The following disclosure relates generally to microelectronic devices and methods for packaging microelectronic devices. Several aspects of the present invention are directed toward packaging microelectronic imagers that are responsive to radiation in the visible light spectrum or radiation in other spectrums.
Microelectronic imagers are used in digital cameras, wireless devices with picture capabilities, and many other applications. Cell phones and Personal Digital Assistants (PDAs), for example, are incorporating microelectronic imagers for capturing and sending pictures. The growth rate of microelectronic imagers has been steadily increasing as they become smaller and produce better images with higher pixel counts.
Microelectronic imagers include image sensors that use Charged Coupled Device (CCD) systems, Complementary Metal-Oxide Semiconductor (CMOS) systems, or other systems. CCD image sensors have been widely used in digital cameras and other applications. CMOS image sensors are also quickly becoming very popular because they are expected to have low production costs, high yields, and small sizes. CMOS image sensors can provide these advantages because they are manufactured using technology and equipment developed for fabricating semiconductor devices. CMOS image sensors, as well as CCD image sensors, are accordingly “packaged” to protect the delicate components and to provide external electrical contacts.
The die 10 includes an image sensor 12 and a plurality of bond-pads 14 electrically coupled to the image sensor 12. The interposer substrate 20 is typically a dielectric fixture having a plurality of bond-pads 22, a plurality of ball-pads 24, and traces 26 electrically coupling bond-pads 22 to corresponding ball-pads 24. The ball-pads 24 are arranged in an array for surface mounting the imager 1 to a board or module of another device. The bond-pads 14 on the die 10 are electrically coupled to the bond-pads 22 on the interposer substrate 20 by wire-bonds 28 to provide electrical pathways between the bond-pads 14 and the ball-pads 24.
The imager 1 shown in
One problem with packaging conventional microelectronic imagers is that they have relatively large footprints and occupy a significant amount of vertical space (i.e., high profiles). The footprint of the imager in
Another problem with packaging conventional microelectronic imagers is the manufacturing costs for packaging the dies. Forming the wire-bonds 28, for example, in the imager 1 shown in
A. Overview
The following disclosure describes several embodiments of microelectronic imagers, methods for packaging microelectronic imagers, and methods for forming electrically conductive through-wafer interconnects in microelectronic imagers. One particular embodiment of the invention is directed toward a microelectronic imaging die comprising a microelectronic substrate, an integrated circuit, and an image sensor electrically coupled to the integrated circuit. The imaging die also includes an electrical terminal (e.g., a bond-pad) electrically coupled to the integrated circuit and a plurality of through-wafer interconnects extending through the substrate. The interconnects contact the backside of corresponding bond-pads to provide an array of electrical contacts on the backside of the die. A plurality of ball-pads can be attached to the backside contacts to form a ball-pad array on the backside of the die.
In one embodiment, the interconnect is formed in a blind hole extending partially through the substrate to the bond-pad. The interconnect can comprise a dielectric liner disposed on the sidewalls of the hole in contact with the substrate. The dielectric liner electrically insulates other components in the substrate from electrical currents transmitted through the interconnect. The interconnect can further include a conductive layer deposited into at least a portion of the hole onto the dielectric liner, and a wetting agent deposited onto at least a portion of the conductive layer. This embodiment of the interconnect further includes a conductive fill material in the hole over the wetting agent. The fill material is electrically coupled to the bond-pad.
Another particular embodiment of the invention is directed toward a method for manufacturing a microelectronic imaging die. The method can include providing a microelectronic substrate having an integrated circuit and an image sensor electrically coupled to the integrated circuit, forming a bond-pad on a substrate, and electrically coupling the bond-pad to the integrated circuit. This method can further include grinding the backside of the substrate to thin the substrate, forming a blind hole or aperture partially through the substrate to expose a portion of the bond-pad, and constructing an interconnect in at least a portion of the hole
The interconnect can be constructed by depositing a conductive fill material into at least a portion of the hole to contact the exposed portion of the bond-pad. One particular embodiment of constructing an interconnect includes forming the blind hole through the substrate to the backside of the bond-pad and applying a dielectric liner to at least a portion of the hole. The dielectric liner electrically insulates other components in the substrate from the interconnect that is subsequently formed in the hole. This embodiment of the method further includes depositing a conductive layer onto the dielectric liner in the hole and depositing a wetting agent over at least a portion of the conductive layer. The conductive fill material is then deposited into the hole.
Many specific details of the present invention are described below with reference to microfeature workpieces. The term “microfeature workpiece” as used throughout this disclosure includes substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, read/write components, and other features are fabricated. For example, such microfeature workpieces can include semiconductor wafers (e.g., silicon or gallium arsenide wafers), glass substrates, insulated substrates, and many other types of substrates. The feature sizes in microfeature workpieces can be 0.11 μm or less, but the workpieces can have larger submicron and supra-micron features.
Specific details of several embodiments of the invention are described below with reference to microelectronic imager dies and other microelectronic devices in order to provide a thorough understanding of such embodiments. Other details describing well-known structures often associated with microelectronic devices are not set forth in the following description to avoid unnecessarily obscuring the description of the various embodiments. Persons of ordinary skill in the art will understand, however, that the invention may have other embodiments with additional elements or without several of the elements shown and described below with reference to
In the Figures, identical reference numbers identify identical or at least generally similar elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refer to the Figure in which that element is first introduced. For example, element 210 is first introduced and discussed with reference to
B. Microelectronic Imaging Dies with Through-Wafer Interconnects
The imaging die 200 further includes a plurality of external contacts 220 for carrying electrical signals. Each external contact 220, for example, can include a bond-pad 222, a ball-pad 224, and an electrically conductive through-wafer interconnect 226 electrically coupling the bond-pad 222 to the ball-pad 224. The external contacts 220 shown in
One advantage of using the through-wafer interconnects 226 to electrically couple the bond-pads 222 to the ball-pads 224 is that this eliminates the need for mounting the imaging die 200 to a separate, larger interposer substrate. The imaging die 200, which has a significantly smaller footprint and profile than the interposer substrate of the conventional device shown in
In the embodiment illustrated in
After the substrate 210 is thinned to a thickness T, a third dielectric layer 352 is applied over the second side 242 of the substrate 210. In one embodiment the first, second, and third dielectric layers 350, 351, 352 are a polyimide material, but these dielectric layers can be other non-conductive materials in other embodiments. For example, the first dielectric layer 350 and/or one or more subsequent dielectric layers can be a low temperature chemical vapor deposition (low temperature CVD) material, such as tetraethylorthosilicate (TEOS), parylene, silicon nitride (Si3N4), silicon oxide (SiO2), and/or other suitable materials. The dielectric layers 350, 351, 352 are generally not composed of the same material as each other, but it is possible that two or more of these layers are composed of the same material. In addition, one or more of the layers described above with reference to
Referring to
The hole 360 can alternatively be formed using a laser in addition to or in lieu of etching. If a laser is used to form all or a portion of the hole 360, it is cleaned using chemical cleaning agents to remove slag or other contaminants. Laser cutting may be advantageous because the substrate 210 does not need to be patterned, but etching processes may be easier because a chemical cleaning process is not required. Another advantage of etching is that the etched hole 360 has rounded corners, which reduces stress points within the hole so that an interconnect constructed within the hole 360 is less susceptible to stress damage.
In addition to etched holes being easier to clean than laser-cut holes, another advantage of etching is that a plurality of holes can be formed simultaneously. The second side 242 of the substrate 210 can be patterned so that apertures in a mask layer are aligned with corresponding bond-pads 222 on the substrate 210. The backside of the substrate 210 can then be etched to simultaneously form a plurality of holes 360 aligned with corresponding bond-pads 222. Accordingly, etching the holes 360 may be more efficient than using a laser because the laser must be realigned with individual bond-pads 222 before it cuts each hole.
Referring to
Referring next to
Referring next to
Portions of the first conductive layer 354 are then removed from the horizontal and diagonal surfaces of the imaging die 200. In one embodiment, such portions of the first conductive layer 354 are removed from these surfaces by a spacer etch as described above with respect to
Referring to
Referring next to
A cap 359 can be formed at one end of the interconnect 377 after depositing the fill material 358. The cap 359 electrically couples the interconnect 377 with the bond-pad 222. In one embodiment, the cap 359 can be Ni electroplated onto the interconnect 377. In other embodiments, the cap 359 can be a wetting agent and/or other material. In another aspect of this embodiment, a solder ball (not shown) is attached to the interconnect 377 at the second side 242 of the substrate 210 to provide an external connection to other electronic devices on the backside of the imaging die 200.
Referring next to
Referring next to
After applying the first metal layer 454, a portion of the first conductive layer 454 is removed from the horizontal and diagonal surfaces of the imaging die 200. The first conductive layer 454 can be removed from these surfaces by a spacer etch or other process as described above with respect to
Referring next to
A conductive fill material 458 is then deposited into the blind hole 474 to form an interconnect 477 through the imaging die 200. The fill material 458 can include materials as described above with respect to
Referring to
The embodiments described above with reference to
C. Microelectronic Imagers with Through-Wafer Interconnects
The assembly 600 further includes a plurality of stand-offs 660 configured to position individual optic units 640 with respect to individual image sensors 212. Suitable stand-offs are disclosed in U.S. patent application Ser. No. 10/723,363, entitled “Packaged Microelectronic Imagers and Methods of Packaging Microelectronic Imagers,” filed on Nov. 26, 2003, which is incorporated by reference herein. The microelectronic imagers 690 can be assembled by seating the stand-offs 660 so that the optics units 640 are accurately aligned with the image sensors 212. In one embodiment, the stand-offs 660 are seated before singulating the individual imagers 690 such that all of the microelectronic imagers are assembled at the wafer level. Both of the first and second substrates 604 and 634 can then be cut along lines A-A to separate individual imagers 690 from each other.
One advantage of the assembly 600 of microelectronic imagers 690 illustrated in
Another advantage of the assembly 600 of microelectronic imagers 690 is the ability to decrease the real estate that the imagers 690 occupy in a cell phone, PDA, or other type of device. Because the imagers 690 do not require an interposer substrate to provide external electrical contacts in light of the through-wafer interconnects 226, the footprint of the imagers 690 can be the same as that of the die 200 instead of the interposer substrate. The area occupied by the imagers 690 is accordingly less than conventional imagers because the footprint of the individual imaging dies 200 is significantly smaller than that of the interposer substrate. Furthermore, because the dies 200 provide a backside array of ball-pads 224 that can be coupled directly to a module without an interposer substrate, the profile is lower and the time and costs associated with mounting the die to the interposer substrate are eliminated. This results in greater throughput, lower packaging costs, and smaller imagers.
A further advantage of wafer-level imager packaging is that the microelectronic imagers 690 can be tested from the backside of the dies 200 at the wafer level before the individual imagers 690 are singulated. A test probe can contact the backside of the dies 200 to test the individual microelectronic imagers 690 because the through-wafer interconnects 226 provide backside electrical contacts. Accordingly, because the test probe engages contacts on the backside of the imager workpiece 602, it will not damage the image sensors 212, the optics units 640, or associated circuitry on the front of the microelectronic imagers 690. Moreover, the test probe does not obstruct the image sensors 212 during a backside test, which allows the test probe to test a larger number of dies at one time compared to processes that test imaging dies from the front side. As such, it is more efficient in terms of cost and time to test the microelectronic imagers 690 at the wafer level (i.e., before singulation) than to test each imager 690 from the front side of the dies 200. Furthermore, it is advantageous to test the microelectronic imagers 690 in an environment where the individual image sensors 212 and/or optics units 640 will not be damaged during testing.
Yet another advantage of wafer-level processing is that the microelectronic imagers 690 can be singulated after assembling the optics units 640 to the dies 200. The attached optics units 640 protect the imager sensors 212 on the front side of the dies 200 from particles generated during the singulation process. Thus, the likelihood that the image sensors 212 or associated circuitry on the front side of the dies 200 will be damaged during singulation and subsequent handling is significantly reduced.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, various aspects of any of the foregoing embodiments can be combined in different combinations. Accordingly, the invention is not limited except as by the appended claims.
The present application is a divisional of U.S. patent application Ser. No. 12/364,342 filed on Feb. 2, 2009 now U.S. Pat. No. 8,035,179, which is a divisional of U.S. patent application Ser. No. 10/864,974 filed on Jun. 10, 2004 now U.S. Pat. No. 7,498,647, both of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3345134 | Heymer et al. | Oct 1967 | A |
4534100 | Lane | Aug 1985 | A |
4906314 | Farnworth et al. | Mar 1990 | A |
5130783 | McLellan | Jul 1992 | A |
5371397 | Maegawa et al. | Dec 1994 | A |
5424573 | Kato et al. | Jun 1995 | A |
5435887 | Rothschild et al. | Jul 1995 | A |
5505804 | Mizuguchi et al. | Apr 1996 | A |
5593913 | Aoki | Jan 1997 | A |
5605783 | Revelli et al. | Feb 1997 | A |
5672519 | Song et al. | Sep 1997 | A |
5694246 | Aoyama et al. | Dec 1997 | A |
5708293 | Ochi et al. | Jan 1998 | A |
5771158 | Yamagishi et al. | Jun 1998 | A |
5776824 | Farnworth et al. | Jul 1998 | A |
5811799 | Wu | Sep 1998 | A |
5821532 | Beaman et al. | Oct 1998 | A |
5857963 | Pelchy et al. | Jan 1999 | A |
5861654 | Johnson | Jan 1999 | A |
5877040 | Park et al. | Mar 1999 | A |
5897338 | Kaldenberg | Apr 1999 | A |
5914488 | Sone | Jun 1999 | A |
5977535 | Rostoker | Nov 1999 | A |
5998862 | Yamanaka | Dec 1999 | A |
6080291 | Woodruff et al. | Jun 2000 | A |
6104086 | Ichikawa et al. | Aug 2000 | A |
6114240 | Akram et al. | Sep 2000 | A |
6143588 | Glenn | Nov 2000 | A |
6169319 | Malinovich et al. | Jan 2001 | B1 |
6236046 | Watabe et al. | May 2001 | B1 |
6259083 | Kimura | Jul 2001 | B1 |
6266197 | Glenn et al. | Jul 2001 | B1 |
6274927 | Glenn | Aug 2001 | B1 |
6285064 | Foster | Sep 2001 | B1 |
6351027 | Giboney et al. | Feb 2002 | B1 |
6372548 | Bessho et al. | Apr 2002 | B2 |
6407381 | Glenn et al. | Jun 2002 | B1 |
6411439 | Nishikawa | Jun 2002 | B2 |
6452266 | Iwaya et al. | Sep 2002 | B1 |
6483652 | Nakamura | Nov 2002 | B2 |
6503780 | Glenn et al. | Jan 2003 | B1 |
6541762 | Knag et al. | Apr 2003 | B2 |
6560047 | Choi et al. | May 2003 | B2 |
6566745 | Beyne et al. | May 2003 | B1 |
6603183 | Hoffman | Aug 2003 | B1 |
6617623 | Rhodes | Sep 2003 | B2 |
6661047 | Rhodes | Dec 2003 | B2 |
6667551 | Hanaoka et al. | Dec 2003 | B2 |
6670986 | Ben Shoshan et al. | Dec 2003 | B1 |
6686588 | Webster et al. | Feb 2004 | B1 |
6703310 | Mashino et al. | Mar 2004 | B2 |
6734419 | Glenn et al. | May 2004 | B1 |
6759266 | Hoffman | Jul 2004 | B1 |
6774486 | Kinsman | Aug 2004 | B2 |
6778046 | Stafford et al. | Aug 2004 | B2 |
6791076 | Webster | Sep 2004 | B2 |
6795120 | Takagi et al. | Sep 2004 | B2 |
6797616 | Kinsman | Sep 2004 | B2 |
6800943 | Adachi | Oct 2004 | B2 |
6813154 | Diaz et al. | Nov 2004 | B2 |
6825458 | Moess et al. | Nov 2004 | B1 |
6828663 | Chen et al. | Dec 2004 | B2 |
6828674 | Karpman | Dec 2004 | B2 |
6844978 | Harden et al. | Jan 2005 | B2 |
6864172 | Noma et al. | Mar 2005 | B2 |
6882021 | Boon et al. | Apr 2005 | B2 |
6885107 | Kinsman | Apr 2005 | B2 |
6934065 | Kinsman | Aug 2005 | B2 |
6946325 | Yean et al. | Sep 2005 | B2 |
20020006687 | Lam | Jan 2002 | A1 |
20020057468 | Segawa et al. | May 2002 | A1 |
20020089025 | Chou | Jul 2002 | A1 |
20020096729 | Tu et al. | Jul 2002 | A1 |
20020113296 | Cho et al. | Aug 2002 | A1 |
20020145676 | Kuno et al. | Oct 2002 | A1 |
20030062601 | Harnden et al. | Apr 2003 | A1 |
20040012698 | Suda et al. | Jan 2004 | A1 |
20040023469 | Suda | Feb 2004 | A1 |
20040038442 | Kinsman | Feb 2004 | A1 |
20040041261 | Kinsman | Mar 2004 | A1 |
20040082094 | Yamamoto | Apr 2004 | A1 |
20040214373 | Jiang et al. | Oct 2004 | A1 |
20040245649 | Imacka | Dec 2004 | A1 |
20050029643 | Koyanagi | Feb 2005 | A1 |
20050052751 | Liu et al. | Mar 2005 | A1 |
20050104228 | Rigg et al. | May 2005 | A1 |
20050110889 | Tuttle et al. | May 2005 | A1 |
20050127478 | Hiatt et al. | Jun 2005 | A1 |
20050151228 | Tanida et al. | Jul 2005 | A1 |
20050236708 | Farnworth et al. | Oct 2005 | A1 |
20050254133 | Akram et al. | Nov 2005 | A1 |
20050275750 | Akram et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
0 886 323 | Dec 1998 | EP |
1 157 967 | Nov 2001 | EP |
2 835 654 | Aug 2003 | FR |
59-101882 | Jun 1984 | JP |
59-191388 | Oct 1984 | JP |
07-263607 | Oct 1995 | JP |
2001-077496 | Mar 2001 | JP |
WO 9005424 | May 1990 | WO |
WO 02075815 | Sep 2002 | WO |
WO 02095796 | Nov 2002 | WO |
WO 2004054001 | Jun 2004 | WO |
Entry |
---|
U.S. Appl. No. 10/785,466, Kirby. |
U.S. Appl. No. 10/845,304, Jiang et al. |
U.S. Appl. No. 10/857,948, Boettiger et al. |
U.S. Appl. No. 10/863,994, Akram et al. |
U.S. Appl. No. 10/867,352, Farnworth et al. |
U.S. Appl. No. 10/867,505, Farnworth et al. |
U.S. Appl. No. 10/879,398, Akram et al. |
U.S. Appl. No. 10/879,838, Kirby et al. |
U.S. Appl. No. 10/893,022, Hall et al. |
U.S. Appl. No. 10/894,262, Farnworth et al. |
U.S. Appl. No. 10/901,851, Derderian et al. |
U.S. Appl. No. 10/910,491, Bolken et al. |
U.S. Appl. No. 10/915,180, Street et al. |
U.S. Appl. No. 10/919,604, Farnworth et al. |
U.S. Appl. No. 10/922,177, Oliver et al. |
U.S. Appl. No. 10/922,192, Farnworth. |
U.S. Appl. No. 10/925,406, Oliver. |
U.S. Appl. No. 10/925,501, Oliver. |
U.S. Appl. No. 10/925,502, Watkins et al. |
U.S. Appl. No. 10/927,550, Derderian et al. |
U.S. Appl. No. 10/927,760, Chong et al. |
U.S. Appl. No. 10/928,598, Kirby. |
U.S. Appl. No. 10/932,296, Oliver et al. |
U.S. Appl. No. 11/027,443, Kirby. |
U.S. Appl. No. 11/054,692, Boemler. |
U.S. Appl. No. 11/056,211, Hembree et al. |
U.S. Appl. No. 11/056,484, Boettiger et al. |
U.S. Appl. No. 11/061,034, Boettiger. |
U.S. Appl. No. 11/146,783, Tuttle et al. |
U.S. Appl. No. 11/169,546, Sulfridge. |
U.S. Appl. No. 11/169,838, Sulfridge. |
U.S. Appl. No. 11/177,905, Akram. |
U.S. Appl. No. 11/209,524, Akram. |
U.S. Appl. No. 11/217,169, Hiatt et al. |
U.S. Appl. No. 11/217,877, Oliver et al. |
U.S. Appl. No. 11/218,126, Farnworth et al. |
U.S. Appl. No. 11/218,243, Kirby et al. |
Aachboun, S. et al., “Cryogenic etching of deep narrow trenches in silicon,” J. Vac. Sci. Technol. A 18(4), Jul./Aug. 2000, pp. 1848-1852. |
Aachboun, S. et al., “Deep anisotropic etching,” J. Vac. Sci. Technol. A 17(4), Jul./Aug. 1999, pp. 2270-2273. |
Austin, M.D. et al., “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography,” Applied Physics Letters, vol. 81, No. 23, pp. 4431-4433, Dec. 2, 2002, American Institute of Physics. |
Blackburn, J.M. et al., “Deposition of conformal copper and nickel films from supercritical carbon dioxide,” Science, vol. 294, pp. 141-145, Oct. 5, 2001. |
Brubaker, C. et al., “Ultra-thick lithography for advanced packaging and MEMS,” SPIE's 27th Annual International Symposium on Microlithography 2002, Mar. 3-8, 2002, Santa Clara, CA. |
Cheng, Yu-T. et al., “Vacuum packaging technology using localized aluminum/silicon-to-glass bonding,” Journal of Microelectromechanical Systems, vol. 11, No. 5, pp. 556-565, Oct. 2002. |
DuPont Electronic Materials, Data Sheet, Pyralux PC 2000 Flexible Composites, 4 pages, Oct. 1998, <http://www.dupont.com/fcm>. |
Edmund Industrial Optics, Mounted IR Filters, 1 page, retrieved from the Internet on Jun. 30, 2003, <http://www.edmundoptics.com>. |
Hamdorf, M. et al., “Surface-rheological measurements on glass forming polymers based on the surface tension driven decay of imprinted corrugation gratings,” Journal of Chemical Physics, vol. 112, No. 9, pp. 4262-4270, Mar. 1, 2000, American Institute of Physics. |
Hirafune, S. et al., “Packaging technology for imager using through-hole interconnection in Si substrate,” Proceeding of HDP'04, IEEE, pp. 303-306, Jul. 2004. |
IBM, Zurich Research Laboratory, EPON SU-8 photoresist, 1 page, retrieved from the Internet on Jan. 21, 2003, <http://www.zurich.ibm.com/st/mems/su8.html>. |
Intrinsic Viscosity and Its Relation to Intrinsic Conductivity, 9 pages, retrieved from the Internet on Oct. 30, 2003, <http://www.ciks.cbt.nist.gove/˜garbocz/paper58/node3.html>. |
King, B. et al., Optomec, Inc., M3D™ Technology, Maskless Mesoscale™ Materials Deposition, 5 pages, <http://www.optomec.com/downloads/M3D%20White%Paper%20080502.pdf>, retrieved from the Internet on Jun. 17, 2005. |
Kingpak Technology, Inc., “CMOS image sensor packaging,” 1 page, retrieved from the Internet on Aug. 26, 2003, <http://www.kingpak.com/CMOSImager.html>. |
Kramer, S.J. et al., “Annual Report—Applications of supercritical fluid technology to semiconductor device processing,” pp. 1-29, Nov. 2001. |
Kyocera Corporation, Memory Package, 1 page, retrieved from the Internet on Dec. 3, 2004, <http://global.kyocera.com/prdct/semicon/ic—pkg/memory—p.html>. |
Lin, Tim (Zhigang) et al., “One package technique of exposed MEMS sensors,” pp. 105-108, 2002 International Symposium on Microelectronics, Sep. 2002. |
Ma, X. et al., “Low temperature bonding for wafer scale packaging and assembly of micromachined sensors,” Final Report 1998-1999 for MICRO Project 98-144, 3 pages, Department of Electrical & Computer Engineering, University of California, Davis. |
Micro Chem, Nano SU-8, Negative Tone Photoresist Formulations 50-100, 4 pages, Feb. 2002, <http://www.microchem.com/products/pdf/SU8—50-100.pdf>. |
Optomec, Inc., M3D™ Technology, Maskless Mesoscale Materials Deposition (M3D), 1 page, <http://www.optomec.com/html/m3d.htm>, retrieved from the Internet on Aug. 15, 2003. |
Optomec, Inc., M3D™, Maskless Mesoscale™ Materials Deposition, 2 pages, <http://www.optomec.com/downloads/M3DSheet.pdf>, retrieved from the Internet on Jun. 17, 2005. |
Photo Vision Systems, Inc., “Advances in Digital Image Sensors,” 22 pages, First Annual New York State Conference on Microelectronic Design, Jan. 12, 2002. |
Shen, X.-J. et al., “Microplastic embossing process: experimental and theoretical characterizations,” Sensors an Actuators, A 97-98 (2002) pp. 428-433, Elsevier Science B.V. |
Tapes II International Tape and Fabrication Company, Electronics and Electrical Tapes, 2 pages, 2003, <http://www.tapes2.com/electronics.htm>. |
TransChip, 1 page, retrieved from the Internet on Aug. 26, 2003, <http://www.missionventures.com/portfolio/companies/transchip.html>. |
TransChip, Inc., CMOS vs CCD, 3 pages, retrieved from the Internet on Dec. 14, 2005, <http://www.transchip.com/content.aspx?id=127>. |
TransChip, Inc., Technology, 3 pages, retrieved from the Internet on Dec. 14, 2005, <http://www.transchip.com/content.aspx?id=10>. |
UCI Integrated Nanosystems Research Facility, “Cleaning procedures for glass substrates,” 3 pages, Fall 1999. |
UCI Integrated Nanosystems Research Facility, “Glass Etch Wet Process,” 3 pages, Summer 2000. |
Walker, M.J., “Comparison of Bosch and cryogenic processes for patterning high aspect ratio features in silicon,” 11 pages, Proc. SPIE vol. 4407, pp. 89-99, MEMS Design, Fabrication, Characterization, and Packaging, Uwe F. Behringer; Deepak G. Uttamchandani; Eds., Apr. 2001. |
Xsil, Via Applications, 1 page, <http://www.xsil.com/viaaplications/index.htm>, retrieved from the Internet on Jul. 22, 2003. |
Xsil, Vias for 3D Packaging, 1 page, <http://www.xsil.com/viaapplications/3dpackaging/index.htm>, retrieved from the Internet on Jul. 22, 2003. |
Ye, X.R. et al., “Immersion deposition of metal films on silicon and germanium substrates in supercritical carbon dioxide,” Chem. Mater. 2003, 15, 83-91. |
Yoshida, J., “TransChip rolls out a single-chip CMOS imager,” 3 pages, EE Times, Jul. 18, 2003. |
Number | Date | Country | |
---|---|---|---|
20120009717 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12364342 | Feb 2009 | US |
Child | 13236907 | US | |
Parent | 10864974 | Jun 2004 | US |
Child | 12364342 | US |