This Non-provisional application claims priority under 35 U.S.C. ยง119(a) on Patent Application No(s). 096131432 filed in Taiwan, Republic of China on Aug. 24, 2007, the entire contents of which are hereby incorporated by reference.
1. Field of Invention
The invention relates to a ceramic substrate and a manufacturing method thereof. More particularly, the invention relates to a multi-layer ceramic substrate with an embedded cavity and a manufacturing method thereof.
2. Related Art
At present, the electronic technology is rapidly developed, and the product is gradually miniaturized. Therefore, active and passive components are continuously developed in a direction toward the miniaturization. Due to the progress of the low-temperature co-fired ceramic technology (LTCC), the passive components can be integrated in a printing circuit ceramic substrate so that the area for the arrangement of the passive components and interconnections can be greatly reduced.
However, there are some problems to be solved in the LTCC application. The main drawback is the contraction caused by sintering the ceramic substrate, wherein the contraction in the plane direction has the greatest influence so that the circuits or the overall substrate may deform. In addition, the ceramic substrates produced in different batches may also have different contraction rations, thereby increasing the difficulty in the circuit design and the manufacturing processes and thus restricting the application range thereof. In order to decrease the contraction ration caused in the sintering process, the design and the manufacturing processes may be improved in the prior art. However, the manufacturing cost is increased, and the manufacturing processes become complicated.
The conventional ceramic substrate only has top and bottom surfaces, on which circuits may be formed or surface elements may be mounted, and thus cannot satisfy the miniaturized requirement.
Therefore, it is an important subject to provide a ceramic substrate, which has no sintering contraction in a plane direction and has surface elements integrated therein to increase the circuit integration, and a manufacturing method thereof.
In view of the foregoing, the invention is to provide a multi-layer ceramic substrate with an embedded cavity, wherein the multi-layer ceramic substrate has no sintering contraction in a plane direction, and surface elements are integrated in the ceramic substrate to increase the circuit integration.
To achieve the above, the invention discloses a manufacturing method of a ceramic substrate with an embedded cavity. The method includes the steps of: providing at least one ceramic thin plate and at least one ceramic pre-mold plate having a surface formed with a conductive layer; stacking the ceramic thin plate and the ceramic pre-mold plate to form a stacked structure having at least one embedded cavity; and sintering the stacked structure.
In addition, the invention also discloses a multi-layer ceramic substrate with an embedded cavity including a plurality of dielectric layers and a plurality of conductive layers. The conductive layers and the dielectric layers are disposed separately, and the dielectric layer is formed with at least one embedded cavity.
As mentioned hereinabove, the multi-layer ceramic substrate with the embedded cavity and the manufacturing method thereof according to the invention have the following features. First, the sintered ceramic thin plate and the non-sintered ceramic pre-mold plate are stacked and sintered so that the ceramic thin plate can provide a constraining action to the ceramic pre-mold plate to suppress the ceramic pre-mold plate from contraction during the sintering process. Thus, the sintering contraction in the plane direction can be avoided. Compared with the prior art, the ceramic thin plate and the ceramic pre-mold plate have the same property, the contraction can be suppressed during the sintering process, and it is possible to prevent the ceramic thin plate and the ceramic pre-mold plate from being curved so that the even ceramic substrate can be obtained. In addition, the embedded cavity is formed inside the ceramic substrate and electronic elements are placed into the embedded cavity so that the circuit integration can be increased and the size of the substrate can be reduced.
Further scope of the applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more filly understood from the detailed description given herein below and accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
As shown in
As shown in
As shown in
The ceramic material can be selected from the group consisting of a ceramic powder, glass, a metal oxide powder, a composite metal oxide powder and a mixture thereof The selected inorganic adhesive does not have the chemical activity relative to the other materials, and has the physical properties that the sintering temperature thereof is lower than that of the ceramic material and that the inorganic adhesive being sintered is in a liquid phase. The inorganic adhesive may be a crystallized glass material, a crystallized glass ceramic material, a non-crystallized glass material or a non-crystallized glass ceramic material. The polymeric adhesive may be polyethylene glycol (PEG), polyvinyl butyral (PVB) or polyvinyl alcohol (PVA). The plasticizer can be dibutyl phthalate (DBP). The organic solvent can be n-propyl alcohol, toluene or alcohol.
The ceramic thin plates 21 and 22 or the ceramic pre-mold plate 31 provided in this embodiment of the invention may be formed with a hole in advance and a conductive material is filled into the hole or a conductive trace is printed on the hole. Alternatively, the ceramic pre-mold plate 31 can be a three-dimensional structure formed by stacking a plurality of pre-mold plates with cavities in advance.
As shown in
As shown in
After the step S3, the method of the invention may further include the step S31 of pressing the stacked structure 32 by way of hot pressing and isotatic pressing so that the stacked structure composed of the ceramic thin plates 21 and 22 and the ceramic pre-mold plate 31 becomes much denser. In addition, it is possible to prevent the multi-layer ceramic substrate 4 from being curved during the subsequent sintering process.
As shown in
In summary, the multi-layer ceramic substrate with the embedded cavity and the manufacturing method thereof according to the invention have the following features. First, the sintered ceramic thin plate and the non-sintered ceramic pre-mold plate are stacked and sintered so that the ceramic thin plate can provide a constraining action to the ceramic pre-mold plate to suppress the ceramic pre-mold plate from contraction during the sintering process. Thus, the sintering contraction in the plane direction can be avoided. Compared with the prior art, the ceramic thin plate and the ceramic pre-mold plate have the same property, the contraction can be suppressed during the sintering process, and it is possible to prevent the ceramic thin plate and the ceramic pre-mold plate from being curved so that the even ceramic substrate can be obtained. In addition, the embedded cavity is formed inside the ceramic substrate and the electronic elements are placed into the embedded cavity so that the circuit integration can be increased and the size of the substrate can be reduced.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the invention.
| Number | Date | Country | Kind |
|---|---|---|---|
| 096131432 | Aug 2007 | TW | national |