Resistive memory device and fabrication methods

Abstract
A method for forming a resistive memory device includes providing a substrate comprising a first metal material, forming a conductive silicon-bearing layer on top of the first metal material, wherein the conductive silicon-bearing layer comprises an upper region and a lower region, and wherein the lower region is adjacent to the first metal material, forming an amorphous layer from the upper region of the conductive silicon-bearing layer, and disposing an active metal material above the amorphous layer.
Description
BACKGROUND

The present invention relates to memory devices. More particularly, the present invention discloses non-volatile resistive switch memory devices having improved operational characteristics, fabrication techniques, as well as apparatus including such memories.


The inventor of the present invention has recognized the success of semiconductor devices has been mainly driven by an intensive transistor down-scaling process. However, as field effect transistors (FETs) approach sizes less than 100 nm, physical problems such as short channel effect begin to hinder proper device operation. For transistor based memories, such as those commonly known as Flash memories, other performance degradations or problems may occur as device sizes shrink. With Flash memories, a high voltage is usually required for programming of such memories, however, as device sizes shrink, the high programming voltage can result in dielectric breakdown and other problems. Similar problems can occur with other types of non-volatile memory devices other than Flash memories.


The inventor of the present invention recognizes that many other types of non-volatile random access memory (RAM) devices have been explored as next generation memory devices, such as: ferroelectric RAM (Fe RAM); magneto-resistive RAM (MRAM); organic RAM (ORAM); phase change RAM (PCRAM); and others.


A common drawback with these memory devices include that they often require new materials that are incompatible with typical CMOS manufacturing. As an example of this, Organic RAM or ORAM requires organic chemicals that are currently incompatible with large volume silicon-based fabrication techniques and foundries. As another example of this, Fe-RAM and MRAM devices typically require materials using a high temperature anneal step, and thus such devices cannot be normally be incorporated with large volume silicon-based fabrication techniques.


Additional drawbacks with these devices include that such memory cells often lack one or more key attributes required of non-volatile memories. As an example of this, Fe-RAM and MRAM devices typically have fast switching (e.g. “0” to “1”) characteristics and good programming endurance, however, such memory cells are difficult to scale to small sizes. In another example of this, for ORAM devices reliability of such memories is often poor. As yet another example of this, switching of PCRAM devices typically includes Joules heating and undesirably require high power consumption.


From the above, improved semiconductor memory devices that can scale to smaller dimensions with reduced drawbacks are therefore desirable.


BRIEF SUMMARY OF THE PRESENT INVENTION

The present invention relates to memory devices. More particularly, embodiments according to the present invention disclose memory (e.g. switching) devices having improved data retention characteristics and methods for forming such devices. Embodiments are described with respect to non-volatile memory devices, however, embodiments may also be applied to a broader range of memory devices, processing devices, and the like.


Various processes include fabrication of a resistive memory device. One process includes forming a conductive silicon layer, such as a p-doped polysilicon or silicon/germanium alloy, in electrical contact and above a first metal layer (e.g. aluminum). The conductive silicon layer is then subject to a plasma etch or ion implantation step (e.g. Argon, Oxygen, Silicon), that changes an upper region of the conductive silicon layer into an amorphous layer. The non-conductive amorphous layer may include oxygen, non-crystalline silicon, silicon dioxide, and p-type impurities, but is relatively non-conductive.


In some specific examples, when the conductive silicon layer is a doped polysilicon material, the amorphization process creates an amorphous material, such as SiOx as a resistive switching layer. In other specific examples, when the conductive silicon layer is a doped silicon-germanium material, the amorphization process creates a SixGeyOz (x, y, z integers) material as a resistive switching material. In some examples, the resulting resistive switching material may have a thickness in the range of approximately 2 nm to approximately 5 nm. In other embodiments, other thicknesses are contemplated, in light of the specific engineering requirements.


Subsequently, an active metal layer (e.g. silver, platinum, palladium, copper, nickel, or the like) is disposed above the upper region (now amorphous layer). One or more second metal layers (e.g. aluminum) may be formed in electrical contact with the active metal layer. A resistive memory device is formed from a lower region of the conductive silicon layer, the non-conductive amorphous layer, and the active metal layer.


In various embodiments, a processor, or the like, may include resistive memories as described herein. Because the resistive memories are relatively non-volatile, the resistive states of devices, such as processors, or the like may be maintained while power is not supplied to the processors. To a user, such capability would greatly enhance the power-on power-off performance of devices including such processors. Additionally, such capability would greatly reduce the power consumption of devices including such processors. In particular, because such memories are non-volatile, the processor need not draw power to refresh the memory states, as is common with CMOS type memories. Accordingly, embodiments of the present invention are directed towards processors or other logic incorporating these memory devices, as described herein, devices (e.g. smart phones, network devices) incorporating such memory devices, and the like.


According to one aspect of the invention, a semiconductor fabrication method for forming a resistive memory device is disclosed. One technique includes providing a substrate comprising a first metal material, and forming a conductive silicon-bearing layer on top of the first metal material, wherein the conductive silicon-bearing layer comprises an upper region and a lower region, and wherein the lower region is adjacent to the first metal material. A process includes forming an amorphous layer from the upper region of the conductive silicon-bearing layer, and disposing an active metal material above the amorphous layer.


According to another aspect of the invention, a resistive memory device is described. One device includes a substrate comprising a first metal material, and a monolithic semiconductor layer formed on the first metal material, wherein the monolithic semiconductor layer comprises an upper region and a lower region, wherein the lower region of the monolithic semiconductor layer comprises a conductive silicon-bearing material, and wherein the upper region of the monolithic semiconductor layer comprises a conductive silicon-bearing material subjected to an Argon plasma etch, and wherein the lower region is adjacent to the first metal material. In a device an active metal material disposed above the upper region.


According to yet another aspect of the invention, a resistive memory device formed according to the processes disclosed herein.





SUMMARY OF THE DRAWINGS

In order to more fully understand the present invention, reference is made to the accompanying drawings. Understanding that these drawings are not to be considered limitations in the scope of the invention, the presently described embodiments and the presently understood best mode of the invention are described with additional detail through use of the accompanying drawings in which:



FIG. 1 illustrates a cross-section of a process step for forming a switching device according to various embodiments of the present invention;



FIG. 2 illustrates a cross-section of process step for forming a switching device according to various embodiments of the present invention;



FIG. 3 illustrates a cross-section of a process step for forming a switching device according to various embodiments of the present invention;



FIG. 4 illustrates a cross-section of a process step for forming a switching device according to various embodiments of the present invention;



FIG. 5 illustrates a cross-section of a process step for forming a switching device according to various embodiments of the present invention; and



FIG. 6 illustrates a cross-section of an embodiment of the present invention.





DETAILED DESCRIPTION OF THE PRESENT INVENTION

The present invention is generally related to a memory (switching) device and an apparatus including a memory device. More particularly, embodiments of the present invention provide structures and methods for forming one or more resistive switching/memory devices each having improved memory retention characteristics. The embodiments described herein are described with respect to fabrication of high density non-volatile memory devices. However, one of ordinary skill in the art will recognize that these devices may be applied to a broad range of applications, such as processing devices, computing devices, or the like.



FIG. 1 illustrates a substrate 100 having a surface region 110. In various embodiments, the substrate 100 can be a semiconductor substrate, such as: a single crystal silicon wafer, a silicon germanium wafer, a silicon-on-insulator substrate, commonly known as SOI, and the like.


Depending on the specific embodiment, the processes described herein are back-end CMOS processes, i.e. processes limited to certain temperature ranges, and the like, that can be performed upon substrates having existing CMOS devices. Accordingly, the substrate 100 may include one or more transistor devices, conductors, or the like, formed below (e.g. 120) surface region 110, or next to surface region 110 (e.g. 130). In some embodiments, the CMOS devices 120 or 130 may include device drivers controlling circuitry for the resistive switching device; processing or computational logic; physical sensors; memories, or the like. In various embodiments, the one or more resistive switching/memory devices formed herein may be operationally coupled to the CMOS devices 120 or 130.



FIG. 2 illustrates a resulting cross-section 200 after a first dielectric material 210 is disposed overlying the surface region 110 of the semiconductor substrate 100. The first dielectric material 210 can be a suitable dielectric material such as silicon oxide, silicon nitride or combinations thereof depending on the embodiment. In various embodiments, the first dielectric material 210 can be deposited using conventional processing techniques such as plasma enhanced chemical vapor deposition; low pressure chemical vapor deposition; or the like depending on engineering requirements. In some examples, silicon oxide may be formed using silane, disilane, a suitable chlorosilane or TEOS, or other suitable silicon bearing materials, depending on the embodiment.



FIG. 3 illustrates a cross-section 300 after a first wiring material 310 is disposed overlying the first dielectric material 210. In various embodiments, the first wiring material 310 may be tungsten, copper, aluminum or other suitable metal materials including alloys thereof. In various embodiments, the first wiring material 310 can be deposited using conventional processing techniques including: physical vapor deposition, evaporation, chemical vapor deposition, or the like; electrochemical methods such as electroplating or electrode-less deposition from a liquid medium, or the like; or other suitable deposition techniques including combinations of the above. In some embodiments, first wiring material 310 may be patterned. Additionally, one or more barrier materials/contact materials may be disposed on first wiring material 310 before or after patterning.


In some embodiments of the present invention, a conductive silicon-bearing material 320 may be disposed over the first wiring material 310. In some embodiments of the present invention, conductive material 320 may be a polysilicon, a p-type doped polysilicon, a silicon/germanium alloy or the like. Various methods may be used to dope the polysilicon, including in-situ dopants, ion implantation, and the like. The p-type dopant may be any conventional dopant in various embodiments, such as Boron, or the like. In some embodiments, the thickness of the silicon-bearing material 320 may be within the range of about 3 nm to about 10 nm, or the like. An upper region 340 and a lower region 350 are illustrated.


In some embodiments of the present invention, before conductive silicon layer 320 is formed, a thick dielectric layer, e.g. an oxide layer, may be formed above first wiring material 310. Then a series of vias are etched into the thick oxide layer to expose first wiring material 310. In such cases, the conductive silicon material 320 is formed within the via structures.


In various embodiments, after or when the conductive silicon-bearing material, e.g. doped polysilicon layer is being formed, a thin layer 330 of material may be formed on the top surface of conductive material 320. This growth may be a natural process that occurs between processing steps, or this growth may be intentional performed. In some embodiments, the thickness of the may be controlled. In other words, an etch process (e.g. HF dip, or the like) may be performed to either completely remove the layer before subsequent processes are performed, or the thickness of the layer may brought within a certain thickness range. In some embodiments, the thickness of the layer may be on the order of 0 to 50 angstroms. In some embodiments, the within the device, the thin layer 330 is an oxide, nitride, or the like.



FIG. 4 illustrates a cross-section 400 according to embodiments of the present invention. In FIG. 4, the top surface of the device illustrated in FIG. 3 is subject to an Argon gas plasma etch 410 with a bias power within a range of approximately 30 watts to approximately 120 watts. In other embodiments, the plasma etch may use oxygen, silicon, another noble gas, or the like.


In some embodiments of the present invention, an ion implantation process is performed instead of/or in addition to the plasma etch. The implantation may use Argon-ions or the like. In some embodiments, implantation energy may be within the range 10 to 200 keV.


As illustrated in FIG. 4, upper region 340 of conductive material 320 is affected by the plasma etch/ion implant. In various embodiments, it is believed that the result of the etch/implant is an amorphizing of the conductive silicon material within upper region 410. In other words, a portion of the conductive silicon material within upper region 340 is etched away, and a portion becomes non-conductive, i.e. amorphous silicon layer 430. Although amorphous silicon 430 may still include p-type dopants, the amorphous silicon is non-crystalline, and is non-conductive.


In some specific examples, when conductive material 320 is a doped polysilicon material, the amorphization process creates an amorphous SiOx material. In other specific examples, when conductive material 320 is a doped silicon-germanium material, the amorphization process creates SiOx and/or a SixGeyOz (x, y, z integers) material as the amorphous layer. In some examples, the upper region 410 may have a thickness in the range of approximately 2 nm to approximately 5 nm. In other embodiments, other thicknesses are contemplated, in light of the specific engineering requirements. As will be described below, the amorphous silicon 430 in upper region 340 serves as a resistive switching layer.


In some embodiments, where a via structure is used, conductive material 320 may be planarized with respect to a thick dielectric layer, e.g. an oxide layer, prior to the amorphizing process described above. After amorphizing, the amorphous silicon 430 is exposed for the following steps.


In some embodiments, a pillar-type structure is used. In such embodiments, the amorphous silicon 430 and the lower region 350 may be etched to form a series of pillar-type structures overlying first wiring layer 310. In such embodiments, a thick dielectric layer is formed over and between the pillar-type structures, and one or more CMP processes may be performed to expose a top surface of amorphous silicon 430 for the following steps.


In some embodiments, amorphous silicon 430 (the amorphous layer) has a thickness within the range of approximately 2 to approximately 10 nanometers, approximately 30 Angstroms to approximately 40 Angstroms, or the like depending upon specific device engineering requirements or design. In some embodiments, a thickness of lower region 350 is typically greater than a thickness of upper region 340.


In some experimental studies, where an oxide layer 330 is present, oxide layer 330 above upper region 340 disappears, and an atomic composition of amorphous silicon 430 reveals primarily silicon and oxygen. In various embodiments, amorphous silicon 430 is the switching material for this device.



FIG. 5 illustrates a cross-section 500 according to various embodiments of the present invention. More specifically, as illustrated in FIG. 5, a conductive material 510 is disposed above amorphous silicon 430. In a specific embodiment, for amorphous silicon switching material, conductive material 510 can comprise a silver material, and in other embodiments, materials including silver, platinum, palladium, copper or nickel, or a combination may be used for conductive material.


Conductive material 510 can be deposited using a physical deposition process such as sputtering or evaporation. Conductive material 510 (e.g. silver) may also be formed using a chemical deposition process such as chemical vapor deposition, electrochemical such as electroplating, electrodeless deposition, or a combination depending on the application.


In some embodiments, a thin layer of material may be present prior to the deposition of conductive material 510. This thin layer may be within the range of approximately 5 nm to approximately 25 Angstroms, approximately 40 A to 30 A, approximately 30 A, or the like. In some embodiments, the thin layer serves to reduce the diffusion or agglomeration of conductive material 510 (e.g. silver) into switching material 430 during fabrication of the disclosed structures. In such embodiments, as back end fabrication steps may include high temperature operations, the thin layer reduces the migration of the metallic ions into the switching material 430. In some embodiments, the thin layer also serves to restrict or control where metallic ions migrate into defect sites of switching material 1002 during operation of the device. As disclosed in co-pending U.S. patent application Ser. No. 12/894,098, filed Sep. 29, 2010, assigned to the same assignee, and incorporated by reference herein, for all purposes, during operation of the device, a thin oxide layer is used to control a conductive path from a metallic layer to the switching layer.


In various embodiments of the present invention, the thin layer may be a layer of oxide, carbon, nitride or other relative stable material. These materials may be formed via a plasma enhanced chemical vapor deposition process, an atomic layer deposition process, a spin coating process, a plasma oxidation process, a physical vapor deposition process, a naturally occurring growth, or the like. In some embodiments, the formed oxide may be subsequently etched until the desired thickness is obtained for the thin layer. In some examples, an Argon etch may be used. In some embodiments, the conductive material 510 is thus formed or deposited on top of the thin layer that is specifically grown, formed, deposited, or naturally occurring upon switching material 430.


In various embodiments, one or more barrier/contact materials may be formed overlying the conductive material 510. In some examples, barrier/contact materials protect conductive material 510 from oxidation, serve as a polish stop material in a subsequent step for a CMP process, or the like. In some embodiments, barrier/contact material can be titanium, titanium nitride, tantalum or tantalum nitride, tungsten, or tungsten nitride, or any suitable barrier material and can be formed using a chemical deposition such as atomic layer deposition, chemical vapor deposition, and others, or a physical deposition such as sputtering, depending on the application.


In a specific embodiment, an embodiment may include subjecting a stack of material comprising one or more barrier/contact materials, amorphous material 430, lower region 420, conductive material 510, and/or one or more barrier/contact materials to a patterning and etch process to form a plurality of pillar structures above first wiring material 310. The shape of the cross section shape of pillar structures may be approximately square, rectangular, circular, hexagonal, or other similar shape. Within the pillar structures, lower region 420, amorphous material 430, and conductive material 510 form the switching device. In various embodiments, the pillar structures can have a feature size of less than about 250 nm and preferably about 90 nm, or even 40 nm, depending on the technology node adopted. The first wiring layer 310 structure can have a width of about 90 nm or greater. Subsequently, in some embodiments, a thick dielectric is deposited to laterally isolate the pillar structures, and one or more planarization processes are performed to expose a top surface of conductive material 510.



FIG. 6 illustrates a cross-section 600 of an embodiment of the present invention. In FIG. 6, in some embodiments, a second wiring material 520 is disposed in electrical contact with conductive material 510 (sometimes with intermediary barrier/contact materials). As can be seen, the pillars of FIG. 5 are electrically isolated (e.g. by an oxide, or the like). In various embodiments, the second wiring material 520 may be tungsten, copper, aluminum or other suitable metal materials including alloys thereof. In various embodiments, the second wiring material 520 can be deposited using conventional processing techniques including: physical vapor deposition, evaporation, chemical vapor deposition, or the like; electrochemical methods such as electroplating or electrode-less deposition from a liquid medium, or the like; or other suitable deposition techniques including combinations of the above. In some embodiments, second wiring material 520 may be patterned. Additionally, one or more barrier materials/contact materials may be disposed on second wiring material 520 before or after patterning, such as tungsten.


In some embodiments, first wiring material 310 is patterned and extends in a first direction and second wiring material 520 is patterned and extends in a second direction. The first direction and the second direction are characterized by an angle between them. In some embodiments the angle may be 90 degrees, 30 degrees, or the like.


In a specific embodiment, the top wiring structure, the bottom wiring structure and the switching element sandwiched between the first wiring structure and the second wiring structure provide for a switching device for a non-volatile memory device. Of course one skilled in the art would recognize other variations, modifications, and alternatives. It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or alternatives in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.

Claims
  • 1. A resistive memory device comprises: a substrate comprising a first metal material;a monolithic semiconductor layer formed on the first metal material, wherein the monolithic semiconductor layer comprises an upper region and a lower region, wherein the lower region of the monolithic semiconductor layer comprises a conductive silicon-bearing material, and wherein the upper region of the monolithic semiconductor layer comprises an amorphous silicon-bearing material having a plurality of defect sites and comprising silicon and another material, and wherein the lower region is adjacent to the first metal material;an active metal material disposed above the upper region; andwherein the plurality of defects sites of the amorphous silicon-bearing material are configured to receive metallic ions from the active metal material.
  • 2. The resistive memory device of claim 1, wherein the other material is oxygen.
  • 3. The resistive memory device of claim 2, wherein the amorphous silicon-bearing material comprises a resistive switching material comprising the silicon and the oxygen.
  • 4. The resistive memory device of claim 3, wherein the active metal material comprises a metal selected from a group consisting of aluminum, silver, platinum, palladium, copper, nickel, and combination thereof.
  • 5. The resistive memory device of claim 2, wherein the upper region of the monolithic semiconductor layer has a thickness within a range of approximately 2 to approximately 3 nanometers.
  • 6. The resistive memory device of claim 2, wherein the upper region of the monolithic semiconductor layer has a thickness within a range of approximately 2 to approximately 5 nanometers.
  • 7. The resistive memory device of claim 2, wherein the conductive silicon-bearing material is selected from a group consisting of a polysilicon material and a silicon-germanium material; and wherein the conductive silicon-bearing material comprises a p-type dopant.
  • 8. The resistive memory device of claim 2, wherein the first metal material comprises: a metal selected from a group consisting of: copper and aluminum; anda contact material disposed above the metal and selected from a group consisting of titanium, titanium nitride, tantalum, tantalum nitride, tungsten, and tungsten nitride.
  • 9. The resistive memory device of claim 1, wherein the upper region is formed from a portion of the conductive silicon-bearing material subjected to an Argon plasma etch process.
  • 10. The resistive memory device of claim 9, wherein the Argon plasma etch comprises an Argon plasma etch process having a voltage within a range of approximately 30 volts to approximately 20 volts.
  • 11. A semiconductor device comprises: a semiconductor substrate;at least one CMOS device formed upon the semiconductor substrate;a first dielectric layer disposed above the at least one CMOS device;a first wiring layer disposed above the first dielectric layer, wherein the first wiring layer is coupled to a CMOS device of the at least one CMOS device, wherein the first wiring layer comprises a first metal material;a monolithic semiconductor layer disposed on the first wiring layer and comprising a conductive silicon-bearing material, wherein the monolithic semiconductor layer comprises an upper region and a lower region, wherein the lower region of the monolithic semiconductor layer comprises the conductive silicon-bearing material and the upper region of the monolithic semiconductor layer comprises an amorphous silicon-bearing material having a plurality of defect sites and comprising silicon and another material, and wherein the lower region is adjacent to the first wiring layer;an active metal layer disposed above the upper region of the monolithic semiconductor layer, wherein the plurality of defects sites of the amorphous silicon-bearing material are configured to receive metallic ions from the active metal material; anda second wiring layer disposed above the active metal layer;wherein a resistive memory device is formed from the monolithic semiconductor layer and the active metal layer.
  • 12. The semiconductor device of claim 11 wherein the other material is oxygen.
  • 13. The semiconductor device of claim 12, wherein the amorphous silicon-bearing material comprises a resistive switching material having the silicon and the oxygen.
  • 14. The semiconductor device of claim 13, wherein the active metal layer is configured to provide metallic ions; andwherein the amorphous silicon-bearing material comprises a resistive switching material that includes metallic ions from the active metal layer.
  • 15. The semiconductor device of claim 14, wherein the metallic ions from the active metal layer within the resistive switching material forms a controlled conductive path through the resistive switching material.
  • 16. The semiconductor device of claim 13, wherein the active metal material comprises a metal selected from a group consisting of aluminum, silver, platinum, palladium, copper, and nickel.
  • 17. The semiconductor device of claim 12, wherein the at least one CMOS device forms at least one device selected from a group consisting of processing logic, computational logic, memory, and a driver for the resistive memory device.
  • 18. The semiconductor device of claim 12, wherein the conductive silicon-bearing material is selected from a group consisting of a polysilicon material and a silicon-germanium material; andwherein the conductive silicon-bearing material comprises a p-type dopant.
  • 19. The semiconductor device of claim 12, wherein the first wiring layer comprises: a metal selected from a group consisting of copper and aluminum; anda contact material disposed above the metal and selected from another group consisting of titanium, titanium nitride, tantalum, tantalum nitride, tungsten, and tungsten nitride.
  • 20. The semiconductor device of claim 11, wherein the upper region is formed from a portion of the conductive silicon-bearing material subjected to a plasma etch or ion implantation that includes a gas selected from a group consisting of argon, silicon and oxygen.
CROSS-REFERENCE TO RELATED CASES

The present invention claims priority to and is a divisional of U.S. patent Ser. No. 13/586,815, filed on Aug. 15, 2012, which is a non-provisional of Ser. No. 61/620,561, filed Apr. 5, 2012. These applications are herein by incorporated by reference for all purposes.

US Referenced Citations (466)
Number Name Date Kind
680652 Elden Aug 1901 A
4433468 Kawamata Feb 1984 A
4684972 Owen et al. Aug 1987 A
4741601 Saito May 1988 A
4994866 Awano Feb 1991 A
5139911 Yagi et al. Aug 1992 A
5242855 Oguro Sep 1993 A
5278085 Maddox, III et al. Jan 1994 A
5315131 Kishimoto et al. May 1994 A
5335219 Ovshinsky et al. Aug 1994 A
5360981 Owen et al. Nov 1994 A
5457649 Eichman et al. Oct 1995 A
5499208 Shoji Mar 1996 A
5538564 Kaschmitter Jul 1996 A
5541869 Rose et al. Jul 1996 A
5594363 Freeman et al. Jan 1997 A
5596214 Endo Jan 1997 A
5614756 Forouhi et al. Mar 1997 A
5627451 Takeda May 1997 A
5645628 Endo et al. Jul 1997 A
5673223 Park Sep 1997 A
5707487 Hori et al. Jan 1998 A
5714416 Eichman et al. Feb 1998 A
5751012 Wolstenholme et al. May 1998 A
5763898 Forouhi et al. Jun 1998 A
5840608 Chang Nov 1998 A
5923587 Choi Jul 1999 A
5970332 Pruijmboom et al. Oct 1999 A
5973335 Shannon Oct 1999 A
5998244 Wolstenholme et al. Dec 1999 A
6002268 Sasaki et al. Dec 1999 A
6037204 Chang et al. Mar 2000 A
6122318 Yamaguchi et al. Sep 2000 A
6128214 Kuekes et al. Oct 2000 A
6143642 Sur, Jr. et al. Nov 2000 A
6180998 Crafts Jan 2001 B1
6181587 Kuramoto et al. Jan 2001 B1
6181597 Nachumovsky Jan 2001 B1
6259116 Shannon Jul 2001 B1
6288435 Mei et al. Sep 2001 B1
6291836 Kramer et al. Sep 2001 B1
6436765 Liou et al. Aug 2002 B1
6436818 Hu et al. Aug 2002 B1
6492694 Noble et al. Dec 2002 B2
6552932 Cernea Apr 2003 B1
6627530 Li et al. Sep 2003 B2
6724186 Jordil Apr 2004 B2
6731535 Ooishi et al. May 2004 B1
6740921 Matsuoka et al. May 2004 B2
6762474 Mills, Jr. Jul 2004 B1
6768157 Krieger et al. Jul 2004 B2
6815286 Krieger et al. Nov 2004 B2
6816405 Lu et al. Nov 2004 B1
6821879 Wong Nov 2004 B2
6838720 Krieger et al. Jan 2005 B2
6848012 LeBlanc et al. Jan 2005 B2
6849891 Hsu et al. Feb 2005 B1
6858481 Krieger et al. Feb 2005 B2
6858482 Gilton Feb 2005 B2
6864127 Yamazaki et al. Mar 2005 B2
6864522 Krieger et al. Mar 2005 B2
6867618 Li Mar 2005 B2
6881994 Lee et al. Apr 2005 B2
6897519 Dosluoglu May 2005 B1
6927430 Hsu Aug 2005 B2
6939787 Ohtake et al. Sep 2005 B2
6946719 Petti et al. Sep 2005 B2
7020006 Chevallier et al. Mar 2006 B2
7023093 Canaperi et al. Apr 2006 B2
7026702 Krieger et al. Apr 2006 B2
7087454 Campbell et al. Aug 2006 B2
7102150 Harshfield et al. Sep 2006 B2
7122853 Gaun et al. Oct 2006 B1
7167387 Sugita et al. Jan 2007 B2
7187577 Wang et al. Mar 2007 B1
7221599 Gaun et al. May 2007 B1
7238607 Dunton et al. Jul 2007 B2
7238994 Chen et al. Jul 2007 B2
7251152 Roehr Jul 2007 B2
7254053 Krieger et al. Aug 2007 B2
7274587 Yasuda Sep 2007 B2
7289353 Spitzer et al. Oct 2007 B2
7324363 Kerns et al. Jan 2008 B2
7345907 Scheuerlein Mar 2008 B2
7365411 Campbell Apr 2008 B2
7405418 Happ et al. Jul 2008 B2
7426128 Scheuerlein Sep 2008 B2
7433253 Gogl et al. Oct 2008 B2
7474000 Scheuerlein et al. Jan 2009 B2
7479650 Gilton Jan 2009 B2
7499355 Scheuerlein et al. Mar 2009 B2
7515454 Symanczyk Apr 2009 B2
7521705 Liu Apr 2009 B2
7534625 Karpov et al. May 2009 B2
7541252 Eun et al. Jun 2009 B2
7550380 Elkins et al. Jun 2009 B2
7561461 Nagai et al. Jul 2009 B2
7566643 Czubatyi et al. Jul 2009 B2
7606059 Toda Oct 2009 B2
7615439 Schricker et al. Nov 2009 B1
7629198 Kumar et al. Dec 2009 B2
7667442 Itoh Feb 2010 B2
7692959 Krusin-Elbaum et al. Apr 2010 B2
7704788 Youn et al. Apr 2010 B2
7719001 Nomura et al. May 2010 B2
7728318 Raghuram et al. Jun 2010 B2
7729158 Toda et al. Jun 2010 B2
7746601 Sugiyama et al. Jun 2010 B2
7746696 Paak Jun 2010 B1
7749805 Pinnow et al. Jul 2010 B2
7764536 Luo et al. Jul 2010 B2
7772581 Lung Aug 2010 B2
7776682 Nickel et al. Aug 2010 B1
7778063 Brubaker et al. Aug 2010 B2
7786464 Nirschl et al. Aug 2010 B2
7786589 Matsunaga et al. Aug 2010 B2
7791060 Aochi et al. Sep 2010 B2
7824956 Schricker et al. Nov 2010 B2
7829875 Scheuerlein Nov 2010 B2
7830698 Chen et al. Nov 2010 B2
7835170 Bertin et al. Nov 2010 B2
7858468 Liu et al. Dec 2010 B2
7859884 Scheuerlein Dec 2010 B2
7869253 Liaw et al. Jan 2011 B2
7875871 Kumar et al. Jan 2011 B2
7881097 Hosomi et al. Feb 2011 B2
7883964 Goda et al. Feb 2011 B2
7897953 Liu Mar 2011 B2
7898838 Chen et al. Mar 2011 B2
7920412 Hosotani et al. Apr 2011 B2
7924138 Kinoshita et al. Apr 2011 B2
7927472 Takahashi et al. Apr 2011 B2
7968419 Li et al. Jun 2011 B2
7972897 Kumar et al. Jul 2011 B2
7984776 Sastry et al. Jul 2011 B2
8004882 Katti et al. Aug 2011 B2
8018760 Muraoka et al. Sep 2011 B2
8021897 Sills et al. Sep 2011 B2
8045364 Schloss et al. Oct 2011 B2
8054674 Tamai et al. Nov 2011 B2
8054679 Nakai et al. Nov 2011 B2
8067815 Chien et al. Nov 2011 B2
8071972 Lu et al. Dec 2011 B2
8084830 Kanno et al. Dec 2011 B2
8088688 Herner Jan 2012 B1
8097874 Venkatasamy et al. Jan 2012 B2
8102018 Bertin et al. Jan 2012 B2
8102698 Scheuerlein Jan 2012 B2
8143092 Kumar et al. Mar 2012 B2
8144498 Kumar et al. Mar 2012 B2
8164948 Katti et al. Apr 2012 B2
8168506 Herner May 2012 B2
8183553 Phatak et al. May 2012 B2
8187945 Herner May 2012 B2
8198144 Herner Jun 2012 B2
8207064 Bandyopadhyay et al. Jun 2012 B2
8227787 Kumar et al. Jul 2012 B2
8231998 Sastry et al. Jul 2012 B2
8233308 Schricker et al. Jul 2012 B2
8237146 Kreupl et al. Aug 2012 B2
8243542 Bae et al. Aug 2012 B2
8258020 Herner Sep 2012 B2
8265136 Hong et al. Sep 2012 B2
8274130 Mihnea et al. Sep 2012 B2
8274812 Nazarian et al. Sep 2012 B2
8305793 Majewski et al. Nov 2012 B2
8315079 Kuo et al. Nov 2012 B2
8320160 Nazarian Nov 2012 B2
8351241 Lu et al. Jan 2013 B2
8369129 Fujita et al. Feb 2013 B2
8369139 Liu et al. Feb 2013 B2
8374018 Lu Feb 2013 B2
8385100 Kau et al. Feb 2013 B2
8389971 Chen et al. Mar 2013 B2
8394670 Herner Mar 2013 B2
8399307 Herner Mar 2013 B2
8441835 Jo et al. May 2013 B2
8456892 Yasuda Jun 2013 B2
8466005 Pramanik et al. Jun 2013 B2
8467226 Bedeschi et al. Jun 2013 B2
8467227 Jo Jun 2013 B1
8502185 Lu et al. Aug 2013 B2
8569104 Pham et al. Oct 2013 B2
8587989 Manning et al. Nov 2013 B2
8619459 Nguyen et al. Dec 2013 B1
8658476 Sun et al. Feb 2014 B1
8659003 Herner et al. Feb 2014 B2
8675384 Kuo et al. Mar 2014 B2
8693241 Kim et al. Apr 2014 B2
8853759 Lee et al. Oct 2014 B2
8934294 Kim et al. Jan 2015 B2
8946667 Clark et al. Feb 2015 B1
8946673 Kumar Feb 2015 B1
8947908 Jo Feb 2015 B2
8999811 Endo et al. Apr 2015 B2
9093635 Kim et al. Jul 2015 B2
9166163 Gee et al. Oct 2015 B2
20020048940 Derderian et al. Apr 2002 A1
20030006440 Uchiyama Jan 2003 A1
20030036238 Toet et al. Feb 2003 A1
20030052330 Klein Mar 2003 A1
20030141565 Hirose et al. Jul 2003 A1
20030174574 Perner et al. Sep 2003 A1
20030194865 Gilton Oct 2003 A1
20030206659 Hamanaka Nov 2003 A1
20040026682 Jiang Feb 2004 A1
20040036124 Vyvoda et al. Feb 2004 A1
20040159835 Krieger et al. Aug 2004 A1
20040170040 Rinerson et al. Sep 2004 A1
20040192006 Campbell et al. Sep 2004 A1
20040194340 Kobayashi Oct 2004 A1
20040202041 Hidenori Oct 2004 A1
20050019699 Moore Jan 2005 A1
20050020510 Benedict Jan 2005 A1
20050029587 Harshfield Feb 2005 A1
20050041498 Resta et al. Feb 2005 A1
20050052915 Herner et al. Mar 2005 A1
20050062045 Bhattacharyya Mar 2005 A1
20050073881 Tran et al. Apr 2005 A1
20050101081 Goda et al. May 2005 A1
20050162881 Stasiak et al. Jul 2005 A1
20050175099 Sarkijarvi et al. Aug 2005 A1
20060017488 Hsu Jan 2006 A1
20060054950 Baek et al. Mar 2006 A1
20060134837 Subramanian et al. Jun 2006 A1
20060154417 Shinmura et al. Jul 2006 A1
20060215445 Baek Sep 2006 A1
20060231910 Hsieh et al. Oct 2006 A1
20060246606 Hsu et al. Nov 2006 A1
20060279979 Lowrey et al. Dec 2006 A1
20060281244 Ichige et al. Dec 2006 A1
20060286762 Tseng et al. Dec 2006 A1
20070008773 Scheuerlein Jan 2007 A1
20070015348 Hsu et al. Jan 2007 A1
20070025144 Hsu et al. Feb 2007 A1
20070035990 Hush Feb 2007 A1
20070042612 Nishino et al. Feb 2007 A1
20070045615 Cho et al. Mar 2007 A1
20070069119 Appleyard et al. Mar 2007 A1
20070087508 Herner Apr 2007 A1
20070090425 Kumar et al. Apr 2007 A1
20070091685 Guterman et al. Apr 2007 A1
20070105284 Herner May 2007 A1
20070105390 Oh May 2007 A1
20070133250 Kim Jun 2007 A1
20070133270 Jeong et al. Jun 2007 A1
20070159869 Baek et al. Jul 2007 A1
20070159876 Sugibayashi et al. Jul 2007 A1
20070171698 Hoenigschmid et al. Jul 2007 A1
20070205510 Lavoie et al. Sep 2007 A1
20070228414 Kumar et al. Oct 2007 A1
20070284575 Li et al. Dec 2007 A1
20070290186 Bourim et al. Dec 2007 A1
20070291527 Tsushima et al. Dec 2007 A1
20070295950 Cho et al. Dec 2007 A1
20070297501 Hussain et al. Dec 2007 A1
20080002481 Gogl et al. Jan 2008 A1
20080006907 Lee et al. Jan 2008 A1
20080007987 Takashima Jan 2008 A1
20080019163 Hoenigschmid et al. Jan 2008 A1
20080043521 Liaw et al. Feb 2008 A1
20080048164 Odagawa Feb 2008 A1
20080083918 Aratani et al. Apr 2008 A1
20080089110 Robinett et al. Apr 2008 A1
20080090337 Williams Apr 2008 A1
20080106925 Paz de Araujo et al. May 2008 A1
20080106926 Brubaker et al. May 2008 A1
20080165571 Lung Jul 2008 A1
20080185567 Kumar et al. Aug 2008 A1
20080192531 Tamura et al. Aug 2008 A1
20080198934 Hong et al. Aug 2008 A1
20080205179 Markert et al. Aug 2008 A1
20080206931 Breuil et al. Aug 2008 A1
20080220601 Kumar et al. Sep 2008 A1
20080232160 Gopalakrishnan Sep 2008 A1
20080278988 Ufert Nov 2008 A1
20080278990 Kumar et al. Nov 2008 A1
20080301497 Chung et al. Dec 2008 A1
20080304312 Ho et al. Dec 2008 A1
20080311722 Petti et al. Dec 2008 A1
20090001343 Schricker et al. Jan 2009 A1
20090001345 Schricker et al. Jan 2009 A1
20090003717 Sekiguchi et al. Jan 2009 A1
20090014703 Inaba Jan 2009 A1
20090014707 Lu et al. Jan 2009 A1
20090052226 Lee et al. Feb 2009 A1
20090091981 Park et al. Apr 2009 A1
20090095951 Kostylev et al. Apr 2009 A1
20090109728 Maejima et al. Apr 2009 A1
20090122591 Ryu May 2009 A1
20090134432 Tabata et al. May 2009 A1
20090141567 Lee et al. Jun 2009 A1
20090152737 Harshfield Jun 2009 A1
20090168486 Kumar Jul 2009 A1
20090227067 Kumar et al. Sep 2009 A1
20090231905 Sato Sep 2009 A1
20090231910 Liu et al. Sep 2009 A1
20090250787 Kutsunai Oct 2009 A1
20090251941 Saito Oct 2009 A1
20090256130 Schricker Oct 2009 A1
20090257265 Chen et al. Oct 2009 A1
20090267047 Sasago et al. Oct 2009 A1
20090268513 De Ambroggi et al. Oct 2009 A1
20090272962 Kumar et al. Nov 2009 A1
20090283737 Kiyotoshi Nov 2009 A1
20090298224 Lowrey Dec 2009 A1
20090321706 Happ et al. Dec 2009 A1
20090321789 Wang et al. Dec 2009 A1
20100007937 Widjaja et al. Jan 2010 A1
20100012914 Xu et al. Jan 2010 A1
20100019221 Lung et al. Jan 2010 A1
20100019310 Sakamoto Jan 2010 A1
20100025675 Yamazaki et al. Feb 2010 A1
20100032637 Kinoshita et al. Feb 2010 A1
20100032638 Xu Feb 2010 A1
20100032640 Xu Feb 2010 A1
20100034518 Iwamoto et al. Feb 2010 A1
20100038791 Lee et al. Feb 2010 A1
20100039136 Chua-Eoan et al. Feb 2010 A1
20100044708 Lin et al. Feb 2010 A1
20100044798 Hooker et al. Feb 2010 A1
20100046622 Doser et al. Feb 2010 A1
20100067279 Choi Mar 2010 A1
20100067282 Liu et al. Mar 2010 A1
20100084625 Wicker et al. Apr 2010 A1
20100085798 Lu et al. Apr 2010 A1
20100085822 Yan et al. Apr 2010 A1
20100090192 Goux et al. Apr 2010 A1
20100101290 Bertolotto Apr 2010 A1
20100102290 Lu et al. Apr 2010 A1
20100110767 Katoh et al. May 2010 A1
20100118587 Chen et al. May 2010 A1
20100140614 Uchiyama et al. Jun 2010 A1
20100157651 Kumar et al. Jun 2010 A1
20100157656 Tsuchida Jun 2010 A1
20100157659 Norman Jun 2010 A1
20100157710 Lambertson et al. Jun 2010 A1
20100163828 Tu Jul 2010 A1
20100171086 Lung et al. Jul 2010 A1
20100176367 Liu Jul 2010 A1
20100176368 Ko et al. Jul 2010 A1
20100182821 Muraoka et al. Jul 2010 A1
20100203731 Kong et al. Aug 2010 A1
20100219510 Scheuerlein et al. Sep 2010 A1
20100221868 Sandoval Sep 2010 A1
20100237314 Tsukamoto et al. Sep 2010 A1
20100243983 Chiang et al. Sep 2010 A1
20100258781 Phatak et al. Oct 2010 A1
20100271885 Scheuerlein et al. Oct 2010 A1
20100277969 Li et al. Nov 2010 A1
20100321095 Mikawa et al. Dec 2010 A1
20110006275 Roelofs et al. Jan 2011 A1
20110007551 Tian et al. Jan 2011 A1
20110033967 Lutz et al. Feb 2011 A1
20110063888 Chi et al. Mar 2011 A1
20110066878 Hosono et al. Mar 2011 A1
20110068373 Minemura et al. Mar 2011 A1
20110069533 Kurosawa et al. Mar 2011 A1
20110089391 Mihnea et al. Apr 2011 A1
20110122679 Chen et al. May 2011 A1
20110128779 Redaelli et al. Jun 2011 A1
20110133149 Sonehara Jun 2011 A1
20110136327 Han et al. Jun 2011 A1
20110151277 Nishihara et al. Jun 2011 A1
20110155991 Chen Jun 2011 A1
20110183525 Purushothaman et al. Jul 2011 A1
20110193051 Nam Aug 2011 A1
20110194329 Ohba et al. Aug 2011 A1
20110198557 Rajendran et al. Aug 2011 A1
20110204312 Phatak Aug 2011 A1
20110204314 Baek et al. Aug 2011 A1
20110205780 Yasuda et al. Aug 2011 A1
20110205782 Costa et al. Aug 2011 A1
20110212616 Seidel et al. Sep 2011 A1
20110227028 Sekar et al. Sep 2011 A1
20110284814 Zhang Nov 2011 A1
20110299324 Li et al. Dec 2011 A1
20110305064 Jo et al. Dec 2011 A1
20110310656 Kreupl et al. Dec 2011 A1
20110312151 Herner Dec 2011 A1
20110317470 Lu et al. Dec 2011 A1
20120001145 Magistretti et al. Jan 2012 A1
20120001146 Lu et al. Jan 2012 A1
20120007035 Jo et al. Jan 2012 A1
20120008366 Lu Jan 2012 A1
20120012806 Herner Jan 2012 A1
20120012808 Herner Jan 2012 A1
20120015506 Jo et al. Jan 2012 A1
20120025161 Rathor et al. Feb 2012 A1
20120033479 Delucca et al. Feb 2012 A1
20120043519 Jo et al. Feb 2012 A1
20120043520 Herner et al. Feb 2012 A1
20120043621 Herner Feb 2012 A1
20120043654 Lu et al. Feb 2012 A1
20120044751 Wang et al. Feb 2012 A1
20120074374 Jo Mar 2012 A1
20120074507 Jo Mar 2012 A1
20120076203 Sugimoto et al. Mar 2012 A1
20120080798 Harshfield Apr 2012 A1
20120087169 Kuo et al. Apr 2012 A1
20120087172 Aoki Apr 2012 A1
20120091420 Kusai et al. Apr 2012 A1
20120104351 Wei et al. May 2012 A1
20120108030 Herner May 2012 A1
20120120712 Kawai et al. May 2012 A1
20120122290 Nagashima May 2012 A1
20120140816 Franche et al. Jun 2012 A1
20120142163 Herner Jun 2012 A1
20120145984 Rabkin et al. Jun 2012 A1
20120147657 Sekar et al. Jun 2012 A1
20120155146 Ueda et al. Jun 2012 A1
20120176831 Xiao et al. Jul 2012 A1
20120205606 Lee et al. Aug 2012 A1
20120205793 Schieffer et al. Aug 2012 A1
20120218807 Johnson Aug 2012 A1
20120220100 Herner Aug 2012 A1
20120224413 Zhang et al. Sep 2012 A1
20120235112 Huo et al. Sep 2012 A1
20120236625 Ohba et al. Sep 2012 A1
20120241710 Liu et al. Sep 2012 A1
20120243292 Takashima et al. Sep 2012 A1
20120250183 Tamaoka et al. Oct 2012 A1
20120252183 Herner Oct 2012 A1
20120269275 Hannuksela Oct 2012 A1
20120305874 Herner Dec 2012 A1
20120305879 Lu et al. Dec 2012 A1
20120320660 Nazarian et al. Dec 2012 A1
20120326265 Lai et al. Dec 2012 A1
20120327701 Nazarian Dec 2012 A1
20130020548 Clark et al. Jan 2013 A1
20130023085 Pramanik et al. Jan 2013 A1
20130026440 Yang et al. Jan 2013 A1
20130065066 Sambasivan et al. Mar 2013 A1
20130075685 Li Mar 2013 A1
20130075688 Xu et al. Mar 2013 A1
20130119341 Liu et al. May 2013 A1
20130128653 Kang et al. May 2013 A1
20130134379 Lu May 2013 A1
20130166825 Kim et al. Jun 2013 A1
20130207065 Chiang Aug 2013 A1
20130214234 Gopalan et al. Aug 2013 A1
20130235648 Kim et al. Sep 2013 A1
20130264535 Sonehara Oct 2013 A1
20130279240 Jo Oct 2013 A1
20130308369 Lu et al. Nov 2013 A1
20140015018 Kim Jan 2014 A1
20140029327 Strachan et al. Jan 2014 A1
20140070160 Ishikawa et al. Mar 2014 A1
20140103284 Hsueh et al. Apr 2014 A1
20140145135 Gee et al. May 2014 A1
20140166961 Liao et al. Jun 2014 A1
20140175360 Tendulkar et al. Jun 2014 A1
20140177315 Pramanik et al. Jun 2014 A1
20140192589 Maxwell et al. Jul 2014 A1
20140197369 Sheng et al. Jul 2014 A1
20140233294 Ting et al. Aug 2014 A1
20140264236 Kim et al. Sep 2014 A1
20140264250 Maxwell et al. Sep 2014 A1
20140268997 Nazarian et al. Sep 2014 A1
20140268998 Jo Sep 2014 A1
20140269002 Jo Sep 2014 A1
20140312296 Jo et al. Oct 2014 A1
20140335675 Narayanan Nov 2014 A1
20150070961 Katayama et al. Mar 2015 A1
20150228334 Nazarian et al. Aug 2015 A1
20160111640 Chang et al. Apr 2016 A1
Foreign Referenced Citations (38)
Number Date Country
101131872 Feb 2008 CN
101170132 Apr 2008 CN
101501850 Aug 2009 CN
101636792 Jan 2010 CN
102024494 Apr 2011 CN
102077296 May 2011 CN
1096465 May 2001 EP
2405441 Jan 2012 EP
2408035 Jan 2012 EP
2005-506703 Mar 2005 JP
2006-032951 Feb 2006 JP
2007-067408 Mar 2007 JP
2007-281208 Oct 2007 JP
2007-328857 Dec 2007 JP
2008503085 Jan 2008 JP
2008147343 Jun 2008 JP
2009043873 Feb 2009 JP
2011023645 Feb 2011 JP
2011065737 Mar 2011 JP
2012504840 Feb 2012 JP
2012505551 Mar 2012 JP
2012089567 May 2012 JP
2012533195 Dec 2012 JP
20090051206 May 2009 KR
1020110014248 Feb 2011 KR
382820 Feb 2000 TW
434887 May 2001 TW
476962 Feb 2002 TW
200625635 Jul 2006 TW
WO 03034498 Apr 2003 WO
2005124787 Dec 2005 WO
WO 2009005699 Jan 2009 WO
2010026654 Mar 2010 WO
2010042354 Apr 2010 WO
2010042732 Apr 2010 WO
2011005266 Jan 2011 WO
2011008654 Jan 2011 WO
WO 2011133138 Oct 2011 WO
Non-Patent Literature Citations (330)
Entry
Jian Hu et al., “Area-Dependent Switching In Thin Film-Silicon Devices”, Materials Research Society, Mal. Res. Soc. Symp Proc., 2003, pp. A18.3.1-A18.3.6, vol. 762.
AndréDehon, “Array-Based Architecture for FET-Based, Nanoscale Electronics”, IEEE Transactions on Nanotechnology, Mar. 2003, pp. 23-32, vol. 2, No. 1, IEEE.
Herb Goronkin et al., “High-Performance Emerging Solid-State Memory Technologies”, MRS Bulletin, www.mrs.org/publications/bulletin, Nov. 2004, pp. 805-813.
Gerhard Müller et al., “Status and Outlook of Emerging Nonvolatile Memory Technologies”, IEEE, 2004, pp. 567-570.
A.E. Owen et al., “Memory Switching in Amorphous Silicon Devices”, Journal of Non-Crystalline Solids 59 & 60, 1983, pp. 1273-1280, North Holland Publishing Company/Physical Society of Japan.
J. Campbell Scott, “Is There an Immortal Memory?”, www.sciencemag.org, Apr. 2, 2004, pp. 62-63, vol. 304 No. 5667, American Association for the Advancement of Science.
S.H. Lee et al., “Full Integration and Cell Characteristics for 64Mb Nonvolatile PRAM”, 2004 Symposium on VLSI Technology Digest of Technical Papers, IEEE, 2004, pp. 20-21.
Stephen Y. Chou et al., “Imprint Lithography With 25-Nanometer Resolution”, Science, Apr. 5, 1996, pp. 85-87, vol. 272, American Association for the Advancement of Science.
S. Zankovych et al., “Nanoimprint Lithography: challenges and prospects”, Nanotechnology, 2001, pp. 91-95, vol. 12, Institute of Physics Publishing.
A. Avila et al., “Switching in coplanar amorphous hydrogenated silicon devices”, Solid-State Electronics, 2000, pp. 17-27, vol. 44, Elsevier Science Ltd.
Jian Hu et al., “Switching and filament formation in hot-wire CVD p-type a-Si:H devices”, Thin Solid Films, Science Direct, www.sciencedirect.com, 2003, pp. 249-252, vol. 430, Elsevier Science B.V.
S. Hudgens et al., “Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology”, MRS Bulletin, www.mrs.org/publications/bulletin, Nov. 2004, pp. 829-832.
K. Terabe et al., “Quantized conductance atomic switch”, Nature, www.nature.com/nature, Jan. 6, 2005, pp. 47-50, vol. 433, Nature Publishing Group.
Michael Kund et al., “Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20nm”, IEEE, 2005.
W. Den Boer, “Threshold switching in hydrogenated amorphous silicon”, Appl. Phys. Letter, 1982, pp. 812-813, vol. 40, American Institute of Physics.
P.G. Lecomber et al., “The Switching Mechanism in Amorphous Silicon Junctions”, Journal of Non-Crystalline Solids, 1985, pp. 1373-1382, vol. 77 & 78, Elsevier Science Publishers B.V., North Holland Physics Publishing Division, North-Holland, Amsterdam.
A. E. Owen et al., “Switching in amorphous devices”, INT. J. Electronics, 1992, pp. 897-906, vol. 73, No. 5, Taylor and Francis Ltd.
M. Jafar et al., “Switching in amorphous-silicon devices”, Physical Review B, May 15, 1994, pp. 611-615, vol. 49, No. 19, The American Physical Society.
Alexandra Stikeman, “Polymer Memory—The plastic path to better data storage”, Technology Review, www.technologyreview.com, Sep. 2002, pp. 31.
Yong Chen et al., “Nanoscale molecular-switch crossbar circuits”, Nanotechnology, 2003, pp. 462-468, vol. 14, Institute of Physics Publishing Ltd.
C. P. Collier et al., “Electronically Configurable Molecular-Based Logic Gates”, Science Jul. 16, 1999, pp. 391-395, vol. 285, No. 5426, American Association for the Advancement of Science.
Office Action for U.S. Appl. No. 11/875,541 dated Jul. 22, 2010.
Office Action for U.S. Appl. No. 11/875,541 dated Mar. 30, 2011.
Office Action for U.S. Appl. No. 11/875,541 dated Oct. 5, 2011.
Office Action for U.S. Appl. No. 11/875,541 dated Jun. 8, 2012.
Jang Wook Choi, “Bistable [2]Rotaxane Based Molecular Electronics: Fundamentals and Applications”, Dissertation, Chapter 3, <http://resolver.caltech.edu/CaltechETD:etd-05242007-194737> 2007, pp. 79-120, California Institute of Technology, Pasadena.
Sung-Hyun Jo et al., “A Silicon-Based Crossbar Ultra-High-Density Non-Volatile Memory”, SSEL Annual Report 2007.
International Search Report for PCT/US2009/060023 filed on Oct. 8, 2009.
Rainer Waser et al., “Nanoionics-based resistive switching memories”, Nature Materials, Nov. 2007, pp. 833-835, vol. 6, Nature Publishing Group.
Written Opinion of the International Searching Authority for PCT/US2009/060023 filed on Oct. 8, 2009.
Ex parte Quayle Action for U.S. Appl. No. 12/826,653 dated May 8, 2012.
International Search Report for PCT/US2011/040090 filed on Jun. 10, 2011.
Written Opinion of the International Searching Authority for PCT/US2011/040090 filed on Jun. 10, 2011.
Notice of Allowance for U.S. Appl. No. 13/158,231 dated Apr. 17, 2012.
Office Action for U.S. Appl. No. 12/835,704 dated Sep. 21, 2011.
Office Action for U.S. Appl. No. 12/835,704 dated Mar. 1, 2012.
Advisory Action for U.S. Appl. No. 12/835,704 dated Jun. 8, 2012.
International Search Report and Written Opinion for PCT/US2011/046035 filed on Jul. 29, 2011.
Office Action for U.S. Appl. No. 12/861,650 dated Jan. 25, 2012.
Notice of Allowance for U.S. Appl. No. 12/861,650 dated Jun. 19, 2012.
Sung Hyun Jo et al., “Programmable Resistance Switching in Nanoscale Two-Terminal Devices,” Supporting Information, pp. 1-4.
Kuk-Hwan Kim et al., “Nanoscale resistive memory with intrinsic diode characteristics and long endurance,” Applied Physics Letters, 2010, pp. 053106-1-053106-3, vol. 96, American Institute of Physics.
Sung Hyun Jo et al., “Si-Based Two-Terminal Resistive Switching Nonvolatile Memory”, IEEE, 2008.
Sung Hyun Jo et al., “Nanoscale Memristor Device as Synapse in Neuromorphic Systems”, Nano Letters, pubs.acs.org/NanoLett, pp. A-E, American Chemical Society Publications.
Wei Lu et al., “Nanoelectronics from the bottom up”, Nature Materials, www.nature.com/naturematerials, Nov. 2007, pp. 841-850, vol. 6, Nature Publishing Group.
Sung Hyun Jo et al., “Ag/a-Si:H/c-Si Resistive Switching Nonvolatile Memory Devices”, Nanotechnology Materials and Devices Conference, IEEE, 2006, pp. 116-117, vol. 1.
Sung Hyun Jo et al., “Experimental, Modeling and Simulation Studies of Nanoscale Resistance Switching Devices”, 9th Conference on Nanotechnology, IEEE, 2009, pp. 493-495.
Sung Hyun Jo et al., “Nonvolatile Resistive Switching Devices Based on Nanoscale Metal/Amorphous Silicon/Crystalline Silicon Junctions”, Mater. Res. Soc. Symp. Proc., 2007, vol. 997, Materials Research Society.
Sung Hyun Jo et al., “Si Memristive Devices Applied to Memory and Neuromorphic Circuits”, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010, pp. 13-16.
Wei Lu et al., “Supporting Information”, 2008.
Sung Hyun Jo et al., “High-Density Crossbar Arrays Based on a Si Memristive System”, Nano Letters, 2009, pp. 870-874, vol. 9 No. 2, American Chemical Society Publications.
Sung Hyun Jo et al., “High-Density Crossbar Arrays Based on a Si Memristive System”, Supporting Information, 2009, pp. 1-4.
Sung Hyun Jo et al., “Programmable Resistance Switching in Nanoscale Two-Terminal Devices”, Nano Letters, 2009, pp. 496-500, vol. 9 No. 1, American Chemical Society Publications.
Shubhra Gangopadhyay et al., “Memory Switching in Sputtered Hydrogenated Amorphous Silicon (a-Si:H)”, Japanese Journal of Applied Physics, Short Notes, 1985, pp. 1363-1364, vol. 24 No. 10.
S. K. Dey, “Electrothermal model of switching in amorphous silicon films”, J. Vac. Sci. Technol., Jan./Feb. 1980, pp. 445-448, vol. 17, No. 1, American Vacuum Society.
J. Hajto et al., “The Programmability of Amorphous Silicon Analogue Memory Elements”, Mat. Res. Soc. Symp. Proc., 1990, pp. 405-410, vol. 192, Materials Research Society.
M. J. Rose et al., “Amorphous Silicon Analogue Memory Devices”, Journal of Non-Crystalline Solids, 1989, pp. 168-170, vol. 115, Elsevier Science Publishers B.V., North-Holland.
A. Moopenn et al., “Programmable Synaptic Devices for Electronic Neural Nets”, Control and Computers, 1990, pp. 37-41, vol. 18 No. 2.
P.G. Le Comber, “Present and Future Applications of Amorphous Silicon and Its Alloys”, Journal of Non-Crystalline Solids, 1989, pp. 1-13, vol. 115, Elsevier Science Publishers B.V., North-Holland.
J. Hu, et al., “AC Characteristics of Cr/p+ a-Si:H/V Analog Switching Devices”, IEEE Transactions on Electron Devices, Sep. 2000, pp. 1751-1757, vol. 47 No. 9, IEEE.
A.E. Owen et al., “New amorphous-silicon electrically programmable nonvolatile switching device”, Solid-State and Electron Devices, IEEE Proceedings, Apr. 1982, pp. 51-54, vol. 129, Pt. I., No. 2.
J. Hajto et al., “Electronic Switching in Amorphous-Semiconductor Thin Films”, Chapter 14, pp. 640-701.
J. Hajto et al., “Analogue memory and ballistic electron effects in metal-amorphous silicon structures”, Philosophical Magazine B, 1991, pp. 349-369, vol. 63 No. 1, Taylor & Francis Ltd.
A.J. Holmes et al., “Design of Analogue Synapse Circuits using Non-Volatile a-Si:H Memory Devices”, pp. 351-354.
Yajie Dong et al., “Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches”, Nano Letters, Jan. 2008, pp. 386-391, vol. 8 No. 2, American Chemical Society.
European Search Report for Application No. EP 09 81 9890.6 of Mar. 27, 2012.
D. A. Muller et al., “The Electronic structure at the atomic scale of ultrathin gate oxides”, Nature, Jun. 24, 1999, pp. 758-761, vol. 399.
J. Suñéet al., “Nondestructive multiple breakdown events in very thin SiO2 films”, Applied Physics Letters, 1989, pp. 128-130, vol. 55.
Herve Marand et al., MESc. 5025 lecture notes: Chapter 7. Diffusion, University of Vermont, http://www.files.chem.vt.edu/chem-dept/marand/MEScchap6-1c.pdf.
A. E. Owen et al., “Electronic Switching in Amorphous Silicon Devices: Properties of the Conducting Filament”, Proceedings of 5th International Conference on Solid-State and Integrated Circuit Technology, IEEE, 1998, pp. 830-833.
Sung Hyun Jo, “Nanoscale Memristive Devices for Memory and Logic Applications”, Ph. D dissertation, University of Michigan, 2010.
Office Action for U.S. Appl. No. 12/894,098 dated Aug. 1, 2012.
Sung Hyun Jo et al., “CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory”, Nano Letters, 2008, pp. 392-397, vol. 8, No. 2.
Office Action for U.S. Appl. No. 12/582,086 dated Apr. 19, 2011.
Office Action for U.S. Appl. No. 12/582,086 dated Sep. 6, 2011.
Notice of Allowance for U.S. Appl. No. 12/582,086 dated Oct. 21, 2011.
International Search Report for PCT/US2009/061249 filed on Oct. 20, 2009.
Written Opinion of the International Searching Authority for PCT/US2009/061249 filed on Oct. 20, 2009.
Notice of Allowance for U.S. Appl. No. 12/814,410, dated Jan. 8, 2013.
Corrected Notice of Allowance for U.S. Appl. No. 12/861,666, dated Jan. 11, 2013.
Supplemental Notice of Allowance for U.S. Appl. No. 12/894,087, dated Jan. 11, 2013.
Notice of Allowance for U.S. Appl. No. 13/314,513, dated Jan. 24, 2013.
Notice of Allowance for U.S. Appl. No. 13/118,258, dated Feb. 6, 2013.
International Search Report and Written Opinion for PCT/US2012/040242, filed May 31, 2012.
Office Action for U.S. Appl. No. 13/174,264, dated Mar. 6, 2013.
Office Action for U.S. Appl. No. 13/679,976, dated Mar. 6, 2013.
Notice of Allowance for U.S. Appl. No. 12/894,098, dated Mar. 15, 2013.
Office Action for U.S. Appl. No. 13/465,188, dated Mar. 19, 2013.
Office Action for U.S. Appl. No. 12/861,432, dated Mar. 29, 2013.
Notice of Allowance for U.S. Appl. No. 13/748,490, dated Apr. 9, 2013.
Office Action for U.S. Appl. No. 13/725,331, dated May 20, 2013.
International Search Report and Written Opinion for PCT/US2012/045312, filed on Jul. 2, 2012.
Office Action for U.S. Appl. No. 13/466,008, dated Jul. 29, 2013.
Russo, Ugo et al., “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices”, IEEE Transactions on Electron Devices, Feb. 2009, pp. 193-200, vol. 56, No. 2.
Cagli, C. et al., “Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction”, IEEE International Electron Devices Meeting, Dec. 15-17, 2008, pp. 1-4, San Francisco, CA.
Office Action for U.S. Appl. No. 13/077,941, dated Aug. 12, 2013.
Office Action for U.S. Appl. No. 13/436,714, dated Aug. 27, 2013.
Notice of Allowance for U.S. Appl. No. 13/679,976, dated Sep. 17, 2013.
Office Action for U.S. Appl. No. 13/189,401, dated Sep. 30, 2013.
Office Action for U.S. Appl. No. 13/462,653, dated Sep. 30, 2013.
Corrected Notice of Allowance for U.S. Appl. No. 13/733,828, dated Oct. 1, 2013.
Notice of Allowance for U.S. Appl. No. 13/733,828, dated Aug. 8, 2013.
Office Action for U.S. Appl. No. 13/594,665, dated Aug. 2, 2013.
Notice of Allowance for U.S. Appl. No. 13/769,152, dated Oct. 8, 2013.
Notice of Allowance for U.S. Appl. No. 13/905,074, dated Oct. 8, 2013.
Notice of Allowance for U.S. Appl. No. 13/452,657, dated Oct. 10, 2013.
Notice of Allowance for U.S. Appl. No. 13/174,264, dated Oct. 16, 2013.
Notice of Allowance for U.S. Appl. No. 13/417,135, dated Oct. 23, 2013.
Notice of Allowance for U.S. Appl. No. 13/725,331, dated Jan. 17, 2014.
Office Action for U.S. Appl. No. 13/739,283, dated Jan. 16, 2014.
Office Action for U.S. Appl. No. 13/920,021, dated Jan. 10, 2014.
Office Action for U.S. Appl. No. 12/861,432, dated Jan. 8, 2014.
Office Action for U.S. Appl. No. 13/586,815, dated Jan. 29, 2014.
International Search Report and Written Opinion for PCT/US2013/061244, filed on Sep. 23, 2013.
Office Action for U.S. Appl. No. 13/434,567, dated Feb. 6, 2014.
Office Action for U.S. Appl. No. 13/620,012, dated Feb. 11, 2014.
Notice of Allowance for U.S. Appl. No. 13/468,201, dated Feb. 20, 2014.
Office Action for U.S. Appl. No. 12/625,817, dated Feb. 28, 2014.
Office Action for U.S. Appl. No. 12/835,704, dated Mar. 14, 2014.
Office Action for U.S. Appl. No. 13/870,919, Dated Apr. 3, 2014.
Office Action for U.S. Appl. No. 13/167,920, dated Mar. 12, 2014.
International Search Report and Written Opinion for PCT/US2013/077628, filed on Dec. 23, 2013.
Office Action for U.S. Appl. No. 13/705,082, dated Sep. 2, 2014.
Notice of Allowance for U.S. Appl. No. 13/761,132, dated Sep. 4, 2014.
Notice of Allowance for U.S. Appl. No. 13/620,012, dated Sep. 9, 2014.
Notice of Allowance for U.S. Appl. No. 13/870,919, dated Sep. 9, 2014.
Office Action for U.S. Appl. No. 13/739,283, dated Sep. 11, 2014.
Office Action for U.S. Appl. No. 13/756,498, dated Sep. 12, 2014.
Notice of Allowance for U.S. Appl. No. 13/462,653 dated Sep. 17, 2014.
Notice of Allowance for U.S. Appl. No. 13/586,815, dated Sep. 18, 2014.
Notice of Allowance for U.S. Appl. No. 13/920,021, dated Sep. 18, 2014.
Office Action for U.S. Appl. No. 13/189,401, dated Sep. 22, 2013.
Notice of Allowance for U.S. Appl. No. 13/594,665 dated Sep. 26, 2014.
Notice of Allowance for U.S. Appl. No. 13/077,941, dated Oct. 8, 2014.
Notice of Allowance for U.S. Appl. No. 13/077,941, dated Aug. 27, 2014.
Office Action for U.S. Appl. No. 12/814,410 dated Apr. 17, 2012.
Office Action for U.S. Appl. No. 12/835,699 dated Aug. 24, 2011.
Notice of Allowance for U.S. Appl. No. 12/835,699 dated Feb. 6, 2012.
Office Action for U.S. Appl. No. 12/833,898 dated Apr. 5, 2012.
European Search Report for Application No. EP 1100 5207.3 of Oct. 12, 2011.
Notice of Allowance for U.S. Appl. No. 12/833,898 dated May 30, 2012.
Notice of Allowance for U.S. Appl. No. 12/939,824 dated May 11, 2012.
Notice of Allowance for U.S. Appl. No. 12/940,920 dated Oct. 5, 2011.
Office Action for U.S. Appl. No. 13/314,513 dated Mar. 27, 2012.
Shong Yin, “Solution Processed Silver Sulfide Thin Films for Filament Memory Applications”, Technical Report No. UCB/EECS-2010-166, http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-166.html, Dec. 17, 2010, Electrical Engineering and Computer Sciences, University of California at Berkeley.
Office Action for U.S. Appl. No. 13/149,653 dated Apr. 25, 2012.
International Search Report for PCT/US2011/045124 filed on Jul. 22, 2011.
Written Opinion of the International Searching Authority for PCT/US2011/045124 filed on Jul. 22, 2011.
Peng-Heng Chang et al., “Aluminum spiking at contact windows in AI/Ti-W/Si”, Appl. Phys. Lett., Jan. 25, 1988, pp. 272-274, vol. 52 No. 4, American Institute of Physics.
J. Del Alamo et al., “Operating Limits of AI-Alloyed High-Low Junctions for BSF Solar Cells”, Solid-State Electronics, 1981, pp. 415-420, vol. 24, Pergamon Press Ltd., Great Britain.
Hao-Chih Yuan et al., “Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction”, NREL Conference Paper CP-520-42566, 33rd IEEE Photovoltaic Specialists Conference, May 11-16, 2008, National Renewable Energy Laboratory, San Diego, California.
Notice of Allowance for U.S. Appl. No. 12/939,824 dated Jul. 24, 2012.
Office Action for U.S. Appl. No. 14/207,430 dated Jul. 25, 2016, 79 pages.
Office Action for U.S. Appl. No. 14/213,953 dated Nov. 9, 2015, 20 pages.
Office Action for U.S. Appl. No. 14/383,079 dated May 10, 2016, 7 pages.
Office Action for U.S. Appl. No. 14/383,079 dated Aug. 4, 2015, 11 pages.
Office Action for U.S. Appl. No. 14/588,202 dated May 10, 2016, 8 pages.
Office Action for U.S. Appl. No. 14/588,202 dated Sep. 11, 2015, 9 pages.
Office Action for U.S. Appl. No. 14/613,301 dated Feb. 4, 2016, 42 pages.
Office Action for U.S. Appl. No. 14/613,301 dated Mar. 31, 2015, 58 pages.
Office Action for U.S. Appl. No. 14/613,301 dated Jul. 31, 2015, 26 pages.
Office Action for U.S. Appl. No. 14/887,050 dated Mar. 11, 2016, 12 pages.
Office Action for U.S. Appl. No. 15/046,172 dated Apr. 20, 2016, 8 pages.
Office Action mailed Apr. 1, 2013 for U.S. Appl. No. 13/174,077, filed Jun. 30, 2011.
Office Action mailed Oct. 3, 2013 for U.S. Appl. No. 13/921,157, filed Jun. 18, 2013.
Office Action mailed Apr. 6, 2015 for U.S. Appl. No. 14/034,390, filed Sep. 23, 2013.
Office Action mailed Dec. 6, 2013 for U.S Appl. No. 13/564,639, filed Aug. 1, 2012.
Office Action mailed Dec. 6, 2013 for U.S. Appl. No. 13/960,735, filed Aug. 6, 2013.
Office Action mailed Dec. 7, 2012 for U.S Appl. No. 13/436,714, filed Mar. 30, 2012.
Office Action mailed Mar. 7, 2013 for U.S. Appl. No. 13/651,169, filed Oct. 12, 2012.
Office Action mailed May 7, 2013 for U.S. Appl. No. 13/585,759, filed Aug. 14, 2012.
Shin W., et al., “Effect of Native Oxide on Polycrystalline Silicon CMP,” Journal of the Korean Physical Society, 2009, vol. 54 (3), pp. 1077-1081.
Office Action mailed Aug. 9, 2013 for U.S. Appl. No. 13/764,710, filed Feb. 11, 2013.
Office Action mailed Jul. 9, 2013 for U.S. Appl. No. 13/447,036, filed Apr. 13, 2012.
Office Action mailed Jul. 9, 2014 for U.S. Appl. No. 14/166,691, filed Jan. 28, 2014.
Office Action mailed Oct. 9, 2012 for U.S. Appl. No. 13/417,135, filed Mar. 9, 2012.
Office Action mailed Apr. 11, 2014 for U.S. Appl. No. 13/143,047, filed Jun. 30, 2011.
Office Action mailed Jul. 11, 2013 for U.S. Appl. No. 13/764,698, filed Feb. 11, 2013.
Office Action mailed Sep. 12, 2014 for U.S. Appl. No. 13/426,869, filed Mar. 22, 2012.
Office Action mailed Dec. 3, 2015 for U.S. Appl. No. 14/253,796.
Office Action mailed Feb. 13, 2014 for U.S. Appl. No. 13/174,077, filed Jun. 30, 2011.
Office Action mailed Mar. 14, 2012 for U.S. Appl. No. 12/815,369, filed Jun. 14, 2010.
Office Action mailed Apr. 16, 2012 for U.S. Appl. No. 12/834,610, filed Jul. 12, 2010.
Office Action mailed May 16, 2012 for U.S. Appl. No. 12/815,318, filed Jun. 14, 2010.
Office Action mailed Oct. 16, 2012 for U.S. Appl. No. 12/861,650, filed Aug. 23, 2010.
Office Action mailed Feb. 17, 2011 for U.S. Appl. No. 12/913,719, filed Oct. 27, 2010.
Office Action mailed Jun. 17, 2014 for U.S. Appl. No. 14/072,657, filed Nov. 5, 2013.
Office Action mailed Mar. 17, 2015 for U.S. Appl. No. 14/573,770.
Office Action mailed Apr. 8, 2016 for U.S. Appl. No. 14/573,770.
Office Action mailed Aug. 19, 2013 for U.S. Appl. No. 13/585,759, filed Aug. 14, 2012.
Office Action mailed Jun. 19, 2012 for U.S. Appl. No. 13/149,757, filed May 31, 2011.
Office Action mailed Mar. 19, 2013 for U.S. Appl. No. 13/564,639, filed Aug. 1, 2012.
Office Action mailed Nov. 20, 2012 for U.S. Appl. No. 13/149,653, filed May 31, 2011.
Office Action mailed Sep. 20, 2013 for U.S. Appl. No. 13/481,600, filed May 25, 2012.
Office Action mailed Mar. 21, 2014 for U.S. Appl. No. 13/447,036, filed Apr. 13, 2012.
Office Action mailed May 21, 2014 for U.S. Appl. No. 13/764,698, filed Feb. 11, 2013.
Office Action mailed Jul. 22, 2011 for U.S. Appl. No. 12/913,719, filed Oct. 27, 2010.
Office Action mailed May 23, 2013 for U.S. Appl. No. 13/592,224, filed Aug. 22, 2012.
Office Action mailed Apr. 25, 2014 for U.S. Appl. No. 13/761,132, filed Feb. 6, 2013.
Office Action mailed Oct. 25, 2012 for U.S. Appl. No. 13/461,725, filed May 1, 2012.
Office Action mailed Sep. 25, 2013 for U.S. Appl. No. 13/194,479, filed Jul. 29, 2011.
Office Action mailed Nov. 26, 2012 for U.S Appl. No. 13/156,232.
Notice of Allowance for U.S. Appl. No. 14/027,045 dated Jun. 9, 2015, 14 pages.
Notice of Allowance for U.S. Appl. No. 14/383,079 dated Jan. 4, 2016, 27 pages.
Notice of Allowance for U.S. Appl. No. 14/588,202 dated Jan. 20, 2016, 15 pages.
Notice of Allowance for U.S. Appl. No. 14/887,050 dated Jun. 22, 2016, 13 pages.
Notice of Allowance for U.S. Appl. No. 14/946,367 dated Jul. 13, 2016, 23 pages.
Notice of Allowance mailed Jan. 11, 2016 for U.S. Appl. No. 14/613,299.
Notice of Allowance mailed Mar. 12, 2012 for U.S. Appl. No. 12/913,719, filed Oct. 27, 2010.
Notice of Allowance mailed Jan. 20, 2016 for U.S. Appl. No. 14/034,390.
Notice of Allowance mailed Nov. 13, 2013 for U.S. Appl. No. 13/461,725, filed May 1, 2012.
Notice of Allowance mailed Nov. 14, 2012 for U.S. Appl. No. 12/861,666, filed Aug. 23, 2010.
Notice of Allowance mailed Nov. 14, 2012 for U.S. Appl. No. 13/532,019, filed Jun. 25, 2012.
Notice of Allowance mailed Jan. 16, 2014 for U.S. Appl. No. 13/921,157, filed Jun. 18, 2013.
Notice of Allowance mailed Mar. 17, 2014 for U.S. Appl. No. 13/592,224, filed Aug. 22, 2012.
Notice of Allowance mailed May 17, 2013 for U.S. Appl. No. 13/290,024.
Notice of Allowance mailed Sep. 17, 2014 for U.S. Appl. No. 13/960,735, filed Aug. 6, 2013.
Notice of Allowance mailed Sep. 18, 2012 for U.S. Appl. No. 12/900,232, filed Oct. 7, 2010.
Notice of Allowance mailed Sep. 19, 2013 for U.S. Appl. No. 13/585,759, filed Aug. 14, 2012.
Notice of Allowance mailed Apr. 2, 2013 for U.S. Appl. No. 13/149,757, filed May 31, 2011.
Notice of Allowance mailed Mar. 20, 2014 for U.S. Appl. No. 13/598,550, filed Aug. 29, 2012.
Notice of Allowance mailed Mar. 20, 2014 for U.S. Appl. No. 13/461,725, filed May 1, 2012.
Notice of Allowance mailed Oct. 21, 2014 for U.S. Appl. No. 13/426,869, filed Mar. 22, 2012.
Notice of Allowance mailed Feb. 10, 2015 for U.S. Appl. No. 13/525,096, filed Jun. 15, 2012.
Notice of Allowance mailed May 22, 2012 for U.S. Appl. No. 12/815,369, filed Jun. 14, 2010.
Notice of Allowance mailed Dec. 23, 2015 for U.S. Appl. No. 14/573,770.
Notice of Allowance mailed Oct. 25, 2012 for U.S. Appl. No. 12/894,087, filed Sep. 29, 2010.
Notice of Allowance mailed Sep. 25, 2014 for U.S. Appl. No. 13/447,036, filed Apr. 13, 2012.
Notice of Allowance mailed Nov. 28, 2012 for U.S. Appl. No. 13/290,024, filed Nov. 4, 2011.
Notice of Allowance mailed Oct. 28, 2013 for U.S. Appl. No. 13/194,500, filed Jul. 29, 2011.
Notice of Allowance mailed Oct. 28, 2013 for U.S. Appl. No. 13/651,169, filed Oct. 12, 2012.
Notice of Allowance mailed Oct. 29, 2012 for U.S. Appl. No. 13/149,807, filed May 31, 2011.
Notice of Allowance mailed Nov. 29, 2012 for U.S. Appl. No. 12/815,318, filed Jun. 14, 2010.
Notice of Allowance mailed Sep. 30, 2013 for U.S. Appl. No. 13/481,696, filed May 25, 2012.
Notice of Allowance mailed Aug. 31, 2012 for U.S. Appl. No. 13/051,296, filed Mar. 18, 2011.
Notice of Allowance mailed Apr. 20, 2016 for U.S. Appl. No. 14/573,817.
Notice of Allowance mailed Aug. 26, 2015 for U.S. Appl. No. 14/034,390.
Notice of Allowance mailed Sep. 8, 2015 for U.S. Appl. No. 14/613,299.
Office Action dated Dec. 31, 2015 for U.S. Appl. No. 14/692,677, 27 pages.
Office Action dated Feb. 5, 2015 for U.S. Appl. No. 14/027,045, 6 pages.
Office Action dated Apr. 11, 2014 for U.S. Appl. No. 13/594,665, 44 pages.
Office Action dated Apr. 6, 2015 for U.S. Appl. No. 13/912,136, 23 pages.
Office Action for European Application No. 11005649.6 dated Dec. 1, 2014, 2 pages.
Office Action for European Application No. 11005649.6 dated Nov. 17, 2015, 5 pages.
European Office Action for Application No. EP11005207.3 dated Aug. 8, 2012, 4 pages.
Office Action mailed Jul. 12, 2012 for U.S. Appl. No. 13/463,714, filed May 3, 2012.
Office Action for U.S. Appl. No. 14/611,022 dated May 7, 2015, 13 pages.
Office Action for U.S. Appl. No. 14/612,025 dated Feb. 1, 2016, 12 pages.
Office Action for U.S. Appl. No. 13/952,467 dated Jan. 15, 2016, 22 pages.
Office Action for U.S. Appl. No. 14/194,499 dated May 18, 2016, 10 pages.
Office Action for U.S. Appl. No. 14/207,430 dated Oct. 15, 2015, 57 pages.
Office Action for U.S. Appl. No. 14/207,430 dated Mar. 10, 2016, 78 pages.
Office Action mailed Dec. 27, 2013 for U.S. Appl. No. 13/525,096, filed Jun. 15, 2012.
Office Action mailed Jul. 30, 2012 for U.S. Appl. No. 12/900,232, filed Oct. 7, 2010.
Office Action mailed Jun. 30, 2014 for U.S. Appl. No. 13/531,449, filed Jun. 22, 2012.
Written Opinion for Application No. PCT/US2011/046036, mailed on Feb. 23, 2012, 4 pages.
Office Action mailed May 20, 2016 for U.S. Appl. No. 14/613,299.
Office Action mailed Jul. 9, 2015 for U.S. Appl. No. 14/573,817.
Chinese Office Action (English Translation) for Chinese Application No. 201180050941.0 dated Apr. 3, 2015, 8 pages.
Chinese Office Action (English Translation) for Chinese Application No. 201280027066.9 dated Nov. 23, 2015, 6 pages.
Chinese Office Action (English Translation) for Chinese Application No 201110195933.7 dated Jul. 31, 2014, 4 pages.
Chinese Office Action (English Translation) for Chinese Application No 201110195933.7 dated May 18, 2015, 4 pages.
Chinese Office Action (English Translation) for Chinese Application No 201180050941.0 dated Dec. 9, 2015, 5 pages.
Chinese Office Action (with English Translation) for Chinese Application No. 201280027066.9 mailed on Jul. 4, 2016, 5 pages.
Chinese Office Action (with English Translation) for Chinese Application No. 201290000773.4 dated Jun. 9, 2014, 3 pages.
Chinese Seach Report (English Translation) for Chinese Application No. 201180050941.0 dated Mar. 25, 2015, 1 page.
Chinese Search Report (English Translation) for Chinese Application No. 201280027066.9 dated Nov. 13, 2015, 2 pages.
Corrected Notice of Allowability dated Nov. 20, 2014 for U.S. Appl. No. 13/594,665, 5 pages.
Corrected Notice of Allowability dated Jun. 15, 2016 for U.S. Appl. No. 13/952,467, 10 pages.
European Search Report for Application No. EP14000949, mailed on Jun. 4, 2014, 7 pages.
European Search Report for European Application No. EP11005649 mailed Oct. 15, 2014, 2 pages.
Final Office Action dated Jun. 29, 2016 for U.S. Appl. No. 14/692,677, 21 pages.
Final Office Action for U.S. Appl. No. 14/612,025 dated Jun. 14, 2016, 7 pages.
Final Office Action mailed Feb. 1, 2016 for U.S. Appl. No. 14/573,817.
Final Office Action mailed May 20, 2016 for U.S. Appl. No. 14/253,796.
Final Office Action mailed Aug. 13, 2014 for U.S. Appl. No. 13/525,096, filed Jun. 15, 2012.
Notice of Allowance dated Aug. 28, 2015 for U.S. Appl. No. 14/573,770, 23 pages.
Hu X.Y., et al., “Write Amplification Analysis in Flash-based Solid State Drives”, SYSTOR'09; 20090504-20090406, May 4, 2009, pp. 1-9.
International Search Report and Written Opinion for Application No. PCT/US2011/040362, mailed on Jan. 19, 2012, 7 pages.
International Search Report and Written Opinion for Application No. PCT/US2012/040232, mailed on Feb. 26, 2013, 7 pages.
International Search Report and Written Opinion for Application No. PCT/US2012/044077, mailed on Jan. 25, 2013, 9 pages.
International Search Report and Written Opinion for Application No. PCT/US2013/042746, mailed on Sep. 6, 2013, 7 pages.
International Search Report and Written Opinion for Application No. PCT/US2013/054976, mailed on Dec. 16, 2013, 9 pages.
International Search Report for Application No. PCT/US2011/046036, mailed on Feb. 23, 2012, 3 pages.
Notice of Allowance for U.S. Appl. No. 13/952,467 dated May 20, 2016, 19 pages.
Office Action mailed Mar. 13, 2012 for U.S. Appl. No. 12/625,817, filed Nov. 25, 2009.
Japanese Office Action (English Translation) for Japanese Application No. 2011-153349 mailed Feb. 24, 2015, 3 pages.
Japanese Office Action (English Translation) for Japanese Application No. 2013-525926 mailed Mar. 3, 2015, 4 pages.
Japanese Office Action (English Translation) for Japanese Application no. 2014-513700 mailed Jan. 12, 2016, 4 pages.
Japanese Search Report (English Translation) for Japanese Application No. 2013-525926 dated Feb. 9, 2015, 15 pages.
Japanese Search Report (English Translation) for Japanese Application No. 2011-153349 dated Feb. 9, 2015, 11 pages.
Japanese Search Report (English Translation) for Japanese Application No. 2014-513700 dated Jan. 14, 2016, 25 pages.
Liu M., et al., “rFGA: CMOS-Nano Hybrid FPGA Using RRAM Components”, IEEE CB3 N171nternational Symposium on Nanoscale Architectures, Anaheim, USA, Jun. 12-13, 2008, pp. 93-98.
Newman R.C., “Defects in Silicon,” Reports on Progress in Physics, 1982, vol. 45, pp. 1163-1210.
Notice of Allowance dated Nov. 26, 2013 for U.S. Appl. No. 13/481,696, 15 pages.
Notice of Allowance dated Dec. 16, 2014 for U.S. Appl. No. 12/835,704, 47 pages.
Notice of Allowance dated Dec. 19, 2014 for U.S. Appl. No. 13/529,985, 9 pgs.
Notice of Allowance dated Jul. 1, 2016 for U.S. Appl. No. 14/213,953, 96 pages.
Notice of Allowance dated Jul. 17, 2014 for U.S. Appl. No. 12/861,432, 25 pages.
Notice of Allowance for U.S. Appl. No. 14/213,953 dated Feb. 16, 2016, 21 pages.
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Feb. 12, 2016, 13 pages.
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Jun. 8, 2016, 57 pages.
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Sep. 10, 2015, 13 pages.
Notice of Allowance for U.S. Appl. No. 14/612,025 dated Jul. 22, 2015, 25 pages.
Notice of Allowance for U.S. Appl. No. 14/509,967 dated Feb. 17, 2016, 18 pages.
Notice of Allowance for U.S. Appl. No. 14/509,967 dated Jun. 6, 2016, 96 pages.
Notice of Allowance for U.S. Appl. No. 13/912,136 dated Aug. 3, 2015, 15 pages.
Suehle J.S., et al., “Temperature Dependence of Soft Breakdown and Wear-out in Sub-3 Nm Si02 Films”, 38th Annual International Reliability Physics Symposium, San Jose, California, 2000, pp. 33-39.
Japanese Office Action mailed on Aug. 9, 2016 for Japanese Application No. 2014-513700, 8 pages (including translation).
Chinese Office Action mailed on Sep. 1, 2016 for Chinese Application No. 201380027469.8, 8 pages (including translation).
Notice of Allowance for U.S. Appl. No. 14/692,677 dated Nov. 21, 2016, 97 pages.
corrected Notice of Allowability dated Dec. 6, 2016 for U.S. Appl. No. 14/383,079, 33 pages.
Notice of Allowance for U.S. Appl. No. 14/194,499 dated Dec. 12, 2016, 125 pages.
Office Action dated Aug. 12, 2016 for U.S. Appl. No. 14/667,346, 27 pages.
Office Action dated Aug. 12, 2016 for U.S. Appl. No. 14/613,301, 43 pages.
Office Action dated Aug. 23, 2016 for U.S. Appl. No. 14/613,585, 9 pages.
Notice of Allowance dated Sep. 14, 2016 for U.S. Appl. No. 14/588,202, 119 pages.
Notice of Allowance dated Oct. 5, 2016 for U.S. Appl. No. 14/887,050, 113 pages.
Notice of Allowance dated Oct. 7, 2016 for U.S. Appl. No. 14/213,953, 43 pages.
Notice of Allowance for U.S. Appl. No. 14/509,967 dated Oct. 24, 2016, 42 pages.
Notice of Allowance for U.S. Appl. No. 14/383,079 dated Aug. 17, 2016, 71 pages.
Notice of Allowance for U.S. Appl. No. 14/611,022 dated Oct. 26, 2016, 41 pages.
Notice of Allowance for U.S. Appl. No. 13/952,467 dated Sep. 28, 2016, 128 pages.
Notice of Allowance for U.S. Appl. No. 15/046,172 dated Oct. 4, 2016, 116 pages.
Notice of Allowance for U.S. Appl. No. 14/612,025 dated Oct. 19, 2016, 108 pages.
Office Action for U.S. Appl. No. 14/597,151 dated Oct. 20, 2016, 52 pages.
Office Action for U.S. Appl. No. 14/588,136 dated Nov. 2, 2016, 132 pages.
Taiwanese Office Action mailed on Dec. 6, 2016 for Taiwanese Application No. 102129266, 7 pages (with English translation).
Office Action for U.S. Appl. No. 14/667,346 dated Feb. 9, 2017, 29 pages.
Chinese Office Action for Chinese Application Serial No. 201280027066.9 dated Feb. 17, 2017, 9 pages. (with English translation).
Related Publications (1)
Number Date Country
20150144863 A1 May 2015 US
Provisional Applications (1)
Number Date Country
61620561 Apr 2012 US
Divisions (1)
Number Date Country
Parent 13586815 Aug 2012 US
Child 14597151 US