Information
-
Patent Grant
-
6765285
-
Patent Number
6,765,285
-
Date Filed
Wednesday, March 5, 200321 years ago
-
Date Issued
Tuesday, July 20, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Nelms; David
- Nguyen; Dao H.
Agents
- Oblon, Spivak, McClelland, Maier & Neustadt, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 257 678
- 257 714
- 257 719
- 257 723
- 257 712
- 257 778
-
International Classifications
-
Abstract
A discrete semiconductor device is vertically sandwiched between an upper wall of a case body and a case bottom plate to be fixed inside a case. The discrete semiconductor device is fitted in the case to be positioned on a predetermined portion inside the case with high accuracy. A space defined by a side surface of the discrete semiconductor device and an inner wall of the case forms a duct for a coolant used for cooling the discrete semiconductor device. The discrete semiconductor device, except main electrodes and signal terminals, is immersed in the coolant. With this structure provided is a power semiconductor device which allows an increase in radiating efficiency of a power semiconductor element and reduction in manufacturing cost.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a power semiconductor device having a structure in which at least one discrete semiconductor device is disposed in a case.
2. Description of the Background Art
In a background-art power semiconductor device, a resin-sealed power semiconductor element is mounted on a cooling fin with grease interposed therebetween, to radiate the heat of the power semiconductor element (see e.g., Patent Document 1).
<Patent Document 1> Japanese Patent Application Laid Open Gazette No. 2001-250911.
The background-art power semiconductor device, however, has a problem that it is impossible to ensure sufficient heat radiation since the thermal conductivity of grease is low.
Further, since the flatness of a surface for mounting the fin has a great influence on the heat radiation, the fin mounting surface needs high-level flatness and this raises a problem that the manufacturing cost increases.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a power semiconductor device which allows an increase in radiating efficiency of a power semiconductor element and reduction in manufacturing cost.
The present invention is intended for a power semiconductor device. According to the present invention, the power semiconductor device includes a hollow case and a discrete semiconductor device having a terminal for external connection. The discrete semiconductor device is fitted in the case to be positioned and disposed on a predetermined portion inside the case with the terminal protruding outside from the case. A space defined by a surface of the discrete semiconductor device and an inner wall of the case forms a duct for a coolant used for cooling the discrete semiconductor device which is immersed therein.
The discrete semiconductor device is immersed in the coolant. Therefore, the discrete semiconductor device can be directly cooled by the coolant and this enhances the cooling efficiency of the discrete semiconductor device.
Further, the discrete semiconductor device is fitted in the case to be positioned and disposed on a predetermined portion inside the case. This enhances the mounting accuracy of a control circuit substrate and the like.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a top plan view showing a structure of a power semiconductor device in accordance with a first preferred embodiment of the present invention;
FIG. 2
is a cross section showing a cross-sectional structure taken along the line II—II of
FIG. 1
;
FIG. 3
is a cross section showing a cross-sectional structure taken along the line III—III of
FIG. 1
;
FIG. 4
is a cross section specifically showing a structure of a discrete semiconductor device;
FIG. 5
is a top plan view showing a variation of the first preferred embodiment of the present invention;
FIG. 6
is a circuit diagram showing a configuration of an inverter circuit;
FIG. 7
is a top plan view showing a structure of a power semiconductor device in accordance with a second preferred embodiment of the present invention;
FIG. 8
is a cross section showing a cross-sectional structure taken along the line VIII—VIII of
FIG. 7
;
FIG. 9
is a top plan view showing a state where busbars are connected to the structure of
FIG. 7
;
FIG. 10
is a cross section showing a cross-sectional structure taken along the line X—X of
FIG. 9
;
FIG. 11
is a top plan view showing a state where the structure of
FIG. 9
is covered with a case cover;
FIG. 12
is a cross section showing a cross-sectional structure taken along the line XII—XII of
FIG. 11
;
FIG. 13
is a top plan view showing a state where a control circuit substrate is mounted on the structure of
FIG. 9
;
FIG. 14
is a cross section showing a cross-sectional structure taken along the line XIV—XIV of
FIG. 13
;
FIG. 15
is a top plan view showing a state where the structure of
FIG. 13
is covered with a case cover;
FIG. 16
is a cross section showing a cross-sectional structure taken along the line XVI—XVI of
FIG. 15
;
FIG. 17
is a top plan view showing a variation of the second preferred embodiment of the present invention;
FIG. 18
is a cross section showing a cross-sectional structure taken along the line XVIII—XVIII of
FIG. 17
;
FIG. 19
is a top plan view showing a state where the structure of
FIG. 17
is covered with a case cover;
FIG. 20
is a cross section showing a cross-sectional structure taken along the line XX—XX of
FIG. 19
;
FIG. 21
is a cross section showing a structure of a power semiconductor device in accordance with a third preferred embodiment of the present invention;
FIG. 22
is a cross section showing a structure of a power semiconductor device in accordance with a fourth preferred embodiment of the present invention;
FIG. 23
is a top plan view showing a structure of a power semiconductor device in accordance with a fifth preferred embodiment of the present invention;
FIG. 24
is a cross section showing a cross-sectional structure taken along the line XXIV—XXIV of
FIG. 23
;
FIG. 25
is a top plan view showing a structure of a power semiconductor device in accordance with a sixth preferred embodiment of the present invention;
FIG. 26
is a cross section showing a cross-sectional structure taken along the line XXVI—XXVI of
FIG. 25
;
FIG. 27
is a top plan view showing a state where a control circuit substrate is mounted on the structure of FIG.
25
and this structure is covered with a case cover;
FIG. 28
is a cross section showing a cross-sectional structure taken along the line XXVIII—XXVIII of
FIG. 27
;
FIG. 29
is a cross section showing a structure of a discrete semiconductor device in accordance with a seventh preferred embodiment of the present invention;
FIG. 30
is a top plan view showing a structure of a power semiconductor device in accordance with the seventh preferred embodiment of the present invention;
FIG. 31
is a cross section showing a cross-sectional structure taken along the line XXXI—XXXI of
FIG. 30
;
FIG. 32
is a top plan view showing a state where busbars are connected to the structure of
FIG. 30
;
FIG. 33
is a cross section showing a cross-sectional structure taken along the line XXXIII—XXXIII of
FIG. 32
;
FIG. 34
is a top plan view showing a state where a control circuit substrate is mounted on the structure of FIG.
32
and this structure is covered with a case cover;
FIG. 35
is a cross section showing a cross-sectional structure taken along the line XXXV—XXXV of
FIG. 34
;
FIG. 36
is a top plan view showing a structure of a power semiconductor device in accordance with an eighth preferred embodiment of the present invention;
FIG. 37
is a cross section showing a variation of the eighth preferred embodiment of the present invention; and
FIG. 38
is a cross section showing a structure of a power semiconductor device in accordance with a ninth preferred embodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
First Preferred Embodiment
FIG. 1
is a top plan view showing a structure of a power semiconductor device in accordance with a first preferred embodiment of the present invention, and
FIGS. 2 and 3
are cross sections showing cross-sectional structures taken along the lines II—II and III—III of
FIG. 1
, respectively. In
FIG. 1
, an upper wall of a case is not shown.
Referring to
FIGS. 1
to
3
, the power semiconductor device of the first preferred embodiment has a case consisting of a case body
5
and a case bottom plate
7
and a discrete semiconductor device
1
. The discrete semiconductor device
1
has a structure in which a power semiconductor element such as an IGBT is sealed with a mold resin. This enhances the water resistance of the power semiconductor element against a coolant discussed later. The case body
5
and the case bottom plate
7
are fixed to each other with screws
8
. Instead of the resin, the power semiconductor element may be sealed with other material.
The discrete semiconductor device
1
has terminals for external connection (main electrodes
2
A and
2
B and signal terminals
3
). All the main electrodes
2
A and
2
B and the signal terminals
3
protrude from one surface (herein, an upper surface) of the discrete semiconductor device
1
. This allows an easy mounting of busbars or a control circuit substrate discussed later.
The discrete semiconductor device
1
is vertically sandwiched between the upper wall of the case body
5
and the case bottom plate
7
, to be fixed inside the case. This allows an easy fixing of the discrete semiconductor device
1
and the case and ensures downsizing of the discrete semiconductor device
1
since there is no need to provide the discrete semiconductor device
1
with tapped holes. The discrete semiconductor device
1
has a positioning structure
21
to be fitted in the shape of the upper wall of the case body
5
. The upper wall of the case body
5
is provided with an insertion hole in which the shape of a top of the discrete semiconductor device
1
is fitted. The case bottom plate
7
is provided with a V-shaped groove in which the shape of a bottom of the discrete semiconductor device
1
is fitted. With these structures, the discrete semiconductor device
1
is fitted in the case to be positioned on a predetermined portion inside the case with high accuracy. This enhances the accuracy of mounting the control circuit substrate and the like discussed later. The main electrodes
2
A and
2
B and the signal terminals
3
protrude out of the case.
A space defined by a side surface of the discrete semiconductor device
1
and an inner wall of the case forms a duct
9
for the coolant (e.g., cold water) used for cooling the discrete semiconductor device
1
. The discrete semiconductor device
1
, except the main electrodes
2
A and
2
B and the signal terminals
3
, is immersed in the coolant. Providing a sealing material
6
at a contact between the discrete semiconductor device
1
and the case body
5
prevents the coolant from leaking out of the case from the upper wall of the case.
A fin
4
is provided on the side surface of the discrete semiconductor device
1
and immersed in the coolant. This enhances the cooling efficiency of the discrete semiconductor device
1
. When the fin
4
is made of a mold resin, the fin
4
is also formed in a resin sealing process for the power semiconductor element and this ensures reduction in manufacturing cost. By providing the side surface of the discrete semiconductor device
1
with a lot of irregularities, instead of forming the fin
4
on the side surface of the discrete semiconductor device
1
, the area of contact between the discrete semiconductor device
1
and the coolant increases and this enhances the cooling efficiency of the discrete semiconductor device
1
. Referring to
FIG. 1
, as indicated by the arrow X, the coolant flows from a coolant inlet
50
A into the case, going along the duct
9
while cooling the discrete semiconductor device
1
, and then flows out of the case from a coolant outlet
50
B.
FIG. 4
is a cross section specifically showing a structure of the discrete semiconductor device
1
. A substrate is formed by layering a metal film
51
made of copper or the like, an insulating layer
52
made of resin, ceramic or the like and a metal substrate
53
made of copper or the like in this order. The metal film
51
is exposed at the side surface of the discrete semiconductor device
1
. The fin
4
is joined to the metal film
51
. On the metal substrate
53
, the power semiconductor element such as an IGBT
54
and a free wheel diode
55
are mounted. The IGBT
54
and the free wheel diode
55
are connected to each other with a wire
57
. The signal terminal
3
and the IGBT
54
are connected to each other with a wire
56
.
FIG. 5
is a top plan view showing a variation of the first preferred embodiment, correspondingly to FIG.
1
. Though the duct
9
for the coolant is linear in the case of
FIG. 1
, the duct
9
has a U shape in the case of FIG.
5
. As indicated by the arrow X, the coolant flows from the coolant inlet
50
A into the case, going along the duct
9
while cooling a first side surface of the discrete semiconductor device
1
(the side surface on which the fin
4
is provided), then makes a U-turn, further going along the duct
9
while cooling a second side surface of the discrete semiconductor device
1
(the side surface on which the fin
4
is not provided), and flows out of the case from the coolant outlet
50
B. This enhances the cooling efficiency of the discrete semiconductor device
1
as compared with the case of FIG.
1
. The fin
4
may be also provided on the second side surface of the discrete semiconductor device
1
.
Thus, in the power semiconductor device of the first preferred embodiment, the discrete semiconductor device
1
is immersed in the coolant. The discrete semiconductor device
1
can be thereby directly cooled by the coolant and this enhances the cooling efficiency of the discrete semiconductor device
1
as compared with the background-art case. The surface on which the fin
4
is mounted does not need the flatness level as high as that of the background-art device, and this ensures reduction in manufacturing cost.
Second Preferred Embodiment
FIG. 6
is a circuit diagram showing a configuration of an inverter circuit as an example of a power circuit. The inverter circuit consists of six IGBTs
54
1
to
54
6
and six free wheel diodes
55
1
to
55
6
. Referring to
FIG. 4
, one IGBT
54
and one free wheel diode
55
are incorporated in one discrete semiconductor device
1
. Therefore, in order to constitute the inverter circuit of
FIG. 6
, six discrete semiconductor devices
1
1
to
1
6
are needed.
FIG. 7
is a top plan view showing a structure of a power semiconductor device in accordance with a second preferred embodiment of the present invention, and
FIG. 8
is a cross section showing a cross-sectional structure taken along the line VIII—VIII of FIG.
7
. In
FIG. 7
, the upper wall of the case is not shown. Referring to
FIG. 7
, a plurality of discrete semiconductor devices
1
1
to
1
6
constituting the inverter circuit of
FIG. 6
are arranged side by side in a matrix with two rows and three columns in the case. By housing a plurality of discrete semiconductor devices
1
1
to
1
6
constituting a desired power circuit in one case
5
, it is possible to improve convenience in use. In the case, the meandering duct
9
is defined among the discrete semiconductor devices
1
1
to
1
6
. The IGBTs
54
1
to
54
6
and the free wheel diodes
55
1
to
55
6
are incorporated in the discrete semiconductor devices
1
1
to
1
6
, respectively. Other element may be also incorporated therein.
Referring to
FIG. 8
, the case has the case body
5
and the case bottom plate
7
which are fixed to each other with screws
8
. In an assembly process for the power semiconductor device, a plurality of discrete semiconductor devices
1
1
to
1
6
are vertically sandwiched between the upper wall of the case body
5
and the case bottom plate
7
to be fixed inside the case. This allows an easy assembly of the power semiconductor device.
When there is a difference in calorific value among the discrete semiconductor devices
11
to
16
, it is preferable that the discrete semiconductor devices
1
1
to
1
6
should be disposed from an upstream side of the duct
9
for the coolant (nearer to the coolant inlet
50
A) in descending order of calorific value. Specifically, one of the discrete semiconductor devices
1
1
to
1
6
which has the largest calorific value is disposed at the portion where the discrete semiconductor device
14
is disposed in FIG.
7
. This allows an effective cooling where the discrete semiconductor devices
1
having a larger calorific value can be cooled by the coolant of low temperature.
FIG. 9
is a top plan view showing a state where busbars are connected to the structure of
FIG. 7
, and
FIG. 10
is a cross section showing a cross-sectional structure taken along the line X—X of FIG.
9
. In
FIG. 9
, the upper wall of the case is not shown. An input busbar
10
P is connected in common to main electrodes
2
A
1
to
2
A
3
and an input busbar
10
N is connected in common to main electrodes
2
A
4
to
2
A
6
. Since the discrete semiconductor devices
1
1
to
16
are arranged so that the main electrodes
2
A
1
to
2
A
3
and the main electrodes
2
A
4
to
2
A
6
should be opposed to each other, the busbars
10
P and
10
N are disposed adjacently and parallelly to each other. Since the flows of currents in the busbars
10
P and
10
N are inverse in direction, providing the busbars
10
P and
10
N adjacently to each other can reduce the inductance between the busbars
10
P and
10
N.
Output busbars
11
U
1
,
11
V
1
,
11
W
1
,
11
U
2
,
11
V
2
and
11
W
2
are connected to the main electrodes
2
B
1
,
2
B
2
,
2
B
3
,
2
B
4
,
2
B
5
and
2
B
6
, respectively.
FIG. 11
is a top plan view showing a state where the structure of
FIG. 9
is covered with a case cover
12
, and
FIG. 12
is a cross section showing a cross-sectional structure taken along the line XII—XII of FIG.
11
. By providing the case cover
12
, a module of the power semiconductor device is obtained.
The case body
5
, the case bottom plate
7
and the case cover
12
may be made of a metal such as aluminum alloy. This avoids both an effect of noise emanating from the power semiconductor device to the outside and an effect of noise given to the power semiconductor device from the outside.
FIG. 13
is a top plan view showing a state where a control circuit substrate
13
is mounted on the structure of
FIG. 9
, and
FIG. 14
is a cross section showing a cross-sectional structure taken along the line XIV—XIV of FIG.
13
. In
FIG. 13
, the upper wall of the case is not shown. On the control circuit substrate
13
, a control circuit (not shown) is formed to control the discrete semiconductor devices
1
1
to
1
6
. The control circuit substrate
13
is electrically connected to the discrete semiconductor devices
1
1
to
1
6
through the signal terminals
3
(not shown in FIGS.
13
and
14
). A connector
14
is provided on the control circuit substrate
13
. The control circuit substrate
13
is disposed so that the discrete semiconductor devices
1
1
to
1
6
and the control circuit substrate
13
should be perpendicular to each other, and this ensures downsizing of the device.
FIG. 15
is a top plan view showing a state where the structure of
FIG. 13
is covered with a case cover
15
, and
FIG. 16
is a cross section showing a cross-sectional structure taken along the line XVI—XVI of FIG.
15
. By providing the case body
5
with the case cover
15
, a product (IPM) is obtained.
The case body
5
, the case bottom plate
7
and the case cover
15
may be made of a metal such as aluminum alloy. This avoids both an effect of electromagnetic noise emanating from the power semiconductor device to the outside and an effect of electromagnetic noise given to the power semiconductor device from the outside.
FIG. 17
is a top plan view showing a variation of the second preferred embodiment, correspondingly to
FIG. 9
, and
FIG. 18
is a cross section showing a cross-sectional structure taken along the line XVIII—XVIII of FIG.
17
. The main electrodes
2
B
1
and
2
B
4
are connected to the busbar
11
U, the main electrodes
2
B
2
and
2
B
5
are connected to the busbar
11
V and the main electrodes
2
B
3
and
2
B
6
are connected to the busbar
11
W. In order to avoid the contact between the busbars
11
U to
11
W and the busbars
10
P and
10
N, the busbars
11
U to
11
W are disposed above the busbars
10
P and
10
N. In other words, the busbars
11
U to
11
W and the busbars
10
P and
10
N grade-separately intersect each other. In order to avoid the contact between the busbars
11
U to
11
W and the main electrodes
2
A
1
to
2
A
6
, the busbars
11
U to
11
W each have a meandering shape in plan view. In the structure of
FIG. 17
, it is possible to draw the output busbars
11
U to
11
W out from one side.
FIG. 19
is a top plan view showing a state where the structure of
FIG. 17
is covered with the case cover
12
, and
FIG. 20
is a cross section showing a cross-sectional structure taken along the line XX—XX of FIG.
19
. By providing the case cover
12
, a module of the power semiconductor device is obtained. Like in
FIGS. 15 and 16
, by providing the control circuit substrate
13
and the case cover
15
, an IPM is obtained.
Third Preferred Embodiment
FIG. 21
is a cross section showing a structure of a power semiconductor device in accordance with a third preferred embodiment of the present invention, correspondingly to FIG.
8
. Instead of the case body
5
and the case bottom plate
7
which are fixed to each other with the screws
8
, a case body
5
a
and a case top plate
7
a
which are fixed to each other with screws
8
a
are provided. The case body
5
a
forms side walls and a bottom wall of the case as one unit.
In the structure of
FIG. 8
, the coolant contacts the case body
5
and the case bottom plate
7
which are physically separated. Therefore, the thermal resistance at the contact between the case body
5
and the case bottom plate
7
avoids the reflux of heat (indicated by the arrow Y) through the case. In contrast to this, the coolant contacts the case body
5
a
formed as one unit in the power semiconductor device of the third preferred embodiment. Therefore, the reflux of heat caused by the difference between the temperature near the coolant inlet
50
A and that near the coolant outlet
50
B is effectively made through the case. As a result, it is possible to suppress variation in temperature distribution in the case and ensure equalization in cooling efficiency. If at least the case body
5
a
is made of a metal such as aluminum alloy, the above effect becomes remarkable.
Fourth Preferred Embodiment
FIG. 22
is a cross section showing a structure of a power semiconductor device in accordance with a fourth preferred embodiment of the present invention, correspondingly to
FIG. 16. A
metallic shield plate
16
is provided between the busbar
10
P and the control circuit substrate
13
. The shield plate
16
is disposed across the case in plan view. The shield plate
16
is connected to the cover
15
which is part of the case and the potential of the shield plate
16
is thereby kept at the grand level.
Thus, in the power semiconductor device of the fourth preferred embodiment, by providing the shield plate
16
, it is possible to avoid an effect of electromagnetic noise emanating from the discrete semiconductor devices
1
1
to
1
6
and the busbars
10
P and
10
N and
11
U to
11
W on the control circuit and prevent a malfunction.
Fifth Preferred Embodiment
FIG. 23
is a top plan view showing a structure of a power semiconductor device in accordance with a fifth preferred embodiment of the present invention, correspondingly to
FIG. 9
, and
FIG. 24
is a cross section showing a cross-sectional structure taken along the line XXIV—XXIV of FIG.
23
. Referring to
FIG. 23
, a busbar
17
is provided instead of the busbars
10
P and
10
N of FIG.
9
. Referring to
FIG. 24
, the busbar
17
has busbars
17
P and
17
N. The busbars
17
P and
17
N are each planar, and opposed to each other while being electrically insulated from each other by an insulating film
18
. The busbar
17
P is electrically connected to the main electrodes
2
A
1
to
2
A
3
, and the busbar
17
N is electrically connected to the main electrodes
2
A
4
to
2
A
6
.
Thus, in the power semiconductor device of the fifth preferred embodiment, by providing the planar busbars
17
P and
17
N to be opposed to each other, it is possible to reduce the inductance between the busbars
17
P and
17
N as compared with that in the structure of FIG.
9
.
Sixth Preferred Embodiment
FIG. 25
is a top plan view showing a structure of a power semiconductor device in accordance with a sixth preferred embodiment of the present invention, correspondingly to
FIG. 9
, and
FIG. 26
is a cross section showing a cross-sectional structure taken along the line XXVI—XXVI of FIG.
25
. An electronic component (a smoothing capacitor
20
in the case of
FIG. 25
) constituting the power circuit together with the discrete semiconductor devices
1
1
to
1
6
is housed in the case together with the discrete semiconductor devices
1
1
to
1
6
. The case consisting of case bodies
5
and
22
and the case bottom plate
7
which are fixed to each other with screws
8
and
23
, and the smoothing capacitor
20
is disposed inside the case body
22
. In the case body
22
formed is a duct
210
which is connected to the duct
9
for the coolant in the case body
5
. As indicated by the arrow Z, the coolant flows from the coolant inlet
50
A into the case body
5
, going along the duct
9
while cooling the discrete semiconductor devices
1
, and then flows into the case body
22
, going along the duct
210
while cooling the smoothing capacitor
20
. After that, the coolant flows out of the case body
22
from the coolant outlet
50
B.
FIG. 27
is a top plan view showing a state where the control circuit substrate
13
is mounted on the structure of FIG.
25
and this structure is covered with the case cover
15
, and
FIG. 28
is a cross section showing a cross-sectional structure taken along the line XXVIII—XXVIII of FIG.
27
. By providing the control circuit substrate
13
and the case cover
15
, an IPM is obtained.
Thus, in the power semiconductor device of the sixth preferred embodiment, with the structure in which the smoothing capacitor
20
is cooled by the coolant used for cooling the discrete semiconductor devices
1
1
to
1
6
, it is possible to ensure simplification and downsizing of the device.
Seventh Preferred Embodiment
FIG. 29
is a cross section showing a structure of a discrete semiconductor device
100
in accordance with a seventh preferred embodiment of the present invention, correspondingly to FIG.
3
. The discrete semiconductor device
100
is different from the discrete semiconductor device
1
of
FIG. 3
in that the main electrode
2
A serving as an input terminal and the main electrode
2
B serving as an output terminal are disposed inversely.
FIG. 30
is a top plan view showing a structure of a power semiconductor device in accordance with the seventh preferred embodiment of the present invention, correspondingly to
FIG. 7
, and
FIG. 31
is a cross section showing a cross-sectional structure taken along the line XXXI—XXXI of FIG.
30
. Referring to
FIG. 30
, the six discrete semiconductor devices
1
and
100
constituting the inverter circuit of
FIG. 6
are arranged side by side in a matrix with one row and six columns inside the case. The discrete semiconductor devices
1
and the discrete semiconductor devices
100
are disposed alternately. The main electrodes
2
A included in the discrete semiconductor devices
1
and
100
are arranged side by side along a first side L
1
of the case. The main electrodes
2
B included in the discrete semiconductor devices
1
and
100
are arranged side by side along a second side L
2
of the case. In the case, the meandering duct
9
is defined among the discrete semiconductor devices
1
and
100
.
FIG. 32
is a top plan view showing a state where busbars are connected to the structure of
FIG. 30
, and
FIG. 33
is a cross section showing a cross-sectional structure taken along the line XXXIII—XXXIII of FIG.
32
. In
FIG. 32
, the upper wall of the case is not shown.
FIG. 33
shows busbars
30
P and
30
N which are not actually seen in the cross section taken along the line XXXIII—XXXIII, together with the cross-sectional structure.
The input busbar
30
P is connected in common to the main electrodes
2
A included in the discrete semiconductor devices
1
and the input busbar
30
N is connected in common to the main electrodes
2
A included in the discrete semiconductor devices
100
. The busbars
30
P and
30
N may be layered with an insulating film interposed therebetween, like in the structure of the above-discussed fifth preferred embodiment. Output busbars
31
U,
31
V and
31
W are each connected to the main electrode
2
B of the discrete semiconductor device
1
and the main electrode
2
B of the discrete semiconductor device
100
.
FIG. 34
is a top plan view showing a state where the control circuit substrate
13
is mounted on the structure of FIG.
32
and this structure is covered with the case cover
15
, and
FIG. 35
is a cross section showing a cross-sectional structure taken along the line XXXV—XXXV of FIG.
34
. In
FIG. 34
, the upper wall of the case is not shown.
FIG. 35
shows the main electrodes
2
B and the busbars
30
P,
30
N,
31
U,
31
V and
31
W which are not actually seen in the cross section taken along the line XXXV—XXXV, together with the cross-sectional structure. By providing the case body
5
with the control circuit substrate
13
and the case cover
15
, an IPM is obtained.
The structure of
FIG. 9
needs electrical connections between the busbars
11
U
1
and
11
U
2
, between the busbars
11
V
1
and
11
V
2
and between the busbars
11
W
1
and
11
W
2
outside the case. Further, since the structure of
FIG. 17
needs the grade-separated intersection of the busbars
11
U,
11
V and
11
W and the busbars
10
P and
10
N, the interconnection becomes complicate. In contrast to these, the power semiconductor device of the seventh preferred embodiment eliminates such inconveniences and ensures simplification in device structure and interconnection.
Eighth Preferred Embodiment
FIG. 36
is a top plan view showing a structure of a power semiconductor device in accordance with an eighth preferred embodiment of the present invention, correspondingly to FIG.
1
. Instead of the resin fin
4
of
FIG. 1
, a fin
40
made of a metal such as copper is provided. This enhances the radiating efficiency of the discrete semiconductor device
1
as compared with the above-discussed first preferred embodiment.
FIG. 37
is a cross section showing a variation of the eighth preferred embodiment of the present invention, correspondingly to FIG.
2
. Instead of the fin
40
of
FIG. 36
, an elastic member
41
made of a metal such copper is disposed in the duct
9
for the coolant, being pressed by the side surface of the discrete semiconductor device
1
. Specifically, the member
41
is sandwiched between the side surface of the discrete semiconductor device
1
and the inner wall of the case body
5
while being pressed, and presses the side surface of the discrete semiconductor device
1
with its elastic restoring force. The member
41
thereby surely contacts the side surface of the discrete semiconductor device
1
and therefore the heat from the discrete semiconductor device
1
is transferred to the coolant through the member
41
. Though the fins
4
and
40
needs to join to the discrete semiconductor device
1
by soldering or the like, the member
41
only has to be inserted between the discrete semiconductor device
1
and the case body
5
. Therefore, using the member
41
instead of the fin
4
or
40
allows an easy manufacture of the power semiconductor device.
Further, when the member
41
is used in the structure of
FIG. 7
instead of the fin
4
, the member
41
is sandwiched between the side surface of the discrete semiconductor device
1
and the inner wall of the case body
5
or between the side surfaces of the discrete semiconductor device
1
.
Ninth Preferred Embodiment
FIG. 38
is a cross section showing a structure of a power semiconductor device in accordance with a ninth preferred embodiment of the present invention, correspondingly to FIG.
2
. At least a portion of the surface of the discrete semiconductor device
1
which contacts the coolant is covered with a metal film
42
. The metal film
42
is formed by plating, soldering or the like.
Thus, in the power semiconductor device of the ninth preferred embodiment, by providing the metal film
42
, it is possible to enhance the heat radiation of the discrete semiconductor device
1
and the water resistance thereof against the coolant.
Though discussion has been made on the case of discrete semiconductor device having one-in-one function where a pair of input and output are provided, a multifunctional discrete semiconductor device having two-in-one function, six-in-one function, seven-in-one function or the like or a discrete semiconductor device including the function of an IC or the like may be used.
While the invention has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised without departing from the scope of the invention.
Claims
- 1. A power semiconductor device, comprising:a hollow case; and a discrete semiconductor device having a terminal for external connection, wherein said discrete semiconductor device is fitted in said case to be positioned and disposed on a predetermined portion inside said case with said terminal protruding outside from said case, and a space defined by a surface of said discrete semiconductor device and an inner wall of said case forms a duct for a coolant used for cooling said discrete semiconductor device which is immersed therein.
- 2. The power semiconductor device according to claim 1, whereinsaid case has a case body and a case bottom plate which are fixed to each other, and said discrete semiconductor device is sandwiched between said case bottom plate and said case body to be fixed inside said case.
- 3. The power semiconductor according to claim 1, whereinsaid discrete semiconductor device includes a plurality of discrete semiconductor devices, said case has a case body and a case bottom plate which are fixed to each other, and said plurality of discrete semiconductor devices are sandwiched between said case bottom plate and said case body to be fixed inside said case.
- 4. The power semiconductor device according to claim 1, whereinsaid discrete semiconductor device has a structure in which a power semiconductor element is sealed with a resin.
- 5. The power semiconductor device according to claim 1, whereinsaid terminal includes a plurality of terminals, and all said plurality of terminals protrude from one surface of said discrete semiconductor device.
- 6. The power semiconductor device according to claim 1, whereinsaid discrete semiconductor device further has a positioning structure to be fitted in said case, for defining an arrangement position in said case.
- 7. The power semiconductor device according to claim 1, further comprisingan elastic member made of a metal, being disposed in said space while being pressed by said surface of said discrete semiconductor device.
- 8. The power semiconductor device according to claim 1, further comprisinga fin disposed on said surface of said discrete semiconductor device.
- 9. The power semiconductor device according to claim 1, further comprisinga metallic film covering said surface of said discrete semiconductor device.
- 10. The power semiconductor device according to claim 1, whereinsaid discrete semiconductor device includes a plurality of discrete semiconductor devices, said plurality of discrete semiconductor devices constitute a predetermined power circuit, and said plurality of discrete semiconductor devices are arranged side by side in said case.
- 11. The power semiconductor device according to claim 10, whereinsaid terminal includes a first input terminal and a second input terminal, said plurality of discrete semiconductor devices each have said first input terminal and said second input terminal, said first input terminals included in said plurality of discrete semiconductor devices are electrically connected to each other with a first busbar, said second input terminals included in said plurality of discrete semiconductor devices are electrically connected to each other with a second busbar, and said first busbar and said second busbar are disposed adjacently to each other.
- 12. The power semiconductor device according to claim 11, whereinboth said first and second busbars are planar, and said first and second busbars are insulated from each other and opposed to each other.
- 13. The power semiconductor device according to claim 10, whereinsaid plurality of discrete semiconductor devices are disposed from an upstream side of said duct for said coolant in descending order of calorific value.
- 14. The power semiconductor device according to claim 10, whereinsaid terminal includes a predetermined input terminal and a signal terminal, said plurality of discrete semiconductor devices each have said input terminal and said signal terminal, and said input terminals included in said plurality of discrete semiconductor devices are electrically connected to each other with a busbar, said power semiconductor device further comprising: a control circuit substrate electrically connected to said plurality of discrete semiconductor devices through said signal terminals, on which a control circuit is former to control said plurality of discrete semiconductor devices; and a shield plate disposed between said control circuit substrate and said busbar, being connected to said case.
- 15. The power semiconductor device according to claim 10, whereinsaid terminal includes a predetermined input terminal and a predetermine output terminal, said plurality of discrete semiconductor devices each have said input terminal and said output terminal, said input terminals included in said plurality of discrete semiconductor device are arranged side by side along a first side of said case, and said output terminals included in said plurality of discrete semiconductor devices are arranged side by side along a second side of said case which is opposed to said first side.
- 16. The power semiconductor device according to claim 1, further comprisingan electronic component constituting a predetermined power circuit, together with said discrete semiconductor device, wherein said electronic component is disposed in said case and cooled by said coolant.
- 17. The power semiconductor device according to claim 1, whereinsaid case has a case body forming side walls and a bottom wall of said case as one unit and a case top plate fixed to said case body.
- 18. The power semiconductor device according to claim 17, whereinsaid case body is made of a metal.
- 19. The power semiconductor device according to claim 1, further comprising:a coolant outlet disposed in linear relationship with the coolant inlet such that the coolant only cools the first side surface of the discrete semiconductor element.
- 20. The power semiconductor device according to claim 1, further comprising:a coolant outlet dispersed on a same side of the coolant inlet, wherein the duct comprises a U-shape such that the coolant flows into the coolant inlet, through the U-shaped duct, and out of the coolant outlet such that both side surfaces of the discrete semiconductor element are cooled.
- 21. The power semiconductor device according to claim 1, further comprising:a coolant inlet disposed substantially in parallel with the duct and the discrete semiconductor device such that the coolant flows along a first side surface of the discrete semiconductor element.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2002-280665 |
Sep 2002 |
JP |
|
US Referenced Citations (6)
Number |
Name |
Date |
Kind |
4928207 |
Chrysler et al. |
May 1990 |
A |
4996589 |
Kajiwara et al. |
Feb 1991 |
A |
5198889 |
Hisano et al. |
Mar 1993 |
A |
5672548 |
Culnane et al. |
Sep 1997 |
A |
6313520 |
Yoshida et al. |
Nov 2001 |
B1 |
20020185718 |
Mikubo et al. |
Dec 2002 |
A1 |
Foreign Referenced Citations (5)
Number |
Date |
Country |
60-37756 |
Feb 1985 |
JP |
61-59741 |
Mar 1986 |
JP |
2-166758 |
Jun 1990 |
JP |
10-51169 |
Feb 1998 |
JP |
2001-250911 |
Sep 2001 |
JP |