Process feed management for semiconductor substrate processing

Information

  • Patent Grant
  • 9892908
  • Patent Number
    9,892,908
  • Date Filed
    Tuesday, March 17, 2015
    9 years ago
  • Date Issued
    Tuesday, February 13, 2018
    6 years ago
Abstract
Embodiments related to managing the process feed conditions for a semiconductor process module are provided. In one example, a gas channel plate for a semiconductor process module is provided. The example gas channel plate includes a heat exchange surface including a plurality of heat exchange structures separated from one another by intervening gaps. The example gas channel plate also includes a heat exchange fluid director plate support surface for supporting a heat exchange fluid director plate above the plurality of heat exchange structures so that at least a portion of the plurality of heat exchange structures are spaced from the heat exchange fluid director plate.
Description
BACKGROUND

Supplying process reactants to semiconductor processing tools can be difficult. For example, ambient gases may diffuse into low pressure portions of the process tool, potentially contaminating process reactants. Further, some process reactants may condense on various process tool surfaces under some processing conditions. Contamination and/or condensation of process reactants may lead to substrate quality problems as well as potential process control problems.


SUMMARY

Various embodiments are disclosed herein that relate to managing the process feed conditions for a semiconductor process module. For example, one embodiment provides a gas channel plate for a semiconductor process module. The example gas channel plate includes a heat exchange surface including a plurality of heat exchange structures separated from one another by intervening gaps. The example gas channel plate also includes a heat exchange fluid director plate support surface for supporting a heat exchange fluid director plate above the plurality of heat exchange structures so that at least a portion of the plurality of heat exchange structures are spaced from the heat exchange fluid director plate.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically shows a semiconductor process module according to an embodiment of the present disclosure.



FIG. 2 schematically shows an exploded isometric view of a portion of the semiconductor process module of FIG. 1



FIG. 3 schematically shows a larger isometric view taken along line 3 of the portion of the semiconductor process module shown in FIG. 2.



FIG. 4 schematically shows a cross-section taken along line 4 of the portion of the semiconductor process module shown in FIG. 3.



FIG. 5 schematically shows a larger isometric view taken along line 5 of the portion of the semiconductor process module shown in FIG. 3.



FIG. 6 schematically shows a cross-section taken along line 6 of the portion of the semiconductor process module shown in FIG. 5.



FIG. 7 schematically shows a larger isometric view taken along line 7 of the portion of the semiconductor process module shown in FIG. 2.



FIG. 8 schematically shows a cross-section taken along line 8 of the portion of the semiconductor process module shown in FIG. 7.



FIG. 9 schematically shows a cross-section taken along line 9 of the portion of the semiconductor process module shown in FIG. 7.



FIG. 10 schematically shows a sectioned isometric view of a showerhead volume profile according to an embodiment of the present disclosure.



FIG. 11 schematically shows a sectioned isometric view of a showerhead volume profile according to another embodiment of the present disclosure.



FIG. 12 schematically shows a sectioned isometric view of a two-piece showerhead according to an embodiment of the present disclosure.



FIG. 13 schematically shows a heat exchange fluid channel formed above a gas channel plate according to an embodiment of the present disclosure.



FIG. 14 schematically shows a blower and duct for providing air to a heat exchange plenum assembly according to an embodiment of the present disclosure.



FIG. 15 schematically shows an exploded isometric view of a heat exchange plenum assembly according to an embodiment of the present disclosure.



FIG. 16 schematically shows a sectioned isometric view of air flow distribution from a heat exchange plenum assembly to a heat exchange fluid channel formed above a gas channel plate according to an embodiment of the present disclosure.



FIG. 17 shows a flowchart for a method of processing a semiconductor substrate in a semiconductor process module according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

Modern semiconductor devices may include integrated structures formed by the deposition of films in high-aspect ratio cavities or under low thermal budget conditions. Typical chemical vapor deposition (CVD), thermal growth, and/or physical vapor deposition (PVD) approaches may not be suited to the process integration constraints for such structures. Atomic layer deposition (ALD) processes are sometimes used to address these challenges. In ALD processes, thin layers of film are deposited by alternately adsorbing two or more reactants to the substrate without supplying the reactants to the substrate process environment concurrently. By supplying each reactant separately, only deposited film layers and the surface active species of one reactant chemisorbed to those film layers are present on the substrate when the other reactant is supplied. Consequently, highly conformal films may be formed on the substrate surface, even in high-aspect ratio features.


The layer-by-layer nature of ALD processes may present challenges to enhance substrate throughput during manufacturing. For example, some approaches to increase throughput include selecting process reactants based on reactivity characteristics that may enhance surface decomposition reactions on the substrate relative to other process reactants. However, the presence of ambient gases, such as oxygen and/or water vapor, may lead to increases in gas phase decomposition as the reactivity of process reactants increases, potentially leading to substrate non-uniformity defects, small particle defects that may decorate the substrate surface, and/or film composition contamination.


Other approaches to enhance throughput include supplying the substrate with a quantity of reactant suitable to provide acceptable substrate coverage of surface active species in a short-duration, high-concentration pulse. However, because some process reactants, such as those including metals, may have higher molecular weights than the carrier gases with which they may be mixed, it may be more difficult to distribute the process reactant on the substrate surface with suitable coverage as pulse duration decreases. Consequently, cross-substrate concentration gradients may form in the gas phase above the substrate during process reactant exposure phases that may lead to substrate non-uniformity defects. In some settings, process reactants may condense on process surfaces even under vacuum conditions. Such reactant condensation upstream of the substrate may lead to small particle defect decoration on the substrate surface. Additionally or alternatively, some process reactants may undergo gas phase or surface decomposition upstream of the substrate, potentially leading to film contamination or other process quality problems. While the problems that may result from process reactants like those described above, such as organometallic reactants having low vapor pressures, are described herein in the context of ALD processes, it will be understood that similar issues may exist for some process reactants used m some low-pressure CVD deposition processes, low-pressure etch processes, and so on.


The disclosed embodiments relate to hardware and methods for managing the process feed conditions for a semiconductor process module. For example, one embodiment provides a network of purge gas channels included in a gas channel plate or a showerhead for a semiconductor process module. The example purge gas channels fluidly communicate with an ambient environment via gaps positioned between the ambient environment and a gasket sealing the gas channel plate or the showerhead to another portion of the semiconductor process module. Consequently, ambient gas diffusion or permeation across the gasket and into the low pressure reactor may be mitigated, potentially reducing film impurities and/or particle defects.


Another embodiment provides a semiconductor process module including a showerhead volume upstream of a substrate. The example showerhead volume includes contours configured to form a radially symmetric profile within the showerhead volume with respect to an axial centerline of a process feed inlet opening into the showerhead volume. The example showerhead volume contours are shaped so that opposing surfaces of the semiconductor process module forming the outer edges of the showerhead volume are closer to one another than those same surfaces at a central region of the showerhead volume. Thus, though process feed is distributed to the substrate via showerhead gas distribution holes distributed across the showerhead, the process feed velocity may remain approximately constant as the radial distance from the process feed inlet increases, potentially enhancing substrate uniformity.


Another embodiment provides a heat exchanger for a showerhead volume of a semiconductor process module. The example heat exchanger includes a heat exchanger fluid director plate and a gas channel plate. The example gas channel plate includes a plurality of heat exchange structures separated from one another by intervening gaps. The example heat exchange fluid director plate is supported above a heat exchange surface of the gas channel plate to form a heat exchange fluid channel into which the plurality of heat exchange structures protrude so that heat exchange fluid may flow between and above a portion of the heat exchange structures. Consequently, condensation of process reactants within the showerhead volume may potentially be reduced, as may gas phase and/or surface reaction of process reactants upstream of the substrate. In turn, defect generation caused by gas phase and/or condensed phase reactions may potentially be avoided. It will be understood that the various embodiments described herein are not intended to be limited to solving the example problems referenced within this disclosure, which are provided for illustrative purposes.


The disclosed embodiments may be fabricated from virtually any suitable materials. For example, various structural portions may be fabricated from aluminum, titanium, and/or stainless steel that may provide suitable mechanical, thermal, and/or chemical properties relevant to a particular portion of a selected embodiment. Other portions may be made from suitable ceramics or polymers. For example, various gaskets may include synthetic elastomer and/or fluoroelastomer materials that may provide enhanced chemical resistance to some the process feeds, such as halogenated inorganic compounds, relative to alternative sealing materials. Accordingly, it will be understood that descriptions of example materials or fabrication techniques are provided for illustrative purposes alone. Such descriptions are not intended to be limiting.



FIG. 1 schematically shows a cross-section of an embodiment of a semiconductor process module 100. Semiconductor process module 100 may be used for processing semiconductor substrates via any suitable process, e.g., film deposition, film etch, and the like. While the embodiment of semiconductor process module 100 depicted in FIG. 1 shows a single module, it will be appreciated that any suitable number of process modules may be included in a processing tool so that substrates may be transferred between process modules without being exposed to ambient conditions. For example, some processing tools may include just one module while other processing tools may include two or more modules. While not shown in FIG. 1, various load locks, load ports, and substrate transfer handling robots may be used to transfer substrates between ambient conditions and semiconductor process module 100 before, during, and after substrate processing.


As shown in FIG. 1, semiconductor process module 100 includes a low pressure reactor 102 for processing semiconductor substrates. The process feed is supplied to reactor 102 via a pulse valve manifold 104. Pulse valve manifold 104 delivers the process feeds, including reactant gases and/or inert gases, to reactor 102 via suitable valves and distribution plumbing that manage the flow of the process feed during various portions of substrate processing and/or module maintenance processing events. The process feed is supplied from pulse valve manifold 104 to reactor 102 via a process feed inlet 106.


Process feed inlet 106 opens into a central region of showerhead volume 108 formed between a gas channel plate 110 and a showerhead 112. For example, in some embodiments, an axial centerline of process feed inlet 106 may be aligned with a central axis of showerhead volume 108, so that process feed may potentially be uniformly distributed radially within showerhead volume 108. Showerhead volume 108 provides a space for the process feed flow to develop upon exit from process feed inlet 106, potentially providing time and space for the velocity and flow of the process feed to adjust from the higher velocity conditions likely present within pulse valve manifold 104 to the comparatively lower velocity conditions likely selected for substrate processing. In some embodiments, showerhead volume 108 may enclose a volume of between 100,000 and 800,000 mm3. In one non-limiting example, showerhead volume 108 may enclose a volume of between 300,000 and 500,000 mm3 upstream of a single 300-mm diameter substrate.


In the embodiment shown in FIG. 1, the process feed flows radially from process feed inlet 106 toward the outer edges of showerhead volume 108 while being drawn downward toward showerhead distribution holes 114. In some embodiments, the showerhead volume contours may be shaped so that opposing surfaces of gas channel plate 110 and showerhead 112 that form showerhead volume 108 are closer to one another at the outer edges of showerhead volume 108 than those same surfaces at a central region of showerhead volume 108.


Showerhead distribution holes 114 direct the process feed toward substrate process environment 116 where substrate processing occurs. A susceptor 118 supports a substrate (not shown) within substrate process environment 116 during processing operations. Susceptor 118 may include a heater used to adjust a temperature of the substrate before, during, and/or after substrate processing. Susceptor 118 is mounted on an elevator 120 so that the substrate may be raised and lowered within lower reactor 122 to facilitate substrate transfer in and out of semiconductor process module 100. A lift pin 124 is included to raise and lower the substrate from susceptor 118 during substrate transfer operations.


Portions of unreacted process feed, carrier gases, and gases produced during substrate processing are exhausted from substrate process environment 116 via process exhaust outlet 126. In the embodiment shown in FIG. 1, the process exhaust outlet 126 is formed at least in part by a gap extending around an outer circumference of substrate process environment 116 between showerhead 112 and flow control ring 128. Thus, in the depicted embodiment, a portion of process exhaust flows in radial direction away from a center of substrate process environment 116 toward the process exhaust outlet 126. Other portions of the process exhaust may also flow into lower reactor 122, sealed to showerhead 112 via purge plate 130 with a gasket, via a gap formed between a susceptor 120 and flow control ring 128.


Pressure within reactor 102 is controlled at least in part by one or more pressure control devices (not shown), such as a throttle valve, fluidly coupled with upper reactor exhaust 132 and lower reactor exhaust 134. However, it will be appreciated that pressure within reactor 102 may also be controlled by suitable manipulation of various gas feeds to and bypasses around reactor 102. Accordingly, such feeds and bypasses may also be considered pressure control devices within the scope of the present disclosure.



FIG. 2 schematically shows an exploded isometric view of portions of the embodiment of semiconductor process module 100 shown in FIG. 1. As shown in FIG. 2, a system process controller 202 (described in more detail below) for controlling various aspects of semiconductor process module 100 is provided. System process controller 202 and pulse valve manifold 104 are shown in FIG. 2 as being mounted above gas channel plate 110, showerhead 112, and a heat exchange plenum assembly 204 (described in more detail below) via a support plate 206. A lift point 208 is provided for raising portions of semiconductor process module 100, such as pulse valve manifold 104, for maintenance procedures.



FIG. 2 also shows a plurality of showerhead access covers 210 positioned around showerhead 112. Though not shown in FIG. 2, it will be appreciated that other suitable covers may be provided to shield access to portions of pulse valve manifold 104, portions of upper reactor 104, and/or portions of lower reactor 102. Such access covers may include ventilation ports to permit the passage of air while generally restricting casual tool and/or user access.



FIG. 3 schematically shows a sectioned isometric view of gas channel plate 110 and showerhead 112 taken along line 3 of the embodiment shown in FIG. 2. As shown in FIG. 3, gas channel plate 110 is connected to showerhead 112 by a plurality of clips 302 adapted to maintain a predetermined gap 304 between gas channel plate 110 and showerhead 112. Retaining gas channel plate 110 and showerhead 112 with clips 302 may help to maintain a relative position between the respective parts when semiconductor process module 100 is at ambient pressure.


When semiconductor process module 100 is under vacuum, ambient gases, such as oxygen and water vapor, may diffuse into low pressure environments like showerhead volume 108 and/or process environment 116, potentially contaminating the process feed, generating small particle defects, causing film contamination, impurity incorporation, and/or substrate non-uniformity defects. As used herein, a low pressure environment refers to portions of semiconductor process module 100 that experience sub-ambient pressure during process and/or maintenance operations. For example, showerhead volume 108 may exhibit a pressure within a range of 0.5 to 20 Torr in some non-limiting process settings. As another example, process environment 116 may experience a pressure within a range of 0.5 to 5 Torr in some non-limiting process settings. By reducing the pressure below an ambient pressure within showerhead volume 108 or process environment 116, a low pressure environment is created within that respective portion of semiconductor process module 100.


In some embodiments, gap 304 may act as an exit path for purge gases used to dilute the concentration of ambient gases, reducing their chemical potential for permeation from the outer perimeter (e.g., from an ambient side) of a gasket positioned between showerhead 112 and gas channel plate 110. For example, FIG. 3 shows a purge gas inlet 306 fluidly connected to a network of purge gas channels that that supply purge gas to gap 304. As shown in FIG. 3, a suitable purge gas, like nitrogen, argon, helium, or the like, may be delivered via annular purge channel 308 and a plurality of vertical purge channels 310 to form a near-continuous annular curtain of dry gas emerging from gap 304. Consequently, moisture and/or oxygen permeation across a seal between showerhead 112 and gas channel plate 110 into reactor 102 may be mitigated, potentially reducing film impurities and/or particle defects.



FIG. 4 shows a cross-section taken along line 4 of the embodiment of FIG. 3 illustrating a portion of a purge gas channel 400. Purge gas channel 400 fluidly communicates with an ambient environment via gap 304 at a location between the ambient environment and a gasket 402 disposed between showerhead 112 and gas channel plate 110. So positioned, a positive flow of purge gas from purge gas inlet 306 toward gap 304 may prevent the diffusion of ambient gas toward and/or across gasket 402 and into substrate process environment 116.


As shown in FIG. 4, purge gas channel 400 receives purge gas via a horizontal purge feed 404 from purge gas inlet 306 and distributes the purge gas around gas channel plate 110 via annular purge channel 308. Portions of the purge gas are diverted to vertical purge channels 310 formed at intervals around the outer edge of gas channel plate 110. Vertical purge channels 310 are connected to horizontal purge channels 406 at preselected intervals. Almost any suitable number of vertical purge channels 310 may be provided at virtually any suitable interval. In some embodiments, eighteen vertical purge channels 310 may be evenly spaced around annular purge channel 308. Horizontal purge channels direct the purge gas to gap 304, where the gas emerges into the ambient environment.


The purge gas channels described herein may be formed in almost any suitable manner. Non-limiting examples of techniques for forming the various annular purge gas channels include milling and/or casting. The various vertical purge gas channels may also be formed by drilling, casting, or other suitable techniques. It will be understood that the fabrication of the purge gas channels may leave openings that may result in fugitive emissions of purge gas, potentially leading to pressure drop within the purge system and/or reduced flow rate from gap 304. In some embodiments, some or all of these openings may be fitted with removable and/or permanent closures or seals. For example, FIG. 4 depicts a flexible cord or gasket 408 that may seal an opening above annular purge channel 308 and a cap 410 used to seal horizontal purge feed 404 in some embodiments. Such seals and caps may avoid or reduce fugitive emissions of purge gas from openings used to fabricate the purge gas channels.


Ambient gases may also contaminate the low pressure environment by diffusion from confined spaces after maintenance activity. Such “virtual leaks” can be difficult to trace, as the ambient gas results from gas trapped in so-called “dead volumes,” or volumes that are exposed to the low pressure environment but that are not readily purged or pumped down. Thus, in some embodiments, some seals and gaskets may be positioned within a preselected distance of a low pressure environment such as showerhead volume 108, process environment 116, suitable portions of the process feed upstream of showerhead volume 108 and suitable portions of the process exhaust downstream of process environment 116.


For example, FIG. 4 schematically shows gasket 402 positioned near showerhead volume 108 so that a low pressure environment formed within showerhead volume 108 may pump away residual ambient gases that may be trapped between mating surfaces of showerhead 112 and gas channel plate 110 on a low pressure side of gasket 402. In some embodiments, a seal or gasket may be positioned within a range of 0.5 to 20 mm of a low pressure environment. For example, in some non-limiting scenarios, a gasket may be positioned within a range of 0.5 to 20 mm from a nearest outer edge of showerhead volume 108. In some other scenarios, a gasket may be positioned within 4 mm of a nearest outer edge of showerhead volume 108, within an acceptable tolerance.


As another example, in some embodiments, a seal or gasket sealing showerhead volume 108 may be positioned within a preselected distance of a showerhead distribution hole 114. In the embodiment shown in FIG. 4, gasket 402 is shown positioned near showerhead distribution hole 114. Positioning a gasket near showerhead distribution hole 114 may allow the low pressure environment to rapidly pump away residual ambient gases that may be trapped between mating surfaces of showerhead 112 and gas channel plate 110 on a low pressure side of gasket 402. In some embodiments, a seal or gasket may be positioned within a range of 0.5 to 20 mm of a showerhead distribution hole 114. For example, in some non-limiting scenarios, a gasket may be positioned 5 mm from a nearest showerhead distribution hole 114, within an acceptable tolerance.


It will be appreciated that the approaches to managing ambient gas exposure to the low pressure environment may also be applied to other portions of semiconductor process module 100. For example, purge gas channels may also be included in other portions of semiconductor process module 100 to prevent ambient gas diffusion into substrate process environment 116 and/or low pressure environments. For example, in some embodiments, gas channel plate 110 may include a purge gas channel fluidly communicating with an ambient environment at a location between the ambient environment and a gasket disposed between the gas channel plate and a pulse valve manifold positioned upstream of the gas channel plate.



FIG. 5 schematically shows a sectioned isometric view taken along line 5 of the embodiment shown in FIG. 3. The embodiment shown in FIG. 5 shows an island 312 included in gas channel plate 110 used to mount pulse valve manifold 104 to gas channel plate 110. As shown in FIG. 5, island 312 includes a purge gas inlet 502 fluidly connected to a network of purge gas channels for distributing purge gas within island 312, including an annular purge channel 504 and a plurality of vertical purge channels 506 that supply purge gas to the ambient environment via scallop-shaped gaps 508. In the embodiment depicted in FIG. 5, gaps 508 positioned on an ambient side of a groove 510 adapted retain a gasket sealing island 312 to pulse valve manifold 104 potentially allow a purge gas to prevent ambient gases from permeating beyond the gasket and into the low pressure environment.



FIG. 6 shows a cross-section taken along line 6 of the embodiment shown in FIG. 5, illustrating a portion of a purge gas channel 600. In the embodiment depicted, purge gas enters purge gas channel 600 via purge gas inlet 502 and is distributed to annular purge channel 504 via a horizontal purge feed 602. Annular purge channel 504 distributes the purge gas around island 312 to vertical purge channels 506, which divert portions of the purge gas toward gaps 508 at preselected intervals. Virtually any suitable number of vertical purge channels 506 may be provided at almost any suitable interval. In some embodiments, six vertical purge channels 506 may be evenly spaced around annular purge channel 504 within island 312. As shown in FIG. 6, gaps 508 opening on to each vertical purge channel 506 permit purge gas to flow from purge gas channel 600 into the ambient environment at a position between the ambient environment and sealing groove 510. FIG. 6 also depicts a flexible cord or gasket 604 that may seal an opening above annular purge channel 504 and a cap 606 used to seal horizontal purge feed 602 in some embodiments. Such closures may avoid or reduce fugitive emissions of purge gas from openings used to fabricate the purge gas channels.


As another example, in some embodiments, a purge plate 130 may include purge gas channels configured to prevent diffusion of ambient gases across gaskets sealing showerhead 112 to purge plate 130 and/or lower reactor 122 to purge plate 130. For example, FIG. 7 shows a close-up of the embodiment of purge plate 130 shown in FIG. 2 taken along line 7. As shown in FIG. 7, purge plate 130 includes a purge gas inlet 702 fluidly connected to a purge gas channel for distributing purge gas within purge plate 130. For reference, the embodiment of purge plate 130 shown in FIG. 7 includes an upper surface 704 that interfaces with showerhead 112 and a lower surface 706 that interfaces with lower reactor 122.


The purge gas channel shown in FIG. 7 includes an annular purge channel 708 that is fluidly connected with a plurality of upwardly extending vertical purge channels 710 that purge an ambient environment around a gasket that seals upper surface 704 to showerhead 112. Annular purge channel 708 is also fluidly connected with a plurality of downwardly extending vertical purge channels 712 that purge an ambient environment around a gasket that seals lower surface 706 to lower reactor 122.



FIGS. 8 and 9 show cross-sections of the embodiment shown in FIG. 7 taken along lines 8 and 9, respectively, illustrating portions of a purge gas channel 800. As shown in FIG. 8, purge gas enters purge gas channel 800 via purge gas inlet 702 and is distributed to annular purge channel 708 via a horizontal purge feed 802. Annular purge channel 708 distributes the purge gas around purge plate 130 to vertical purge channels 710 and 712, which divert portions of the purge gas toward gaps 904, shown in FIG. 9 as 904a and 904b, at preselected intervals. Virtually any suitable number of vertical purge channels 710 and 712 may be provided at almost any suitable interval. In some embodiments, fourteen pairs of vertical purge channels 710 and 712 may be evenly spaced around annular purge channel 708 within purge plate 130.


The embodiment shown in FIG. 9 shows gaps 904a and 904b coupling vertical purge channels 710 and 712 with the ambient environment at positions between the ambient environment and gaskets provided to seal purge plate 130 to adjacent surfaces. So positioned, gaps 904a and 904b allow purge gas to sweep ambient gases away from the gaskets, potentially reducing permeation of ambient gases across those gaskets. Thus, purge gas flowing toward showerhead 112 will flow into gap 904a at a position between the ambient environment and gasket 906a, and purge gas flowing toward lower reactor 122 will flow into gap 904b at a position between the ambient environment and gasket 906b. FIGS. 8 and 9 also depict a flexible cord or gasket 804 that may be used to seal an opening above annular purge channel 708 and a cap 806 that may be used to seal horizontal purge feed 802 in some embodiments. Such closures may avoid or reduce fugitive emissions of purge gas from openings used to fabricate the purge gas channels.


Process feed conditions within pulse valve manifold 104 may be adapted to high speed, high pressure delivery of various process feed species to enhance substrate throughput and process speed. However, the rapid expansion of process feed from these conditions into lower pressure conditions within showerhead volume 108 may potentially contribute to substrate process control problems and/or substrate quality excursions. For example, the process feed may experience transient cooling as process feed pressure drops in the vicinity of process feed inlet 106, potentially cooling surfaces surrounding process feed inlet 106. In turn, this may cause condensation of some species of the process feed onto gas channel plate 110 near process feed inlet 106. Further, in some settings, rapid expansion of the process feed may alter fluid mixing of various reactants and inert species included in the process feed. Accordingly, in some embodiments, flow expansion structures may be provided upstream of process feed inlet 106 to transition flow conditions within the process feed.



FIG. 10 schematically shows a sectioned isometric view of an embodiment of showerhead volume 108 formed between a diffusion surface 1012 of gas channel plate 110 and showerhead 112. As shown in FIG. 10, an optional flow expansion structure 1002 is provided upstream of process feed inlet 106. In some embodiments, flow expansion structure 1002 may assist in transitioning and mixing higher velocity process feed flows exiting pulse valve manifold 104 (shown in FIG. 1) into slower velocity flows within showerhead volume 108 prior to distribution to process environment 116 via showerhead distribution holes 114. For example, in embodiments used in ALD processes, higher velocity pulse trains provided from pulse valve manifold 104 may be transitioned to a slower flow velocity, at least in part, by transmission of the pulse train through flow expansion structure 1002 before a subsequent expansion at the process feed inlet 106.


In the embodiment shown in FIG. 10, a centerline of a flow path included in flow expansion structure 1002 is aligned with a centerline of process feed inlet 106, so that fluid flow within flow expansion structure 1002 may transition smoothly between a smaller upstream diameter and a larger downstream diameter of flow expansion structure 1002. In some embodiments, an upstream diameter of flow expansion structure 1002 may be approximately ⅝ of an inch and a downstream diameter may be approximately 1 inch.


Virtually any suitable manner of expanding fluid flow within flow expansion structure 1002 may be employed without departing from the scope of the present disclosure. As shown in FIG. 10, flow expansion structure 1002 includes a concentric conical expansion shape formed on an inner surface 1006 of the flow expansion structure. Other non-limiting examples of expansion shapes that may be formed on inner surface 1006 include bell-shaped expansion shapes, spiral expansion shapes, and the like, implementations of which may have upstream and downstream diameters that may be concentric or eccentric with one another.


In the embodiment shown in FIG. 10, flow expansion structure 1002 is retained in gas channel plate 110 by a support ledge. A gasket 1050 forms a seal between the support ledge and flow expansion structure 1002. In some embodiments, gasket 1050 may be provided within a predetermined distance, such as a predetermined vertical distance, of showerhead volume 108. This may reduce an interfacial volume formed between mating surfaces of flow expansion structure 1002 and gas channel plate 110 on a low pressure side of gasket 1050, so that residual ambient gases within that interfacial volume may be rapidly pumped away.


The example shown in FIG. 10 also depicts a gasket 1052 for sealing flow expansion structure 1002 to pulse valve manifold 104 (not shown). In some embodiments, gasket 1052 may be provided within a predetermined distance of inner surface 1006. This may reduce an interfacial volume formed between mating surfaces of flow expansion structure 1002 and pulse valve manifold 104 on a low pressure side of gasket 1052, which may potentially have the effect of rapidly pumping away residual ambient gases within that interfacial volume.


An optional impingement plate 1010 is shown in FIG. 10 that may protect showerhead 108 from particles entrained in the process feed and/or assist in redirecting flow of process feed toward outer edges of showerhead volume 108. In some embodiments, impingement plate 1010 may include holes aligned with showerhead distribution holes 114 to avoid formation of a shadow on center portion of a substrate disposed beneath impingement plate 1010. As shown in FIG. 10, impingement plate may be fastened to flow expansion structure 1002 by attachment to a retaining position formed on inner surface 1006 and supported by one or more mounting structures 1008. In embodiments that exclude flow expansion structure 1002, impingement plate 1010 may be attached to a suitable retaining position formed on an inner surface of process feed inlet 106.


As the process feed entering showerhead volume 108 via process feed inlet 106 expands, the velocity and flow orientation of the process feed changes. In the embodiment shown in FIG. 10, the process feed spreads radially from process feed inlet 106 toward outer edges of showerhead volume 108 and showerhead distribution holes 114. Without wishing to be bound by theory, a radial pressure distribution may develop within the embodiment of showerhead volume 108 depicted in FIG. 10. This pressure distribution may result from frictional forces as the process feed flows across diffusion surface 1012 and along an upper surface 1014 of showerhead 112. Radial pressure variation may also result from flow of the process feed out of showerhead volume 108 via showerhead distribution holes 114. In turn, the process feed velocity may diminish as the distance from the process feed inlet 106 increases. Further, because various species within the process feed, such as reactant gases and carrier gases, may have different molecular weights, diffusion rates of those species within showerhead volume 108 may also be affected by local changes in pressure and gas density. Consequently, process feed distribution to the substrate may be time and position variant, potentially leading to substrate non-uniformity defects.


Accordingly, in some embodiments, showerhead volume 108 may be contoured to enhance the flow of the process feed toward the radial edges of showerhead volume 108. In the embodiment shown in FIG. 10, diffusion surface 1012 includes a radially symmetric profile with respect to an axial centerline of the process feed inlet 106, so that diffusion surface 1012 becomes closer to showerhead 112 as a distance from the axial centerline of the process feed inlet 106 increases. In other words, the surfaces of gas channel plate 110 and showerhead 112 are closer together at the outer edges of showerhead volume 108 than they are at a central region of showerhead volume 108. Thus, as portions of the process feed are distributed via showerhead distribution holes 114, the process feed pressure within a fluid element moving radially outward in showerhead volume 108 may remain approximately constant (within an acceptable tolerance). In turn, the velocity and concentration characteristics of that fluid element may remain approximately constant.


While the embodiment in FIG. 10 shows contours of showerhead volume 108 formed by diffusion surface 1012 of gas channel plate 110, it will be appreciated that some embodiments of showerhead volume 108 may include contours formed in gas channel plate 110 and/or showerhead 112. For example, FIG. 11 schematically shows a sectioned isometric view of another embodiment of a showerhead volume 1100 formed between an upper surface 1102 of showerhead 112 and a diffusion surface 1104 of gas channel plate 110. In the embodiment shown in FIG. 11, upper surface 1102 and diffusion surface 1104 are depicted as being parallel with one another, each surface including a radially symmetric profile with respect to an axial centerline of the process feed inlet 106, so that the surfaces remain the same distance apart as a distance from the axial centerline of the process feed inlet 106 increases. For example, in some embodiments, the distance between upper surface 1102 and a lower surface 1150 of showerhead 112 defining an upper surface of process environment 116 may be contoured to provide a preselected residence time distribution of fluid flowing through showerhead distribution holes 114. In one non-limiting scenario, the distance between upper surface 1102 and lower surface 1150 may be configured so that a residence time of a fluid element flowing through a showerhead distribution hole 114 at the center of showerhead 112 (shown in FIG. 11 at 114a) may be within ten percent of a residence time of a fluid element flowing through a showerhead distribution hole 114 positioned at an outer edge of showerhead 112 (shown at 114b). In some settings, providing a constant residence time (within an acceptable tolerance) for fluid flowing within showerhead distribution holes 114 may provide an approximately constant delivery of reactive process feed to the surface of the substrate. In turn, film deposition on the substrate may have enhanced thickness uniformity. In still other embodiments, the diffusion surface of gas channel plate 110 may be configured as a plane surface while a surface of showerhead 112 exposed to showerhead volume 108 may be contoured.


It will be appreciated that almost any suitable contour may be applied to the showerhead volumes described herein without departing from the scope of the present disclosure. In some embodiments, a linearly-shaped radially symmetric profile may be formed on a portion of diffusion surface 1012 and/or upper surface 1014 of the showerhead exposed to showerhead volume 108, the linearly-shaped portion being disposed at an angle of between 0 and 5 degrees with respect to a reference plane positioned parallel with the substrate, such as a reference plane defining a widest portion of showerhead volume 108. For example, where diffusion surface 1012 of gas channel plate 110 is contoured, the linearly shaped portion may be formed at a negative angle of between 0 and −5 degrees with respect to the reference plane. Where upper surface 1014 of showerhead 112 is contoured, the linearly-shaped portion may be formed at a positive angle of between 0 and 5 degrees with respect to the reference plane. Thus, in the embodiment shown in FIG. 10, diffusion surface 1012 may have linear portion being disposed at an angle of between 0 and −5 degrees with respect to a reference plane defining a widest portion of showerhead volume 108. In the embodiment shown in FIG. 11, diffusion surface 1104 may have linear portion being disposed at an angle of between 0 and −5 degrees and upper surface 1102 may have linear portion being disposed at an angle of between 0 and +5 degrees with a reference plane defining a widest portion of showerhead volume 108.


In some other embodiments, non-linear shapes may be formed into portions of a diffusion surface and/or surfaces of a showerhead exposed to a showerhead volume. For example, a portion of a diffusion surface may exhibit a Gaussian-shaped or bell-shaped profile when viewed in cross-section with respect to a reference plane positioned parallel to a substrate, such as a reference plane defining a widest portion of a showerhead volume. The various contours described herein may be formed over any suitable portion of the surfaces on which they are formed. For example, a contour formed on gas channel plate 110 and/or showerhead 112 may be formed so that more than 95% of a surface of respective part exhibits a contour as described herein. Such contours may be formed in almost any suitable manner. For example, the contours may be formed by milling, casting, water jet cutting and/or laser cutting.


While the embodiments illustrated in the figures depict contoured surfaces of example showerheads 112 and gas channel plates 110 that are integrated into those respective items, it will be understood that in some embodiments contoured surfaces may be prepared as separate parts that may be installed into and removed from their respective parts. For example, a first set of contours configured for a first process chemistry may be fitted to a gas channel plate 110 and/or a showerhead 112 and later removed and replaced by a second set of contours configured for a second process chemistry. This may allow for the rapid development and testing of various contours, for example using suitable three-dimensional printing technology, without the replacement of entire showerhead and/or gas channel plate assemblies.


As shown in FIGS. 10 and 11, showerhead 112 includes an annular exhaust passage 1016 integrated within a single body. Annular exhaust passage 1016 conducts the process exhaust from substrate process environment 116 via process exhaust outlet 126 toward upper reactor exhaust 132 (as shown in FIG. 1).


In some embodiments, showerhead 112 may comprise an exhaust body configured to gather process exhaust that is separate from a body that distributes the process feed to the substrate. While a single-body showerhead may potentially avoid some dead volumes formed near the outer region of process environment 116, it will be appreciated that a two-piece showerhead may offer other advantages. For example, a two-piece showerhead 112 may allow differently profiled gas distribution bodies to be retrofitted to semiconductor process module 100 without moving the exhaust collection body. In turn, re-calibration of a gap included in the process exhaust outlet 126 may be minor relative to procedures for replacement of a single-body showerhead. FIG. 12 schematically shows a section isometric view of an embodiment of a two-piece showerhead 1200 including a gas distribution body 1202 and an annularly-shaped exhaust passage body 1204. As shown in FIG. 12, gas distribution body 1202 includes a plurality of showerhead distribution holes 114 that distribute process feed to substrate process environment 116. In the embodiment illustrated in FIG. 12, gas distribution body 1202 is sealed to gas channel plate 110 via gasket 402 and to exhaust passage body 1204 via gasket 1206. In some embodiments, gasket 1206 may be positioned within a predetermined distance of process environment 116, which may reduce the potential to trap ambient gases between gas distribution body 1202 and exhaust passage body 1204. Exhaust passage body 1204 is depicted as being sealed to purge plate 130 via gasket 906. Exhaust passage body 1204 includes an annular exhaust passage 1208 that conducts process exhaust from process environment 116 via a gap formed between exhaust passage body 1204 and flow control ring 128.


Some low vapor pressure species included in process feeds supplied to a substrate during substrate processing may condense on process surfaces under some process conditions. For example, some species may condense on surfaces within showerhead volume 108. Accordingly, in some embodiments, semiconductor process module 100 may include heat exchange structures thermally coupled with showerhead volume 108 to adjust a temperature of showerhead volume 108. As used herein, being thermally coupled means that causing a change in temperature of at a heat exchange structure will cause in a change in temperature at a surface of showerhead volume 108 and vice-versa. Such temperature changes may be determined by various suitable techniques, such as infrared- or thermocouple-based temperature measurement techniques.


Such heat exchange structures may be included on a heat exchange surface of gas channel plate 110 that project into a heat exchange fluid. Other heat exchange mechanisms, such as heaters, may also be thermally coupled with showerhead volume 108. In turn, the temperature of showerhead volume 108 may be adjusted during substrate processing so that process feed condensation might potentially be avoided.



FIG. 13 schematically shows a close-up sectioned isometric view of a portion of an embodiment of gas channel plate 110. The embodiment shown in FIG. 13 depicts a heater groove included in gas channel plate 110, shown as heater groove 1302a. A heater is included in the heater groove, shown as heater 1304a. Heater 1304a provides heat to gas channel plate 110 and to various surfaces in thermal contact with gas channel plate 110, such as diffusion surface 1012, showerhead 112, and so on. In turn, condensation of process feed on diffusion surface 1012, flow expansion structure 1002 (shown in FIG. 10), and/or surfaces of showerhead volume 108 may potentially be avoided.


In some embodiments, a plurality of heaters may be provided in gas channel plate 110 and showerhead 112, each controlled and powered independently from one another. For example, FIG. 13 shows a heater 1304b included in a heater groove 1302b included in showerhead 112, heater 1304b being independent from and controlled separately from heater 1304a. Such an arrangement may be used to provide locational “zone” heating to different portions of gas channel plate 110 and/or showerhead 112. In combination with suitable heater control, zone heating permit the creation of various temperature profiles within showerhead volume 108, showerhead 112, and gas channel plate 110. For example, gas channel plate 110 may be maintained at a lower temperature than showerhead 112, potentially preventing the accumulation of reaction byproducts in exhaust passage 1016. As another example, an arrangement of annularly-nested independently-zoned heaters provided within gas channel plate 110 may allow the creation of a radial temperature profile extending from process feed inlet 106 toward the outer edges of showerhead volume 108. In turn, a central region of showerhead volume 108 may be maintained at a comparatively higher temperature than the outer edges. This approach may potentially prevent condensation of a low-vapor pressure process species near process feed inlet 106, where the partial pressure of that species may be higher.


It will be understood that almost any suitable heater may be employed without departing from the scope of the present disclosure. In some embodiments, a flexible, cable-style heater may be provided that is configured to fit into a heater groove cut into gas channel plate 110. In some embodiments, a heater may include positive temperature coefficient materials configured to exhibit an increase in electrical resistance as temperature increases beyond a predetermined threshold, potentially reducing a risk of damage from temperature excursions exceeding a predetermined ceiling relative to alternate style heaters. In the embodiment shown in FIG. 13, a heater is powered by electricity supplied via a heater power connection 1306 which receives power from a heater controller via a heater power lead (shown as heater power lead 1308 in FIGS. 10-12).


As introduced above, a heater groove is formed into gas channel plate 110 and/or showerhead 112 to receive heat from a heater. Viewed as a cross-section, the sidewalls and bottom of a heater groove may make contact with a heater at several locations, potentially improving heat transfer from heater relative to configurations where a heater makes contact on one side only, such as a heater resting on a surface. It will be understood that the heater groove may be formed into gas channel plate 110 and/or showerhead 112 in virtually any suitable manner. For example, a heater groove may be milled and/or cast in some embodiments. Further, the heater groove may be shaped into virtually any suitable form. Non-limiting examples of shapes for a heater groove include annular, serpentine paths having twists in at least two directions, and spiral paths that may or may not include branches. Such shapes may be arranged in almost any suitable position within gas channel plate 110 and/or showerhead 112. For example, in some embodiments, heater grooves may be positioned around a center of gas channel plate 110 and/or showerhead 112 in a radially-symmetric arrangement.


In some embodiments, a retainer, shown as retainers 1310a and 1310b in FIG. 13, may be provided above heater 1304a and 1304b, respectively to apply a downward force to the heaters, potentially enhancing conduction between the heater groove and the heater. Further, in some of such embodiments, the retainer may have heat transfer properties that further enhance heat transfer from the heater to gas channel plate 110 and/or showerhead 112. For example, the retainer may be formed from a flexible aluminum wire that may help conduct heat from a top surface of the heater to upper sidewalls of the heater groove.


Additionally or alternatively, in some embodiments, a temperature of gas channel plate 110 may be adjusted using a suitable heat exchange fluid supplied to heat exchange surfaces thereon. For example, in one scenario, cool air may be provided to moderate heating provided by the heater. In another scenario, warm air may be provided in place of or to supplement heating provided by the heater. In each scenario, use of a heat exchange fluid may potentially smooth a thermal profile within gas channel plate 110, so that hot and/or cold spots may be avoided. Virtually any suitable heat exchange fluid may be employed without departing from the scope of the present disclosure. Example suitable heat exchange fluids include, but are not limited to, gases like air and nitrogen, and liquids like water and heat transfer oils.


The embodiment depicted in FIG. 13 shows a plurality of heat exchange structures 1312 separated from one another by gaps 1314 on a heat exchange surface 1316 of gas channel plate 110. Heat exchange structures 1312 and gaps 1314 provide surface area for heat transfer and flow space, respectively, for the heat exchange fluid.


It will be understood that heat exchange structures 1312 may have almost any suitable shape. The embodiment shown in FIG. 13 illustrates heat exchange structures 1312 as rectangularly-shaped, block-like structures projecting outward from heat exchange surface 1316. In some embodiments, heat exchange structures 1312 may be rectangular prisms that are 4 mm wide by 6 mm deep, within an acceptable tolerance, and that may have heights that vary between 12 mm and 5 mm, so that the volume of heat exchange structures 1312 may vary with position as described in more detail below. In some embodiments, gaps 1314 between heat exchange structures 1312 may be approximately 6-7 mm wide. Additionally or alternatively, in some embodiments, gaps 1314 may be sized so that they are no wider than one-half of a thickness of gas channel plate 110 at a location on gas channel plate 110 where heat exchange structures 1312 are positioned on gas channel plate 110. For example, in some embodiments, gaps 1314 may be sized according to a preselected ratio defined as of a distance from a base of heat exchange structure 1312 to diffusion surface 1012 divided by a distance between adjacent heat exchange structures 1312. In some embodiments, the ratio may be greater than 2. For example, in some non-limiting scenarios, the ratio may be in a range between 3 and 5. Spacing heat exchange structures 1312 in this way may avoid the formation of local hot and/or cold spots on diffusion surface 1012. Other non-limiting heat exchange structures may include outwardly projected fin- or vane-shaped structures, honeycomb or mesh type baffled structures, and stacked plates.


In some embodiments, the volume of heat exchange structures 1312 may vary according to a radial position on heat exchange surface 1316. By varying the volume according to radial position, it is possible that the amount of heat exchanged with the heat exchange fluid may be regulated. In the embodiment shown in FIG. 13, volume of heat exchange structures 1312 increases with radial distance from a center of gas channel plate 110. In one scenario according to this embodiment, less heat may be transferred to the heat exchange fluid near the center of the gas channel plate relative to an amount of heat transferred near the outer edge. As a result, the center region of the diffusion surface may be maintained at a comparatively higher temperature than the outer region. This approach may potentially prevent condensation of a low-vapor pressure process species near the process feed inlet, where the partial pressure of that species may be higher. Further, by transitioning to a lower temperature near the outer edge of the diffusion surface, the defect generation caused by gas phase reactions may potentially be avoided.


Heat exchange structures 1312 may be formed in any suitable manner and from any suitable material. For example, in some embodiments, heat exchange structures 1312 may be formed from aluminum, stainless steel, or titanium. Heat exchange structures 1312 may also be formed during fabrication of gas channel plate 110 or added at a later time. For example, in some embodiments, heat exchange structures 1312 may be machined into gas channel plate 110. In some other embodiments, heat exchange structures 1312 may be separate parts that may be added, subtracted, and rearranged on heat exchange surface 1316.


Heat exchange structures 1312 may be distributed in virtually any suitable arrangement on gas channel plate 110. In the embodiment shown in FIG. 13, heat exchange structures 1312 are distributed in an annular region, being radially arranged about a centerline of gas channel plate 110. FIG. 3 and FIGS. 10-12 also show examples of heat exchange structures 1312 arranged in circular patterns around process feed inlet 106 in an annular region of gas channel plate 110.


As shown in FIG. 13, heat exchange structures 1312 project into a heat exchange fluid channel 1318 formed between heat exchange surface 1316 and a heat exchange fluid director plate 1320 supported by a heat exchange fluid director plate support surface of gas channel plate 110. Thus, heat exchange fluid director plate 1320 and gas channel plate 110 form a heat exchanger in the region of heat exchange fluid channel 1318, where heat exchange fluid director plate 1320 directs heat exchange fluid in between of heat exchange structures 1312 and also across the tops of at least a portion of heat exchange structures 1312.


The broad flow direction arrows illustrated in FIG. 13 depict an example flow of heat exchange fluid from an inlet 1324 into heat exchange fluid channel 1318 where heat is exchanged with heat exchange structures 1312 and then exhausted via an outlet 1326. By arranging heat exchange structures 1312 in circular patterns around a center of gas channel plate 110 and directing the heat exchange fluid radially outward from inlet 1324, the heat exchange fluid flowing in heat exchange fluid channel 1318 may flow co-currently with process feed flowing within showerhead volume 108. Consequently, a temperature of the process feed at the edge of showerhead volume 108 may be at least as great as a temperature of the heat exchange fluid exiting outlet 1326. This may potentially avoid decomposition reactions within the process feed or on the various surfaces defining showerhead volume 108.


While the flow direction arrows in FIG. 13 depict a flow of heat exchange fluid flowing radially outward in a circularly symmetric flow, it will be appreciated that virtually any suitable flow of heat exchange fluid may be employed without departing from the scope of the present disclosure. For example, in some embodiments, heat exchange fluid may be directed radially inward from an outer edge of gas channel plate 110 toward island 312. In some of such embodiments, the locations of inlet 1324 and outlet 1326 may be reversed or otherwise suitable relocated. In still other embodiments, heat exchange fluid may be directed in other directions around and/or across heat exchange surface 1316 so that it flows around and/or above heat exchange structures 1312.


In some embodiments, heat exchange fluid director plate 1320 may be included in heat exchange plenum assembly 204. Heat exchange plenum assembly 204 may provide ambient air as a heat exchange fluid to heat exchange surface 1316 via heat exchange fluid channel 1318 and then exhaust the air back into the ambient environment. FIG. 14 schematically shows heat exchange plenum assembly 204 fluidly coupled to an embodiment of a blower 1402 by a flexible duct 1404. As shown in FIG. 14, blower 1402 draws ambient air into intake 1406. The air is delivered by flexible duct 1404 to heat exchange plenum assembly 204. After passing over the heat exchange surface of the gas channel plate (not shown), the air is exhausted via exhaust holes 1408 into the ambient environment.



FIG. 15 schematically shows an exploded isometric view of an embodiment of a heat exchange plenum assembly 1500. As shown in FIG. 15, heat exchange plenum assembly 1500 includes a heat exchange fluid director plate 1502 and a cover plate 1504. Heat exchange fluid director plate 1502 includes a ring-shaped inner wall 1506, a ring-shaped outer wall 1508 having a larger diameter than inner wall 1506, and a floor ring 1510 that connects inner wall 1506 and outer wall 1508. Outer wall 1508 includes opening 1512 to receive an inlet duct 1514 coupled to a blower (not shown). Inlet duct 1514 may include an optional switch 1516 used to control the blower. Floor ring 1510 includes one or more openings adjacent to inner wall 1506 that form inlets 1518.


In some embodiments, heat exchange fluid director plate 1502 is configured to be supported by a heat exchange fluid director plate support surface included on gas channel plate 110. For example, in some embodiments, inner wall 1506 may be sized to fit snugly about and/or be physically connected with island 312 of gas channel plate 110 for supporting heat exchange fluid director plate 1502. Additionally or alternatively, in some embodiments, heat exchange fluid director plate 1502 may be supported by island 312 via retainer 1520 and/or cover plate 1504. By supporting heat exchange fluid director plate 1502 on island 312, floor ring 1510 of heat exchange fluid director plate 1502 may be spaced from heat exchange surface 1316 of gas channel plate 110 so that heat exchange fluid channel 1318 is formed above heat exchange structures 1312. In turn, heat exchange fluid flowing in heat exchange fluid channel 1318 may flow between and above heat exchange structures 1312 while flowing from inlet 1324 to outlet 1326, as shown in FIG. 13. Consequently, heat exchange fluid channel 1318 may accommodate heat exchange structures 1312 of varying heights as described above, and may also exchange heat along top surfaces of heat exchange structures 1312 in contact with the heat exchange fluid.


Returning to FIG. 15, in some embodiments, one or more inlets 1518 may be distributed around a base of inner wall 1506, so that heat exchange fluid may be supplied in an annular flow to gas channel plate 110. In such embodiments, the assembly of heat exchange fluid director plate 1502 to cover plate 1504 via retainer 1520 and gasket 1522 forms an annular fluid flow space between inner wall 1506, outer wall 1508, cover plate 1504, and floor ring 1510. Thus, a heat exchange fluid may enter via opening 1512, travel around the annular flow space, and be distributed to heat exchange fluid channel 1318 via inlets 1518 where it may be redirected to travel radially outward toward the edges of gas channel plate 110. For example, FIG. 16 schematically shows a sectioned isometric view of an embodiment of a portion of inlet duct 1514 directing air toward an annular region 1602 formed between heat exchange fluid director plate 1502 and cover plate 1504. In the embodiment shown in FIG. 16, air flows radially outward from annular region 1602 via heat exchange fluid channel 1318 where it is exhausted from semiconductor process module 100 via exhaust holes 1408.


In some embodiments, heat exchange plenum assembly 1500 may include a flow restrictor positioned at outlet 1326 of heat exchange fluid channel 1318 and configured to adjust the flow of heat exchange fluid therein. For example, FIG. 15 shows an embodiment of a flow restrictor ring 1524 coupled to heat exchange fluid director plate 1502. As shown in FIG. 15, flow restrictor ring 1524 includes at least one restriction orifice 1526 positioned to restrict flow through outlet 1326 and a clearance opening 1528 configured to receive inlet duct 1514.


In some embodiments, the height of flow restrictor ring 1524 may be adjusted to vary the heat exchange characteristics of heat exchange fluid channel 1318. For example, given constant inlet and outlet cross-sectional areas, increasing the height of flow restrictor ring 1524 may increase the residence time of the heat exchange fluid within the heat exchange fluid channel 1318, potentially varying the radial temperature profile of the gas channel plate. It will be appreciated that adjustments to the cross-sectional areas of the inlet and outlet may have a similar effect.


It will be appreciated that thermal management of showerhead volume 108 may be systematically controlled by suitable temperatures sensors and heater and/or heat exchanger controllers in some embodiments. Thus, a temperature of gas channel plate 110, showerhead 112, flow expansion structure 1002 and/or other portions of semiconductor process module 100 thermally coupled with showerhead volume 108 may be adjusted during substrate processing, potentially avoiding condensation and/or gas phase reactions of the process feed.


For example, FIG. 16 shows a temperature sensor 1604 included in showerhead 112 and thermally coupled with showerhead volume 108. While temperature sensor 1604 is physically positioned in showerhead 112 in the embodiment shown in FIG. 16, it will be appreciated that one or more temperature sensors 1604 may be provided at suitable locations in showerhead 112 and/or gas channel plate 110. In some embodiments, a plurality of temperature sensors 1604 may be provided in various locations around showerhead 112 and/or gas channel plate 110 to provide a thermal map of those parts and nearby portions of showerhead volume 108. Virtually any suitable temperature sensor 1604 may be employed without departing from the scope of the present disclosure. Non-limiting examples include bi-junction thermocouples and resistance thermometers.


Temperature information collected by one or more temperature sensors 1604 may be provided to a thermal controller 1606 with which the temperature sensors 1604 are electrically connected. In some embodiments, thermal controller 1606 may include a heater controller for controlling heaters 1304 and/or a blower controller for controller blower 1402. In some embodiments, thermal controller 1606 may be included in system controller 202. In turn, thermal controller 1606 may adjust power supplied to heater 1304 via heater power connection 1306. Additionally or alternatively, in some embodiments, thermal controller 1606 may adjust operation of blower 1402 in response to temperature information provided by temperature sensors 1604. For example, thermal controller 1606 may turn blower 1402 off or on or vary the blower speed to adjust an amount of air delivered.


It will be understood that the hardware described herein may be used to adjust the temperature of the process feeds a showerhead volume in a semiconductor processing module and, in turn, deliver the process feeds from the showerhead volume to the substrate to process a substrate within the module.



FIG. 17 shows a flow chart for an embodiment of a method 1700 for processing a substrate in a processing environment of a reactor included in semiconductor processing module. Method 1700 may be performed by any suitable hardware and software. It will be appreciated that portions of the processes described in method 1700 may be omitted, reordered, and/or supplemented without departing from the scope of the present disclosure.


Method 1700 includes, at 1702, supporting the substrate with a susceptor within the reactor and, at 1704, supplying process feed to the reactor via a showerhead positioned above the substrate. For example, in an ALD process, the process feed may be supplied to the reactor via the showerhead so that a suitable coverage of a surface active species derived from the process feed is generated on a process surface of the substrate.


At 1706, method 1700 includes adjusting a temperature of the process feed within a showerhead volume upstream of the showerhead by supplying a heat exchange fluid to a heat exchange fluid channel into which a plurality of heat exchange structures extend so that the heat exchange fluid flows between and above the heat exchange structures within the heat exchange fluid channel, the heat exchange structures being thermally coupled with the showerhead volume.


In some embodiments, adjusting the temperature at 1706 may include, at 1708, receiving a temperature of a heat exchange surface from which the heat exchange structures extend from a temperature sensor thermally coupled with the heat exchange surface. For example, process feed temperature information may be received from one or more temperature sensors. If a temperature of the process feed is judged to be too low relative to a predetermined temperature, action may be taken to raise the temperature of the heat exchange surface so that a temperature of the process feed within the showerhead may be raised. Alternatively, if a temperature of the heat exchange surface is judged to be too high relative to a predetermined temperature, a different action may be taken to lower the temperature of the heat exchange surface so that the temperature of the process feed within the showerhead volume may be lowered.


For example, in some embodiments, method 1700 may include, at 1710, adjusting a power supplied to a heating element included in the heat exchange surface. In a scenario where the heat exchange surface exceeds the predetermined temperature, the power supplied to the heater may be reduced. Alternatively, in a scenario where the heat exchange surface is less than the predetermined temperature, the power supplied to the heater may be increased. It will be appreciated that almost any suitable method of controlling the heater power may be employed without departing from the scope of the present disclosure, including control schemes that include one or more of proportional, derivative, and integral elements.


As another example, in some embodiments, method 1700 may include, at 1712, adjusting power supplied to a blower or pump configured to supply heat exchange fluid to the heat exchange surface. In a scenario where the heat exchange surface exceeds the predetermined temperature, the power supplied to the blower or pump may be reduced. Alternatively, in a scenario where the heat exchange surface is less than the predetermined temperature, the power supplied to the blower or pump may be increased. It will be appreciated that almost any suitable method of controlling the blower or pump power may be employed without departing from the scope of the present disclosure, including control schemes that include one or more of proportional, derivative, and integral elements.


In some embodiments, the heater and the blower or pump may be operated concurrently. For example, in one scenario, a blower may provide cool air continuously while a heater power is adjusted to vary heat input to the heat exchange surface. In another scenario, a heater may provide a continuous heat input while a blower power is adjusted to vary cooling provided to the heat exchange surface. In yet another scenario, both heater and blower power may be adjusted concurrently to control heating and cooling of the heat exchange surface.


In some embodiments, method 1700 may be performed by a system process controller comprising a data-holding subsystem comprising instructions executable by a logic subsystem to perform the processes described herein. Virtually any suitable system process controller may be employed without departing from the scope of the present disclosure.


For example, FIG. 2 shows an embodiment of a system process controller 202 provided for controlling semiconductor process module 100. System process controller 202 may operate process module control subsystems, such as gas control subsystems, pressure control subsystems, temperature control subsystems, electrical control subsystems, and mechanical control subsystems. Such control subsystems may receive various signals provided by sensors, relays, and controllers and make suitable adjustments in response.


System process controller 202 comprises a computing system that includes a data-holding subsystem and a logic subsystem. The data-holding subsystem may include one or more physical, non-transitory, devices configured to hold data and/or instructions executable by the logic subsystem to implement the methods and processes described herein. The logic subsystem may include one or more physical devices configured to execute one or more instructions stored in the data-holding subsystem. The logic subsystem may include one or more processors that are configured to execute software instructions.


In some embodiments, such instructions may control the execution of process recipes. Generally, a process recipe includes a sequential description of process parameters used to process a substrate, such parameters including time, temperature, pressure, and concentration, etc., as well as various parameters describing electrical, mechanical, and environmental aspects of the tool during substrate processing. The instructions may also control the execution of various maintenance recipes used during maintenance procedures and the like. In some embodiments, such instructions may be stored on removable computer-readable storage media, which may be used to store and/or transfer data and/or instructions executable to implement the methods and processes described herein. It will be appreciated that any suitable removable computer-readable storage media may be employed without departing from the scope of the present disclosure. Non-limiting examples include DVDs, CD-ROMs, floppy discs, and flash drives.


It is to be understood that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible. The specific routines or methods described herein may represent one or more of any number of processing strategies. Thus, the various acts illustrated may be performed in the sequence illustrated, in other sequences, or omitted in some cases.


The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.

Claims
  • 1. A semiconductor process module comprising a reactor, wherein the reactor comprises: a gas channel plate, the gas channel plate comprising:a heat exchange surface including a plurality of heat exchange structures separated from one another by intervening gaps;a heat exchange fluid director plate support surface for supporting a heat exchange fluid director plate above the plurality of heat exchange structures so that at least a portion of the plurality of heat exchange structures are spaced from the heat exchange fluid director plate; anda purge gas channel fluidly communicating with an ambient environment at a location between the ambient environment and a gasket disposed between a showerhead and the gas channel plate.
  • 2. The semiconductor process module of claim 1, further comprising a process feed inlet for supplying a process feed to a showerhead volume formed between a diffusion surface disposed opposite the heat exchange surface and the showerhead sealably coupled to the gas channel plate.
  • 3. The semiconductor process module of claim 2, where the process feed inlet includes a flow expansion structure upstream of the process feed inlet, the flow expansion structure being aligned with a centerline of the process feed inlet.
  • 4. The semiconductor process module of claim 3, where the flow expansion structure includes a concentric conical expansion formed on an inner surface of the flow expansion structure.
  • 5. The semiconductor process module of claim 2, further comprising a pulse valve manifold positioned upstream of the gas channel plate.
  • 6. The semiconductor process module of claim 2, where the diffusion surface has a radially symmetric profile with respect to a centerline of the gas channel plate, the diffusion surface becoming closer to the showerhead as distance from a centerline of the gas channel plate increases.
  • 7. The semiconductor process module of claim 6, where the radially symmetric profile includes a portion of the diffusion surface being disposed at an angle of between 0 and 5 degrees with respect to a reference plane defining a widest portion of the showerhead volume.
  • 8. The semiconductor process module of claim 2, where the diffusion surface has a radially symmetric profile with respect to a centerline of the gas channel plate, where the radially symmetric profile includes a portion of the diffusion surface disposed at an angle of between 0 and 5 degrees with respect to a reference plane defining a widest portion of the showerhead volume, and where an upper surface of the showerhead facing the showerhead volume is spaced from the portion of the diffusion surface so that the portion of the diffusion surface and a respective portion of the upper surface remain a constant distance apart as distance from a centerline of the gas channel plate increases.
  • 9. The semiconductor process module of claim 2, where the gas channel plate is sealably coupled to the showerhead by a gasket positioned within 20 mm of a showerhead distribution hole included in the showerhead.
  • 10. The semiconductor process module of claim 1, further comprising: a heating element disposed in a spiral groove included in the heat exchange surface; a temperature controller electrically connected with the heating element for adjusting a temperature of the heating element in response to a temperature of the heat exchange surface.
  • 11. The semiconductor process module of claim 10, where the showerhead includes a heating element independent from the heating element included in the heat exchange surface.
  • 12. A semiconductor reactor comprising a gas channel plate, wherein the gas channel plate comprises: a heat exchange surface including a plurality of heat exchange structures separated from one another by intervening gaps;a heat exchange fluid director plate support surface for supporting a heat exchange fluid director plate above the plurality of heat exchange structures so that at least a portion of the plurality of heat exchange structures are spaced from the heat exchange fluid director plate; anda purge gas channel fluidly communicating with an ambient environment at a location between the ambient environment and a gasket disposed between a showerhead and the gas channel plate.
  • 13. The semiconductor reactor of claim 12, further comprising a process feed inlet for supplying a process feed to a showerhead volume formed between a diffusion surface disposed opposite the heat exchange surface and the showerhead sealably coupled to the gas channel plate.
  • 14. The semiconductor reactor of claim 13, where the process feed inlet includes a flow expansion structure upstream of the process feed inlet, the flow expansion structure being aligned with a centerline of the process feed inlet.
  • 15. The semiconductor reactor of claim 14, where the flow expansion structure includes a concentric conical expansion formed on an inner surface of the flow expansion structure.
  • 16. A processing tool comprising the semiconductor process module of claim 1.
  • 17. A gas channel plate for a semiconductor process module, the gas channel plate comprising: a heat exchange surface including a plurality of heat exchange structures separated from one another by intervening gaps;a heat exchange fluid director plate support surface for supporting a heat exchange fluid director plate above the plurality of heat exchange structures so that at least a portion of the plurality of heat exchange structures are spaced from the heat exchange fluid director plate; anda purge gas channel fluidly communicating with an ambient environment at a location between the ambient environment and a gasket disposed between a showerhead and the gas channel plate.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/284,642 entitled “PROCESS FEED MANAGEMENT FOR SEMICONDUCTOR SUBSTRATE PROCESSING,” filed Oct. 28, 2011, the disclosure of which is hereby incorporated herein by reference.

US Referenced Citations (1164)
Number Name Date Kind
D56051 Cohn Aug 1920 S
2161626 Loughner et al. Jun 1939 A
2745640 Cushman May 1956 A
2990045 Root Sep 1959 A
3089507 Drake et al. May 1963 A
3833492 Bollyky Sep 1974 A
3854443 Baerg Dec 1974 A
3862397 Anderson et al. Jan 1975 A
3887790 Ferguson Jun 1975 A
4054071 Patejak Oct 1977 A
4058430 Suntola et al. Nov 1977 A
4134425 Gussefeld et al. Jan 1979 A
4145699 Hu et al. Mar 1979 A
4176630 Elmer Dec 1979 A
4181330 Kojima Jan 1980 A
4194536 Stine et al. Mar 1980 A
4322592 Martin Mar 1982 A
4389973 Suntola et al. Jun 1983 A
4393013 McMenamin Jul 1983 A
4401507 Engle Aug 1983 A
4414492 Hanlet Nov 1983 A
4436674 McMenamin Mar 1984 A
4499354 Hill et al. Feb 1985 A
4512113 Budinger Apr 1985 A
4570328 Price et al. Feb 1986 A
4579623 Suzuki et al. Apr 1986 A
D288556 Wallgren Mar 1987 S
4653541 Oehlschlaeger et al. Mar 1987 A
4654226 Jackson et al. Mar 1987 A
4681134 Paris Jul 1987 A
4718637 Contin Jan 1988 A
4722298 Rubin et al. Feb 1988 A
4735259 Vincent Apr 1988 A
4753192 Goldsmith et al. Jun 1988 A
4780169 Stark et al. Oct 1988 A
4789294 Sato et al. Dec 1988 A
4821674 deBoer et al. Apr 1989 A
4827430 Aid et al. May 1989 A
4837185 Yau et al. Jun 1989 A
4854263 Chang et al. Aug 1989 A
4857137 Tashiro et al. Aug 1989 A
4857382 Sheng et al. Aug 1989 A
4882199 Sadoway et al. Nov 1989 A
4985114 Okudaira Jan 1991 A
4986215 Yamada Jan 1991 A
4987856 Hey Jan 1991 A
4991614 Hammel Feb 1991 A
5013691 Lory et al. May 1991 A
5028366 Harakal et al. Jul 1991 A
5060322 Delepine Oct 1991 A
5062386 Christensen Nov 1991 A
5074017 Toya et al. Dec 1991 A
5116018 Friemoth et al. May 1992 A
D327534 Manville Jun 1992 S
5119760 McMillan et al. Jun 1992 A
5167716 Boitnott et al. Dec 1992 A
5178682 Tsukamoto et al. Jan 1993 A
5183511 Yamazaki et al. Feb 1993 A
5192717 Kawakami Mar 1993 A
5194401 Adams et al. Mar 1993 A
5199603 Prescott Apr 1993 A
5221556 Hawkins et al. Jun 1993 A
5242539 Kumihashi et al. Sep 1993 A
5243195 Nishi Sep 1993 A
5288684 Yamazaki et al. Feb 1994 A
5306946 Yamamoto Apr 1994 A
5326427 Jerbic Jul 1994 A
5354580 Goela et al. Oct 1994 A
5356478 Chen et al. Oct 1994 A
5380367 Bertone Jan 1995 A
5382311 Ishikawa et al. Jan 1995 A
5404082 Hernandez et al. Apr 1995 A
5415753 Hurwitt et al. May 1995 A
5421893 Perlov Jun 1995 A
5422139 Shinriki et al. Jun 1995 A
5430011 Tanaka et al. Jul 1995 A
5447570 Schmitz Sep 1995 A
5494494 Mizuno et al. Feb 1996 A
5496408 Motoda et al. Mar 1996 A
5504042 Cho et al. Apr 1996 A
5518549 Hellwig May 1996 A
5527417 Iida et al. Jun 1996 A
5531835 Fodor et al. Jul 1996 A
5574247 Nishitani et al. Nov 1996 A
5589002 Su Dec 1996 A
5589110 Motoda et al. Dec 1996 A
5595606 Fujikawa et al. Jan 1997 A
5601641 Stephens Feb 1997 A
5604410 Vollkommer et al. Feb 1997 A
5616947 Tamura Apr 1997 A
5632919 MacCracken et al. May 1997 A
D380527 Velez Jul 1997 S
5679215 Barnes et al. Oct 1997 A
5681779 Pasch et al. Oct 1997 A
5683517 Shan Nov 1997 A
5695567 Kordina Dec 1997 A
5718574 Shimazu Feb 1998 A
5728223 Murakarni et al. Mar 1998 A
5730801 Tepman et al. Mar 1998 A
5732744 Barr et al. Mar 1998 A
5736314 Hayes et al. Apr 1998 A
5781693 Balance et al. Jul 1998 A
5796074 Edelstein et al. Aug 1998 A
5801104 Schuegraf et al. Sep 1998 A
5819434 Herchen et al. Oct 1998 A
5827757 Robinson, Jr. et al. Oct 1998 A
5836483 Disel Nov 1998 A
5837320 Hampden-Smith et al. Nov 1998 A
5853484 Jeong Dec 1998 A
5855680 Soininen et al. Jan 1999 A
5855681 Maydan et al. Jan 1999 A
5873942 Park Feb 1999 A
5877095 Tamura et al. Mar 1999 A
5908672 Ryu Jun 1999 A
5916365 Sherman Jun 1999 A
5920798 Higuchi et al. Jul 1999 A
5968275 Lee et al. Oct 1999 A
5975492 Brenes Nov 1999 A
5979506 Aarseth Nov 1999 A
5997588 Goodwin Dec 1999 A
D419652 Hall et al. Jan 2000 S
6013553 Wallace Jan 2000 A
6015465 Kholodenko et al. Jan 2000 A
6017779 Miyasaka Jan 2000 A
6024799 Chen Feb 2000 A
6035101 Sajoto et al. Mar 2000 A
6042652 Hyun Mar 2000 A
6044860 Nue Apr 2000 A
6050506 Guo et al. Apr 2000 A
6060691 Minami et al. May 2000 A
6074443 Venkatesh Jun 2000 A
6083321 Lei et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6099302 Hong et al. Aug 2000 A
6122036 Yamasaki et al. Sep 2000 A
6124600 Moroishi et al. Sep 2000 A
6125789 Gupta et al. Oct 2000 A
6129044 Zhao et al. Oct 2000 A
6129046 Mizuno Oct 2000 A
6137240 Bogdan et al. Oct 2000 A
6140252 Cho et al. Oct 2000 A
6148761 Majewski et al. Nov 2000 A
6160244 Ohashi Dec 2000 A
6161500 Kopacz et al. Dec 2000 A
6162323 Koshimizu et al. Dec 2000 A
6180979 Hofman et al. Jan 2001 B1
6187691 Fukuda Feb 2001 B1
6194037 Terasaki et al. Feb 2001 B1
6201999 Jevtic Mar 2001 B1
6207932 Yoo Mar 2001 B1
6250250 Maishev et al. Jun 2001 B1
6271148 Kao Aug 2001 B1
6274878 Li et al. Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
D449873 Bronson Oct 2001 S
6296909 Spitsberg Oct 2001 B1
6299133 Waragai et al. Oct 2001 B2
6302964 Umotoy et al. Oct 2001 B1
6303523 Cheung Oct 2001 B2
6305898 Yamagishi et al. Oct 2001 B1
6312525 Bright et al. Nov 2001 B1
6315512 Tabrizi et al. Nov 2001 B1
D451893 Robson Dec 2001 S
D452220 Robson Dec 2001 S
6326597 Lubomirsky et al. Dec 2001 B1
6329297 Balish Dec 2001 B1
6342427 Choi et al. Jan 2002 B1
6347636 Xia Feb 2002 B1
6350320 Sherstinsky Feb 2002 B1
6352945 Matsuki Mar 2002 B1
6367410 Leahey et al. Apr 2002 B1
6368987 Kopacz et al. Apr 2002 B1
6370796 Zucker Apr 2002 B1
6372583 Tyagi Apr 2002 B1
6374831 Chandran Apr 2002 B1
6375312 Ikeda et al. Apr 2002 B1
D457609 Piano May 2002 S
6383566 Zagdoun May 2002 B1
6383955 Matsuki May 2002 B1
6387207 Janakiraman May 2002 B1
6391803 Kim et al. May 2002 B1
6398184 Sowada et al. Jun 2002 B1
6410459 Blalock et al. Jun 2002 B2
6413321 Kim et al. Jul 2002 B1
6413583 Moghadam et al. Jul 2002 B1
6420279 Ono et al. Jul 2002 B1
D461233 Whalen Aug 2002 S
D461882 Piano Aug 2002 S
6435798 Satoh Aug 2002 B1
6436819 Zhang Aug 2002 B1
6437444 Andideh Aug 2002 B2
6446573 Hirayama et al. Sep 2002 B2
6450757 Saeki Sep 2002 B1
6454860 Metzner et al. Sep 2002 B2
6455445 Matsuki Sep 2002 B2
6461435 Littau Oct 2002 B1
6468924 Lee Oct 2002 B2
6472266 Yu et al. Oct 2002 B1
6475930 Junker et al. Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6482331 Lu et al. Nov 2002 B2
6482663 Buckland Nov 2002 B1
6483989 Okada et al. Nov 2002 B1
6499533 Yamada Dec 2002 B2
6503562 Saito et al. Jan 2003 B1
6503826 Oda Jan 2003 B1
6511539 Raaijmakers Jan 2003 B1
6521295 Remington Feb 2003 B1
6521547 Chang et al. Feb 2003 B1
6528430 Kwan Mar 2003 B2
6528767 Bagley et al. Mar 2003 B2
6531193 Fonash et al. Mar 2003 B2
6531412 Conti et al. Mar 2003 B2
6534395 Werkhoven et al. Mar 2003 B2
6569239 Arai et al. May 2003 B2
6573030 Fairbairn et al. Jun 2003 B1
6576062 Matsuse Jun 2003 B2
6576064 Griffiths et al. Jun 2003 B2
6576300 Berry et al. Jun 2003 B1
6579372 Park Jun 2003 B2
6579833 McNallan et al. Jun 2003 B1
6583048 Vincent et al. Jun 2003 B1
6590251 Kang et al. Jul 2003 B2
6594550 Okrah Jul 2003 B1
6598559 Vellore et al. Jul 2003 B1
6602346 Gochberg Aug 2003 B1
6627503 Ma et al. Sep 2003 B2
6632478 Gaillard et al. Oct 2003 B2
6633364 Hayashi Oct 2003 B2
6635117 Kinnard et al. Oct 2003 B1
6638839 Deng et al. Oct 2003 B2
6645304 Yamaguchi Nov 2003 B2
6648974 Ogliari et al. Nov 2003 B1
6649921 Cekic et al. Nov 2003 B1
6652924 Sherman Nov 2003 B2
6673196 Oyabu Jan 2004 B1
6682973 Paton et al. Jan 2004 B1
D486891 Cronce Feb 2004 S
6688784 Templeton Feb 2004 B1
6689220 Nguyen Feb 2004 B1
6692575 Omstead et al. Feb 2004 B1
6692576 Halpin et al. Feb 2004 B2
6699003 Saeki Mar 2004 B2
6709989 Ramdani et al. Mar 2004 B2
6710364 Guldi et al. Mar 2004 B2
6712909 Tometsuka Mar 2004 B2
6716571 Gabriel Apr 2004 B2
6730614 Lim et al. May 2004 B1
6734090 Agarwala et al. May 2004 B2
6740853 Kitayama et al. May 2004 B1
6743475 Skarp et al. Jun 2004 B2
6743738 Todd et al. Jun 2004 B2
6753507 Fure et al. Jun 2004 B2
6756318 Nguyen et al. Jun 2004 B2
6759098 Han Jul 2004 B2
6784108 Donohoe et al. Aug 2004 B1
6815350 Kim et al. Nov 2004 B2
6820570 Kilpela et al. Nov 2004 B2
6821910 Adomaitis et al. Nov 2004 B2
6824665 Shelnut et al. Nov 2004 B2
6825134 Law et al. Nov 2004 B2
6846515 Vrtis Jan 2005 B2
6847014 Benjamin et al. Jan 2005 B1
6858524 Haukka et al. Feb 2005 B2
6858547 Metzner Feb 2005 B2
6863019 Shamouilian Mar 2005 B2
6864041 Brown Mar 2005 B2
6872258 Park et al. Mar 2005 B2
6872259 Strang Mar 2005 B2
6874480 Ismailov Apr 2005 B1
6875677 Conley, Jr. et al. Apr 2005 B1
6876017 Goodner Apr 2005 B2
6884066 Nguyen et al. Apr 2005 B2
6884319 Kim Apr 2005 B2
6889864 Lindfors et al. May 2005 B2
6895158 Alyward et al. May 2005 B2
6899507 Yamagishi et al. May 2005 B2
6909839 Wang et al. Jun 2005 B2
6911092 Sneh Jun 2005 B2
6913796 Albano et al. Jul 2005 B2
6930059 Conley, Jr. et al. Aug 2005 B2
6935269 Lee et al. Aug 2005 B2
6939817 Sandhu et al. Sep 2005 B2
6951587 Narushima Oct 2005 B1
6953609 Carollo Oct 2005 B2
6955836 Kumagai et al. Oct 2005 B2
6972478 Waite et al. Dec 2005 B1
6974781 Timmermans et al. Dec 2005 B2
6976822 Woodruff Dec 2005 B2
6984595 Yamazaki Jan 2006 B1
6990430 Hosek Jan 2006 B2
7021881 Yamagishi Apr 2006 B2
7045430 Ahn et al. May 2006 B2
7049247 Gates et al. May 2006 B2
7053009 Conley, Jr. et al. May 2006 B2
7055875 Bonora Jun 2006 B2
7071051 Jeon et al. Jul 2006 B1
7084079 Conti et al. Aug 2006 B2
7088003 Gates et al. Aug 2006 B2
7092287 Beulens et al. Aug 2006 B2
7098149 Lukas Aug 2006 B2
7109098 Ramaswamy et al. Sep 2006 B1
7115838 Kurara et al. Oct 2006 B2
7122085 Shero et al. Oct 2006 B2
7122222 Xiao et al. Oct 2006 B2
7129165 Basol et al. Oct 2006 B2
7132360 Schaeffer et al. Nov 2006 B2
7135421 Ahn et al. Nov 2006 B2
7143897 Guzman et al. Dec 2006 B1
7147766 Uzoh et al. Dec 2006 B2
7153542 Nguyen et al. Dec 2006 B2
7163721 Zhang et al. Jan 2007 B2
7163900 Weber Jan 2007 B2
7172497 Basol et al. Feb 2007 B2
7192824 Ahn et al. Mar 2007 B2
7192892 Ahn et al. Mar 2007 B2
7195693 Cowans Mar 2007 B2
7204887 Kawamura et al. Apr 2007 B2
7205246 MacNeil et al. Apr 2007 B2
7205247 Lee et al. Apr 2007 B2
7207763 Lee Apr 2007 B2
7208389 Tipton et al. Apr 2007 B1
7211524 Ryu et al. May 2007 B2
7234476 Arai Jun 2007 B2
7235137 Kitayama et al. Jun 2007 B2
7235482 Wu Jun 2007 B2
7235501 Ahn et al. Jun 2007 B2
7238596 Kouvetakis et al. Jul 2007 B2
7265061 Cho et al. Sep 2007 B1
D553104 Oohashi et al. Oct 2007 S
7290813 Bonora Nov 2007 B2
7294581 Haverkort et al. Nov 2007 B2
7297641 Todd et al. Nov 2007 B2
7298009 Yan et al. Nov 2007 B2
D557226 Uchino et al. Dec 2007 S
7307178 Kiyomori et al. Dec 2007 B2
7312148 Ramaswamy et al. Dec 2007 B2
7312162 Ramaswamy et al. Dec 2007 B2
7312494 Ahn et al. Dec 2007 B2
7323401 Ramaswamy et al. Jan 2008 B2
7326657 Xia et al. Feb 2008 B2
7327948 Shrinivasan Feb 2008 B1
7329947 Adachi et al. Feb 2008 B2
7335611 Ramaswamy et al. Feb 2008 B2
7354847 Chan et al. Apr 2008 B2
7357138 Ji et al. Apr 2008 B2
7393418 Yokogawa Jul 2008 B2
7393736 Ahn et al. Jul 2008 B2
7393765 Hanawa et al. Jul 2008 B2
7396491 Marking et al. Jul 2008 B2
7399388 Moghadam et al. Jul 2008 B2
7402534 Mahajani Jul 2008 B2
7405166 Liang et al. Jul 2008 B2
7405454 Ahn et al. Jul 2008 B2
7414281 Fastow Aug 2008 B1
7422775 Ramaswamy et al. Sep 2008 B2
7429532 Ramaswamy et al. Sep 2008 B2
7431966 Derderian et al. Oct 2008 B2
7437060 Wang et al. Oct 2008 B2
7442275 Cowans Oct 2008 B2
7476291 Wang et al. Jan 2009 B2
7479198 Guffrey Jan 2009 B2
D585968 Elkins et al. Feb 2009 S
7489389 Shibazaki et al. Feb 2009 B2
7498242 Kumar et al. Mar 2009 B2
7501292 Matsushita et al. Mar 2009 B2
7503980 Kido et al. Mar 2009 B2
7514375 Shanker et al. Apr 2009 B1
7541297 Mallick et al. Apr 2009 B2
D593969 Li Jun 2009 S
7547363 Tomiyasu et al. Jun 2009 B2
7566891 Rocha-Alvarez et al. Jul 2009 B2
7575968 Sadaka et al. Aug 2009 B2
7579785 DeVincentis et al. Aug 2009 B2
7582555 Lang Sep 2009 B1
7589003 Kouvetakis et al. Sep 2009 B2
7589029 Derderian et al. Sep 2009 B2
D602575 Breda Oct 2009 S
7601223 Lindfors et al. Oct 2009 B2
7601225 Tuominen et al. Oct 2009 B2
7611980 Wells et al. Nov 2009 B2
7618226 Takizawa Nov 2009 B2
7618493 Yamada Nov 2009 B2
7629277 Ghatnagar Dec 2009 B2
7632549 Goundar Dec 2009 B2
7640142 Tachikawa et al. Dec 2009 B2
7651568 Ishizaka Jan 2010 B2
7651583 Kent et al. Jan 2010 B2
7651961 Clark Jan 2010 B2
D609655 Sugimoto Feb 2010 S
7678197 Maki Mar 2010 B2
7682657 Sherman Mar 2010 B2
D613829 Griffin et al. Apr 2010 S
D614153 Fondurulia et al. Apr 2010 S
D614267 Breda Apr 2010 S
D614268 Breda Apr 2010 S
7690881 Yamagishi Apr 2010 B2
7691205 Ikedo Apr 2010 B2
7713874 Milligan May 2010 B2
7720560 Menser et al. May 2010 B2
7723648 Tsukamoto et al. May 2010 B2
7727864 Elers Jun 2010 B2
7732343 Niroomand et al. Jun 2010 B2
7740705 Li Jun 2010 B2
7767262 Clark Aug 2010 B2
7780440 Shibagaki et al. Aug 2010 B2
7789965 Matsushita et al. Sep 2010 B2
7790633 Tarafdar et al. Sep 2010 B1
7803722 Liang Sep 2010 B2
7807578 Bencher et al. Oct 2010 B2
7816278 Reed et al. Oct 2010 B2
7824492 Tois et al. Nov 2010 B2
7825040 Fukazawa et al. Nov 2010 B1
7833353 Furukawahara et al. Nov 2010 B2
7838084 Derderian et al. Nov 2010 B2
7842518 Miyajima Nov 2010 B2
7842622 Lee et al. Nov 2010 B1
D629874 Hermans Dec 2010 S
7851019 Tuominen et al. Dec 2010 B2
7851232 van Schravendijk et al. Dec 2010 B2
7865070 Nakamura Jan 2011 B2
7884918 Hattori Feb 2011 B2
7888233 Gauri Feb 2011 B1
D634719 Yasuda et al. Mar 2011 S
7897215 Fair et al. Mar 2011 B1
7902582 Forbes et al. Mar 2011 B2
7910288 Abatchev et al. Mar 2011 B2
7915139 Lang Mar 2011 B1
7919416 Lee et al. Apr 2011 B2
7925378 Gilchrist et al. Apr 2011 B2
7935940 Smargiassi May 2011 B1
7963736 Takizawa et al. Jun 2011 B2
7972980 Lee et al. Jul 2011 B2
7981751 Zhu et al. Jul 2011 B2
D643055 Takahashi Aug 2011 S
7994721 Espiau et al. Aug 2011 B2
8003174 Fukazawa Aug 2011 B2
8004198 Bakre et al. Aug 2011 B2
8038835 Hayashi et al. Oct 2011 B2
8041197 Kasai et al. Oct 2011 B2
8041450 Takizawa et al. Oct 2011 B2
8055378 Numakura Nov 2011 B2
8060252 Gage et al. Nov 2011 B2
8071451 Uzoh Dec 2011 B2
8071452 Raisanen Dec 2011 B2
8072578 Yasuda et al. Dec 2011 B2
8076230 Wei Dec 2011 B2
8076237 Uzoh Dec 2011 B2
8082946 Laverdiere et al. Dec 2011 B2
D652896 Gether Jan 2012 S
8092604 Tomiyasu et al. Jan 2012 B2
D653734 Sisk Feb 2012 S
D655055 Toll Feb 2012 S
8137462 Fondurulia et al. Mar 2012 B2
8137465 Shrinivasan et al. Mar 2012 B1
8138676 Mills Mar 2012 B2
8142862 Lee et al. Mar 2012 B2
8143174 Xia et al. Mar 2012 B2
8147242 Shibagaki et al. Apr 2012 B2
8173554 Lee et al. May 2012 B2
8187951 Wang May 2012 B1
8192901 Kageyama Jun 2012 B2
8196234 Glunk Jun 2012 B2
8197915 Oka et al. Jun 2012 B2
8216380 White et al. Jul 2012 B2
8231799 Bera et al. Jul 2012 B2
D665055 Yanagisawa et al. Aug 2012 S
8241991 Hsieh et al. Aug 2012 B2
8242031 Mallick et al. Aug 2012 B2
8252114 Vukovic Aug 2012 B2
8252116 Sneh Aug 2012 B2
8252659 Huyghabaert et al. Aug 2012 B2
8252691 Beynet et al. Aug 2012 B2
8278176 Bauer et al. Oct 2012 B2
8282769 Iizuka Oct 2012 B2
8287648 Reed et al. Oct 2012 B2
8293016 Bahng et al. Oct 2012 B2
8298951 Nakano Oct 2012 B1
8307472 Saxon et al. Nov 2012 B1
8309173 Tuominen et al. Nov 2012 B2
8323413 Son Dec 2012 B2
8329599 Fukazawa et al. Dec 2012 B2
8334219 Lee et al. Dec 2012 B2
8367528 Bauer et al. Feb 2013 B2
8372204 Nakamura Feb 2013 B2
8394466 Hong et al. Mar 2013 B2
8415259 Lee et al. Apr 2013 B2
8440259 Chiang et al. May 2013 B2
8444120 Gregg et al. May 2013 B2
8454749 Li Jun 2013 B2
8465811 Ueda Jun 2013 B2
8466411 Arai Jun 2013 B2
8470187 Ha Jun 2013 B2
8484846 Dhindsa Jul 2013 B2
8496756 Cruse et al. Jul 2013 B2
8506713 Takagi Aug 2013 B2
8535767 Kimura Sep 2013 B1
D691974 Osada et al. Oct 2013 S
8551892 Nakano Oct 2013 B2
8563443 Fukazawa Oct 2013 B2
8569184 Oka Oct 2013 B2
8591659 Fang et al. Nov 2013 B1
8592005 Ueda Nov 2013 B2
8608885 Goto et al. Nov 2013 B2
8647722 Kobayashi et al. Feb 2014 B2
8664627 Ishikawa et al. Mar 2014 B1
8669185 Onizawa Mar 2014 B2
8683943 Onodera et al. Apr 2014 B2
8711338 Liu et al. Apr 2014 B2
D705745 Kurs et al. May 2014 S
8720965 Hino et al. May 2014 B2
8722546 Fukazawa et al. May 2014 B2
8726837 Patalay et al. May 2014 B2
8728832 Raisanen et al. May 2014 B2
8742668 Nakano et al. Jun 2014 B2
8764085 Urabe Jul 2014 B2
8784950 Fukazawa et al. Jul 2014 B2
8784951 Fukazawa et al. Jul 2014 B2
8785215 Kobayashi et al. Jul 2014 B2
8790749 Omori et al. Jul 2014 B2
8802201 Raisanen et al. Aug 2014 B2
8820809 Ando et al. Sep 2014 B2
8821640 Cleary et al. Sep 2014 B2
8845806 Aida et al. Sep 2014 B2
D715410 Lohmann Oct 2014 S
8864202 Schrameyer Oct 2014 B1
D716742 Jang et al. Nov 2014 S
8877655 Shero et al. Nov 2014 B2
8883270 Shero et al. Nov 2014 B2
8901016 Ha et al. Dec 2014 B2
8911826 Adachi et al. Dec 2014 B2
8912101 Tsuji et al. Dec 2014 B2
D720838 Yamagishi et al. Jan 2015 S
8933375 Dunn et al. Jan 2015 B2
8940646 Chandrasekharan Jan 2015 B1
8946830 Jung et al. Feb 2015 B2
D724701 Yamagishi et al. Mar 2015 S
8967608 Mitsumori et al. Mar 2015 B2
8986456 Fondurulia et al. Mar 2015 B2
8991887 Shin et al. Mar 2015 B2
8993054 Jung et al. Mar 2015 B2
D726884 Yamagishi et al. Apr 2015 S
9005539 Halpin et al. Apr 2015 B2
9017481 Pettinger Apr 2015 B1
9018093 Tsuji et al. Apr 2015 B2
9018111 Milligan et al. Apr 2015 B2
9021985 Alokozai et al. May 2015 B2
9023737 Beynet et al. May 2015 B2
9029253 Milligan et al. May 2015 B2
9029272 Nakano May 2015 B1
D732644 Yamagishi et al. Jun 2015 S
D733261 Yamagishi et al. Jun 2015 S
D733843 Yamagishi et al. Jul 2015 S
9096931 Yednak et al. Aug 2015 B2
9117657 Nakano et al. Aug 2015 B2
9123510 Nakano et al. Sep 2015 B2
9136108 Matsushita et al. Sep 2015 B2
9142393 Okabe et al. Sep 2015 B2
9171716 Fukuda Oct 2015 B2
9190263 Ishikawa et al. Nov 2015 B2
9202727 Dunn et al. Dec 2015 B2
20010017103 Takeshita et al. Aug 2001 A1
20010018267 Shinriki et al. Aug 2001 A1
20010019777 Tanaka et al. Sep 2001 A1
20010019900 Hasegawa Sep 2001 A1
20010028924 Sherman Oct 2001 A1
20010046765 Cappellani et al. Nov 2001 A1
20010049202 Maeda et al. Dec 2001 A1
20020001974 Chan Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020014204 Pyo Feb 2002 A1
20020064592 Datta et al. May 2002 A1
20020076490 Chiang Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020079714 Soucy et al. Jun 2002 A1
20020088542 Nishikawa et al. Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020108670 Baker et al. Aug 2002 A1
20020110991 Li Aug 2002 A1
20020114886 Chou et al. Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020179011 Jonnalagadda Dec 2002 A1
20020187650 Blalock et al. Dec 2002 A1
20020197849 Mandal Dec 2002 A1
20030003635 Paranjpe et al. Jan 2003 A1
20030010452 Park et al. Jan 2003 A1
20030012632 Saeki Jan 2003 A1
20030019428 Ku et al. Jan 2003 A1
20030019580 Strang Jan 2003 A1
20030025146 Narwankar et al. Feb 2003 A1
20030040158 Saitoh Feb 2003 A1
20030042419 Katsumata et al. Mar 2003 A1
20030049375 Nguyen et al. Mar 2003 A1
20030054670 Wang et al. Mar 2003 A1
20030059535 Luo et al. Mar 2003 A1
20030059980 Chen et al. Mar 2003 A1
20030066826 Lee et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030091938 Fairbairn et al. May 2003 A1
20030094133 Yoshidome et al. May 2003 A1
20030111963 Tolmachev et al. Jun 2003 A1
20030134038 Paranjpe Jul 2003 A1
20030141820 White et al. Jul 2003 A1
20030157436 Manger et al. Aug 2003 A1
20030168001 Sneh Sep 2003 A1
20030170583 Nakashima Sep 2003 A1
20030180458 Sneh Sep 2003 A1
20030183156 Dando Oct 2003 A1
20030198587 Kaloyeros Oct 2003 A1
20030209323 Yokogaki Nov 2003 A1
20030228772 Cowans Dec 2003 A1
20030232138 Tuominen et al. Dec 2003 A1
20040009679 Yeo et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040013818 Moon et al. Jan 2004 A1
20040018307 Park et al. Jan 2004 A1
20040018750 Sophie et al. Jan 2004 A1
20040023516 Londergan et al. Feb 2004 A1
20040029052 Park et al. Feb 2004 A1
20040036129 Forbes et al. Feb 2004 A1
20040106249 Huotari Feb 2004 A1
20040063289 Ohta Apr 2004 A1
20040071897 Verplancken Apr 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040079960 Shakuda Apr 2004 A1
20040080697 Song Apr 2004 A1
20040082171 Shin et al. Apr 2004 A1
20040101622 Park et al. May 2004 A1
20040103914 Cheng et al. Jun 2004 A1
20040124549 Curran Jul 2004 A1
20040134429 Yamanaka Jul 2004 A1
20040144980 Ahn et al. Jul 2004 A1
20040146644 Xia et al. Jul 2004 A1
20040168627 Conley et al. Sep 2004 A1
20040169032 Murayama et al. Sep 2004 A1
20040198069 Metzner et al. Oct 2004 A1
20040200499 Harvey et al. Oct 2004 A1
20040209477 Buxbaum et al. Oct 2004 A1
20040212947 Nguyen Oct 2004 A1
20040219793 Hishiya et al. Nov 2004 A1
20040221807 Verghese et al. Nov 2004 A1
20040247779 Selvamanickam et al. Dec 2004 A1
20040261712 Hayashi et al. Dec 2004 A1
20040266011 Lee et al. Dec 2004 A1
20050008799 Tomiyasu et al. Jan 2005 A1
20050019026 Wang et al. Jan 2005 A1
20050020071 Sonobe et al. Jan 2005 A1
20050023624 Ahn et al. Feb 2005 A1
20050034674 Ono Feb 2005 A1
20050037154 Koh et al. Feb 2005 A1
20050051093 Makino et al. Mar 2005 A1
20050054228 March Mar 2005 A1
20050059262 Yin et al. Mar 2005 A1
20050064207 Senzaki et al. Mar 2005 A1
20050064719 Liu Mar 2005 A1
20050066893 Soininen Mar 2005 A1
20050069651 Miyoshi Mar 2005 A1
20050070123 Hirano Mar 2005 A1
20050070729 Kiyomori et al. Mar 2005 A1
20050072357 Shero et al. Apr 2005 A1
20050074983 Shinriki et al. Apr 2005 A1
20050092249 Kilpela et al. May 2005 A1
20050095770 Kumagai et al. May 2005 A1
20050100669 Kools et al. May 2005 A1
20050101154 Huang May 2005 A1
20050106893 Wilk May 2005 A1
20050110069 Kil et al. May 2005 A1
20050120962 Ushioda et al. Jun 2005 A1
20050123690 Derderian et al. Jun 2005 A1
20050133161 Carpenter et al. Jun 2005 A1
20050142361 Nakanishi Jun 2005 A1
20050145338 Park et al. Jul 2005 A1
20050153571 Senzaki Jul 2005 A1
20050173003 Laverdiere et al. Aug 2005 A1
20050181535 Yun et al. Aug 2005 A1
20050187647 Wang et al. Aug 2005 A1
20050191828 Al-Bayati et al. Sep 2005 A1
20050208718 Lim et al. Sep 2005 A1
20050212119 Shero Sep 2005 A1
20050214457 Schmitt et al. Sep 2005 A1
20050214458 Meiere Sep 2005 A1
20050218462 Ahn et al. Oct 2005 A1
20050221618 AmRhein et al. Oct 2005 A1
20050223994 Blomiley et al. Oct 2005 A1
20050227502 Schmitt et al. Oct 2005 A1
20050229848 Shinriki Oct 2005 A1
20050229972 Hoshi et al. Oct 2005 A1
20050241176 Shero et al. Nov 2005 A1
20050241763 Huang et al. Nov 2005 A1
20050255257 Choi et al. Nov 2005 A1
20050258280 Goto et al. Nov 2005 A1
20050260347 Narwankar et al. Nov 2005 A1
20050260850 Loke Nov 2005 A1
20050263075 Wang et al. Dec 2005 A1
20050263932 Heugel Dec 2005 A1
20050271813 Kher et al. Dec 2005 A1
20050274323 Seidel et al. Dec 2005 A1
20050282101 Adachi Dec 2005 A1
20050287725 Kitagawa Dec 2005 A1
20050287771 Seamons et al. Dec 2005 A1
20060013946 Park et al. Jan 2006 A1
20060014384 Lee et al. Jan 2006 A1
20060014397 Seamons et al. Jan 2006 A1
20060016783 Wu et al. Jan 2006 A1
20060019033 Muthukrishnan et al. Jan 2006 A1
20060019502 Park et al. Jan 2006 A1
20060021703 Umotoy et al. Feb 2006 A1
20060024439 Tuominen et al. Feb 2006 A2
20060046518 Hill et al. Mar 2006 A1
20060051520 Behle et al. Mar 2006 A1
20060051925 Ahn et al. Mar 2006 A1
20060060930 Metz et al. Mar 2006 A1
20060062910 Meiere Mar 2006 A1
20060063346 Lee et al. Mar 2006 A1
20060068121 Lee et al. Mar 2006 A1
20060068125 Radhakrshnan Mar 2006 A1
20060105566 Waldfried et al. May 2006 A1
20060110934 Fukuchi May 2006 A1
20060113675 Chang et al. Jun 2006 A1
20060113806 Tsuji et al. Jun 2006 A1
20060128168 Ahn et al. Jun 2006 A1
20060130767 Herchen Jun 2006 A1
20060137609 Puchacz et al. Jun 2006 A1
20060147626 Blomberg Jul 2006 A1
20060148180 Ahn et al. Jul 2006 A1
20060163612 Kouvetakis et al. Jul 2006 A1
20060172531 Lin et al. Aug 2006 A1
20060191555 Yoshida et al. Aug 2006 A1
20060193979 Meiere et al. Aug 2006 A1
20060199357 Wan et al. Sep 2006 A1
20060205223 Smayling Sep 2006 A1
20060208215 Metzner et al. Sep 2006 A1
20060213439 Ishizaka Sep 2006 A1
20060223301 Vanhaelemeersch et al. Oct 2006 A1
20060226117 Bertram et al. Oct 2006 A1
20060228888 Lee et al. Oct 2006 A1
20060236934 Choi et al. Oct 2006 A1
20060240574 Yoshie Oct 2006 A1
20060240662 Conley et al. Oct 2006 A1
20060251827 Nowak Nov 2006 A1
20060257563 Doh et al. Nov 2006 A1
20060257584 Derderian et al. Nov 2006 A1
20060258078 Lee et al. Nov 2006 A1
20060258173 Xiao et al. Nov 2006 A1
20060260545 Ramaswamy et al. Nov 2006 A1
20060264060 Ramaswamy et al. Nov 2006 A1
20060264066 Bartholomew Nov 2006 A1
20060266289 Verghese et al. Nov 2006 A1
20060269692 Balseanu Nov 2006 A1
20060278162 Ohmi Dec 2006 A1
20060278524 Stowell Dec 2006 A1
20070006806 Imai Jan 2007 A1
20070010072 Bailey et al. Jan 2007 A1
20070020953 Tsai et al. Jan 2007 A1
20070022954 Iizuka Feb 2007 A1
20070028842 Inagawa et al. Feb 2007 A1
20070031598 Okuyama et al. Feb 2007 A1
20070031599 Gschwandtner et al. Feb 2007 A1
20070032082 Ramaswamy et al. Feb 2007 A1
20070037412 Dip et al. Feb 2007 A1
20070042117 Kupurao et al. Feb 2007 A1
20070049053 Mahajani Mar 2007 A1
20070054499 Jang Mar 2007 A1
20070059948 Metzner et al. Mar 2007 A1
20070062453 Ishikawa Mar 2007 A1
20070065578 McDougall Mar 2007 A1
20070066010 Ando Mar 2007 A1
20070077355 Chacin et al. Apr 2007 A1
20070084405 Kim Apr 2007 A1
20070096194 Streck et al. May 2007 A1
20070098527 Hall et al. May 2007 A1
20070107845 Ishizawa et al. May 2007 A1
20070111545 Lee et al. May 2007 A1
20070116873 Li et al. May 2007 A1
20070119370 Ma May 2007 A1
20070123037 Lee et al. May 2007 A1
20070125762 Cui et al. Jun 2007 A1
20070128538 Fairbairn et al. Jun 2007 A1
20070134942 Ahn et al. Jun 2007 A1
20070146621 Yeom Jun 2007 A1
20070148990 Deboer et al. Jun 2007 A1
20070155138 Tomasini et al. Jul 2007 A1
20070158026 Amikura Jul 2007 A1
20070163440 Kim et al. Jul 2007 A1
20070166457 Yamoto et al. Jul 2007 A1
20070166966 Todd et al. Jul 2007 A1
20070166999 Vaarstra Jul 2007 A1
20070173071 Afzali-Aldakani et al. Jul 2007 A1
20070175393 Nishimura et al. Aug 2007 A1
20070175397 Tomiyasu et al. Aug 2007 A1
20070186952 Honda et al. Aug 2007 A1
20070207275 Nowak et al. Sep 2007 A1
20070209590 Li Sep 2007 A1
20070210890 Hsu et al. Sep 2007 A1
20070215048 Suzuki et al. Sep 2007 A1
20070218200 Suzuki et al. Sep 2007 A1
20070218705 Matsuki et al. Sep 2007 A1
20070224777 Hamelin Sep 2007 A1
20070224833 Morisada et al. Sep 2007 A1
20070232031 Singh et al. Oct 2007 A1
20070232071 Balseanu et al. Oct 2007 A1
20070232501 Tonomura Oct 2007 A1
20070234955 Suzuki et al. Oct 2007 A1
20070237697 Clark Oct 2007 A1
20070241688 DeVancentis et al. Oct 2007 A1
20070248767 Okura Oct 2007 A1
20070249131 Allen et al. Oct 2007 A1
20070252532 DeVancentis et al. Oct 2007 A1
20070251444 Gros-Jean et al. Nov 2007 A1
20070252244 Srividya et al. Nov 2007 A1
20070264807 Leone et al. Nov 2007 A1
20070275166 Thridandam et al. Nov 2007 A1
20070277735 Mokhesi et al. Dec 2007 A1
20070281496 Ingle et al. Dec 2007 A1
20070298362 Rocha-Alvarez et al. Dec 2007 A1
20080003824 Padhi et al. Jan 2008 A1
20080003838 Haukka et al. Jan 2008 A1
20080006208 Ueno et al. Jan 2008 A1
20080023436 Gros-Jean et al. Jan 2008 A1
20080026574 Brcka Jan 2008 A1
20080026597 Munro et al. Jan 2008 A1
20080029790 Ahn et al. Feb 2008 A1
20080036354 Letz et al. Feb 2008 A1
20080038485 Lukas Feb 2008 A1
20080054332 Kim et al. Mar 2008 A1
20080054813 Espiau et al. Mar 2008 A1
20080057659 Forbes et al. Mar 2008 A1
20080061667 Gaertner et al. Mar 2008 A1
20080066778 Matsushita et al. Mar 2008 A1
20080069955 Hong et al. Mar 2008 A1
20080075881 Won et al. Mar 2008 A1
20080076266 Fukazawa et al. Mar 2008 A1
20080081104 Hasebe et al. Apr 2008 A1
20080081113 Clark Apr 2008 A1
20080081121 Morita et al. Apr 2008 A1
20080085226 Fondurulia et al. Apr 2008 A1
20080092815 Chen et al. Apr 2008 A1
20080113094 Casper May 2008 A1
20080113096 Mahajani May 2008 A1
20080113097 Mahajani et al. May 2008 A1
20080124197 van der Meulen May 2008 A1
20080124908 Forbes et al. May 2008 A1
20080133154 Krauss et al. Jun 2008 A1
20080149031 Chu et al. Jun 2008 A1
20080152463 Chidambaram et al. Jun 2008 A1
20080153311 Padhi et al. Jun 2008 A1
20080173240 Furukawahara Jul 2008 A1
20080173326 Gu et al. Jul 2008 A1
20080176375 Erben et al. Jul 2008 A1
20080182075 Chopra Jul 2008 A1
20080182390 Lemmi et al. Jul 2008 A1
20080191193 Li et al. Aug 2008 A1
20080199977 Weigel et al. Aug 2008 A1
20080203487 Hohage et al. Aug 2008 A1
20080211423 Shinmen et al. Sep 2008 A1
20080211526 Shinma Sep 2008 A1
20080216077 Emani et al. Sep 2008 A1
20080224240 Ahn et al. Sep 2008 A1
20080233288 Clark Sep 2008 A1
20080237572 Chui et al. Oct 2008 A1
20080241384 Jeong Oct 2008 A1
20080242116 Clark Oct 2008 A1
20080248310 Kim et al. Oct 2008 A1
20080261413 Mahajani Oct 2008 A1
20080264337 Sano et al. Oct 2008 A1
20080267598 Nakamura Oct 2008 A1
20080277715 Ohmi et al. Nov 2008 A1
20080282970 Heys et al. Nov 2008 A1
20080295872 Riker et al. Dec 2008 A1
20080299326 Fukazawa Dec 2008 A1
20080302303 Choi et al. Dec 2008 A1
20080305246 Choi et al. Dec 2008 A1
20080305443 Nakamura Dec 2008 A1
20080315292 Ji et al. Dec 2008 A1
20080317972 Hendriks Dec 2008 A1
20090000550 Tran et al. Jan 2009 A1
20090000551 Choi et al. Jan 2009 A1
20090011608 Nabatame Jan 2009 A1
20090020072 Mizunaga et al. Jan 2009 A1
20090023229 Matsushita Jan 2009 A1
20090029528 Sanchez et al. Jan 2009 A1
20090029564 Yamashita et al. Jan 2009 A1
20090033907 Watson Feb 2009 A1
20090035947 Horii Feb 2009 A1
20090041952 Yoon et al. Feb 2009 A1
20090041984 Mayers et al. Feb 2009 A1
20090045829 Awazu Feb 2009 A1
20090050621 Awazu Feb 2009 A1
20090061644 Chiang et al. Mar 2009 A1
20090061647 Mallick et al. Mar 2009 A1
20090085156 Dewey et al. Apr 2009 A1
20090090382 Morisada Apr 2009 A1
20090093094 Ye et al. Apr 2009 A1
20090095221 Tam et al. Apr 2009 A1
20090107404 Ogliari et al. Apr 2009 A1
20090122293 Shibazaki May 2009 A1
20090136668 Gregg et al. May 2009 A1
20090136683 Fukasawa et al. May 2009 A1
20090139657 Lee et al. Jun 2009 A1
20090142935 Fukazawa et al. Jun 2009 A1
20090146322 Weling et al. Jun 2009 A1
20090156015 Park Jun 2009 A1
20090169744 Byun Jul 2009 A1
20090209081 Matero Aug 2009 A1
20090211523 Kuppurao et al. Aug 2009 A1
20090211525 Sarigiannis et al. Aug 2009 A1
20090239386 Suzaki et al. Sep 2009 A1
20090242957 Ma et al. Oct 2009 A1
20090246374 Vukovic Oct 2009 A1
20090246399 Goundar Oct 2009 A1
20090250955 Aoki Oct 2009 A1
20090261331 Yang et al. Oct 2009 A1
20090269506 Okura et al. Oct 2009 A1
20090275205 Kiehlbauch et al. Nov 2009 A1
20090277510 Shikata Nov 2009 A1
20090283041 Tomiyasu et al. Nov 2009 A1
20090283217 Lubomirsky et al. Nov 2009 A1
20090286400 Heo et al. Nov 2009 A1
20090286402 Xia et al. Nov 2009 A1
20090289300 Sasaki et al. Nov 2009 A1
20090304558 Patton Dec 2009 A1
20090311857 Todd et al. Dec 2009 A1
20100001409 Humbert et al. Jan 2010 A1
20100006031 Choi et al. Jan 2010 A1
20100014479 Kim Jan 2010 A1
20100015813 McGinnis et al. Jan 2010 A1
20100024727 Kim et al. Feb 2010 A1
20100025796 Dabiran Feb 2010 A1
20100041179 Lee Feb 2010 A1
20100041243 Cheng et al. Feb 2010 A1
20100055312 Kato et al. Mar 2010 A1
20100055317 Kato Mar 2010 A1
20100055347 Kato Mar 2010 A1
20100055442 Kellock Mar 2010 A1
20100075507 Chang et al. Mar 2010 A1
20100089320 Kim Apr 2010 A1
20100093187 Lee et al. Apr 2010 A1
20100102417 Ganguli et al. Apr 2010 A1
20100116209 Kato May 2010 A1
20100124610 Aikawa et al. May 2010 A1
20100124618 Kobayashi et al. May 2010 A1
20100124621 Kobayashi et al. May 2010 A1
20100126605 Stones May 2010 A1
20100130017 Luo et al. May 2010 A1
20100134023 Mills Jun 2010 A1
20100136216 Tsuei et al. Jun 2010 A1
20100140221 Kikuchi et al. Jun 2010 A1
20100144162 Lee et al. Jun 2010 A1
20100151206 Wu et al. Jun 2010 A1
20100162752 Tabata et al. Jul 2010 A1
20100170441 Won et al. Jul 2010 A1
20100178137 Chintalapati et al. Jul 2010 A1
20100178423 Shimizu et al. Jul 2010 A1
20100184302 Lee et al. Jul 2010 A1
20100193501 Zucker et al. Aug 2010 A1
20100195392 Freeman Aug 2010 A1
20100221452 Kang Sep 2010 A1
20100230051 Iizuka Sep 2010 A1
20100233886 Yang et al. Sep 2010 A1
20100243166 Hayashi et al. Sep 2010 A1
20100244688 Braun et al. Sep 2010 A1
20100255198 Cleary et al. Oct 2010 A1
20100255625 De Vries Oct 2010 A1
20100259152 Yasuda et al. Oct 2010 A1
20100270675 Harada Oct 2010 A1
20100275846 Kitagawa Nov 2010 A1
20100285319 Kwak et al. Nov 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100301752 Bakre et al. Dec 2010 A1
20100304047 Yang et al. Dec 2010 A1
20100307415 Shero et al. Dec 2010 A1
20100317198 Antonelli Dec 2010 A1
20100322604 Fondurulia et al. Dec 2010 A1
20110000619 Suh Jan 2011 A1
20110006402 Zhou Jan 2011 A1
20110006406 Urbanowicz et al. Jan 2011 A1
20110014795 Lee Jan 2011 A1
20110034039 Liang et al. Feb 2011 A1
20110048642 Mihara et al. Mar 2011 A1
20110052833 Flanawa et al. Mar 2011 A1
20110056513 Hombach et al. Mar 2011 A1
20110056626 Brown et al. Mar 2011 A1
20110061810 Ganguly et al. Mar 2011 A1
20110070380 Shero et al. Mar 2011 A1
20110081519 Dillingh Apr 2011 A1
20110086516 Lee et al. Apr 2011 A1
20110089469 Merckling Apr 2011 A1
20110097901 Banna et al. Apr 2011 A1
20110107512 Gilbert May 2011 A1
20110108194 Yoshioka et al. May 2011 A1
20110108741 Ingram May 2011 A1
20110108929 Meng May 2011 A1
20110117490 Bae et al. May 2011 A1
20110117737 Agarwala et al. May 2011 A1
20110124196 Lee May 2011 A1
20110143032 Vrtis et al. Jun 2011 A1
20110159202 Matsushita Jun 2011 A1
20110159673 Hanawa et al. Jun 2011 A1
20110175011 Ehrne et al. Jul 2011 A1
20110180233 Bera Jul 2011 A1
20110183079 Jackson et al. Jul 2011 A1
20110183269 Zhu Jul 2011 A1
20110210468 Shannon et al. Sep 2011 A1
20110220874 Hanrath Sep 2011 A1
20110223334 Yudovsky Sep 2011 A1
20110236600 Fox et al. Sep 2011 A1
20110239936 Suzaki et al. Oct 2011 A1
20110254052 Kouvetakis Oct 2011 A1
20110256726 Lavoie et al. Oct 2011 A1
20110256727 Beynet et al. Oct 2011 A1
20110256734 Hausmann et al. Oct 2011 A1
20110265549 Cruse et al. Nov 2011 A1
20110265951 Xu et al. Nov 2011 A1
20110275166 Shero et al. Nov 2011 A1
20110281417 Gordon et al. Nov 2011 A1
20110283933 Makarov et al. Nov 2011 A1
20110294075 Chen et al. Dec 2011 A1
20110308460 Hong et al. Dec 2011 A1
20120003500 Yoshida et al. Jan 2012 A1
20120006268 Ozaki Jan 2012 A1
20120006489 Okita Jan 2012 A1
20120024479 Palagashvili et al. Feb 2012 A1
20120052681 Marsh Mar 2012 A1
20120070136 Koelmel et al. Mar 2012 A1
20120070997 Larson Mar 2012 A1
20120090704 Laverdiere et al. Apr 2012 A1
20120098107 Raisanen et al. Apr 2012 A1
20120100464 Kageyama Apr 2012 A1
20120103264 Choi et al. May 2012 A1
20120103939 Wu et al. May 2012 A1
20120107607 Takaki et al. May 2012 A1
20120114877 Lee May 2012 A1
20120121823 Chhabra May 2012 A1
20120128897 Xiao et al. May 2012 A1
20120135145 Je et al. May 2012 A1
20120156108 Fondurulia et al. Jun 2012 A1
20120160172 Wamura et al. Jun 2012 A1
20120164327 Sato Jun 2012 A1
20120164837 Tan et al. Jun 2012 A1
20120164842 Watanabe Jun 2012 A1
20120171391 Won Jul 2012 A1
20120171874 Thridandam et al. Jul 2012 A1
20120207456 Kim et al. Aug 2012 A1
20120212121 Lin Aug 2012 A1
20120214318 Fukazawa et al. Aug 2012 A1
20120220139 Lee et al. Aug 2012 A1
20120225561 Watanabe Sep 2012 A1
20120240858 Taniyama et al. Sep 2012 A1
20120270339 Xie et al. Oct 2012 A1
20120270393 Pore et al. Oct 2012 A1
20120289053 Holland et al. Nov 2012 A1
20120295427 Bauer Nov 2012 A1
20120304935 Oosterlaken et al. Dec 2012 A1
20120305196 Mori et al. Dec 2012 A1
20120315113 Hiroki Dec 2012 A1
20120318334 Bedell et al. Dec 2012 A1
20120321786 Satitpunwaycha et al. Dec 2012 A1
20120322252 Son et al. Dec 2012 A1
20120325148 Yamagishi et al. Dec 2012 A1
20120328780 Yamagishi et al. Dec 2012 A1
20130005122 Schwarzenbach et al. Jan 2013 A1
20130011983 Tsai Jan 2013 A1
20130014697 Kanayama Jan 2013 A1
20130014896 Shoji et al. Jan 2013 A1
20130019944 Hekmatshoar-Tabai et al. Jan 2013 A1
20130019945 Hekmatshoar-Tabai et al. Jan 2013 A1
20130023129 Reed Jan 2013 A1
20130048606 Mao et al. Feb 2013 A1
20130068970 Matsushita Mar 2013 A1
20130078392 Xiao et al. Mar 2013 A1
20130081702 Mohammed et al. Apr 2013 A1
20130104988 Yednak et al. May 2013 A1
20130104992 Yednak et al. May 2013 A1
20130115383 Lu et al. May 2013 A1
20130122712 Kim et al. May 2013 A1
20130126515 Shero et al. May 2013 A1
20130129577 Halpin et al. May 2013 A1
20130134148 Tachikawa May 2013 A1
20130180448 Sakaue et al. Jul 2013 A1
20130183814 Huang et al. Jul 2013 A1
20130210241 Lavoie et al. Aug 2013 A1
20130217239 Mallick et al. Aug 2013 A1
20130217240 Mallick et al. Aug 2013 A1
20130217241 Underwood et al. Aug 2013 A1
20130217243 Underwood et al. Aug 2013 A1
20130224964 Fukazawa Aug 2013 A1
20130230814 Dunn et al. Sep 2013 A1
20130256838 Sanchez et al. Oct 2013 A1
20130264659 Jung Oct 2013 A1
20130292047 Tian et al. Nov 2013 A1
20130292676 Milligan et al. Nov 2013 A1
20130292807 Raisanen et al. Nov 2013 A1
20130319290 Xiao et al. Dec 2013 A1
20130323435 Xiao et al. Dec 2013 A1
20130330165 Wimplinger Dec 2013 A1
20130330911 Huang et al. Dec 2013 A1
20140000843 Dunn et al. Jan 2014 A1
20140014642 Elliot et al. Jan 2014 A1
20140014644 Akiba et al. Jan 2014 A1
20140020619 Vincent et al. Jan 2014 A1
20140027884 Tang et al. Jan 2014 A1
20140036274 Marquardt et al. Feb 2014 A1
20140056679 Yamabe et al. Feb 2014 A1
20140060147 Sarin et al. Mar 2014 A1
20140062304 Nakano et al. Mar 2014 A1
20140067110 Lawson et al. Mar 2014 A1
20140073143 Alokozai et al. Mar 2014 A1
20140077240 Roucka et al. Mar 2014 A1
20140084341 Weeks Mar 2014 A1
20140087544 Tolle Mar 2014 A1
20140096716 Chung et al. Apr 2014 A1
20140099798 Tsuji Apr 2014 A1
20140103145 White Apr 2014 A1
20140116335 Tsuji et al. May 2014 A1
20140120487 Kaneko May 2014 A1
20140127907 Yang May 2014 A1
20140159170 Raisanen et al. Jun 2014 A1
20140174354 Arai Jun 2014 A1
20140175054 Carlson et al. Jun 2014 A1
20140182053 Huang Jul 2014 A1
20140217065 Winkler et al. Aug 2014 A1
20140220247 Haukka et al. Aug 2014 A1
20140225065 Rachmady et al. Aug 2014 A1
20140227072 Lee et al. Aug 2014 A1
20140251953 Winkler et al. Sep 2014 A1
20140251954 Winkler et al. Sep 2014 A1
20140283747 Kasai et al. Sep 2014 A1
20140346650 Raisanen et al. Nov 2014 A1
20140349033 Nonaka et al. Nov 2014 A1
20140363980 Kawamata et al. Dec 2014 A1
20140367043 Bishara et al. Dec 2014 A1
20150004316 Thompson et al. Jan 2015 A1
20150004317 Dussarrat et al. Jan 2015 A1
20150007770 Chandrasekharan et al. Jan 2015 A1
20150014632 Kim et al. Jan 2015 A1
20150024609 Milligan et al. Jan 2015 A1
20150048485 Tolle Feb 2015 A1
20150078874 Sansoni Mar 2015 A1
20150086316 Greenberg Mar 2015 A1
20150091057 Xie et al. Apr 2015 A1
20150096973 Dunn et al. Apr 2015 A1
20150099072 Takamure et al. Apr 2015 A1
20150132212 Winkler et al. May 2015 A1
20150140210 Jung et al. May 2015 A1
20150147483 Fukazawa May 2015 A1
20150147877 Jung May 2015 A1
20150167159 Halpin et al. Jun 2015 A1
20150170954 Agarwal Jun 2015 A1
20150174768 Rodnick Jun 2015 A1
20150184291 Alokozai et al. Jul 2015 A1
20150187568 Pettinger et al. Jul 2015 A1
20150217456 Tsuji et al. Aug 2015 A1
20150240359 Jdira et al. Aug 2015 A1
20150267295 Hill et al. Sep 2015 A1
20150267297 Shiba Sep 2015 A1
20150267298 Saitou Sep 2015 A1
20150267299 Hawkins Sep 2015 A1
20150267301 Hill et al. Sep 2015 A1
20150284848 Nakano et al. Oct 2015 A1
20150287626 Arai Oct 2015 A1
20150308586 Shugrue et al. Oct 2015 A1
20150315704 Nakano et al. Nov 2015 A1
20150376784 Wu Dec 2015 A1
Foreign Referenced Citations (50)
Number Date Country
1563483 Jan 2005 CN
101330015 Dec 2008 CN
101522943 Sep 2009 CN
101423937 Sep 2011 CN
2036600 Mar 2009 EP
2426233 Jul 2012 EP
03-044472 Feb 1991 JP
04115531 Apr 1992 JP
07-034936 Aug 1995 JP
7-272694 Oct 1995 JP
07283149 Oct 1995 JP
08-181135 Jul 1996 JP
08335558 Dec 1996 JP
10-064696 Mar 1998 JP
10-0261620 Sep 1998 JP
2845163 Jan 1999 JP
2004134553 Apr 2001 JP
2001342570 Dec 2001 JP
2004014952 Jan 2004 JP
2004091848 Mar 2004 JP
2004294638 Oct 2004 JP
2004310019 Nov 2004 JP
2004538374 Dec 2004 JP
2005507030 Mar 2005 JP
2006186271 Jul 2006 JP
3140111 Mar 2008 JP
2008060304 Mar 2008 JP
2008527748 Jul 2008 JP
2008202107 Sep 2008 JP
2009016815 Jan 2009 JP
2009099938 May 2009 JP
2010097834 Apr 2010 JP
2010205967 Sep 2010 JP
2010251444 Oct 2010 JP
2012089837 May 2012 JP
I226380 Jan 2005 TW
200701301 Jan 2007 TW
1998032893 Jul 1998 WO
2004010467 Jan 2004 WO
2006054854 May 2006 WO
2006056091 Jun 2006 WO
2006078666 Jul 2006 WO
2006080782 Aug 2006 WO
2006101857 Sep 2006 WO
2007140376 Dec 2007 WO
2010039363 Apr 2010 WO
2010118051 Jan 2011 WO
2011019950 Feb 2011 WO
2013078065 May 2013 WO
2013078066 May 2013 WO
Non-Patent Literature Citations (339)
Entry
USPTO; Notice of Allowance dated Aug. 4, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Notice of Allowance dated Jul. 6, 2015 in U.S. Appl. No. 29/447,298.
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596.
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Restriction Requirement dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Non-Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Final Office Action dated Oct. 21, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037.
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037.
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300.
USPTO; Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408.
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Non-Final Office Action dated Jun. 17, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642.
USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Final Office Action dated Mar. 20, 2015 in U.S. Appl. No. 13/312,591.
USPTO; Notice of Allowance dated May 14, 2015 in U.S. Appl. No. 13/312,591.
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271.
USPTO; Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271.
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271.
USPTO; Restriction Requirement dated Oct. 29, 2013 in U.S. Appl. No. 13/439,528.
USPTO; Office Action dated Feb. 4, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340.
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214.
USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066.
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Notice of Allowance dated Jun. 12, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043.
USPTO; Final Office Action dated Mar. 13, 2015 in U.S. Appl. No. 13/597,043.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Final Office Action dated Jun. 1, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538.
USPTO; Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538.
USPTO; Non-Final Office Action dated May 28, 2015 in U.S. Appl. No. 13/651,144.
USPTO; Non-Final Office Action dated Apr. 3, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151.
USPTO; Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 13/791,246.
USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Notice of Allowance dated Mar. 10, 2015 in U.S. Appl. No. 13/874,708.
USPTO; Restriction Requirement dated May 8, 2014 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134.
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134.
USPTO; Restriction Requirement dated Apr. 30, 2015 in U.S. Appl. No. 13/941,216.
USPTO; Restriction Requirement dated Sep. 16, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Non-Final Office Action dated Oct. 30, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Restriction Requirement Action dated Jan. 28, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Non-Final Office Action dated Apr. 7, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Non-Final Office Action dated Apr. 28, 2015 in U.S. Appl. No. 14/040,196.
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/079,302.
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/166,462.
USPTO; Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187.
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187.
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 14/183,187.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044.
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 29/447,298.
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126.
PCT; International Preliminary Report on Patentability dated Oct. 11, 2011 Application No. PCT/US2010/030126.
PCT; International Search report and Written Opinion dated Jan. 12, 2011 in Application No. PCT/US2010/045368.
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343.
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347.
Chinese Patent Office; Office Action dated Jan. 10, 2013 in Application No. 201080015699.9.
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9.
Chinese Patent Office; Notice on the First Office Action dated May 24, 2013 in Application No. 201080036764.6.
Chinese Patent Office; Notice on the Second Office Action dated Jan. 2, 2014 in Application No. 201080036764.6.
Chinese Patent Office; Notice on the Third Office Action dated Jul. 1, 2014 in Application No. 201080036764.6.
Chinese Patent Office; Notice on the First Office Action dated Feb. 8, 2014 in Application No. 201110155056.
Chinese Patent Office; Notice on the Second Office Action dated Sep. 16, 2014 in Application No. 201110155056.
Chinese Patent Office; Notice on the Third Office Action dated Feb. 9, 2015 in Application No. 201110155056.
Japanese Patent Office; Office Action dated Jan. 25, 2014 in Application No. 2012-504786.
Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786.
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511.
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Taiwan Application No. 099127063.
Bearzotti, et al., “Fast Humidity Response of a Metal Halide-Doped Novel Polymer,” Sensors and Actuators B, 7, pp. 451-454, (1992).
Chang et al. “Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric,” IEEE Electron Device Society, 30, pp. 133-135, (2009).
Crowell, “Chemical Methods of Thin Film Deposition: Chemical Vapor Deposition, Atomic Layer Deposition, and Related Technologies,” Journal of Vacuum Science & Technology, S88-S95, (2003).
Koutsokeras et al., “Texture and Microstructure Evolution in Single-Phase TixTa1-xN Alloys of Rocksalt Structure” Journal of Applied Physics, 110, pp. 043535-1-043535-6, (2011).
Maeng et al., “Electrical Properties of Atomic Layer Disposition Hf02 and Hf0xNy on Si Substrates with Various Crystal Orientations,” Journal of the Electrochemical Society, 155, pp. H267-H271, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea (2008).
Novaro et al., “Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis,” J. Chem. Phys., 68, pp. 2337-2351, (1978).
Varma, et al., “Effect of Metal Halides on Thermal, Mechanical, and Electrical Properties of Polypyromelitimide Films,” Journal of Applied Polymer Science, 32, pp. 3987-4000, (1986).
USPTO; Non-Final Office Action dated Apr. 1, 2010 in U.S. Appl. No. 12/357,174.
USPTO; Final Office Action dated Sep. 1, 2010 in U.S. Appl. No. 12/357,174.
USPTO; Notice of Allowance dated Dec. 13, 2010 in U.S. Appl. No. 12/357,174.
USPTO; Non-Final Office Action dated Dec. 29, 2010 in U.S. Appl. No. 12/362,023.
USPTO; Non-Final Office Action dated Jul. 26, 2011 in U.S. Appl. No. 12/416,809.
USPTO; Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/416,809.
USPTO; Notice of Allowance dated Oct. 1, 2010 in U.S. Appl. No. 12/467,017.
USPTO; Non-Final Office Action dated Mar. 18, 2010 in U.S. Appl. No. 12/489,252.
USPTO; Notice of Allowance dated Sep. 2, 2010 in U.S. Appl. No. 12/489,252.
USPTO; Non-Final Office Action dated Dec. 15, 2010 in U.S. Appl. No. 12/553,759.
USPTO; Final Office Action dated May 4, 2011 in U.S. Appl. No. 12/553,759.
USPTO; Non-Final Office Action dated Sep. 6, 2011 in U.S. Appl. No. 12/553,759.
USPTO; Notice of Allowance dated 01/247/2012 in U.S. Appl. No. 12/553,759.
USPTO; Non-Final Office Action dated Oct. 19, 2012 in U.S. Appl. No. 12/618,355.
USPTO; Final Office Action dated May 8, 2013 in U.S. Appl. No. 12/618,355.
USPTO; Non-Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 12/618,355.
USPTO; Final Office Action dated Oct. 22, 2015 in U.S. Appl. No. 12/618,355.
USPTO; Non-Final Office Action dated Feb. 16, 2012 in U.S. Appl. No. 12/618,419.
USPTO; Final Office Action dated Jun. 22, 2012 in U.S. Appl. No. 12/618,419.
USPTO; Non-Final Office Action dated Nov. 27, 2012 in U.S. Appl. No. 12/618,419.
USPTO; Notice of Allowance dated Apr. 12, 2013 in U.S. Appl. No. 12/618,419.
USPTO; Non-Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/718,731.
USPTO; Notice of Allowance dated Mar. 16, 2012 in U.S. Appl. No. 12/718,731.
USPTO; Final Office Action dated Aug. 12, 2015 in U.S. Appl. No. 12/754,223.
USPTO; Non-Final Office Action dated Jan. 24, 2011 in U.S. Appl. No. 12/778,808.
USPTO; Notice of Allowance dated May 9, 2011 in U.S. Appl. No. 12/778,808.
USPTO; Notice of Allowance dated Oct. 12, 2012 in U.S. Appl. No. 12/832,739.
USPTO; Non-Final Office Action dated Oct. 16, 2012 in U.S. Appl. No. 12/847,848.
USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/847,848.
USPTO; Notice of Allowance dated Jan. 16, 2014 in U.S. Appl. No. 12/847,848.
USPTO; Non-Final Office Action dated Jul. 11, 2012 in U.S. Appl. No. 12/875,889.
USPTO; Notice of Allowance dated Jan. 4, 2013 in U.S. Appl. No. 12/875,889.
USPTO; Notice of Allowance dated Jan. 9, 2012 in U.S. Appl. No. 12/901,323.
USPTO; Non-Final Office Action dated Nov. 20, 2013 in U.S. Appl. No. 12/910,607.
USPTO; Final Office Action dated Apr. 28, 2014 in U.S. Appl. No. 12/910,607.
USPTO; Notice of Allowance dated Aug. 15, 2014 in U.S. Appl. No. 12/910,607.
USPTO; Non-Final Office Action dated Oct. 24, 2012 in U.S. Appl. No. 12/940,906.
USPTO; Final Office Action dated Feb. 13, 2013 in U.S. Appl. No. 12/940,906.
USPTO; Notice of Allowance dated Apr. 23, 2013 in U.S. Appl. No. 12/940,906.
USPTO; Non-Final Office Action dated Dec. 7, 2012 in U.S. Appl. No. 12/953,870.
USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/953,870.
USPTO; Non-Final Office Action dated Sep. 19, 2012 in U.S. Appl. No. 13/016,735.
USPTO; Final Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/016,735.
USPTO; Notice of Allowance dated Apr. 24, 2013 in U.S. Appl. No. 13/016,735.
USPTO; Non-Final Office Action dated Apr. 4, 2012 in U.S. Appl. No. 13/030,438.
USPTO; Final Office Action dated Aug. 22, 2012 in U.S. Appl. No. 13/030,438.
USPTO; Notice of Allowance dated Oct. 24, 2012 in U.S. Appl. No. 13/030,438.
USPTO; Non-Final Office Action dated Dec. 3, 2012 in U.S. Appl. No. 13/040,013.
USPTO; Notice of Allowance dated May 3, 2013 in U.S. Appl. No. 13/040,013.
USPTO; Notice of Allowance dated Sep. 13, 2012 in U.S. Appl. No. 13/085,968.
USPTO; Non-Final Office Action dated Mar. 29, 2013 in U.S. Appl. No. 13/094,402.
USPTO; Final Office Action dated Jul. 17, 2013 in U.S. Appl. No. 13/094,402.
USPTO; Notice of Allowance dated Sep. 30, 2013 in U.S. Appl. No. 13/094,402.
USPTO; Non-Final Office Action dated Jul. 17, 2014 in U.S. Appl. No. 13/154,271.
USPTO; Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/154,271.
USPTO; Non-Final Office Action dated May 27, 2015 in U.S. Appl. No. 13/154,271.
USPTO; Non-Final Office Action dated Oct. 27, 2014 in U.S. Appl. No. 13/169,951.
USPTO; Final Office Action dated May 26, 2015 in U.S. Appl. No. 13/169,591.
USPTO; Non-Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 13/169,951.
USPTO; Non-Final Office Action dated Jun. 24, 2014 in U.S. Appl. No. 13/181,407.
USPTO; Final Office Action dated Sep. 24, 2014 in U.S. Appl. No. 13/181,407.
USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/181,407.
USPTO; Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 13/181,407.
USPTO; Non-Final Office Action dated Jan. 23, 2013 in U.S. Appl. No. 13/184,351.
USPTO; Final Office Action dated Jul. 29, 2013 in U.S. Appl. No. 13/184,351.
USPTO; Non-Final Office Action dated Jul. 16, 2014 in U.S. Appl. No. 13/184,351.
USPTO; Final Office Action dated Feb. 17, 2015 in U.S. Appl. No. 13/184,351.
USPTO; Non-Final Office Action dated Aug. 10, 2015 in U.S. Appl. No. 13/184,351.
USPTO; Non-Final Office Action dated Oct. 1, 2012 in U.S. Appl. No. 13/191,762.
USPTO; Final Office Action dated Apr. 10, 2013 in U.S. Appl. No. 13/191,762.
USPTO; Notice of Allowance dated Aug. 15, 2013 in U.S. Appl. No. 13/191,762.
USPTO; Non-Final Office Action dated Oct. 22, 2012 in U.S. Appl. No. 13/238,960.
USPTO; Final Office Action dated May 3, 2013 in U.S. Appl. No. 13/238,960.
USPTO; Non-Final Office Action dated Apr. 26, 2013 in U.S. Appl. No. 13/250,721.
USPTO; Notice of Allowance dated Sep. 11, 2013 in U.S. Appl. No. 13/250,721.
USPTO; Non-Final Office Action dated Apr. 9, 2014 in U.S. Appl. No. 13/333,420.
USPTO; Notice of Allowance dated Sep. 15, 2014 in U.S. Appl. No. 13/333,420.
USPTO; Non-Final Office Action dated Oct. 10, 2012 in U.S. Appl. No. 13/406,791.
USPTO; Final Office Action dated Jan. 31, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Non-Final Office Action dated Apr. 25, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Final Office Action dated Aug. 23, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Non-Final Office Action dated Dec. 4, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Final Office Action dated Apr. 21, 2014 in U.S. Appl. No. 13/406,791.
USPTO; Non-Final Office Action dated Jan. 14, 2013 in U.S. Appl. No. 13/410,970.
USPTO; Notice of Allowance dated Feb. 14, 2013 in U.S. Appl. No. 13/410,970.
USPTO; Notice of Allowance dated Oct. 6, 2015 in U.S. Appl. No. 13/411,271.
USPTO; Non-Final Office Action dated Apr. 11, 2013 in U.S. Appl. No. 13/450,368.
USPTO; Notice of Allowance dated Jul. 17, 2013 in U.S. Appl. No. 13/450,368.
USPTO; Non-Final Office Action dated Oct. 17, 2013 in U.S. Appl. No. 13/493,897.
USPTO; Notice of Allowance dated Mar. 20, 2014 in U.S. Appl. No. 13/493,897.
USPTO; Non-Final Office Action dated Sep. 11, 2013 in U.S. Appl. No. 13/550,419.
USPTO; Final Office Action dated Jan. 27, 2014 in U.S. Appl. No. 13/550,419.
USPTO; Notice of Allowance dated May 29, 2014 in U.S. Appl. No. 13/550,419.
USPTO; Notice of Allowance dated Jul. 16, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Non-Final Office Action dated Nov. 7, 2013 in U.S. Appl. No. 13/565,564.
USPTO; Final Office Action dated Feb. 28, 2014 in U.S. Appl. No. 13/565,564.
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/565,564.
USPTO; Notice of Allowance dated Nov. 3, 2014 in U.S. Appl. No. 13/565,564.
USPTO; Non-Final Office Action dated Aug. 30, 2013 in U.S. Appl. No. 13/570,067.
USPTO; Notice of Allowance dated Jan. 6, 2014 in U.S. Appl. No. 13/570,067.
USPTO; USPTO; Notice of Allowance dated Aug. 28, 2015 in U.S. Appl. No. 13/597,043.
USPTO; Non-Final Office Action dated Dec. 8, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Notice of Allowance dated Mar. 27, 2014 in U.S. Appl. No. 13/604,498.
USPTO; Non-Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/646,403.
USPTO; Final Office Action dated Oct. 15, 2015 in U.S. Appl. No. 13/646,403.
USPTO; Non-Final Office Action dated May 15, 2014 in U.S. Appl. No. 13/646,471.
USPTO; Final Office Action dated Aug. 18, 2014 in U.S. Appl. No. 13/646,471.
USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/646,471.
USPTO; Final Office Action dated Apr. 21, 2015 in U.S. Appl. No. 13/646,471.
USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 13/646,471.
USPTO; Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 13/651,144.
USPTO; Non-Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 14/659,437.
USPTO; Non-Final Office Action dated Jun. 18, 2015 in U.S. Appl. No. 13/665,366.
USPTO; Notice of Allowance dated Aug. 24, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Non-Final Office Action dated Aug. 20, 2013 in U.S. Appl. No. 13/679,502.
USPTO; Final Office Action dated Feb. 25, 2014 in U.S. Appl. No. 13/679,502.
USPTO; Notice of Allowance dated May 2, 2014 in U.S. Appl. No. 13/679,502.
USPTO; Non-Final Office Action dated Jul. 21, 2015 in U.S. Appl. No. 13/727,324.
USPTO; Non-Final Office Action dated Oct. 24, 2013 in U.S. Appl. No. 13/749,878.
USPTO; Non-Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/749,878.
USPTO; Final Office Action dated Dec. 10, 2014 in U.S. Appl. No. 13/749,878.
USPTO; Notice of Allowance Mar. 13, 2015 dated in U.S. Appl. No. 13/749,878.
USPTO; Non-Final Office Action dated Dec. 19, 2013 in U.S. Appl. No. 13/784,388.
USPTO; Notice of Allowance dated Jun. 4, 2014 in U.S. Appl. No. 13/784,388.
USPTO; Non-Final Office Action dated Oct. 26, 2015 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 13/791,339.
USPTO; Non-Final Office Action dated Mar. 21, 2014 in U.S. Appl. No. 13/799,708.
USPTO; Notice of Allowance dated Oct. 31, 2014 in U.S. Appl. No. 13/799,708.
USPTO; Notice of Allowance dated Apr. 10, 2014 in U.S. Appl. No. 13/901,341.
USPTO; Notice of Allowance dated Jun. 6, 2014 in U.S. Appl. No. 13/901,341.
USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/901,372.
USPTO; Final Office Action dated Apr. 16, 2015 in U.S. Appl. No. 13/901,372.
USPTO; Non-Final Office Action dated Jul. 8, 2015 in U.S. Appl. No. 13/901,400.
USPTO; Notice of Allowance dated Aug. 5, 2015 in U.S. Appl. No. 13/901,372.
USPTO; Non-Final Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/912,666.
USPTO; Final Office Action dated Sep. 25, 2014 in U.S. Appl. No. 13/912,666.
USPTO; Non-Final Office Action dated Jan. 26, 2015 in U.S. Appl. No. 13/912,666.
USPTO; Notice of Allowance dated Jun. 25, 2015 in U.S. Appl. No. 13/912,666.
USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/915,732.
USPTO; Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 13/915,732.
USPTO; Notice of Allowance dated Jun. 19, 2015 in U.S. Appl. No. 13/915,732.
USPTO; Notice of Allowance dated Mar. 17, 2015 in U.S. Appl. No. 13/923,197.
USPTO; Non-Final Office Action dated Jul. 30, 2015 in U.S. Appl. No. 13/941,216.
USPTO; Non-Final Office Action dated Jun. 29, 2015 in U.S. Appl. No. 13/966,782.
USPTO; Notice of Allowance dated Oct. 7, 2015 in U.S. Appl. No. 13/973,777.
USPTO; Non-Final Office Action dated Feb. 20, 2015 in U.S. Appl. No. 14/018,231.
USPTO; Notice of Allowance dated Jul. 20, 2015 in U.S. Appl. No. 14/018,231.
USPTO; USPTO; Final Office Action dated Sep. 14, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Non-Final Office Action dated Mar. 26, 2015 in U.S. Appl. No. 14/031,982.
USPTO; Final Office Action dated Aug. 28, 2015 in U.S. Appl. No. 14/031,982.
USPTO; Notice of Allowance dated Nov. 17, 2015 in U.S. Appl. No. 14/031,982.
USPTO; Notice of Allowance dated Sep. 11, 2015 in U.S. Appl. No. 14/040,196.
USPTO; Non-Final Office Action dated Dec. 15, 2014 in U.S. Appl. No. 14/065,114.
USPTO; Final Office Action dated Jun. 19, 2015 in U.S. Appl. No. 14/065,114.
USPTO; Non-Final Office Action dated Oct. 7, 2015 in U.S. Appl. No. 14/065,114.
USPTO; Non-Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 14/069,244.
USPTO; Notice of Allowance dated Mar. 25, 2015 in U.S. Appl. No. 14/069,244.
USPTO; Non-Final Office Action dated Sep. 9, 2015 in U.S. Appl. No. 14/090,750.
USPTO; Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 14/079,302.
USPTO; Notice of Allowance dated Sep. 3, 2015 in U.S. Appl. No. 14/166,462.
USPTO; Non-Final Office Action dated Nov. 17, 2015 in U.S. Appl. No. 14/172,220.
USPTO; Final Office Action dated Jul. 10, 2015 in U.S. Appl. No. 14/183,187.
USPTO; Non-Final Office Action dated Oct. 8, 2015 in U.S. Appl. No. 14/218,374.
USPTO; Non-Final Office Action dated Sep. 22, 2015 in U.S. Appl. No. 14/219,839.
USPTO; Non-Final Office Action dated Nov. 25, 2015 in U.S. Appl. No. 14/219,879.
USPTO; Non-Final Office Action dated Sep. 18, 2015 in U.S. Appl. No. 14/244,689.
USPTO; Non-Final Office Action dated Nov. 20, 2015 in U.S. Appl. No. 14/260,701.
USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 14/268,348.
USPTO; Non-Final Office Action dated Oct. 20, 2015 in U.S. Appl. No. 14/281,477.
USPTO; Final Office Action dated Jul. 14, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 14/505,290.
USPTO; Notice of Allowance dated Aug. 21, 2015 in U.S. Appl. No. 14/505,290.
USPTO; Final Office Action dated Jul. 16, 2015 in U.S. Appl. No. 14/563,044.
USPTO; Notice of Allowance dated Dec. 2, 2015 in U.S. Appl. No. 14/563,044.
USPTO; Non-Final Office Action dated Oct. 1, 2015 in U.S. Appl. No. 14/571,126.
USPTO; Notice of Allowance dated Nov. 26, 2014 in U.S. Appl. No. 29/481,301.
USPTO; Notice of Allowance dated Feb. 17, 2015 in U.S. Appl. No. 29/481,308.
USPTO; Notice of Allowance dated Jan. 12, 2015 in U.S. Appl. No. 29/481,312.
USPTO; Notice of Allowance dated Apr. 30, 2015 in U.S. Appl. No. 29/481,315.
USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/511,011.
USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/514,153.
Bhatnagar et al., “Copper Interconnect Advances to Meet Moore's Law Milestones,” Solid State Technology, 52, 10 (2009).
Buriak, “Organometallic Chemistry on Silicon and Germanium Surfaces,” Chemical Reviews, 102, 5 (2002).
Cant et al., “Chemisorption Sites on Porous Silica Glass and on Mixed-Oxide Catalysis,” Can. J. Chem. 46, 1373 (1968).
Chen et al., “A Self-Aligned Airgap Interconnect Scheme,” IEEE International Interconnect Technology Conference, vol. 1-3, 146-148 (2009).
Choi et al., “Improvement of Silicon Direct Bonding using Surfaces Activated by Hydrogen Plasma Treatement,” Journal of the Korean Physical Society, 37, 6, 878-881 (2000).
Choi et al., “Low Temperature Formation of Silicon Oxide Thin Films by Atomic Layer Deposition Using NH3/O2 Plasma,” ECS Solid State Letters, 2(12) p. 114-p. 116 (2013).
Cui et al., “Impact of Reductive N2/H2 Plasma on Porous Low-Dielectric Constant SiCOH Thin Films,” Journal of Applied Physics 97, 113302, 1-8 (2005).
Dingemans et al., “Comparison Between Aluminum Oxide Surface Passivation Films Deposited with Thermal Aid,” Plasma Aid and Pecvd, 35th IEEE PVCS, Jun. 2010.
Drummond et al., “Hydrophobic Radiofrequency Plasma-Deposited Polymer Films: Dielectric Properties and Surface Forces,” Colloids and Surfaces A, 129-130, 117-129 (2006).
Easley et al., “Thermal Isolation of Microchip Reaction Chambers for Rapid Non-Contact DNA Amplification,” J. Micromech. Microeng. 17, 1758-1766 (2007).
Ge et al., “Carbon Nanotube-Based Synthetic Gecko Tapes,” Department of Polymer Science, PNAS, 10792-10795 (2007).
George et al., “Atomic Layer Deposition: An Overview,” Chem. Rev. 110, 111-131 (2010).
Grill et al., “The Effect of Plasma Chemistry on the Damage Induced Porous SiCOH Dielectrics,” IBM Research Division, RC23683 (W0508-008), Materials Science, 1-19 (2005).
Heo et al., “Structural Characterization of Nanoporous Low-Dielectric Constant SiCOH Films Using Organosilane Precursors,” NSTI-Nanotech, vol. 4, 122-123 (2007).
Jung et al., “Double Patterning of Contact Array with Carbon Polymer,” Proc. Of SPIE, 6924, 69240C, 1-10 (2008).
Katamreddy et al., “ALD and Characterization of Aluminum Oxide Deposited on Si(100) using Tris(diethylamino) Aluminum and Water Vapor,” Journal of the Electrochemical Society, 153 (10) C701-C706 (2006).
Kim et al., “Passivation Effect on Low-k S/OC Dielectrics by H2 Plasma Treatment,” Journal of the Korean Physical Society, ″40, 1, 94-98 (2002).
Kim et al., “Characteristics of Low Temperaure High Quality Silicon Oxide by Plasma Enhanced Atomic Layer Deposition with In-Situ Plasma Densification Process,” The Electrochemical Society, ECS Transactions, College of Information and Communication Engineerign, Sunakvunkwan University, 53(1).
King, Plasma Enhanced Atomic Layer Deposition of SiNx: H and SiO2, J. Vac. Sci. Technol., A29(4) (2011).
Koo et al., “Characteristics of A12O3 Thin Films Deposited Using Dimethylaluminum Isopropoxide and Trimethylaluminum Precursors by the Plasma-Enhanced Atomic-Layer Deposition Method,” Journal of Physical Society, 48, 1. 131-136 (2006).
Kurosawa et al., “Synthesis and Characterization of Plasma-Polymerized Hexamethyldisioxane Films,” Thin Solid Films, 506-507, 176-179 (2006).
Lieberman, et al., “Principles of Plasma Discharges and Materials Processing,” Second Edition, 368-381.
Lim et al., “Low-Temperature Growth of SiO2 Films by Plasma-Enhanced Atomic Layer Deposition,” ETRI Journal, 27 (1), 118-121 (2005).
Liu et al., “Research, Design, and Experimen of End Effector for Wafer Transfer Robot,” Industrial Robot: An International Journal, 79-91 (2012).
Mackus et al., “Optical Emission Spectroscopy as a Tool for Studying Optimizing, and Monitoring Plasma-Assisted Atomic Layer Deposition Processes,” Journal of Vacuum Science and Technology, 77-87 (2010).
Maeno, “Gecko Tape Using Carbon Nanotubes,” Nitto Denko Gihou, 47, 48-51.
Marsik et al., “Effect of Ultraviolet Curing Wavelength on Low-k Dielectric Material Proerties and Plasma Damage Resistance,” Sciencedirect.com, 519, 11, 3619-3626 (2011).
Morishige et al., “Thermal Desorption and Infrared Studies of Ammonia Amines and Pyridines Chemisorbed on Chromic Oxide,” J.Chem. Soc., Faraday Trans. 1, 78, 2947-2957 (1982).
Mukai et al., “A Study of CD Budget in Spacer Patterning Technology,” Proc. Of SPIE, 6924, 1-8 (2008).
Nogueira et al., “Production of Highly Hydrophobic Films Using Low Frequency and High Density Plasma,” Revista Brasileira de Aplicacoes de Vacuo, 25(1), 45-53 (2006).
Schmatz et al., “Unusual Isomerization Reactions in 1.3-Diaza-2-Silcyclopentanes,” Organometallics, 23, 1180-1182 (2004).
Scientific and Technical Information Center EIC 2800 Search Report dated Feb. 16, 2012.
Shamma et al., “PDL Oxide Enabled Doubling,” Proc. Of SPIE, 6924, 69240D, 1-10 (2008).
Wirths, et al, “SiGeSn Growth tudies Using Reduced Pressure Chemical Vapor Deposition Towards Optoeleconic Applications,” This Soid Films, 557, 183-187 (2014).
Yun et al., “Behavior of Various Organosilicon Molecules in PECVD Processes for Hydrocarbon-Doped Silicon Oxide Films,” Solid State Phenomena, vol. 124-126, 347-350 (2007).
Related Publications (1)
Number Date Country
20150187568 A1 Jul 2015 US
Continuations (1)
Number Date Country
Parent 13284642 Oct 2011 US
Child 14660755 US