This disclosure relates to systems, apparatus, and methods related to shaping and directing of electromagnetic signals, specifically EHF radiation.
Advances in semiconductor manufacturing and circuit design technologies have enabled the development and production of integrated circuits (ICs) with increasingly higher operational frequencies. In turn, electronic products and systems incorporating such integrated circuits are able to provide much greater functionality than previous generations of products. This additional functionality has generally included the processing of increasingly larger amounts of data at increasingly higher speeds.
Many electronic systems include multiple printed circuit boards (PCBs) upon which these high-speed ICs are mounted, and along which various signals are routed to and from the ICs. In electronic systems with at least two PCBs and the need to communicate information between those PCBs, a variety of connector and backplane architectures have been developed to facilitate information flow between the boards. Unfortunately, such connector and backplane architectures introduce a variety of impedance discontinuities into the signal path, resulting in a degradation of signal quality or integrity. Interconnecting boards and circuits by conventional means, such as signal-carrying mechanical connectors, generally creates discontinuities, requiring expensive electronics to negotiate. Conventional mechanical connectors may also wear out over time, require precise alignment and manufacturing methods, and are susceptible to mechanical jostling.
These characteristics of conventional connectors can lead to degradation of signal integrity and instability of electronic systems needing to transfer data at very high rates, which in turn limits the utility of such products.
In a first example, a system for transmitting or receiving signals may include a dielectric substrate having a major face, a communication circuit, and an electromagnetic-energy directing assembly. The communication circuit may include a transducer configured to convert between radio-frequency (RF) electrical signals and RF electromagnetic (EM) signals, the transducer being supported in a position spaced from the major face of the dielectric substrate operatively coupled to the transducer. The communication circuit may contain at least one of a transmitter circuit that transforms a baseband signal into a RF electrical signal and conducts the RF electrical signal to the transducer for transmission as an EM signal and a receiver circuit that receives from the transducer a RF electrical signal received as an EM signal by the transducer and transforms the RF electrical signal into a baseband signal. A directing assembly may be supported by the dielectric substrate in spaced relationship from the transducer and configured to direct EM energy in a region including the transducer and along a line extending away from the transducer and transverse to a plane of the major face of the dielectric substrate.
In another example, a device for directing extremely high frequency (EHF) EM radiation may include a dielectric substrate having a major face configured to support an EM transducer in a transducer position and an electromagnetic-energy directing assembly. The directing assembly may be supported by the dielectric substrate relative to the transducer position and configured to direct EM energy along a line extending away from the transducer position and transverse to a plane of the major face of the dielectric substrate. The directing assembly may include a plurality of spaced-apart embedded conductive layers disposed in the dielectric substrate. The plurality of embedded conductive layers each may have a major surface with a first perimeter. The first perimeters may include perimeter portions proximate the transducer that are offset relative to each other as viewed from the transducer in a manner exposing each perimeter portion to the transducer.
In another example, a dielectric substrate assembly may include a first conductive layer; a second conductive layer parallel to, spaced from, and opposite the first conductive layer; a dielectric layer extending between the first and second conductive layers; and a plurality of electrically conductive components connected to and extending between the first and second conductive layers. The conductive components may be spaced apart and distributed in the dielectric layer in a configuration defining, in combination with the first and second conductive layers, a waveguide extending through the dielectric layer.
In a further example, a waveguide for conducting an electromagnetic EHF signal, may include an elongate length of a dielectric material and a conductive layer covering at least a portion of the length of the dielectric material. The dielectric material may have a rectangular cross section transverse to the elongate length of the dielectric material. The elongate length of dielectric material may have a first lateral side and a second lateral side opposed to the first lateral side, and a first major side and a second major side opposed to the first major side. The elongate length of dielectric material may have a width corresponding to a distance between the first lateral side and the second lateral side, and a height corresponding to a distance between the first major side and the second major side.
Advantages of such systems and devices will be more readily understood after considering the drawings and the detailed description.
Wireless communication may be used to provide signal communications between components on a device or may provide communication between devices. Wireless communication provides an interface that is not subject to mechanical and electrical degradation. Examples of systems employing wireless communication between chips are disclosed in U.S. Pat. No. 5,621,913 and U.S. Published Patent Application No. 2010/0159829, the disclosures of which are incorporated herein by reference in their entirety for all purposes.
In one example, tightly-coupled transmitter/receiver pairs may be deployed with a transmitter disposed at a terminal portion of a first conduction path and a receiver disposed at a terminal portion of a second conduction path. The transmitter and receiver may be disposed in close proximity to each other depending on the strength of the transmitted energy, and the first conduction path and the second conduction path may not be contiguous with respect to each other. In some examples, the transmitter and receiver may be disposed on separate circuit carriers positioned with the antennas of the transmitter/receiver pair in close proximity.
As discussed below, a transmitter and/or receiver may be configured as an IC package, in which one or more antennas may be positioned adjacent to a die and held in place by a dielectric or insulating encapsulation or bond material. An antenna may also be held in place by a lead frame substrate. Examples of EHF antennas embedded in IC packages are shown in the drawings and described below. Note that IC packages may also be referred to as simply packages, and are examples of wireless communication units that are also variously referred to as EHF communication units, communication units, communication devices, comm-link chips, comm-link chip assemblies, comm-link chip packages, and/or comm-link packages, which may be configured in various ways. For example, IC packages, communication units, communication devices, comm-link chips, comm-link chip assemblies, comm-link chip packages, and/or comm- link packages may each include one or more ICs, chips, or dies in a multipart or monolithic assembly and have circuit functionality appropriate for particular applications.
Die 12 includes any suitable structure configured as a miniaturized circuit on a suitable die substrate, and is functionally equivalent to a component also referred to as a chip or an integrated circuit (IC). A die substrate may be any suitable semiconductor material; for example, a die substrate may be silicon. Die 12 may have a length and a width dimension, each of which may be about 1.0 mm to about 2.0 mm, and preferably about 1.2 mm to about 1.5 mm. Die 12 may be mounted with further electrical conductors 16, such as a lead frame, not shown in
Transducer 14 may be in the form of a folded dipole or loop antenna 30, may be configured to operate at radio frequencies such as in the EHF spectrum, and may be configured to transmit and/or receive electromagnetic signals. Antenna 30 is separate from but operatively connected to die 12 by suitable conductors 16, and is located adjacent to die 12.
The dimensions of antenna 30 are suitable for operation in the EHF band of the electromagnetic frequency spectrum. In one example, a loop configuration of antenna 30 includes a 0.1 mm band of material, laid out in a loop 1.4 mm long and 0.53 mm wide, with a gap of 0.1 mm at the mouth of the loop, and with the edge of the loop approximately 0.2 mm from the edge of die 12.
Encapsulating material 26 is used to assist in holding the various components of IC package 10 in fixed relative positions. Encapsulating material 26 may be any suitable material configured to provide electrical insulation and physical protection for the electrical and electronic components of IC package 10. For example, encapsulating material 26, also referred to as insulating material, may be a mold compound, glass, plastic, or ceramic. Encapsulating material 26 may also be formed in any suitable shape. For example, encapsulating material 26 may be in the form of a rectangular block, encapsulating all components of IC package 10 except the unconnected ends of conductors 16 connecting the die to external circuits. External connections may be formed with other circuits or components.
PCB 54 may further include a layer 72 spaced from surface 68 made of conductive material forming a ground plane within PCB 54. The PCB ground plane may be any suitable structure configured to provide an electrical ground to circuits and components on PCB 54.
Leads 98 may be embedded or fixed in a lead frame substrate 100, shown in phantom lines, corresponding to package substrate 62. The lead frame substrate may be any suitable insulating material configured to substantially hold leads 98 in a predetermined arrangement. Electrical communication between die 88 and leads 98 of lead frame 90 may be accomplished by any suitable method using conductive connectors 92. As mentioned, conductive connectors 92 may include bond wires that electrically connect terminals on a circuit of die 88 with corresponding lead conductors 98. For example, a conductor or lead 98 may include a plated lead 102 formed on an upper surface of lead frame substrate 100, a via 104 extending through the substrate, a flip-mounting bump 106 mounting IC package 82 to a circuit on a base substrate, such as a PCB, not shown. The circuit on the base substrate may include external conductors, such as external conductor 84, which for example, may include a strip conductor 108 connecting bump 106 to a further via 110 extending through the base substrate. Other vias 112 may extend through the lead frame substrate 100 and there may be additional vias 114 extending through the base substrate.
In another example, die 88 may be inverted and conductive connectors 92 may include bumps, or die solder balls, as described previously, which may be configured to electrically connect points on a circuit of die 88 directly to corresponding leads 98 in what is commonly known as a “flip chip” arrangement.
A first and a second IC package 10 may be co-located on a single PCB and may provide intra-PCB communication. In other examples, a first IC package 10 may be located on a first PCB and a second IC package 10 may be located on a second PCB and may therefore provide inter-PCB communication.
Referring now also to
As mentioned, communication circuit 152 may include transducer 156, and transmitter circuit 160 and/or a receiver circuit 162. Transducer 156 may be an example of transducer 14 configured to convert between RF electrical signals and RF electromagnetic signals. Transducer 156 may receive or transmit extremely high frequency (EHF) radiation having a selected operating frequency and operating wavelength. Transducer 156 may be supported in a position spaced from major face 166 of substrate 154. For example, communication device 164 may be mounted or operatively coupled to substrate 154, e.g., so that transducer 156 maintains a specified, fixed separation from major face 166, indicated as offset distance S. Communication circuit 152 may include an EHF-signal IC transmitting package (and/or receiving package) as discussed above
Transmitter circuit 160 may include devices and/or circuitry that transform a baseband signal into an RF signal and conduct the RF electrical signal to transducer 156 for transmission as an RF electromagnetic signal. Receiver circuit 162 may include devices and/or circuitry that receive an RF electrical signal from transducer 156 and transform the electrical signal into a baseband signal.
Substrate 154 may be in the form of a PCB and may include a conductive layer 172, e.g., a ground plane 57, supported by substrate 154 between top dielectric layer 174 and bottom dielectric layer 176 of substrate 154. Conductive layer 172 may be substantially parallel to major face 166. Layer 172 may be vertically spaced or separated from major face 166 by a distance defined by the thickness of top dielectric layer 174. Layer 172 accordingly may be spaced or separated from transducer 156 by a vertical offset distance C, which in this example is approximately the sum of offset distance S and the thickness of top dielectric layer 174. Distance C between transducer 156 and layer 172 may be a preselected distance, e.g., a distance of less than a wavelength of an operating frequency of transducer 156.
In the configuration of
More specifically, conductive layer 172 may terminate on an edge 182 proximate transducer 156, e.g., so that radiation transmitted (and/or received) by transducer 156 is directed away from (and/or toward) transducer 156 in a direction predominantly away from conductive layer 172. For example, the horizontal (X-axis) locations of transducer 156 and terminal edge 182 may together define distance F of portion 172a. If the location of the transducer 156 has been determined, for example, then the location of edge 182 may be selected so that portion 172a directs EM radiation from (to) transducer 156 away from (toward) transducer 156. The location of edge 182 and therefore distance F in relation to transducer 156 may be selected in relation to the operating frequency or wavelength of transducer 156, for example. Features of portion 172a that may influence the direction and shaping of EM radiation may include, e.g., a location of portion 172a adjacent to transducer 156; a parallel alignment of major face 166, conductive layer 172, and transducer 156; a vertical distance C between portion 172a and transducer 156; and a horizontal distance F defining the extent of portion 172a. Distance C may be substantially equal to a distance of less than a wavelength of an operating frequency of transducer 156.
It is seen that in this example the overall structure of communication system 150, including directing assembly 178, may direct or redirect energy transmitted by or received by transducer 156 in a direction generally away from conductive layer 172. For transmission, for example, this redirection of EM energy may be generally upwardly (vertically away from portion 172a for the orientation illustrated) and somewhat horizontally away from communication device 164.
It is seen that directing assembly 178 may be effective to provide communication with another communication device disposed in the field produced by transducer 156, which would be above communication device 164 in these figures. It will be apparent that the radiation and field patterns may vary if there are other structures not shown that affect the propagation of EM energy. In these examples, no such additional structures are present in the region proximate the transducer. However, additional or alternative shaping of the EM radiation may also be accomplished by configuring conductive layer 172 relative to communication device 164. For example, it may be desired to redirect more of resulting radiation pattern 190 in the X-direction from communication device 164. The shaping, deflection, or direction of EM signal may generally depend on the configuration of conductive layer 172 relative to transducer 156 embedded at an edge of device 164 (the right edge, as viewed in
In some embodiments including the directing assembly of
With transducer 156 disposed above or proximate to directing assembly 202, the function of communication system 200 may be altered from the function illustrated in
As in
Referring now to substrate assembly 206, as described above, conductive layers 208 may be spaced or separated from adjacent conductive layers 208 by respective dielectric layers 216. The thickness of the dielectric layers 216 determines the distance between the associated adjacent conductive layers 208. For example, adjacent conductive layers 208 may be spaced apart by a distance substantially less than an operating wavelength of transducer 156.
Although not shown, dielectric layers may also be disposed on outer planar surfaces (the major faces of substrate assembly 206). Substrate assembly 206, as shown, has alternating conductive layers 208 and dielectric layers 216. Accordingly, substrate assembly 206 may be considered to include a series of spaced-apart, embedded conductive layers.
Substrate assembly 206 thus serves as a device for directing EHF EM radiation. In this example, substrate assembly 206 may include dielectric substrate 217 configured to support an electromagnetic transducer 156 in a transducer position, and a directing assembly 202 supported by the substrate relative to the transducer position. Directing assembly 202 may include a plurality of spaced-apart embedded conductive layers 208 disposed in composite dielectric substrate 217. Each conductive layer 208 of the plurality of embedded layers 208 may have a major surface 222 with a first perimeter 224. The first perimeters 224 may include perimeter portions 226 proximate the transducer 156 that are offset relative to each other as viewed from the transducer in a manner exposing each perimeter portion 226 to the transducer 156, such as is shown in
Referring specifically to
For example, conductive layers 208 may be configured to create an electromagnetically stair-stepped or offset layer configuration of substrate assembly 206 in the region adjacent to transducer 156. Each conductive layer 208 may represent one step, where the tread length is ultimately defined by a horizontal distance from transducer 156 (in effect, a distance between the adjacent layer edges in perimeter portions 226 as viewed in
In perimeter portions 226 of directing assembly 202, the edge of each conductive layer (except bottom layer 212) underlaps the conductive layer below it so that a portion of the lower layer is exposed to transducer 156. The underlapped arrangement of conductive layers 208, combined with a progressive decrease in distance in the X direction (corresponding to distance F as shown in
The horizontal (X-Y) and/or vertical (Z) distances that define the extent of overlap may be selected so that a line 228 connecting adjacent intersections of perimeter portions 226 by a plane transverse to major surfaces 222, e.g., reference plane 198, has a desired configuration. For example, plane 198 may intersect perimeter portions 226 along a rectilinear line 228 as shown in
In an embodiment, one or more perimeter portions 226 may include a notch or recess 218 formed in perimeter portions 226. In the example of
The recesses 218 of the conductive layers may differ in size and/or shape. Each recess 218 may be any suitable shape that may be cut out, removed from, or otherwise formed as an end or perimeter region of the corresponding conductive layer. For example, recess 218 (and correspondingly, perimeter portion 226) may be generally concave, and may be curvilinear, rectilinear, or a combination of curvilinear and rectilinear. For example, in a series of conductive layers 208, a progressive increase in the size of similarly shaped recesses, arranged with the largest recess adjacent major face 204 (i.e., in top conductive layer 210) and the smallest recess opposite major face 204 (i.e., in or toward bottom conductive layer 212), may yield a conductive-layer stepped, amphitheater-like directing assembly 202 like that shown in
Transducer 156 may be disposed along a plane of major face 204 in alignment with perimeter portions 226 and adjacent to major face 204. For example, in the recessed embodiment of directing assembly 202 of
Dielectric material may fill in the space formed by recesses 218 and may form a substantially continuous and substantially planar top mounting surface of substrate 206.
A directing assembly 202 may include one or more conductive vias 230 that establish and maintain electrical communication between two or more conductive layers 208. Vias 230, such as, vias 230A-F shown in the example of
The electrical communication of vias 230 may be accomplished by any suitable arrangement. For example, several vias 230 may pass through and connect all conductive layers 208, as shown in the example of
To facilitate redirection of transmitted radiation in the positive X direction, system 150, 200, or 200′ may further include an opposing conductive layer 250.
For example, a substantially planar conductive structure 250 may be mounted or installed parallel to the major face of substrate 206 (or 154) at a distance O above the major face on the order of one wavelength of the expected EHF signal. In some embodiments, with an expected EHF signal at 60 GHz, a planar opposing layer 250 may be disposed approximately 1.5 mm above major face 204 or 166, for example.
Opposing layer 250 may have or include associated dielectric material, e.g., one or more dielectric layers, e.g., to provide insulating outer faces. A suitable configuration of dielectric and/or conductive material may fill all or part of the space between major face 204 or 166 and opposing layer 250. For example, stand-offs 252 made from dielectric material that include one or more conductive vias 254 may operatively connect substrate assembly 206 or 154 with opposing layer 250. Mechanically, these stand-offs 252 may maintain a specified spacing distance O between opposing layer 250 and major face 204 or 166; electrically, the vias 254 may bring opposing layer 250 to the same potential as a connected structure, e.g., conductive layers of substrate 206 or 154. Opposition distance O may be a single distance, e.g., when major face 204 or 166 and conductive layer 210 (or 172 in
Opposing layer 250 may have a first perimeter 256—i.e., an exterior edge surrounding its area. Perimeter 256 may have any suitable shape and may include rectilinear or curvilinear segments or combinations thereof. For example, a portion of perimeter 256 over the recess 218 of a directing assembly 202 may have a convex or concave shape aligned with transducer 156.
Inclusion of an opposing layer 250 may further redirect transmitted radiation in the positive X direction.
As mentioned elsewhere, the horizontal (X-Y) and/or vertical (Z) distances that define the extent of offset of perimeter portions or equivalent conductive elements of a directing assembly may be selected so that a line connecting adjacent intersections of perimeter portions by a plane transverse to the perimeter portions has a desired configuration.
In this example, the horizontal (run portion) and/or vertical (rise portion) step distances may increase by unequal amounts, so that a plane transverse to the major surfaces of the conductive layers 276 intersects the associated perimeter portions 278 along a curvilinear line 280. Curvilinear line 280 may be concave as viewed from transducer 156 to preserve the line of sight from transducer 156 to each exposed perimeter portion of a conductive layer 276. This intersecting line may have a shape appropriate for a particular application, and may include both rectilinear and curvilinear segments. Horizontal distances (‘run’ distances in a plane parallel to the X-Y plane) may generally increase from the top conductive layer 276A (forming or adjacent to major face 282 of substrate 274) to the bottom conductive layer 276N (farthest or opposite from major face 282).
In the example of
Substrate 274 may include a layered structure like that of
Directing assembly 272 may serve to redirect EM radiation 292A from transmitter 284A to a receiver 284B. For example, transmitter 284A may generate transmitted EM radiation 292A proximate to or directed toward assembly 272. Directing assembly 272, by way of a curved surface shown in cross-section as line 280, may redirect transmitted EM radiation 292A toward receiver 284B, e.g., as indicated by redirected radiation 292B. By selectively shaping or directing EM radiation 292A, directing assembly 272 may increase the signal strength of radiation 292A received by receiver 284B. This higher signal strength may improve the signal-to-noise ratio of system 270, for example, or may allow an increase in the working distance between transmitter 284A and receiver 284B.
In another example, a directing assembly may be made with a substrate assembly that does not include conductive layers on the face of the recesses as has been described with reference to directing assemblies 202 and 272. For example, the conductive layers may be replaced with dielectric layers having the same or lower dielectric constants than that of the described dielectric layers, such as dielectric layers 216. Where the dielectric constants are the same in the directing assembly, a homogeneous dielectric substrate or PCB may be used that is contoured to have a desired shape, such as the shape described with regard to recesses 218 of directing assembly 202 and recesses 288 of directing assembly 272. Other combinations of dielectric materials and conductive layers may also be used.
First conductive layer 304A may be an example of a conductive layer 172 disposed proximate major face 312 of substrate assembly 302. Second conductive layer 304B may be another example of a conductive layer 172 disposed opposite major face 312 (that is, below first conductive layer 304A) and substantially parallel to first conductive layer 304A. Dielectric layer 306 may extend between first and second conductive layers 304A and 304B. Dielectric layer 306 may support conductive layers 304A and 304B and maintain a spacing distance G between them. Distance G may be approximately defined by the thickness of dielectric layer 306. Substrate assembly 302 may include additional dielectric material (not shown), e.g., above first conductive layer 304A and/or below second conductive layer 304B, e.g. to provide insulating outer surfaces.
Substrate assembly 302 may also include a plurality of electrically conductive components 308 connected to and extending between first conductive layer 304A and second conductive layer 304B. Components 308 may include a plurality of conductive vias 314, e.g., to electrically connect layers 304A and 304B. Vias 314 may additionally connect to and establish electrical communication with other conductive structures, e.g., structures at a selected electrical potential such as ground potential, and so on.
Vias 314 may be separated from each other by a spacing interval V, e.g., a horizontal (XY) distance selected according to the properties of an associated EM transducer 156. For example, interval V may be selected to substantially less than one wavelength of an operating frequency of an associated transducer 156. Vias 314 may be distributed within substrate assembly 302 in a specified configuration. For example, vias 314 may be distributed to define a three-sided volume, open on one side at an opening 318, within dielectric assembly 302, e.g., as shown in
First conductive layer 304A may include an aperture 320 aligned with waveguide 310 and in communication with waveguide 310. For example, as shown
In the embodiment shown, vias 314 may line opposite sides of waveguide 310. For example, as shown in
Conductive components 308 optionally may alternatively or additionally include a plurality of intermediate conductive layers 316, seen in
In other examples, a plurality of intermediate conductive layers 316 having recesses conforming with the edges of vias 314 may be used instead of or in addition to vias 314 to define the sides of waveguide 310. The intermediate layers 316 may be coupled to the top and bottom conductive layers, making them intermediate conductive layers. These intermediate conductive layers 316 may be formed with edges forming recesses or openings that define the waveguide sides, as with recesses 218 described in relation to the embodiment of
Substrate assembly 302 may further include a first transducer 340 mounted proximate aperture 320 of first conductive layer 304A. Transducer 340 may be or may include an antenna. Substrate assembly 302 may further include an IC package such as a communication circuit 152 or communication device 164 that includes transducer 340, configured to transmit EHF radiation into waveguide 310 through aperture 320. In this example, transducer 340 produces radiation that is polarized parallel to the short sides of aperture 320, and correspondingly to waveguide sides 326 and 330. Additionally or alternatively, transducer 340 may be configured to receive EHF radiation 344 from waveguide 310 through aperture 320. Transducer 340 may be mounted in a spaced relationship relative to major face 312 of substrate assembly 302. For example, transducer 340 may be mounted to, separated from, and/or disposed above major face 312 by an additional dielectric material. The separation or stand-off distance from transducer 340 to aperture 320 may be selected according to the EM characteristics of transducer 340.
This arrangement may result in a portion of radiation 344 transmitted by first transducer 340 being directed into waveguide 310—that is, into the space between conductive layers 304A and 304B and between vias 314, where it may be further directed in the positive X direction toward opening 318. Alternatively or additionally, transducer 340 may receive radiation 344 directed through aperture 320 by waveguide 310.
Substrate assembly 302 may further include a second transducer 342 mounted opposite aperture 320 of first conductive layer 304A and therefore adjacent opening 318. Second transducer 342 may be generally similar to first transducer 340 except adapted to a position proximate opening 318 rather than aperture 320. Transducer 342 accordingly may be or may include an antenna, may be a portion of a communication circuit 152 or device 164, and may be mounted in an IC package. Transducer 342 may be configured to transmit EHF radiation 346 into waveguide 310 through opening 318 and/or receive EHF radiation 346 from waveguide 310 through opening 318. Transducer 342 may be mounted in a spaced relationship relative to opening 318. For example, transducer 342 may be mounted to, separated from, and/or disposed proximate opening 318 by additional dielectric material. The separation or stand-off distance from transducer 342 to opening 318 may be selected according to the EM characteristics of transducer 342.
Second transducer 342 may be selected to be operationally compatible with first transducer 340, e.g., to enable communication from first transducer 340 to second transducer 342 and/or from second transducer 342 to first transducer 340. Although first transducer 340 is generally described as a transmitter and second transducer 342 as a receiver, either transducer may provide either or both functions, e.g., to enable bidirectional communication between first transducer 340 and second transducer 342. It will also be appreciated that other EM structures may be disposed proximate the ends of waveguide 310 to transmit EM radiation, such as, an intervening waveguide or a radiation-directing assembly.
Radiation 344 to/from first transducer 340 may have an expected wavelength. As described, vias 314 may be spaced at intervals V substantially less than one wavelength in order to present a reflective surface for the radiation. Waveguide 310 may have a width dimension W defined as the distance in the Y dimension between conductive components 308 on each side of waveguide 310. Width W may be greater than one half of a wavelength at the lowest frequency in use. For expected dielectric materials and a 60 GHz radiation signal, a preferred minimum width W may be approximately 1.3 mm. Waveguide 310 may have a ratio of width W to height G of 2:1. It is seen that waveguide 310 is configured to conduct an EM EHF signal and in this example includes an elongate length of a dielectric material in dielectric layer 306 forming the waveguide 310 and bounded by a conductive layer 304 covering at least a portion of the length of dielectric material. The elongate length of dielectric material may include a partly enclosed interior volume within dielectric substrate assembly 302 as detailed below. The conductive layer may include, e.g., first conductive layer 304A, which may cover at least a portion of the dielectric material and which may leave another portion (i.e., aperture 320) uncovered, and/or second conductive layer 304B. As shown in
The dielectric material may have a first lateral side 326 and a second lateral side 330 opposed to the first lateral side. These lateral sides may be those electrically defined by conductive vias 314, for example, which may represent EM-opaque sides or surfaces at the frequency at which the waveguide 310 is designed to operate. The length of dielectric material may have first major side (e.g., that defined by first conductive layer 304A) and a second major side (e.g., that defined by conductive layer 304B) opposed to the first major side. The length of dielectric material 302 may have a width, e.g., distance W, corresponding to a distance between the first and second lateral sides. The width may be at least half of a low frequency EHF signal that the waveguide is designed to operate. The length of dielectric material may have a height, e.g., distance G, corresponding to a distance between the first and second major sides.
It will thus be appreciated that locating an antenna or other transducer off-chip may result in effective antenna impedance matching, independent antenna design, increased transmission power, and selective directional shaping of a resulting radiation pattern. The radiation may thus be directed in a direction where a receiving antenna, waveguide, or other EM radiation-directing structure may be positioned. It will also be appreciated that radiation patterns may be selectively and directionally shaped using PCB or other substrate structures, and that the PCB structures may be manufactured using standard manufacturing methods and incorporating standard PCB components, albeit in new and unique ways. It will be further appreciated that shaping the non-conductive dielectric portion of the PCB proximate to the transducer, without the use of conductive layers, whether said transducer is located on-chip or off-chip, can enable directional shaping of the radiation pattern.
Figures that show radiation patterns illustrate idealized and simplified radiation patterns that may result from different configurations, and may not show the actual results of simulations of these configurations. Actual radiation patterns may depend on relative configurations, actual structures, and the strength of applied signals. Distance values such as C, F, O, S, and so on generally may include or consider associated tolerances. “Vertical” may refer to distances or directions substantially perpendicular to the major face of a dielectric assembly, i.e., along a Z-axis such as defined by reference line 192. “Above” or “below” may refer to distances or directions directed respectively toward the positive or negative half of a vertical axis. “Horizontal” and related terms may refer to distances or directions substantially parallel to the major face of a dielectric assembly. These terms are terms of convenience used to describe the structures in the orientations illustrated and are intended to apply regardless of the actual orientations in a given application.
The inventions described herein relate to industrial and commercial industries, such as, electronics and communications industries using devices that communicate with other devices or devices having communication between components in the devices.
It is believed that the disclosure set forth herein encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. Each example defines an embodiment disclosed in the foregoing disclosure, but any one example does not necessarily encompass all features or combinations that may be eventually claimed. Where the description recites “a” or “a first” element or the equivalent thereof, such description includes one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal indicators, such as first, second or third, for identified elements are used to distinguish between the elements, and do not indicate a required or limited number of such elements, and do not indicate a particular position or order of such elements unless otherwise specifically stated.
This application claims the benefit of U.S. Provisional Patent Application No. 61/616,970 filed Mar. 28, 2012, which application is incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
61616970 | Mar 2012 | US |