Brown et al., “Expression of the c-myb Proto-oncogene in Bovine Vascular Smooth Muscle Cells,” J. Biol. Chem. 267:4625-4630 (1992). |
Chowrira et al., NAR 20:2835 (1990). |
Cload and Schepartz, “Polyether Tethered Oligonucleotide Probes,” J. Am. Chem. Soc. 113:6324-6326 (1991). |
Collins and Olive, “Reaction Conditions and Kinetics of Self-Cleavage of a Ribozyme Derived From Neurospora VS RNA,” Biochemistry 32:2795-2799 (1993). |
Durand et al., “Circular Dichroism Studies of an Oligodeoxyribonucleotide Containing a Hairpin Loop Made of a Hexaethylene Glycol Chain: Conformation and Stability,” Nucleic Acids Research 18:6353-6359 (1990). |
Ferentz and Verdine, “Disulfied Cross-Linked Oligonucleotides,” J. Am. Chem. Soc. 113:4000-4002 (1991). |
Guerrier-Takada et al., “The RNA Moiety of Ribonuclease P Is the Catalytic Subunit of the Enzyme,” Cell 35:849-857 (1983). |
Hampel and Tritz, “RNA Catalytic Properties of the Minimum (-)sTRSV Sequence,” Biochemistry 28:4929-4933 (1989). |
Hampel et al., “Hairpin' Catalytic RNA Model: Evidence for Helices and Sequence Requirement for Substrate RNA,” Nucleic Acids Research 18:299-304 (1990). |
Haseloff and Gerlach, “Simple RNA Enzymes with New and Highly Specific Endoribonuclease Activities,” Nature 334:585-591 (1988). |
Iyer et al., “Abasic Oligodeoxyribonucleoside Phosphorothioates: Synthesis and Evaluation as Anti-HIV-1 Agents,” Nucleic Acids Research 18:2855-2859 (1990). |
Jaschke et al., “Automated Incorporation of Polyethylene Glycol into Synthetic Oligonucleotides,” Tetrahedron Letters 34:301-304 (1993). |
Jeffries and Symons, “A Catalytic 13-mer Ribozyme,” Nucleic Acids Research 17:1371-1377 (1989) (also referred to as Jefferies). |
Kiso et al., “Acetonation of Some Pentoses with 2,2-Dimethoxypropane-N,N-Dimethylformamide-p-Toluenesulfonic Acid” Carbohydrate Research 52:95-101 (1976). |
Ma et al., “Design and Synthesis of RNA Miniduplexes via a Synthetic Linker Approach. 2. Generation of Covalently Closed, Double-Stranded Cyclic HIV-1 TAR RNA Analogs with High Tat-Binding Affinity,” Nucleic Acids Research 21:2585-2589 (1993). |
Ma et al., “Design and Synthesis of RNA Miniduplexes via a Synthetic Linker Approach,” Biochemistry 32:1751-1758 (1993). |
McCurdy et al., “Deoxyoligonucleotides with Inverted Polarity: Synthesis and Use in Triple-Helix Formation” Nucleosides & Nucleotides 10:287-290 (1991). |
Millican et al., “Synthesis and Biophysical Studies of Short Oligodeoxynucleotides with Novel Modifications: a possible Approach to the Problem of Mixed Based Oligodeoxynucleotides Synthesis,” Nucleic Acids Research 12:7435-7453 (1984). |
Nielsen et al., “Sequence-Selective Recognition of DNA by Strand Displacement with a Thymine-Substituted Polyamide,” Science 254:1497 (1991). |
Ono et al., “DNA Triplex Formation of Oligonucleotide Analogues Consisting of Linker Groups and Octamer Segments That Have Opposite Sugar-Phosphate Backbone Polarities,” Biochemistry 30:9914-9921 (1991). |
Paolella et al., “Nuclease Resistant Ribozymes with High Catalytic Activity,” EMBO Journal 11:1913-1919 (1992). |
Perreault et al., “Mixed Deoxyribo- and Ribo-Oligonucleotides with Catalytic Activity,” Nature 344:565-567 (1990) (often mistakenly listed as Perrault). |
Perreault et al., “Relationship between 2′-Hydroxyls and Magensium Binding in the Hammerhead RNA Domain: A Model for Ribozyme Catalysis,” Biochemistry 30:4020-4025 (1991). |
Perrotta and Been, “Cleavage of Oligoribonucleotides by a Ribozyme Derived from the Hepatitis δ Virus RNA Sequence,” Biochemistry 31:16-21 (1992). |
Pieken et al., “Kinetic Characterization of Ribonuclease-Resistant 2′-Modified Hammerhead Ribozymes,” Science 253:314-317 (1991). |
Richardson and Schepartz, “Tethered Oligonucleotide Probes. A Strategy for the Recognition of Structured RNA,” J. Am. Chem. Soc. 113:5109-5111 (1991). |
Robins et al., “Nucleic Acid Related Compounds, 42. A General Procedure for the Efficient Deoxygenation of Secondary Alcohols. Regiospecific and Stereoselective Conversion of Ribonucleosides to 2′-Deoxynucleosides” J. Am. Chem. Soc. 105:4059-4065 (1983). |
Rossi et al., “Ribozymes as Anti-HIV-1 Therapeutic Agents: Principles, Applications, and Problems,” Aids Reseach and Human Retroviruses 8:183-189 (1992). |
Salunkhe et al., “Control of Folding and Binding of Oligonucleotides by Use of a Nonnucleotide Linker,” J. Am. Chem. Soc. 114:8768-8772 (1992). |
Sarver et al., “Catalytic RNAs (Ribozymes): A New Frontier in Biomedical Applications,” AIDS Res. Revs. 2:259-285 (1992). |
Saville and Collins, “A Site-Specific Self-Cleavage Reaction Performed by a Novel RNA In Neurospora Mitochondria,” Cell 61:685-696 (1990). |
Saville and Collins, “RNA-Mediated Ligation of Self-Cleavage Products of a Neurospora Mitochondrial Plasmid Transcript,” Proc. Natl. Acad. Sci. USA 88:8826-8830 (1991). |
Scaringe et al., “Chemical synthesis of biologically active oligoribonucleotides using β-cyanoethyl protected ribonucleoside phosphoramidites,” Nucl Acids Res. 18:5433-5441 (1990). |
Seela and Kaiser, Nucleic Acids Res. 1990, 18:6353. |
Seela and Kaiser, “Oligodeoxyribonucleotides containing 1,3-propanediol as nucleoside substitute,” Nucleic Acids Research 15:3113-3129 (1987). |
Stull and Szoka, “Antigene, Ribozyme and Aptamer Nucleic Acid Drugs: Progress and Prospects,” Pharmaceutical Research 12:465-483 (1995). |
Takeshita et al., “Oligedoxynucleotides Containing Synthetic Abasic Sites,” The Journal of Biological Chemistry 262:10171-10179 (1987). |
Uhlenbeck, “A Small Catalytic Oligoribonucleotide,”, Nature 328:596-600 (1987) (this is listed as Nature 327 in the various specifications, but it is actually 328). |
Usman and Cedergren, “Exploiting the chemical synthesis of RNA,” TIBS 17:334-339 (1992). |
Usman et al., “Automated Chemical Synthesis of Long Oligoribonucleotides Using 2′-O-Silylated Ribonucleoside 3′-O-Phosphoramidites on a Controlled-Pore Glass Support: Synthesis of a 43-Nucleotide Sequence Similar to the 3′-Half Molecule of an Escherichia coli Formylmethoionine tRNA,” J. Am. Chem. Soc. 109:7845-7854 (1987). |
Usman et al., “Chemical modification of hammerhead ribozymes: activity and nuclease resistance,” Nucleic Acids Syposium Series 31:163-164 (1994). |
Yang et al., “Minimum Ribonucleotide Requirement for Catalysis by the RNA Hammerhead Domain,” Biochemistry 31:5005-5009 (1992). |
Zuckerman et al., “Efficient Method for the Preparation of Peptoids [Oligo (N-Substituted Glycines)] by Submonomer Solid-Phase Synthesis,” J. Am. Chem. Soc. 114:10464 (1992). |