Reliable hybrid bonded apparatus

Information

  • Patent Grant
  • 11742314
  • Patent Number
    11,742,314
  • Date Filed
    Monday, March 22, 2021
    3 years ago
  • Date Issued
    Tuesday, August 29, 2023
    a year ago
Abstract
Reliable hybrid bonded apparatuses are provided. An example process cleans nanoparticles from at least the smooth oxide top layer of a surface to be hybrid bonded after the surface has already been activated for the hybrid bonding. Conventionally, such an operation is discouraged. However, the example cleaning processes described herein increase the electrical reliability of microelectronic devices. Extraneous metal nanoparticles can enable undesirable current and signal leakage from finely spaced traces, especially at higher voltages with ultra-fine trace pitches. In the example process, the extraneous nanoparticles may be both physically removed and/or dissolved without detriment to the activated bonding surface.
Description
BACKGROUND

In a direct bonding process between smooth surfaces, very small spurious particles may appear at the bonding interface. These spurious particles are small, and the concentration of the particles is usually not high enough to be detrimental to the direct bond, even if the particles are spaced at 0.05-0.10 microns (μm) from each other. This is because the spurious particles themselves are so very small. At sizes around 1-10 nanometers (nm), as shown in FIG. 1, for example, the particles 100 merely become trapped in the completed direct bond, and do not significantly affect a vertical direct bond between dielectric surfaces, which are nonmetals (1000 nanometers (nm)=1 micron (μm)).


But when the direct boding process is hybrid and includes metal-to-metal direct bonding in conjunction with direct bonding of dielectric materials, very small conductive particles in the 1-10 nm size range may be present in great enough quantity to cause leakage or change in bias of conductive features, especially in microelectronic devices with submicron wiring rules or submicron trace pitches. If higher voltage is present, then in unbonded substrates the unwanted particles can also become nucleation sites for electrochemical or non-electrochemical reactions at the bonding interface or near conductive traces, and in some cases can cause slight micro-delamination of direct bonded constituents near conductive features. In the presence of voltage or other energy forces, one of the main negative effects of the spurious particles is that they may cause signal leakage between adjacent conductive features. A nominal 1 μm or submicron horizontal spacing, for example a 0.05 μm spacing, between adjacent or vertical conductors at the direct bonding interface might be bridged, or capacitively biased or breached by intervening conductive nanoparticles


The extraneous conductive nanoparticles may be present as planarization defects, as the aftermath of a brush scrubbing step of chemical-mechanical polishing (CMP), or from a plasma ashing or activation step. The particles may also be present from a simple surface cleaning operation or from a particle redeposition during a sputtering operation or plasma processing operations. If the surface to be direct bonded is on a die, then the die singulation process also generates particles, contaminants, and edge defects, and so the die preparation process may require more cleaning effort than does wafer-to-wafer bonding prior to subsequent dicing. The die handling steps can also add particle contamination if the process is not well designed and controlled. But the leftover tiniest particles at sizes between 1-10 nm, for example, are generally the aftermath of cleaning and surface polishing and planarization processes or plasma processing among others, not the dicing process, which tends to produces larger substrate and dielectric particles that can be more easily removed.


SUMMARY

Reliable hybrid bonded apparatuses are provided. An example process cleans nanoparticles from at least the smooth dielectric top layer of a surface to be hybrid bonded after the surface has already been activated for the hybrid bonding. Conventionally, after the activation step, the activated surface is cleaned with deionized water (DIW) and cleaning with other chemicals is often discouraged. However, the example cleaning processes described herein increase the electrical reliability of microelectronic devices. Extraneous conductive and non-conductive particles, for example metal nanoparticles, can enable undesirable current and signal leakage between finely spaced conductive features, such as lines or trenches or vias, especially at higher voltages with ultra-fine trace pitches. In some applications, the conductive features are planar conductive layers embedded in a planar dielectric layer (e.g., damascene structures). In other applications, the conductive features of interest may be disposed over a dielectric layer (e.g., redistribution layers (RDLs)). In the apparatuses and techniques described herein, the extraneous nanoparticles may be both physically removed and/or dissolved without detriment to the activated bonding surface, the conductive features, the dielectric layer, or combinations thereof.


This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of a conventional device with a bonding interface created via hybrid bonding and with a population of extraneous metal nanoparticles dispersed across the dielectric and metal surface areas of the respective bonding surfaces and completed bonding interface.



FIG. 2 is a diagram of an example method of cleaning nanoparticles from a bonding surface after surface activation, but before direct bonding takes place.



FIG. 3 is a diagram of an example device with a bonding interface created via hybrid bonding in the absence of extraneous metal nanoparticles that have been physically removed or dissolved from the bonding surfaces after surface activation but before the hybrid bonding.



FIG. 4 is a flow diagram of an example method of increasing the reliability of a hybrid bonded device.



FIG. 5 is a flow diagram of another example method of increasing the reliability of a hybrid bonded device.





DETAILED DESCRIPTION

Overview


This disclosure describes reliable hybrid bonded apparatuses. Hybrid bonding is a conventionally reliable technology capable of easily creating 150,000,000 interconnects on a 200 mm wafer with a 99.999% success rate. As the lead spacing and conductive features pitches decrease approaching 1 micron (μm) and submicron spacing, the presence of very small artifactual metal particles from various cleaning and fabrication operations can come into play to effect electrical performance involving currents and signals of the conductive features or traces, and can seed various local discontinuities. Extraneous metal particles as small as 1-10 nm can register measurable compromises in reliability. Moreover, hybrid bonding technology is considered to be capable of attaining much smaller pads, and finer pitches are under development. As the spacing and conductive features pitches go under 1 μm, the presence of the extraneous metal nanoparticles becomes proportionately more significant due to their effect on the electrical operation of the microelectronic device. In some applications, the conductive features described herein include planar conductive layer(s) embedded in one or more planar dielectric layer(s) (e.g., damascene structures). In other applications, the conductive features of interest may be disposed over a dielectric layer and vice versa (e.g., redistribution layers (RDLs)).


An example process described herein takes the counterintuitive step of cleaning the smooth oxide surface and its metal recesses after the surface has already been activated for hybrid bonding, generally with plasma or other means of creating free radicals with ion charges at the ultimate surface of the bonding layer. This example process and cleaning procedure goes against conventional wisdom which holds that the ultra-flat, ultra-smooth, and ultra-clean oxide surface about to participate in direct bonding is sacrosanct and not to be further touched or interacted with in any way, prior to imminent direct bonding with another like surface. Conventionally, apart from post surface activation rinsing with deionized water (DIW), the plasma surface activation step is the de facto last step before direct bonding of the surface molecules takes place, much like the newly exposed adhesive of a paper sticker or a band-aid should be directly applied to its target with no intervening compromise. The example method described herein, however, adds an extra step and further cleans the activated surface, even after activation. As above, this is beneficial because horizontal spacing between conductive leads, posts, pads, and interconnects at the direct bonding surface is becoming so small that metal nanoparticles which were ignorable before, can no longer be ignored due to their propensity to seed electrical leakage between conductive features that are spaced so finely.


Example Embodiments


FIG. 2 shows an example process flow for conventional hybrid bonding, except that a novel cleaning operation 200 has been added between surface activation and the initial stage of the hybrid bonding operation itself. The surface activation is usually plasma activation. The cleaning of nanoparticles from the prepared and activated bonding surface can employ both physical removal means, and also chemical means that dissolve the metal nanoparticles. In one embodiment, the post activation cleaning process may include spraying known cleaning chemicals on the activated surface to remove the nanoparticles. The nanoparticle-clean surface may be further rinsed with DIW before the bonding operation. In another embodiment, the cleaning operation can optionally be assisted with megasonic agitation 202 of the cleaning reagents used. The cleaning fluid may be a very dilute organic or inorganic acid or may be one or more organic alkaline compounds. The organic acid may include carboxylic moieties, for example acetic, butyric, sulfonic, sulfamic, ascorbic, acetylsalicylic, oxalic, tartaric, formic, and mallic acids among others. The inorganic acid compounds may exclude acids containing chloride, nitric, or nitrous ion moieties from being in the cleaning fluids, for example hydrochloric acid, nitric acid, and their likes may be excluded. However, the inorganic acid compounds may include very dilute sulfuric acid, phosphoric acid, buffered hydrofluoric acid (BHF), and their likes, for example.


The cleaning process may apply very gentle metal etching reagents that meet stringent requirements for etching metals at nanometer scale sizes and rates, without forming excessive recesses in the conductive layers of interest, or roughening the dielectric bonding surface. In an implementation, the concentration of the acid or key active agent in the cleaning fluid is less than 1% of the formulary by volume, for example, and preferably less than 0.05% by volume. The cleaning times may range from 2 seconds to preferably less than 180 seconds. The particle removal rate of a given cleaning fluid may be reduced or modulated by the addition of a second or third chemical, for example one or more compounds containing a polyol. In one example, the polyol compound may be glycerin or a glyceride. The concentration of the polyol may range from 0.2% to 15% by volume and preferably less than 10% by volume. The higher the concentration of the polyol content, the lower the etch rate of the cleaning fluid. Also, polyols such as glycerin can serve as a wetting agent in the formulation to improve the uniformity of etching globally across the substrate.


In one embodiment, the cleaning fluid may include a combination of an inorganic acid and an organic acid. In some applications, the cleaning fluid may contain a very small amount of an inorganic or organic peroxide or one or more other inorganic compounds. In some applications, the cleaning fluid may include a quaternary ammonium compound, for example tetramethyl ammonium hydroxide. The concentration of the quaternary ammonium compound may range between 0.1 to 5% by volume and preferably less than 2.5% by volume.


Still in another embodiment the unwanted nanoparticles may be mechanically removed by application of carbon dioxide particles (dry ice) in a spray cleaning.


Various forms of hybrid bonding provide wafer-to-wafer (W2W) bonding, die-to-wafer (D2W) bonding, and panel-to-panel bonding in various circumstances. For example, cavities and trenches are formed in the wafer surfaces by known methods, and then metal is formed to overfill the cavities and trenches of interest by a damascene process, for example. The formed metal may include an adhesion or barrier layer disposed between the dielectric layer and the metal. The barrier layer may be conductive or nonconductive. The metal and surface layers are planarized, with conductive features, for example metal bond pads and metal features ending up very flat or very slightly recessed from the dielectric surface layer because of very slight dishing from the polishing of a CMP process. The recess may be typically less than 35 nm at greatest depth from the polished top surface and preferably less than 25 nm. The bonding surface is then rinsed with DIW or with other cleaning solutions. In some applications the cleaned surface may be further exposed to oxygen plasma (ashing step) to remove organic residues from the planarized surface. The ashing step may end up sputtering the spurious nanoparticles from the metal pad region to portions of the dielectric surface. Routinely, the ashing surface is cleaned with the deionized water (DIW). The surface is then activated by exposure or bombardment with nitrogen plasma or other ionized species (activation step). The plasma activation step may be another source of the spurious nanoparticles. The activated surface may be cleaned with DIW again before the bonding operation. Conventionally, the cleaned surfaces of interest are then aligned and instantly direct bonded to each other at room temperature through mere contact of the surfaces. But the example cleaning procedures described herein intervene between the surface activation step and the direct bonding or hybrid bonding steps.


Once direct bonding contact has been made between dielectric surfaces to initiate dielectric-to-dielectric bonding, mechanical mating and bonding of the recessed metal interconnects on each side of the bonding interface between the surfaces takes place during a subsequent higher temperature annealing. The substrate stacking operation may comprise for example, bonding two or more wafers to form a bonded wafer stack (W2W or multiple W2Ws), or bonding one or more smaller substrates to a larger substrate as in a die to wafer (D2W) operation, or bonding one die to another die or to a stack of dies (D2D). For a die to die bonding operation, the first die may be larger than the second die. Hybrid bonding allows wafers to be bonded with exceptionally fine pitched 3D electrical interconnects. In some embodiments, the annealing process comprises a batch anneal on multiple W2W or D2W stacks.


The polishing and dishing steps are achieved using standard chemical mechanical polishing (CMP) tools with known CMP polishing slurries and known post-polishing CMP slurry cleaning methods. The surface activation step may be accomplished with nitrogen-based chemistries and are then applied through conventional plasma etch tools. After the cleaning procedures described herein, the prepared, activated, and cleaned wafers can then simply be aligned and placed together resulting in the spontaneous formation of chemical bonds between the prepared dielectric surfaces. During the annealing process, the metal bond pads expand mating into one another to form a homogeneous metallic interconnect. In some embodiments, one or more metal grains may grow across the bond interface from the pads of the first substrate to the opposing pads of the second substrate. Concurrently, the chemical bond between oxides is also significantly strengthened by the annealing process, ensuring high reliability without requiring underfill.



FIG. 3 shows an example apparatus 300 including a bonding interface 302 that has been hybrid bonded in the absence of the metal nanoparticles 100. An example cleaning process 200 has been applied that removes the extraneous metal nanoparticles 100 after the plasma processing step, for example, after substrate surface ashing or surface activation or both, before hybrid bonding takes place. With few or no metal nanoparticles 100 trapped in the bonding interface 302, horizontal expanses 304 of directly bonded dielectric remain uncompromised, such as the full 1 μm expanse 304 shown. The freedom from metal nanoparticle contamination ensures the integrity of the electrical performance of the device.



FIG. 4 shows an example method 400 of increasing the reliability of a hybrid bonded device. Operations of the example method 400 are shown in individual blocks in the flow diagram.


At block 402, a surface for hybrid bonding is prepared.


At block 404, the surface for hybrid bonding is activated. For example, the surface may be activated with plasma, such as nitrogen plasma or oxygen plasma or combinations thereof. The surface activation increases the overall bond energy of the completed hybrid bonds.


At block 406, after activating the bonding surface, the surface is cleaned to remove particles disposed at the surface.


At block 408, the surface is hybrid bonded to another surface.



FIG. 5 shows another example method 500 of increasing the reliability of a hybrid bonded device. Operations of the example method 500 are shown in individual blocks in the flow diagram.


At block 502, a cavity is formed in a surface of a first wafer to be hybrid bonded.


At block 504, a metal is formed in the cavity. The metal may be deposited by a damascene process, including seeding the cavity or trench, and depositing the metal, such as copper, by deposition, electroplating, and so forth. The metal plated substrate can be further annealed by thermal treatment before the planarization step.


At block 506, at least the metal is planarized with a suitable flattening technique, such as chemical mechanical planarization (CMP).


At block 508, the bonding surface is cleaned after the CMP step to remove any residual polishing slurry material on the bonding surface. At block 510, the prepared bonding surface is surface activated with plasma or other activation means. An ashing step may precede this activation step or vice versa. In some applications, the ashing step may comprise the surface activation step.


At block 512, after activating the surface, the surface is cleaned of nanoparticles, so that there are no remaining particles or fewer than 2 particles per square micron of the mutual surface area of both surfaces to be hybrid bonded together. Cleaning as used herein means one or both or any combination of physically removing the metal nanoparticles or dissolving the metal nanoparticles with a reagent or cleaning solution, such as an acid or base (alkali) solution. The cleaning step may comprise applying DIW to rinse off the cleaning fluid from the bonding surface prior to drying the cleaned substrate.


At block 514, after the cleaning of metal nanoparticles, the activated and cleaned bonding surface is hybrid bonded to a first surface of a second wafer or to the receiving surface of interest. The receiving surface of interest may include a dielectric surface or the surface of another die.


The method 500 may be repeated on the second surface of the second wafer (or die) and repeated thence to create a stack of wafers (or dies, or both) making a 3D or a 2.5D stacked microelectronic package or device of hybrid bonded wafers (or dies) that have had their respective metal nanoparticles between each layer removed, preserving the integrity of the electrical operation of the entire stacked micropackage.


Reiterating the example processes and apparatuses described, an example method includes preparing a surface for hybrid bonding, the hybrid bonding comprising direct bonding between opposing dielectric materials and direct metal-to-metal bonding between opposing conductive materials, activating the surface for the hybrid bonding, then after activating the surface, cleaning the surface to remove particles disposed at the surface, and then hybrid bonding the surface to another surface.


Preparing the surface for hybrid bonding can include forming cavities in the surface, forming a conductive metal in the cavities, and planarizing the surface to provide a smooth oxide surface and conductive metal recesses.


The example method can further include ashing the smooth oxide surface and conductive metal recesses to remove organic traces of unwanted organic materials, and rinsing the surface with deionized water or other rinsing or cleaning reagent.


Activating the surface for the hybrid bonding usually includes plasma activating the surface.


The operation of cleaning the surface to remove particles can include physically removing the particles or dissolving the particles.


In an implementation, cleaning the surface to remove particles disposed at the surface applies an alkaline developer solution to remove or dissolve the particles. A concentration or pH of the alkaline developer can be selected to remove 1-10 nm copper or metal particles in a selected amount of time without affecting the activated surface and/or without significantly damaging or degrading the activated bonding surface. The cleaning operation can also optionally include applying a megasonic agitation to the cleaning solution to assist removing the particles disposed at the surface.


In various implementations, cleaning the surface to remove particles disposed at the surface can further include applying a reagent containing at least one agent selected from hydrogen peroxide, tetra methyl ammonium hydroxide, and sulfuric acid, for example. A concentration or a pH of the agent is selected to dissolve 1-10 nm copper or metal particles in a selected amount of time without degrading the activated surface or the prepared bonding surface. With the select cleaning solution or reagent, a megasonic agitation may be applied to the solution or reagent to assist removing the particles disposed at the surface.


An example apparatus has a directly bonded bonding interface, and less than two extraneous metal nanoparticles on average per square micron of the bonding interface area. Ideally, the directly bonded bonding interface has no extraneous metal nanoparticles.


An example hybrid bonding method for wafer-to-wafer or die-to-wafer micropackaging includes forming a cavity in a surface of a first wafer to be hybrid bonded, forming a conductive metal in the cavity, planarizing the conductive metal to form a smooth bonding surface, rinsing the bonding surface, activating the bonding surface, after activating the bonding surface, cleaning the bonding surface to remove nanoparticles, and hybrid bonding the activated and cleaned bonding surface to a first surface of a second wafer.


This example method further includes annealing the hybrid bonded bonding surface at an elevated temperature that may range between 150 to 350° C., and preferably less than 305° C. The example method further includes preparing a second surface of the second wafer or substrate for hybrid bonding, activating the second surface of the second substrate, then after activating the second surface of the second substrate, cleaning the second surface of the second substrate to remove nanoparticles, and hybrid bonding the activated and cleaned second surface of the second substrate to a next surface of a next substrate of interest. In some applications, the cleaned prepared bonding surface of the second substrate, without further plasma processing, may be directly bonded to the other surface of interest.


The example method further includes repeating the method for X number of bonding surfaces of Y number of wafers or dies, to make a hybrid bonded stack of wafers or dies Y layers thick. In an implementation, the example method further includes performing at least part of the hybrid bonding method in a flip chip bonder. Ashing the bonding surface with oxygen plasma or another ashing agent may also included in the method after the planarization step. The operation of rinsing the bonding surface after planarizing can be done with deionized water. Also, the substrate cleaning steps and the plasma processing steps may be performed in a batch mode in various appropriate batch reactors. As above, cleaning the bonding surface after activation to remove metal nanoparticles can use a reagent containing at least one agent selected from an alkaline developer, hydrogen peroxide, tetra methyl ammonium hydroxide, and inorganic and organic acid, among others. A concentration or a pH of the agent is selected to dissolve or remove 1-10 nm copper particles in a selected amount of time without degrading the activated surface or the prepared bonding surface.


In the foregoing description and in the accompanying drawings, specific terminology and drawing symbols have been set forth to provide a thorough understanding of the disclosed embodiments. In some instances, the terminology and symbols may imply specific details that are not required to practice those embodiments. For example, any of the specific dimensions, quantities, material types, fabrication steps and the like can be different from those described above in alternative embodiments. The term “coupled” is used herein to express a direct connection as well as a connection through one or more intervening circuits or structures. The terms “example,” “embodiment,” and “implementation” are used to express an example, not a preference or requirement. Also, the terms “may” and “can” are used interchangeably to denote optional (permissible) subject matter. The absence of either term should not be construed as meaning that a given feature or technique is required.


Various modifications and changes can be made to the embodiments presented herein without departing from the broader spirit and scope of the disclosure. For example, features or aspects of any of the embodiments can be applied in combination with any other of the embodiments or in place of counterpart features or aspects thereof. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.


While the present disclosure has been disclosed with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations possible given the description. It is intended that the appended claims cover such modifications and variations as fall within the true spirit and scope of the disclosure.

Claims
  • 1. A method, comprising: preparing a surface for hybrid bonding, the hybrid bonding comprising direct bonding between dielectric materials and direct metal-to-metal bonding between conductive materials;plasma activating the surface for the hybrid bonding;after plasma activating the surface, cleaning the surface to remove metal particles disposed at the surface; andhybrid bonding the surface to another surface.
  • 2. The method of claim 1, wherein preparing the surface for hybrid bonding comprises: forming cavities in the surface;forming a conductive metal in the cavities; andplanarizing the surface to provide a smooth oxide surface and conductive metal recesses.
  • 3. The method of claim 2, further comprising: ashing the smooth oxide surface and conductive metal recesses to remove organic traces of a resist material; andrinsing the surface with a cleaning fluid to remove contaminating particles from the bonding surface.
  • 4. The method of claim 1, wherein cleaning the surface to remove metal particles comprises physically removing the metal particles.
  • 5. The method of claim 1, wherein cleaning the surface to remove metal particles comprises dissolving the metal particles.
  • 6. The method of claim 1, wherein cleaning the surface to remove metal particles disposed at the surface further comprises applying an alkaline solution to remove the metal particles.
  • 7. The method of claim 6, wherein a concentration or a pH of the alkaline solution is selected to dissolve 1-10 nanometer copper or metal particles in a selected amount of time without degrading the plasma activated surface.
  • 8. The method of claim 6, further comprising applying a megasonic agitation to the alkaline solution or acidic solution to assist removing the metal particles disposed at the surface.
  • 9. The method of claim 1, wherein cleaning the surface to remove metal particles disposed at the surface comprises applying a cleaning solution containing at least one agent selected from the group consisting of hydrogen peroxide, tetra methyl ammonium hydroxide, an organic acid, and an inorganic acid.
  • 10. The method of claim 9, wherein the concentration of the at least one agent is selected to be less than 1% of the cleaning solution by volume.
  • 11. The method of claim 9, further comprising applying a megasonic agitation to the cleaning solution to assist removing the metal particles disposed at the surface.
  • 12. An apparatus, comprising: a directly bonded bonding interface; andless than two extraneous metal nanoparticles on average per square micron of the bonding interface area.
  • 13. A hybrid bonding method for wafer-to-wafer or die-to-wafer or die-to-die or two substrates packaging, comprising: forming a cavity in a surface of a first substrate to be hybrid bonded;forming a conductive metal in the cavity;planarizing the conductive metal to form a bonding surface;rinsing the bonding surface;plasma activating the bonding surface;after plasma activating the bonding surface, cleaning the bonding surface to remove metal nanoparticles; andhybrid bonding the activated and cleaned bonding surface to a first surface of a second substrate.
  • 14. The hybrid bonding method of claim 13, further comprising annealing the hybrid bonded bonding surface at an elevated temperature.
  • 15. The hybrid bonding method of claim 13, further comprising preparing a second surface of the second substrate for hybrid bonding; activating the second surface of the second substrate;after activating the second surface of the second wafer, cleaning the second surface of the second substrate to remove nanoparticles; andhybrid bonding the activated and cleaned second surface of the second substrate to a next surface of a next substrate.
  • 16. The hybrid bonding method of claim 15, further comprising repeating the method for X bonding surfaces of Y substrates or dies, to make a hybrid bonded stack of substrates or dies Y layers thick.
  • 17. The hybrid bonding method of claim 16, further comprising performing at least part of the hybrid bonding method in a flip chip bonder.
  • 18. The hybrid bonding method of claim 13, further comprising ashing the bonding surface after planarizing the bonding surface.
  • 19. The hybrid bonding method of claim 13, wherein rinsing the bonding surface after planarizing the bonding surfaces comprises rinsing with deionized water.
  • 20. The hybrid bonding method of claim 13, wherein cleaning the bonding surface to remove metal nanoparticles further comprises applying a cleaning solution containing at least one agent selected from the group consisting of an alkaline developer, hydrogen peroxide, tetra methyl ammonium hydroxide, an organic acid, and an inorganic acid.
  • 21. The hybrid bonding method of claim 20, wherein a concentration or a pH of the agent is selected to dissolve 1-10 nanometer copper or metal particles in a selected amount of time without degrading the activated surface.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application No. 62/003,026, filed Mar. 31, 2020, titled “RELIABLE HYBRID BONDED APPARATUS,” the entire contents of each of which are hereby incorporated herein by reference.

US Referenced Citations (245)
Number Name Date Kind
5051802 Prost et al. Sep 1991 A
5753536 Sugiyama et al. May 1998 A
5771555 Eda et al. Jun 1998 A
6080640 Gardner et al. Jun 2000 A
6423640 Lee et al. Jul 2002 B1
6465892 Suga Oct 2002 B1
6887769 Kellar et al. May 2005 B2
6908027 Tolchinsky et al. Jun 2005 B2
7045453 Canaperi et al. May 2006 B2
7105980 Abbott et al. Sep 2006 B2
7193423 Dalton et al. Mar 2007 B1
7550366 Suga et al. Jun 2009 B2
7582971 Kameyama et al. Sep 2009 B2
7663231 Chang et al. Feb 2010 B2
7686912 Suga et al. Mar 2010 B2
7750488 Patti et al. Jul 2010 B2
7759751 Ono Jul 2010 B2
7803693 Trezza Sep 2010 B2
8168458 Do et al. May 2012 B2
8183127 Patti et al. May 2012 B2
8193632 Chang et al. Jun 2012 B2
8263434 Pagaila et al. Sep 2012 B2
8268699 Park et al. Sep 2012 B2
8318586 Libralesso et al. Nov 2012 B2
8349635 Gan et al. Jan 2013 B1
8377798 Peng et al. Feb 2013 B2
8441131 Ryan May 2013 B2
8476165 Trickett et al. Jul 2013 B2
8482132 Yang et al. Jul 2013 B2
8501537 Sadaka et al. Aug 2013 B2
8524533 Tong et al. Sep 2013 B2
8618659 Sato et al. Dec 2013 B2
8620164 Heck et al. Dec 2013 B2
8647987 Yang et al. Feb 2014 B2
8697493 Sadaka Apr 2014 B2
8716105 Sadaka et al. May 2014 B2
8791575 Oganesian et al. Jul 2014 B2
8802538 Liu Aug 2014 B1
8809123 Liu et al. Aug 2014 B2
8841002 Tong Sep 2014 B2
8866305 Sadaka et al. Oct 2014 B2
8878353 Haba et al. Nov 2014 B2
9093350 Endo et al. Jul 2015 B2
9136293 Yee et al. Sep 2015 B2
9142459 Kumar et al. Sep 2015 B1
9142517 Liu Sep 2015 B2
9171756 Enquist et al. Oct 2015 B2
9184125 Enquist et al. Nov 2015 B2
9224704 Landru Dec 2015 B2
9230941 Chen et al. Jan 2016 B2
9252172 Chow et al. Feb 2016 B2
9257399 Kuang et al. Feb 2016 B2
9299736 Chen et al. Mar 2016 B2
9312229 Chen et al. Apr 2016 B2
9331149 Tong et al. May 2016 B2
9337235 Chen et al. May 2016 B2
9385024 Tong et al. Jul 2016 B2
9394161 Cheng et al. Jul 2016 B2
9431368 Enquist et al. Aug 2016 B2
9437572 Chen et al. Sep 2016 B2
9443796 Chou et al. Sep 2016 B2
9461007 Chun et al. Oct 2016 B2
9476898 Takano Oct 2016 B2
9496239 Edelstein et al. Nov 2016 B1
9536848 England et al. Jan 2017 B2
9559081 Lai et al. Jan 2017 B1
9620481 Edelstein et al. Apr 2017 B2
9656852 Cheng et al. May 2017 B2
9723716 Weinhold Aug 2017 B2
9728521 Tsai et al. Aug 2017 B2
9741620 Uzoh et al. Aug 2017 B2
9799587 Fujii et al. Oct 2017 B2
9852988 Enquist et al. Dec 2017 B2
9893004 Yazdani Feb 2018 B2
9929050 Lin Mar 2018 B2
9941241 Edelstein et al. Apr 2018 B2
9941243 Kim et al. Apr 2018 B2
9953941 Enquist Apr 2018 B2
9960142 Chen et al. May 2018 B2
9971777 Bertin et al. May 2018 B2
10002844 Wang et al. Jun 2018 B1
10026605 Doub et al. Jul 2018 B2
10075657 Fahim et al. Sep 2018 B2
10204893 Uzoh et al. Feb 2019 B2
10269756 Uzoh Apr 2019 B2
10269853 Katkar et al. Apr 2019 B2
10276619 Kao et al. Apr 2019 B2
10276909 Huang et al. Apr 2019 B2
10418277 Cheng et al. Sep 2019 B2
10446456 Shen et al. Oct 2019 B2
10446487 Huang et al. Oct 2019 B2
10446532 Uzoh et al. Oct 2019 B2
10508030 Katkar et al. Dec 2019 B2
10515925 Uzoh Dec 2019 B2
10522499 Enquist et al. Dec 2019 B2
10566219 Kurita et al. Feb 2020 B2
10707087 Uzoh et al. Jul 2020 B2
10714449 Uzoh Jul 2020 B2
10727219 Uzoh et al. Jul 2020 B2
10784191 Huang et al. Sep 2020 B2
10790262 Uzoh et al. Sep 2020 B2
10840135 Uzoh Nov 2020 B2
10840205 Fountain, Jr. et al. Nov 2020 B2
10854578 Morein Dec 2020 B2
10879212 Uzoh et al. Dec 2020 B2
10886177 DeLaCruz et al. Jan 2021 B2
10892246 Uzoh Jan 2021 B2
10923408 Huang et al. Feb 2021 B2
10923413 DeLaCruz Feb 2021 B2
10937755 Shah et al. Mar 2021 B2
10950547 Mohammed et al. Mar 2021 B2
10964664 Mandalapu et al. Mar 2021 B2
10985133 Uzoh Apr 2021 B2
10991804 DeLaCruz et al. Apr 2021 B2
10998292 Lee et al. May 2021 B2
11004757 Katkar et al. May 2021 B2
11011494 Gao et al. May 2021 B2
11011503 Wang et al. May 2021 B2
11031285 Katkar et al. Jun 2021 B2
11037919 Uzoh et al. Jun 2021 B2
11056348 Theil Jul 2021 B2
11069734 Katkar Jul 2021 B2
11088099 Katkar et al. Aug 2021 B2
11127738 DeLaCruz et al. Sep 2021 B2
11158606 Gao et al. Oct 2021 B2
11171117 Gao et al. Nov 2021 B2
11176450 Teig et al. Nov 2021 B2
11256004 Haba et al. Feb 2022 B2
11264357 DeLaCruz et al. Mar 2022 B1
11276676 Enquist et al. Mar 2022 B2
11329034 Tao et al. May 2022 B2
11348898 DeLaCruz et al. May 2022 B2
11355443 Huang et al. Jun 2022 B2
20020003307 Suga Jan 2002 A1
20020048906 Sakai et al. Apr 2002 A1
20020053730 Mashino May 2002 A1
20040084414 Sakai et al. May 2004 A1
20040235266 Tong Nov 2004 A1
20050009246 Enquist et al. Jan 2005 A1
20050031795 Chaudhury et al. Feb 2005 A1
20060057945 Hsu et al. Mar 2006 A1
20060087042 Kameyama et al. Apr 2006 A1
20070075417 Hwang et al. Apr 2007 A1
20070111386 Kim et al. May 2007 A1
20080308928 Chang Dec 2008 A1
20090227089 Plaut et al. Sep 2009 A1
20090298264 Arai et al. Dec 2009 A1
20100167534 Iwata Jul 2010 A1
20110175243 Jo et al. Jul 2011 A1
20120187516 Sato Jul 2012 A1
20120194719 Churchwell et al. Aug 2012 A1
20130026643 England et al. Jan 2013 A1
20130252399 Leduc et al. Sep 2013 A1
20130270328 Di Cioccio Oct 2013 A1
20140001949 Kimura et al. Jan 2014 A1
20140011324 Liu et al. Jan 2014 A1
20140175655 Chen et al. Jun 2014 A1
20140312511 Nakamura et al. Oct 2014 A1
20140314370 Hatori et al. Oct 2014 A1
20150064498 Tong Mar 2015 A1
20150118825 Ishizuka Apr 2015 A1
20150255349 Holden et al. Sep 2015 A1
20150314385 Abe et al. Nov 2015 A1
20160126218 Kurita May 2016 A1
20160343682 Kawasaki Nov 2016 A1
20180005977 Lin et al. Jan 2018 A1
20180012787 Oka et al. Jan 2018 A1
20180175012 Wu et al. Jun 2018 A1
20180182639 Uzoh et al. Jun 2018 A1
20180182666 Uzoh et al. Jun 2018 A1
20180190580 Haba et al. Jul 2018 A1
20180190583 DeLaCruz et al. Jul 2018 A1
20180219038 Gambino et al. Aug 2018 A1
20180308819 Uzoh Oct 2018 A1
20180323177 Yu et al. Nov 2018 A1
20180323227 Zhang et al. Nov 2018 A1
20180331066 Uzoh et al. Nov 2018 A1
20190096741 Uzoh et al. Mar 2019 A1
20190115277 Yu et al. Apr 2019 A1
20190131277 Yang et al. May 2019 A1
20190157333 Tsai May 2019 A1
20190198409 Katkar et al. Jun 2019 A1
20190199058 Pierer et al. Jun 2019 A1
20190252364 Uzoh et al. Aug 2019 A1
20190265411 Huang et al. Aug 2019 A1
20190326252 Mandalapu et al. Oct 2019 A1
20190333550 Fisch Oct 2019 A1
20190348336 Katkar et al. Nov 2019 A1
20190358955 Giusti et al. Nov 2019 A1
20190371761 Uzoh et al. Dec 2019 A1
20190385935 Gao et al. Dec 2019 A1
20190385966 Gao et al. Dec 2019 A1
20200013637 Haba Jan 2020 A1
20200013754 Gao et al. Jan 2020 A1
20200013765 Fountain, Jr. et al. Jan 2020 A1
20200035641 Fountain, Jr. et al. Jan 2020 A1
20200075520 Gao et al. Mar 2020 A1
20200075534 Gao et al. Mar 2020 A1
20200075553 DeLaCruz et al. Mar 2020 A1
20200118973 Wang et al. Apr 2020 A1
20200126906 Uzoh et al. Apr 2020 A1
20200194396 Uzoh Jun 2020 A1
20200227367 Haba et al. Jul 2020 A1
20200243380 Uzoh et al. Jul 2020 A1
20200279821 Haba et al. Sep 2020 A1
20200294908 Haba et al. Sep 2020 A1
20200299127 Brioschi et al. Sep 2020 A1
20200321307 Uzoh Oct 2020 A1
20200328162 Haba et al. Oct 2020 A1
20200328164 DeLaCruz et al. Oct 2020 A1
20200328165 DeLaCruz et al. Oct 2020 A1
20200335408 Gao et al. Oct 2020 A1
20200365575 Uzoh et al. Nov 2020 A1
20200371154 DeLaCruz et al. Nov 2020 A1
20200395321 Katkar et al. Dec 2020 A1
20200411483 Uzoh et al. Dec 2020 A1
20210098412 Haba et al. Apr 2021 A1
20210118864 DeLaCruz et al. Apr 2021 A1
20210143125 DeLaCruz et al. May 2021 A1
20210181510 Katkar et al. Jun 2021 A1
20210193603 Katkar et al. Jun 2021 A1
20210193624 DeLaCruz et al. Jun 2021 A1
20210193625 DeLaCruz et al. Jun 2021 A1
20210242152 Fountain, Jr. et al. Aug 2021 A1
20210296282 Gao et al. Sep 2021 A1
20210366820 Uzoh Nov 2021 A1
20210375850 Uzoh et al. Dec 2021 A1
20210407941 Haba Dec 2021 A1
20220077063 Haba Mar 2022 A1
20220077087 Haba Mar 2022 A1
20220139867 Uzoh May 2022 A1
20220139869 Gao et al. May 2022 A1
20220208650 Gao et al. Jun 2022 A1
20220208702 Uzoh Jun 2022 A1
20220208723 Katkar et al. Jun 2022 A1
20220246497 Fountain, Jr. et al. Aug 2022 A1
20220285303 Mirkarimi et al. Sep 2022 A1
20220319901 Suwito et al. Oct 2022 A1
20220320035 Uzoh et al. Oct 2022 A1
20220320036 Gao et al. Oct 2022 A1
20230005850 Fountain, Jr. Jan 2023 A1
20230019869 Mirkarimi et al. Jan 2023 A1
20230036441 Haba et al. Feb 2023 A1
20230067677 Lee et al. Mar 2023 A1
20230069183 Haba Mar 2023 A1
Foreign Referenced Citations (24)
Number Date Country
104246971 Dec 2014 CN
106409650 Feb 2017 CN
107331759 Nov 2017 CN
1011133 Jun 2000 EP
2002-353416 Dec 2002 JP
2008-130603 Jun 2008 JP
2008-244080 Oct 2008 JP
2009-514185 Apr 2009 JP
2011-104633 Jun 2011 JP
2013-33786 Feb 2013 JP
2015-517217 Jun 2015 JP
2016-072316 May 2016 JP
2018-160519 Oct 2018 JP
201401573 Jan 2014 TW
201423873 Jun 2014 TW
201612965 Apr 2016 TW
WO 0059006 Oct 2000 WO
2005-043584 May 2005 WO
WO 2007021639 Feb 2007 WO
WO 2008112101 Sep 2008 WO
WO 2009158378 Dec 2009 WO
WO 2012133760 Jul 2014 WO
WO 2016003709 Jan 2016 WO
WO 2018194827 Oct 2018 WO
Non-Patent Literature Citations (9)
Entry
Inoue, F. et al., “Influence of composition of SiCN as interfacial layer on plasma activated direct bonding,” ECS Journal of Solid State Science and Technology, 2019, vol. 8, No. 6, pp. P346-P350.
International Search Report and Written Opinion for PCT/US2021/024312, dated Jul. 15, 2021, 10 pages.
Ker, Ming-Dou et al., “Fully Process-Compatible Layout Design on Bond Pad to Improve Wire Bond Reliability in CMOS ICs,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316.
Moriceau, H. et al., “Overview of Recent Direct Wafer Bonding Advances and Applications”, Advances in Natural Sciences—Nanoscience and Nanotechnology, 2010, 12 pages.
Nakanishi, H. et al., “Studies on SiO2—SiO2 Bonding with Hydrofluoric Acid. Room Temperature and Low Stress Bonding Technique for MEMS,” Tech. Research Lab., 200, Elsevier Science S.A., 8 pages.
Oberhammer et al., “Sealing of Adhesive Bonded Devices on Wafer Level,” in Sensors and Actuators A, vol. 110, No. 1-3, pp. 407-412, Feb. 29, 2004, see pp. 407-412; and figures 1(a)-1(l), 6 pages.
Plobi et al., “Wafer Direct Bonding: Tailoring Adhesion Between Brittle Materials,” Materials Science and Engineering Review Journal, 1999, 88 pages.
Suga et al., “Bump-less Interconnect for Next Generation System Packaging”, IEEE, 2001 and ECTC, 2001, 6 pages.
Suga et al., “Feasibility of surface activated bonding for ultra-fine pitch interconnection—a new concept of bump-less direct bonding for system level packaging”, IEEE, 2000, 1 page.
Related Publications (1)
Number Date Country
20210305202 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
63003026 Mar 2020 US