1674





696270
3692
3707
46081
46096
TTACACATTTGGGTCA
47
1675





696271
3719
3734
46108
46123
ATTACTTATGCAGAGA
73
977





696272
3755
3770
46144
46159
ACCCAGATAAAACTAT
16
1676





696273
3757
3772
46146
46161
GTACCCAGATAAAACT
12
1677





696274
3761
3776
46150
46165
ATTTGTACCCAGATAA
29
1678





696275
3763
3778
46152
46167
TTATTTGTACCCAGAT
38
1679





696276
3765
3780
46154
46169
GTTTATTTGTACCCAG
67
1680





696277
3773
3788
46162
46177
AGGCACCTGTTTATTT
46
1681





696278
3777
3792
46166
46181
GTTCAGGCACCTGTTT
30
1682





696279
3782
3797
46171
46186
AACTAGTTCAGGCACC
39
1683





696280
3791
3806
46180
46195
TTGTCTGTGAACTAGT
54
1684





696281
3793
3808
46182
46197
CCTTGTCTGTGAACTA
63
1685





696282
3802
3817
46191
46206
TAGAAGTTTCCTTGTC
50
1686





696283
3804
3819
46193
46208
CATAGAAGTTTCCTTG
51
1687





696284
3825
3840
46214
46229
CAGAAATCATAGTGAT
37
1688





696285
3837
3852
46226
46241
CACATAGCAATTCAGA
50
1689





696286
3841
3856
46230
46245
GTTTCACATAGCAATT
47
769





696287
3844
3859
46233
46248
GTAGTTTCACATAGCA
79
770





696288
3846
3861
46235
46250
CTGTAGTTTCACATAG
51
771





696289
3850
3865
46239
46254
AGATCTGTAGTTTCAC
74
1690





696290
3852
3867
46241
46256
AAAGATCTGTAGTTTC
47
1691





696291
3854
3869
46243
46258
CCAAAGATCTGTAGTT
43
1692





696292
3861
3876
46250
46265
CAGTGTTCCAAAGATC
56
1693





696293
3873
3888
46262
46277
ACCCTACCTAAACAGT
22
1694





696294
3878
3893
46267
46282
TTAACACCCTACCTAA
18
1695





696295
3880
3895
46269
46284
TCTTAACACCCTACCT
20
1696





696296
3887
3902
46276
46291
GTGTAAGTCTTAACAC
19
1697





696297
3892
3907
46281
46296
GTACTGTGTAAGTCTT
59
1698





696298
3902
3917
46291
46306
TAGAAACGAGGTACTG
41
1699





696299
3905
3920
46294
46309
GTGTAGAAACGAGGTA
73
1700
















TABLE 26







Inhibition of K-Ras mRNA by 3-10-3


cEt gapmers targeting SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID







NO: 1
NO: 1
NO: 2
SEQ ID


SEQ


ISIS
Start
Stop
Start
2: Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
37
122





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
60
122





651745
3972
3987
46361
46376
AATTCAAGAGGCCTAA
1
1701





651749
4087
4102
46476
46491
TTCTAGAATTCTCCCC
50
1702





651750
4140
4155
46529
46544
AACTTCAACAAGGATT
30
1703





651755
4233
4248
46622
46637
GAACATTCACTCAAAT
8
1704





651756
4252
4267
46641
46656
GCCTAGAATGCCTACT
38
1705





651758
4271
4286
46660
46675
TGTGACTCAGTTAAAT
33
1706





651766
4296
4311
46685
46700
AGTTAGGTTCTAAATT
0
1707





651767
4302
4317
46691
46706
TATAAAAGTTAGGTTC
0
1708





663588
4185
4200
46574
46589
AACATGTTAATGCCTA
46
1709





696300
3910
3925
46299
46314
TCTCTGTGTAGAAACG
41
1710





696301
3935
3950
46324
46339
AGTTCCTGAAGTATGG
59
1711





696302
3944
3959
46333
46348
AAGCACTGCAGTTCCT
52
1712





696303
3949
3964
46338
46353
CTCATAAGCACTGCAG
54
1713





696304
3951
3966
46340
46355
CCCTCATAAGCACTGC
57
1714





696305
3956
3971
46345
46360
ATATCCCCTCATAAGC
21
1715





696306
3961
3976
46350
46365
CCTAAATATCCCCTCA
20
1716





696307
3963
3978
46352
46367
GGCCTAAATATCCCCT
29
1717





696308
3970
3985
46359
46374
TTCAAGAGGCCTAAAT
31
1718





696309
3988
4003
46377
46392
GCCCATCTACATCAAA
51
1719





696310
3992
4007
46381
46396
AAATGCCCATCTACAT
16
1720





696311
4009
4024
46398
46413
TAACCACTACCTTAAA
21
1721





696312
4011
4026
46400
46415
ATTAACCACTACCTTA
0
1722





696313
4015
4030
46404
46419
GGTAATTAACCACTAC
20
1723





696314
4020
4035
46409
46424
ATAAAGGTAATTAACC
0
1724





696315
4028
4043
46417
46432
AAGTTCACATAAAGGT
43
1725





696316
4029
4044
46418
46433
AAAGTTCACATAAAGG
37
978





696317
4035
4050
46424
46439
CCATTCAAAGTTCACA
71
979





696318
4037
4052
46426
46441
AACCATTCAAAGTTCA
67
980





696319
4038
4053
46427
46442
AAACCATTCAAAGTTC
26
1726





696320
4043
4058
46432
46447
TTGTTAAACCATTCAA
21
1727





696321
4075
4090
46464
46479
CCCCCTTTAAAATCTC
10
1728





696322
4084
4099
46473
46488
TAGAATTCTCCCCCTT
45
1729





696323
4109
4124
46498
46513
GTAATAATTAGGTAAC
18
1730





696324
4114
4129
46503
46518
AGGCTGTAATAATTAG
39
1731





696325
4116
4131
46505
46520
TAAGGCTGTAATAATT
6
1732





696326
4119
4134
46508
46523
CTTTAAGGCTGTAATA
15
1733





696327
4136
4151
46525
46540
TCAACAAGGATTTTTG
3
1734





696328
4138
4153
46527
46542
CTTCAACAAGGATTTT
40
1735





696329
4169
4184
46558
46573
AGTCTATGTAATTTAG
21
1736





696330
4174
4189
46563
46578
GCCTAAGTCTATGTAA
28
1737





696331
4176
4191
46565
46580
ATGCCTAAGTCTATGT
30
1738





696332
4178
4193
46567
46582
TAATGCCTAAGTCTAT
24
1739





696333
4183
4198
46572
46587
CATGTTAATGCCTAAG
52
1740





696334
4187
4202
46576
46591
CAAACATGTTAATGCC
42
1741





696335
4202
4217
46591
46606
TGCTATATTCTTCCAC
53
1742





696336
4227
4242
46616
46631
TCACTCAAATGATACA
58
1743





696337
4230
4245
46619
46634
CATTCACTCAAATGAT
27
1744





696338
4235
4250
46624
46639
GGGAACATTCACTCAA
47
1745





696339
4242
4257
46631
46646
CCTACTTGGGAACATT
34
1746





696340
4244
4259
46633
46648
TGCCTACTTGGGAACA
22
1747





696341
4254
4269
46643
46658
GAGCCTAGAATGCCTA
33
1748





696342
4257
4272
46646
46661
ATAGAGCCTAGAATGC
0
1749





696343
4259
4274
46648
46663
AAATAGAGCCTAGAAT
0
1750





696344
4263
4278
46652
46667
AGTTAAATAGAGCCTA
13
1751





696345
4268
4283
46657
46672
GACTCAGTTAAATAGA
33
1752





696346
4269
4284
46658
46673
TGACTCAGTTAAATAG
23
1753





696347
4272
4287
46661
46676
GTGTGACTCAGTTAAA
51
1754





696348
4289
4304
46678
46693
TTCTAAATTCCTATGC
4
1755





696349
4292
4307
46681
46696
AGGTTCTAAATTCCTA
3
1756





696350
4300
4315
46689
46704
TAAAAGTTAGGTTCTA
8
1757





696351
4310
4325
46699
46714
TGATAACCTATAAAAG
20
1758





696352
4314
4329
46703
46718
GTTTTGATAACCTATA
32
1759





696353
4319
4334
46708
46723
CAACAGTTTTGATAAC
36
1760





696354
4321
4336
46710
46725
GACAACAGTTTTGATA
38
1761





696355
4323
4338
46712
46727
GTGACAACAGTTTTGA
60
1762





696356
4329
4344
46718
46733
GCAATGGTGACAACAG
69
1763





696357
4331
4346
46720
46735
GTGCAATGGTGACAAC
22
845





696358
4334
4349
46723
46738
ATTGTGCAATGGTGAC
63
846





696359
4336
4351
46725
46740
AAATTGTGCAATGGTG
39
847





696360
4353
4368
46742
46757
ATGTATATATTAGGAC
20
1764





696361
4355
4370
46744
46759
CTATGTATATATTAGG
22
1765





696362
4367
4382
46756
46771
CCCACAAAGTTTCTAT
22
1766





696363
4369
4384
46758
46773
GCCCCACAAAGTTTCT
23
1767





696364
4376
4391
46765
46780
TTAACATGCCCCACAA
20
1768





696365
4378
4393
46767
46782
ACTTAACATGCCCCAC
47
1769





696366
4380
4395
46769
46784
TAACTTAACATGCCCC
45
1770





696367
4385
4400
46774
46789
AACTGTAACTTAACAT
0
1771
















TABLE 27







Inhibition of K-Ras mRNA by 3-10-3


cEt gapmers targeting SEQ ID NO: 1 and 2















SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2


SEQ


ISIS
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Sequence
Inhibition
NO

















540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
72
122





540806
2981
2996
45370
45385
GCATGAAGATTTCTGG
77
122





651778
4389
4404
46778
46793
TGCAAACTGTAACTTA
43
1772





651781
4502
4517
46891
46906
CAGATAGTTTTTGCTG
13
1773





651782
4508
4523
46897
46912
AATCTTCAGATAGTTT
48
1774





651784
4566
4581
46955
46970
GGTTCTAAAAAACATT
21
1775





651791
4584
4599
46973
46988
GCTTTAAGGTAACTGC
45
1776





651792
4591
4606
46980
46995
AAATTCAGCTTTAAGG
31
1777





651795
4620
4635
47009
47024
CCAGTATTAACACAGA
70
973





651798
4705
4720
47094
47109
AAGAACTCATGTGAGT
40
1778





651799
4719
4734
47108
47123
TATGACTATTCTTCAA
46
1779





651804
4792
4807
47181
47196
CATCTAAATTACCTAT
0
1780





651809
4899
4914
47288
47303
TTGGAAACTTTCGGAT
32
1781





663600
4637
4652
47026
47041
TGCAGAATTCATGCTA
15
1782





696368
4387
4402
46776
46791
CAAACTGTAACTTAAC
31
1783





696369
4406
4421
46795
46810
CAAATGAGATGAACTT
29
1784





696370
4408
4423
46797
46812
TACAAATGAGATGAAC
13
1785





696371
4458
4473
46847
46862
ATATACTGTTTGAAGA
14
1786





696372
4475
4490
46864
46879
ATCCCCTAAAAAAAGT
14
1787





696373
4498
4513
46887
46902
TAGTTTTTGCTGTCTA
29
1788





696374
4500
4515
46889
46904
GATAGTTTTTGCTGTC
37
1789





696375
4510
4525
46899
46914
GAAATCTTCAGATAGT
43
1790





696376
4512
4527
46901
46916
TGGAAATCTTCAGATA
32
1791





696377
4525
4540
46914
46929
ACTTTTTGACAAATGG
76
981





696378
4530
4545
46919
46934
TCATTACTTTTTGACA
0
982





696379
4544
4559
46933
46948
CAATTATCAAGAAATC
2
1792





696380
4549
4564
46938
46953
CTACACAATTATCAAG
8
1793





696381
4554
4569
46943
46958
CATTACTACACAATTA
3
1794





696382
4556
4571
46945
46960
AACATTACTACACAAT
16
1795





696383
4586
4601
46975
46990
CAGCTTTAAGGTAACT
51
1796





696384
4589
4604
46978
46993
ATTCAGCTTTAAGGTA
57
1797





696385
4617
4632
47006
47021
GTATTAACACAGAAGT
46
983





696386
4622
4637
47011
47026
ATCCAGTATTAACACA
43
984





696387
4628
4643
47017
47032
CATGCTATCCAGTATT
45
1798





696388
4631
4646
47020
47035
ATTCATGCTATCCAGT
52
1799





696389
4633
4648
47022
47037
GAATTCATGCTATCCA
57
1800





696390
4639
4654
47028
47043
AATGCAGAATTCATGC
43
1801





696391
4662
4677
47051
47066
TTATGACAGCTATTCA
48
1802





696392
4697
4712
47086
47101
ATGTGAGTATCTTTCT
46
1803





696393
4700
4715
47089
47104
CTCATGTGAGTATCTT
62
1804





696394
4707
4722
47096
47111
TCAAGAACTCATGTGA
33
1805





696395
4709
4724
47098
47113
CTTCAAGAACTCATGT
7
1806





696396
4713
4728
47102
47117
TATTCTTCAAGAACTC
50
1807





696397
4715
4730
47104
47119
ACTATTCTTCAAGAAC
39
1808





696398
4717
4732
47106
47121
TGACTATTCTTCAAGA
39
1809





696399
4724
4739
47113
47128
CTAGTTATGACTATTC
56
1810





696400
4726
4741
47115
47130
ATCTAGTTATGACTAT
19
1811





696401
4728
4743
47117
47132
TAATCTAGTTATGACT
9
1812





696402
4733
4748
47122
47137
GATCTTAATCTAGTTA
25
1813





696403
4735
4750
47124
47139
CAGATCTTAATCTAGT
51
1814





696404
4737
4752
47126
47141
CACAGATCTTAATCTA
39
1815





696405
4763
4778
47152
47167
AGGCACTTCAAACTAT
39
1816





696406
4766
4781
47155
47170
AACAGGCACTTCAAAC
20
1817





696407
4768
4783
47157
47172
CAAACAGGCACTTCAA
33
1818





696408
4772
4787
47161
47176
ATCCCAAACAGGCACT
45
1819





696409
4775
4790
47164
47179
ATTATCCCAAACAGGC
53
1820





696410
4782
4797
47171
47186
ACCTATCATTATCCCA
48
1821





696411
4785
4800
47174
47189
ATTACCTATCATTATC
24
1822





696412
4790
4805
47179
47194
TCTAAATTACCTATCA
16
1823





696413
4795
4810
47184
47199
ATTCATCTAAATTACC
4
1824





696414
4802
4817
47191
47206
CCCCTAAATTCATCTA
18
1825





696415
4824
4839
47213
47228
TATCTGCAGATAACTT
3
1826





696416
4826
4841
47215
47230
CATATCTGCAGATAAC
3
1827





696417
4828
4843
47217
47232
AACATATCTGCAGATA
0
1828





696418
4833
4848
47222
47237
CCCTCAACATATCTGC
20
1829





696419
4869
4884
47258
47273
CAGTTAGCTCTGTGGG
48
1830





696420
4879
4894
47268
47283
CACTGTAACCCAGTTA
37
1831





696421
4881
4896
47270
47285
AACACTGTAACCCAGT
58
1832





696422
4883
4898
47272
47287
AAAACACTGTAACCCA
44
1833





696423
4889
4904
47278
47293
TCGGATAAAACACTGT
46
1834





696424
4891
4906
47280
47295
TTTCGGATAAAACACT
14
1835





696425
4895
4910
47284
47299
AAACTTTCGGATAAAA
0
1836





696426
4897
4912
47286
47301
GGAAACTTTCGGATAA
56
1837





696427
4904
4919
47293
47308
TGGAATTGGAAACTTT
48
1838





696428
4906
4921
47295
47310
AGTGGAATTGGAAACT
14
1839





696429
4913
4928
47302
47317
ACAAGACAGTGGAATT
31
1840





696430
4917
4932
47306
47321
AAACACAAGACAGTGG
17
1841





696431
4959
4974
47348
47363
ATTGGCACTCAAAGGA
35
1842





696432
4961
4976
47350
47365
AAATTGGCACTCAAAG
30
1843
















TABLE 28







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting SEQ ID NO: 1, 2 and 3

















SEQ ID
SEQ ID
SEQ ID
SEQ ID
SEQ ID
SEQ ID






NO: 1
NO: 1
NO: 2
NO: 2
NO: 3
NO: 3


SEQ


ISIS
Start
Stop
Start
Stop
Start
Stop

%
ID


NO
Site
Site
Site
Site
Site
Site
Sequence
Inhibition
NO



















540806
2981
2996
45370
45385
3105
3120
GCATGAAGATTTCTGG
77
122





540806
2981
2996
45370
45385
3105
3120
GCATGAAGATTTCTGG
81
122





651813
5033
5048
47422
47437
5157
5172
GTTTACACTATACAAA
18
1844





651814
5039
5054
47428
47443
5163
5178
GTTTCAGTTTACACTA
43
1845





651815
5054
5069
47443
47458
5178
5193
GTACAAAATGTGCATG
26
1846





651816
5103
5118
47492
47507
5227
5242
GGAAAACAACTGGATC
40
1847





651818
5144
5159
47533
47548
5268
5283
TTGATATGACCAACAT
0
1848





651830
N/A
N/A
37421
37436
681
696
CAATCTGTATTGTCGG
67
1849





651837
N/A
N/A
3302
3317
N/A
N/A
AGTCTATTTCAGGCGG
76
1850





663623
5065
5080
47454
47469
5189
5204
GAAAGCACAATGTACA
24
1851





663626
5086
5101
47475
47490
5210
5225
CACTGCATATGTCCCA
54
1852





663627
5094
5109
47483
47498
5218
5233
CTGGATCACACTGCAT
49
1853





663630
5123
5138
47512
47527
5247
5262
GGTCAGCGCAACCAAA
57
1854





663635
5150
5165
47539
47554
5274
5289
TAATGTTTGATATGAC
0
1855





696433
4968
4983
47357
47372
5092
5107
TAGTAAGAAATTGGCA
32
1856





696434
4973
4988
47362
47377
5097
5112
AGTACTAGTAAGAAAT
10
1857





696435
4975
4990
47364
47379
5099
5114
ATAGTACTAGTAAGAA
19
1858





696436
4977
4992
47366
47381
5101
5116
AAATAGTACTAGTAAG
9
1859





696437
4984
4999
47373
47388
5108
5123
CATTAAGAAATAGTAC
12
1860





696438
5000
5015
47389
47404
5124
5139
CCAGGTAAACATGTTA
59
1861





696439
5002
5017
47391
47406
5126
5141
TTCCAGGTAAACATGT
38
1862





696440
5004
5019
47393
47408
5128
5143
CATTCCAGGTAAACAT
47
1863





696441
5035
5050
47424
47439
5159
5174
CAGTTTACACTATACA
46
1864





696442
5041
5056
47430
47445
5165
5180
ATGTTTCAGTTTACAC
34
1865





696443
5045
5060
47434
47449
5169
5184
GTGCATGTTTCAGTTT
44
1866





696444
5079
5094
47468
47483
5203
5218
TATGTCCCACAAAAGA
38
1867





696445
5082
5097
47471
47486
5206
5221
GCATATGTCCCACAAA
51
1868





696446
5084
5099
47473
47488
5208
5223
CTGCATATGTCCCACA
62
1869





696447
5099
5114
47488
47503
5223
5238
AACAACTGGATCACAC
27
1870





696448
5101
5116
47490
47505
5225
5240
AAAACAACTGGATCAC
23
1871





696449
5115
5130
47504
47519
5239
5254
CAACCAAATGATGGAA
54
1872





696450
5128
5143
47517
47532
5252
5267
TCCTAGGTCAGCGCAA
33
1873





696451
5130
5145
47519
47534
5254
5269
ATTCCTAGGTCAGCGC
71
1874





696452
5134
5149
47523
47538
5258
5273
CAACATTCCTAGGTCA
25
1875





696453
5140
5155
47529
47544
5264
5279
TATGACCAACATTCCT
29
1876





696454
5142
5157
47531
47546
5266
5281
GATATGACCAACATTC
27
1877





696455
5148
5163
47537
47552
5272
5287
ATGTTTGATATGACCA
35
1878





696456
5170
5185
47559
47574
5294
5309
ATTAAAAGAGTGGTCA
25
1879





696457
5172
5187
47561
47576
5296
5311
CAATTAAAAGAGTGGT
13
1880





696458
5206
5221
47595
47610
5330
5345
GCACATACTCCTATAA
29
1881





696459
5213
5228
47602
47617
5337
5352
CTTCACAGCACATACT
17
1882





696460
5215
5230
47604
47619
5339
5354
CACTTCACAGCACATA
43
1883





696461
5221
5236
47610
47625
5345
5360
TTAGATCACTTCACAG
32
1884





696462
5223
5238
47612
47627
5347
5362
TTTTAGATCACTTCAC
25
1885





696463
5251
5266
47640
47655
5375
5390
GTACAGTTCATGACAA
35
1886





696464
5254
5269
47643
47658
5378
5393
GTAGTACAGTTCATGA
33
1887





696465
5256
5271
47645
47660
5380
5395
GAGTAGTACAGTTCAT
34
1888





696466
5261
5276
47650
47665
5385
5400
ATTAGGAGTAGTACAG
12
1889





696467
5263
5278
47652
47667
5387
5402
TAATTAGGAGTAGTAC
12
1890





696468
5265
5280
47654
47669
5389
5404
AATAATTAGGAGTAGT
16
1891





696469
5271
5286
47660
47675
5395
5410
CATTACAATAATTAGG
0
1892





696470
5293
5308
47682
47697
5417
5432
GTCACTGTAACTATTT
7
1893





696473
N/A
N/A
37399
37414
659
674
CTCACCAATGTATAAA
17
1894





696474
N/A
N/A
37406
37421
666
681
GATCTCCCTCACCAAT
4
1895





696475
N/A
N/A
37413
37428
673
688
ATTGTCGGATCTCCCT
39
1896





696476
N/A
N/A
37419
37434
679
694
ATCTGTATTGTCGGAT
25
1897





696477
N/A
N/A
37423
37438
683
698
TTCAATCTGTATTGTC
48
1898





696478
N/A
N/A
37453
37468
713
728
CCAGGAGTCTTTTCTT
35
1899





696479
N/A
N/A
37458
37473
718
733
CACAGCCAGGAGTCTT
43
1900





696480
N/A
N/A
37465
37480
725
740
ATTTTCACACAGCCAG
58
1901





696481
N/A
N/A
37467
37482
727
742
TAATTTTCACACAGCC
52
1902





696482
N/A
N/A
37489
37504
749
764
GATTACATTATAATGC
15
1903





696483
N/A
N/A
37492
37507
752
767
CCAGATTACATTATAA
28
1904





696484
N/A
N/A
N/A
N/A
756
771
ACACCCAGATTACATT
12
1905





696485
N/A
N/A
N/A
N/A
761
776
CATCAACACCCAGATT
0
1906





696486
N/A
N/A
N/A
N/A
763
778
ATCATCAACACCCAGA
37
1907





696487
N/A
N/A
2233
2248
N/A
N/A
CGGCAAAGAGGGTCGG
0
1908





696488
N/A
N/A
2550
2565
N/A
N/A
AACCTCCACCGCACCC
2
1909





696489
N/A
N/A
2715
2730
N/A
N/A
ACCACTATCCGTCCAG
45
1910





696490
N/A
N/A
2817
2832
N/A
N/A
CCAAACACAATAACCT
32
1911





696491
N/A
N/A
3068
3083
N/A
N/A
CAACTAGCAAGGAAAA
17
1912





696492
N/A
N/A
3175
3190
N/A
N/A
AGTATAAAAGAGACGA
25
1913





696493
N/A
N/A
3951
3966
N/A
N/A
GTTAATTCTGAGCTGA
53
1914





696494
N/A
N/A
3991
4006
N/A
N/A
CATTTTGGACCTCAGT
33
1915





696495
N/A
N/A
3993
4008
N/A
N/A
AGCATTTTGGACCTCA
71
1916





696496
N/A
N/A
4065
4080
N/A
N/A
ATGGCTACAGTCTCAA
35
1917





696497
N/A
N/A
4079
4094
N/A
N/A
CAAATATACTGTGGAT
26
1918
















TABLE 29







Inhibition of K-Ras mRNA by 3-10-3


cEt gapmers targeting SEQ ID NO: 1 and 2













SEQ ID
SEQ ID






NO: 2
NO: 2

%
SEQ


ISIS
Start
Stop

Inhibi-
ID


NO
Site
Site
Sequence
tion
NO















540806
45370
45385
GCATGAAGATTTCTGG
69
122





540806
45370
45385
GCATGAAGATTTCTGG
77
122





663720
27165
27180
TAATTTGTTCTCTGGG
22
1919





696658
23436
23451
GAACTGCAACTATAAG
18
1920





696659
23439
23454
AGAGAACTGCAACTAT
22
1921





696660
23507
23522
ATCTCTAAAGAGCAAT
24
1922





696661
23579
23594
CAATACTCAAGATTCT
18
1923





696662
23688
23703
CAACTCTATTATTCAA
14
1924





696663
24168
24183
CTTAAAATTAACTACC
0
1925





696664
24292
24307
CAGGTACAGAATTCTA
31
1926





696665
24486
24501
AACCTGTATATACATG
20
1927





696666
24583
24598
GAACCAGTTAAGTATC
28
1928





696667
24605
24620
GGATTTTTGGACGAGG
45
1929





696668
24889
24904
ATAGGTTGAGCATTAA
34
1930





696669
24895
24910
TTTCATATAGGTTGAG
28
1931





696670
25198
25213
AAATCTTTGTGCATTG
16
1932





696671
25489
25504
TTATTACAGTGCACCT
5
1933





696672
25494
25509
CTGGATTATTACAGTG
1
1934





696673
25499
25514
ACAGTCTGGATTATTA
5
1935





696674
25501
25516
ACACAGTCTGGATTAT
0
1936





696675
25503
25518
AAACACAGTCTGGATT
12
1937





696676
25696
25711
ACCTATAATGGTGAAT
1
1938





696677
25698
25713
CCACCTATAATGGTGA
0
1939





696678
25701
25716
AACCCACCTATAATGG
8
1940





696679
25704
25719
TTAAACCCACCTATAA
10
1941





696680
25706
25721
ATTTAAACCCACCTAT
0
1942





696681
25855
25870
CCCCCAAGAACTTCAT
3
1943





696682
26058
26073
GTTAAAGTGACACCAT
40
1944





696683
26101
26116
ATCCAAGCAATTCTAT
5
1945





696684
26252
26267
CCCTCAAAGAAATAGA
11
1946





696685
26395
26410
TATTACTAGACTATAC
0
1947





696686
26396
26411
CTATTACTAGACTATA
0
1948





696687
26489
26504
CCATTAGCTGGGTAAA
31
1949





696688
26520
26535
CAGAATTGGCTCAAAT
13
1950





696689
26910
26925
TTAATATGCAGGTAGA
43
1951





696690
26921
26936
AACCTAATAGGTTAAT
4
1952





696691
26939
26954
GAAGTATAGTAAAACT
23
1953





696692
27497
27512
AGCCAAAAGCAGTACC
64
1954





696693
28073
28088
TAGAAAGTATCCCTGT
21
1955





696694
28150
28165
GGTTATACTACCAAGG
46
1956





696695
28205
28220
ACAGGTTTGTATCCCT
48
1957





696696
28230
28245
AGTCATTAGTACAGTT
44
1958





696697
28284
28299
CCAAGTGTAGGTTTAG
58
1959





696698
28347
28362
AGTAAAGTAAGGTTAA
24
1960





696699
28799
28814
GTATAATGGTATAGCA
50
1961





696700
28874
28889
TAACACTGTAGTACGA
10
1962





696701
29016
29031
TATAGATGGATCAATT
28
1963





696702
29038
29053
AGCCCTAAACAAATTG
36
1964





696703
29443
29458
GTAAAGTGATATATGA
22
1965





696704
30003
30018
CTCTTTTTATGTCCTC
56
1966





696705
30110
30125
ATTAGTACTTCTGAGG
41
1967





696706
30205
30220
CCTAAAAATCTCTTAT
0
1968





696707
30356
30371
AAGTATTCTTTCATAC
5
1969





696708
30418
30433
TACATAATAACATCAG
24
1970





696709
30590
30605
CTTTAAAGTCTTCCAG
43
1971





696710
30673
30688
ATTTTCACCAGTAACT
19
1972





696711
30706
30721
TAACAAAATACTCTGC
0
1973





696712
31090
31105
GCACACTAATTTTGTT
41
1974





696713
31124
31139
AAAACAACTTGCCGAT
52
1975





696714
31150
31165
GATCAAGACCCCAAAA
26
1976





696715
31361
31376
AACGATTTTTGCATTT
52
1977





696716
31759
31774
ACTAAAGTTACCCAGA
38
1978





696717
31816
31831
TTAAAGTTAGCCTGTA
29
1979





696718
32195
32210
AAATACTAGAGACCAG
0
1980





696719
32583
32598
TATGTAACGCATTATA
36
1981





696720
32735
32750
GTCCAAAGGGACCAGG
31
1982





696721
32833
32848
AACCCTCCCACTTTTG
17
1983





696722
33039
33054
AAAGCATTCTTTAACG
26
1984





696723
33293
33308
ACAAGATGTATTCTAA
24
1985





696724
33365
33380
CAACACATCAAATACC
22
1986





696725
33478
33493
CCAAAGTATCATTCTA
41
1987





696726
33514
33529
GAAACAAAGCACTCCA
44
1988





696727
33551
33566
CTCAACTATTATCTGA
23
1989





696728
33642
33657
CTTTAAGAACAACTGA
35
1990





696729
34076
34091
TAGCACACAATAATTT
14
1991





696730
34367
34382
ATAAGAAACTTAGGTT
8
1992





696731
34412
34427
TAATTAACAGCACAGG
64
1993





696732
34488
34503
TTGGAAGCCAATAATT
19
1994









Example 8: Antisense Inhibition of Human K-Ras in HepG2 Cells by cEt Gapmers

Antisense oligonucleotides were designed targeting a K-Ras nucleic acid and were tested for their effects on K-Ras mRNA in vitro. Cultured HepG2 cells at a density of 20,000 cells per well were transfected using electroporation with 4,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS132 was used to measure mRNA levels. K-Ras mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 3-10-3 cEt gapmers. The gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a cEt sugar modification. The internucleoside linkages throughout each gapmer are phosphorothioate (P═S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either SEQ ID NO: 1 or SEQ ID NO: 2. Certain antisense oligonucleotides target the target sequence with one mismatch. These antisense oligonucleotides are presented in the Table below with bold underlining on the mismatched nucleoside.









TABLE 30







Inhibition of K-Ras mRNA by 3-10-3 cEt gapmers targeting SEQ ID NO: 1 and 2
















SEQ ID
SEQ ID
SEQ ID
SEQ ID







NO: 1
NO: 1
NO: 2
NO: 2



SEQ


ISIS
Start
Stop
Start
Stop


%
ID


NO
Site
Site
Site
Site
Mismatches
Sequence
Inhibition
NO


















540737
219
234
7585
7600
0
TACGCCACCAGCTCCA
68
1995





540738
220
235
7586
7601
0
CTACGCCACCAGCTCC
64
1996





540739
221
236
7587
7602
0
CCTACGCCACCAGCTC
86
1997





540740
222
237
7588
7603
0
GCCTACGCCACCAGCT
67
1998





540801
2818
2833
45207
45222
0
GTCGCTAATGGATTGG
85
46





540806
2981
2996
45370
45385
0
GCATGAAGATTTCTGG
52
122





540806
2981
2996
45370
45385
0
GCATGAAGATTTCTGG
85
122





540808
3376
3391
45765
45780
0
ATGTCTCTTGTTTGGG
85
123





651530
1313
1328
43702
43717
0
TGACTAATAGCAGTGG
90
239





651634
2634
2649
45023
45038
0
AATCTTATGGTTAGGG
85
316





651645
2733
2748
45122
45137
0
TATCTGTCAGATTCTC
87
321





651733
3893
3908
46282
46297
0
GGTACTGTGTAAGTCT
90
1352





651972
1213
1228
43602
43617
0
TCATCAGGAAGCCCAT
79
226





651987
1447
1462
43836
43851
0
GCTATTAGGAGTCTTT
89
272





651990
1493
1508
43882
43897
0
GCTATAATAATCCCCA
88
275





652004
1685
1700
44074
44089
0
TTAATGTCACAAGCAG
92
289





652019
1918
1933
44307
44322
0
CTTGATTTGTCAGCAG
92
304





652132
4036
4051
46425
46440
0
ACCATTCAAAGTTCAC
88
975





663454
225
240
7591
7606
0
CTTGCCTACGCCACCA
66
1999





667541
211
226
7577
7592
0
CAGCTCCAACTACCAC
87
2000





667542
212
227
7578
7593
0
CCAGCTCCAACTACCA
81
2001





667543
213
228
7579
7594
0
ACCAGCTCCAACTACC
76
2002





667544
214
229
7580
7595
0
CACCAGCTCCAACTAC
64
2003





667545
215
230
7581
7596
0
CCACCAGCTCCAACTA
70
2004





667546
216
231
7582
7597
0
GCCACCAGCTCCAACT
70
2005





667547
217
232
7583
7598
0
CGCCACCAGCTCCAAC
78
2006





667548
218
233
7584
7599
0
ACGCCACCAGCTCCAA
89
2007





667549
223
238
7589
7604
0
TGCCTACGCCACCAGC
78
2008





667550
224
239
7590
7605
0
TTGCCTACGCCACCAG
82
550





667551
226
241
7592
7607
0
TCTTGCCTACGCCACC
67
2009





667552
227
242
7593
7608
0
CTCTTGCCTACGCCAC
74
2010





667553
211
226
7577
7592
1


A
AGCTCCAACTACCAC

81
2011





667554
212
227
7578
7593
1
CAAGCTCCAACTACCA
82
2012





667555
213
228
7579
7594
1
ACAAGCTCCAACTACC
41
2013





667556
214
229
7580
7595
1
CACAAGCTCCAACTAC
34
2014





667557
215
230
7581
7596
1
CCACAAGCTCCAACTA
49
2015





667558
216
231
7582
7597
1
GCCACAAGCTCCAACT
47
2016





667559
217
232
7583
7598
1
CGCCACAAGCTCCAAC
55
2017





667560
218
233
7584
7599
1
ACGCCACAAGCTCCAA
64
2018





667561
219
234
7585
7600
1
TACGCCACAAGCTCCA
72
2019





667562
220
235
7586
7601
1
CTACGCCACAAGCTCC
60
2020





667563
221
236
7587
7602
1
CCTACGCCACAAGCTC
56
2021





667564
222
237
7588
7603
1
GCCTACGCCACAAGCT
47
2022





667565
223
238
7589
7604
1
TGCCTACGCCACAAGC
47
2023





667566
224
239
7590
7605
1
TTGCCTACGCCACAAG
62
2024





667567
225
240
7591
7606
1
CTTGCCTACGCCACAA
62
2025





667568
226
241
7592
7607
1
TCTTGCCTACGCCACA
73
2026





667569
212
227
7578
7593
1


T
CAGCTCCAACTACCA

79
2027





667570
213
228
7579
7594
1
ATCAGCTCCAACTACC
61
2028





667571
214
229
7580
7595
1
CATCAGCTCCAACTAC
28
2029





667572
215
230
7581
7596
1
CCATCAGCTCCAACTA
36
2030





667573
216
231
7582
7597
1
GCCATCAGCTCCAACT
6
2031





667574
217
232
7583
7598
1
CGCCATCAGCTCCAAC
16
2032





667575
218
233
7584
7599
1
ACGCCATCAGCTCCAA
57
2033





667576
219
234
7585
7600
1
TACGCCATCAGCTCCA
57
2034





667577
220
235
7586
7601
1
CTACGCCATCAGCTCC
58
2035





667578
221
236
7587
7602
1
CCTACGCCATCAGCTC
58
2036





667579
222
237
7588
7603
1
GCCTACGCCATCAGCT
0
2037





667580
223
238
7589
7604
1
TGCCTACGCCATCAGC
40
2038





667581
224
239
7590
7605
1
TTGCCTACGCCATCAG
58
2039





667582
225
240
7591
7606
1
CTTGCCTACGCCATCA
53
2040





667583
226
241
7592
7607
1
TCTTGCCTACGCCATC
58
2041





667584
227
242
7593
7608
1
CTCTTGCCTACGCCAT
73
2042





667585
212
227
7578
7593
1


A
CAGCTCCAACTACCA

83
2043





667586
213
228
7579
7594
1
AACAGCTCCAACTACC
62
2044





667587
214
229
7580
7595
1
CAACAGCTCCAACTAC
28
2045





667588
215
230
7581
7596
1
CCAACAGCTCCAACTA
35
2046





667589
216
231
7582
7597
1
GCCAACAGCTCCAACT
26
2047





667590
217
232
7583
7598
1
CGCCAACAGCTCCAAC
37
2048





667591
218
233
7584
7599
1
ACGCCAACAGCTCCAA
83
2049





667592
219
234
7585
7600
1
TACGCCAACAGCTCCA
77
2050





667593
220
235
7586
7601
1
CTACGCCAACAGCTCC
70
2051





667594
221
236
7587
7602
1
CCTACGCCAACAGCTC
64
2052





667595
222
237
7588
7603
1
GCCTACGCCAACAGCT
29
2053





667596
223
238
7589
7604
1
TGCCTACGCCAACAGC
24
2054





667597
224
239
7590
7605
1
TTGCCTACGCCAACAG
51
2055





667598
225
240
7591
7606
1
CTTGCCTACGCCAACA
45
2056





667599
226
241
7592
7607
1
TCTTGCCTACGCCAAC
63
2057





667600
227
242
7593
7608
1
CTCTTGCCTACGCCAA
72
2058









Example 9: Antisense Inhibition of Human K-Ras in A431 Cells

Antisense oligonucleotides were designed targeting a K-Ras nucleic acid and were tested for their effects on K-Ras mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Cultured A431cells at a density of 5,000 cells per well were treated with 2,000 nM antisense oligonucleotide by free uptake. After a treatment period of approximately 24 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3496_MGB was used to measure mRNA levels. K-Ras mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.


The newly designed chimeric antisense oligonucleotides in the Tables below were designed as 3-10-3 cEt gapmers or deoxy, MOE, and (S)-cEt gapmers. The 3-10-3 cEt gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three nucleosides each. The deoxy, MOE and (S)-cEt oligonucleotides are 16 nucleosides in length wherein the nucleoside have either a MOE sugar modification, an (S)-cEt sugar modification, or a deoxy modification. The ‘Chemistry’ column describes the sugar modifications of each oligonucleotide. ‘k’ indicates an (S)-cEt sugar modification; ‘d’ indicates deoxyribose; the number after ‘d’ indicates the number of deoxynucleosides; and ‘e’ indicates a MOE modification. The internucleoside linkages throughout each gapmer are phosphorothioate (P═S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted human gene sequence. Each gapmer listed in the Tables below is targeted to either SEQ ID NO: 1 or SEQ ID NO: 2. ‘N/A’ indicates that the antisense oligonucleotide does not target that particular gene sequence with 100% complementarity.









TABLE 31







Inhibition of K-Ras mRNA by gapmers targeting SEQ ID NO: 1 and 2
















SEQ ID
SEQ ID
SEQ ID
SEQ ID







NO: 1
NO: 1
NO: 2
NO: 2



SEQ


ISIS
Start
Stop
Start
Stop


%
ID


NO
Site
Site
Site
Site
Sequence
Chemistry
Inhibition
NO


















651987
1447
1462
43836
43851
GCTATTAGGAGTCTTT
kkk-d10-kkk
49
272





651987
1447
1462
43836
43851
GCTATTAGGAGTCTTT
kkk-d10-kkk
62
272





695867
1130
1145
43519
43534
TCCATTTATGTGACTA
kkk-d10-kkk
46
506





695924
1441
1456
43830
43845
AGGAGTCTTTATAGTA
kkk-d10-kkk
65
420





695998
1790
1805
44179
44194
ATGCTGTGAAACTCTC
kkk-d10-kkk
52
658





696017
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kkk-d10-kkk
66
677





696044
2115
2130
44504
44519
GTGTTTATGCAATGTT
kkk-d10-kkk
74
715





696091
2436
2451
44825
44840
AGATTGTGCTGAGCTT
kkk-d10-kkk
29
762





696096
2463
2478
44852
44867
ATGGTGTAACATAGGT
kkk-d10-kkk
47
914





696152
2761
2776
45150
45165
TTAGTGATTAGGTCAA
kkk-d10-kkk
51
924





716764
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kkk-d9-kkke
30
890





716769
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kk-d10-keke
45
892





716774
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kk-d9-kekek
22
894





716779
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kk-d8-kekekk
0
896





716789
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kkk-d8-kekek
12
900





716804
1916
1931
44305
44320
TGATTTGTCAGCAGGA
kk-d8-kekekk
17
906





740162
1128
1143
43517
43532
CATTTATGTGACTAGA
k-d10-kekek
24
2059





740163
1439
1454
43828
43843
GAGTCTTTATAGTAAT
k-d10-kekek
11
2060





740164
1915
1930
44304
44319
GATTTGTCAGCAGGAC
k-d10-kekek
57
2061





740168
1130
1145
43519
43534
TCCATTTATGTGACTA
k-d10-kekek
38
2062





740169
1441
1456
43830
43845
AGGAGTCTTTATAGTA
k-d10-kekek
31
2063





740170
1917
1932
44306
44321
TTGATTTGTCAGCAGG
k-d10-kekek
17
2064





740174
1128
1143
43517
43532
CATTTATGTGACTAGA
k-d9-kekeke
24
2065





740175
1439
1454
43828
43843
GAGTCTTTATAGTAAT
k-d9-kekeke
21
2066





740176
1915
1930
44304
44319
GATTTGTCAGCAGGAC
k-d9-kekeke
32
2067





740180
1130
1145
43519
43534
TCCATTTATGTGACTA
k-d9-kekeke
15
2068





740181
1441
1456
43830
43845
AGGAGTCTTTATAGTA
k-d9-kekeke
24
2069





740182
1917
1932
44306
44321
TTGATTTGTCAGCAGG
k-d9-kekeke
22
2070





740186
1129
1144
43518
43533
CCATTTATGTGACTAG
kk-d10-keke
46
2071





740187
1440
1455
43829
43844
GGAGTCTTTATAGTAA
kk-d10-keke
55
2072





740188
1916
1931
44305
44320
TGATTTGTCAGCAGGA
kk-d10-keke
55
2073





740192
1130
1145
43519
43534
TCCATTTATGTGACTA
kk-d10-keke
22
2074





740193
1441
1456
43830
43845
AGGAGTCTTTATAGTA
kk-d10-keke
40
2075





740197
1129
1144
43518
43533
CCATTTATGTGACTAG
kk-d8-kekekk
0
2076





740198
1440
1455
43829
43844
GGAGTCTTTATAGTAA
kk-d8-kekekk
25
2077





740202
1130
1145
43519
43534
TCCATTTATGTGACTA
kk-d8-kekekk
29
2078





740203
1441
1456
43830
43845
AGGAGTCTTTATAGTA
kk-d8-kekekk
21
2079





740207
1129
1144
43518
43533
CCATTTATGTGACTAG
kk-d9-kdkdk
43
2080





740208
1440
1455
43829
43844
GGAGTCTTTATAGTAA
kk-d9-kdkdk
29
2081





740209
1916
1931
44305
44320
TGATTTGTCAGCAGGA
kk-d9-kdkdk
15
2082





740213
1129
1144
43518
43533
CCATTTATGTGACTAG
kk-d9-kekek
25
2083





740214
1440
1455
43829
43844
GGAGTCTTTATAGTAA
kk-d9-kekek
21
2084





740215
1916
1931
44305
44320
TGATTTGTCAGCAGGA
kk-d9-kekek
45
2085





740219
1130
1145
43519
43534
TCCATTTATGTGACTA
kk-d9-kekek
32
2086





740220
1441
1456
43830
43845
AGGAGTCTTTATAGTA
kk-d9-kekek
31
2087





740224
1128
1143
43517
43532
CATTTATGTGACTAGA
kk-d8-kekekk
20
2088





740225
1439
1454
43828
43843
GAGTCTTTATAGTAAT
kk-d8-kekekk
0
2089





740226
1915
1930
44304
44319
GATTTGTCAGCAGGAC
kk-d8-kekekk
0
2090





740230
1130
1145
43519
43534
TCCATTTATGTGACTA
kkk-d8-kdkdk
16
2091





740231
1441
1456
43830
43845
AGGAGTCTTTATAGTA
kkk-d8-kdkdk
30
2092





740232
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kkk-d8-kdkdk
19
2093





740236
1130
1145
43519
43534
TCCATTTATGTGACTA
kkk-d8-kekek
0
2094





740237
1441
1456
43830
43845
AGGAGTCTTTATAGTA
kkk-d8-kekek
22
2095





740241
1129
1144
43518
43533
CCATTTATGTGACTAG
kkk-d8-kekek
36
2096





740242
1440
1455
43829
43844
GGAGTCTTTATAGTAA
kkk-d8-kekek
0
2097





740243
1916
1931
44305
44320
TGATTTGTCAGCAGGA
kkk-d8-kekek
41
2098





740247
1130
1145
43519
43534
TCCATTTATGTGACTA
kkk-d9-keke
8
2099





740248
1441
1456
43830
43845
AGGAGTCTTTATAGTA
kkk-d9-keke
31
2100





740249
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kkk-d9-keke
40
2101





740253
1129
1144
43518
43533
CCATTTATGTGACTAG
kkk-d9-kkke
49
2102





740254
1440
1455
43829
43844
GGAGTCTTTATAGTAA
kkk-d9-kkke
41
2103





740255
1916
1931
44305
44320
TGATTTGTCAGCAGGA
kkk-d9-kkke
63
2104





740259
1130
1145
43519
43534
TCCATTTATGTGACTA
kkk-d9-kkke
23
2105





740260
1441
1456
43830
43845
AGGAGTCTTTATAGTA
kkk-d9-kkke
6
2106





740273
1788
1803
44177
44192
GCTGTGAAACTCTCTA
k-d10-kekek
41
2107





740275
1790
1805
44179
44194
ATGCTGTGAAACTCTC
k-d10-kekek
18
2108





740277
1788
1803
44177
44192
GCTGTGAAACTCTCTA
k-d9-kekeke
2
2109





740279
1790
1805
44179
44194
ATGCTGTGAAACTCTC
k-d9-kekeke
24
2110





740281
1789
1804
44178
44193
TGCTGTGAAACTCTCT
kk-d10-keke
30
2111





740283
1790
1805
44179
44194
ATGCTGTGAAACTCTC
kk-d10-keke
35
2112





740285
1788
1803
44177
44192
GCTGTGAAACTCTCTA
kk-d8-kekekk
16
2113





740287
1789
1804
44178
44193
TGCTGTGAAACTCTCT
kk-d8-kekekk
5
2114





740289
1790
1805
44179
44194
ATGCTGTGAAACTCTC
kk-d8-kekekk
25
2115





740291
1789
1804
44178
44193
TGCTGTGAAACTCTCT
kk-d9-kdkdk
26
2116





740293
1789
1804
44178
44193
TGCTGTGAAACTCTCT
kk-d9-kekek
0
2117





740295
1790
1805
44179
44194
ATGCTGTGAAACTCTC
kk-d9-kekek
16
2118





740297
1790
1805
44179
44194
ATGCTGTGAAACTCTC
kkk-d9-keke
2
2119





740299
1789
1804
44178
44193
TGCTGTGAAACTCTCT
kkk-d9-kkke
23
2120





740301
1790
1805
44179
44194
ATGCTGTGAAACTCTC
kkk-d9-kkke
37
2121
















TABLE 32







Inhibition of K-Ras mRNA by gapmers targeting SEQ ID NO: 1 and 2
















SEQ ID
SEQ ID
SEQ ID
SEQ ID







NO: 1
NO: 1
NO: 2
NO: 2



SEQ


ISIS
Start
Stop
Start
Stop


%
ID


NO
Site
Site
Site
Site
Sequence
Chemistry
Inhibition
NO


















651987
1447
1462
43836
43851
GCTATTAGGAGTCTTT
kkk-d10-kkk
55
272





651987
1447
1462
43836
43851
GCTATTAGGAGTCTTT
kkk-d10-kkk
65
272





695867
1130
1145
43519
43534
TCCATTTATGTGACTA
kkk-d10-kkk
52
506





695924
1441
1456
43830
43845
AGGAGTCTTTATAGTA
kkk-d10-kkk
57
420





695998
1790
1805
44179
44194
ATGCTGTGAAACTCTC
kkk-d10-kkk
39
658





696017
1917
1932
44306
44321
TTGATTTGTCAGCAGG
kkk-d10-kkk
74
677





696044
2115
2130
44504
44519
GTGTTTATGCAATGTT
kkk-d10-kkk
60
715





696091
2436
2451
44825
44840
AGATTGTGCTGAGCTT
kkk-d10-kkk
11
762





696096
2463
2478
44852
44867
ATGGTGTAACATAGGT
kkk-d10-kkk
52
914





696152
2761
2776
45150
45165
TTAGTGATTAGGTCAA
kkk-d10-kkk
52
924





740165
2113
2128
44502
44517
GTTTATGCAATGTTAA
k-d10-kekek
37
2122





740166
2434
2449
44823
44838
ATTGTGCTGAGCTTGA
k-d10-kekek
34
2123





740167
2461
2476
44850
44865
GGTGTAACATAGGTTA
k-d10-kekek
64
2124





740171
2115
2130
44504
44519
GTGTTTATGCAATGTT
k-d10-kekek
53
2125





740172
2436
2451
44825
44840
AGATTGTGCTGAGCTT
k-d10-kekek
7
2126





740173
2463
2478
44852
44867
ATGGTGTAACATAGGT
k-d10-kekek
47
2127





740177
2113
2128
44502
44517
GTTTATGCAATGTTAA
k-d9-kekeke
31
2128





740178
2434
2449
44823
44838
ATTGTGCTGAGCTTGA
k-d9-kekeke
18
2129





740179
2461
2476
44850
44865
GGTGTAACATAGGTTA
k-d9-kekeke
57
2130





740183
2115
2130
44504
44519
GTGTTTATGCAATGTT
k-d9-kekeke
41
2131





740184
2436
2451
44825
44840
AGATTGTGCTGAGCTT
k-d9-kekeke
0
2132





740185
2463
2478
44852
44867
ATGGTGTAACATAGGT
k-d9-kekeke
39
2133





740189
2114
2129
44503
44518
TGTTTATGCAATGTTA
kk-d10-keke
23
2134





740190
2435
2450
44824
44839
GATTGTGCTGAGCTTG
kk-d10-keke
19
2135





740191
2462
2477
44851
44866
TGGTGTAACATAGGTT
kk-d10-keke
67
2136





740194
2115
2130
44504
44519
GTGTTTATGCAATGTT
kk-d10-keke
73
2137





740195
2436
2451
44825
44840
AGATTGTGCTGAGCTT
kk-d10-keke
40
2138





740196
2463
2478
44852
44867
ATGGTGTAACATAGGT
kk-d10-keke
65
2139





740199
2114
2129
44503
44518
TGTTTATGCAATGTTA
kk-d8-kekekk
56
2140





740200
2435
2450
44824
44839
GATTGTGCTGAGCTTG
kk-d8-kekekk
14
2141





740201
2462
2477
44851
44866
TGGTGTAACATAGGTT
kk-d8-kekekk
55
2142





740204
2115
2130
44504
44519
GTGTTTATGCAATGTT
kk-d8-kekekk
9
2143





740205
2436
2451
44825
44840
AGATTGTGCTGAGCTT
kk-d8-kekekk
0
2144





740206
2463
2478
44852
44867
ATGGTGTAACATAGGT
kk-d8-kekekk
40
2145





740210
2114
2129
44503
44518
TGTTTATGCAATGTTA
kk-d9-kdkdk
46
2146





740211
2435
2450
44824
44839
GATTGTGCTGAGCTTG
kk-d9-kdkdk
57
2147





740212
2462
2477
44851
44866
TGGTGTAACATAGGTT
kk-d9-kdkdk
57
2148





740216
2114
2129
44503
44518
TGTTTATGCAATGTTA
kk-d9-kekek
56
2149





740217
2435
2450
44824
44839
GATTGTGCTGAGCTTG
kk-d9-kekek
45
2150





740218
2462
2477
44851
44866
TGGTGTAACATAGGTT
kk-d9-kekek
62
2151





740221
2115
2130
44504
44519
GTGTTTATGCAATGTT
kk-d9-kekek
65
2152





740222
2436
2451
44825
44840
AGATTGTGCTGAGCTT
kk-d9-kekek
38
2153





740223
2463
2478
44852
44867
ATGGTGTAACATAGGT
kk-d9-kekek
53
2154





740227
2113
2128
44502
44517
GTTTATGCAATGTTAA
kk-d8-kekekk
57
2155





740228
2434
2449
44823
44838
ATTGTGCTGAGCTTGA
kk-d8-kekekk
31
2156





740229
2461
2476
44850
44865
GGTGTAACATAGGTTA
kk-d8-kekekk
54
2157





740233
2115
2130
44504
44519
GTGTTTATGCAATGTT
kkk-d8-kdkdk
65
2158





740234
2436
2451
44825
44840
AGATTGTGCTGAGCTT
kkk-d8-kdkdk
42
2159





740235
2463
2478
44852
44867
ATGGTGTAACATAGGT
kkk-d8-kdkdk
36
2160





740238
2115
2130
44504
44519
GTGTTTATGCAATGTT
kkk-d8-kekek
66
2161





740239
2436
2451
44825
44840
AGATTGTGCTGAGCTT
kkk-d8-kekek
26
2162





740240
2463
2478
44852
44867
ATGGTGTAACATAGGT
kkk-d8-kekek
43
2163





740244
2114
2129
44503
44518
TGTTTATGCAATGTTA
kkk-d8-kekek
52
2164





740245
2435
2450
44824
44839
GATTGTGCTGAGCTTG
kkk-d8-kekek
37
2165





740246
2462
2477
44851
44866
TGGTGTAACATAGGTT
kkk-d8-kekek
67
2166





740250
2115
2130
44504
44519
GTGTTTATGCAATGTT
kkk-d9-keke
66
2167





740251
2436
2451
44825
44840
AGATTGTGCTGAGCTT
kkk-d9-keke
43
2168





740252
2463
2478
44852
44867
ATGGTGTAACATAGGT
kkk-d9-keke
43
2169





740256
2114
2129
44503
44518
TGTTTATGCAATGTTA
kkk-d9-kkke
72
2170





740257
2435
2450
44824
44839
GATTGTGCTGAGCTTG
kkk-d9-kkke
30
2171





740258
2462
2477
44851
44866
TGGTGTAACATAGGTT
kkk-d9-kkke
56
2172





740261
2115
2130
44504
44519
GTGTTTATGCAATGTT
kkk-d9-kkke
59
2173





740262
2436
2451
44825
44840
AGATTGTGCTGAGCTT
kkk-d9-kkke
42
2174





740263
2463
2478
44852
44867
ATGGTGTAACATAGGT
kkk-d9-kkke
47
2175





740274
2759
2774
45148
45163
AGTGATTAGGTCAAAT
k-d10-kekek
21
2176





740276
2761
2776
45150
45165
TTAGTGATTAGGTCAA
k-d10-kekek
12
2177





740278
2759
2774
45148
45163
AGTGATTAGGTCAAAT
k-d9-kekeke
12
2178





740280
2761
2776
45150
45165
TTAGTGATTAGGTCAA
k-d9-kekeke
0
2179





740282
2760
2775
45149
45164
TAGTGATTAGGTCAAA
kk-d10-keke
34
2180





740284
2761
2776
45150
45165
TTAGTGATTAGGTCAA
kk-d10-keke
22
2181





740286
2759
2774
45148
45163
AGTGATTAGGTCAAAT
kk-d8-kekekk
46
2182





740288
2760
2775
45149
45164
TAGTGATTAGGTCAAA
kk-d8-kekekk
42
2183





740290
2761
2776
45150
45165
TTAGTGATTAGGTCAA
kk-d8-kekekk
33
2184





740292
2760
2775
45149
45164
TAGTGATTAGGTCAAA
kk-d9-kdkdk
25
2185





740294
2760
2775
45149
45164
TAGTGATTAGGTCAAA
kk-d9-kekek
51
2186





740296
2761
2776
45150
45165
TTAGTGATTAGGTCAA
kk-d9-kekek
48
2187





740298
2761
2776
45150
45165
TTAGTGATTAGGTCAA
kkk-d9-keke
32
2188





740300
2760
2775
45149
45164
TAGTGATTAGGTCAAA
kkk-d9-kkke
43
2189





740302
2761
2776
45150
45165
TTAGTGATTAGGTCAA
kkk-d9-kkke
53
2190









Example 10: Dose-Dependent Inhibition of Human K-Ras mRNA Expression in A431 Cells

Antisense oligonucleotides described in the studies above were tested at various doses in A431 cells. Isis No. 549148 (3-10-3 cEt gapmer, GGCTACTACGCCGTCA, designated herein as SEQ ID NO: 2191) or ISIS 141923 (5-10-5 MOE gapmer, CCTTCCCTGAAGGTTCCTCC, designated herein as SEQ ID NO: 2192), control oligonucleotides that do not target K-Ras, were included in each experiment as negative controls.


Study 1

Cells were plated at a density of 5,000 cells per well. Cells were incubated with concentrations of antisense oligonucleotide specified in the tables below. Each table represents a separate experiment. After approximately 72 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human K-Ras primer probe set RTS3496_MGB, described above, was used to measure mRNA levels. K-Ras mRNA levels were normalized to beta-actin mRNA levels or RIBOGREEN©. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.


For some antisense oligonucleotides, the half maximal inhibitory concentration (IC50) is also presented. As illustrated in the tables below, oligonucleotides were successfully taken up by the cells and K-Ras mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.









TABLE 33







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides









ISIS.
Inhibition (%)
IC50













No
12.3 nM
37.0 nM
111 nM
333 nM
1000 nM
(μM)
















549148
10
10
8
9
18
>1000


651530
24
64
84
92
93
24


651555
23
58
73
86
88
30


651587
31
68
84
89
91
22


651987
51
79
86
90
93
12


695785
25
58
75
86
88
30


695823
24
46
68
82
89
74


695980
44
74
86
92
95
18


695995
29
61
81
91
93
24
















TABLE 34







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides








ISIS
Inhibition (%)












No.
49.4 nM
148.1 nM
444.4 nM
1333 nM
4000 nM















540806
0
1
54
73
80


651530
5
27
62
82
90


651634
0
11
59
78
86


651645
0
11
26
65
79


651733
0
0
25
44
56


651760
0
10
61
79
87


651972
1
6
38
60
80


651987
2
25
71
86
89


651990
0
18
46
65
79


652004
0
9
55
82
90


652019
0
14
53
75
85


652028
0
0
31
73
81


652034
0
0
35
61
78


652100
0
18
47
69
80


652132
0
23
61
78
88
















TABLE 35







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides








Isis
Inhibition (%)












No.
62 nM
185 nM
556 nM
1667 nM
5000 nM















141923
0
0
4
0
22


651588
8
13
22
60
75


651987
10
33
50
77
83


651990
4
1
24
55
68


652028
17
5
39
59
72


716583
9
34
46
45
70


716587
18
18
45
61
74


716588
7
24
46
67
77


716600
22
30
56
79
83


716608
22
36
53
64
75


716612
20
28
45
66
75


716625
5
28
38
61
82


716628
2
19
58
72
81


716655
13
21
40
53
79


716656
11
27
46
65
83


716769
8
25
48
62
83
















TABLE 36







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides









Isis
Inhibition (%)
IC50












No.
148 nM
444 nM
1333 nM
4000 nM
(μM)















540806
15
14
55
62
1.7


651587
6
32
63
76
1.0


651990
5
23
34
59
2.7


652004
3
29
62
73
1.1


663455
0
23
38
47
3.7


695815
28
26
40
58
2.7


695909
0
18
32
50
4.0


695940
0
11
32
55
3.2


695958
0
8
33
36
8.8


695976
3
26
57
73
1.2


695977
14
19
44
62
2.1


695980
17
40
60
78
0.8


695981
1
28
51
65
1.6


695995
13
22
52
64
1.6


696105
7
22
45
58
2.3


696108
3
40
47
65
1.5


696117
2
17
41
59
2.4


696160
10
7
15
33
>4


696176
2
0
0
10
>4


696289
3
0
0
2
>4
















TABLE 37







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides








ISIS
Inhibition (%)












No.
19.5 nM
78.1 nM
312.5 nM
1250 nM
5000 nM















141923
10
15
12
0
14


651530
59
86
93
95
96


651555
49
83
93
96
96


651587
53
85
93
95
96


651987
73
91
94
95
95


695785
40
82
94
96
97


695980
52
85
95
96
97


695995
53
82
93
95
96
















TABLE 38







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides










Inhibition (%)














ISIS
19.5
78.1
312.5
1250
5000
IC50


No.
nM
nM
nM
nM
nM
(μM)
















141923
0
7
3
0
2
>5


651530
24
55
82
90
93
0.07


651555
13
62
80
91
93
0.09


651587
17
55
76
88
93
0.10


651987
39
72
87
91
93
0.02


695785
20
40
71
84
90
0.13


695980
31
67
86
93
96
0.04


695995
18
54
78
8
92
0.09
















TABLE 39







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides









ISIS
Inhibition (%)
IC50













No.
12.3 nM
37.0 nM
111 nM
333 nM
1000 nM
(μM)
















549148
0
0
0
0
0
>1000


651987
19
41
60
80
92
60


696018
23
66
73
80
83
30


716744
39
62
76
83
88
20


716749
28
51
68
75
81
35


716754
27
55
60
70
76
40


746273
23
52
67
77
81
35


746274
29
49
65
70
74
35


746275
62
84
91
95
95
9


746276
49
70
81
87
88
12


746277
7
26
38
46
57
450


746278
22
36
46
50
64
200


746279
37
57
74
77
89
25


746280
47
61
74
84
88
15


746281
0
36
50
69
73
100


746282
20
35
50
70
70
100


746283
6
24
30
54
60
300


746284
21
47
60
72
78
45


746285
37
60
72
79
81
25


746286
48
72
84
90
92
12


746287
32
62
71
80
82
25
















TABLE 40







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides









Isis
Inhibition (%)
IC50












No.
148 nM
444 nM
1333 nM
4000 nM
(μM)















141923
0
0
0
0
NA


651499
22
49
63
73
0.7


651530
44
63
78
89
0.2


651541
31
61
71
80
0.4


651555
30
59
75
85
0.4


651603
36
59
70
80
0.3


651634
22
54
69
80
0.5


651635
31
52
65
74
0.5


651704
26
35
43
56
2.3


651795
22
47
59
74
0.7


651837
3
15
27
38
5


651987
42
70
85
88
0.2


695785
35
63
75
79
0.3


695809
32
52
71
80
0.4


695823
19
41
63
73
0.8


695847
25
55
77
87
0.4


695852
20
33
49
65
1.4


695867
59
79
86
92
0.04


695883
17
18
43
57
2.7


695885
21
55
69
84
0.5


695912
45
69
72
82
0.1


695917
32
55
73
76
0.4


695924
44
65
73
83
0.2


695930
31
54
75
82
0.4


695998
37
54
74
80
0.3


696012
31
69
77
89
0.3


696013
33
64
73
83
0.3


696017
55
65
85
90
0.1


696018
37
58
73
80
0.3


696026
34
68
61
76
0.3


696043
28
43
69
81
0.6


696044
55
76
85
90
0.1


696090
43
64
78
83
0.2


696091
24
38
44
66
1.4


696096
23
62
74
82
0.4


696137
42
66
74
83
0.2


696152
27
61
73
81
0.4


696167
0
55
67
77
0.8


696176
0
0
11
21
>4


696219
7
37
51
63
1.5


696241
14
18
15
32
5


696271
34
53
69
76
0.4


696276
26
39
52
63
1.2


696287
29
40
57
72
0.8


696289
2
13
7
7
>4


696299
29
30
50
62
1.5


696317
15
49
66
75
0.7


696318
14
38
47
60
1.7


696355
16
38
53
65
1.2


696356
29
33
55
64
1.2


696358
28
40
60
69
0.8


696377
15
42
59
75
0.9


696495
18
48
52
71
0.9


696554
3
28
47
60
1.9


696556
25
46
62
73
0.7
















TABLE 41







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides









Isis
Inhibition (%)
IC50












No.
185 nM
556 nM
1667 nM
5000 nM
(μM)















141923
0
0
0
0
>10,000


651987
16
47
67
77
1.3


695867
29
59
65
78
N/A


695924
14
42
58
77
1.5


695998
26
42
47
72
N/A


696017
41
60
77
87
NA


696044
31
52
77
89
0.9


696096
17
36
59
75
N/A


696152
32
56
68
82
N/A


740164
16
46
62
78
N/A


740167
15
39
62
80
1.0


740179
1
35
56
71
1.5


740187
27
45
57
82
N/A


740188
31
48
67
8
N/A


740191
28
62
74
87
N/A


740194
44
71
83
92
N/A


740196
22
39
60
69
1.1


740199
22
47
68
76
0.8


740201
11
33
58
68
1.4


740211
0
17
48
58
2.7


740212
13
33
63
75
1.2


740216
50
46
69
82
0.3


740218
21
45
66
83
0.8


740221
22
54
77
83
0.6


740227
27
46
45
79
1


740229
0
2
40
58
3.5


740233
27
47
73
81
0.7


740238
33
55
69
78
NA


740246
31
53
79
82
NA


740250
30
55
80
85
0.5


740253
28
47
53
66
NA


740255
26
52
70
80
NA


740256
43
57
78
90
NA


740258
21
46
69
80
0.8


740261
19
63
79
88
0.5
















TABLE 42







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides









Isis
Inhibition (%)
IC50













No.
62 nM
185 nM
556 nM
1667 nM
5000 nM
(μM)
















141923
2
0
0
0
0
>5


651588
12
0
21
47
69
2.2


651634
11
2
2
35
52
>5


651653
3
2
37
47
71
1.4


651987
0
26
44
58
77
1.0


651634
11
2
2
35
52
>5


651653
3
25
37
47
71
1.4


652028
3
3
19
43
60
3.2


716583
0
6
5
31
65
4.2


716587
0
9
17
43
64
2.3


716588
0
13
35
52
71
1.5


716600
0
14
35
53
72
1.4


716608
0
0
27
45
70
2


716612
16
3
34
39
69
2.2


716625
0
3
29
40
64
2.5


716628
0
0
36
58
74
1.3


716655
0
0
27
53
68
2


716656
0
9
21
46
67
2


716673
3
7
29
47
67
2


716674
1
0
35
61
78
1.2


716675
8
8
30
56
68
1.6


716683
19
0
23
43
60
2.7


716716
0
0
26
48
68
2


716728
1
28
24
46
71
1.7


716758
10
0
36
58
67
1.6


716763
0
10
24
45
66
2


716772
0
19
32
50
67
1.7


716782
0
0
19
31
39
>5


716807
3
5
7
9
16
>5









Study 2

A431 cells were plated at a density of 10,000 cells per well. Cells were incubated with concentrations of antisense oligonucleotide specified in the tables below. Each table represents a separate experiment. After approximately 48 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. Human K-Ras primer probe set RTS3496_MGB, described above, was used to measure mRNA levels. K-Ras mRNA levels were normalized to RIBOGREEN©. Results are presented as percent inhibition of K-Ras, relative to untreated control cells. A negative value for percent inhibition indicates that the K-Ras mRNA level was higher than in untreated cells.


For some antisense oligonucleotides, the half maximal inhibitory concentration (IC50) is also presented. As illustrated in the tables below, oligonucleotides were successfully taken up by the cells and K-Ras mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.









TABLE 43







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides








Isis
Inhibition (%)












No.
7.81 nM
31.25 nM
125.0 nM
500.0 nM
2000 nM















141923
0
0
0
0
0


651987
30
39
68
87
93


696018
24
41
64
87
93


696044
29
54
83
94
97


716600
20
45
70
89
94


716655
2
20
49
79
92


740233
29
46
70
86
93


746275
25
47
65
85
91
















TABLE 44







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides










Inhibition (%)














Isis
7.81
31.25
125.0
500.0
2000
IC50


No.
nM
nM
nM
nM
nM
(μM)
















141923
2
1
0
3
4
>2


651987
18
30
67
87
93
0.06


696018
9
26
57
80
90
0.11


696044
15
44
83
92
95
0.04


716600
13
36
67
88
94
0.06


716655
10
23
53
82
92
0.11


740233
7
32
58
80
89
0.09


746275
6
24
61
84
92
0.09









Study 3

Hep3B cells were plated at a density of 20,000 cells per well. Cells were transfected using electroporation with increasing concentrations of antisense oligonucleotide, as shown below. After a treatment period of approximately 24 hours, RNA was isolated from the cells and human K-Ras mRNA levels were measured by quantitative real-time PCR. Human K-Ras primer probe set RTS3496_MGB, described above, was used to measure mRNA levels. K-Ras mRNA levels were normalized to Ribogreen. Results are presented as percent inhibition of K-Ras, relative to untreated control cells.


The half maximal inhibitory concentration (IC50) is also presented. As illustrated in the table below, K-Ras mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.









TABLE 45







Dose-dependent inhibition of human K-Ras mRNA expression


by electroporation of ISIS oligonucleotides










Inhibition (%)














ISIS
61.7
185.2
555.6
1666.7
5000.0
IC50


No.
nM
nM
nM
nM
nM
(μM)
















540806
14
36
67
75
90
0.4


651530
25
39
66
82
92
0.3


651551
38
65
80
87
93
0.1


651586
28
51
73
86
91
0.2


651595
15
40
65
80
37
0.3


651634
14
36
57
74
90
0.4


651645
9
43
67
83
84
0.4


651646
44
65
79
90
93
0.1


651647
12
40
61
83
89
0.4


651672
2
15
47
69
83
0.8


651733
16
42
66
79
86
0.3


651741
14
34
57
82
88
0.4


651760
8
37
56
74
89
0.5


651923
6
27
54
84
95
0.5


651951
13
30
55
76
89
0.5


651953
19
40
64
83
89
0.3


651959
9
31
66
79
85
0.4


651972
25
33
58
82
86
0.4


651987
35
46
66
82
90
0.2


651990
18
36
64
84
91
0.3


652002
13
20
53
77
85
0.6


652004
18
48
67
85
91
0.3


652019
21
37
68
84
89
0.3


652028
17
41
58
77
89
0.4


652034
11
36
63
79
87
0.4


652050
21
34
63
79
87
0.4


652100
2
32
58
72
88
0.5


652101
16
25
52
72
86
0.6


652132
19
42
72
76
83
0.3


652157
0
22
54
77
88
0.6









Example 11: Dose-Dependent Inhibition of Antisense Oligonucleotides Targeting K-Ras in Cynomolgus Monkey Primary Hepatocytes

At the time this study was undertaken, the cynomolgus monkey genomic sequence was not available in the National Center for Biotechnology Information (NCBI) database; therefore, cross-reactivity with the cynomolgus monkey gene sequence could not be confirmed. Instead, the sequences of the ISIS antisense oligonucleotides used in the cynomolgus monkeys were compared to a rhesus monkey genomic DNA sequence for complementarity. It is expected that ISIS oligonucleotides with complementarity to the rhesus monkey sequence are fully cross-reactive with the cynomolgus monkey sequence as well. The human antisense oligonucleotides tested had at most one mismatch with the rhesus genomic sequence (the complement of GENBANK Accession NC_007868.1 truncated from nucleotide 25479955 to 25525362, designated herein as SEQ ID NO: 2194). In the table below, the number of mismatches of the oligonucleotides with respect to the rhesus genomic sequence is indicated as “# MM.”













TABLE 46









SEQ





#
ID


Isis No.
Sequence
Chemistry
MM
NO.



















141923
CCTTCCCTGAAGGTTCCTCC
5-10-5 MOE

2192





651987
GCTATTAGGAGTCTTT
kkk-10-kkk
0
272





696018
CTCTTGATTTGTCAGC
kkk-10-kkk
0
678





696044
GTGTTTATGCAATGTT
kkk-10-kkk
1
715





716600
CCATTTATGTGACTAG
kkk-10-kkk
1
790





716655
TGTTTATGCAATGTTA
kkk-10-kkk
1
854





740233
GTGTTTATGCAATGTT
kkk-8-kdkdk
1
2158





746275
TCTTGATTTGTCAGCA
kk-10-keke
0
804









Antisense oligonucleotides described above were tested at various doses in cynomolgus monkey hepatocytes for ability to reduce K-Ras expression. Cryopreserved cynomolgus monkey primary hepatocytes were plated at a density of 35,000 cells per well and transfected using electroporation with various concentrations of antisense oligonucleotide, as specified in the Tables below. After a treatment period of approximately 24 hours, the cells were washed and lysed, and RNA was isolated. Monkey K-Ras mRNA levels were measured by quantitative real-time PCR, using primer probe set RTS3496_MGB, as described above. K-Ras mRNA target levels were adjusted according to total RNA content, as measured by RIBOGREEN®. In the tables below, results are presented as percent inhibition of K-Ras, relative to untreated control cells. As used herein, a value of ‘0’ indicates that treatment with the antisense oligonucleotide did not inhibit mRNA levels.









TABLE 47







Dose dependent inhibition of monkey K-Ras mRNA expression


by electroporation of ISIS oligonucleotides into


in primary cynomolgus monkey hepatocytes










Inhibition (%)














ISIS
19.5
78.1
312.5
1250
5000
IC50


No.
nM
nM
nM
nM
nM
(μM)
















141923
0
4
0
0
0
>5


651530
37
64
80
83
84
0.03


651555
26
63
68
90
94
0.07


651587
48
69
75
85
78
0.01


651987
50
75
81
88
87
0.01


695785
14
40
72
81
83
0.2


695980
0
0
17
28
50
6


695995
33
46
70
74
90
0.1
















TABLE 48







Dose dependent inhibition of monkey K-Ras mRNA expression


by electroporation of ISIS oligonucleotides into


in primary cynomolgus monkey hepatocytes










Inhibition (%)














Isis
7.81
31.25
125.0
500.0
2000
IC50


No.
nM
nM
nM
nM
nM
(μM)
















141923
2
0
2
0
0
>2


651987
0
20
64
83
91
0.09


696018
11
26
57
83
91
0.10


696044
0
1
0
0
0
>2


716600
2
19
52
79
91
0.14


716655
0
0
0
0
4
>2


740233
4
0
0
0
0
>2


746275
8
22
51
78
88
0.13









Example 12: Tolerability of Antisense Oligonucleotides Targeting Human K-Ras mRNA in Lean BALB/c Mice
Treatment

Six-to-seven week old male BALB/c mice (Jackson Laboratory, Bar Harbor, Me.) were injected subcutaneously two times a week for four weeks (for a total of 8 treatments) at 100 mg/kg/week with the antisense oligonucleotides or with saline. Each treatment group consisted of 4 animals. The mice were sacrificed 72 hours following the final administration.


Plasma Chemistry Markers

To evaluate the effect of antisense oligonucleotides on liver and kidney function, plasma levels of ALT transaminase, albumin, blood urea nitrogen (BUN) and total bilirubin were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.). The results are presented in the Table below. Antisense oligonucleotides causing changes in the levels of any of the liver or kidney function markers outside the expected range for antisense oligonucleotides were excluded from further studies.









TABLE 49







Plasma chemistry markers in male BALB/c mice











ISIS
ALT
Albumin
BUN
T. Bilirubin


No.
(U/L)
(g/dL)
(mg/dL)
(mg/dL)














PBS
65
2.8
25
0.17


549148
57
2.8
26
0.27


651530
143
2.7
26
0.22


651551
5927
3.3
26
4.62


651634
56
2.7
29
0.21


651645
4944
3.1
27
0.25


651646
1449
1.8
25
0.27


651647
2061
2.7
23
0.25


651672
4070
2.9
31
0.48


651923
4157
3.1
21
0.36


651972
2105
3.3
29
0.22


651987
71
2.7
29
0.16


651990
32
2.5
30
0.18


652002
106
3.2
29
0.20


652004
145
3.0
31
0.19


652019
5205
3.6
24
0.41


652028
3712
3.8
17
4.43


652034
1167
3.6
27
0.32


652101
48
3.1
23
0.22


652132
1399
3.3
28
0.22


652157
68
2.9
24
0.23









Body and Organ Weights

Body weights of BALB/c mice were measured at days 1 and 27, and the average body weight for each group is presented in the Table below. Liver, spleen and kidney weights were measured at the end of the study, and are presented in the Table below. Antisense oligonucleotides that caused any changes in organ weights outside the expected range for antisense oligonucleotides were excluded from further studies.









TABLE 50







Body and organ weights (in grams)














ISIS

body (g)
kidney
liver
spleen














No.
Day 1
Day 27
(g)
(g)
(g)







PBS
24
25
0.4
1.7
0.09



549148
24
27
0.5
1.5
0.10



651530
23
27
0.5
1.7
0.13



651551
24
23
0.4
1.7
0.09



651634
24
27
0.3
1.7
0.12



651645
24
27
0.4
1.4
0.14



651646
24
21
0.4
1.4
0.18



651647
24
25
0.4
1.5
0.18



651672
23
20
0.4
1.4
0.07



651733
24
N/A
N/A
N/A
N/A



651760
23
N/A
N/A
N/A
N/A



651923
23
25
0.3
1.9
0.15



651972
24
25
0.4
1.5
0.11



651987
24
27
0.4
1.9
0.11



651990
24
28
0.4
2.2
0.12



652002
24
29
0.4
1.8
0.13



652004
23
27
0.4
1.5
0.10



652019
24
24
0.4
1.8
0.14



652028
23
18
0.3
1.0
0.05



652034
23
25
0.4
1.4
0.11



652100
25
N/A
N/A
N/A
N/A



652101
23
28
0.5
1.4
0.10



652132
25
27
0.4
1.8
0.09



652157
23
28
0.5
1.7
0.13










Example 13: Pharmacodynamics and Toxicological Profile of Antisense Oligonucleotides Targeting K-Ras in an A431 Epidermoid Carcinoma Xenograft Model

Female, 6-8 week old NCr nude mice (Taconic Biosciences, Hudson, N.Y.) were inoculated with human epidermoid carcinoma A431 cells and treated with an antisense oligonucleotide described in the tables above or with PBS. Effects of the oligonucleotides on K-Ras mRNA expression in the tumor and tolerability in the mice were evaluated.


Treatment

The mice each were inoculated with 5×106 A431 cells in 50% Matrigel (BD Bioscience) for tumor development. Antisense oligonucleotide treatment started at day 10-14 after tumor inoculation when the mean tumor size reached approximately 200 mm3. The mice were subcutaneously injected with 50 mg/kg three times per week (150 mg/kg/week) for three weeks, for a total of nine doses, with an antisense oligonucleotide or PBS. The body weights of the mice were measured once per week. Three weeks after the start of treatment, the mice were sacrificed, K-Ras mRNA levels in the tumor, spleen weights, and body weights were measured.


Study 1
RNA Analysis

RNA was extracted from tumor tissue for real-time PCR analysis and measurement of human K-Ras mRNA levels using primer probe set RTS3496_MGB, described herein above. Results are presented as average percent inhibition of K-Ras for each treatment group, relative to PBS control, normalized to glyceraldehyde-3-phosphate dehydrogenase or beta-actin mRNA levels. As shown in the Tables below, treatment with Isis antisense oligonucleotides resulted in reduction of human K-Ras mRNA in comparison to the PBS control.









TABLE 51







Antisense mediated inhibition of human K-Ras


mRNA expression in A431 xenograft model










ISIS
Inhibition



No.
(%)














651499
39



651530
55



651541
32



651555
51



651587
51



651603
41



651634
37



651795
46



651987
50



651990
46



652004
47



695815
24



695823
54



695847
50



695867
68



695912
34



695930
45



695976
42



695980
56



695981
35



695995
47



696026
35



696317
40



696816
31










Body Weight Measurements

Body weights were measured throughout the treatment period. The data is presented in the Table below as the average for each treatment group at various time points. Spleen weights were measured at the end of the study and are presented in the Table below.









TABLE 52







Body and spleen weight measurements in A431 xenograft model









Isis
Body weight (g)
Spleen (g)












No.
Day 1
Day 6
Day 12
Day 19
Day 20















PBS
21.5
23.0
23.4
22.9
0.09


481464
21.4
22.4
22.0
22.4
0.11


549148
21.8
23.0
22.1
23.0
0.10


560131
19.9
20.4
20.2
19.9
0.10


651499
20.8
21.9
22.2
22.5
0.13


651530
21.1
22.5
23.1
22.1
0.10


651541
20.5
21.4
21.4
21.0
0.09


651555
21.5
22.2
22.4
22.1
0.09


651587
21.5
22.6
22.6
20.8
0.11


651603
22.7
24.7
24.8
22.0
0.36


651634
20.6
21.9
21.9
21.9
0.09


651635
20.3
21.7
17.9
N/A
N/A


651795
21.4
22.8
23.3
22.8
0.09


651987
22.8
24.2
24.1
24.1
0.09


651990
22.3
23.3
23.3
23.0
0.12


652004
21.0
22.3
23.3
22.8
0.16


695815
22.7
23.4
23.4
21.4
0.09


695823
21.4
22.6
22.5
21.9
0.09


695847
21.5
22.1
22.1
20.4
0.09


695867
21.1
22.6
22.2
19.6
0.06


695912
21.4
22.3
22.4
22.5
0.09


695930
21.7
22.2
22.8
22.5
0.09


695976
20.5
22.1
22.1
21.6
0.11


695980
21.1
22.5
22.1
21.2
0.07


695981
19.9
21.6
22.1
21.7
0.08


695995
20.7
21.8
22.0
21.6
0.10


696026
21.7
22.8
23.4
22.8
0.09


696317
21.5
23.1
23.0
22.9
0.13


696816
21.6
22.3
22.3
22.1
0.12









Plasma Chemistry Markers

To evaluate the effect of antisense oligonucleotides on liver and kidney function, plasma levels of transaminases, total bilirubin and blood urea nitrogen (BUN) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.). The results are presented in the Table below.









TABLE 53







Plasma chemistry markers in A431 xenograft model












ISIS
ALT
AST
Albumin
T. Bilirubin
BUN


No.
(U/L)
(U/L)
g/dL
(mg/dL)
(mg/dL)















PBS
37.0
117.5
3.1
0.17
22


481464
74.0
158.8
2.8
0.13
21


549148
48.3
107.7
3.2
0.16
20


560131
88.3
198.0
3.0
0.13
31


651499
69.8
142.0
2.8
0.17
22


651530
163.0
261.8
3.2
0.15
20


651541
37.3
67.3
2.7
0.14
22


651555
53.3
111.5
3.2
0.17
24


651587
151.8
239.3
3.3
0.13
16


651603
585.3
766.0
2.5
0.18
29


651634
54.3
134.8
3.1
0.15
20


651795
76.0
139.8
3.0
0.13
24


651987
51.3
115.5
3.0
0.13
18


651990
33.8
76.5
2.5
0.13
20


652004
96.3
154.0
3.0
0.12
21


695815
40.3
95.8
2.9
0.13
22


695823
27.7
116.7
2.9
0.15
22


695847
326.3
396.0
2.9
0.16
20


695867
722.8
1200.5
3.1
0.94
19


695912
28.8
80.5
3.1
0.16
23


695930
50.5
131.8
3.0
0.20
22


695976
101.8
281.0
2.7
0.17
20


695980
42.5
104.0
3.1
0.19
25


695981
53.8
132.3
2.8
0.12
21


695995
37.8
122.5
2.9
0.13
22


696026
56.5
101.5
3.1
0.19
23


696317
46.8
133.5
2.7
0.10
23


696816
44.0
83.3
2.7
0.13
24









Study 2
RNA Analysis

RNA was extracted from tumor tissue for real-time PCR analysis and measurement of human K-Ras mRNA levels using primer probe set RTS3496_MGB, described herein above. Results are presented as average percent inhibition of K-Ras for each treatment group, relative to PBS control. As shown in the Table below, treatment with Isis antisense oligonucleotides resulted in reduction of human K-Ras mRNA in comparison to the PBS control.









TABLE 54







Antisense mediated inhibition of human K-Ras


mRNA expression in A431 xenograft model










ISIS
Inhibition



No.
(%)














481464
33



549148
28



651987
64



695785
54



695809
28



695917
45



695924
87



695977
36



695998
55



696012
24



696013
54



696017
70



696018
71



696043
41



696044
72



696091
79



696096
75



696108
53



696117
40



696137
45



696152
58



696167
53



696271
50



696287
47



696358
46



696377
37



696556
41










Body Weight Measurements

Body weights were measured throughout the treatment period. The data is presented in the Table below as the average for each treatment group at various time points. Spleen weights were measured at the end of the study (Day 21) and are presented in the Table below.









TABLE 55







Body and spleen weight measurements in A431 xenograft model












Isis

Body weight (g)
Spleen (g)












No.
Day 8
Day 19
Day 21
















PBS
23.2
23.5
0.09



481464
20.9
21.2
0.09



549148
22.8
22.0
0.10



651987
20.8
20.5
0.09



695785
21.7
21.5
0.09



695809
22.0
21.5
0.08



695917
21.7
21.6
0.10



695924
22.4
18.8
0.05



695977
22.3
22.9
0.10



695998
22.9
23.2
0.10



696012
23.0
22.5
0.11



696013
21.6
22.7
0.14



696017
24.4
23.1
0.10



696018
23.0
23.1
0.09



696043
22.5
22.2
0.13



696044
21.6
20.5
0.09



696090
22.4
N/A
N/A



696091
22.1
20.8
0.08



696096
21.7
19.8
0.07



696108
22.5
22.8
0.11



696117
22.6
22.6
0.10



696137
23.0
21.9
0.10



696152
22.2
22.3
0.12



696167
22.7
22.5
0.12



696271
21.4
21.5
0.09



696287
24.0
24.4
0.15



696358
22.2
21.2
0.08



696377
23.2
23.6
0.10



696556
23.3
22.9
0.10










Plasma Chemistry Markers

To evaluate the effect of antisense oligonucleotides on liver and kidney function, plasma levels of transaminases, total bilirubin and blood urea nitrogen (BUN) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.). The results are presented in the Table below.









TABLE 56







Plasma chemistry markers in A431 xenograft model












ISIS
ALT
AST
Albumin
T. Bilirubin
BUN


No.
(U/L)
(U/L)
g/dL
(mg/dL)
(mg/dL)















PBS
35.5
73.6
3.0
0.13
20


481464
42.3
91.0
2.9
0.10
21


549148
33.3
81.3
2.9
0.13
14


651987
43.5
101.0
2.8
0.12
25


695785
56.5
146.5
2.8
0.17
25


695809
264.8
312.0
2.7
0.18
17


695917
270.0
389.3
2.8
0.16
19


695924
540.0
5421.0
3.4
2.20
48


695977
32.0
70.0
2.9
0.15
22


695998
3197.3
3515.8
3.0
2.96
17


696012
41.0
135.3
2.8
0.15
21


696013
687.0
1511.0
2.4
0.17
20


696017
4189.3
3429.0
2.6
0.84
18


696018
126.8
197.8
3.2
0.18
19


696043
57.0
146.0
2.8
0.15
21


696044
734.5
871.3
3.0
0.24
16


696091
2168.0
6776.0
2.5
7.61
35


696096
4400.3
2436.0
2.1
2.35
18


696108
45.8
105.0
3.0
0.13
19


696117
1699.3
1426.3
3.2
0.22
18


696137
5308.3
6041.3
2.9
0.52
24


696152
1818.3
1798.0
2.9
0.30
22


696167
271.0
312.5
3.0
0.17
17


696271
41.3
84.8
2.9
0.16
20


696287
92.0
183.3
2.8
0.13
17


696358
2284.3
1820.0
3.0
0.27
18


696377
34.8
106.5
3.0
0.12
18


696556
36.0
87.0
3.0
0.15
17









Study 3
RNA Analysis

RNA was extracted from tumor tissue for real-time PCR analysis and measurement of human K-Ras mRNA levels using primer probe set RTS3496_MGB, described herein above. Results are presented as average percent inhibition of K-Ras for each treatment group, relative to PBS control. As shown in the Table below, treatment with Isis antisense oligonucleotides resulted in reduction of human K-Ras mRNA in comparison to the PBS control.









TABLE 57







Antisense mediated inhibition of human K-Ras


mRNA expression in A431 xenograft model










ISIS
Inhibition



No.
(%)














651588
69



651653
41



651987
51



716587
40



716588
37



716600
55



716608
43



716612
39



716628
48



716655
49



716656
64



716673
54



716683
50



716716
51



716758
74



716769
52



716772
47










Body Weight Measurements

Body weights were measured throughout the treatment period. The data is presented in the Table below as the average for each treatment group at various time points. Organ weights were measured at the end of the study (Day 23) and are presented in the Table below.









TABLE 58







Body and organ weight measurements in A431 xenograft model









Isis
Body weight (g)
Organ weights (g)














No.
Day −1
Day 7
Day 14
Day 21
kidney
liver
spleen

















PBS
20.5
21.0
21.5
21.9
0.30
1.06
0.09


651588
19.9
20.9
20.3
18.0
0.29
1.41
0.07


651653
20.1
21.1
20.5
20.4
0.32
1.63
0.13


651987
21.2
21.6
21.7
22.2
0.33
1.42
0.12


716587
21.7
23.2
21.4
22.4
0.36
2.38
0.15


716588
20.4
21.7
21.7
22.1
0.33
1.74
0.09


716600
20.3
21.3
22.0
22.7
0.34
N/A
0.13


716608
21.0
19.9
17.3
20.9
0.39
2.07
0.11


716612
21.7
22.1
22.4
23.5
0.34
2.78
0.14


716625
20.1
20.3
17.2
N/A
N/A
N/A
N/A


716628
21.0
21.7
20.8
20.1
0.36
1.55
0.12


716655
19.6
20.6
20.9
21.5
0.33
1.47
0.13


716656
20.5
20.9
19.9
18.5
0.29
1.69
0.07


716673
19.2
20.5
19.0
18.9
0.32
2.47
0.08


716674
20.3
21.0
N/A
N/A
N/A
N/A
N/A


716675
21.4
20.0
N/A
N/A
N/A
N/A
N/A


716683
21.2
21.0
19.2
19.9
0.35
2.58
0.09


716716
19.7
20.5
20.8
21.4
0.34
1.43
0.11


716728
21.7
18.4
N/A
N/A
N/A
N/A
N/A


716758
20.6
20.3
17.6
16.2
0.30
1.29
0.05


716763
21.8
N/A
N/A
N/A
N/A
N/A
N/A


716769
19.6
20.6
20.8
20.7
0.38
1.54
0.12


716772
19.9
20.9
21.3
22.1
0.29
1.16
0.10









Plasma Chemistry Markers

To evaluate the effect of antisense oligonucleotides on liver and kidney function, plasma levels of transaminases, total bilirubin and blood urea nitrogen (BUN) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.). The results are presented in the Table below.









TABLE 59







Plasma chemistry markers in A431 xenograft model











ISIS
ALT
AST
T. Bilirubin
BUN


No.
(U/L)
(U/L)
(mg/dL)
(mg/dL)














PBS
31.4
109.8
0.17
20


651588
4064.3
3039.5
0.21
23


651653
1900.5
1571.3
0.20
21


651987
88.5
150.8
0.11
20


716587
640.0
401.5
0.22
18


716588
1418.8
1067.8
0.17
20


716600
217.3
316.0
0.11
19


716608
950.0
1622.0
0.26
22


716612
281.0
267.5
0.10
19


716628
2662.7
3046.0
0.18
18


716655
125.0
208.8
0.11
23


716656
3306.3
2432.3
2.43
24


716673
3574.3
2518.5
1.01
24


716683
2644.5
3775.0
0.22
28









Study 4
RNA Analysis

RNA was extracted from tumor tissue for real-time PCR analysis and measurement of human K-Ras mRNA levels using primer probe set RTS3496_MGB, described herein above. Results are presented as average percent inhibition of K-Ras for each treatment group, relative to PBS control. As shown in the Tables below, treatment with Isis antisense oligonucleotides resulted in reduction of human K-Ras mRNA in comparison to the PBS control.









TABLE 60







Antisense mediated inhibition of human K-Ras


mRNA expression in A431 xenograft model










ISIS
Inhibition



No.
(%)














481464
0



651987
45



696816
14



740167
40



740171
31



740173
50



740179
50



740187
39



740188
62



740191
53



740194
56



740196
62



740199
57



740201
51



740212
41



740216
42



740218
48



740221
59



740223
57



740227
42



740233
54



740238
38



740244
22



740246
47



740250
50



740255
47



740256
67



740261
0



740294
30










Body Weight Measurements

Body weights were measured throughout the treatment period. The data is presented in the Table below as the average for each treatment group at various time points. Organ weights were measured at the end of the study and are presented in the Table below.









TABLE 61







Body weight measurements in A431 xenograft model









Isis
Body weight (g)
Organ weights (g)















No.
Day 3
Day 8
Day 15
Day 22
Day 24
kidney
liver
spleen


















PBS
22.4
23.0
23.3
23.6
23.3
0.33
1.27
0.08


481464
19.9
20.5
20.8
21.9
22.1
0.30
1.32
0.11


651987
22.8
23.4
22.9
23.7
24.1
0.35
1.59
0.13


696816
21.1
21.7
21.6
22.7
23.0
0.33
1.33
0.11


740167
20.3
20.7
20.4
20.9
20.5
0.30
1.26
0.09


740171
22.1
22.4
23.1
24.2
24.5
0.36
1.51
0.37


740173
21.0
21.6
21.5
21.0
20.9
0.31
2.38
0.14


740179
21.4
20.9
22.2
22.8
22.7
0.36
1.41
0.12


740187
23.0
23.2
23.4
24.2
24.4
0.34
1.53
0.11


740188
22.6
21.7
19.6
19.4
19.7
0.35
3.23
0.03


740191
23.9
24.7
25.2
24.6
24.7
0.37
1.51
0.13


740194
23.5
24.3
23.4
21.7
21.8
0.40
1.61
0.16


740196
21.2
21.7
18.0
21.9
23.8
0.37
2.66
0.09


740199
21.5
22.3
21.8
21.5
21.8
0.39
2.40
0.12


740201
22.7
22.9
23.1
23.7
23.5
0.36
1.70
0.13


740212
21.9
22.4
22.2
22.5
22.3
0.33
1.44
0.14


740216
22.1
22.7
22.4
22.3
22.5
0.41
1.89
0.16


740218
20.8
21.4
21.3
21.0
21.7
0.33
2.72
0.13


740221
23.0
23.9
22.1
22.7
23.4
0.41
3.43
0.09


740223
20.6
21.1
21.1
21.2
21.2
0.36
1.28
0.09


740227
20.3
21.2
21.0
21.6
21.4
0.34
2.24
0.14


740233
21.8
22.4
22.5
22.8
22.9
0.36
1.37
0.10


740238
23.8
24.5
24.5
25.0
25.1
0.38
1.61
0.13


740244
21.3
22.8
22.7
22.9
23.2
0.38
1.65
0.12


740246
20.9
21.5
21.5
21.9
21.7
0.37
3.48
0.13


740250
23.1
23.2
19.8
20.5
21.5
0.39
2.69
0.10


740255
21.9
22.6
22.4
22.7
22.7
0.33
2.18
0.09


740256
21.1
21.3
19.5
21.2
21.5
0.37
2.81
0.09


740258
21.8
21.2
17.3
N/A
N/A
N/A
N/A
N/A


740261
21.3
21.9
21.0
22.3
22.8
0.33
1.42
0.12


740294
20.8
21.5
21.9
22.0
21.8
0.36
1.75
0.11


740302
22.8
22.9
N/A
N/A
N/A
N/A
N/A
N/A









Plasma Chemistry Markers

To evaluate the effect of antisense oligonucleotides on liver and kidney function, plasma levels of transaminases, total bilirubin and blood urea nitrogen (BUN) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.). The results are presented in the Table below.









TABLE 62







Plasma chemistry markers in A431 xenograft model












ISIS
ALT
AST
Albumin
T. Bilirubin
BUN


No.
(U/L)
(U/L)
g/dL
(mg/dL)
(mg/dL)















PBS
45.0
85.3
3.2
0.14
25


481464
47.0
138.8
2.8
0.14
21


651987
68.3
239.3
2.9
0.18
18


696816
55.5
139.5
2.5
0.14
31


740167
66.0
167.0
2.8
0.16
18


740171
59.5
182.3
3.0
0.18
18


740173
1375.8
964.8
2.8
5.05
19


740179
105.5
262.3
3.1
0.21
17


740187
129.3
164.5
2.9
0.14
22


740188
3098.0
3275.0
2.3
0.24
50


740191
69.8
161.8
2.9
0.14
18


740194
2729.8
3065.5
2.5
0.68
20


740196
2553.0
1607.3
3.2
0.17
24


740199
3552.8
3428.5
3.4
0.28
19


740201
190.5
367.0
2.9
0.19
19


740212
59.8
184.3
3.2
0.19
22


740216
2297.0
2663.5
2.9
0.95
20


740218
3984.8
2519.8
2.1
2.77
21


740221
4076.0
2571.5
2.4
0.33
22


740223
142.3
355.5
3.2
0.19
18


740227
3511.5
3993.0
2.4
0.62
16


740233
67.3
162.5
2.8
0.16
21


740238
165.0
362.0
2.8
0.16
20


740244
118.3
276.0
3.1
0.18
20


740246
3198.8
1579.8
2.2
0.42
22


740250
1710.5
1364.3
2.8
0.16
25


740255
1579.5
827.3
2.8
0.34
21


740256
3725.5
2068.5
2.8
0.21
27


740261
84.3
238.8
3.0
0.20
22


740294
1596.3
1357.0
3.0
0.31
22









Study 5
RNA Analysis

RNA was extracted from tumor tissue for real-time PCR analysis and measurement of human K-Ras mRNA levels using primer probe set RTS3496_MGB, described herein above. Results are presented as average percent inhibition of K-Ras for each treatment group, relative to PBS control, normalized to glyceraldehyde-3-phosphate dehydrogenase or beta-actin mRNA levels. As shown in the Tables below, treatment with Isis antisense oligonucleotides resulted in reduction of human K-Ras mRNA in comparison to the PBS control.









TABLE 63







Antisense mediated inhibition of human K-Ras


mRNA expression in A431 xenograft model










ISIS No.
Inhibition (%)














651555
48



651987
36



695823
26



695980
35



696018
47



716744
25



716749
0



716754
26



746273
9



746275
51



746276
26



746279
31



746280
43



746285
24



746286
51



746287
45










Body Weight Measurements

Body weights were measured throughout the treatment period. The data is presented in the Table below as the average for each treatment group at various time points. At the end of the study (day 23), organ weights were measured and are presented in the Table below.









TABLE 64







Body and organ weight measurements in A431 xenograft model









Isis
Body weight (g)
Organ weights (g)














No.
Day 1
Day 8
Day 15
Day 23
kidney
liver
spleen

















PBS
19.2
19.8
20.2
20.6
0.34
1.11
0.10


651555
18.0
17.8
18.4
18.9
0.33
1.26
0.08


651987
19.1
19.4
20.2
21.4
0.30
1.34
0.14


695823
18.8
19.6
19.4
19.8
0.26
1.17
0.09


695980
20.1
20.2
20.7
21.6
0.37
1.32
0.09


696018
19.0
20.3
19.7
19.8
0.31
1.32
0.08


716744
18.3
18.3
18.8
19.8
0.28
1.17
0.09


716749
19.8
20.9
20.6
21.3
0.31
1.27
0.09


716754
19.4
19.2
19.5
20.0
0.28
1.11
0.09


746273
18.8
19.3
19.4
20.1
0.28
1.04
0.08


746275
18.1
18.3
18.7
19.7
0.29
1.12
0.07


746276
19.9
20.9
21.1
21.7
0.33
1.31
0.09


746279
18.7
19.2
19.9
20.6
0.30
1.22
0.11


746280
18.5
19.3
19.5
20.3
0.29
1.19
0.10


746285
20.2
20.5
20.8
21.3
0.33
1.33
0.08


746286
19.8
19.9
19.9
19.7
0.31
1.41
0.06


746287
19.2
19.6
19.1
19.4
0.30
1.51
0.07









Plasma Chemistry Markers

To evaluate the effect of antisense oligonucleotides on liver and kidney function, plasma levels of transaminases, total bilirubin and blood urea nitrogen (BUN) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.). The results are presented in the Table below.









TABLE 65







Plasma chemistry markers in A431 xenograft model














ALT
AST
T. Bilirubin
BUN



ISIS No.
(U/L)
(U/L)
(mg/dL)
(mg/dL)

















PBS
41.8
125.0
0.12
21



651555
65.3
207.3
0.16
23



651987
47.5
185.3
0.17
23



695823
35.0
106.8
0.15
21



695980
36.5
115.3
0.11
18



696018
381.5
634.8
0.16
21



716744
37.3
103.5
.09
22



716749
43.0
141.0
.12
22



716754
82.8
232.3
.12
23



746273
38.8
133.3
.13
22



746275
79.5
275.5
0.18
24



746276
95.8
340.3
.19
18



746279
85.8
276.5
.17
22



746280
84.8
281.0
.18
24



746285
336.0
696.8
.20
21



746286
1345.8
1871.5
.21
20



746287
1454.0
2072.5
.31
22

















TABLE 66







Plasma chemistry markers in A431 xenograft model














ALT
AST
T. Bilirubin
BUN



ISIS No.
(U/L)
(U/L)
(mg/dL)
(mg/dL)

















PBS
35.5
73.6
0.13
20



651987
43.5
101.0
0.12
25



695785
56.5
146.5
0.17
25



696018
126.8
197.8
0.18
19



696044
734.5
871.3
0.24
16










Example 14: Tolerability of Antisense Oligonucleotides Targeting Human K-Ras mRNA in Sprague-Dawley Rats

The antisense oligonucleotides described in the studies above were also tested for in vivo tolerability in Sprague-Dawley rats.


Groups of four Sprague-Dawley rats were injected subcutaneously once per week for 6 weeks, for a total of 7 treatments, with 50 mg/kg of an antisense oligonucleotide. A control group of rats was injected subcutaneously once per week for 6 weeks with PBS. Two days after the last dose rats were euthanized and organs and plasma were harvested for further analysis. Body weights were measured throughout the study.


To evaluate the effect of the antisense oligonucleotides on hepatic function, plasma concentrations of transaminases (ALT, AST), Albumin (Alb) and total bilirubin (T. Bil.) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.).


To evaluate the effect of the antisense oligonucleotides on kidney function, plasma concentrations of blood urea nitrogen (BUN) and creatinine (Cre) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.). Albumin (Alb) was also measured. Total urine protein (Micro Total Protein (MTP)) and urine creatinine levels as well as the ratio of total urine protein to creatinine (MTP/CREA) were also determined.


Liver, spleen, and kidney weights were measured at the end of the study.


The results are presented in the Tables below and show that many antisense oligonucleotides targeting human K-Ras were well tolerated in Sprague Dawley rats.









TABLE 67







Body and organ weights











Isis
Body weight (g) on indicated study day
Liver
Spleen
Kidney

















No.
1
8
15
22
29
36
43
(g)
(g)
(g)




















PBS
348.8
371.0
407.0
425.8
443.3
463.0
478.0
16.9
0.84
3.6


651530
351.3
377.8
408.5
432.0
449.5
461.5
466.0
17.1
1.26
3.5


651555
369.8
385.5
414.3
424.3
433.3
439.8
443.3
17.7
2.50
3.6


651587
357.0
375.3
412.0
429.3
437.0
442.5
450.5
16.8
1.40
3.7


651987
350.8
375.3
403.0
415.5
425.8
434.5
439.3
19.2
1.74
3.5


695785
351.5
364.3
384.5
389.5
393.0
395.3
409.5
17.8
2.51
3.9


695823
352.8
372.5
398.5
414.3
423.8
434.0
440.8
16.7
1.23
3.4


695980
363.5
379.8
407.8
416.8
419.5
422.8
429.3
17.6
3.06
3.8


695995
332.3
349.5
371.8
372.5
370.0
368.8
374.3
13.4
1.29
2.9
















TABLE 68







Plasma and urine clinical chemistry










plasma
urine

















ALT
AST
Alb
BUN
Cre
T. Bil.
Cre
MTP
MTP/


Isis No.
(U/L)
(U/L)
(g/dL)
(mg/dL)
(mg/dL)
(mg/dL)
(mg/dL)
(mg/dL)
CREA



















PBS
74.3
83.3
3.3
21.6
0.32
0.14
118.5
117.8
1.0


549148
56.5
89.8
3.4
22.5
0.42
0.13
96.8
366.3
3.8


651530
90.8
96.0
3.4
20.6
0.38
0.14
104.8
415.8
4.0


651555
95.3
116.0
3.0
27.8
0.40
0.13
84.5
547.3
6.5


651587
88.8
102.8
3.1
40.6
0.66
0.15
66.5
675.0
10.2


651987
62.8
65.8
2.1
46.5
0.58
0.19
92.8
569.8
6.1


695785
97.0
87.3
3.0
24.8
0.38
0.13
63.0
585.3
9.3


695823
73.5
87.8
3.9
27.1
0.47
0.16
89.3
421.3
4.7


695980
69.0
109.8
3.3
27.1
0.50
0.13
71.0
488.8
6.9


695995
240.3
203.5
4.0
29.3
0.53
0.25
61.0
244.8
4.0









Example 15: Tolerability of Antisense Oligonucleotides Targeting Human K-Ras mRNA in Sprague-Dawley Rats

The antisense oligonucleotides described in the studies above were also tested for in vivo tolerability in Sprague-Dawley rats.


Groups of four Sprague-Dawley rats were injected subcutaneously once per week for 6 weeks, for a total of 7 treatments, with 50 mg/kg of an antisense oligonucleotide. A control group of rats was injected subcutaneously once per week for 6 weeks with PBS. Two days after the last dose rats were euthanized and organs and plasma were harvested for further analysis. Body weights were measured throughout the study.


To evaluate the effect of the antisense oligonucleotides on hepatic function, plasma concentrations of transaminases (ALT, AST), Albumin (Alb) and total bilirubin (T. Bil.) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.).


To evaluate the effect of the antisense oligonucleotides on kidney function, plasma concentrations of blood urea nitrogen (BUN) and creatinine (Cre) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.). Albumin (Alb) was also measured. Total urine protein (Micro Total Protein (MTP)) and urine creatinine levels as well as the ratio of total urine protein to creatinine (MTP/CREA) were also determined.


Liver, spleen, and kidney weights were measured at the end of the study.


The results are presented in the Tables below and show that many antisense oligonucleotides targeting human K-Ras were well tolerated in Sprague Dawley rats.









TABLE 69







Body and organ weights










Body weight (g) on indicated study day


















Isis No.
1
8
15
22
29
36
43
Liver (g)
Spleen (g)
Kidney (g)




















PBS
252.3
321.5
377.8
417.8
456.8
453.8
492.8
20.5
0.91
3.42


696018
243.3
298.8
329.5
344.5
348.8
340.8
333.3
13.5
2.03
3.38


696044
245.5
299.0
336.5
350.5
345.0
351.5
348.5
15.8
2.57
3.52


716600
240.0
287.5
316.8
333.5
347.0
351.5
360.3
17.2
1.87
3.28


716655
247.8
305.0
341.8
360.3
370.5
374.3
363.5
16.6
3.23
4.86


740233
247.0
305.3
347.3
375.3
393.0
389.0
383.5
16.9
2.13
3.82


746275
242.8
305.5
350.8
372.0
392.5
401.8
405.0
17.5
2.51
3.85
















TABLE 70







Plasma and urine clinical chemistry










plasma
urine
















Isis
ALT
AST
Alb
BUN
Cre
T. Bil.
Cre
MTP
MTP/


No.
(U/L)
(U/L)
(g/dL)
(mg/dL)
(mg/dL)
(mg/dL)
(mg/dL)
(mg/dL)
CREA



















PBS
42.0
59.5
3.3
17.1
0.32
0.14
60.8
69.3
1.14


696018
47.5
84.8
2.9
20.5
0.41
0.19
32.0
113.3
3.54


696044
49.5
104.8
2.2
20.7
0.34
0.12
42.0
543.5
12.94


716600
38.3
71.8
2.5
17.2
0.32
0.10
60.3
455.3
7.56


716655
48.3
62.8
1.8
60.9
0.66
0.08
67.5
618.5
9.16


740233
53.3
126.3
2.8
19.3
0.33
0.13
52.5
421.0
8.02


746275
212.8
222.0
2.9
18.6
0.37
0.17
50.5
330.8
6.55









Example 16: Comparative Evaluation of Potency for Gen1.0 and Gen2.5 Human K-RAS Antisense Oligonucleotides

Antisense oligonucleotides described above and Isis No. 6957 were tested at various doses in A431 cells. Isis No. 6957, described in U.S. Pat. No. 6,784,290, consists of 2′-deoxynucleosides linked via phosphorothioate internucleoside linkages, and the sequence is CAGTGCCTGCGCCGCGCTCG (SEQ ID NO: 2193). Isis No. 549148, which does not target K-Ras, was included as a negative control. A431 cells were plated at a density of 10,000 cells per well and incubated with concentrations of antisense oligonucleotide specified in Table 24 below. After 24 hours, RNA was isolated from the cells and K-Ras mRNA levels were measured by quantitative real-time PCR. RTS3496_MGB primer probe set was used to measure K-Ras mRNA levels. K-Ras mRNA levels were normalized to beta-actin mRNA levels. Results are presented as percent inhibition of K-Ras mRNA, relative to untreated control cells.


As illustrated in the Table below, the new antisense oligonucleotides were much more potent than Isis No. 6957, which exhibited minimal inhibition of K-Ras.









TABLE 71







Dose-dependent inhibition of human K-Ras mRNA expression


by free-uptake of ISIS oligonucleotides









Inhibition (%)


















3333



ISIS No.
41.2 nM
123 nM
370 nM
1111 nM
nM
10000 nM
















6957
0
1
2
0
7
17


549148
6
4
1
2
3
1


651530
14
26
54
69
90
92


651555
15
32
57
63
77
84


651587
17
22
69
78
80
87


651987
27
40
70
79
88
91


695785
13
39
53
73
85
87


695823
18
31
43
67
77
81


695980
19
37
65
76
84
88


695995
18
32
45
74
84
90









Example 17: Pharmacodynamics and Toxicological Profile of Human K-Ras Antisense Oligonucleotides in COLO205 Adenocarcinoma Xenograft Model

Female, 6-8 week old NCr nude mice (Taconic Biosciences, Hudson, N.Y.) were inoculated with human colorectal adenocarcinoma COLO205 cells and treated with antisense oligonucleotides or with PBS. K-Ras expression and tolerability of the oligonucleotides in the mice were evaluated.


Treatment

For tumor development, the mice were each inoculated in the right lateral fat pad with 3×106 COLO205 cells in 50% Matrigel (BD Bioscience). Antisense oligonucleotide treatment started around day 10 after tumor inoculation when the mean tumor size reached approximately 200 mm3. The mice were subcutaneously injected with 30 or 50 mg/kg/week three times per week for three weeks, for a total of nine doses at 150 or 250 mg/kg/week, with antisense oligonucleotide or PBS. RNA was extracted from tumor tissue for real-time PCR analysis. The mice were euthanized 24 hours after the last dose, and organs and plasma were harvested for further analysis. Body weights were measured throughout the study. Liver, spleen, and kidney weights were measured at the end of the study. The results are presented in the Tables below, demonstrating that many antisense oligonucleotides targeting human K-Ras resulted in reduction of K-Ras mRNA levels, and were well tolerated.


RNA Analysis

RNA was extracted from tumor tissue for real-time PCR analysis and measurement of human K-Ras mRNA levels using primer probe set RTS3496_MGB, described herein above. Results are presented as average percent inhibition of K-Ras for each treatment group, relative to PBS control, normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA levels. As shown in the tables below, treatment with Isis antisense oligonucleotides resulted in reduction of human K-Ras mRNA in comparison to the PBS control.









TABLE 72







Inhibition of human K-Ras mRNA


expression in COLO205 xenograft model











ISIS No.
mg/kg/week
Inhibition (%)















PBS
N/A
0



651555
250
47




150
23



651987
250
36




150
30



695980
250
41




150
28



696044
250
43




150
45



716600
250
49




150
43



716655
250
36




150
36



716772
250
33




150
27



740179
250
24




150
28



740256
150
46










Body Weight Measurements

Body weights were measured throughout the treatment period. The data is presented in the tables below as the average for each treatment group at various time points. At the end of the study, organ weights were measured and are presented in the table below.









TABLE 73







Body and organ weight measurements










Body weight (g)














ISIS
mg/kg/


day
day
Organ weight (g)















No.
week
day 1
day 9
16
23
kidney
liver
spleen


















PBS
N/A
21.9
21.5
19.7
21.5
0.3
1.1
0.10


651555
250
20.4
19.0
18.2
17.6
0.3
1.0
0.05



150
18.5
21.9
19.9
21.3
0.2
1.2
0.09


651987
250
20.7
20.3
18.0
16.7
0.3
1.1
0.05



150
20.6
18.1
16.0
16.4
0.2
1.0
0.06


695980
250
20.6
19.7
17.9
19.4
0.4
1.2
0.14



150
19.5
19.8
20.3
20.9
0.3
1.1
0.06


696044
250
21.1
20.7
17.0
18.0
0.3
1.7
0.14



150
21.1
20.7
19.3
19.1
0.3
1.6
0.09


716600
250
19.9
19.7
18.5
18.2
0.3
1.5
0.11



150
20.3
20.2
19.7
19.2
0.3
1.3
0.07


716655
250
22.8
19.1
18.3
16.7
0.3
1.4
0.05



150
23.8
19.1
17.5
17.1
0.3
1.4
0.03


716772
250
21.5
20.0
17.6
19.7
0.3
1.3
0.09



150
20.7
18.5
17.3
17.1
0.2
1.1
0.06


740179
250
21.0
22.3
20.4
21.6
0.3
1.8
0.18



150
20.9
17.4
17.9
18.0
0.3
1.2
0.09


740256
150
21.2
21.2
18.9
19.9
0.3
1.4
0.09









Plasma Chemistry Markers

Using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.), plasma concentrations of transaminases (ALT, AST) and total bilirubin (T. Bil.) were measured to evaluate the effect of the antisense oligonucleotides on hepatic function, and plasma concentrations of blood urea nitrogen (BUN) were measured to evaluate the effect of the antisense oligonucleotides on kidney function. Albumin (Alb) was also measured. The results are presented in the Tables below and show that many antisense oligonucleotides targeting human K-Ras mRNA were well tolerated in the COLO205 adenocarcinoma xenograft model.









TABLE 74







Plasma clinical chemistry













ISIS
mg/kg/
ALT
AST
Alb
BUN
T. bil


No.
week
(U/L)
(U/L)
(g/dL)
(mg/dL)
(mg/dL)
















PBS
N/A
29.5
127.0
3.7
16.7
0.14


651555
250
218.3
548.0
3.7
23.6
0.16



150
47.8
145.3
3.6
18.5
0.15


651987
250
371.8
620.8
3.8
23.1
0.19



150
232.8
493.0
3.9
20.9
0.20


695980
250
64.3
248.3
3.4
22.4
0.11



150
37.0
146.3
3.9
20.1
0.15


696044
250
1176.5
1267.0
3.7
20.2
0.85



150
96.8
298.8
4.4
20.8
0.24


716600
250
647.3
1128.0
3.5
22.9
0.38



150
49.3
294.0
4.1
19.7
0.18


716655
250
367.5
923.0
3.9
29.2
0.94



150
86.5
398.0
4.4
27.8
0.17


716772
250
65.0
285.0
4.0
29.3
0.13



150
50.8
301.5
4.0
28.7
0.13


740179
250
396.5
400.0
3.6
20.5
0.15



150
95.7
255.7
4.3
20.6
0.16


740256
150
225.3
488.5
3.6
22.0
0.32









Example 18: Effect of Human K-Ras Antisense Oligonucleotides on Proliferation of H460 Cells (3D Assays)

An in vitro three-dimensional (3D) model was used to assess the effects of human K-Ras antisense oligonucleotides on mutant K-Ras cancer tumor cell growth. Human mutant K-Ras non-small-cell lung cancer cells (NCI-H460) were grown as spheroids on Thermo Scientific™ Nunclon™ Sphera™ ultra-low attachment microwell plates. Cancer spheroids simulate the 3D structures of tumor growth, allowing the study of tumor progression and efficacy of antisense oligonucleotides in vitro.


Treatment

NCI-H460 cells were plated at a density of 1000 cells per well and incubated with various doses of antisense oligonucleotide or with PBS for a period of eight days. K-Ras mRNA expression and effects of the oligonucleotides on spheroid volume were evaluated and are presented in the tables below.


RNA Analysis

At day six, RNA was isolated from the cells for real-time PCR analysis and human K-Ras mRNA levels were measured using primer probe set RTS3496_MGB, described herein above. Results are presented as average percent inhibition of K-Ras for each treatment group, relative to PBS control, normalized to beta-actin mRNA levels. Treatment with Isis antisense oligonucleotides resulted in reduction of human K-Ras mRNA in comparison to the PBS control. The half maximal inhibitory concentration (IC50) of each oligonucleotide is also presented.









TABLE 75







Dose-dependent inhibition of human K-Ras mRNA


expression by antisense oligonucleotides










Inhibition (%)
IC50













ISIS No.
12.3 nM
37.0 nM
111 nM
333 nM
1000 nM
(μM)
















651530
21.9
53.3
71.8
81.6
93.1
0.33


651555
19.9
44.2
75.9
84.3
94.5
0.43


651587
36.2
60.1
79.1
86.4
93.7
0.23


651987
32.9
69.9
81.8
85.7
93.3
0.2


695785
3.6
33.3
63.1
75.9
77.6
0.65


695823
20.4
37.3
56.2
79.3
84.3
0.75


695980
29.0
65.3
82.9
83.4
94.0
0.23


695995
20.8
49.7
69.0
81.4
86.5
0.35


696018
19.4
55.4
76.6
81.5
91.4
0.3


696044
43.7
76.8
86.8
94.2
97.6
0.15


716600
20.4
52.4
79.9
87.5
95.6
0.33


716655
10.8
41.0
73.4
82.7
92.5
0.7


716772
20.1
54.7
74.6
79.0
87.1
0.3


740179
17.2
52.2
79.0
84.7
93.6
0.33


740191
33.0
64.3
80.6
90.0
95.0
0.23


740223
12.9
52.7
75.3
83.4
92.7
0.38


740256
24.9
65.6
80.1
88.2
94.6
0.3


746275
16.5
67.6
79.6
87.8
94.5
0.3









Spheroid Volume Analysis

At day eight, H460 spheroids were photographed and their relative volume was measurement using ImageJ. Results are presented as average percent reduction in spheroid volume for each treatment group, relative to PBS control. The half maximal growth inhibitory concentration (GI %) of each oligonucleotide is also presented.









TABLE 76







Relative spheroid volume at 8 days relative to untreated NCI-H460 cells










ISIS No.
GI50 (μM)














651530
1.7



651555
2.0



651587
1.1



651987
1.1



695785
5.0



695823
6.0



695980
0.7



695995
2.5



696018
0.8



696044
0.8



716600
1.3



716655
2.2



716772
4.0



740179
1.1



740191
1.2



740223
1.5



740256
0.8



746275
0.9










Example 19: H358 Xenograft Study of Tumor Volume

A K-Ras mutant mouse xenograft model for non-small cell lung cancer (NSCLC) was generated and used to study the efficacy of lead antisense oligonucleotides ISIS Nos. 651987 and 746275, as compared to untreated mice and to mice treated with ISIS No. 549148 as a negative control. The mice each were inoculated with NCI-H358 human NSCLC cells for tumor development.


Treatment

Thirty-two female, athymic nude mice (CrTac:NCr-Foxn1nu; Taconic Biosciences, Inc., Hudson, N.Y.), 6-8 weeks old with starting weights of 19-21 g, were divided into four groups, eight subjects per treatment group with exception of the control group treated with ISIS No. 549148, which contained five subjects. The mice were inoculated with 5×106 NCI-H358 cells in 50% Matrigel (BD Bioscience) into the mammary fat pad. Antisense oligonucleotide treatment started at day 10-14 after tumor inoculation when the mean tumor size reached approximately 200 mm3. The mice were subcutaneously injected with antisense oligonucleotide at 50 mg/kg, five times per week (250 mg/kg/week) for 4.5 weeks (for a total of 22 doses), or with PBS as untreated control. Effects of KRAS antisense oligonucleotides on tumor K-Ras mRNA expression and tumor growth as well as tolerability of KRAS oligonucleotides in mice were evaluated. The body weights of the mice were measured once per week. At the end of the study (day 33), the mice were sacrificed, organs and tumor harvested, and K-Ras mRNA levels in the tumor were measured.


RNA Analysis

RNA was extracted from tumor tissue for real-time PCR analysis and measurement of human K-Ras mRNA levels using primer probe set RTS3496_MGB, described herein above. Results are presented the Table below as average percent inhibition of K-Ras for each treatment group, relative to PBS control, normalized to beta-actin mRNA levels.









TABLE 77







Percent inhibition of human K-Ras mRNA expression


relative to control in H358 xenograft model










ISIS No.
Inhibition (%)














549148
0



651987
36



746275
56










Body Weight Measurements

Body weights were measured throughout the treatment period. At the end of the study (day 33), organs were weighed and the data is presented in the Table below as the average for each treatment group at various time points.









TABLE 78







Body and organ weight measurements in H358 xenograft model










Body weight (g)
Organ weights (g)















Isis No.
Day 6
Day 15
Day 20
Day 26
Day 32
kidney
liver
spleen


















PBS
22.6
23.2
23.4
23.0
23.2
0.32
1.29
0.14


549148
20.6
21.3
21.8
22.0
22.6
0.34
1.83
0.18


651987
23.1
22.5
21.7
21.2
21.0
0.34
1.54
0.10


746275
22.0
22.3
22.6
22.6
22.9
0.34
1.62
0.15









Plasma Chemistry Markers

To evaluate the effect of antisense oligonucleotides on liver and kidney function, plasma levels of transaminases, total bilirubin and blood urea nitrogen (BUN) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.). The results are presented in the Table below.









TABLE 79







Plasma chemistry markers in H358 xenograft model













ALT
AST
Albumin
BUN
T. Bilirubin


ISIS No.
(U/L)
(U/L)
g/dL
(mg/dL)
(mg/dL)















PBS
27.5
74.5
2.7
19.1
0.14


549148
68.6
102.2
2.8
19.0
0.11


651987
235.6
347.3
2.5
21.6
0.14


746275
258.6
403.8
2.4
23.5
0.12









Tumor Volume

To evaluate the effect of antisense oligonucleotides on tumor volume, tumor sites were measured at various time points. The results are presented in the Table below.









TABLE 80







Relative tumor volume, % from day one in H358 xenograft model













Isis No.
Day 1
Day 5
Day 14
Day 19
Day 25
Day 31
















PBS
100
186
337
378
1138
1908


549148
100
170
322
353
968
1109


651987
100
141
184
154
381
387


746275
100
142
162
148
265
250









Two lead antisense oligonucleotides, ISIS 651987 and ISIS 746275, inhibited tumor growth over the course of the study.


Example 20: Effect of a KRAS ASO on the Proliferation of KRAS Mutant and KRAS Wild Type Tumour Cells In Vitro (3D)

The effect of 651987 on KRAS mRNA levels and proliferation in 3D was assessed in vitro in a panel of lung, colon and pancreatic cancer cell lines expressing mutant or wild type KRAS. The correlation between down regulation of KRAS mRNA (IC50) and inhibition of growth in soft agar (IC50) is shown in the Table below. The observations from this study show that 651987 down-regulates mutant and wild type KRAS isoforms and has selective phenotypic effects on KRAS mutant cells in vitro.


RNA Analysis

For analysis of effect on KRAS mRNA expression cells were plated into 96-well plates and treated with dose responses of KRAS ASO for a minimum of 48 hours. For analysis of mRNA expression cell lysates prepared using FastLane Cell Probe kit (Qiagen) were used in real-time one-step RT-PCR reactions performed on a ABI 7900HT instrument (Applied Biosystems, Thermo Fisher Scientific) or a Lightcycler 480 instrument (Roche). Gene expression values were calculated using the using the comparative Ct (−ΔΔCt) method as previously described in User Bulletin #2 ABI PRISM 7700 Sequence Detection System 10/2001, using GAPDH or 18S rRNA CT values for normalisation. ABI FAM MGB Assay Probes for human KRAS (Hs00364284_g1), human GAPDH (4333764F), eukaryotic 18S rRNA (4333760F) were from Thermo Fisher Scientific.


3D Colony Assays

Colony assays were performed in 96 well plates. Cells (500-2000 cells per well) were seeded in 75 μl of 0.3% agar onto a 50 μl 1% agar layer in 10% RPMI-1640 growth media. The agar layers were then covered with 50 μl of media containing treatment taking into account the entire volume of agar and media. Colonies were grown for 7 to 24 days depending upon the cell line and colony formation assessed by scanning on a GelCount scanner (Oxford Optronix, Abingdon, UK) and counting colonies of a specified diameter. PC9 cells were obtained from Akiko Hiraide, Preclinical Sciences R&D, AZ, Japan. All other cells were obtained from ATCC.









TABLE 81







Details of the cell lines used in this study including results of STR


finger print testing, KRAS and other key mutations. Correlation


between IC50 (μM) of KRAS mRNA down-regulation


and inhibition of colony formation by 651987 in KRAS wild type


and mutant cell lines.















STR


KRAS
Inhibition




finger

Other
mRNA
of colony




print
KRAS
mutations/amplifications/
knockdown
formation


Cell Line
Tissue Type
tested
Mutation
deletions
(IC50 μM)
(IC50 μM)
















A549
Lung
Pass
G12S
CDKN2A, STK11
1.1810
1.0065


NCI-H358
Lung
Pass
G12C
KRAS amp PIK3CA,
0.5520
0.3313






STK11


NCI-H460
Lung
Pass
Q61H
CDKN2A, TP53, STK11
0.3240
0.3936


NCI-H2122
Lung
Pass
G12C
CDKN2A, TP53, STK11
0.3740
0.4580


SW900
Lung
Pass
G12V
KRAS amp, TP53, NF1
0.7470
0.3248


SW480
Colon
Pass
G12V
KRAS amp, TP53
0.4530
1.5303


PANC1
Pancreas
Pass
G12D
CDKN2A, TP53
0.2200
0.2573


PC9
Lung
Pass
WT
CDKN2A, EGFR
0.0710
5.9597


NCI-H1437
Lung
Pass
WT
TP53, MEK
0.1010
6.7957


NCI-H1299
Lung
Pass
WT
NRAS
0.7130
>10.0


NCI-H1793
Lung
Pass
WT
CDKN2A, TP53
0.0410
>10.0


COLO201
Colon
Pass
WT
BRAF, TP53
0.2270
>10.0









Example 21: Tolerability of Antisense Oligonucleotides Targeting K-Ras in Cynomolgus Monkeys

Eight antisense oligonucleotides were compared for their relative efficacy, tolerability, pharmacokinetic and pharmacodynamic profiles in a repeated-dose study of male cynomolgus monkeys following six weeks of treatment by subcutaneous administration. These antisense oligonucleotides used in the study are described in the table below.












TABLE 82








SEQ





ID


Isis No.
Sequence
Chemistry
NO.







651530
TGACTAATAGCAGTGG
kkk-10-kkk
239





651555
TTTAATGTCACAAGCA
kkk-10-kkk
615





651587
GATTTGTCAGCAGGAC
kkk-10-kkk
621





651987
GCTATTAGGAGTCTTT
kkk-10-kkk
272





695785
AATGGTGAATATCTTC
kkk-10-kkk
569





695823
AGGTAAAAGCTAACAG
kkk-10-kkk
607





695980
ATCTTTTAATGTCACA
kkk-10-kkk
640





695995
TCTCTATGAAAGCTCA
kkk-10-kkk
655









Treatment

Prior to the study, the monkeys were kept in quarantine during which the animals were observed daily for general health. The monkeys were two to three years old and weighed two to three kg. Observations were recorded for all animals once daily during the acclimation and pre-treatment period, twice daily (before and after dosing on the day of dosing, in the morning and afternoon on non-dosing day) during the treatment period, and prior to the necropsy.


All study animals were weighed once prior to group assignment during the acclimation period and once weekly during the treatment period. Body weights were taken prior to the necropsy on the day of scheduled sacrifice. Blood samples were collected from the cephalic or femoral vein for evaluation of hematology, coagulation, and clinical chemistry. Fresh urine samples were collected from all available animals for urinalysis/urine chemistry parameters Animals were fasted overnight prior to blood collection for clinical chemistry and urine collection.


At the end of the study, the monkeys were sacrificed, necropsied and organs removed. The protocols described in the Example were approved by the Institutional Animal Care and Use Committee (IACUC).


Thirty-six male cynomolgus monkeys were divided into nine groups of four monkeys each, with one group treated with 0.9% saline as a negative control. The eight antisense oligonucleotides were subcutaneously administered 40 mg/kg every other day for the first week (Days 1, 3, 5 and 7) for a total of four loading doses, and once a week thereafter (days 14, 21, 28, 35, and 42 or 43) for 6 weeks. Several clinical endpoints were measured over the course of the study. Tail bleeds were conducted at 1 week prior to the first subcutaneous administration, then again at days 9, 16, 30, 44, 58, 72, and 86.


Body and Organ Weights

Body weight was assessed weekly. Body weights at some of these time points and organ weights (at day 44) are presented in the Table below. No remarkable effects of the antisense oligonucleotides on body weight were observed.









TABLE 83







Body and organ weights of cynomolgus monkeys treated with antisense oligonucleotides









Organ (g)
















mesenteric




Body (g)

mandibular
lymph



















Isis No.
day 1
day 14
day 28
day 44
heart
kidney
liver
lymph node
node
spleen
testes
thymus






















Saline
2632
2653
2737
2788
11.1
12.5
54.4
0.5
1.5
3.2
1.1
4.1


651530
2503
2563
2646
2695
10.2
14.0
59.3
0.6
1.5
3.0
1.3
2.3


651555
2572
2628
2718
2735
10.6
15.0
65.0
0.5
2.3
4.8
1.5
3.6


651587
2326
2354
2409
2393
9.3
13.7
53.4
0.6
1.4
3.3
1.2
1.7


651987
2579
2615
2715
2833
10.5
15.4
70.5
0.7
2.0
5.1
1.1
2.5


695785
2652
2730
2756
2753
11.1
16.4
68.5
0.6
2.5
3.5
0.9
2.5


695823
2741
2819
2883
2930
10.0
13.5
62.3
0.5
1.7
3.3
1.5
3.0


695980
2856
2947
2990
3008
11.0
14.5
72.4
0.6
1.9
4.7
1.3
3.2


695995
2874
2991
3074
3283
11.8
13.9
66.4
0.6
2.3
3.4
2.2
2.5









RNA Analysis

At the end of the study, RNA was extracted from monkey livers and kidneys for real-time PCR analysis of measurement of mRNA expression of K-Ras. As above, primer probe set RTS3496_MGB was used, and the results for each group were averaged and presented as percent inhibition of mRNA, relative to the PBS control, normalized with rhesus cyclophilin A. The results of two trials were averaged and are presented in the Table below.









TABLE 84







Percent inhibition of K-Ras mRNA in the cynomolgus


monkey liver relative to the PBS control









ISIS No.
% inhibition
SEQ ID NO












651530
73
239


651555
81
615


651587
78
621


651987
84
272


695785
88
569


695823
71
607


695980
45
640


695995
71
655
















TABLE 85







Inhibition of K-Ras mRNA relative to the PBS control


in various monkey tissues after treatment with ISIS 651987











Oligo ID




651987



Tissue
% Inhibition














Liver
84



Kidney
69



Lung
23



Duodenum
53



Pancreas
21



Heart
32










Hematology

To evaluate any effect of ISIS oligonucleotides in cynomolgus monkeys on hematologic parameters, blood samples of approximately 1.3 mL of blood were collected on day 44 from each of the study animals in tubes containing K2-EDTA. Samples were analyzed for red blood cell (RBC) count, white blood cells (WBC) count, basophil count (BAS), as well as for platelet count (PLT) and mean platelet volume (MPV) using an ADVIA120 hematology analyzer (Bayer, USA). The data is presented in the Table below.









TABLE 86







Hematology













BAS
PLT
MPV
RBC
WBC


ISIS No.
103/uL
103/uL
fL
106/uL
103/uL















Saline
0.02
346
8.4
5
12


651530
0.02
385
8.3
5
11


651555
0.03
340
8.8
6
12


651587
0.03
450
7.3
6
12


651987
0.02
362
8.1
6
9


695785
0.03
339
8.5
6
11


695823
0.03
305
8.3
6
9


695980
0.02
301
8.4
5
7


695995
0.03
288
11.2
5
12









The data indicate the oligonucleotides did not cause any significant changes in hematologic parameters outside the expected range for antisense oligonucleotides at this dose. These antisense oligonucleotides were well tolerated in terms of hematologic parameters in the monkeys.


Liver and Kidney Function

To evaluate the effect of these antisense oligonucleotides on liver and kidney function, samples of blood, plasma, serum and urine were collected from all study groups on day 44. The blood samples were collected via femoral venipuncture, 48 hrs post-dosing. The monkeys were fasted overnight prior to blood collection. Approximately 1.5 mL of blood was collected from each animal into tubes without anticoagulant for serum separation. Levels of the various markers were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.). Total urine protein and urine creatinine levels were measured, and the ratio of total urine protein to creatinine (P/C Ratio) was determined.


To evaluate the effect of the antisense oligonucleotides on hepatic function, plasma concentrations of transaminases (ALT, AST), Albumin (Alb) and total bilirubin (“T. Bil”) were measured. To evaluate the effect of the antisense oligonucleotides on kidney function, plasma concentrations of blood urea nitrogen (BUN) and creatinine (Cre) were measured. Urine levels of albumin (Alb), creatinine (Cre) and total urine protein (Micro Total Protein (MTP)) were measured, and the ratio of total urine protein to creatinine (P/C ratio) was determined.


To evaluate any inflammatory effect of the ISIS oligonucleotides in cynomolgus monkeys, C-reactive protein (CRP), which is synthesized in the liver and which serves as a marker of inflammation, was measured on day 42. For this, blood samples were taken from fasted monkeys, the tubes were kept at room temperature for a minimum of 90 min., and centrifuged at 3,000 rpm for 10 min at room temperature to obtain serum. The results are presented in the Tables below and indicate that most of the antisense oligonucleotides targeting human K-Ras were well tolerated in cynomolgus monkeys.









TABLE 87







Serum and urine clinical chemistry










Serum (day 44)
Urine (day 44)



















ISIS
C3
ALT
AST
Alb
BUN
CRP
Cre
T.bil
Alb
Cre
MTP
P/C


No.
mg/dL
U/L
U/L
g/dL
mg/dL
mg/L
mg/dL
mg/dL
g/dL
mg/dL
mg/dL
ratio






















Saline
103.3
43.3
60.0
4.0
25.1
0.27
0.78
0.24
1.0
21.5
0.00
0.00


651530
78.9
42.9
75.6
4.1
25.1
0.14
0.79
0.25
2.1
32.5
0.23
0.01


651555
101.8
83.1
92.7
4.0
24.6
0.21
0.73
0.19
11.8
34.0
1.75
0.06


651587
93.9
93.7
94.3
4.0
22.4
0.13
0.81
0.22
8.4
76.2
5.10
0.07


651987
83.1
67.0
77.9
3.9
27.6
0.23
0.81
0.21
4.8
59.3
0.96
0.02


695785
100.4
72.2
107.1
4.1
24.6
0.11
0.81
0.20
6.6
42.9
0.51
0.01


695823
97.1
68.5
67.9
4.2
23.9
0.14
0.85
0.23
4.2
33.6
0.12
0.00


695980
85.9
60.2
63.8
4.0
27.2
0.19
0.84
0.26
4.4
37.4
0.17
0.01


695995
93.4
47.8
82.5
4.1
28.2
0.28
0.90
0.25
3.5
44.2
0.09
0.00









Complement C3 Levels

C3 levels were measured on several days during the study period prior to dosing and on Day 42 (pre- and post-dosing). When compared on Day 42 pre-dose to concurrent control (saline) and baseline (Day −14 pre-dose), a decreasing trend was noted in all antisense oligonucleotide-treated groups except animals treated with ISIS No. 651555. The lowest C3 level (82% of Day 42 pre-dose baseline value) was shown in animals treated with ISIS No. 651987 on Day 42 compared to pre-dose. The results of the complement C3 analysis are shown in the Table below.









TABLE 88







C3 Analysis on Day 42 as compared to


baseline and control groups (mg/dL)















% decrease






compared to





% decrease compared
control group


ISIS
Day −14
Day 42
to baseline
(pre-dose


No.
(pre-dose)
(pre-dose)
(pre-dose on Day −14)
on Day 42)














Saline
110
103
−7
0


651530
94
81
−14
−21


651555
108
110
+2
+7


651587
105
93
−12
−9


651987
109
89
−18
−13


695785
112
101
−10
−2


695823
105
98
−7
−4


695980
91
86
−6
−16


695995
108
95
−12
−7









Decreased C3 levels (approximately decreased by 6 to 18% compared to baseline control) were observed in all oligonucleotide-treated groups except animals treated with ISIS No. 651555. The lowest C3 level was shown in animals treated with ISIS No. 651987.









TABLE 89







Concentrations of ISIS antisense oligonucleotide


in liver and lung in cynomolgus monkeys












Study

Concentration
Liver/lung











ISIS No.
day
Liver (μg/g)
Lung (μg/g)
ratio














695785
44
658
69
9.6


695823
45
339
29
11.7


695995
45
556
38
14.5
















TABLE 90







K-Ras concentrations in liver and kidney cortex in


cynomolgus monkeys following 6 weeks of dosing















Kidney/liver



ISIS No.
Liver
Kidney
ratio
















651530
416
1012
2.4



651555
467
1127
2.4



651587
318
1070
3.4



651987
310
832
2.7



695785
587
1719
2.9



695823
519
2748
5.3



695980
601
2807
4.7



695995
464
1325
2.9










In conclusion, subcutaneous injection of eight antisense oligonucleotides targeting K-Ras mRNA for 6 weeks was well tolerated with no overt toxicity. No treatment-related changes in mortality, body weight, coagulation and urinalysis/urine chemistry were observed in this study.


Example 22: Tolerability of Antisense Oligonucleotides Targeting K-Ras in Cynomolgus Monkeys

Six antisense oligonucleotides were compared for their relative efficacy, tolerability, pharmacokinetic and pharmacodynamic profiles in a repeated-dose study of male cynomolgus monkeys following six weeks of treatment by subcutaneous administration. These antisense oligonucleotides used in the study are described in the table below.












TABLE 91








SEQ





ID


Isis No.
Sequence
Chemistry
NO.


















696018
CTCTTGATTTGTCAGC
kkk-10-kkk
678





696044
GTGTTTATGCAATGTT
kkk-10-kkk
715





716600
CCATTTATGTGACTAG
kkk-10-kkk
790





716655
TGTTTATGCAATGTTA
kkk-10-kkk
854





740233
GTGTTTATGCAATGTT
kkk-8-kdkdk
2158





746275
TCTTGATTTGTCAGCA
kk-10-keke
804









Treatment

Prior to the study, the monkeys were kept in quarantine during which the animals were observed daily for general health. The monkeys were two to three years old and weighed two to three kg. Observations were recorded for all animals once daily during the acclimation and pre-treatment period, twice daily (before and after dosing on the day of dosing, in the morning and afternoon on non-dosing day) during the treatment period, and prior to the necropsy.


All study animals were weighed once prior to group assignment during the acclimation period and once weekly during the treatment period. Body weights were taken prior to the necropsy on the day of scheduled sacrifice. Blood samples were collected from the cephalic or femoral vein for evaluation of hematology, coagulation, and clinical chemistry. Fresh urine samples were collected from all available animals for urinalysis/urine chemistry parameters Animals were fasted overnight prior to blood collection for clinical chemistry and urine collection.


At the end of the study, the monkeys were sacrificed, necropsied and organs removed. The protocols described in the Example were approved by the Institutional Animal Care and Use Committee (IACUC).


Twenty-eight male cynomolgus monkeys were divided into seven groups of four monkeys each, with one group treated with 0.9% saline as a negative control. The six antisense oligonucleotides were subcutaneously administered 40 mg/kg every other day for the first week (Days 1, 3, 5 and 7) for a total of four loading doses, and once a week thereafter (days 14, 21, 28, 35, and 4) for 6 weeks. Several clinical endpoints were measured over the course of the study. Tail bleeds were conducted at 2 weeks and 1 week prior to the first subcutaneous administration, then again at days 16, 30, and 44. Serum was tested at 2 weeks prior to the first subcutaneous administration and at day 42 and urine was collected at 1 week prior to study start and at day 44.


Body and Organ Weights

Body weight was assessed weekly. Body weights at some of these time points and organ weights (at day 44) are presented in the Table below. No remarkable effects of the antisense oligonucleotides on body weight were observed.









TABLE 92







Body weights of cynomolgus monkeys treated with antisense oligonucleotides









Body (g)















Isis No.
day 1
day 7
day 14
day 21
day 28
day 35
day 42
day 44


















PBS
2512.5
2630.8
2536.0
2542.5
2606.3
2565.8
2557.8
2,614.5


696018
2478.0
2596.8
2537.3
2527.5
2586.0
2539.3
2534.0
2,596.8


696044
2507.0
2624.5
2574.5
2607.0
2656.0
2610.3
2589.5
2,630.0


716600
2458.5
2537.5
2496.0
2503.8
2560.8
2526.5
2528.5
2,543.8


716655
2454.3
2506.8
2470.8
2508.8
2569.5
2520.8
2551.8
2,599.8


740233
2522.5
2554.3
2501.0
2545.5
2591.5
2540.5
2541.8
2,601.0


746275
2365.5
2411.0
2374.5
2408.5
2469.3
2419.5
2410.8
2,421.8
















TABLE 93







Organ weights of cynomolgus monkeys treated with antisense oligonucleotides









Organ (g)



















mandibular
mesenteric









lymph
lymph


Isis No.
heart
kidney
liver
node
node
spleen
testes
thymus


















PBS
8.89
14.10
58.39
0.29
1.03
2.62
0.80
2.20


696018
10.06
13.72
67.02
0.51
2.67
4.03
1.20
0.68


696044
9.25
17.02
77.61
0.57
2.82
6.23
1.46
1.24


716600
8.96
13.34
69.54
0.43
2.43
3.20
1.29
2.38


716655
8.67
14.85
69.76
0.48
2.05
3.45
1.32
1.04


740233
10.05
15.86
79.39
0.79
3.13
6.23
1.07
1.33


746275
8.40
12.96
65.13
0.87
4.10
5.14
0.94
1.12









Hematology

To evaluate any effect of ISIS oligonucleotides in cynomolgus monkeys on hematologic parameters, blood samples of approximately 1.3 mL of blood were collected on day 44 from each of the study animals in tubes containing K2-EDTA. Samples were analyzed for red blood cell (RBC) count, white blood cells (WBC) count, basophil count (BAS), as well as for platelet count (PLT) and mean platelet volume (MPV) using an ADVIA120 hematology analyzer (Bayer, USA). The data is presented in the Table below.









TABLE 94







Hematology













BAS
PLT
MPV
RBC
WBC


ISIS No.
103/uL
103/uL
fL
106/uL
103/uL















PBS
.043
379.3
8.00
5.51
14.04


696018
.055
352.0
8.78
6.16
13.12


696044
.048
293.0
8.75
5.23
10.23


716600
.038
454.0
7.73
5.94
14.73


716655
.030
408.0
6.88
6.04
11.47


740233
.035
352.3
7.40
5.59
7.99


746275
.043
352.8
7.13
5.53
9.24









The data indicate the oligonucleotides did not cause any significant changes in hematologic parameters outside the expected range for antisense oligonucleotides at this dose. These antisense oligonucleotides were well tolerated in terms of hematologic parameters in the monkeys.


Liver and Kidney Function

To evaluate the effect of these antisense oligonucleotides on liver and kidney function, samples of blood, plasma, serum and urine were collected from all study groups on day 44. The blood samples were collected via femoral venipuncture, 48 hrs post-dosing. The monkeys were fasted overnight prior to blood collection. Approximately 1.5 mL of blood was collected from each animal into tubes without anticoagulant for serum separation. Levels of the various markers were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, N.Y.). Total urine protein and urine creatinine levels were measured, and the ratio of total urine protein to creatinine (P/C Ratio) was determined.


To evaluate the effect of the antisense oligonucleotides on hepatic function, plasma concentrations of transaminases (ALT, AST), Albumin (Alb) and total bilirubin (“T. Bil”) were measured. To evaluate the effect of the antisense oligonucleotides on kidney function, plasma concentrations of blood urea nitrogen (BUN) and creatinine (Cre) were measured. Urine levels of albumin (Alb), creatinine (Cre) and total urine protein (Micro Total Protein (MTP)) were measured, and the ratio of total urine protein to creatinine (P/C ratio) was determined.


To evaluate any inflammatory effect of the ISIS oligonucleotides in cynomolgus monkeys, C-reactive protein (CRP), which is synthesized in the liver and which serves as a marker of inflammation, was measured on day 42. For this, blood samples were taken from fasted monkeys, the tubes were kept at room temperature for a minimum of 90 min., and centrifuged at 3,000 rpm for 10 min at room temperature to obtain serum. The results are presented in the Tables below and indicate that most of the antisense oligonucleotides targeting human K-Ras were well tolerated in cynomolgus monkeys.









TABLE 95







Serum and urine clinical chemistry










Serum (day 44)
Urine (day 42)


















ISIS
C3
ALT
AST
Alb
BUN
CRP
Cre
T.bil
Alb
Cre
P/C


No.
mg/dL
U/L
U/L
g/dL
mg/dL
mg/L
mg/dL
mg/dL
g/dL
mg/dL
ratio





















PBS
125.5
45.5
74.0
4.3
27.1
.158
.718
.206
.150
35.31
.000


696018
114.5
79.2
95.1
3.9
34.1
.278
.988
.157
3.000
42.10
.175


696044
105.1
39.2
96.9
3.7
29.1
.435
.795
.235
1.075
36.83
.120


716600
92.0
72.0
130.7
3.9
33.9
.190
.903
.192
.450
39.47
.018


716655
89.5
63.5
76.5
3.7
27.0
.153
.753
.189
.225
36.03
.003


740233
90.6
58.9
101.8
3.7
24.2
.283
.668
.190
.125
34.68
.000


746275
85.4
46.2
82.9
3.5
25.3
.428
.795
.184
1.600
46.52
.073









RNA Analysis

At the end of the study, RNA was extracted from various monkey tissues for real-time PCR analysis of measurement of mRNA expression of K-Ras for the animals treated with ISIS 746275. As above, primer probe set RTS3496_MGB was used, and the results for each group were averaged and presented as percent inhibition of mRNA, relative to the PBS control, normalized with rhesus cyclophilin A.









TABLE 96







Inhibition of K-Ras mRNA relative to the PBS control in


various monkey tissues after treatment with ISIS 746275










Tissue
% Inhibition














Liver
69



Kidney
51



Lung
27



Duodenum
39



Pancreas
0



Heart
28









Claims
  • 1. A compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides and having a nucleobase sequence comprising at least 8, 9, 10, 11, or 12 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 13-2190.
  • 2. A compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides and having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 13-2190.
  • 3. A compound comprising a modified oligonucleotide consisting of the nucleobase sequence of any one of SEQ ID NOs: 13-2190.
  • 4. A compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides complementary within nucleobases 463-478, 877-892, 1129-1144, 1313-1328, 1447-1462, 1686-1701, 1690-1705, 1778-1793, 1915-1930, 1919-1934, 1920-1935, 2114-2129, 2115-2130, 2461-2476, 2462-2477, 2463-2478, 4035-4050 of SEQ ID NO: 1, wherein said modified oligonucleotide is at least 85%, 90%, 95%, or 100% complementary to SEQ ID NO: 1.
  • 5. A compound comprising a modified oligonucleotide consisting of 8 to 80 linked nucleosides having a nucleobase sequence comprising at least 8, 9, 10, 11, or 12 contiguous nucleobases of any of the nucleobase sequences of any one of SEQ ID NOs: 272, 804, 239, 569, 607, 615, 621, 640, 655, 678, 715, 790, 854, 1028, 2130, 2136, 2142, 2154, and 2158.
  • 6. A compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising the nucleobase sequences of any one of SEQ ID NOs: 272, 804, 239, 569, 607, 615, 621, 640, 655, 678, 715, 790, 854, 1028, 2130, 2136, 2142, 2154, and 2158.
  • 7. A compound comprising a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence consisting of any one of SEQ ID NOs: 272, 804, 239, 569, 607, 615, 621, 640, 655, 678, 715, 790, 854, 1028, 2130, 2136, 2142, 2154, and 2158.
  • 8. The compound of any one of claims 1-7, wherein the modified oligonucleotide comprises: a gap segment consisting of linked deoxynucleosides;a 5′ wing segment consisting of linked nucleosides; anda 3′ wing segment consisting of linked nucleosides;wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.
  • 9. A compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 272, 239, 569, 607, 615, 621, 640, 655, 678, 715, 790, and 854, wherein the modified oligonucleotide comprises: a gap segment consisting of ten linked deoxynucleosides;a 5′ wing segment consisting of three linked nucleosides; anda 3′ wing segment consisting of three linked nucleosides;wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment, wherein each nucleoside of each wing segment comprises a constrained ethyl (cEt) nucleoside; wherein each internucleoside linkage is a phosphorothioate linkage and wherein each cytosine is a 5-methylcytosine.
  • 10. A compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising the nucleobase sequence of SEQ ID NO: 2130, wherein the modified oligonucleotide comprises: a gap segment consisting of nine linked deoxynucleosides;a 5′ wing segment consisting of one linked nucleoside; anda 3′ wing segment consisting of six linked nucleosides;wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, and 2′-O-methoxyethyl nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine.
  • 11. A compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising the nucleobase sequence of any one of SEQ ID NOs: 804, 1028, and 2136, wherein the modified oligonucleotide comprises: a gap segment consisting of ten linked deoxynucleosides;a 5′ wing segment consisting of two linked nucleosides; anda 3′ wing segment consisting of four linked nucleosides;wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, and a 2′-O-methoxyethyl nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine.
  • 12. A compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising the nucleobase sequence of SEQ ID NO: 2142, wherein the modified oligonucleotide comprises: a gap segment consisting of eight linked deoxynucleosides;a 5′ wing segment consisting of two linked nucleosides; anda 3′ wing segment consisting of six linked nucleosides;wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine.
  • 13. A compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising the nucleobase sequence of SEQ ID NO: 2154, wherein the modified oligonucleotide comprises: a gap segment consisting of nine linked deoxynucleosides;a 5′ wing segment consisting of two linked nucleosides; anda 3′ wing segment consisting of five linked nucleosides;wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, a cEt nucleoside, a 2′-O-methoxyethyl nucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine.
  • 14. A compound comprising a modified oligonucleotide consisting of 16 to 80 linked nucleosides having a nucleobase sequence comprising the nucleobase sequence of SEQ ID NO: 2158, wherein the modified oligonucleotide comprises: a gap segment consisting of eight linked deoxynucleosides;a 5′ wing segment consisting of three linked nucleosides; anda 3′ wing segment consisting of five linked nucleosides;wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment; wherein the 5′ wing segment comprises a cEt nucleoside, a cEt nucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein the 3′ wing segment comprises a cEt nucleoside, a deoxynucleoside, a cEt nucleoside, a deoxynucleoside, and a cEt nucleoside in the 5′ to 3′ direction; wherein each internucleoside linkage is a phosphorothioate linkage; and wherein each cytosine is a 5-methylcytosine.
  • 15. The compound of any one of claims 1-14, wherein the oligonucleotide is at least 80%, 85%, 90%, 95% or 100% complementary to SEQ ID NO: 1 or 2.
  • 16. The compound of any one of claims 1-15, wherein the modified oligonucleotide comprises at least one modified internucleoside linkage, at least one modified sugar, or at least one modified nucleobase.
  • 17. The compound of claim 16, wherein the modified internucleoside linkage is a phosphorothioate internucleoside linkage.
  • 18. The compound of claim 16 or 17, wherein the modified sugar is a bicyclic sugar.
  • 19. The compound of claim 18, wherein the bicyclic sugar is selected from the group consisting of: 4′-(CH2)—O-2′ (LNA); 4′-(CH2)2-O-2′ (ENA); and 4′-CH(CH3)—O-2′ (cEt).
  • 20. The compound of any one of claims 16-19, wherein the modified sugar is 2′-O-methoxyethyl.
  • 21. The compound of any one of claims 16-20, wherein the modified nucleobase is a 5-methylcytosine.
  • 22. The compound of any one of claims 1-21, wherein the modified oligonucleotide comprises: a gap segment consisting of linked deoxynucleosides;a 5′ wing segment consisting of linked nucleosides; anda 3′ wing segment consisting of linked nucleosides;
  • 23. The compound of any one of claims 1-22, wherein the compound is single-stranded.
  • 24. The compound of any one of claims 1-23, wherein the compound is double-stranded.
  • 25. The compound of any one of claims 1-24, wherein the compound comprises ribonucleotides.
  • 26. The compound of claim 25, wherein the compound comprises a double-stranded RNA oligonucleotide, wherein one strand of the double-stranded RNA oligonucleotide is the modified oligonucleotide.
  • 27. The compound of any one of claims 1-24, wherein the compound comprises deoxyribonucleotides.
  • 28. The compound of any one of claims 1-27, wherein the modified oligonucleotide consists of 10 to 30, 12 to 30, 15 to 30, 16 to 30, or 16 linked nucleosides.
  • 29. The compound of any one of claims 1-28, wherein the compound comprises a conjugate and the modified oligonucleotide.
  • 30. The compound of any one of claims 1-28, wherein the compound consists of a conjugate and the modified oligonucleotide.
  • 31. The compound of any one of claims 1-28, wherein the compound consists of the modified oligonucleotide.
  • 32. A compound consisting of a pharmaceutically acceptable salt of any of the compounds of claims 1-31.
  • 33. The compound of claim 32, wherein the pharmaceutically acceptable salt is a sodium salt.
  • 34. The compound of claim 32, wherein the pharmaceutically acceptable salt is a potassium salt.
  • 35. A compound comprising ISIS 651987, or a pharmaceutically acceptable salt thereof, having the formula:
  • 36. A compound consisting of ISIS 651987, or a pharmaceutically acceptable salt thereof, having the formula:
  • 37. The compound of claim 35 or 36, wherein the pharmaceutically acceptable salt is a sodium salt.
  • 38. A composition comprising the compound of any one of claims 1-37 and a pharmaceutically acceptable carrier.
  • 39. A method of treating, preventing, or ameliorating cancer in an individual comprising administering to the individual the compound of any one of claims 1-37 or composition of claim 38, thereby treating, preventing, or ameliorating cancer in the individual.
  • 40. The method of claim 39, wherein the cancer is lung cancer, non-small cell lung carcinoma (NSCLC), small-cell lung carcinoma (SCLC)), gastrointestinal cancer, large intestinal cancer, small intestinal cancer, colon cancer, colorectal cancer, bladder cancer, liver cancer, stomach cancer, esophageal cancer, pancreatic cancer, biliary tract cancer, breast cancer, ovarian cancer, endometrial cancer, cervical cancer, prostate cancer, hematopoetic cancer, brain cancer, glioblastoma, malignant peripheral nerve sheath tumor (MPNST), neurofibromatosis type 1 (NF1) mutant MPNST, neurofibroma, leukemia, myeloid leukemia, or lymphoma.
  • 41. The method of claim 39 or 40, wherein administering the compound reduces the number of cancer cells in the individual, reduces the size of a tumor in the individual, reduces or inhibits growth or proliferation of a tumor in the individual, prevents metastasis or reduces the extent of metastasis in the individual, or extends survival of the individual.
  • 42. A method of inhibiting expression of KRAS in a cell comprising contacting the cell with the compound of any one of claims 1-37 or composition of claim 38, thereby inhibiting expression of KRAS in the cell.
  • 43. Use of the compound of any one of claims 1-37 or composition of claim 38 for treating, preventing, or ameliorating cancer in an individual.
  • 44. Use of the compound of any one of claims 1-37 or composition of claim 38 for the manufacture of a medicament for treating cancer.
  • 45. The use of claim 43 or 44, wherein the cancer is lung cancer, non-small cell lung carcinoma (NSCLC), small-cell lung carcinoma (SCLC)), gastrointestinal cancer, large intestinal cancer, small intestinal cancer, colon cancer, colorectal cancer, bladder cancer, liver cancer, stomach cancer, esophageal cancer, pancreatic cancer, biliary tract cancer, breast cancer, ovarian cancer, endometrial cancer, cervical cancer, prostate cancer, hematopoetic cancer, brain cancer, glioblastoma, malignant peripheral nerve sheath tumor (MPNST), neurofibromatosis type 1 (NF1) mutant MPNST, neurofibroma, leukemia, myeloid leukemia, or lymphoma.
PCT Information
Filing Document Filing Date Country Kind
PCT/US16/53334 9/23/2016 WO 00
Provisional Applications (1)
Number Date Country
62232120 Sep 2015 US