Read stability and writeability are parameters that are used to assess the operation of memory cells. SRAM cells are considered stable if they can be read without the read operation causing the state of the data that is stored within them to change. As regards reads, during a read operation, turning on the pass gates, which are controlled by the word lines, results in a beta ratio effect on the low side of the memory cell between MNTT and MNOT. The increasing voltage on node MT turns on MNDC and causes a lowering of the voltage on node MC. A size ratio must be utilized as a part of the design implementation that prevents a feedback to node MT which would be positively reinforcing (causing read instability). Typical ratios of WMNDT/WMNTT=WMNDC/WMNTC of approximately 2 are considered good design practice.
As regards writes, during write operations one of the pair of bit lines is transitioned low (Vss). An internal change of state results from the low bit line pulling the high node toward Vss (current Ids flows through transfer gate MNTC) and is assisted by the MNTT gate pulling MT up toward Vdd. The MNTC MOSFET gate must have sufficient current to pull the high node lower (MPLC is acting like a resistor in the linear region of MOSFET operations). The voltage drop across the MPLC must be high enough to induce unstable feedback to change state. Process statistical variability can result in weak N/strong P conditions which can result in the inability to write. Ratioed memory cells can exhibit difficulty at lowered Vdd supply.
Disadvantages of SRAM memory cell 250 is that multiple separate write/read wordline wires are required and separate write/read bit lines (ports) are used. Area usage is high due to large number of wire pitches. Active transistors are also high due to separate active area for read and write transistors.
Increasing the memory cell density of memory cell arrays increases the data storage capacity of memory cell arrays. Many conventional designs feature port intensive memory cell structures. Such structures are implemented using increased numbers of wires/lines (e.g., bit lines and word lines) that increase power consumption and require more area. In addition, some conventional designs utilize more transistors that also require more area.
Many conventional designs feature port intensive memory cell structures. Such structures are implemented using increased numbers of lines (e.g., bit lines and word lines) that increase power consumption and require more area. In addition, some conventional designs utilize more transistors that also require more area. A mutltiport memory cell having improved density area is disclosed that addresses the aforementioned shortcomings of conventional processor designs. However, the claimed embodiments are not limited to implementations that address any or all of the aforementioned shortcomings. The mutltiport memory cell having improved density area includes a data storing component, a first memory access component coupled to a first side of the data storing component, a second memory access component coupled to a second side of the data storing component, first and second bit lines coupled to the first memory access component, first and second bit lines coupled to the second memory access component, first and second write lines coupled to the first memory access component and first and second write lines coupled to the second memory access component. The multiport memory cell also includes a read/write assist transistor, coupled to load transistors of the data storing component, that during read operations is activated for the duration of the read operation and during write operations is initially deactivated assist with the write operation. Subsequently, during the write operation the read/write assist transistor is activated to impress the desired voltage level before or after one or more memory access components activated as a part of the write operation are deactivated.
The invention, together with further advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:
It should be noted that like reference numbers refer to like elements in the figures.
Although the present invention has been described in connection with one embodiment, the invention is not intended to be limited to the specific forms set forth herein. On the contrary, it is intended to cover such alternatives, modifications, and equivalents as can be reasonably included within the scope of the invention as defined by the appended claims.
In the following detailed description, numerous specific details such as specific method orders, structures, elements, and connections have been set forth. It is to be understood however that these and other specific details need not be utilized to practice embodiments of the present invention. In other circumstances, well-known structures, elements, or connections have been omitted, or have not been described in particular detail in order to avoid unnecessarily obscuring this description.
References within the specification to “one embodiment” or “an embodiment” are intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. The appearance of the phrase “in one embodiment” in various places within the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.
Some portions of the detailed descriptions, which follow, are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals of a computer readable storage medium and are capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “receiving” or “biasing” or “determining” or “placing” or the like, refer to the action and processes of a computer system, or similar electronic computing device that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories and other computer readable media into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Referring to
SRAM Memory Cell
In one embodiment, as regards read operations, MPLT 353 and MPLC 355 are sized (increased with respect to prior art counterparts) to prevent a change of the cell state until transistor MPW 379 is deactivated. In addition, MPLT 353 and MPLC 355 are sized to allow activation of a single transfer gate WC or WT to allow single ended reads without cell instability. During write operations true/complement (differential write function) is allowed by activating both the W0C and W0t or W1C and W1T. Deactivating MPW 379 allows nodes MC, MT to become easier to transition by reducing the ability of MPLT 353, MPLC 355 to stop a write transition. Node PW can also be driven low to make more certain that MPLT 353, MPLC 355 present increasing impedances (not shown). The source node of MPLT 353 and MPLC 355 will move from Vdd toward Vss by virtue of a write current through MNTC 361 turning off MPLC 355 a delay time later. In one or more embodiments, MPW 379 can be external to memory cell 350 as is shown in
Operation
Read Operation
Referring to
At B, a low level is placed onto the gate terminal of MPW 379. MPW 379 is turned on and is kept on for the duration of the read operation.
For a single ended read involving, for example, wordline W0T 365, W0T is driven high such that a high voltage is placed onto the gate terminal of pass gate MNTT 351. If pass gate MNTT 351 turns on, it provides an indication that node MT is low and that a low state is stored in memory cell 350. If the pass gate does not conduct, it provides an indication that node MT is high and that a high state is stored in the memory cell.
At C, the indication is provided to a peripheral circuit.
Write Operation
Referring to
At B, bit lines B1T 373, B0T 371, B1C 377 and B0C 375 are biased (to a low voltage level if the level to be written is low and to a high voltage level if the level to be written is high).
At C, for example, when a high voltage is to be written to the memory cell, a high voltage is placed onto the gate terminal of pass gate MNTT 351. For a single ended writes involving wordline W0T 365, W0T 365 is driven high such that the high voltage is placed onto the gate terminal of pass gate MNTT 351. If pass gate MNTT 351 turns on, it provides an indication that node MT is high and that a high state is stored in the memory cell no change of node state occurs. If pass gate MNTT 351 turns on, due to memory node MT in low state and bitline B0T in low state, no change of memory node MT occurs (both nodes at same voltage state). If bitline MT is initially high the conduction of MNTT 351 will drive node MT low. If pass gate MNTT 351 does not conduct bitline B0T is low, it provides an indication that node MT is low and that a low state is stored in the memory cell node MT (that a low state does not have to be changed). Because pass gate MNTT 351 does not conduct the stored state will not be changed. If pass gate MNTT 351 conducts and memory bitline node B0T is high, it indicates that node MT is low requiring transition to the high MT state. A beta ratioed condition will prevent write until node PW is lowered in voltage and MPLC 355 drives node MC to a lowered voltage condition to reduce the drive of MNDT 357 resulting in MNTT 351 driving node MT to vt threshold below positive supply and this state is further reinforced by MNDC driving node MT to negative supply.
At D, MPW 379 is turned on to ensure that the level that is written into the cell is maintained. Any intermediate voltage resulting from the write operation and pass transistor vt down states will be reinforced at this point in the operation.
Read Operation
Referring to
At 503A, read/write assist transistor is turned on and is kept on for the duration of the read of the read operation.
For a single ended read involving wordline W0T (e.g., 365 in
At 505A, the indication is sensed and provided to a peripheral circuit. It should be appreciated that reads involving other wordlines operate similarly.
Write Operation
Referring to
At 503B, bit lines are biased to a voltage level that is intended to be written into the memory cell. Alternately, the bitlines could be changed to the write state following wordline transition.
At 505B, for single ended writes the involved wordline is driven high such that a high voltage is placed onto the gate terminal of the pass gate that is involved in the write. If the pass gate turns on, it provides an indication that node MT is high and that a high state is stored in the memory cell. The conduction of the pass gate will cause the voltage that is stored in the memory cell to change. If the pass gate does not conduct, it provides an indication that state does not have to be changed. Moreover, because the pass gate is not caused to conduct the stored state will not be changed.
At 507B, the read/write assist transistor is turned on to ensure that the level that is written into the cell is driven to the high voltage level. In one or more embodiments, the wordline can be turned off following the turn on of the read/write assist transistor. In one or more other embodiments, the wordline can be turned off before the turn on of the read/write assist transistor. In one or more other embodiments, after 507B, if the memory node voltage state is different from the bitline voltage level, a memory cell node will change voltage states. This voltage level will be intermediate since the pass gate is not capable of driving to the high voltage state or node PW is at an intermediate state. In this case, read/write assist transistor can be turned on to drive the memory cell node from the intermediate state to the rail state.
A mutltiport memory cell having improved density area is disclosed. The memory cell includes a data storing component, a first memory access component coupled to a first side of the data storing component, a second memory access component coupled to a second side of the data storing component, first and second bit lines coupled to the first memory access component, first and second bit lines coupled to the second memory access component, first and second write lines coupled to the first memory access component and first and second write lines coupled to the second memory access component. The multiport memory cell also includes a read/write assist transistor, coupled to load transistors of the data storing component, that during read operations is activated for the duration of the read operation and during write operations to impress the desired voltage level is activated before or after one or more memory access components activated as a part of the write operation are deactivated. Although embodiments described herein and depicted in the accompanying Figures are discussed and shown as incorporating specific parts (transistor types etc.), the invention is not limited to such implementations, for example embodiments that utilize parts or part types other than those described herein but that provide the same functionality that is described herein can be implemented in accordance with the invention.
Although many of the components and processes are described above in the singular for convenience, it will be appreciated by one of skill in the art that multiple components and repeated processes can also be used to practice the techniques of the present invention. Further, while the invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that changes in the form and details of the disclosed embodiments may be made without departing from the spirit or scope of the invention. For example, embodiments of the present invention may be employed with a variety of components and should not be restricted to the ones mentioned above. It is therefore intended that the invention be interpreted to include all variations and equivalents that fall within the true spirit and scope of the present invention.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/800,885, filed on Mar. 15, 2013, entitled “Multiport Memory Cell Having Improved Density Area” which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5053952 | Koopman, Jr. et al. | Oct 1991 | A |
5386583 | Hendricks | Jan 1995 | A |
5651124 | Shen et al. | Jul 1997 | A |
5729766 | Cohen | Mar 1998 | A |
5751982 | Morley | May 1998 | A |
5784638 | Goetz et al. | Jul 1998 | A |
5826055 | Wang et al. | Oct 1998 | A |
5826073 | Ben-Meir et al. | Oct 1998 | A |
5870575 | Kahle et al. | Feb 1999 | A |
5870584 | Bennett | Feb 1999 | A |
5905876 | Pawlowski et al. | May 1999 | A |
5983335 | Dwyer, III | Nov 1999 | A |
6049868 | Panwar | Apr 2000 | A |
6052777 | Panwar | Apr 2000 | A |
6061785 | Chiarot et al. | May 2000 | A |
6269439 | Hanaki | Jul 2001 | B1 |
6360311 | Zandveld et al. | Mar 2002 | B1 |
6385676 | Adkisson | May 2002 | B1 |
6557095 | Henstrom | Apr 2003 | B1 |
6711672 | Agesen | Mar 2004 | B1 |
6779092 | Watts | Aug 2004 | B2 |
6813704 | Nguyen | Nov 2004 | B1 |
6851011 | Lin | Feb 2005 | B2 |
6898699 | Jourdan et al. | May 2005 | B2 |
7096345 | Chen et al. | Aug 2006 | B1 |
7113510 | Lin | Sep 2006 | B2 |
7127592 | Abraham et al. | Oct 2006 | B2 |
7170814 | Morikawa | Jan 2007 | B2 |
7373637 | DeWitt, Jr. et al. | May 2008 | B2 |
7434031 | Spracklen et al. | Oct 2008 | B1 |
7644210 | Banning et al. | Jan 2010 | B1 |
7710763 | Houston | May 2010 | B2 |
7716460 | Stempel et al. | May 2010 | B2 |
7721076 | Sodani et al. | May 2010 | B2 |
7783869 | Grandou et al. | Aug 2010 | B2 |
7813163 | Pille et al. | Oct 2010 | B2 |
8024522 | Favor et al. | Sep 2011 | B1 |
8074060 | Col et al. | Dec 2011 | B2 |
8219784 | Ban et al. | Jul 2012 | B2 |
8238192 | Nii | Aug 2012 | B2 |
8959094 | Taylor | Feb 2015 | B2 |
20020032852 | Ramirez et al. | Mar 2002 | A1 |
20030101444 | Wu et al. | May 2003 | A1 |
20030163671 | Gschwind et al. | Aug 2003 | A1 |
20040133766 | Abraham et al. | Jul 2004 | A1 |
20060026408 | Morris et al. | Feb 2006 | A1 |
20060242365 | Ali et al. | Oct 2006 | A1 |
20070186081 | Chaundry et al. | Aug 2007 | A1 |
20070192541 | Balasubramonian et al. | Aug 2007 | A1 |
20080028195 | Kissell et al. | Jan 2008 | A1 |
20080126771 | Chen et al. | May 2008 | A1 |
20080216073 | Yates et al. | Sep 2008 | A1 |
20090019261 | Nguyen et al. | Jan 2009 | A1 |
20090049279 | Steiss et al. | Feb 2009 | A1 |
20090103377 | Chang | Apr 2009 | A1 |
20090164766 | Suggs et al. | Jun 2009 | A1 |
20090210627 | Alexander et al. | Aug 2009 | A1 |
20090254709 | Agesen | Oct 2009 | A1 |
20100097840 | Kim | Apr 2010 | A1 |
20100131742 | Col et al. | May 2010 | A1 |
20100153690 | Vick et al. | Jun 2010 | A1 |
20100161948 | Abdallah | Jun 2010 | A1 |
20110016292 | Mcdonald et al. | Jan 2011 | A1 |
20110271055 | O'Connor | Nov 2011 | A1 |
20110320784 | Almog et al. | Dec 2011 | A1 |
20120117335 | Bryant | May 2012 | A1 |
20120198157 | Abdallah | Aug 2012 | A1 |
20120221747 | Mei et al. | Aug 2012 | A1 |
20130086365 | Gschwind et al. | Apr 2013 | A1 |
20140126278 | Nii et al. | May 2014 | A1 |
20140281116 | Abdallah | Sep 2014 | A1 |
20140281388 | Abdallah | Sep 2014 | A1 |
20140281422 | Abdallah | Sep 2014 | A1 |
20140282546 | Abdallah | Sep 2014 | A1 |
20140282575 | Chan | Sep 2014 | A1 |
20140304492 | Abdallah | Oct 2014 | A1 |
20150324213 | Abdallah et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
0638183 | Mar 1997 | EP |
200719216 | May 2007 | TW |
I368165 | Jul 2012 | TW |
I377502 | Nov 2012 | TW |
9737301 | Oct 1997 | WO |
Entry |
---|
Zhou Li, Fast Interconnect Synthesis With Layer Assignment. Apr. 2008. |
Michael Slater, Microprocessor Report, The Insiders' Guide to Microprocessor Hardware, Oct. 1994, vol. 8. |
Number | Date | Country | |
---|---|---|---|
20150023086 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61800885 | Mar 2013 | US |