Apruzese, “X-Ray Laser Research Using Z Pinches,” American Institute of Physics, pp. 399-401 (1994). |
Bailey et al., “Evaluation of the gas puff z pinch as an x-ray lithography and microscopy source,” Appl. Phys. Lett., 40(1), pp. 33-35 (Jan. 1, 1982). |
Bollanti et al., “Compact three electrodes excimer laser IANUS for a POPA optical system,” In: High-power gas and sol state lasers; Proceedings of the Meeting, Vienna, Austria, Apr. 5-8, 1994 (A95-2267605-36), Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, SPIE Proceedings, vol. 2206, pp. 144-153. |
Bollanti et al., “Ianus, the three-electrode excimer laser,” Applied Physics B (Lasers and Optics), 66 (4), pp. 401-406, Publisher: Springer-Verlag (Apr. 1998). |
Choi et al., “Temporal development of hard and soft x-ray emission from a gas-puff Z pinch,” Rev. Sci. Instrum. 57(8), pp. 2162-2164 (Aug. 1986). |
Fomenkov et al.. “Characterization of a 13.5 nm Source for EUV Lithography based on a Dense Plasma Focus and Lithium Emission,” Sematech International Workshop on EUV Lithography (Oct. 1999). |
Giordano and Letardi, “Magnetic pulse compressor for prepulse discharge in spiker-sustainer excitati technique for XeCl lasers,” Rev. Sci. Instrum 65(8), pp. 2475-2481 (Aug. 1994). |
Jahn, Physics of Electric Propulsion, McGraw-Hill Book Company, (Series in Missile and Space U.S.A.), Chap. 9, “Unsteady Electromagnetic Acceleration,” p. 257 (1968). |
Lebert et al., “Soft x-ray emission of laser-produced plasmas using a low-debris cryogenic nutrogen target,” J. of Appl. Physics, 84(6), pp. 3419-3421 (Sep. 15, 1998). |
Lebert et al., “A gas discharged based radiation source for EUV-lithography,” International Conference Micro- and Nano-Engineering 98, Sep. 2-24, Leuven, Belgium, 5 pages. |
Lebert et al., “Comparison of laser produced and gas discharge based EUV sources for different applications,” International Conference Micro- and Nano-Engineering 98, Sep. 22-24, 1998, Leuven, Belgium, 6 pages. |
Lebert et al., “Investigation of pinch plasmas with plasma parameters promising ASE,” Inst. Phys. Conf. Ser., 125(9) pp. 411-415 (1992). |
Lewis, “Status of Collision-Pumped X-ray Lasers,” Am. Inst. Of Phys., pp. 9-16 (1994). |
Lowe, “Gas plasmas yield X rays for Lithography,” Electronics, pp. 40-41 (Jan. 27, 1982). |
Maimqvist et al., “Liquid-jet target for laser-plasma soft x-ray generation,” Rev. Sci. Instrum., 67(12), pp. 4150-4153 (Dec. 1996). |
Mather, “Formation of a High-Densty Deuterium Plasma Focus,” The Physics of Fluids, 8(2), 366-377 (Feb. 1965). |
Matthews and Cooper, “Plasma sources for x-ray lithography,” SPIE, 333, Submicron Lithography, pp. 136-139 (1982). |
Nilsen and Chandler, “Analysis of the resonantly photopumped Na-Ne x-ray-laser scheme,” Physical Review, 44(7), pp. 4591-4597 (Oct. 1, 1991). |
Partlo et al., “EUV (13.5 nm) Light Generation Using a Dense Plasma Focus Device,” SPIE Proc. On Emerging Lithographic Technologies III, vol. 3676, pp. 846-858 (Mar. 1999). |
Pearlman and Riordan, “X-ray lithography using a pulsed plasma source,” J. Vac. Sci. Technol,. pp. 1190-1193 (Nov./Dec. 1981). |
Porter et al., “Demonstration of Population Inversion by Resonant Photopumping in a Neon Gas Cell Irradiated by a Sodium Z Pinch,” Physical Review, 68(6), pp. 796-799 (Feb. 10, 1992). |
Qi et al., “Fluorescence in Mg IX emission at 48.340 Å from Mg pinch plasmas photopumped by Al XI line radiation at 48.338 Å,” Physical Review, 47(3), pp. 2253-2263 (Mar. 1993). |
Schriever et al., “Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for electron spectroscopy,” Applied Optics, 37(7), pp. 1243-1248 (Mar. 1, 1998). |
Schriever et al., “Narrowband laser produced extreme ultraviolet source adapted to silicon/molybdenum multilayer optics,” J. of Appl. Phys., 83(9), pp. 4566-4571 (May 1, 1998). |
Shiloh et al., “Z Pinch of a Gas Jet,” Physical Review Lett., 40(8), pp. 515-518 (Feb. 20, 1978). |
Silfvast et al., “High-power plasma discharge source at 13.5 nm and 11.4 nm for EUV lithography,” SPIE Proc. On Emerging Lithography Technologies III, 3676, pp. 272-275 (Mar. 1999). |
Silfvast et al., “Lithoum hydride capillary discharge creates x-ray plasma at 13.5 namometers,” Laser Focus World, p. 13, (Mar. 1997). |
Stallings et al., “Imploding argon plasma experiments,” Appl. Phys. Lett., 35(7), pp. 524-526 (Oct. 1, 1979). |
Wilhein et al., “A slit grating spectrograph for quantitative soft x-ray spectroscopy,” Rev. of Scientific Instruments, 70(3), pp. 1694-1699 (Mar. 1999). |
Wu et al., “The Vacuum Spark and Spherical Pinch X-ray/EUV Point Sources,” SPIE Proc. On Emerging Lithographic Technologies III, 3676, pp. 410-420 (Mar. 1999). |
Price, Robert H., “X-Ray Microscopy Using Grazing Incidence Reflection Optics,” American Institute of Physics, pp. 189-199 (1981). |
Zombeck, M. V., “Astrophysical Observations with High Resolution X-ray Telescopes,” American Institute of Physics, pp. 200-209 (1981). |