1. Field of the Invention
This invention relates generally to integrated circuit fabrication and, more particularly, the formation of silicon oxide layers.
2. Description of the Related Art
As the dimensions of microelectronic devices becomes smaller in order to increase device density and facilitate the miniaturization of integrated circuits, the limitations in fabrication processes become more noticeable. For example, as the sizes of devices decrease, the widths of some integrated circuit features, such as openings, also decrease. However, there is typically not a similar decrease in the depths of these openings, thereby causing an increase in the aspect ratios of the features.
In some integrated circuit fabrication processes, material is deposited into openings in substrates to form various parts of the integrated circuit. For example, dielectric materials, such as silicon oxide, can be deposited into openings to form, e.g., shallow trench isolation structures. However, depositing material into such openings, including trenches, can create voids in the openings, as the deposited material can preferentially deposit at the mouth of the openings. In some cases, the material forms bridges at the mouth, which pinches off deposition into the opening and causes the formation of large voids in the openings. As the widths of openings decrease, the likelihood of this pinching and void formation increases. These voids can reduce the performance of the integrated circuits and also can reduce manufacturing throughput when the resulting integrated circuits do not meet performance specifications.
Accordingly, as the dimensions of integrated circuit features continue to decrease, there is a continuing need for methods for depositing materials as deposition requirements become more stringent.
In some embodiments, a method for depositing silicon oxide is provided. The method comprises providing a batch reactor and a plurality of vertically separated substrates in a reaction chamber of the batch reactor and chemical vapor depositing silicon oxide on the substrates. Chemical vapor depositing comprises pulsing tetraethyl orthosilicate (TEOS) into the reaction chamber and flowing ozone into the reaction chamber while maintaining a pressure inside the reaction chamber at about 10 Torr or less.
In some other embodiments, a method for depositing silicon oxide on a substrate is provided. The method comprises providing the substrate in a reaction chamber, pulsing TEOS into the reaction chamber, and flowing ozone into the reaction chamber while maintaining a pressure inside the reaction chamber at about 10 Torr or less. The amount of TEOS flowed into the reaction chamber per pulse varies among the series of TEOS pulses.
In still other embodiments, a method for depositing silicon oxide is provided. The method comprises providing a substrate in a reaction chamber, the substrate having a trench, and filling the trench with silicon oxide. Filling the trench comprises pulsing TEOS into the reaction chamber, flowing ozone into the reaction chamber, and maintaining a pressure inside the reaction chamber at about 10 Torr or less.
The invention will be better understood from the detailed description of the preferred embodiments and from the appended drawings, which are meant to illustrate and not to limit the invention and wherein like numerals refer to like parts throughout.
Batch reactors were once the dominant reactors for depositing films on substrates. These reactors accommodate and can deposit films on a plurality of substrates. However, due to various factors, such as difficulties uniformly controlling the deposition environment immediately adjacent each substrate, achieving consistently high quality deposition results can be difficult.
As deposition requirements have become more stringent, single substrate reactors have become more dominant for some demanding depositions, such as depositing highly conformal films or filling openings having high aspect ratios. For example, it can be difficult to fill trenches with aspect ratios of about 4 or more, or about 5 or more, with silicon oxide. Single substrate reactors accommodate a single substrate and the small volumes of these reactors allow a high degree of optimization, thereby facilitating high quality deposition results on that substrate. For example, sub-atmospheric chemical vapor deposition (CVD) processes in single substrate reactors, with deposition pressures of several hundred Torr, have been used to deposit highly conformal silicon oxide films on substrates.
It will be appreciated that silicon oxide films can be deposited using tetraethyl orthosilicate (TEOS) and an oxygen precursor, such as ozone (O3). O3 is prone to decomposition, which adversely affects the deposition. However, this concern is small for the small volume of typical single substrate reactors, since the O3 only traverses a relatively small distance in a reaction chamber, before contacting the substrate. The concern is more serious for batch reactors, which have large volumes that require the O3 to traverse relatively large distances before contacting and depositing on a substrate. In addition, O3 molecules can interact with a large number of other surfaces before contacting a substrate. For example, the O3 can react with reaction chamber walls, the undersides of substrate supports, and other wafer boats surfaces.
Advantageously, in spite of these concerns, the inventors have developed a process that allows for high quality silicon oxide deposition results in a batch reactor. To reduce the occurrence of the decomposition of O3, the mean free path length of O3 molecules traveling through the reaction chamber is increased. In some embodiments, the mean free path length is increased by about 400 times, relative to the mean free path length of O3 molecules in a deposition process at 600 Torr. Advantageously, it has been found that the mean free path length can be increased by conducting the deposition under low pressure, e.g., at about 10 Torr or less, about 5 Torr or less, or about 1.5 Torr or less.
In addition, in some embodiments, the deposition is performed in a hot wall batch reactor. Advantageously, the hot walls of the reaction chamber of the reactor minimize the deposition of reactants, such as O3 on those walls. As a result, the number of molecules of the reactants available to react with the substrates is increased, and the particle generation caused by flaking of deposited material off the walls is decreased, relative to depositions in which reactants deposit on the reaction chamber walls.
Also, in some embodiments, direct liquid injection (DLI) is used to deliver TEOS to the reaction chamber. For the DLI system, an evaporator is used to vaporize liquid TEOS. The evaporator allows the TEOS flow to be metered and controlled in the liquid phase, which allows more precise control of the amount of TEOS provided into a reaction chamber, relative to vaporizing the TEOS using a conventional bubbler. A carrier gas for the TEOS can be omitted, such that substantially pure TEOS vapor can be delivered to the reaction chamber. As a result of the highly precise control of TEOS into the chamber, excellent control of film properties can be achieved.
Advantageously, depositions according to preferred embodiments of the invention allow for the filling of openings, or trenches, in a batch reactor with an exceptionally low occurrence, or preferably an omission, of voids. Openings having aspect ratios of about 4 or more, or about 5 or more, can be filled with a low occurrence of voids. In addition, preferred embodiments of the invention deposit films having low levels of stress, which can have benefits for increasing the reliability of devices incorporating the films.
In some embodiments, silicon oxide is deposited on substrates in a batch reaction chamber. To deposit the silicon oxide, a silicon precursor is flowed into the batch reaction chamber. The amount of the silicon precursor flowed into the batch reaction chamber varies as a function of time. For example, the silicon precursor can be pulsed into the reaction chamber. Between the pulses, the silicon precursor can be removed from the chamber, e.g., by evacuation or by purging with purge gas, such as an inert gas. An oxygen precursor is also flowed into the chamber to react with silicon species, thereby forming a silicon oxide layer. The flow of the oxygen precursor can overlap the flow of the silicon precursor into the reaction chamber, or can alternate with pulses of the silicon precursor. In some embodiments, the oxygen precursor is flowed continuously into the reaction chamber at a constant rate and in some other embodiments, the flow rate of the oxygen precursor is varied over time. The deposition is continued as desired to fill openings on the surface of the substrate, such as trenches, and to form silicon oxide layers having a desired thickness on the substrate surface. In preferred embodiments, the silicon source precursor is tetraethyl orthosilicate (TEOS) and the oxygen source precursor is ozone.
Reference will now be made to the Figures, wherein like numerals refer to like parts throughout.
With continued reference to
Substrates are held in a load 550 mounted on a sleeveless pedestal (not shown). The substrate load 550 may be made from quartz or other suitable materials and may be configured to contain between about 25 and about 150 slots. The sleeveless pedestal reduces heat loss at the bottom of the batch reactor 526 and acts as a shield for the door plate and the flange (not shown). In some embodiments, the substrate load 550 and sleeveless pedestal are turned inside the reactor 526 due to a rotating door plate (not shown).
In some embodiments, inside the process chamber 526, gas is flowed in a generally upward direction 552 and then removed from the reaction chamber 529 via an exhaust space 554 at the periphery of the chamber 529. Gas flows through the exhaust space 554 in a downward direction 556 to the exhaust 558, which is connected to a pump (not shown). The gas injector 540 preferably distributes process gases inside the reactor 526 over the entire height of the reaction chamber 529. The gas injector 540 itself acts as a restriction on the flow of gas, such that the holes 548 that are closer to the conduit 544 tend to inject more gas into the reaction space than those holes 548 that are farther from the conduit 544. Preferably, this tendency for differences in gas flows through the holes 548 can be compensated to an extent by reducing the distance between the holes 548 (i.e., increasing the density of the holes 548) as they are located farther away from the conduit 544. In other embodiments, the sizes of individual holes making up the holes 548 can increase with increasing distance from the conduit 544, or both the size of the holes 548 can increase and also the distance between the holes 48 can decrease with increasing distance from the conduit 544.
The injector 540 is advantageously designed to reduce the pressure inside the gas injector, resulting in a reduction of the gas phase reactions within the injector, since reaction rates typically increase with increasing pressure. While such reduced pressure can also lead to a poor distribution of gas over the height of the gas injector 540, the distribution of holes 548 across the height of the injector 540 is selected to improve uniformity of gas distribution.
The gas injector 540 in accordance with some embodiments of the invention is shown in greater detail in
As seen in
It will be appreciated that liquid precursors, e.g., TEOS, can be delivered to the reactor by various methods, including using bubblers. In some preferred embodiments, as illustrated in
The measurement signal of vaporized TEOS is routed via a control unit 340 in a feedback control loop to the liquid flow controller of the evaporator unit 320 to control the flow of liquid TEOS that is evaporated to form a TEOS gas. All gas lines downstream of the evaporator unit 320 can be heated, as shown by the dashed line, to prevent condensation along the flow path of the gas. In order to prevent condensation of the precursor gas, the evaporator unit 320, the mass flow meter 330, and TEOS carrying lines are heated, e.g., to between about 140° C. and about 150° C., by means of jackets (not shown) fixed along the process flow route. In some embodiments, DLI provides a TEOS gas flow of up to about 500 sccm.
Vaporized TEOS is then distributed in the reaction chamber 529 (see
For each precursor, TEOS, as well as ozone, two gas feed lines are available for feeding the precursors into the reactor: one feed line connects to the injector for a distributed injection and an additional feed line connects to the flange in the bottom of the reactor. The additional feed line allows for tuning of the uniformity of deposited films in the down boat regions of the reactor.
With reference to
As illustrated in
With reference to
As seen in
In some other embodiments of the invention, as illustrated in
With continued reference to
In some further embodiments of the invention, TEOS and ozone are separately pulsed into the reaction chamber. As illustrated in
In some other embodiments of the invention, the amount of TEOS delivered per TEOS pulse and/or the amount of ozone delivered per ozone pulse is varied as a function of time. As illustrated in
With reference to
In addition to deposition pressure and temperature, it will be appreciated that film and deposition properties can be tailored by controlling the ratio of TEOS to ozone. In some embodiments, the ratio of TEOS to ozone may be in the range from about 1:1000 to about 1:1. When the ratio of TEOS to ozone is low, the deposition rate is lower and the conformality of deposition is higher. As noted herein, in some embodiments, it may be advantageous to begin the deposition sequence with a relatively low TEOS:ozone flow rate until the narrowest trenches have been filled, and then increasing the TEOS flow in order to increase the deposition rate.
A relatively low TEOS:ozone ratio can also increase the density of deposited silicon oxide films. The resulting films have superior etch protection properties, e.g., for use as etch stops. It will be appreciated that deposited films can be annealed to increase density. Advantageously, forming highly dense films, as deposited, can remove the need for the densification anneal.
In some embodiments, e.g., in modifications of the illustrated embodiments of
In some embodiments, with reference to
It will be appreciated that the pressure/temperature profile of
It will also be appreciated that deposition with ozone provides various advantages.
Using TEOS and O2 as precursors, silicon oxide was formed on substrates containing trenches about 100 nm wide and having an aspect ratio of about 4. The deposition was performed in a A412™ batch reactor from ASM International N.V. of Bilthoven, The Netherlands. TEOS and oxygen were flowed into the reaction chamber of the reactor continuously and simultaneously, at a constant rate. TEOS was flowed at about 100 sccm and O2 was flowed at about 13 sccm. The substrate temperature was about 675° C. The reaction chamber pressure was about 250 mTorr. A total thickness of about 650 nm of silicon oxide was deposited.
The substrates were then annealed in two stages in an ASM A412™ wet oxide vertical furnace from ASM International N.V. of Bilthoven, The Netherlands. First, the substrates are annealed at 750° C. for 30 minutes in a steam atmosphere. Second, the substrates are annealed at 1050° C. for 30 minutes in a nitrogen atmosphere.
Silicon oxide was deposited into trenches using TEOS and O3 as precursors flowed continuously and simultaneously into a reaction chamber at a constant rate. The trenches were about 100 nm wide, with an aspect ratio of about 4. The deposition was performed in a A412™ batch reactor from ASM International N.V. of Bilthoven, The Netherlands. TEOS and ozone were flowed into the reaction chamber. TEOS was flowed at about 450 sccm and ozone was flowed at about 0.15 slm. The substrate temperature was about 600° C. and the reaction chamber pressure was about 1500 mTorr. A total thickness of about 650 nm of silicon oxide was deposited.
The substrates were then annealed in two stages in an ASM A412™ wet oxide vertical furnace from ASM International N.V. of Bilthoven, The Netherlands. First, the substrates are annealed at 750° C. for 30 minutes in a steam atmosphere. Second, the substrates are annealed at 1050° C. for 30 minutes in a nitrogen atmosphere.
Silicon oxide was deposited into trenches using TEOS and O3 as precursors. The trenches were about 100 nm wide, with an aspect ratio of about 4. The deposition was performed in a A412™ batch reactor from ASM International N.V. of Bilthoven, The Netherlands. TEOS was pulsed and ozone was flowed continuously, at a fixed rate, into the reaction chamber. TEOS was pulsed at about 450 sccm (714 pulses) and ozone was flowed at about 2.5 slm. The substrate temperature was about 600° C. and the reaction chamber pressure was about 750 mTorr. About 650 nm of silicon oxide was deposited.
The substrates were then annealed in two stages in an ASM A412™ wet oxide vertical furnace from ASM International N.V. of Bilthoven, The Netherlands. First, the substrates are annealed at 750° C. for 30 minutes in a steam atmosphere. Second, the substrates are annealed at 1050° C. for 30 minutes in a nitrogen atmosphere.
It will be appreciated by those skilled in the art that various other omissions, additions and modifications may be made to the methods and structures described above without departing from the scope of the invention. All such modifications and changes are intended to fall within the scope of the invention, as defined by the appended claims.