Embodiments described herein relate generally to a nitride semiconductor device and a method for manufacturing the same.
Devices using new materials taking the place of silicon, such as silicon carbide (SiC) and nitride semiconductors, are developed these days.
As an example, it is known that if a hetero-junction in which gallium nitride (GaN), which is a nitride semiconductor, and an aluminum gallium nitride (AlGaN) are stacked is formed, two-dimensional electron gas (2DEG) is generated at the interface of the hetero-junction. A hetero-structure field effect transistor (HFET) unitizing the 2DEG as a channel has the properties of high breakdown voltage and low ON resistance.
Here, as a structure to achieve normally OFF operation in the GaN-based HFET, there is a structure in which a recess structure is formed and a gate electrode is formed via an insulating film. There is a need for further improvement to obtain low ON resistance, high breakdown voltage, and high reliability in such a nitride semiconductor device.
In general, according to one embodiment, a nitride semiconductor device includes a first semiconductor layer, a second semiconductor layer, a first electrode, a second electrode, a third electrode, a first insulating film and a second insulating film. The first semiconductor layer includes a nitride semiconductor. The second semiconductor layer is provided on the first semiconductor layer, includes a nitride semiconductor having a band gap wider than a band gap of the first semiconductor layer, and includes a hole. The first electrode is provided in the hole. The second electrode is provided on the second semiconductor layer and electrically connected to the second semiconductor layer. The third electrode is provided on the second semiconductor layer so that the first electrode is disposed between the third electrode and the second electrode. The third electrode is electrically connected to the second semiconductor layer. The first insulating film includes oxygen, is provided between the first electrode and an inner wall of the hole and between the first electrode and the second electrode, and is provided spaced from the third electrode. The second insulating film includes nitrogen and is provided in contact with the second semiconductor layer between the first electrode and the third electrode.
In general, according to one embodiment, a method is disclosed for manufacturing a nitride semiconductor device. The method can include forming a first semiconductor layer including a nitride semiconductor on a support substrate, and forming a second semiconductor layer having a band gap wider than a band gap of the first semiconductor layer and including a nitride semiconductor on the first semiconductor layer. The method can include forming a second insulating film including nitrogen on the second semiconductor layer. The method can include forming a hole by removing parts of the second insulating film and the second semiconductor layer. The method can include forming a first insulating film including oxygen so as to cover an inner wall of the hole and the second insulating film. The method can include removing at least a part of the first insulating film on one side as viewed from the hole. The method can include forming a second electrode electrically connected to the second semiconductor layer on another side as viewed from the hole, and forming a third electrode electrically connected to the second semiconductor layer on the one side as viewed from the hole spaced from the first insulating film. In addition, the method can include forming a first electrode in the hole via the first insulating film.
Various embodiments will be described hereinafter with reference to the accompanying drawings.
The drawings are schematic or conceptual; and the relationships between the thickness and width of portions, the proportional coefficients of sizes among portions, etc., are not necessarily the same as the actual values thereof. Further, the dimensions and proportional coefficients may be illustrated differently among drawings, even for identical portions.
In the specification of the application and the drawings, components similar to those described in regard to a drawing thereinabove are marked with the same reference numerals, and a detailed description is omitted as appropriate.
As shown in
In the nitride semiconductor device 110, the first semiconductor layer 3 is formed via a buffer layer 2 formed on a support substrate 1. Here, for convenience of description, the direction from the first semiconductor layer 3 toward the second semiconductor layer 4 is referred to as upward (the upper side), the opposite direction is referred to as downward (the lower side).
The first semiconductor layer 3 includes a nitride semiconductor. The second semiconductor layer 4 is provided on the first semiconductor layer 3. The second semiconductor layer 4 includes a nitride semiconductor having a band gap wider than the band gap of the first semiconductor layer 3. The second semiconductor layer 4 includes a hole 4a. The hole 4a illustrated in
Here, in the specification, “nitride semiconductor” includes all semiconductors expressed by the chemical formula of BαInβAlγGa1-α-β-γN (0≦α≦1, 0≦β≦1, 0≦γ≦1, 0≦α+β+γ≦1) in which composition ratios α, β, and γ are changed in the respective ranges. Furthermore, in the chemical formula mentioned above, those further including a group V element other than N (nitrogen), those further including various elements added in order to control various properties such as the conduction type, and those further including various elements unintendedly included are also included in the “nitride semiconductor.”
In the embodiment, GaN and AlGaN, which are group III-V nitride semiconductors, are used as examples of the nitride semiconductor.
The nitride semiconductor device 110 is a normally OFF field effect transistor.
An undoped AlXGa1-XN (0≦X≦1) is used for the first semiconductor layer 3. Here, “undoped” refers to a state where intended impurity doping is not performed. As an example, in the embodiment, the first semiconductor layer 3 is GaN. The first semiconductor layer 3 functions as a channel layer.
An undoped AlYGa1-YN (0≦Y≦1, X≦Y) is used for the second semiconductor layer 4. As an example, in the embodiment, the second semiconductor layer 4 is AlGaN with an Al content of 25 percent (%). The band gap of the second semiconductor layer 4 that is undoped AlGaN is wider than the band gap of the first semiconductor layer 3 that is undoped GaN.
The first electrode 10 is provided in the hole 4a. The first insulating film 6 is provided between the first electrode 10 and the inner wall of the hole 4a. In other words, the first electrode 10 has a portion embedded in the hole 4a via the first insulating film 6. A recess structure 9 is formed by embedding the first electrode 10 in the hole 4a via the first insulating film 6. In the embodiment, the first electrode 10 is a gate electrode. In this example, the gate electrode is a MIS (metal insulator semiconductor) gate electrode.
The second electrode 7 is provided on the second semiconductor layer 4 and electrically connected to the second semiconductor layer 4. In other words, the second electrode 7 is joined to the second semiconductor layer 4 by ohmic junction. In the embodiment, the second electrode 7 is a source electrode.
The third electrode 8 is provided on the second semiconductor layer 4 so that the first electrode 10 is disposed between the third electrode 8 and the second electrode 7. The third electrode 8 is electrically connected to the second semiconductor layer 4. In other words, the third electrode 8 is joined to the second semiconductor layer 4 by ohmic junction. In the embodiment, the third electrode 8 is a drain electrode.
The first insulating film 6 is a film including oxygen. The first insulating film 6 is provided between the first electrode 10 and the inner wall of the hole 4a and between the first electrode 10 and the second electrode 7. The first insulating film 6 is provided spaced from the third electrode 8. That is, a region where the first insulating film 6 is not provided is present between an end 6a of the first insulating film 6 on the third electrode 8 side and the third electrode 8.
Silicon oxide (SiO2), for example, is used for the first insulating film 6.
The second insulating film 5 is a film including nitrogen. The second insulating film 5 is provided in contact with the second semiconductor layer 4 between the first electrode 10 and the third electrode 8.
Silicon nitride (SiNx), for example, is used for the second insulating film 5.
As shown in
In the example shown in
A configuration is formed in which a plurality of elements (field effect transistors) are connected in parallel corresponding to such a layout of electrodes. A region around an element region S in which the plurality of elements are formed forms an element isolation region IS.
In the nitride semiconductor device 110 thus configured, for example, a voltage is applied to the first electrode (gate electrode) 10 to control the current flowing between the third electrode 8 and the second electrode 7 in a state where the second electrode (source electrode) 7 is grounded and a plus voltage is applied to the third electrode (drain electrode) 8.
As shown in
In the nitride semiconductor device 110 according to the embodiment, the interface between the first insulating film 6 that is, for example, SiO2 and the first semiconductor layer 3 that is, for example, GaN is used as the interface that forms a channel below the first electrode 10. By using SiO2 as the first insulating film 6 that forms a gate insulating film, an element having low ON resistance and high reliability can be provided as compared to the case of using SiNx as the gate insulating film.
That is, SiO2 has a large band gap and is suitable as an insulating film of electrons to GaN. Furthermore, SiO2 is a stable amorphous material and easily provides a film with a small number of trapping centers. Thereby, the reliability in regard to the gate insulating film of the transistor can be improved, and operational stability in the ON state of the transistor can be obtained.
Furthermore, between the first electrode 10 and the third electrode 8, the second insulating film 5 that is SiNx is provided on the surface of the second semiconductor layer 4 that is AlGaN in a state of contact with the second semiconductor layer 4. Thereby, the second insulating film 5 functions as a protection film of the second semiconductor layer 4. By protecting the second semiconductor layer 4 with the second insulating film 5 that is SiNx, the breakdown voltage of the nitride semiconductor device 110 is increased.
Here, in the case where a stacked structure of SiNx and SiO2 is formed as an insulating film provided on the second semiconductor layer 4 that is a nitride semiconductor, the oxygen of the SiO2 may diffuse into the film of SiNx.
For example, to stabilize the interface between the SiO2 that is the gate insulating film and the nitride semiconductor (GaN or AlGaN) that is the second semiconductor layer 4, heat treatment of 600° C. or more, for example, is needed. During the heating, the oxygen of the SiO2 may diffuse into the film of SiNx.
If the oxygen diffuses into the film of SiNx, the surface of the nitride semiconductor in contact with the film of SiNx may be oxidized. In view of this, to sufficiently protect the nitride semiconductor with the insulating film of SiNx, the film thickness may be thickened. However, if the film thickness of the SiNx is thickened, due to the stress caused by the difference in the coefficient of thermal expansion with the film of SiO2 stacked with the film of SiNx, the surface of the nitride semiconductor is degraded and a decrease in reliability may be caused.
In the embodiment, on the third electrode 8 side of the recess structure 9, the first insulating film 6 that is SiO2 is provided spaced from the third electrode 8. That is, SiO2 is not superposed on SiNx in a region R1 that is the space between the first insulating film 6 and the third electrode 8. In other words, since SiO2 that may cause oxidation of the surface of the second semiconductor layer (nitride semiconductor) 4 is not provided in the region R1, the oxidation of the surface of the second semiconductor layer 4 resulting from the oxygen of SiO2 can be suppressed.
Here, the trapping of electrons at the surface of the nitride semiconductor that may cause current collapse mainly occurs in a region at some distance from the recess structure 9, in particular on the drain side (the third electrode 8 side) of the end of the first electrode 10 that is the gate electrode. In view of this, a configuration is employed in which the first insulating film (SiO2) 6 is not provided on the second insulating film (SiNx) 5 between the first electrode 10 and the third electrode 8, and the end of the first insulating film 6 exists as close as possible to the end of the first electrode 10. Thereby, the ON resistance increase due to current collapse can be suppressed to a minimum.
Thus, the nitride semiconductor device 110 according to the embodiment can achieve the following: (1) by using SiO2 as the first insulating film 6 that forms the gate insulating film, the ON resistance is reduced and the reliability is improved; (2) by protecting the second semiconductor layer 4 with the second insulating film 5 that is SiNx, the breakdown voltage is increased; and (3) by not superposing SiO2 on SiNx in the region R1, the ON resistance increase due to current collapse is suppressed to a minimum.
As shown in
In the first insulating film 61 of the nitride semiconductor device 111, the end 61a on the third electrode 8 side is not provided on the second insulating film 5. The first insulating film 61 is formed along the inner wall of the hole 4a, and, on the third electrode 8 side, the first insulating film 61 is provided so as to stand up along the inner wall and not to cover the second insulating film 5.
In the nitride semiconductor device 111 thus configured, the space between the first insulating film 61 and the third electrode 8 is configured to be larger than that of the nitride semiconductor device 110. That is, in a region R2 that is the space between the first insulating film 61 and the third electrode 8, the first insulating film 61 is not provided on the second insulating film 5. The region R2 is larger than the region R1. Therefore, in the nitride semiconductor device 111, the oxidation of the surface of the second semiconductor layer (nitride semiconductor) 4 resulting from the oxygen of the SiO2 that is the first insulating film 61 can be more effectively suppressed than in the nitride semiconductor device 110.
As shown in
More specifically, an end 10a of the first electrode 10 of the nitride semiconductor device 112 is provided so as to extend to the third electrode 8 side and cover the end 6a of the first insulating film 6.
By such a structure of the first electrode 10, the shield effect of the electric field can be exhibited for the end 6a of the first insulating film 6.
That is, the electric field applied between the first electrode 10 that is the gate electrode and the third electrode 8 that is the drain electrode is concentrated at the end 10a of the first electrode 10 on the third electrode 8 side. On the other hand, the end 6a of the first insulating film 6 on the third electrode 8 side is configured to exist on the second insulating film 5. At the end 6a of the first insulating film 6, the oxygen of the SiO2 may affect the second semiconductor layer 4 that is a nitride semiconductor, and if a high electric field is applied to here, current collapse may be caused.
In view of this, the end 10a of the first electrode 10 is formed so as to cover the outside of the end 6a of the first insulating film 6 like the nitride semiconductor device 112. Thereby, the surface of the second semiconductor layer 4 that has experienced the effect of oxidation due to the first insulating film 6 that is SiO2 is shielded by the first electrode 10, and protected from a high electric field. Thus, the factor in current collapse can be suppressed.
As shown in
More specifically, the fourth electrode 11 is provided so as to cover the end 6a of the first insulating film 6. Although the fourth electrode 11 is spaced from the first electrode 10 that is the gate electrode, both are electrically connected.
By providing the fourth electrode 11 thus configured, the surface of the second semiconductor layer 4 that has experienced the effect of oxidation due to the first insulating film 6 that is SiO2 is shielded by the fourth electrode 11, and protected from a high electric field. Thereby, the factor in current collapse can be suppressed.
As shown in
In the nitride semiconductor device 120 according to the second embodiment, the first insulating film 6 is provided in contact with the second semiconductor layer 4 between the first electrode 10 and the second electrode 7.
An insulating film provided between the first electrode 10 that is the gate electrode and the second electrode 7 that is the source electrode influences the operating characteristics of the nitride semiconductor device 120. For example, the hysteresis of the drain current to the gate voltage is influenced.
By using the first insulating film 6 that is SiO2 as the insulating film in contact with the second semiconductor layer 4 between the first electrode 10 and the second electrode 7 like the embodiment, the influence of the hysteresis mentioned above can be suppressed as compared to the case of SiNx.
As shown in
More specifically, in the nitride semiconductor device 130, the first insulating film 6 provided between the first electrode 10 and the second electrode 7 is provided in contact with the second semiconductor layer 4.
In the nitride semiconductor device 130 thus configured, the effects of (1) to (3) mentioned above can be obtained similarly to the nitride semiconductor device 110 by using SiO2 as the first insulating film 6 that forms the gate insulating film, protecting the second semiconductor layer 4 with the second insulating film 5 that is SiNx, and not superposing SiO2 on SiNx in the region R1.
Furthermore, in the nitride semiconductor device 130, since the first insulating film 6 provided between the first electrode 10 and the second electrode 7 is provided in contact with the second semiconductor layer 4, similar effects to the nitride semiconductor device 120 can be obtained. That is, the influence of the hysteresis of the operating characteristics (the drain current to the gate voltage) of the nitride semiconductor device 130 can be suppressed.
A fourth embodiment is a method for manufacturing the nitride semiconductor devices 110, 111, 112, and 113 according to the first embodiment. Herein, a method for manufacturing the nitride semiconductor device 112 is described as an example.
First, as shown in
SiNx that is the second insulating film 5 is formed on the second semiconductor layer 4. The second insulating film 5 has a thickness of, for example, approximately 10 nanometers (nm) to 20 nm.
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
After the second electrode 7 and the third electrode 8 are formed, an element isolation region (not shown) is formed around the element region.
Then, as shown in
A fifth embodiment is a method for manufacturing the nitride semiconductor device 120 according to the second embodiment.
First, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
After the second electrode 7 and the third electrode 8 are formed, an element isolation region (not shown) is formed around the element region.
Then, as shown in
A sixth embodiment is a method for manufacturing the nitride semiconductor device 130 according to the third embodiment.
In the manufacturing method according to the sixth embodiment, the processes illustrated in
Next, as shown in
Next, as shown in
After the second electrode 7 and the third electrode 8 are formed, an element isolation region (not shown) is formed around the element region.
Then, as shown in
In all the embodiments described above, a material that allows a nitride semiconductor to grow epitaxially is sufficient to be used for the support substrate 1. GaN, SiC, sapphire, and Si, for example, are given as the support substrate 1. The conduction type of the semiconductor layer may be one of an n type, a p type, and a semi-insulating type. In regard to the buffer layer 2 between the support substrate 1 and the first semiconductor layer 3, any material that can function as a base body during the growth of the first semiconductor layer 3 is sufficient to be used for the material thereof. For example, an AlN layer that has grown at low temperature and a superlattice structure in which AlGaN and GaN are alternately stacked may be used.
In all the embodiments described above, undoped GaN is used as the material of the first semiconductor layer 3. However, the main purpose of the first semiconductor layer 3 is to generate two-dimensional electron gas at the interface of the first semiconductor layer 3 on the second semiconductor layer 4 side and cause the generated two-dimensional electron gas to function as the channel. Therefore, the material of the first semiconductor layer 3 is not limited to undoped materials but a material doped to an n type or p type may be used. In addition to GaN, also a nitride semiconductor such as AlGaN, InAlN, and InAlGaN may be used for the first semiconductor layer 3. Furthermore, the first semiconductor layer 3 does not need to be a layer made of a single material but may be a stacked structure such as GaN and AlGaN, and GaN and p-type GaN.
In all the embodiments described above, undoped AlGaN is used as the material of the second semiconductor layer 4. However, the main function of the second semiconductor layer 4 is to generate two-dimensional electron gas at the interface of the first semiconductor layer 3 on the second semiconductor layer 4 side. Therefore, the material of the second semiconductor layer 4 is not limited to undoped materials but a material doped to an n type or p type may be used. In addition to AlGaN, also a nitride semiconductor such as InAlN and InAlGaN may be used for the second semiconductor layer 4. It is sufficient to satisfy the condition of having a band gap wider than that of the first semiconductor layer 3. Furthermore, the second semiconductor layer 4 does not need to be a layer made of a single material but may be a stacked structure such as AlGaN, GaN and AlGaN, and AlGaN and AlN.
Furthermore, although a structure that penetrates through the second semiconductor layer 4 and uses the first semiconductor layer 3 as the bottom is illustrated as the recess structure 9 in the embodiments described above, the second semiconductor layer 4 may be used as the bottom. In any embodiment, either of the recess structures 9 may be used to the extent that the function of a normally OFF element is obtained.
Furthermore, although SiO2 is used as an example of the first insulating film 6 in all the embodiments described above, AlOx, MgO, and HfO2 are possible and also an oxide film including nitrogen such as SiON and HfSiON, which are common in Si devices, is possible. Moreover, although SiNx is used as an example of the second insulating film 5, also a high resistance nitride semiconductor such as AlN and BN is possible.
As described above, the nitride semiconductor device and the method for manufacturing the same according to the embodiment can achieve low ON resistance, high breakdown voltage, and high reliability.
Hereinabove, embodiments and variations thereof are described. However, the invention is not limited to these examples. For example, one skilled in the art may appropriately make additions, removals, and design changes of components to the embodiments or the variations described above, and may appropriately combine features of the embodiments; such variations also are included in the scope of the invention to the extent that the spirit of the invention is included.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2011-064254 | Mar 2011 | JP | national |
This application is a division of U.S. patent application Ser. No. 13/238,666, filed on Sep. 21, 2011, which is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2011-064254, filed on Mar. 23, 2011, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7038252 | Saito et al. | May 2006 | B2 |
7157748 | Saito et al. | Jan 2007 | B2 |
20090072240 | Suh et al. | Mar 2009 | A1 |
20090206371 | Oka | Aug 2009 | A1 |
20100155720 | Kaneko | Jun 2010 | A1 |
20100230717 | Saito | Sep 2010 | A1 |
20100314663 | Ito et al. | Dec 2010 | A1 |
20110204418 | Onishi et al. | Aug 2011 | A1 |
20130009166 | Ito et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
101853881 | Oct 2010 | CN |
H02211638 | Aug 1990 | JP |
H09306929 | Nov 1997 | JP |
2009054807 | Mar 2009 | JP |
2009267155 | Nov 2009 | JP |
2010050347 | Mar 2010 | JP |
2010153837 | Jul 2010 | JP |
Entry |
---|
Peal et al., “Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach,” Appl. Phys. Lett. 98, 151907 (2011); http://dx.doi.org/10.1063/1.3576570. |
Arulkurmaran et al., “On the Effects of Gate-Recess Etching in Current-Collapse of Different Cap Layers Grown AlGaN/GaN High-Electron-Mobility Transistors,” Jpn. J. Appl. Phys. 45 (2006) pp. L220-L223. |
Japanese Office Action dated Jul. 4, 2013, filed in Japanese counterpart Application No. 2011-064254, 5 pages (with translation). |
Chinese Office Action dated Mar. 3, 2014, filed in Chinese counterpart Application No. 201110255497.8, 13 pages (with translation). |
Japanese Office Action dated Jan. 6, 2014, filed in Japanese counterpart Application No. 2011-064254, 4 pages (with translation). |
Chinese Office Action dated Sep. 28, 2014, filed in Chinese counterpart Application No. 201110255497.8, 6 pages (with translation). |
Number | Date | Country | |
---|---|---|---|
20150123141 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13238666 | Sep 2011 | US |
Child | 14593703 | US |