The present disclosure relates generally to process and conditioning cycles in wafer processing chambers and in particular to defect reduction and batch size extension by utilizing oxidation resistant protective layers in wafer processing and chamber conditioning operations.
The background description provided here is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
Over time, repeated wafer processing cycles in a processing chamber can cause films of various types to accumulate on the chamber walls. As film levels increasingly build on components within the reaction chamber, film stresses can increase and adhesion between the accumulated film and the surface of the chamber can deteriorate significantly over time. This loss of adhesion can lead to portions of the accumulated film flaking off the chamber walls. When there is excessive film accumulation inside the chamber, the accumulated film does not adhere well to the chamber walls and it starts to peel off. Flakes and portions of peeled film can fall on to a wafer in the processing chamber and manifest itself as particles or defects. In some instances, oxygen-rich plasma exacerbates film flaking as, firstly, it can cause the accumulated film to shrink, resulting in higher tension, and secondly, it can consume carbon species in the accumulated film and thus cause further deterioration in film adhesion.
In some examples, a method for conditioning a wafer processing chamber comprises setting a pressure in the chamber to a predetermined pressure range; setting a temperature of the chamber to a predetermined temperature; supplying a process gas mixture to a gas distribution device within the chamber, wherein the process gas mixture includes a gas including at least an oxygen species, and a helium or argon gas; striking a plasma within the chamber; monitoring a condition in the chamber; based on a detection of the monitored condition meeting or transgressing a threshold value, implementing a chamber conditioning operation, wherein the chamber conditioning operation comprises: depositing a preconditioning film onto an internal surface of the chamber, depositing a silicon oxycarbide (SiCO) film onto the preconditioning film, and depositing a protective layer onto the SiCO film.
Some embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings:
The description that follows includes systems, methods, techniques, instruction sequences, and computing machine program products that embody illustrative embodiments of the present invention. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of example embodiments. It will be evident, however, to one skilled in the art that the present inventive subject matter may be practiced without these specific details.
Portions of the disclosure of this patent document may contain material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever. The following notice applies to any data as described below and in the drawings that form a part of this document: Copyright Lam Research Corporation, 2018, All Rights Reserved.
By way of background, a wafer processing chamber (such as a Striker Carbide™ processing chamber) can permit remote plasma chemical vapor deposition (RPCVD) technology to produce highly conformal silicon carbide films. Some highly conformal silicon carbide films are known as SPARC™ films. At various times during cycles of wafer processing in a chamber, a chamber cleaning or conditioning operation may be required. A chamber clean may be required when on-wafer defect performance is out of specification. As referenced above, if film accumulation within a chamber is too high, the accumulated film may begin to flake off and deposit particles on a processed wafer. This can lead to high levels of defects in the chips and devices made from wafers processed in the chamber. A chamber cleaning operation can remove some or all of the accumulated film to render defect performance back into specification again.
After a chamber clean, a thin layer of oxide film (also known as a preconditioning film) is typically deposited on one or more inner surfaces of a processing chamber using atomic layer deposition (ALD) followed by the deposition of another thin layer of silicon oxycarbide (SiCO) film using RPCVD. In some instances, accumulated film thicknesses within a chamber are comprised solely of SiCO. As SiCO films are prone to becoming oxidized, further film deposition on a wafer being processed within the chamber by an oxygen-rich plasma exacerbates the oxidation issue. The application of a SiCO film after cleaning therefore does not necessarily cure the problem of defect performance degradation. In other words, the “defect performance” of a processing chamber, or its ability to prevent defects from occurring in wafers processed within it, can become increasingly compromised over time.
In other conventional approaches, prior to deposition of a SPARC™ film on a wafer, a wafer preconditioning operation may be performed to modify surface conditions of the substrate (wafer) when applying the SPARC™ film to a wafer. A wafer preconditioning step may include for example the application to the wafer surface of an initiation layer and a surface treatment thereof. But even during this wafer preconditioning operation, film layers on the chamber surfaces can still be attacked by the oxygen-rich plasma. The plasma can reduce the thickness of the preconditioning film on the chamber surface as well as other accumulated film layers on the chamber surfaces. A reduction in thickness, or shrinkage, can cause the “stress” of an accumulated film on a chamber surface (including for example the chamber walls and showerhead) to become more tensile in nature, while adhesion of the preconditioning film to subsequent layers can itself be compromised for similar reasons. These shrinkage and stress effects can lead to early failure of wafer performance, impaired chamber defect performance, higher on-wafer defect occurrence, and reduced batch sizes through the rejection of defective chips or other devices sourced from compromised wafers.
In some examples of the present disclosure, the problems discussed above are addressed by implementing periodic chamber conditioning creating a high-carbon-content and oxidation-resistant protective layer on the chamber surfaces to compensate for film stress and mitigate the effects of an oxygen-rich plasma attack on a preconditioning film. Example triggers for chamber conditioning may include but are not limited to a detected deterioration in defect performance level approaching or meeting a threshold value, or a detected accumulated film stress level approaching or meeting a threshold value. In some examples, a threshold value may be associated with a thickness of an accumulated film within the chamber is within a range from 0.05 to 0.5 μm (microns).
In some examples, a protective layer is formed on surfaces of a chamber by chemical vapor deposition (CVD). Example chemicals used in the deposition reaction include silicon-containing species such as silane and disilane, oxygen-containing species such as oxygen and carbon dioxide, and a diluting gas such as argon or helium. The reaction may occur at a pressure ranging from 0.1 to 10 Torr, and at a temperature ranging from 100° C. to 600° C. When a threshold chamber film accumulation (for example, a thickness in a range 0.05 to 0.5 μm) is reached, the chamber stops processing further wafers. In some examples, the stop in processing may occur automatically upon detection of the threshold accumulation thickness. In some examples, a processing chamber is further configured thereafter to commence deposition of a protective layer without a wafer supported inside the processing chamber. A thickness of a protective layer may vary based on a type of wafer process. Example thicknesses may fall within a range of 50 nanometers (nm) and 1 micron (μm). In some examples, after an initial protective layer is deposited on surfaces of the processing chamber, the processing chamber may continue to process wafers until the chamber film accumulation increases to a further threshold thickness, for example a doubling in thickness. Other thresholds are possible. As the further threshold is met or approached, a protective layer may again be deposited onto the initial layer to maintain the defect performance of the chamber within a given specification. In some examples, a cycle of depositing protective layers continues until a composite protective film is formed. In some examples, the creation of a composite protective film continues until an outer layer thereof is unable to adhere to the composite film, or until a breakdown of the outer layer is unable to prevent the initial film previously applied to the inner surface of the chamber from peeling off and causing on-wafer defects and other problems in the manner discussed above.
A sectional view of an example protective layer with layers of film elements generally labeled 400 is shown in
In some examples, in order to improve the defect performance (i.e. minimize wafer defects) of a processing chamber, such as a Striker Carbide™ chamber, a protective layer is created on one or more chamber surfaces to minimize film damage arising from preconditioning operations. Once a certain film accumulation in the reaction chamber is detected based, for example, on one or more of the threshold values discussed above, a protective layer comprising a high carbon content SiCO film is deposited on one or more chamber surfaces. In some examples, the inherent stress of a protective layer is compressive in nature, therefore it may compensate fully or in part any tensile stress induced in a previously-applied preconditioning film by an oxygen-rich plasma, or by a shrinkage in a preconditioning film thickness. Such film stress reduction or shrinkage compensation may be helpful in suppressing film cracking and flaking induced by high tensile stress.
In some examples, a protective layer may further serve as a sacrificial layer to protect against the effects of an oxygen-rich plasma attack due to a presence of excess carbon atoms in the protective layer. The excess carbon atoms are consumed sacrificially by the oxygen-rich plasma. As a result, the carbon content of the remaining preconditioning film inside the reaction chamber may be similar, for example, to a SPARC™ film having known excellent adhesion qualities and defect performance. By virtue of the methods and systems of the present disclosure, the defect performance of a processing chamber, such as a Striker Carbide™ processing chamber can be significantly improved and maintained. Further, an improved chamber process as described herein can yield batch sizes 250% larger than conventional examples. Some examples facilitate film deposition at high deposition rates, for example deposition rates in a range from 50 to 500 Angstrom (A)/min for a high-carbon protective layer. Some example high-carbon protective layers include carbon in an amount between 30% and 45% by weight. Some example protective layers are of a relatively low required thickness and the impact on production throughput by creating such a protective layer is therefore minimal. Tests conducted using the methods described herein indicate that batch sizes can be improved in some examples by 250% while maintaining a satisfactory defect performance of the processing chamber that made them.
An example chamber in which some example operations of the present disclosure may be employed, with appropriate chamber modifications for film deposition and control testing, is shown in
Prior to etching, the wafer is placed in the chamber and held in proper position by a chuck or holder which exposes a top surface of the wafer to the plasma gas. There are several types of chucks known in the art. The chuck provides an isothermal surface and serves as a heat sink for the wafer. In one type, a semiconductor wafer is held in place for etching by mechanical clamping means. In another type of chuck, a semiconductor wafer is held in place by electrostatic force generated by an electric field between the chuck and wafer. The present methods are applicable to both types of chucks.
An upper electrode 108 is located above the wafer 104. The upper electrode 108 is grounded.
When RF power is supplied to chuck 102 from dual frequency power source 106, equipotential field lines are set up over the wafer 104. The equipotential field lines are the electric field lines across the plasma sheath that is between wafer 104 and the plasma 110. During plasma processing, the positive ions accelerate across the equipotential field lines to impinge on the surface of wafer 104, thereby providing the desired etch effect, such as improving etch directionality. Due to the geometry of the upper electrode 108 and the chuck 102, the field lines may not be uniform across the wafer surface and may vary significantly at the edge of the wafer 104. Accordingly, a focus ring 118 is typically provided to improve process uniformity across the entire wafer surface. With reference to
An electrically conductive shield 120 substantially encircles the focus ring 118. The electrically conductive shield 120 is configured to be substantially grounded within the plasma processing chamber. The shield 120 prevents the presence of unwanted equipotential field lines outside of focus ring 118.
Reference is now made to
The comparative results depicted in the graphs of
As shown, particle sizes greater than 50 nm (i.e. defects) spiked at film thicknesses of approximately 0.8 μm at each of the four stations for the stressed first hybrid film as shown in
In view of the foregoing, a workable batch size (i.e. a level of film deposited on a wafer between chamber cleans) based on the illustrated example film results might be established at 0.8 μm as significant defects can be seen to occur at greater film thicknesses. On the contrary, for film conditioned according to methods of the present disclosure, a workable batch size may be established even at film thicknesses of approximately 2 μm or greater as no significant defects appear to arise below this example value.
Some embodiments of the present disclosure include methods. With reference to
Some aspects of the method 500 maybe include the following features or operations. In some examples, the monitored condition includes a chamber defect performance. In some examples, the monitored condition includes a film stress value. In some examples, the monitored condition includes a thickness of a film accumulation on the internal surface of the chamber. In some examples, a thickness of the film accumulation is in a range from 0.05 to 0.5 μm (microns).
In some examples, the protective layer is formed by chemical vapor deposition (CVD). A chemical used in a CVD reaction may include a silicon-containing species, such as silane or disilane.
In some examples, the predetermined pressure range of the chamber during deposition of the protective layer is in a range from 0.1 to 10 Torr. In some examples, the predetermined temperature range of the chamber during deposition of the protective layer is in a range from 100° C. to 600° C. In some examples, a thickness of the protective layer is in a range from 50 nanometers (nm) and 1 micron (μm).
In some examples, the operations of depositing a silicon oxycarbide (SiCO) film onto the preconditioning film and depositing a protective layer onto the SiCO film are repeated successively to form paired layers of a SiCO film and a protective layer within a composite protective film.
In some examples, the protective layer is a high-carbon, oxidation-resistant protective layer including 30% to 45% by weight carbon.
In some examples, the method 500 further comprising depositing the protective layer at a deposition rate in a range from 50 to 500 Angstrom (A)/min.
In some examples, striking the plasma comprises supplying HF power to one of an upper electrode and a lower electrode in a range from 500 to 6000 W and LF power to the one of the upper electrode and the lower electrode in a range from 500 to 6000 W. In some examples, striking the plasma comprises supplying HF power to one of an upper electrode and a lower electrode in a range from 2000 to 4000 W and LF power to the one of the upper electrode and the lower electrode in a range from 1000 to 4000 W.
Although an embodiment has been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader scope of the inventive subject matter. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof, show by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This patent application is a U.S. National Stage Filing under 35 U.S.C. 371 from International Application No. PCT/US2018/064304, filed on Dec. 6, 2018, and published as WO 2019/113351 A1 on Jun. 13, 2019, which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 62/595,948, filed on Dec. 7, 2017, each of which is hereby incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/064304 | 12/6/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/113351 | 6/13/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4410395 | Weaver et al. | Oct 1983 | A |
4892753 | Wang et al. | Jan 1990 | A |
5154810 | Kamerling | Oct 1992 | A |
5443686 | Jones et al. | Aug 1995 | A |
5605859 | Lee | Feb 1997 | A |
5647953 | Williams et al. | Jul 1997 | A |
5654475 | Vassiliou et al. | Aug 1997 | A |
5811356 | Murugesh et al. | Sep 1998 | A |
5824375 | Gupta | Oct 1998 | A |
5902135 | Schulze | May 1999 | A |
5970383 | Lee | Oct 1999 | A |
6071573 | Koemtzopoulos et al. | Jun 2000 | A |
6121161 | Rossman et al. | Sep 2000 | A |
6121164 | Yieh et al. | Sep 2000 | A |
6162323 | Koshimizu | Dec 2000 | A |
6223685 | Gupta et al. | May 2001 | B1 |
6416577 | Suntoloa et al. | Jul 2002 | B1 |
6449521 | Gupta | Sep 2002 | B1 |
6534380 | Yamauchi et al. | Mar 2003 | B1 |
6626188 | Fitzsimmons et al. | Sep 2003 | B2 |
6696362 | Rossman et al. | Feb 2004 | B2 |
6749098 | Roier et al. | Jun 2004 | B2 |
6776873 | Sun et al. | Aug 2004 | B1 |
6815007 | Yoo et al. | Nov 2004 | B1 |
6818570 | Tsuji | Nov 2004 | B2 |
6819969 | Lee et al. | Nov 2004 | B2 |
6933254 | Morita et al. | Aug 2005 | B2 |
7118779 | Verghese et al. | Oct 2006 | B2 |
7138332 | Goundar | Nov 2006 | B2 |
7183177 | Al-Bayati et al. | Feb 2007 | B2 |
7204913 | Singh et al. | Apr 2007 | B1 |
7232492 | Won et al. | Jun 2007 | B2 |
7241690 | Pavone et al. | Jul 2007 | B2 |
7288284 | Li et al. | Oct 2007 | B2 |
7601639 | Pavone et al. | Oct 2009 | B2 |
7704894 | Henri et al. | Apr 2010 | B1 |
7767584 | Singh et al. | Aug 2010 | B1 |
7799135 | Verghese et al. | Sep 2010 | B2 |
7914847 | Verghese et al. | Mar 2011 | B2 |
7923376 | Dhas et al. | Apr 2011 | B1 |
8017527 | Dhas et al. | Sep 2011 | B1 |
8088296 | Yamazaki | Jan 2012 | B2 |
8101531 | Li et al. | Jan 2012 | B1 |
8163087 | Faguet et al. | Apr 2012 | B2 |
8293658 | Shero et al. | Oct 2012 | B2 |
9228259 | Haukka et al. | Jan 2016 | B2 |
9328416 | Dhas et al. | May 2016 | B2 |
9745658 | Kang et al. | Aug 2017 | B2 |
9828672 | Varadarajan et al. | Nov 2017 | B2 |
9850573 | Sun | Dec 2017 | B1 |
9869020 | Malinen et al. | Jan 2018 | B2 |
10023956 | Cui et al. | Jul 2018 | B2 |
10134569 | Albarede | Nov 2018 | B1 |
10211099 | Wang et al. | Feb 2019 | B2 |
10704141 | Malik et al. | Jul 2020 | B2 |
10745805 | Firouzdor et al. | Aug 2020 | B2 |
10760158 | Shanbhag et al. | Sep 2020 | B2 |
11365479 | Shanbhag et al. | Jun 2022 | B2 |
20010006835 | Kim et al. | Jul 2001 | A1 |
20020073922 | Frankel et al. | Jun 2002 | A1 |
20020076490 | Chiang et al. | Jun 2002 | A1 |
20020192359 | Johnson | Dec 2002 | A1 |
20030013314 | Ying et al. | Jan 2003 | A1 |
20030031793 | Chang et al. | Feb 2003 | A1 |
20030127049 | Han et al. | Jul 2003 | A1 |
20030203123 | Shang et al. | Oct 2003 | A1 |
20040023516 | Londergan et al. | Feb 2004 | A1 |
20040045503 | Lee et al. | Mar 2004 | A1 |
20040134427 | Derderian et al. | Jul 2004 | A1 |
20040149386 | Numasawa et al. | Aug 2004 | A1 |
20040182833 | Fink | Sep 2004 | A1 |
20050130427 | Won et al. | Jun 2005 | A1 |
20050214455 | Li et al. | Sep 2005 | A1 |
20050221020 | Fukiage | Oct 2005 | A1 |
20060046470 | Becknell et al. | Mar 2006 | A1 |
20060093756 | Rajagopalan et al. | May 2006 | A1 |
20060189171 | Chua et al. | Aug 2006 | A1 |
20060269691 | Saki | Nov 2006 | A1 |
20060280868 | Kato et al. | Dec 2006 | A1 |
20070201016 | Song et al. | Aug 2007 | A1 |
20080066677 | Morozumi et al. | Mar 2008 | A1 |
20080094775 | Sneh et al. | Apr 2008 | A1 |
20080118663 | Choi et al. | May 2008 | A1 |
20080286982 | Li et al. | Nov 2008 | A1 |
20080302281 | Bernard et al. | Dec 2008 | A1 |
20090041952 | Yoon et al. | Feb 2009 | A1 |
20090197401 | Li et al. | Aug 2009 | A1 |
20090200269 | Kadkhodayan et al. | Aug 2009 | A1 |
20090242511 | Shimazu et al. | Oct 2009 | A1 |
20090253269 | Tsuneda | Oct 2009 | A1 |
20090278116 | Yamate | Nov 2009 | A1 |
20090308840 | Kohno et al. | Dec 2009 | A1 |
20090325391 | De Vusser et al. | Dec 2009 | A1 |
20100048028 | Rasheed et al. | Feb 2010 | A1 |
20100104760 | Matsui et al. | Apr 2010 | A1 |
20100186512 | Goto et al. | Jul 2010 | A1 |
20100243192 | Balasubramanian et al. | Sep 2010 | A1 |
20110045676 | Park | Feb 2011 | A1 |
20110056626 | Brown et al. | Mar 2011 | A1 |
20110070380 | Shero et al. | Mar 2011 | A1 |
20110151142 | Seamons et al. | Jun 2011 | A1 |
20110230008 | Lakshmanan et al. | Sep 2011 | A1 |
20110256726 | LaVoie et al. | Oct 2011 | A1 |
20110315186 | Gee et al. | Dec 2011 | A1 |
20120097330 | Iyengar et al. | Apr 2012 | A1 |
20120122319 | Shimizu | May 2012 | A1 |
20130012030 | Lakshmanan et al. | Jan 2013 | A1 |
20130017685 | Akae et al. | Jan 2013 | A1 |
20130064973 | Chen et al. | Mar 2013 | A1 |
20130089988 | Wang et al. | Apr 2013 | A1 |
20130302980 | Chandrashekar et al. | Nov 2013 | A1 |
20130330935 | Varadarajan | Dec 2013 | A1 |
20140106573 | Terasaki et al. | Apr 2014 | A1 |
20140120738 | Jung et al. | May 2014 | A1 |
20140127852 | De Souza et al. | May 2014 | A1 |
20140158674 | Moffatt et al. | Jun 2014 | A1 |
20140184705 | Wakamatsu et al. | Jul 2014 | A1 |
20140209026 | LaVoie et al. | Jul 2014 | A1 |
20140272184 | Sreekala et al. | Sep 2014 | A1 |
20140295670 | Shih et al. | Oct 2014 | A1 |
20140319544 | Hwang | Oct 2014 | A1 |
20150017335 | Werner | Jan 2015 | A1 |
20150147482 | Kang | May 2015 | A1 |
20150203967 | Dhas et al. | Jul 2015 | A1 |
20150218700 | Nguyen et al. | Aug 2015 | A1 |
20150221553 | Ouye | Aug 2015 | A1 |
20150307982 | Firouzdor et al. | Oct 2015 | A1 |
20150345017 | Chang et al. | Dec 2015 | A1 |
20150361547 | Lin et al. | Dec 2015 | A1 |
20160016286 | Suh et al. | Jan 2016 | A1 |
20160281230 | Varadarajan | Sep 2016 | A1 |
20160300713 | Cui et al. | Oct 2016 | A1 |
20160329206 | Kumar | Nov 2016 | A1 |
20160375515 | Xu et al. | Dec 2016 | A1 |
20170152968 | Raj et al. | Jun 2017 | A1 |
20170204516 | Nguyen et al. | Jul 2017 | A1 |
20170301522 | Sun et al. | Oct 2017 | A1 |
20170314125 | Fenwick et al. | Nov 2017 | A1 |
20170314128 | Kang et al. | Nov 2017 | A1 |
20170323772 | Fenwick et al. | Nov 2017 | A1 |
20180016678 | Fenwick et al. | Jan 2018 | A1 |
20180044791 | Varadarajan et al. | Feb 2018 | A1 |
20180057939 | Yun et al. | Mar 2018 | A1 |
20180127864 | Latchford et al. | May 2018 | A1 |
20180174901 | Wang et al. | Jun 2018 | A1 |
20180202047 | Lin et al. | Jul 2018 | A1 |
20180265972 | Firouzdor et al. | Sep 2018 | A1 |
20180265973 | Firouzdor et al. | Sep 2018 | A1 |
20180337026 | Firouzdor et al. | Nov 2018 | A1 |
20180347037 | Zhai et al. | Dec 2018 | A1 |
20190078206 | Wu et al. | Mar 2019 | A1 |
20190185999 | Shanbhag et al. | Jun 2019 | A1 |
20190271076 | Fenwick et al. | Sep 2019 | A1 |
20200347497 | Shanbhag et al. | Nov 2020 | A1 |
20210340670 | Singhal et al. | Nov 2021 | A1 |
20220145459 | Varadarajan et al. | May 2022 | A1 |
20220275504 | Shanbhag et al. | Sep 2022 | A1 |
20230002891 | Shanbhag et al. | Jan 2023 | A1 |
Number | Date | Country |
---|---|---|
1798867 | Jul 2006 | CN |
101053063 | Oct 2007 | CN |
101313085 | Nov 2008 | CN |
102892922 | Jan 2013 | CN |
103098174 | May 2013 | CN |
103243310 | Aug 2013 | CN |
104272440 | Jan 2015 | CN |
104651807 | May 2015 | CN |
106270863 | Jan 2017 | CN |
111448640 | Jul 2020 | CN |
2003224076 | Aug 2003 | JP |
2005085878 | Mar 2005 | JP |
2009094340 | Apr 2009 | JP |
2009147373 | Jul 2009 | JP |
2009188198 | Aug 2009 | JP |
2009263764 | Nov 2009 | JP |
2010103443 | May 2010 | JP |
2011020995 | Feb 2011 | JP |
2011187934 | Sep 2011 | JP |
2012216696 | Nov 2012 | JP |
2014532304 | Dec 2014 | JP |
2015122486 | Jul 2015 | JP |
2016051864 | Apr 2016 | JP |
2016216817 | Dec 2016 | JP |
2017512375 | May 2017 | JP |
2017514991 | Jun 2017 | JP |
2017199907 | Nov 2017 | JP |
2021506126 | Feb 2021 | JP |
19980018744 | Jun 1998 | KR |
100382370 | May 2003 | KR |
20040022056 | Mar 2004 | KR |
20060055138 | May 2006 | KR |
20070085564 | Aug 2007 | KR |
20080105539 | Dec 2008 | KR |
20090016403 | Feb 2009 | KR |
20090053823 | May 2009 | KR |
20130055582 | May 2013 | KR |
20140141686 | Dec 2014 | KR |
20160115761 | Oct 2016 | KR |
20170122674 | Nov 2017 | KR |
200535277 | Nov 2005 | TW |
200830942 | Jul 2008 | TW |
200917363 | Apr 2009 | TW |
201405707 | Feb 2014 | TW |
201405781 | Feb 2014 | TW |
201425633 | Jul 2014 | TW |
201626503 | Jul 2016 | TW |
I609455 | Dec 2017 | TW |
WO-2006054854 | May 2006 | WO |
WO-2007027350 | Mar 2007 | WO |
WO-2009085117 | Jul 2009 | WO |
WO-2011111498 | Sep 2011 | WO |
WO-2013043330 | Mar 2013 | WO |
WO-2014137532 | Sep 2014 | WO |
WO-2016131024 | Aug 2016 | WO |
WO-2021029970 | Feb 2021 | WO |
WO-2021050168 | Mar 2021 | WO |
Entry |
---|
“International Application Serial No. PCT US2018 064304, International Preliminary Report on Patentability dated Jun. 18, 2020”, 5 pages. |
International Application Serial No. PCT/US2018/064304, International Search Report dated Apr. 1, 2019, 3 pgs. |
International Application Serial No. PCT/US2018/064304, Written Opinion dated Apr. 1, 2019, 3 pgs. |
Advanced Energy Industries, Inc. brochure. “Remote Plasma Source Chamber Anodization”. 2018, pp. 1-8. |
Chinese First Office Action dated Jun. 3, 2019 issued in Application No. CN 201711372325.2. |
Chinese First Office Action, dated Mar. 20, 2018 issued in Application No. CN 201610181756.X. |
Chinese First Office Action, dated Sep. 5, 2016, issued in Application No. CN 201410686823.4. |
Chinese Notice of Allowance, dated Mar. 3, 2020 issued in Application No. CN 201610181756.X. |
Chinese Second Office Action, dated Jan. 28, 2019 issued in Application No. CN 201610181756.X. |
Chinese Second Office Action dated May 7, 2020 issued in Application No. CN 201711372325.2. |
Chinese Second Office Action, dated May 8, 2017, issued in Application No. CN 201410686823.4. |
Chinese Third Office Action, dated Aug. 2, 2019 issued in Application No. CN 201610181756.X. |
Chinese Third Office Action dated Dec. 1, 2020 issued in Application No. CN 201711372325.2. |
Cunge et al. (2005) “New chamber walls conditioning and cleaning strategies to improve the stability of plasma processes,” Plasma Sources Sci. Technol. 14:509-609. |
Cunge et al. (2005) “Plasma-wall interactions during silicon etching processes in high-density HBr/C12/O2 plasmas,” Plasma Sources Sci. Technol. 14:S42-S52. |
Fotovvati, Behzad, et al., “On Coating Techniques for Surface Protection: A Review” Journal of Manufacturing and Materials Processing, 2019, 3, 28, pp. 1-22. |
Hu, L, et al., “Coating Strategies for Atomic Layer Deposition”. Nanotechnology. Jan. 2017, vol. 6, No. 6, pp. 527-547. |
International Preliminary Report and Patentability dated Apr. 29, 2021 issued in PCT/US2019/055264. |
International Preliminary Report and Patentability dated Jun. 25, 2020 issued in PCT/US2018/064090. |
International Preliminary Report on Patentability dated Jun. 18, 2020 in PCT Application No. PCT/US2018/064304. |
International Search Report and Written Opinion dated Apr. 1, 2019, in PCT Application No. PCT/US2018/064304. |
International Search Report dated Feb. 5, 2020 issued in PCT/US2019/055264. |
International Search Report dated Mar. 22, 2019 issued in Application No. PCT/US2018/064090. |
Japanese First Office Action, dated Aug. 18, 2021, issued in Application No. JP 2020-185592. |
Japanese First Office Action, dated Jan. 8, 2019, issued in Application No. JP 2014-233410. |
Japanese First Office Action, dated Mar. 10, 2020 issued in Application No. JP 2016-054587. |
Japanese Second Office Action, dated Dec. 15, 2020 issued in Application No. JP 2016-054587. |
Japanese Second Office Action, dated Nov. 19, 2019, issued in Application No. JP 2014-233410. |
Japanese Third Office Action, dated Jul. 3, 2020, issued in Application No. JP 2014-233410. |
Japanese Third Office Action, dated Sep. 10, 2021 issued in Application No. JP 2016-054587. |
JP Office Action dated Feb. 8, 2022, in Application No. JP2020-185592 with English translation. |
Juárez, H., et al., (2009) “Low temperature deposition: properties of Si02 films from TEOS and ozone by APCVD system,” XIX Latin American Symposium on Solid State Physics (SLAFES XIX). Journal of Physics: Conference Series 167(012020) pp. 1-6. |
Kang et al. (Jul./Aug. 2005) “Evaluation of silicon oxide cleaning using F2/Ar remote plasma processing,” J. Vac. Sci. Technol. A 23(4):911-916. |
Kim et al. (1991) “Recombination of O, N, and H Atoms on Silica: Kinetics and Mechanism,” Langmuir, 7(12):2999-3005. |
Kim et al. (2015) “Investigation of Plasma Enhanced Chemical Vapor Deposition Chamber Mismatching by Photoluminescence and Raman Spectroscopy,” ECS Journal of Solid State Science and Technology, 4(8)P314-P318. |
Klimecky et al. (May/Jun. 2003) “Compensation for transient chamber wall condition using real-time plasma density feedback control in an inductively coupled plasma etcher,” Journal Vac. Sci. Technol. A, 21 (3):706-717. |
Knoops et al.(2010) “Conformality of Plasma-Assisted ALD: Physical Processes and Modeling,” Journal of The Electrochemical Society, 157(12):G241-G249. |
Korean First Office Action dated Apr. 16, 2021 issued in Application No. KR 10-2015-0007827. |
Korean First Office Action, dated Jul. 1, 2021, issued in Application No. KR 10-2014-0165420. |
KR Office Action dated Apr. 20, 2022, in Application No. KR10-2022-0020744 with English translation. |
KR Office Action dated Dec. 21, 2021, in Application No. KR1020140165420 with English translation. |
KR Office Action dated Feb. 8, 2022, in Application No. 10-2017-0172906 with English translation. |
KR Office Action dated Jun. 1, 2022, in Application No. KR10-2014-0165420 with English Translation. |
KR Office Action dated Jun. 9, 2022, in Application No. KR10-2022-0017172 with English translation. |
KR Office Action dated Mar. 10, 2022, in Application No. KR1020220017172 with English translation. |
KR Office Action dated May 26, 2022, in Application No. KR10-2016-0042618 With English Translation. |
KR Office Action dated Nov. 17, 2021, in Application No. KR1020150007827 with English translation. |
Lin, Tzu-Ken, et al., Comparison of Erosion Behavior and Particle Contamination in Mass-Production CF4/02 Plasma Chambers Using Y203 and YF3 Protective Coatings. Nanomaterials, 2017, 7, 183, pp. 1-9. |
Lin, Tzu-Ken, et al., “Preparation and Characterization of Sprayed-Yttrium Oxyfluoride Corrosion Protective Coating for Plasma Process Chambers” Coatings, 2018, 8, 373, Oct. 22, 2018, pp. 1-8. |
Nakagawa, Takahide (May 1991) “Effect of Coating on the Plasma Chamber Wall in RIKEN Electron Cyclotron Resonance Ion Source,” Japanese Journal of Applied Physics, 30(5B)L930-L932. |
Notice of Allowance, dated Mar. 22, 2018, issued in U.S. Appl. No. 14/683,022. |
Park, Seung Hyun, et al., “Surface Analysis of Chamber Coating Materials Exposed to CF4/02 Plasma”. Coatings, 2021, 11, 105, pp. 1-11. |
Taiwanese First Office Action dated Apr. 21, 2021 issued in Application No. TW 106144306. |
Taiwanese First Office Action dated Apr. 30, 2018 issued in Application No. TW 103140644. |
Taiwanese First Office Action dated Oct. 16, 2019 issued in Application No. TW 105109337. |
Taiwanese Notice of Allowance dated Apr. 17, 2020 issued in Application No. TW 105109337. |
Taiwanese Notice of Allowance dated Aug. 10, 2018 issued in Application No. TW 104101422. |
TW Office Action dated May 9, 2022, in Application No. TW107144472 with English translation. |
U.S Corrected Notice of Allowance dated Mar. 3, 2022, in U.S. Appl. No. 16/935,760. |
U.S. Final Office Action, dated Apr. 20, 2017, issued in U.S. Appl. No. 14/712,167. |
U.S. Final Office Action dated Aug. 16, 2018 issued in U.S. Appl. No. 15/650,731. |
U.S. Final Office Action, dated Dec. 17, 2021, issued in U.S. Appl. No. 15/794,786. |
U.S. Final Office Action, dated Jan. 15, 2020, issued in U.S. Appl. No. 15/954,454. |
U.S. Final Office Action, dated Jul. 6, 2020, issued in U.S. Appl. No. 15/794,786. |
U.S. Final Office Action, dated Jun. 18, 2018, issued in U.S. Appl. No. 15/384,175. |
U.S. Final Office Action, dated Nov. 3, 2017, issued in U.S. Appl. No. 14/683,022. |
U.S. Final Office Action dated Oct. 28, 2016 issued in U.S. Appl. No. 14/089,653. |
U.S. Notice of Allowance, dated Apr. 22, 2020, issued in U.S. Appl. No. 15/954,454. |
U.S. Notice of Allowance, dated Aug. 18, 2017, issued in U.S. Appl. No. 14/712,167. |
U.S. Notice of Allowance dated Feb. 16, 2022 in U.S. Appl. No. 16/935,760. |
U.S. Notice of Allowance, dated Jan. 11, 2016, issued in U.S. Appl. No. 14/158,536. |
U.S. Notice of Allowance dated Jan. 23, 2017 issued in U.S. Appl. No. 14/089,653. |
U.S. Notice of Allowance dated Jun. 1, 2017 issued in U.S. Appl. No. 14/089,653. |
U.S. Notice of Allowance, dated May 8, 2019, issued in U.S. Appl. No. 15/782,410. |
U.S. Notice of Allowance, dated Oct. 3, 2018, issued in U.S. Appl. No. 15/384,175. |
U.S. Office Action, dated Aug. 17, 2015, issued in U.S. Appl. No. 14/158,536. |
U.S. Office Action dated Dec. 10, 2015 issued in U.S. Appl. No. 14/089,653. |
U.S. Office Action, dated Feb. 28, 2020, issued in U.S. Appl. No. 15/794,786. |
U.S. Office Action, dated Jan. 24, 2019, issued in U.S. Appl. No. 15/782,410. |
U.S. Office Action, dated Jan. 29, 2021, issued in U.S. Appl. No. 15/794,786. |
U.S. Office Action dated Mar. 14, 2018 issued in U.S. Appl. No. 15/650,731. |
U.S. Office Action, dated Mar. 24, 2017, issued in U.S. Appl. No. 14/683,022. |
U.S. Office Action dated May 13, 2016 issued in U.S. Appl. No. 14/089,653. |
U.S. Office Action, dated Nov. 18, 2016, issued in U.S. Appl. No. 14/712,167. |
U.S. Office Action, dated Nov. 20, 2017, issued in U.S. Appl. No. 15/384,175. |
U.S. Office Action, dated Oct. 8, 2019, issued in U.S. Appl. No. 15/954,454. |
U.S. Office Action, dated Sep. 28, 2021, issued in U.S. Appl. No. 16/935,760. |
U.S. Office Action, dated Sep. 3, 2021, issued in U.S. Appl. No. 15/794,786. |
U.S. Appl. No. 17/663,614, inventors Shanbhag et al., filed May 16, 2022. |
U.S. Restriction Requirement dated Mar. 29, 2022, in U.S. Appl. No. 17/649,020. |
Japanese Office Action dated Feb. 14, 2023 issued in Application No. JP2022-004040 with English translation. |
KR Office Action dated Feb. 14, 2023 in Application No. KR10-2023-0013752 with English translation. |
KR Office Action dated Feb. 27, 2023, in Application No. KR10-2022-7018308. |
KR Office Action dated Nov. 26, 2022, in Application No. KR1020220020744 with English translation. |
U.S Advisory Action dated Mar. 20, 2023 in U.S. Appl. No. 17/649,020. |
JP Office Action dated Nov. 15, 2022, in Application No. JP2020-532621 with English translation. |
KR Office Action dated Oct. 14, 2022, in Application No. KR10-2022-7018308, with English Translation. |
KR Office Action dated Aug. 1, 2022, in Application No. 10-2017-0172906. |
KR Office Action dated Nov. 1, 2022, in Application No. 10-2017-0172906 with English translation. |
KR Office Action dated Nov. 17, 2022, in Application No. KR10-2016-0042618 with English translation. |
KR Office Action dated Nov. 26, 2022, in Application No. KR1020220020744. |
KR Office Action dated Oct. 24, 2022, in Application No. KR10-2014-0165420 with English Translation. |
U.S. Final Office Action dated Dec. 6, 2022 in U.S. Appl. No. 17/649,020. |
U.S. Non-Final Office Action dated Aug. 5, 2022, in U.S. Appl. No. 17/649,020. |
TW Office Action dated Jun. 28, 2023 in Application No. TW111120546 with English translation. |
U.S. Non-Final Office Action dated Jun. 26, 2023, in U.S. Appl. No. 17/649,020. |
Number | Date | Country | |
---|---|---|---|
20210164097 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62595948 | Dec 2017 | US |