One or more aspects of embodiments according to the present invention relate to optoelectronic modules.
Pluggable transceivers which include (i) one or more transmitters to convert electrical signals carrying data to optical signals carrying the same data and (ii) one or more receivers to convert optical signals to electrical signals may be used, for example, in switching systems. The design of a pluggable module may pose various challenges, including respecting space constraints, and keeping components in the module within acceptable temperature ranges.
According to an embodiment of the present disclosure there is provided a transceiver assembly, including: a housing; and an optical subassembly, the optical subassembly including: a fiber, a photonic integrated circuit, an analog electronic integrated circuit, and a substantially planar subcarrier; the subcarrier having a thermal conductivity greater than 10 W/m/K; the photonic integrated circuit and the analog electronic integrated circuit being on the subcarrier; the fiber being coupled to the photonic integrated circuit; the subcarrier being parallel to, secured to, and in thermal contact with, a first wall of the housing; the photonic integrated circuit being connected to the analog electronic integrated circuit; and the optical subassembly having a plurality of contact pads for establishing electrical connections between the analog electronic integrated circuit and test equipment probes, the optical subassembly being configured to be separately testable by supplying power to the optical subassembly through one or more of the contact pads and sending data to and and/or receiving data from the optical subassembly through one or more of the contact pads.
In one embodiment, the analog electronic integrated circuit is adjacent to the photonic integrated circuit and connected to the photonic integrated circuit by a first plurality of wire bonds. In one embodiment, the wire bonds extend from wire bond pads along an edge of the analog electronic integrated circuit to wire bond pads along an edge, of the photonic integrated circuit, nearest the analog electronic integrated circuit.
In one embodiment, the optical subassembly further includes a flexible printed circuit, connected to the analog electronic integrated circuit.
In one embodiment, the optical subassembly further includes a routing board, and the analog electronic integrated circuit is connected to the flexible printed circuit through the routing board.
In one embodiment, the routing board is a printed circuit including an organic insulating material and conductive traces, the routing board is connected to the analog electronic integrated circuit, along an edge of the analog electronic integrated circuit, by wire bonds.
In one embodiment, the flexible printed circuit is further connected to the host board.
According to an embodiment of the present disclosure there is provided a module, including: a housing; a substantially planar subcarrier; a photonic integrated circuit; and an analog electronic integrated circuit, the subcarrier having a thermal conductivity greater than 10 W/m/K, the photonic integrated circuit and the analog electronic integrated circuit being secured to a first side of the subcarrier, the subcarrier being secured to a first wall of the housing, wherein a second side of the subcarrier, opposite the first side of the subcarrier, is parallel to, secured to, and in thermal contact with, an interior side of the first wall of the housing.
In one embodiment, the photonic integrated circuit is adjacent to the analog electronic integrated circuit.
In one embodiment, the photonic integrated circuit is connected to the analog electronic integrated circuit by wire bonds.
In one embodiment, the wire bonds extend from wire bond pads along an edge of the analog electronic integrated circuit to wire bond pads along an edge, of the photonic integrated circuit, nearest the analog electronic integrated circuit.
In one embodiment, the module further includes an optical subassembly including: the subcarrier; the photonic integrated circuit; and the analog electronic integrated circuit, the optical subassembly having a plurality of contact pads for establishing electrical connections between the analog electronic integrated circuit and test equipment probes, the optical subassembly being configured to be separately testable by supplying power to the optical subassembly through one or more of the contact pads and sending data to and and/or receiving data from the optical subassembly through one or more of the contact pads.
In one embodiment, the optical subassembly further includes a flexible printed circuit, connected to the analog electronic integrated circuit
In one embodiment, the optical subassembly further includes a routing board connected to the analog electronic integrated circuit, along an edge of the analog electronic integrated circuit, by wire bonds; the analog electronic integrated circuit is connected to the flexible printed circuit through the routing board; and the routing board is a printed circuit including an organic insulating material and conductive traces.
In one embodiment, the flexible printed circuit is connected to the routing board by solder.
In one embodiment, the module further includes a host board including a microcontroller and/or a DC-DC converter, the host board being connected to the routing board through the flexible printed circuit.
According to an embodiment of the present disclosure there is provided method for manufacturing a module, the method including: assembling an optical subassembly including: a fiber, a photonic integrated circuit, an analog electronic integrated circuit, and a substantially planar subcarrier, the photonic integrated circuit and the analog electronic integrated circuit being on the subcarrier; testing the optical subassembly; determining that the testing of the optical subassembly was successful; and in response to determining that the testing of the testing the optical subassembly was successful, installing the optical subassembly in a housing, with the subcarrier being parallel to, secured to, and in thermal contact with, a first wall of the housing.
In one embodiment, the optical subassembly has a plurality of contact pads for establishing electrical connections between the analog electronic integrated circuit and test equipment probes; and the testing of the optical subassembly includes: transmitting modulated light into the photonic integrated circuit through the fiber, and verifying the presence, at the contact pads, of electrical signals corresponding to the modulation; or the testing of the optical subassembly includes: applying electrical signals to the contact pads, and verifying the presence, in light transmitted through the fiber from the photonic integrated circuit, of modulation corresponding to the electrical signals.
In one embodiment, the method further includes: in response to determining that the testing of the testing the optical subassembly was successful, connecting a host board including a microcontroller and/or a DC-DC converter to the optical subassembly.
In one embodiment, the connecting of the host board to the optical subassembly includes soldering the host board to the optical subassembly.
These and other features and advantages of the present disclosure will be appreciated and understood with reference to the specification, claims, and appended drawings wherein:
The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments of a module with transmit optical subassembly and receive optical subassembly provided in accordance with the present disclosure and is not intended to represent the only forms in which the present disclosure may be constructed or utilized. The description sets forth the features of the present disclosure in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and structures may be accomplished by different embodiments that are also intended to be encompassed within the scope of the disclosure. As denoted elsewhere herein, like element numbers are intended to indicate like elements or features.
The PIC 110 may be secured to a thermoelectric cooler (TEC) 140 which may be secured to the subcarrier 135, as shown. In some embodiments, a host board 145, which may be an organic printed circuit board, has installed on it a microcontroller 150 and a DC-DC converter 155, and it has a card-edge connector 160 at the electrical end of the QSFP package. The routing board may be connected to the host board by a flexible circuit or “flex circuit” 165 (
Each PIC 110 may include a waveguide having transverse dimensions of approximately 10 microns at a point at which light couples into the waveguide from the fiber 105, or from the fiber 105 into the waveguide. A mode adapter, e.g., a taper, may guide the light and transform the optical mode to one that propagates in a waveguide having transverse dimensions of approximately 3 microns. The 3 micron waveguide may be used to guide the light to a photodetector, or from a modulator. Further mode adapters (e.g., at a modulator) may be used to effect further changes in the size or shape of the optical mode, e.g., to enable light to propagate through a modulator fabricated on a waveguide with smaller transverse dimension (for improved modulator performance). In some embodiments similar to that of
In some embodiments the TEC 140 is absent and the PIC 110 is bonded directly to the subcarrier, or is bonded to an insulating layer bonded to the subcarrier. In some embodiments, a heater is secured to or integrated into the PIC 110 and the temperature of the PIC 110 is actively controlled, based on a signal from a temperature sensor on or integrated into the PIC 110. In such an embodiment, the insulating layer may enable the heater to raise the temperature of the PIC 110 without consuming an excessive amount of power.
A dual flex circuit (i.e., two parallel flex circuits 165), is used in the embodiment of
Referring to
Referring to
The resulting subassembly may then be installed in a QSFP package housing.
Although exemplary embodiments of a module with transmit optical subassembly and receive optical subassembly have been specifically described and illustrated herein, many modifications and variations will be apparent to those skilled in the art. Accordingly, it is to be understood that a module with transmit optical subassembly and receive optical subassembly constructed according to principles of this disclosure may be embodied other than as specifically described herein. The invention is also defined in the following claims, and equivalents thereof.
The present application is a continuation of U.S. patent application Ser. No. 16/051,237, filed Jul. 31, 2018, entitled “MODULE WITH TRANSMIT OPTICAL SUBASSEMBLY AND RECEIVE OPTICAL SUBASSEMBLY”, which claims priority to and the benefit of U.S. Provisional Application No. 62/539,929, filed Aug. 1, 2017, entitled “OPTOELECTRONIC PLUGGABLE TRANSCEIVER MODULE WITH TRANSMIT OPTICAL SUBASSEMBLY AND RECEIVE OPTICAL SUBASSEMBLY”, the entire contents of both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6910812 | Pommer et al. | Jun 2005 | B2 |
6958907 | Sato et al. | Oct 2005 | B2 |
7198412 | Hamasaki et al. | Apr 2007 | B2 |
7259031 | Dickinson et al. | Aug 2007 | B1 |
7400239 | Kiko | Jul 2008 | B2 |
7636522 | Nagarajan et al. | Dec 2009 | B2 |
7970280 | Morton | Jun 2011 | B2 |
8727508 | Nystrom et al. | May 2014 | B2 |
8971676 | Thacker et al. | Mar 2015 | B1 |
9002155 | Li et al. | Apr 2015 | B2 |
9031412 | Nagarajan et al. | May 2015 | B2 |
9064861 | Musk | Jun 2015 | B2 |
9112616 | McColloch | Aug 2015 | B2 |
9151663 | Yu et al. | Oct 2015 | B2 |
9172468 | Kurashima | Oct 2015 | B2 |
9217835 | Ishiyama et al. | Dec 2015 | B2 |
9322938 | Kämmerer et al. | Apr 2016 | B2 |
9435959 | Doerr et al. | Sep 2016 | B2 |
9500821 | Hochberg et al. | Nov 2016 | B2 |
9866929 | Frankel et al. | Jan 2018 | B2 |
9874688 | Doerr et al. | Jan 2018 | B2 |
10026723 | Evans et al. | Jul 2018 | B2 |
10037982 | Evans et al. | Jul 2018 | B2 |
10097271 | Doerr | Oct 2018 | B2 |
10120132 | Kojima et al. | Nov 2018 | B2 |
10142712 | Garcia et al. | Nov 2018 | B2 |
10151940 | Guzzon et al. | Dec 2018 | B2 |
10365436 | Byrd et al. | Jul 2019 | B2 |
10509165 | Celo et al. | Dec 2019 | B2 |
10761262 | Byrd | Sep 2020 | B2 |
20020176679 | Nashimoto | Nov 2002 | A1 |
20040062491 | Sato et al. | Apr 2004 | A1 |
20050058408 | Colgan et al. | Mar 2005 | A1 |
20050248019 | Chao et al. | Nov 2005 | A1 |
20050249509 | Nagarajan et al. | Nov 2005 | A1 |
20060065510 | Kiko | Mar 2006 | A1 |
20060088319 | Morton | Apr 2006 | A1 |
20060196651 | Board et al. | Sep 2006 | A1 |
20070159636 | Jayaraman | Jul 2007 | A1 |
20080023722 | Lee et al. | Jan 2008 | A1 |
20100166424 | Nagarajan et al. | Jul 2010 | A1 |
20100284698 | McColloch | Nov 2010 | A1 |
20110204327 | Hiruma et al. | Aug 2011 | A1 |
20110226951 | Kämmerer et al. | Sep 2011 | A1 |
20120033208 | Hara et al. | Feb 2012 | A1 |
20130049018 | Ramer et al. | Feb 2013 | A1 |
20130049040 | Ramer et al. | Feb 2013 | A1 |
20130049041 | Ramer et al. | Feb 2013 | A1 |
20130120505 | Nystrom et al. | May 2013 | A1 |
20130193304 | Yu et al. | Aug 2013 | A1 |
20130308898 | Doerr et al. | Nov 2013 | A1 |
20140010551 | Kurashima | Jan 2014 | A1 |
20140064659 | Doerr et al. | Mar 2014 | A1 |
20140147085 | Lim | May 2014 | A1 |
20140233166 | O'Shea | Aug 2014 | A1 |
20150076661 | Musk | Mar 2015 | A1 |
20150084490 | Fujiwara | Mar 2015 | A1 |
20150098675 | Ishiyama et al. | Apr 2015 | A1 |
20150221825 | Ko et al. | Aug 2015 | A1 |
20150277069 | Okamoto et al. | Oct 2015 | A1 |
20160013866 | Doerr | Jan 2016 | A1 |
20160056336 | Hwang et al. | Feb 2016 | A1 |
20160062039 | Zhang et al. | Mar 2016 | A1 |
20160085038 | Decker et al. | Mar 2016 | A1 |
20160111407 | Krasulick | Apr 2016 | A1 |
20160238371 | Lloret Soler et al. | Aug 2016 | A1 |
20160334594 | Leigh et al. | Nov 2016 | A1 |
20160341920 | Stapleton et al. | Nov 2016 | A1 |
20170003450 | Rickman et al. | Jan 2017 | A1 |
20170075149 | Guzzon et al. | Mar 2017 | A1 |
20170194308 | Evans et al. | Jul 2017 | A1 |
20170194309 | Evans et al. | Jul 2017 | A1 |
20170194310 | Evans et al. | Jul 2017 | A1 |
20180023779 | Seif et al. | Jan 2018 | A1 |
20180098138 | Frankel et al. | Apr 2018 | A1 |
20180196196 | Byrd et al. | Jul 2018 | A1 |
20180203187 | Doerr et al. | Jul 2018 | A1 |
20180284345 | Kojima et al. | Oct 2018 | A1 |
20180284373 | Lin et al. | Oct 2018 | A1 |
20190041576 | Byrd et al. | Feb 2019 | A1 |
20190081453 | Meehan et al. | Mar 2019 | A1 |
20190324201 | Celo et al. | Oct 2019 | A1 |
20200064547 | Goodwill et al. | Feb 2020 | A1 |
20200073050 | Byrd et al. | Mar 2020 | A1 |
20200363585 | Byrd | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
203037898 | Jul 2013 | CN |
103995324 | Aug 2014 | CN |
104793300 | Jul 2015 | CN |
106371176 | Feb 2017 | CN |
106980159 | Jul 2017 | CN |
Entry |
---|
Chinese Notification of the First Office Action, for Patent Application No. 201880028589.2, dated Jun. 2, 2021, 11 pages. |
Partial English translation of the Chinese Notification of the First Office Action, for Patent Application No. 201880028589.2, dated Jun. 2, 2021, 4 pages. |
“Designing with the AOC 10Gbps TOSA and ROSA”, Finisar Application Note AN-2132, Jun. 2, 2015, pp. 1-33, Finisar Corporation, Sunnyvale, California, USA. |
International Search Report and Written Opinion of the International Searching Authority, dated Apr. 5, 2018, Corresponding to PCT/EP2018/050188, 15 pages. |
International Search Report and Written Opinion of the International Searching Authority, dated Nov. 30, 2018, Corresponding to PCT/IB2018/000980, 18 pages. |
U.S. Office Action dated Nov. 1, 2018, for U.S. Appl. No. 15/862,463, 15 pages. |
Web page with photograph, https://community.mellanox.com/servlet/rtaImage?eid=ka21T00000054Vu&feoid=00N5000000AYucA&refid=0EM1T000000uNdV, printed to PDF Jan. 17, 2019, 1 page. |
European Patent Office Communication pursuant to Article 94(3) EPC, for Patent Application No. 18 766 327.3, dated Nov. 16, 2021, 6 pages. |
U.K. Intellectual Property Office Examination Report, dated Sep. 29, 2021, for Patent Application No. GB2002794.2, 2 pages. |
Chinese Notification of the Second Office Action, for Patent Application No. 201880028589.2, dated Nov. 29, 2021, 12 pages. |
Partial English translation of the Chinese Notification of the Second Office Action, for Patent Application No. 201880028589.2, dated Nov. 29, 2021, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20200363585 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62539929 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16051237 | Jul 2018 | US |
Child | 16945569 | US |