Ribozyme treatment of diseases or conditions related to levels of NF-κB

Information

  • Patent Grant
  • 6410224
  • Patent Number
    6,410,224
  • Date Filed
    Monday, December 23, 1996
    27 years ago
  • Date Issued
    Tuesday, June 25, 2002
    21 years ago
Abstract
Enzymatic RNA molecules which cleave rel A mRNA.
Description




FIELD OF THE INVENTION




The present invention relates to therapeutic compositions and methods for the treatment or diagnosis of diseases or conditions related to NF-κB levels, such as restenosis, rheumatoid arthritis, asthma, inflammatory or autoimmune disorders and transplant rejection.




BACKGROUND OF THE INVENTION




The following is a brief description of the physiological role of NF-κB. The discussion is not meant to be complete and is provided only for understanding of the invention that follows. This summary is not an admission that any of the work described below is prior art to the claimed invention.




The nuclear DNA-binding activity, NF-κB, was first identified as a factor that binds and activates the immunoglobulin κ light chain enhancer in B cells. NF-κB now is known to activate transcription of a variety of other cellular genes (e.g., cytokines, adhesion proteins, oncogenes and viral proteins) in response to a variety of stimuli (e.g., phorbol esters, mitogens, cytokines and oxidative stress). In addition, molecular and biochemical characterization of NF-κB has shown that the activity is due to a homodimer or heterodimer of a family of DNA binding subunits. Each subunit bears a stretch of 300 amino acids that is homologous to the oncogene, v-rel. The activity first described as NF-κB is a heterodimer of p49 or p50 with p65. The p49 and p50 subunits of NF-κB (encoded by the nf-κB2 or nf-κB1 genes, respectively) are generated from the precursors NF-κB1 (p105) or NF-κB2 (p100). The p65 subunit of NF-κB (now termed Rel A ) is encoded by the rel A locus.




The roles of each specific transcription-activating complex now are being elucidated in cells (N. D. Perkins, et al., 1992


Proc. Natl Acad. Sci USA


89, 1529-1533). For instance, the heterodimer of NF-κB1 and Rel A (p50/p65) activates transcription of the promoter for the adhesion molecule, VCAM-1, while NF-κB2/RelA heterodimers (p49/p65) actually inhibit transcription (H. B. Shu, et al., Mol. Cell. Biol. 13, 6283-6289 (1993)). Conversely, heterodimers of NF-κB2/RelA (p49/p65) act with Tat-I to activate transcription of the HIV genome, while NF-κB1/RelA (p50/p65) heterodimers have little effect (J. Liu, N. D. Perkins, R. M. Schmid, G. J. Nabel,


J. Virol.


1992 66, 3883-3887). Similarly, blocking rel A gene expression with antisense oligonucleotides specifically blocks embryonic stem cell adhesion; blocking NF-κB1 gene expression with antisense oligonucleotides had no effect on cellular adhesion (Narayanan et al., 1993


Mol. Cell. Biol.


13, 3802-3810). Thus, the promiscuous role initially assigned to NF-κB in transcriptional activation (M. J. Lenardo, D. Baltimore, 1989


Cell


58, 227-229) represents the sum of the activities of the rel family of DNA-binding proteins. This conclusion is supported by recent transgenic “knock-out” mice of individual members of the rel family. Such “knock-outs” show few developmental defects, suggesting that essential transcriptional activation functions can be performed by more than one member of the rel family.




A number of specific inhibitors of NF-κB function in cells exist, including treatment with phosphorothioate antisense oliogonucleotide, treatment with double-stranded NF-κB binding sites, and over expression of the natural inhibitor MAD-3 (an IκB family member). These agents have been used to show that NF-κB is required for induction of a number of molecules involved in inflammation, as described below.




NF-κB is required for phorbol ester-mediated induction of IL-6 (I. Kitajima, et al., Science 258, 1792-5 (1992)) and IL-8 (Kunsch and Rosen, 1993


Mol. Cell. Biol.


13, 6137-46).




NF-κB is required for induction of the adhesion molecules ICAM-1 (Eck, et al., 1993


Mol. Cell. Biol.


13, 6530-6536), VCAM-1 (Shu et al., supra), and E-selectin (Read, et al., 1994


J. Exp. Med.


179, 503-512) on endothelial cells.




NF-κB is involved in the induction of the integrin subunit, CD18, and other adhesive properties of leukocytes (Eck et al., 1993 supra).




The above studies suggest that NF-κB is integrally involved in the induction of cytokines and adhesion molecules by inflammatory mediators. Two recent papers point to another connection between NF-κB and inflammation: glucocorticoids may exert their anti-inflammatory effects by inhibiting NF-κB. The glucocorticoid receptor and p65 both act at NF-κB binding sites in the ICAM-1 promoter (van de Stolpe, et al., 1994


J. Biol. Chem.


269, 6185-6192). Glucocorticoid receptor inhibits NF-κB-mediated induction of IL-6 (Ray and Prefontaine, 1994


Proc. Natl Acad. Sci USA


91, 752-756). Conversely, overexpression of p65 inhibits glucocorticoid induction of the mouse mammary tumor virus promoter. Finally, protein cross-linking and co-immunoprecipitation experiments demonstrated direct physical interaction between p65 and the glucocorticoid receptor (Id.).




SUMMARY OF THE INVENTION




This invention relates to ribozymes, or enzymatic RNA molecules, directed to cleave mRNA species encoding Rel A protein (p65). In particular, applicant describes the selection and function of ribozymes capable of cleaving this RNA and their use to reduce activity of NF-κB in various tissues to treat the diseases discussed herein. Such ribozymes are also useful for diagnostic applications.




Ribozymes that cleave rel A mRNA represent a novel therapeutic approach to inflammatory or autoimmune disorders. Antisense DNA molecules have been described that block NF-κB activity. See Narayanan et al., supra. However, ribozymes may show greater perdurance or lower effective doses than antisense molecules due to their catalytic properties and their inherent secondary and tertiary structures. Such ribozymes, with their catalytic activity and increased site specificity (as described below), represent more potent and safe, therapeutic molecules than antisense oligonucleotides.




Applicant indicates that these ribozymes are able to inhibit the activity of NF-κB and that the catalytic activity of the ribozymes is required for their inhibitory effect. Those of ordinary skill in the art, will find that it is clear from the examples described that other ribozymes that cleave rel A encoding mRNAs may be readily designed and are within the invention.




Six basic varieties of naturally-occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions. Table I summarizes some of the characteristics of these ribozymes. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets.




The enzymatic nature of a ribozyme is advantageous over other technologies, such as antisense technology (where a nucleic acid molecule simply binds to a nucleic acid target to block its translation) since the concentration of ribozyme necessary to affect a therapeutic treatment is lower than that of an antisense oligonucleotide. This advantage reflects the ability of the ribozyme to act enzymatically. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of a ribozyme. Similar mismatches in antisense molecules do not prevent their action (Woolf, T. M., et al., 1992,


Proc. Natl. Acad. Sci. USA,


89, 7305-7309). Thus, the specificity of action of a ribozyme is greater than that of an antisense oligonucleotide binding the same RNA site.




In preferred embodiments of this invention, the enzymatic nucleic acid molecule is formed in a hammerhead or hairpin motif, but may also be formed in the motif of a hepatitis delta virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) or Neurospora VS RNA. Examples of such hammerhead motifs are described by Rossi et al., 1992,


Aids Research and Human Retroviruses,


8, 183, of hairpin motifs by Hampel et al., “RNA Catalyst for Cleaving Specific RNA Sequences,” filed Sep. 20, 1989, which is a continuation-in-part of U.S. Ser. No. 07/247,100 filed Sep. 20, 1988, Hampel and Tritz, 1989,


Biochemistry,


28, 4929, and Hampel et al., 1990,


Nucleic Acids Res.earch,


18,299, and an example of the hepatitis delta virus motif is described by Perrotta and Been, 1992,


Biochemistry,


31, 16, of the RNaseP motif by Guerrier-Takada et al., 1983,


Cell,


35, 849, Neurospora VS RNA ribozyme motif is described by Collins (Saville and Collins, 1990


Cell


61, 685-696; Saville and Collins, 1991


Proc. Natl. Acad. Sci. USA


88, 8826-8830; Collins and Olive, 1993


Biochemistry


32, 2795-2799) and of the Group I intron by Cech et al., U.S. Pat. No. 4,987,071. These specific motifs are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule.




The invention provides a method for producing a class of enzymatic cleaving agents which exhibit a high degree of specificity for the RNA of a desired target. The enzymatic nucleic acid molecule is preferably targeted to a highly conserved sequence region of a target Rel A encoding mRNA such that specific treatment of a disease or condition can be provided with either one or several enzymatic nucleic acids. Such enzymatic nucleic acid molecules can be delivered exogenously to specific cells as required. Alternatively, the ribozymes can be expressed from DNA vectors that are delivered to specific cells.




Synthesis of nucleic acids greater than 100 nucleotides in length is difficult using automated methods, and the therapeutic cost of such molecules is prohibitive. In this invention, small enzymatic nucleic acid motifs (e.g., of the hammerhead or the hairpin structure) are used for exogenous delivery. The simple structure of these molecules increases the ability of the enzymatic nucleic acid to invade targeted regions of the mRNA structure. However, these catalytic RNA molecules can also be expressed within cells from eukaryotic promoters (e.g., Scanlon, K. J., et al., 1991,


Proc. Natl. Acad. Sci. USA,


88, 10591-5; Kashani-Sabet, M., et al., 1992,


Antisense Res. Dev.,


2, 3-15; Dropulic, B., et al., 1992,


J Virol,


66, 1432-41; Weerasinghe, M., et al., 1991,


J Virol,


65, 5531-4; Ojwang, J. O., et al., 1992,


Proc. Natl. Acad. Sci. USA,


89, 10802-6; Chen, C. J., et al., 1992,


Nucleic Acids Res.,


20, 4581-9; Sarver, H., et al., 1990,


Science,


247, 1222-1225)). Those skilled in the art realize that any ribozyme can be expressed in eukaryotic cells from the appropriate DNA vector. The activity of such ribozymes can be augmented by their release from the primary transcript by a second ribozyme (Draper et al., PCT WO93/23569, and Sullivan et al., PCT WO94/02595, both hereby incorporated in their totality by reference herein; Ohkawa, J., et al., 1992,


Nucleic Acids Symp. Ser.,


27, 15-6; Taira, K., et al., 1991,


Nucleic Acids Res.,


19, 5125-30; Ventura, M., et al., 1993,


Nucleic Acids Res.,


21, 3249-55) .




Inflammatory mediators such as lipopolysaccharide (LPS), interleukin-1 (IL-1) or tumor necrosis factor-a (TNF-α) act on cells by inducing transcription of a number of secondary mediators, including other cytokines and adhesion molecules. In many cases, this gene activation is known to be mediated by the transcriptional regulator, NF-κB. One subunit of NF-κB, the relA gene product (termed RelA or p65) is implicated specifically in the induction of inflammatory responses. Ribozyme therapy, due to its exquisite specificity, is particularly well-suited to target intracellular factors that contribute to disease pathology. Thus, ribozymes that cleave mRNA encoded by rel A may represent novel therapeutics for the treatment of inflammatory and autoimmune disorders.




Thus, in a first aspect, the invention features ribozymes that inhibit RelA production. These chemically or enzymatically synthesized RNA molecules contain substrate binding domains that bind to accessible regions of their target mRNAs. The RNA molecules also contain domains that catalyze the cleavage of RNA. The RNA molecules are preferably ribozymes of the hammerhead or hairpin motif. Upon binding, the ribozymes cleave the target RelA encoding mRNAs, preventing translation and p65 protein accumulation. In the absence of the expression of the target gene, a therapeutic effect may be observed.




By “inhibit” is meant that the activity or level of RelA encoding mRNA is reduced below that observed in the absense of the ribozyme, and preferably is below that level observed in the presence of an inactive RNA molecule able to bind to the same site on the mRNA, but unable to cleave that RNA.




Such ribozymes are useful for the prevention of the diseases and conditions discussed above, and any other diseases or conditions that are related to the level of NF-κB activity in a cell or tissue. By “related” is meant that the inhibition of relA mRNA and thus reduction in the level of NF-κB activity will relieve to some extent the symptoms of the disease or condition.




Ribozymes are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells. The RNA or RNA complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection or the use of a catheter, infusion pump or stent, with or without their incorporation in biopolymers. In preferred embodiments, the ribozymes have binding arms which are complementary to the sequences in Tables II, III, VI-VII. Examples of such ribozymes are shown in Tables IV-VII. Examples of such ribozymes consist essentially of sequences defined in these Tables. By “consists essentially of” is meant that the active ribozyme contains an enzymatic center equivalent to those in the examples, and binding arms able to bind mRNA such that cleavage at the target site occurs. Other sequences may be present which do not interfere with such cleavage.




In another aspect of the invention, ribozymes that cleave target molecules and inhibit NF-κB activity are expressed from transcription units inserted into DNA, RNA, or viral vectors. Preferably, the recombinant vectors capable of expressing the ribozymes are locally delivered as described above, and transiently persist in target cells. Once expressed, the ribozymes cleave the target mRNA. The recombinant vectors are preferably DNA plasmids or adenovirus vectors. However, other mammalian cell vectors that direct the expression of RNA may be used for this purpose.




Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




The drawings will first briefly be described.




Drawings:





FIG. 1

is a diagrammatic representation of the hammerhead ribozyme domain (SEQ ID No:2) known in the art.





FIG. 2



a


is a diagrammatic representation of the hammerhead ribozyme domain known in the art;

FIG. 2



b


is a diagrammatic representation of the hammerhead ribozyme as divided by Uhlenbeck (1987,


Nature,


327, 596-600) into a substrate and enzyme portion;

FIG. 2



c


is a similar diagram showing the hammerhead divided by Haseloff and Gerlach (1988,


Nature,


334, 585-591) into two portions; and

FIG. 2



d


is a similar diagram showing the hammerhead divided by Jeffries and Symons (1989,


Nucl. Acids. Res.,


17, 1371-1371) into two portions.





FIG. 3

is a representation of the general structure of the hairpin ribozyme domain (SEQ ID NO:4) known in the art.





FIG. 4

is a representation of the general structure of the hepatitis delta virus ribozyme domain (SEQ ID NO:5) known in the art.





FIG. 5

is a representation of the general. structure of the VS RNA ribozyme domain (SEQ ID NO:6) known in the art.





FIG. 6

is a schematic representation of an RNAseH accessibility assay. Specifically, the left side of

FIG. 6

is a diagram of complementary DNA oligonucleotides bound to accessible sites on the target RNA. Complementary DNA oligonucleotides are represented by broad lines labeled A, B, and C. Target RNA is represented by the thin, twisted line. The right side of

FIG. 6

is a schematic of a gel separation of uncut target RNA from a cleaved target RNA. Detection of target RNA is by autoradiography of body-labeled, T7 transcript. The bands common to each lane represent uncleaved target RNA; the bands unique to each lane represent the cleaved products.











Ribozymes




Ribozymes of this invention block to some extent NF-κB expression and can be used to treat disease or diagnose such disease. Ribozymes will be delivered to cells in culture and to cells or tissues in animal models of restenosis, transplant rejection and rheumatoid arthritis. Ribozyme cleavage of relA mRNA in these systems may prevent inflammatory cell function and alleviate disease symptoms.




Target Sites




Targets for useful ribozymes can be determined as disclosed in Draper et al supra. Sullivan et al., supra, as well as by Draper et al., “Method and reagent for treatment of arthritic conditions U.S. Ser. No. 08/152,487, filed Nov. 12, 1993, and hereby incorporated by reference herein in totality. Rather than repeat the guidance provided in those documents here, below are provided specific examples of such methods, not limiting to those in the art. Ribozymes to such targets are designed as described in those applications and synthesized to be tested in vitro and in vivo, as also described. Such ribozymes can also be optimized and delivered as described therein. While specific examples to mouse and human RNA are provided, those in the art will recognize that the equivalent human RNA targets described can be used as described below. Thus, the same target may be used, but binding arms suitable for targeting human RNA sequences are present in the ribozyme. Such targets may also be selected as described below.




The sequence of human and mouse relA mRNA can be screened for accessible sites using a computer folding algorithm. Potential hammerhead or hairpin ribozyme cleavage sites were identified. These sites are shown in Tables II, III, and VI-VII. (All sequences are 5′ to 3′ in the tables.) While mouse and human sequences can be screened and ribozymes thereafter designed, the human targetted sequences are of most utility. However, as discussed in Stinchcomb et al. supra, mouse targetted ribozmes are useful to test efficacy of action of the ribozyme prior to testing in humans. The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of ribozyme. (In Table II, lower case letters indicate positions that are not conserved between the Human and the Mouse rel A sequences.)




Hammerhead ribozymes are designed that could bind and are individually analyzed by computer folding (Jaeger, J. A., et al., 1989,


Proc. Natl. Acad. Sci. USA,


86, 7706-7710) to assess whether the ribozyme sequences fold into the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core are eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.




Referring to

FIG. 6

, mRNA is screened for accessible cleavage sites by the method described generally in Draper et al., WO/US93/04020 hereby incorporated by reference herein. Briefly, DNA oligonucleotides representing potential hammerhead ribozyme cleavage sites are synthesized. A polymerase chain reaction is used to generate a substrate for T7 RNA polymerase transcription from human or murine rel A cDNA clones. Labeled RNA transcripts are synthesized in vitro from the two templates. The oligonucleotides and the labeled transcripts are annealed, RNAseH is added and the mixtures are incubated for the designated times at 37° C. Reactions are stopped and RNA separated on sequencing polyacrylamide gels. The percentage of the substrate cleaved is determined by autoradiographic quantitation using a phosphor imaging system. From these data, hammerhead ribozyme sites are chosen as the most accessible.




Ribozymes of the hammerhead motif are designed to anneal to various sites in the mRNA message. The binding arms are complementary to the target site sequences described above. The ribozymes are chemically synthesized. The method of synthesis used follows the procedure for normal RNA synthesis as described in Usman, N.; Ogilvie, K. K.; Jiang, M.-Y.; Cedergren, R. J. 1987,


J. Am. Chem. Soc.,


109, 7845-7854 and in Scaringe, S. A.; Franklyn, C.; Usman, N., 1990,


Nucleic Acids Res.,


18, 5433-5441 and makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end, and phosphoramidites at the 3′-end. The average stepwise coupling yields were >98%. Inactive ribozymes were synthesized by substituting a U for G


5


and a U for A


14


(numbering from (Hertel, K. J., et al., 1992,


Nucleic Acids Res.,


20, 3252)). Hairpin ribozymes are synthesized in two parts and annealed to reconstruct the active ribozyme (Chowrira, B. M. and Burke, J. M., 1992,


Nucleic Acids Res.,


20, 2835-2840). All ribozymes are modified to enhance stability by modification of five ribonucleotides at both the 5′ and 3′ ends with 2′-O-methyl groups. Ribozymes are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; See Usman et al., Synthesis, deprotection, analysis and purification of RNA and ribozymes, filed May, 18, 1994, U.S. Ser. No. 08/245,736 the totality of which is hereby incorporated herein by reference.) and are resuspended in water.




The sequences of the chemically synthesized ribozymes useful in this study are shown in Tables IV-VII . Those in the art will recognize that these sequences are representative only of many more such sequences where the enzymatic portion of the ribozyme (all but the binding arms) is altered to affect activity and may be formed of ribonucleotides or other nucleotides or non-nucleotides. Such ribozymes are equivalent to the ribozymes described specifically in the Tables.




Optimizing Ribozyme Activity




Ribozyme activity can be optimized as described by Stinchcomb et al., supra. The details will not be repeated here, but include altering the length of the ribozyme binding arms (stems I and III, see

FIG. 2



c


), or chemically synthesizing ribozymes with modifications that prevent their degradation by serum ribonucleases (see e.g., Eckstein et al., International Publication No. WO 92/07065; Perrault et al., Nature 1990, 344:565; Pieken et al., Science 1991, 253:314; Usman and Cedergren,


Trends in Biochem. Sci.


1992, 17:334; Usman et al., International Publication No. WO 93/15187; and Rossi et al., International Publication No. WO 91/03162, as well as Usman, N. et al. U.S. patent application Ser. No. 07/829,729, and Sproat, B. European Patent Application 92110298.4 which describe various chemical modifications that can be made to the sugar moieties of enzymatic RNA molecules. All these publications are hereby incorporated by reference herein.), modifications which enhance their efficacy in cells, and removal of stem II bases to shorten RNA synthesis times and reduce chemical requirements.




Sullivan, et al., supra, describes the general methods for delivery of enzymatic RNA molecules. Ribozymes may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, ribozymes may be directly delivered ex vivo to cells or tissues with or without the aforementioned vehicles. Alternatively, the RNA/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump or stent. Other routes of delivery include, but are not limited to, intrvascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of ribozyme delivery and administration are provided in Sullivan, et al., supra and Draper, et al., supra which have been incorporated by reference herein.




Another means of accumulating high concentrations of a ribozyme(s) within cells is to incorporate the ribozyme-encoding sequences into a DNA expression vector. Transcription of the ribozyme sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein, O. and Moss, B., 1990,


Proc. Natl. Acad. Sci. U S A,


87, 6743-7; Gao, X. and Huang, L., 1993,


Nucleic Acids Res.,


21, 2867-72; Lieber, A., et al., 1993,


Methods Enzymol.,


217, 47-66; Zhou, Y., et al., 1990,


Mol. Cell. Biol.,


10, 4529-37). Several investigators have demonstrated that ribozymes expressed from such promoters can function in mammalian cells (e.g. (Kashani-Sabet, M., et al., 1992,


Antisense Res. Dev.,


2, 3-15; Ojwang, J. O., et al., 1992,


Proc. Natl. Acad. Sci. U S A,


89, 10802-6; Chen, C. J., et al., 1992,


Nucleic Acids Res.,


20, 4581-9; Yu, M., et al., 1993,


Proc. Natl. Acad. Sci. U S A,


90, 6340-4; L'Huillier, P. J., et al., 1992,


Embo J.,


11, 4411-8; Lisziewicz, J., et al., 1993,


Proc. Natl. Acad. Sci. U. S. A.,


90, 8000-4)). The above ribozyme transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated vectors), or viral RNA vectors (such as retroviral vectors).




In a preferred embodiment of the invention, a transcription unit expressing a ribozyme that cleaves relA RNA is inserted into a plasmid DNA vector or an adenovirus DNA viral vector. Both vectors have been used to transfer genes to the intact vasculature or to joints of live animals (Willard, J. E., et al., 1992,


Circulation,


86, I-473.; Nabel, E. G., et al., 1990,


Science,


249, 1285-1288.) and both vectors lead to transient gene expression. The adenovirus vector is delivered as recombinant adenoviral particles. DNA may be delivered alone or complexed with vehicles (as described for RNA above). The DNA, DNA/vehicle complexes, or the recombinant adenovirus particles are locally administered to the site of treatment, e.g., through the use of an injection catheter, stent or infusion pump or are directly added to cells or tissues ex vivo.




EXAMPLE 1




NF-κB Hammerhead Ribozymes




By engineering ribozyme motifs we have designed several ribozymes directed against rel A mRNA sequences. These ribozymes are synthesized with modifications that improve their nuclease resistance. The ability of ribozymes to cleave relA target sequences in vitro is evaluated.




The ribozymes will be tested for function in vivo by analyzing cytokine-induced VCAM-1, ICAM-1, IL-6 and IL-8 expression levels. Ribozymes will be delivered to cells by incorporation into liposomes, by complexing with cationic lipids, by microinjection, or by expression from DNA vectors. Cytokine-induced VCAM-1, ICAM-1, IL-6 and IL-8 expression will be monitored by ELISA, by indirect immunofluoresence, and/or by FACS analysis. Rel A mRNA levels will be assessed by Northern analysis, RNAse protection or primer extension analysis or quantitative RT-PCR. Activity of NF-κB will be monitored by gel-retardation assays. Ribozymes that block the induction of NF-κB activity and/or rel A mRNA by more than 50% will be identified.




RNA ribozymes and/or genes encoding them will be locally delivered to transplant tissue ex vivo in animal models. Expression of the ribozyme will be monitored by its ability to block ex vivo induction of VCAM-1, ICAM-1, IL-6 and IL-8 mRNA and protein. The effect of the anti-rel A ribozymes on graft rejection will then be assessed. Similarly, ribozymes will be introduced into joints of mice with collagen-induced arthritis or rabbits with Streptococcal cell wall-induced arthritis. Liposome delivery, cationic lipid delivery, or adeno-associated virus vector delivery can be used. One dose (or a few infrequent doses) of a stable anti-relA ribozyme or a gene construct that constitutively expresses the ribozyme may abrogate inflammatory and immune responses in these diseases.




Uses




A therapeutic agent that inhibits cytokine gene expression, inhibits adhesion molecule expression, and mimics the anti-inflammatory effects of glucocorticoids (without inducing steroid-responsive genes) is ideal for the treatment of inflammatory and autoimmune disorders. Disease targets for such a drug are numerous. Target indications and the delivery options each entails are summarized below. In all cases, because of the potential immunosuppressive properties of a ribozyme that cleaves rel A mRNA, uses are limited to local delivery, acute indications, or ex vivo treatment.




Rheumatoid arthritis (RA).




Due to the chronic nature of RA, a gene therapy approach is logical. Delivery of a ribozyme to inflamed joints is mediated by adenovirus, retrovirus, or adeno-associated virus vectors. For instance, the appropriate adenovirus vector can be administered by direct injection into the synovium: high efficiency of gene transfer and expression for several months would be expected (B. J. Roessler, E. D. Allen, J. M. Wilson, J. W. Hartman, B. L. Davidson, J. Clin. Invest. 92, 1085-1092 (1993)). It is unlikely that the course of the disease could be reversed by the transient, local administration of an anti-inflammatory agent. Multiple administrations may be necessary. Retrovirus and adeno-associated virus vectors would lead to permanent gene transfer and expression in the joint. However, permanent expression of a potent anti-inflammatory agent may lead to local immune deficiency.




Restenosis.




Expression of NF-κB in the vessel wall of pigs causes a narrowing of the luminal space due to excessive deposition of extracellular matrix components. This phenotype is similar to matrix deposition that occurs subsequent to coronary angioplasty. In addition, NF-κB is required for the expression of the oncogene c-myb (F. A. La Rosa, J. W. Pierce, G. E. Soneneshein, Mol. Cell. Biol. 14, 1039-44 (1994)). Thus NF-κB induces smooth muscle proliferation and the expression of excess matrix components: both processes are thought to contribute to reocclusion of vessels after coronary angioplasty.




Transplantation.




NF-κB is required for the induction of adhesion molecules (Eck et al., supra, K. O'Brien, et al., J. Clin. Invest. 92, 945-951 (1993)) that function in immune recognition and inflammatory responses. At least two potential modes of treatment are possible. In the first, transplanted organs are treated ex vivo with ribozymes or ribozyme expression vectors. Transient inhibition of NF-κB in the transplanted endothelium may be sufficient to prevent transplant-associated vasculitis and may significantly modulate graft rejection. In the second, donor B cells are treated ex vivo with ribozymes or ribozyme expression vectors. Recipients would receive the treatment prior to transplant. Treatment of a recipient with B cells that do not express T cell co-stimulatory molecules (such as ICAM-1, VCAM-1, and/or B7 an B7-2) can induce antigen-specific anergy. Tolerance to the donor's histocompatibility antigens could result; potentially, any donor could be used for any transplantation procedure.




Asthma.




Granulocyte macrophage colony stimulating factor (GM-CSF) is thought to play a major role in recruitment of eosinophils and other inflammatory cells during the late phase reaction to asthmatic trauma. Again, blocking the local induction of GM-CSF and other inflammatory mediators is likely to reduce the persistent inflammation observed in chronic asthmatics. Aerosol delivery of ribozymes or adenovirus ribozyme expression vectors is a feasible treatment.




Gene Therapy.




Immune responses limit the efficacy of many gene transfer techniques. Cells transfected with retrovirus vectors have short lifetimes in immune competent individuals. The length of expression of adenovirus vectors in terminally differentiated cells is longer in neonatal or immune-compromised animals. Insertion of a small ribozyme expression cassette that modulates inflammatory and immune responses into existing adenovirus or retrovirus constructs will greatly enhance their potential.




Thus, ribozymes of the present invention that cleave rel A mRNA and thereby NF-κB activity have many potential therapeutic uses, and there are reasonable modes of delivering the ribozymes in a number of the possible indications. Development of an effective ribozyme that inhibits NF-κB function is described above; available cellular and activity assays are number, reproducible, and accurate. Animal models for NF-κB function (Kitajima, et al., supra) and for each of the suggested disease targets exist and can be used to optimize activity.




Diagnostic Uses




Ribozymes of this invention may be used as diagnostic tools to examine genetic drift and mutations within diseased cells. The close relationship between ribozyme activity and the structure of the target RNA allows the detection of mutations in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA. By using multiple ribozymes described in this invention, one may map nucleotide changes which are important to RNA structure and function in vitro, as well as in cells and tissues. Cleavage of target RNAs with ribozymes may be used to inhibit gene expression and define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets may be defined as important mediators of the disease. These experiments will lead to better treatment of the disease progression by affording the possibility of combinational therapies (e.g., multiple ribozymes targeted to different genes, ribozymes coupled with known small molecule inhibitors, or intermittent treatment with combinations of ribozymes and/or other chemical or biological molecules). Other in vitro uses of ribozymes of this invention are well known in the art, and include detection of the presence of mRNA associated with an NF-κB related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with a ribozyme using standard methodology.




In a specific example, ribozymes which can cleave only wild-type or mutant forms of the target RNA are used for the assay. The first ribozyme is used to identify wild-type RNA present in the sample and the second ribozyme will be used to identify mutant RNA in the sample. As reaction controls, synthetic substrates of both wild-type and mutant RNA will be cleaved by both ribozymes to demonstrate the relative ribozyme efficiencies in the reactions and the absence of cleavage of the “non-targeted” RNA species. The cleavage products from the synthetic substrates will also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population. Thus each analysis will require two ribozymes, two substrates and one unknown sample which will be combined into six reactions. The presence of cleavage products will be determined using an RNAse protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (i.e., NF-κB) is adequate to establish risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios will be correlated with higher risk whether RNA levels are compared qualitatively or quantitatively.




Other embodiments are within the following claims.












TABLE II











Mouse rel A HH Target sequence













nt.




HH Target




Seq. ID






Pos.




Sequence




No.
















19




AAUGGCU a caCaGgA




7






22




aGCUCcU a cGUgGUG




8






26




CcUCcaU u GcGgACa




9






93




GAUCUGU U uCCCCUC




10






94




uAUCUGUU u CCCCUCA




11






100




UuCCCCU C AUCUUuC




12






103




CCCUCAU C UuuCCcu




13






105




CUCAUCU U uCCcuCA




14






106




UCACUU u CccuCAG




15






129




CAGGCuU C UGGgCCU




16






138




GGgCCuU A UGUGGAG




17






148




UGGAGAU C AucGAaC




18






151




AGAUCAU c GaaCAGC




19






180




AUGCGaU U CCGCUAu




20






181




UGCGaUU C CGCUAuA




21






186




UUCCGCU A uAAaUGC




22






204




GGGCGCU C aGCGGGC




23






217




GCAGuAU u CcuGGCG




24






239




CACAGAU A CCACCAA




25






262




CCACCAU C AAGAUCA




26






268




CGaAUCU C AAUGGCU




27






276




AAUGGCU A CACAGGA




28






301




UuCGaAU C UCCCUGG




29






303




CGUCU C CCUGGUC




30






310




CCCUGGU C ACCAAGG




31






323




GGcCCCU C CUCcuga




32






326




uCCaCCU C ACCGGCC




33






335




CCGGCCU C AuCCaCA




34






349




AuGAaCU U GugGGgA




35






352




AGaUcaU c GaACAGc




36






375




GAUGGCU a CUAUGAG




37






376




AUGGucU C UccGgaG




38






378




GGCUaCU A UGAGGCU




39






391




CUGAcCU C UGCCCaG




40






409




GCaGuAU C CauAGcU




41






416




CCgCAGU a UCCAuAg




42






417




CAuAGcU U CCAGAAC




43






418




AuAGcUU C CAGAACC




44






433




UGGGgAU C CAGUGUG




45






795




GGCUCCU U UUCuCAA




46






796




GCUCCUU U UcuCAAG




47






797




CUCCUUU U CuCAAGC




48






798




UCCUUUU C uCAAGCU




49






829




UGGCCAU U GUGUUCC




50






834




AUUGUGU U CCGGACu




51






835




UUGUGUU C CGGACuC




52






845




GACuCCU C CgUACGC




53






849




CCUCCgU A CGCcGAC




54






872




cCAGGCU C CUGUuCG




55






883




UuCGaGU C UCCAUGC




56






885




CGaGUCU C CAUGCAG




57






905




GCGGCCU U CUGAUCG




58






906




CGGCCUU C uGAuCGc




59






919




GcGAGCU C AGUGAGC




60






936




AUGGAgU U CCAGUAC




61






937




UGGAgUU C CAGUACu




62






942




UUCCAGU A CuUGCCA




63






953




GCCuCAU c CaCAuGA




64






962




AGAuGAU C GcCACCG




65






965




CagUacU u gCCaGAc




66






973




ACCGGAU U GaaGAGA




67






986




GAgACcU u CAAGagu




68






996




AGGACcU A UGAGACC




69






1005




GAGACCU U CAAGAGu




70






1006




AGACCUU C AACAGUA




71






1015




AGAGuAU C AUGAAGA




72






1028




GAAGAGU C CUUUCAa




73






1031




GAGUCCU U UCAauGG




74






1032




AGUCCUU U CaauGGA




75






1033




GUCCUUU C AauGGAC




76






1058




CCGGCCU C CaaCcCG




77






1064




UaCACCU u GaucCAa




78






1072




GgCGUAU U GCUGUGC




79






1082




UGUGCCU a CCCGaAa




80






1083




aaGCCUU C CCGGaAGu




81






1092




CCaAaCU C AaCUUCU




82






1097




CUCAaCU U CUGUCCC




83






1098




UCAaCUU C UGUCCCC




84






1102




CUUCUGU C CCCAAGC




85






1125




CAGCCCU A caCCUUc




86






1127




GCCaUAU a gCcUUAC




87






1131




cAUCCCU c agCacCA




88






1132




AcaCCUU c cCagCAU




89






1133




UCCaUcU c CagCuUC




90






1137




UUUACuU u AgCgCgc




91






1140




cCagCAU C CCUCAGC




92






1153




CCACCAU C AACUuUG




93






1158




AUCAACU u UGAUGAG




94






1680




GAAGACU U CUCCUCC




95






1681




AAGACUU C UCCUCCA




96






1683




GACUUCU C CUCCAUU




97






1686




UUCUCCU C CAUUGCG




98






1690




CCUCCAU U GCGGACA




99






1704




AUGGACU U CUCuGCu




100






1705




UCGACUU C UCuGCuC




101






1707




GACUUCU C uGCuCUu




102






1721




uuUGAGU C AGAUCAG




103






1726




GUCAGAU C AGCUCCU




104






1731




AUCAGCU C CUAAGGu




105






1734




ACCUCCU A AGGuGcU




106






1754




CaGugCU C CCaAGAG




107






467




cCAGGCU c cuguUCg




108






469




AaGCCAU u AGcCAGC




109






473




UuUgAGU C AGauCAg




110






481




AGCaAGU C CAGACCA




111






501




AACCCCU U UCAcGUU




112






502




ACCCCUU u CAcGUUC




113






508




UuCAcGU U CCUAUAG




114






509




uCAcGUU C CUAUAGA




115






512




cGUUCCU A UAGAgGA




116






514




UUCCUAU A GAgGAGC




117






534




GGGGACU A uGACuUG




118






556




UGCGcCU C UGCUUCC




119






561




CUCUGCU U CCAGGUG




120






562




UCUGCUU C CAGGUGA




121






585




aAgCCAU u AGcCAGc




122






598




GGCCCCU C CUCCUGa




123






613




CcCCUGU C CUcuCaC




124






616




CUGUCCU c uCaCAUC




125






617




gucCCUU C CUCAgCC




126






620




CCUUCCU C AgCCaug




127






623




UCCUgcU u CCAUCUc




128






628




AUCCgAU u UUUGAuA




129






630




CCgAUuU U UGAuAAc




130






631




CgAUuUU U GAuAAcC




131






638




UGgCcAU u GUGuuCC




132






661




CCGAGCU C AAGAUCU




133






667




UCAAGAU C UGCCGAG




134






687




CGgAACU C UGGgAGC




135






700




GCUGCCU C GGUGGGG




136






715




AUGAGAU C UUCuUgC




137






717




GAGAUCU U CuUgCUG




138






718




AGAUCUU C uUgCUGU




139






721




UucUCCU c CauUGcG




140






751




AaGACAU U GAGGUGU




141






759




GAGGUGU A UUUCACG




142






761




GGUGUAU U UCACGGG




143






762




GUGUAUU U CACGGGA




144






763




UGUAUUU C ACGGGAC




145






792




CGAGGCU C CUUUUCu




146






1167




GAUGAGU U UuCCcCC




147






1168




AUGAGUU U uCCcCCA




148






1169




UGAGUUU u CCcCCAU




149






1182




AUGcUGU U aCCaUCa




150






1183




UGcUGUU a CCaUCaG




151






1184




GGccccU C CUcCUGa




152






1187




GUccCuU c CUcaGCc




153






1188




UUaCCaU C aGGGCAG




154






1198




GGgAGuU u AGuCuGa




155






1209




CAGCCCU a caCCUUc




156






1215




cuGGCCU U aGCaCCG




157






1229




GGuCCCU u CCucAGc




158






1237




CCCAgCU C CUGCCCC




159






1250




CCAGcCU C CAGgCuC




160






1268




CCCaCCU C CuGCCcc




161






1279




CCAUGGU c cCuuCcu




162






1281




gUGGgcU C ACCUgcG




163






1286




AUgAGuU u UccCCCA




164






1309




CuCCUGU u CgAGUCu




165






1315




cCCCAGU u CUAaCCC




166






1318




CAGUuCU A aCCCCgG




167






1331




gGGuCCU C CcCAGuC




168






1334




CuuUuCU C AaGCUGa




169






1389




ACGCUGU C gGAaGCC




170






1413




CUGCAGU U UCAUGcU




171






1414




UCCAGUU U GAUGcUG




172






1437




GGGGCCU U GCUUGGC




173






1441




CCUUGCU U GCCAACA




174






1467




GgaGUGU U CACACAC




175






1468




gaCUGUU C ACAGACC




176






1482




CUCGCAU C uGUgGAC




177






1486




CUUCgGU a GggAACU




178






1494




GACAACU C aGAGUUU




179






1500




UCaGAGU U UCAGCAC




180






1501




CaGAGUU U CAGCAGC




181






1502




aCAGUUU C ACCAGCU




182






1525




gGUGCAU c CCUGUGu




183






1566




AUGGAGU A CCCUGAa




184






1577




UGAaGCU A UAACUCG




185






1579




AaGCUAU A ACUCGCC




186






1583




UAUAACU C GCCUgGU




187






1588




CUCuCCU A GaGAggG




188






1622




CCCAGCU C CUGCcCC




189






1628




UCCUCCU u CggUaGG




190






1648




CGGGGCU u CCCAAUG




191






1660




cUGaCCU C ugccCAG




192






1663




cuCUgCU U cCAGGUG




193






1664




uCUgCUU c CAGGuGA




194






1665




CUCgcUU u cGGAGgU




195






















TABLE III











Human rel A HH Target Sequences













nt.




HH Target




Seq. ID






Pos.




Sequence




No.
















19




AAUGGCU C GUCUGUA




196






22




GGCUCGU C UGUAGUG




197






26




CGUCUGU A GUGCACG




198






93




GAACUGU U CCCCCUC




199






94




AACUGUU C CCCCUCA




200






100




UCCCCCU C AUCUUCC




201






103




CCCUCAU C UUCCCGG




202






105




CUCAUCU U CCCGGCA




203






106




UCAUCUU C CCGGCAG




204






129




CAGGCCU C UGGCCCC




205






138




GGCCCCU A UGUGGAG




206






148




UGGAGAU C AUUGAGC




207






151




AGAUCAU U GAGCAGC




208






180




AUGCGCU U CCGCUAC




209






181




UGCGCUU C CGCUACA




210






186




UUCCGCU A CAAGUGC




211






204




GGGCGCU C CGCGGGC




212






217




GCAGCAU C CCAGGCG




213






239




CACAGAU A CCACCAA




214






262




CCACCAU C AAGAUCA




215






268




UCAAGAU C AAUGGCU




216






276




AAUGGCU A CACAGGA




217






301




UGCGCAU C UCCCUGG




218






303




CGCAUCU C CCUGGUC




219






310




CCCUGGU C ACCAAGG




220






323




GGACCCU C CUCACCG




221






326




CCCUCCU C ACCGGCC




222






335




CCGGCCU C ACCCCCA




223






349




ACGAGCU U GUAGGAA




224






352




AGCUUGU A GGAAAGG




225






375




GAUGGCU U CUAUGAG




226






376




AUGGCUU C UAUGAGG




227






378




GGCUUCU A UGAGGCU




228






391




CUGAGCU C UGCCCGG




229






409




GCUGCAU C CACAGUU




230






416




CCACAGU U UCCAGAA




231






417




CACAGUU U CCAGAAC




232






418




ACAGUUU C CAGAACC




233






433




UGGGAAU C CAGUGUG




234






795




GGCUCCU U UUCGCAA




235






796




GCUCCUU U UCGCAAG




236






797




CUCCUUU U CGCAAGC




237






798




UCCUUUU C GCAAGCU




238






829




UGGCCAU U GUGUUCC




239






834




AUUGUGU U CCGGACC




240






835




UUGUGUU C CGGACCC




241






845




GACCCCU C CCUACGC




242






849




CCUCCCU A CGCAGAC




243






872




GCAGGCU C CUGUGCG




244






883




UGCGUGU C UCCAUGC




245






885




CGUGUCU C CAUGCAG




246






905




GCGGCCU U CCGACCG




247






906




CGGCCUU C CGACCGG




248






919




GGGAGCU C AGUGAGC




249






936




AUGGAAU U CCAGUAC




250






937




UGGAAUU C CAGUACC




251






942




UUCCAGU A CCUGCCA




252






953




GCCAGAU A CAGACGA




253






962




AGACGAU C GUCACCG




254






965




CGAUCGU C ACCGGAU




255






973




ACCGGAU U GAGGAGA




256






986




GAAACGU A AAAGGAC




257






996




AGGACAU A UGAGACC




258






1005




GAGACCU U CAAGAGC




259






1006




AGACCUU C AAGAGCA




260






1015




AGAGCAU C AUGAAGA




261






1028




GAAGAGU C CUUUCAG




262






1031




GAGUCCU U UCAGCGG




263






1032




AGUCCUU U CAGCGGA




264






1033




GUCCUUU C AGCGGAC




265






1058




CCGGCCU C CACCUCG




266






1064




UCCACCU C GACGCAU




267






1072




GACGCAU U GCUGUGC




268






1082




UGUGCCU U CCCGCAG




269






1083




GUGCCUU C CCGCAGC




270






1092




CGCAGCU C AGCUUCU




271






1097




CUCAGCU U CUGUCCC




272






1098




UCAGCUU C UGUCCCC




273






1102




CUUCUGU C CCCAAGC




274






1125




CAGCCCU A UCCCUUU




275






1127




GCCCUAU C CCUUUAC




276






1131




UAUCCCU U UACGUCA




277






1132




AUCCCUU U ACGUCAU




278






1133




UCCCUUU A CGUCAUC




279






1137




UUUACGU C AUCCCUG




280






1140




ACGUCAU C CCUGAGC




281






1153




GCACCAU C AACUAUG




282






1158




AUCAACU A UGAUGAG




283






1680




GAAGACU U CUCCUCC




284






1681




AAGACUU C UCCUCCA




285






1683




GACUUCU C CUCCAUU




286






1686




UUCUCCU C CAUUGCG




287






1690




CCUCCAU U GCGGACA




288






1704




AUGGACU U CUCAGCC




289






1705




UGGACUU C UCAGCCC




290






1707




GACUUCU C AGCCCUG




291






1721




GCUGAGU C AGAUCAG




292






1726




GUCAGAU C AGCUCCU




293






1731




AUCAGCU C CUAAGGG




294






1734




AGCUCCU A AGGGGGU




295






1754




CUGCCCU C CCCAGAG




296






467




GCAGGCU A UCAGUCA




297






469




AGGCUAU C AGUCAGC




298






473




UAUCAGU C AGCGCAU




299






481




AGCGCAU C CAGACCA




300






501




AACCCCU U CCAAGUU




301






502




ACCCCUU C CAAGUUC




302






508




UCCAAGU U CCUAUAG




303






509




CCAAGUU C CUAUAGA




304






512




AGUUCCU A UAGAAGA




305






514




UUCCUAU A GAAGAGC




306






534




GGGGACU A CGACCUG




307






556




UGCGGCU C UGCUUCC




308






561




CUCUGCU U CCAGGUG




309






562




UCUGCUU C CAGGUGA




310






585




GACCCAU C AGGCAGG




311






598




GGCCCCU C CGCCUGC




312






613




CGCCUGU C CUUCCUC




313






616




CUGUCCU U CCUCAUC




314






617




UGUCCUU C CUCAUCC




315






620




CCUUCCU C AUCCCAU




316






623




UCCUCAU & CCAUCUU




317






628




AUCCCAU C UUUGACA




318






630




CCCAUCU U UGACAAU




319






631




CCAUCUU U GACAAUC




320






638




UGACAAU C GUGCCCC




321






661




CCGAGCU C AAGAUCU




322






667




UCAAGAU C UGCCGAG




323






687




CGAAACU C UGGCAGC




324






700




GCUGCCU C GGUGGGG




325






715




AUGAGAU C UUCCUAC




326






717




GAGAUCU U CCUACUG




327






718




AGAUCUU C CUACUGU




328






721




UCUUCCU A CUGUGUG




329






751




AGGACAU U GAGGUGU




330






759




GAGGUGU A UUUCACG




331






761




GGUGUAU U UCACGGG




332






762




GUGUAUU U CACGGGA




333






763




UGUAUUU C ACGGGAC




334






792




CGAGGCU C CUUUUCG




335






1167




GAUGAGU U UCCCACC




336






1168




AUGAGUU U CCCACCA




337






1169




UGAGUUU C CCACCAU




338






1182




AUGGUGU U UCCUUCU




339






1183




UGGUGUU U CCUUCUG




340






1184




GGUGUUU C CUUCUGG




341






1187




GUUUCCU U CUGGGCA




342






1188




UUUCCUU C UGGGCAG




343






1198




GGCAGAU C AGCCAGG




344






1209




CAGGCCU C GGCCUUG




345






1215




UCGGCCU U GGCCCCG




346






1229




GGCCCCU C CCCAAGU




347






1237




CCCAAGU C CUGCCCC




348






1250




CCAGGCU C CAGCCCC




349






1268




CCCUGCU C CAGCCAU




350






1279




CCAUGGU A UCAGCUC




351






1281




AUGGUAU C AGCUCUG




352






1286




AUCAGCU C UGGCCCA




353






1309




CCCCUGU C CCAGUCC




354






1315




UCCCAGU C CUAGCCC




355






1318




CAGUCCU A GCCCCAG




356






1331




AGGCCCU C CUCAGGC




357






1334




CCCUCCU C AGGCUGU




358






1389




ACGCUGU C AGAGGCC




359






1413




CUGCAGU U UGAUGAU




360






1414




UGCAGUU U GAUGAUG




361






1437




GGGGCCU U GCUUGGC




362






1441




CCUUGCU U GGCAACA




363






1467




GCUGUGU U CACAGAC




364






1468




CUGUGUU C ACAGACC




365






1482




CUGGCAU C CGUCGAC




366






1486




CAUCCGU C GACAACU




367






1494




GACAACU C CGAGUUU




368






1500




UCCGAGU U UCAGCAG




369






1501




CCGAGUU U CAGCAGC




370






1502




CGAGUUU C AGCAGCU




371






1525




AGGGCAU A CCUGUGG




372






1566




AUGGAGU A CCCUGAG




373






1577




UGAGGCU A UAACUCG




374






1579




AGGCUAU A ACUCGCC




375






1583




UAUAACU C GCCUAGU




376






1588




CUCGCCU A GUGACAG




377






1622




CCCAGCU C CUGCUCC




378






1628




UCCUGCU C CACUGGG




379






1648




CGGGGCU C CCCAAUG




380






1660




AUGGCCU C CUUUCAG




381






1663




GCCUCCU U UCAGGAG




382






1664




CCUCCUU U CAGGAGA




383






1665




CUCCUUU C AGGAGAU




384






















TABLE IV











Mouse rel A HH Ribozyme Sequences













nt. Sequence




HH Ribozyme Sequence




Seq. ID No.
















19




UCCUGUG CUGAUGAGGCCGAAAGGCCGAA AGCCAUU




385






22




CACCACG CUGAUGAGGCCGAAAGGCCGAA AGGAGCU




386






26




UGUCCGC CUGAUGAGGCCGAAAGGCCGAA AUGGAGG




387






93




GAGGGGA CUGAUGAGGCCGAAAGGCCGAA ACAGAUC




388






94




UGAGGGG CUGAUGAGGCCGAAAGGCCGAA AACAGAU




389






100




GAAAGAU CUGAUGAGGCCGAAAGGCCGAA AGGGGAA




390






103




AGGGAAA CUGAUGAGGCCGAAAGGCCGAA AUGAGGG




391






105




UGAGGGA CUGAUGAGGCCGAAAGGCCGAA AGAUGAG




392






106




CUGAGGG CUGAUGAGGCCGAAAGGCCGAA AAGAUGA




393






129




AGGCCCA CUGAUGAGGCCGAAAGGCCGAA AAGCCUG




394






138




CUCCACA CUGAUGAGGCCGAAAGGCCGAA AAGGCCC




395






148




GUUCGAU CUGAUGAGGCCGAAAGGCCGAA AUCUCCA




396






151




GCUGUUC CUGAUGAGGCCGAAAGGCCGAA AUGAUCU




397






180




AUAGCGG CUGAUGAGGCCGAAAGGCCGAA AUCGCAU




398






181




UAUAGCG CUGAUGAGGCCGAAAGGCCGAA AAUCGCA




399






186




GCAUUUA CUGAUGAGGCCGAAAGGCCGAA AGCGGAA




400






204




GCCCGCU CUGAUGAGGCCGAAAGGCCGAA AGCGCCC




401






217




CGCCAGG CUGAUGAGGCCGAAAGGCCGAA AUACUGC




402






239




UUGGUGG CUGAUGAGGCCGAAAGGCCGAA AUCUGUG




403






262




UGAUCUU CUGAUGAGGCCGAAAGGCCGAA AUGGUGG




404






268




AGCCAUU CUGAUGAGGCCGAAAGGCCGAA AUCUUGA




405






276




UCCUGUG CUGAUGAGGCCGAAAGGCCGAA AGCCAUU




406






301




CCAGGGA CUGAUGAGGCCGAAAGGCCGAA AUUCGAA




407






303




GACCAGG CUGAUGAGGCCGAAAGGCCGAA AGAUUCG




408






310




CCUUGGU CUGAUGAGGCCGAAAGGCCGAA ACCAGGG




409






323




UCAGGAG CUGAUGAGGCCGAAAGGCCGAA AGGGGCC




410






326




GGCCGGU CUGAUGAGGCCGAAAGGCCGAA AGGUGGA




411






335




UGUGGAU CUGAUGAGGCCGAAAGGCCGAA AGGCCGG




412






349




UCCCCAC CUGAUGAGGCCGAAAGGCCGAA AGUUCAU




413






352




GCUGUUC CUGAUGAGGCCGAAAGGCCGAA AUGAUCU




414






375




CUCAUAG CUGAUGAGGCCGAAAGGCCGAA AGCCAUC




415






376




CUCCGGA CUGAUGAGGCCGAAAGGCCGAA AGACCAU




416






378




AGCCUCA CUGAUGAGGCCGAAAGGCCGAA AGUAGCC




417






391




CUGGGCA CUGAUGAGGCCGAAAGGCCGAA AGGUCAG




418






409




AGCUAUG CUGAUGAGGCCGAAAGGCCGAA AUACUGC




419






416




CUAUGGA CUGAUGAGGCCGAAAGGCCGAA ACUGCGG




420






417




GUUCUGG CUGAUGAGGCCGAAAGGCCGAA AGCUAUG




421






418




GGUUCUG CUGAUGAGGCCGAAAGGCCGAA AAGCUAU




422






433




CACACUG CUGAUGAGGCCGAAAGGCCGAA AUCCCCA




423






467




CGAACAG CUGAUGAGGCCGAAAGGCCGAA AGCCUGG




424






469




GCUGGCU CUGAUGAGGCCGAAAGGCCGAA AUGGCUU




425






473




CUGAUCU CUGAUGAGGCCGAAAGGCCGAA ACUCAAA




426






481




UGGUCUG CUGAUGAGGCCGAAAGGCCGAA AUUCGCU




427






501




AACGUGA CUGAUGAGGCCGAAAGGCCGAA AGGGGUU




428






502




GAACGUG CUGAUGAGGCCGAAAGGCCGAA AAGGGGU




429






508




CUAUAGG CUGAUGAGGCCGAAAGGCCGAA ACGUGAA




430






509




UCUAUAG CUGAUGAGGCCGAAAGGCCGAA AACGUGA




431






512




UCCUCUA CUGAUGAGGCCGAAAGGCCGAA AGGAACG




432






514




GCUCCUC CUGAUGAGGCCGAAAGGCCGAA AUAGGAA




433






534




CAAGUCA CUGAUGAGGCCGAAAGGCCGAA AGUCCCC




434






556




GGAAGCA CUGAUGAGGCCGAAAGGCCGAA AGGCGCA




435






561




CACCUGG CUGAUGAGGCCGAAAGGCCGAA AGCAGAG




436






562




UCACCUG CUGAUGAGGCCGAAAGGCCGAA AAGCAGA




437






585




GCUGGCU CUGAUGAGGCCGAAAGGCCGAA AUGGCUU




438






598




UCAGGAG CUGAUGAGGCCGAAAGGCCGAA AGGGGCC




439






613




GUGAGAG CUGAUGAGGCCGAAAGGCCGAA ACAGGGG




440






616




GAUGUGA CUGAUGAGGCCGAAAGGCCGAA AGGACAG




441






617




GGCUGAG CUGAUGAGGCCGAAAGGCCGAA AAGGGAC




442






620




CAUGGCU CUGAUGAGGCCGAAAGGCCGAA AGGAAGG




443






623




GAGAUGG CUGAUGAGGCCGAAAGGCCGAA AGCAGGA




444






628




UAUCAAA CUGAUGAGGCCGAAAGGCCGAA AUCGGAU




445






630




GUUAUCA CUGAUGAGGCCGAAAGGCCGAA AAAUCGG




446






631




GGUUAUC CUGAUGAGGCCGAAAGGCCGAA AAAAUCG




447






638




GGAACAC CUGAUGAGGCCGAAAGGCCGAA AUGGCCA




448






661




AGAUCUU CUGAUGAGGCCGAAAGGCCGAA AGCUCGG




449






667




CUCGGCA CUGAUGAGGCCGAAAGGCCGAA AUCUUGA




450






687




GCUCCCA CUGAUGAGGCCGAAAGGCCGAA AGUUCCG




451






700




CCCCACC CUGAUGAGGCCGAAAGGCCGAA AGGCAGC




452






715




GCAAGAA CUGAUGAGGCCGAAAGGCCGAA AUCUCAU




453






717




CAGCAAG CUGAUGAGGCCGAAAGGCCGAA AGAUCUC




454






718




ACAGCAA CUGAUGAGGCCGAAAGGCCGAA AAGAUCU




455






721




CGCAAUG CUGAUGAGGCCGAAAGGCCGAA AGGAGAA




456






751




ACACCUC CUGAUGAGGCCGAAAGGCCGAA AUGUCUU




457






759




CGUGAAA CUGAUGAGGCCGAAAGGCCGAA ACACCUC




458






761




CCCGUGA CUGAUGAGGCCGAAAGGCCGAA AUACACC




459






762




UCCCGUG CUGAUGAGGCCGAAAGGCCGAA AAUACAC




460






763




GUCCCGU CUGAUGAGGCCGAAAGGCCGAA AAAUACA




461






792




AGAAAAG CUGAUGAGGCCGAAAGGCCGAA AGCCUCG




462






795




UUGAGAA CUGAUGAGGCCGAAAGGCCGAA AGGAGCC




463






796




CUUGAGA CUGAUGAGGCCGAAAGGCCGAA AAGGAGC




464






797




GCUUGAG CUGAUGAGGCCGAAAGGCCGAA AAAGGAG




465






798




AGCUUGA CUGAUGAGGCCGAAAGGCCGAA AAAAGGA




466






829




GGAACAC CUGAUGAGGCCGAAAGGCCGAA AUGGCCA




467






834




AGUCCGG CUGAUGAGGCCGAAAGGCCGAA ACACAAU




468






835




GAGUCCG CUGAUGAGGCCGAAAGGCCGAA AACACAA




469






845




GCGUACG CUGAUGAGGCCGAAAGGCCGAA AGGAGUC




470






849




GUCGGCG CUGAUGAGGCCGAAAGGCCGAA ACGGAGG




471






872




CGAACAG CUGAUGAGGCCGAAAGGCCGAA AGCCUGG




472






883




GCAUGGA CUGAUGAGGCCGAAAGGCCGAA ACUCGAA




473






885




CUGCAUG CUGAUGAGGCCGAAAGGCCGAA AGACUCG




474






905




CGAUCAG CUGAUGAGGCCGAAAGGCCGAA AGGCCGC




475






906




GCGAUCA CUGAUGAGGCCGAAAGGCCGAA AAGGCCG




476






919




GCUCACU CUGAUGAGGCCGAAAGGCCGAA AGCUCGC




477






936




GUACUGG CUGAUGAGGCCGAAAGGCCGAA ACUCCAU




478






937




AGUACUG CUGAUGAGGCCGAAAGGCCGAA AACUCCA




479






942




UGGCAAG CUGAUGAGGCCGAAAGGCCGAA ACUGGAA




480






953




UCAUGUG CUGAUGAGGCCGAAAGGCCGAA AUGAGGC




481






962




CGGUGGC CUGAUGAGGCCGAAAGGCCGAA AUCAUCU




482






965




GUCUGGC CUGAUGAGGCCGAAAGGCCGAA AGUACUG




483






973




UCUCUUC CUGAUGAGGCCGAAAGGCCGAA AUCCGGU




484






986




ACUCUUG CUGAUGAGGCCGAAAGGCCGAA AGGUCUC




485






996




GGUCUCA CUGAUGAGGCCGAAAGGCCGAA AGGUCCU




486






1005




ACUCUUG CUGAUGAGGCCGAAAGGCCGAA AGGUCUC




487






1006




UACUCUU CUGAUGAGGCCGAAAGGCCGAA AAGGUCU




488






1015




UCUUCAU CUGAUGAGGCCGAAAGGCCGAA AUACUCU




489






1028




UUGAAAG CUGAUGAGGCCGAAAGGCCGAA ACUCUUC




490






1031




CCAUUGA CUGAUGAGGCCGAAAGGCCGAA AGGACUC




491






1032




UCCAUUG CUGAUGAGGCCGAAAGGCCGAA AAGGACU




492






1033




GUCCAUU CUGAUGAGGCCGAAAGGCCGAA AAAGGAC




493






1058




CGGGUUG CUGAUGAGGCCGAAAGGCCGAA AGGCCGG




494






1064




UUGGAUC CUGAUGAGGCCGAAAGGCCGAA AGGUGUA




495






1072




GCACAGC CUGAUGAGGCCGAAAGGCCGAA AUACGCC




496






1082




UUUCGGG CUGAUGAGGCCGAAAGGCCGAA AGGCACA




497






1083




ACUUCGG CUGAUGAGGCCGAAAGGCCGAA AAGGCUU




498






1092




AGAAGUU CUGAUGAGGCCGAAAGGCCGAA AGUUUCG




499






1097




GGGACAG CUGAUGAGGCCGAAAGGCCGAA AGUUGAG




500






1098




GGGGACA CUGAUGAGGCCGAAAGGCCGAA AAGUUGA




501






1102




GCUUGGG CUGAUGAGGCCGAAAGGCCGAA ACAGAAG




502






1125




GAAGGUG CUGAUGAGGCCGAAAGGCCGAA AGGGCUG




503






1127




GUAAGGC CUGAUGAGGCCOAAAGGCCGAA AUAUGGC




504






1131




UGGUGCU CUGAUGAGGCCGAAAGGCCGAA AGGGAUG




505






1132




AUGCUGG CUGAUGAGGCCGAAAGGCCGAA AAGGUGU




506






1133




GAAGCUG CUGAUGAGGCCGAAAGGCCGAA AGAUGGA




507






1137




GCGCGCU CUGAUGAGGCCGAAAGGCCGAA AAGUAAA




508






1140




GCUGAGG CUGAUGAGGCCGAAAGGCCGAA AUGCUGG




509






1153




CAAAGUU CUGAUGAGGCCGAAAGGCCGAA AUGGUGC




510






1158




CUCAUCA CUGAUGAGGCCGAAAGGCCGAA AGUUGAU




511






1167




GGGGGAA CUGAUGAGGCCGAAAGGCCGAA ACUCAUC




512






1168




UGGGGGA CUGAUGAGGCCGAAAGGCCGAA AACUCAU




513






1169




AUGGGGG CUGAUGAGGCCGAAAGGCCGAA AAACUCA




514






1182




UGAUGGU CUGAUGAGGCCGAAAGGCCGAA ACAGCAU




515






1183




CUGAUGG CUGAUGAGGCCGAAAGGCCGAA AACAGCA




516






1184




UCAGGAG CUGAUGAGGCCGAAAGGCCGAA AGGGGCC




517






1187




GGCUGAG CUGAUGAGGCCGAAAGGCCGAA AAGGGAC




518






1188




CUGCCCU CUGAUGAGGCCGAAAGGCCGAA AUGGUAA




519






1198




UCAGACU CUGAUGAGGCCGAAAGGCCGAA AACUCCC




520






1209




GAAGGUG CUGAUGAGGCCGAAAGGCCGAA AGGGCUG




521






1215




CGGUGCU CUGAUGAGGCCGAAAGGCCGAA AGGCCAG




522






1229




GCUGAGG CUGAUGAGGCCGAAAGGCCGAA AGGGACC




523






1237




GGGGCAG CUGAUGAGGCCGAAAGGCCGAA AGCUGGG




524






1250




GAGCCUG CUGAUGAGGCCGAAAGGCCGAA AGGCUGG




525






1268




GGGGCAG CUGAUGAGGCCGAAAGGCCGAA AGCUGGG




526






1279




AGGAAGG CUGAUGAGGCCGAAAGGCCGAA ACCAUGG




527






1281




CGCAGCU CUGAUGAGGCCGAAAGGCCGAA AGCCCAC




528






1286




UGGGGGA CUGAUGAGGCCGAAAGGCCGAA AACUCAU




529






1309




AGACUCG CUGAUGAGGCCGAAAGGCCGAA ACAGGAG




530






1315




GGGUUAG CUGAUGAGGCCGAAAGGCCGAA ACUGGGG




531






1318




CCGGGGU CUGAUGAGGCCGAAAGGCCGAA AGAACUG




532






1331




GACUGGG CUGAUGAGGCCGAAAGGCCGAA AGGACCC




533






1334




UCAGCUU CUGAUGAGGCCGAAAGGCCGAA AGAAAAG




534






1389




GGCUUCC CUGAUGAGGCCGAAAGGCCGAA ACAGCGU




535






1413




AGCAUCA CUGAUGAGGCCGAAAGGCCGAA ACUGCAG




536






1414




CAGCAUC CUGAUGAGGCCGAAAGGCCGAA AACUGCA




537






1437




GCCAAGC CUGAUGAGGCCGAAAGGCCGAA AGGCCCC




538






1441




UGUUGCC CUGAUGAGGCCGAAAGGCCGAA AGCAAGG




539






1467




GUCUGUG CUGAUGAGGCCGAAAGGCCGAA ACACUCC




540






1468




GGUCUGU CUGAUGAGGCCGAAAGGCCGAA AACACUC




541






1482




GUCCACA CUGAUGAGGCCGAAAGGCCGAA AUGCCAG




542






1486




AGUUCCC CUGAUGAGGCCGAAAGGCCGAA ACCGAAG




543






1494




AAACUCU CUGAUGAGGCCGAAAGGCCGAA AGUUGUC




544






1500




CUGCUGA CUGAUGAGGCCGAAAGGCCGAA ACUCUGA




545






1501




GCUGCUG CUGAUGAGGCCGAAAGGCCGAA AACUCUG




546






1502




AGCUGCU CUGAUGAGGCCGAAAGGCCGAA AAACUCU




547






1525




ACACAGG CUGAUGAGGCCGAAAGGCCGAA AUGCACC




548






1566




UUCAGGG CUGAUGAGGCCGAAAGGCCGAA ACUCCAU




549






1577




CGAGUUA CUGAUGAGGCCGAAAGGCCGAA AGCUUCA




550






1579




GGCGAGU CUGAUGAGGCCGAAAGGCCGAA AUAGCUU




551






1583




ACCAGGC CUGAUGAGGCCGAAAGGCCGAA AGUUAUA




552






1588




CCCUCUC CUGAUGAGGCCGAAAGGCCGAA AGGAGAG




553






1622




GGGGCAG CUGAUGAGGCCGAAAGGCCGAA AGCUGGG




554






1628




CCUACCG CUGAUGAGGCCGAAAGGCCGAA AGCAGGA




555






1648




CAUUGGG CUGAUGAGGCCGAAAGGCCGAA AGCCCCG




556






1660




CUGGGCA CUGAUGAGGCCGAAAGGCCGAA AGGUCAG




557






1663




CACCUGG CUGAUGAGGCCGAAAGGCCGAA AGCAGAG




558






1664




UCACCUG CUGAUGAGGCCGAAAGGCCGAA AAGCAGA




559






1665




ACCUCCG CUGAUGAGGCCGAAAGGCCGAA AAGCGAG




560






1680




GGAGGAG CUGAUGAGGCCGAAAGGCCGAA AGUCUUC




561






1681




UGGAGGA CUGAUGAGGCCGAAAGGCCGAA AAGUCUU




562






1683




AAUGGAG CUGAUGAGGCCGAAAGGCCGAA AGAAGUC




563






1686




CGCAAUG CUGAUGAGGCCGAAAGGCCGAA AGGAGAA




564






1690




UGUCCGC CUGAUGAGGCGGAAAGGCCGAA AUGGAGG




565






1704




AGCAGAG CUGAUGAGGCCGAAAGGCCGAA AGUCCAU




566






1705




GAGCAGA CUGAUGAGGCCGAAAGGCCGAA AAGUCCA




567






1707




AAGAGCA CUGAUGAGGCCGAAAGGCCGAA AGAAGUC




568






1721




CUGAUCU CUGAUGAGGCCGAAAGGCCGAA ACUCAAA




569






1726




AGGAGCU CUGAUGAGGCCGAAAGGCCGAA AUCUGAC




570






1731




ACCUUAG CUGAUGAGGCCGAAAGGCCGAA AGCUGAU




571






1734




AGGACCU CUGAUGAGGCCGAAAGGCCGAA AGGAGCU




572






1754




CUCUUGG CUGAUGAGGCCGAAAGGCCGAA AGCACUG




573






















TABLE V











Human rel A HH Ribozyme Sequences













nt. Sequence




HH Ribozyme Sequence




SEQ ID NO.
















19




UACAGAC CUGAUGAGGCCGAAAGGCCGAA AGCCAUU




574






22




CACUACA CUGAUGAGGCCGAAAGGCCGAA ACGAGCC




575






26




CGUGCAC CUGAUGAGGCCGAAAGGCCGAA ACACACG




576






93




GAGGGGG CUGAUGAGGCCGAAAGGCCGAA ACAGUUC




577






94




UGAGGGG CUGAUGAGGCCGAAAGGCCGAA AACAGUU




578






100




GGAAGAU CUGAUGAGGCCGAAAGGCCGAA AGGGGGA




579






103




CCGGGAA CUGAUGAGGCCGAAAGGCCGAA AUGAGGG




580






105




UGCCGGG CUGAUGAGGCCGAAAGGCCGAA AGAUGAG




581






106




CUGCCGG CUGAUGAGGCCGAAAGGCCGAA AAGAUGA




582






129




GGGGCCA CUGAUGAGGCCGAAAGGCCGAA AGGCCUG




583






138




CUCCACA CUGAUGAGGCCGAAAGGCCGAA AGGGGCC




584






148




GCUCAAU CUGAUGAGGCCGAAAGGCCGAA AUCUCCA




585






151




GCUGCUC CUGAUGAGGCCGAAAGGCCGAA AUGAUCU




586






180




GUAGCGG CUGAUGAGGCCGAAAGGCCGAA AGCGCAU




587






181




UGUAGCG CUGAUGAGGCCGAAAGGCCGAA AAGCGCA




588






186




GCACUUG CUGAUGAGGCCGAAAGGCCGAA AGCGGAA




589






204




GCCCGCG CUGAUGAGGCCGAAAGGCCGAA AGCGCCC




590






217




CGCCUGG CUGAUGAGGCCGAAAGGCCGAA AUGCUGC




591






239




UUGGUGG CUGAUGAGGCCGAAAGGCCGAA AUCUGUG




592






262




UGAUCUU CUGAUGAGGCCGAAAGGCCGAA AUGGUGG




593






268




AGCCAUU CUGAUGAGGCCGAAAGGCCGAA AUCUUGA




594






276




UCCUGUG CUGAUGAGGCCGAAAGGCCGAA AGCCAUU




595






301




CCAGGGA CUGAUGAGGCCGAAAGGCCGAA AUGCGCA




596






303




GACCAGG CUGAUGAGGCCGAAAGGCCGAA AGAUGCG




597






310




CCUUGGU CUGAUGAGGCCGAAAGGCCGAA ACCAGGG




598






323




CGGUGAG CUGAUGAGGCCGAAAGGCCGAA AGGGUCC




599






326




GGCCGGU CUGAUGAGGCCGAAAGGCCGAA AGGAGGG




600






335




UGGGGGU CUGAUGAGGCCGAAAGGCCGAA AGGCCGG




601






349




UUCCUAC CUGAUGAGGCCGAAAGGCCGAA AGCUCGU




602






352




CCUUUCC CUGAUGAGGCCGAAAGGCCGAA ACAAGCU




603






375




CUCAUAG CUGAUGAGGCCGAAAGGCCGAA AGCCAUC




604






376




CCUCAUA CUGAUGAGGCCGAAAGGCCGAA AAGCCAU




605






378




AGCCUCA CUGAUGAGGCCGAAAGGCCGAA AGAAGCC




606






391




CCGGGCA CUGAUGAGGCCGAAAGGCCGAA AGCUCAG




607






409




AACUGUG CUGAUGAGGCCGAAAGGCCGAA AUGCAGC




608






416




UUCUGGA CUGAUGAGGCCGAAAGGCCGAA ACUGUGG




609






417




GUUCUGG CUGAUGAGGCCGAAAGGCCGAA AACUGUG




610






418




GGUUCUG CUGAUGAGGCCGAAAGGCCGAA AAACUGU




611






433




CACACUG CUGAUGAGGCCGAAAGGCCGAA AUUCCCA




612






467




UGACUGA CUGAUGAGGCCGAAAGGCCGAA AGCCUGC




613






469




GCUGACU CUGAUGAGGCCGAAAGGCCGAA AUAGCCU




614






473




AUGCGCU CUGAUGAGGCCGAAAGGCCGAA ACUGAUA




615






461




UGGUCUG CUGAUGAGGCCGAAAGGCCGAA AUGCGCU




616






501




AACUUGG CUGAUGAGGCCGAAAGGCCGAA AGGGGUU




617






502




GAACUUG CUGAUGAGGCCGAAAGGCCGAA AAGGGGU




618






508




CUAUAGG CUGAUGAGGCCGAAAGGCCGAA ACUUGAA




619






509




UCUAUAG CUGAUGAGGCCGAAAGGCCGAA AACUUGG




620






512




UCUUCUA CUGAUGAGGCCGAAAGGCCGAA AGGAACU




621






514




GCUCUUC CUGAUGAGGCCGAAAGGCCGAA AUAGGAA




622






534




CAGGUCG CUGAUGAGGCCGAAAGGCCGAA AGUCCCC




623






556




GGAAGCA CUGAUGAGGCCGAAAGGCCGAA AGCCGCA




624






561




CACCUGG CUGAUGAGGCCGAAAGGCCGAA AGCAGAG




625






562




UCACCUG CUGAUGAGGGGGAAAGGCCGAA AAGCAGA




626






585




CCUGCCU CUGAUGAGGCCGAAAGGCCGAA AUGGGUC




627






598




GCAGGGG CUGAUGAGGCCGAAAGGCCGAA AGGGGCC




628






613




GAGGAAG CUGAUGAGGCCGAAAGGCCGAA ACAGGCG




629






616




GAUGAGG CUGAUGAGGCCGAAAGGCCGAA AGGACAG




630






617




GGAUGAG CUGAUGAGGCGGAAAGGCCGAA AAGGACA




631






620




AUGGGAU CUGAUGAGGCCGAAAGGGGGAA AGGAAGG




632






623




AAGAUGG CUGAUGAGGCCGAAAGGGCGAA AUGAGGA




633






628




UGUCAAA CUGAUGAGGCCGAAAGGCCGAA AUCGGAU




634






630




AUUGUCA CUGAUGAGGCCGAAAGGCCGAA AGAUGGG




635






631




GAUUGUC CUGAUGAGGCCGAAAGGCCGAA AAGAUGG




636






638




GGGGCAC CUGAUGAGGGCGAAAGGCCGAA AUUGUCA




637






661




AGAUCUU CUGAUGAGGCCGAAAGGGCGAA AGCUCGG




638






667




CUCGGCA CUGAUGAGGCCGAAAGGCCGAA AUCUUGA




639






687




GCUGCCA CUGAUGAGGCCGAAAGGCCGAA AGUUUGG




640






700




CCGCAGC CUGAUGAGGCCGAAAGGCCGAA AGGCAGG




641






715




GUAGGAA CUGAUGAGGGGGAAAGGCCGAA AUCUCAU




642






717




CAGUAAG CUGAUGAGGCCGAAAGGCCGAA AGAUCUC




643






718




ACAGUAG CUGAUGAGGGCGAAAGGCCGAA AAGAUCU




644






721




CACACAG CUGAUGAGGCCGAAAGGCCGAA AGGAAGA




645






751




ACACCUC CUGAUGAGGGGGAAAGGCCGAA AUGUCCU




646






759




CGUGAAA CUGAUGAGGCCGAAAGGCCGAA ACAGCUC




647






761




CCCGUGA CUGAUGAGGCCGAAAGGCCGAA AUACACC




648






762




UCCCGUG CUGAUGAGGCCGAAAGGCCGAA AAUACAC




649






763




GUGGCGU CUGAUGAGGGGGAAAGGCCGAA AAAUACA




650






792




CGAAAAG CUGAUGAGGGGGAAAGGCCGAA AGCCUCG




651






795




UUGCGAA CUGAUGAGGCCGAAAGGCGGAA AGGAGCC




652






796




CUUGCGA CUGAUGAGGCCGAAAGGCCGAA AAGGAGG




653






797




GCUUGCG CUGAUGAGGCCGAAAGGCCGAA AAAGGAG




654






798




AGCUUGC CUGAUGAGGCCGAAAGGCCGAA AAAAGGA




655






829




GGAACAC CUGAUGAGGCCGAAAGGCCGAA AUGGCCA




656






834




GGUCCGG CUGAUGAGGCCGAAAGGCCGAA ACACAAU




657






835




GGGUCCG CUGAUGAGGCCGAAAGGCCGAA AACACAA




658






845




GCGUAGG CUGAUGAGGCCGAAAGGCCGAA AGGGGUC




659






849




GUCUGCG CUGAUGAGGCCGAAAGGCCGAA AGGGAGG




660






872




CGCACAG CUGAUGAGGGCGAAAGGGCGAA AGCCUGC




661






883




GCAUGGA CUGAUGAGGGCGAAAGGGGGAA ACACGCA




662






885




CUGCAUG CUGAUGAGGCCGAAAGGCCGAA AGACACG




662






905




CGGUCGG CUGAUGAGGCCGAAAGGCCGAA AGGCCGC




664






906




CGGGUCG CUGAUGAGGCGGAAAGGCCGAA AAGGGGG




665






919




GCUCACU CUGAUGAGGCCGAAAGGCCGAA AGCUCCC




666






936




GUACUGG CUGAUGAGGCCGAAAGGCGGAA AUUCCAU




667






937




GGUACUG CUGAUGAGGCCGAAAGGGGGAA AAUUCCA




668






942




UGGCAGG CUGAUGAGGCCGAAAGGCCGAA ACUGGAA




669






953




UCGUCUG CUGAUGAGGCCGAAAGGCCGAA AUCUGGC




670






962




CGGUGAC CUGAUGAGGCCGAAAGGCCGAA AUGGUGU




671






965




AUCCGGU CUGAUGAGGCCGAAAGGCCGAA ACGAUCG




672






973




UCUCCUC CUGAUGAGGCCGAAAGGCCGAA AUCCGGU




673






986




GUCCUUU CUGAUGAGGCCGAAAGGGCGAA AGGUUUC




674






996




GGUCUCA CUGAUGAGGCCGAAAGGCCGAA AUGUCCU




675






1005




GCUCUUG CUGAUGAGGCCGAAAGGCCGAA AGGUCUC




676






1006




UGCUCUU CUGAUGAGGCCGAAAGGCCGAA AAGGUCU




677






1015




UCUUCAU CUGAUGAGGCCGAAAGGCCGAA AUGCUCU




678






1028




CUGAAAG CUGAUGAGGCCGAAAGGCCGAA ACUCUUC




679






1031




CCGCUGA CUGAUGAGGCCGAAAGGCCGAA AGGACUC




680






1032




UCCGCUG CUGAUGAGGCCGAAAGGCCGAA AAGGACU




681






1033




GUCCGCU CUGAUGAGGCCGAAAGGCCGAA AAAGGAC




682






1058




CGAGGUG CUGAUGAGGCCGAAAGGCCGAA AGGCCGG




683






1064




AUGCGUC CUGAUGAGGCCGAAAGGCCGAA AGGUGGA




684






1072




GCACAGC CUGAUGAGGCCGAAAGGCCGAA AUGCGUC




685






1082




CUGCGGG CUGAUGAGGCCGAAAGGCCGAA AGGCACA




686






1083




GCUGCGG CUGAUGAGGCCGAAAGGCCGAA AAGGCAC




687






1092




AGAAGCU CUGAUGAGGCCGAAAGGCCGAA AGCUGCG




688






1097




GGGACAG CUGAUGAGGCCGAAAGGCCGAA AGCUGAG




689






1098




GGGGACA CUGAUGAGGCCGAAAGGCCGAA AAGCUGA




690






1102




GCUUGGG CUGAUGAGGCCGAAAGGCCGAA ACAGAAG




691






1125




AAAGGGA CUGAUGAGGCCGAAAGGCCGAA AGGGCUG




692






1127




GUAAAGG CUGAUGAGGCCGAAAGGCCGAA AUAGGGC




693






1131




UGACGUA CUGAUGAGGCCGAAAGGCCGAA AGGGAUA




694






1132




AUGACGU CUGAUGAGGCCGAAAGGCCGAA AAGGGAU




695






1133




GAUGACG CUGAUGAGGCCGAAAGGCCGAA AAAGGGA




696






1137




CAGGGAU CUGAUGAGGCCGAAAGGCCGAA ACGUAAA




697






1140




GCUCAGG CUGAUGAGGCCGAAAGGCCGAA AUGACGU




698






1153




CAUAGUU CUGAUGAGGCCGAAAGGCCGAA AUGGUGC




699






1158




CUCAUCA CUGAUGAGGCCGAAAGGCCGAA AGUUGAU




700






1167




GGUGGGA CUGAUGAGGCCGAAAGGCCGAA ACUCAUC




701






1168




UGGUGGG CUGAUGAGGCCGAAAGGCCGAA AACUCAU




702






1169




AUGGUGG CUGAUGAGGCCGAAAGGCCGAA AAACUCA




703






1182




AGAAGGA CUGAUGAGGCCGAAAGGCCGAA ACACCAU




704






1183




CAGAAGG CUGAUGAGGCCGAAAGGCCGAA AACACCA




705






1184




CCAGAAG CUGAUGAGGCCGAAAGGCCGAA AAACACC




706






1187




UGCCCAG CUGAUGAGGCCGAAAGGCCGAA AAGAAAC




707






1188




CUGCCCA CUGAUGAGGCCGAAAGGCCGAA AAGGAAA




708






1198




CCUGGCU CUGAUGAGGCCGAAAGGCCGAA AUCUGCC




709






1209




GAAGGCC CUGAUGAGGCCGAAAGGCCGAA AGGCCUG




710






1215




CGGGGCC CUGAUGAGGCCGAAAGGCCGAA AGGCCGA




711






1229




ACUUGGG CUGAUGAGGCCGAAAGGCCGAA AGGGGCC




712






1237




GGGGCAG CUGAUGAGGCCGAAAGGCCGAA ACUUGGG




713






1250




GGGGCUG CUGAUGAGGCCGAAAGGCCGAA AGCCUGG




714






1268




AUGGCUG CUGAUGAGGCCGAAAGGCCGAA AGCAGGG




715






1279




GAGCUGA CUGAUGAGGCCGAAAGGCCGAA ACCAUGG




716






1281




CAGAGCU CUGAUGAGGCCGAAAGGCCGAA AUACCAU




717






1286




UGGGCCA CUGAUGAGGCCGAAAGGCCGAA AGCUGAU




718






1309




GGACUGG CUGAUGAGGCCGAAAGGCCGAA ACAGGGG




719






1315




GGGCUAG CUGAUGAGGCCGAAAGGCCGAA ACUGGGA




720






1318




CUGGGGC CUGAUGAGGCCGAAAGGCCGAA AGGACUG




721






1331




GCCUGAG CUGAUGAGGCCGAAAGGCCGAA AGGGCCU




722






1334




ACAGCCU CUGAGAGGCCGAAAGGCCGAA AGGAGGG




723






1389




GGCCUCU CUGAUGAGGCCGAAAGGCCGAA ACAGCGU




724






1413




AUCAUCA CUGAGAGGCCGAAAGGCCGAA ACUGCAG




725






1414




CAUCAUC CUGAUGAGGCCGAAAGGCCGAA AACUGCA




726






1437




GCCAAGC CUGAUGAGGCCGAAAGGCCGAA AGGCCCC




727






1441




UGUUGCC CUGAUGAGGCCGAAAGGCCGAA AGCAAGG




728






1467




GUCUGUG CUGAUGAGGCCGAAAGGCCGAA ACACAGC




729






1468




GGUCUGU CUGAUGAGGCCGAAAGGCCGAA AACACAG




730






1482




GUCGACG CUGAUGAGGCCGAAAGGCCGAA AUGCCAG




731






1486




AGUUGUC CUGAGAGGCCGAAAGGCCGAA ACGGAUG




732






1494




AAACUCG CUGAUGAGGCCGAAAGGCCGAA AGUUGUC




733






1500




CUGCUGA CUGAUGAGGCCGAAAGGCCGAA ACUCGGA




734






1501




GCUGCUG CUGAUGAGGCCGAAAGGCCGAA AACUCGG




735






1502




AGCUGCU CUGAUGAGGCCGAAAGGCCGAA AAACUCG




736






1525




CCACAGG CUGAUGAGGCCGAAAGGCCGAA AUGCCCU




737






1566




CUCAGGG CUGAUGAGGCCGAAAGGCCGAA ACUCCAU




738






1577




CGAGUUA CUGAGAGGCCGAAAGGCCGAA AGCCUCA




739






1579




GGCGAGU CUGAUGAGGCCGAAAGGCCGAA AUAGCCU




740






1583




ACCAGGC CUGAUGAGGCCGAAAGGCCGAA AGUUAUA




741






1588




CUGUCAC CUGAUGAGGCCGAAAGGCCGAA AGGCGAG




742






1622




GGAGCAG CUGAUGAGGCCGAAAGGCCGAA AGCUGGG




743






1628




CCCAGUG CUGAUGAGGCCGAAAGGCCGAA AGCAGGA




744






1648




CAUUGGG CUGAUGAGGCCGAAAGGCCGAA AGCCCCG




745






1660




CUGAAAG CUGAUGAGGCCGAAAGGCCGAA AGGCCAU




746






1663




CUCCUGA CUGAUGAGGCCGAAAGGCCGAA AGGAGGC




747






1664




UCUCCUG CUGAUGAGGCCGAAAGGCCGAA AAGGAGG




748






1665




AUCUCCU CUGAUGAGGCCGAAAGGCCGAA AAAGGAG




749






1680




GGAGGAG CUGAUGAGGCCGAAAGGCCGAA AGUCUUC




750






1661




UGGAGGA CUGAUGAGGCCGAAAGGCCGAA AAGUCUU




751






1683




AAUGGAG CUGAUGAGGCCGAAAGGCCGAA AGAAGUC




752






1686




CGCAAUG CUGAUGAGGCCGAAAGGCCGAA AGGAGAA




753






1690




UGUCCGC CUGAUGAGGCCGAAAGGCCGAA AUGGAGG




754






1704




GGCUGAG CUGAUGAGGCCGAAAGGCCGAA AGUCCAU




755






1705




GGGCUGA CUGAUGAGGCCGAAAGGCCGAA AAGUCCA




756






1707




CAGGGCU CUGAUGAGGCCGAAAGGCCGAA AGAAGUC




757






1721




CUGAUCU CUGAUGAGGCCGAAAGGCCGAA ACUCAGC




758






1726




AGGAGCU CUGAUGAGGCCGAAAGGCCGAA AUCUGAC




759






1731




CCCUUAG CUGAUGAGGCCGAAAGGCCGAA AGCUGAU




760






1734




ACCCCCU CUGAUGAGGCCGAAAGGCCGAA AGGAGCU




761






1754




CUCUGGG CUGAUGAGGCCGAAAGGCCGAA AGGGCAG




762






















TABLE VI











Human rel A Hairpin Ribozyme/Target Sequences

















Seq





Seq






nt.





ID





ID






Position




Hairpin Ribozyme sequence




No.




Substrate




No.


















90




UGAGGGGG AGAA GUUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




763




GAACU GUU CCCCCUCA




778






156




GCUGCUUG AGAA GCUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




764




GAGCA GCC CAAGCAGC




779






362




GCCAUCCC AGAA GUCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




765




GGACU GCC GGGAUGGC




780






413




GUUCUGGA AGAA GUGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




766




CCACA GUU UCCAGAAC




781






606




GAAGGACA AGAA GCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




767




CUGCC GCC UGUCCUUC




782






652




UUGAGCUC AGAA GUGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




768




ACACU GCC GAGCUCAA




783






695




CCCACCGA AGAA GCUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




769




CAGCU GCC UCGGUGGG




784






853




AGGCUGGG AGAA GCGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




770




ACGCA GAC CCCAGCCU




785






900




GGUCGGAA AGAA GCCG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




771




CGGCG GCC UUCCGACC




786






955




UGACGAUC AGAA GUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




772




AUACA GAC GAUCGUCA




787






1037




GUCGGUGG AGAA GCUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




773




CAGCG GAC CCACCGAC




788






1045




GGCCGGGG AGAA GUGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




774




CCACC GAC CCCCGGCC




789






1410




CAUCAUCA AGAA GCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




775




CUGCA GUU UGAUGAUG




790






1453




ACAGCUGG AGAA GUGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




776




GCACA GAC CCAGCUGU




791






1471




GAUGCCAG AGAA GUGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




777




UCACA GAC CUGGCAUC




792






















TABLE VII











Mouse rel A Hairpin Ribozyme/Target Sequences

















Seq.





Seq.






nt.





ID





ID






Position




Hairpin Ribozyme sequence




No.




Substrate




No.


















137




GUUGCUUC AGAA GUUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




793




GAACA GCC GAAGCAAC




812






273




GAGAUUCG AGAA GUUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




794




GAACA GUU CGAAUCUC




813






343




GCCAUCCC AGAA GUCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




795




GGACU GCC GGGAUGGC




814






366




GGGCAGAG AGAA GCCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




796




AGGCU GAC CUCUGCCC




815






633




UUGAGCUC AGAA GUGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




797




ACACU GCC GAGCUCAA




816






676




CCCACCGA AGAA GCUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




798




GAGCU GCC UCGGUGGG




817






834




AGGCUGGG AGAA GCGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




799




ACGCC GAC CCCAGCCU




818






881




GAUCAGAA AGAA GCCG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




800




CGGCG GCC UUCUGAUC




819






1100




AGGUGUAG AGAA GCGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




801




CCGCA GCC CUACACCU




820






1205




GGGCAGAG AGAA GUGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




802




GCACC GUC CUCUGCCC




821






1361




GGGCUUCC AGAA GCGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




803




ACGCU GUC GGAAGCCC




822






1385




CAGCAUCA AGAA GCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




804




CUGCA GUU UGAUGCUG




823






1431




ACUCCUGG AGAA GUGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




805




GCACA GAC CCAGGAGU




824






1449




GAUGCCAG AGAA GUGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




806




UCACA GAC CUGGCAUC




825






1802




AAGUCGGG AGAA GCUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




807




CAGCU GCC CCCGACUU




826






2009




UGGCUCCA AGAA GUCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




808




GGACA GAC UGGAGCCA




827






2124




UGGUGUCG AGAA GCAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




809




GUGCU GCC CGACACCA




828






2233




AUUCUGAA AGAA GCCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




810




UGGCC GCC UUCAGAAU




829






2354




UCAGUAAA AGAA GUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA




811




AGACA GCC UUUACUGA




830

















830





11


nucleic acid


single


linear





The letter “N” stands for
any base. “H” represents
nucleotide C, A, or U.





1
NNNNUHNNNN N 11






32


nucleic acid


single


linear





The letter “N” stands for
any base.





2
NNNNNCUGAN GAGNNNNNNN NNNCGAAANN NN 32






14


nucleic acid


single


linear





The letter “N” stands for
any base.





3
NNNNNGUCNN NNNN 14






50


nucleic acid


single


linear





The letter “N” stands for
any base.





4
NNNNNNAGAA NNNNACCAGA GAAACACACG UUGUGGUAUA UUACCUGGUA 50






85


nucleic acid


single


linear



5
UGGCCGGCAU GGUCCCAGCC UCCUCGCUGG CGCCGGCUGG GCAACAUUCC GAGGGGACCG 60
UCCCCUCGGU AAUGGCGAAU GGGAC 85






176


nucleic acid


single


linear



6
GGGAAAGCUU GCGAAGGGCG UCGUCGCCCC GAGCGGUAGU AAGCAGGGAA CUCACCUCCA 60
AUUUCAGUAC UGAAAUUGUC GUAGCAGUUG ACUACUGUUA UGUGAUUGGU AGAGGCUAAG 120
UGACGGUAUU GGCGUAAGUC AGUAUUGCAG CACAGCACAA GCCCGCUUGC GAGAAU 176






15 base pairs


nucleic acid


single


linear



7
AAUGGCUACA CAGGA 15






15 base pairs


nucleic acid


single


linear



8
AGCUCCUACG UGGUG 15






15 base pairs


nucleic acid


single


linear



9
CCUCCAUUGC GGACA 15






15 base pairs


nucleic acid


single


linear



10
GAUCUGUUUC CCCUC 15






15 base pairs


nucleic acid


single


linear



11
AUCUGUUUCC CCUCA 15






15 base pairs


nucleic acid


single


linear



12
UUCCCCUCAU CUUUC 15






15 base pairs


nucleic acid


single


linear



13
CCCUCAUCUU UCCCU 15






15 base pairs


nucleic acid


single


linear



14
CUCAUCUUUC CCUCA 15






15 base pairs


nucleic acid


single


linear



15
UCAUCUUUCC CUCAG 15






15 base pairs


nucleic acid


single


linear



16
CAGGCUUCUG GGCCU 15






15 base pairs


nucleic acid


single


linear



17
GGGCCUUAUG UGGAG 15






15 base pairs


nucleic acid


single


linear



18
UGGAGAUCAU CGAAC 15






15 base pairs


nucleic acid


single


linear



19
AGAUCAUCGA ACAGC 15






15 base pairs


nucleic acid


single


linear



20
AUGCGAUUCC GCUAU 15






15 base pairs


nucleic acid


single


linear



21
UGCGAUUCCG CUAUA 15






15 base pairs


nucleic acid


single


linear



22
UUCCGCUAUA AAUGC 15






15 base pairs


nucleic acid


single


linear



23
GGGCGCUCAG CGGGC 15






15 base pairs


nucleic acid


single


linear



24
GCAGUAUUCC UGGCG 15






15 base pairs


nucleic acid


single


linear



25
CACAGAUACC ACCAA 15






15 base pairs


nucleic acid


single


linear



26
CCACCAUCAA GAUCA 15






15 base pairs


nucleic acid


single


linear



27
UCAAGAUCAA UGGCU 15






15 base pairs


nucleic acid


single


linear



28
AAUGGCUACA CAGGA 15






15 base pairs


nucleic acid


single


linear



29
UUCGAAUCUC CCUGG 15






15 base pairs


nucleic acid


single


linear



30
CGAAUCUCCC UGGUC 15






15 base pairs


nucleic acid


single


linear



31
CCCUGGUCAC CAAGG 15






15 base pairs


nucleic acid


single


linear



32
GGCCCCUCCU CCUGA 15






15 base pairs


nucleic acid


single


linear



33
UCCACCUCAC CGGCC 15






15 base pairs


nucleic acid


single


linear



34
CCGGCCUCAU CCACA 15






15 base pairs


nucleic acid


single


linear



35
AUGAACUUGU GGGGA 15






15 base pairs


nucleic acid


single


linear



36
AGAUCAUCGA ACAGC 15






15 base pairs


nucleic acid


single


linear



37
GAUGGCUACU AUGAG 15






15 base pairs


nucleic acid


single


linear



38
AUGGUCUCUC CGGAG 15






15 base pairs


nucleic acid


single


linear



39
GGCUACUAUG AGGCU 15






15 base pairs


nucleic acid


single


linear



40
CUGACCUCUG CCCAG 15






15 base pairs


nucleic acid


single


linear



41
GCAGUAUCCA UAGCU 15






15 base pairs


nucleic acid


single


linear



42
CCGCAGUAUC CAUAG 15






15 base pairs


nucleic acid


single


linear



43
CAUAGCUUCC AGAAC 15






15 base pairs


nucleic acid


single


linear



44
AUAGCUUCCA GAACC 15






15 base pairs


nucleic acid


single


linear



45
UGGGGAUCCA GUGUG 15






15 base pairs


nucleic acid


single


linear



46
GGCUCCUUUU CUCAA 15






15 base pairs


nucleic acid


single


linear



47
GCUCCUUUUC UCAAG 15






15 base pairs


nucleic acid


single


linear



48
CUCCUUUUCU CAAGC 15






15 base pairs


nucleic acid


single


linear



49
UCCUUUUCUC AAGCU 15






15 base pairs


nucleic acid


single


linear



50
UGGCCAUUGU GUUCC 15






15 base pairs


nucleic acid


single


linear



51
AUUGUGUUCC GGACU 15






15 base pairs


nucleic acid


single


linear



52
UUGUGUUCCG GACUC 15






15 base pairs


nucleic acid


single


linear



53
GACUCCUCCG UACGC 15






15 base pairs


nucleic acid


single


linear



54
CCUCCGUACG CCGAC 15






15 base pairs


nucleic acid


single


linear



55
CCAGGCUCCU GUUCG 15






15 base pairs


nucleic acid


single


linear



56
UUCGAGUCUC CAUGC 15






15 base pairs


nucleic acid


single


linear



57
CGAGUCUCCA UGCAG 15






15 base pairs


nucleic acid


single


linear



58
GCGGCCUUCU GAUCG 15






15 base pairs


nucleic acid


single


linear



59
CGGCCUUCUG AUCGC 15






15 base pairs


nucleic acid


single


linear



60
GCGAGCUCAG UGAGC 15






15 base pairs


nucleic acid


single


linear



61
AUGGAGUUCC AGUAC 15






15 base pairs


nucleic acid


single


linear



62
UGGAGUUCCA GUACU 15






15 base pairs


nucleic acid


single


linear



63
UUCCAGUACU UGCCA 15






15 base pairs


nucleic acid


single


linear



64
GCCUCAUCCA CAUGA 15






15 base pairs


nucleic acid


single


linear



65
AGAUGAUCGC CACCG 15






15 base pairs


nucleic acid


single


linear



66
CAGUACUUGC CAGAC 15






15 base pairs


nucleic acid


single


linear



67
ACCGGAUUGA AGAGA 15






15 base pairs


nucleic acid


single


linear



68
GAGACCUUCA AGAGU 15






15 base pairs


nucleic acid


single


linear



69
AGGACCUAUG AGACC 15






15 base pairs


nucleic acid


single


linear



70
GAGACCUUCA AGAGU 15






15 base pairs


nucleic acid


single


linear



71
AGACCUUCAA GAGUA 15






15 base pairs


nucleic acid


single


linear



72
AGAGUAUCAU GAAGA 15






15 base pairs


nucleic acid


single


linear



73
GAAGAGUCCU UUCAA 15






15 base pairs


nucleic acid


single


linear



74
GAGUCCUUUC AAUGG 15






15 base pairs


nucleic acid


single


linear



75
AGUCCUUUCA AUGGA 15






15 base pairs


nucleic acid


single


linear



76
GUCCUUUCAA UGGAC 15






15 base pairs


nucleic acid


single


linear



77
CCGGCCUCCA ACCCG 15






15 base pairs


nucleic acid


single


linear



78
UACACCUUGA UCCAA 15






15 base pairs


nucleic acid


single


linear



79
GGCGUAUUGC UGUGC 15






15 base pairs


nucleic acid


single


linear



80
UGUGCCUACC CGAAA 15






15 base pairs


nucleic acid


single


linear



81
AAGCCUUCCC GAAGU 15






15 base pairs


nucleic acid


single


linear



82
CGAAACUCAA CUUCU 15






15 base pairs


nucleic acid


single


linear



83
CUCAACUUCU GUCCC 15






15 base pairs


nucleic acid


single


linear



84
UCAACUUCUG UCCCC 15






15 base pairs


nucleic acid


single


linear



85
CUUCUGUCCC CAAGC 15






15 base pairs


nucleic acid


single


linear



86
CAGCCCUACA CCUUC 15






15 base pairs


nucleic acid


single


linear



87
GCCAUAUAGC CUUAC 15






15 base pairs


nucleic acid


single


linear



88
CAUCCCUCAG CACCA 15






15 base pairs


nucleic acid


single


linear



89
ACACCUUCCC AGCAU 15






15 base pairs


nucleic acid


single


linear



90
UCCAUCUCCA GCUUC 15






15 base pairs


nucleic acid


single


linear



91
UUUACUUUAG CGCGC 15






15 base pairs


nucleic acid


single


linear



92
CCAGCAUCCC UCAGC 15






15 base pairs


nucleic acid


single


linear



93
GCACCAUCAA CUUUG 15






15 base pairs


nucleic acid


single


linear



94
AUCAACUUUG AUGAG 15






15 base pairs


nucleic acid


single


linear



95
GAAGACUUCU CCUCC 15






15 base pairs


nucleic acid


single


linear



96
AAGACUUCUC CUCCA 15






15 base pairs


nucleic acid


single


linear



97
GACUUCUCCU CCAUU 15






15 base pairs


nucleic acid


single


linear



98
UUCUCCUCCA UUGCG 15






15 base pairs


nucleic acid


single


linear



99
CCUCCAUUGC GGACA 15






15 base pairs


nucleic acid


single


linear



100
AUGGACUUCU CUGCU 15






15 base pairs


nucleic acid


single


linear



101
UGGACUUCUC UGCUC 15






15 base pairs


nucleic acid


single


linear



102
GACUUCUCUG CUCUU 15






15 base pairs


nucleic acid


single


linear



103
UUUGAGUCAG AUCAG 15






15 base pairs


nucleic acid


single


linear



104
GUCAGAUCAG CUCCU 15






15 base pairs


nucleic acid


single


linear



105
AUCAGCUCCU AAGGU 15






15 base pairs


nucleic acid


single


linear



106
AGCUCCUAAG GUGCU 15






15 base pairs


nucleic acid


single


linear



107
CAGUGCUCCC AAGAG 15






15 base pairs


nucleic acid


single


linear



108
CCAGGCUCCU GUUCG 15






15 base pairs


nucleic acid


single


linear



109
AAGCCAUUAG CCAGC 15






15 base pairs


nucleic acid


single


linear



110
UUUGAGUCAG AUCAG 15






15 base pairs


nucleic acid


single


linear



111
AGCGAAUCCA GACCA 15






15 base pairs


nucleic acid


single


linear



112
AACCCCUUUC ACGUU 15






15 base pairs


nucleic acid


single


linear



113
ACCCCUUUCA CGUUC 15






15 base pairs


nucleic acid


single


linear



114
UUCACGUUCC UAUAG 15






15 base pairs


nucleic acid


single


linear



115
UCACGUUCCU AUAGA 15






15 base pairs


nucleic acid


single


linear



116
CGUUCCUAUA GAGGA 15






15 base pairs


nucleic acid


single


linear



117
UUCCUAUAGA GGAGC 15






15 base pairs


nucleic acid


single


linear



118
GGGGACUAUG ACUUG 15






15 base pairs


nucleic acid


single


linear



119
UGCGCCUCUG CUUCC 15






15 base pairs


nucleic acid


single


linear



120
CUCUGCUUCC AGGUG 15






15 base pairs


nucleic acid


single


linear



121
UCUGCUUCCA GGUGA 15






15 base pairs


nucleic acid


single


linear



122
AAGCCAUUAG CCAGC 15






15 base pairs


nucleic acid


single


linear



123
GGCCCCUCCU CCUGA 15






15 base pairs


nucleic acid


single


linear



124
CCCCUGUCCU CUCAC 15






15 base pairs


nucleic acid


single


linear



125
CUGUCCUCUC ACAUC 15






15 base pairs


nucleic acid


single


linear



126
GUCCCUUCCU CAGCC 15






15 base pairs


nucleic acid


single


linear



127
CCUUCCUCAG CCAUG 15






15 base pairs


nucleic acid


single


linear



128
UCCUGCUUCC AUCUC 15






15 base pairs


nucleic acid


single


linear



129
AUCCGAUUUU UGAUA 15






15 base pairs


nucleic acid


single


linear



130
CCGAUUUUUG AUAAC 15






15 base pairs


nucleic acid


single


linear



131
CGAUUUUUGA UAACC 15






15 base pairs


nucleic acid


single


linear



132
UGGCCAUUGU GUUCC 15






15 base pairs


nucleic acid


single


linear



133
CCGAGCUCAA GAUCU 15






15 base pairs


nucleic acid


single


linear



134
UCAAGAUCUG CCGAG 15






15 base pairs


nucleic acid


single


linear



135
CGGAACUCUG GGAGC 15






15 base pairs


nucleic acid


single


linear



136
GCUGCCUCGG UGGGG 15






15 base pairs


nucleic acid


single


linear



137
AUGAGAUCUU CUUGC 15






15 base pairs


nucleic acid


single


linear



138
GAGAUCUUCU UGCUG 15






15 base pairs


nucleic acid


single


linear



139
AGAUCUUCUU GCUGU 15






15 base pairs


nucleic acid


single


linear



140
UUCUCCUCCA UUGCG 15






15 base pairs


nucleic acid


single


linear



141
AAGACAUUGA GGUGU 15






15 base pairs


nucleic acid


single


linear



142
GAGGUGUAUU UCACG 15






15 base pairs


nucleic acid


single


linear



143
GGUGUAUUUC ACGGG 15






15 base pairs


nucleic acid


single


linear



144
GUGUAUUUCA CGGGA 15






15 base pairs


nucleic acid


single


linear



145
UGUAUUUCAC GGGAC 15






15 base pairs


nucleic acid


single


linear



146
CGAGGCUCCU UUUCU 15






15 base pairs


nucleic acid


single


linear



147
GAUGAGUUUU CCCCC 15






15 base pairs


nucleic acid


single


linear



148
AUGAGUUUUC CCCCA 15






15 base pairs


nucleic acid


single


linear



149
UGAGUUUUCC CCCAU 15






15 base pairs


nucleic acid


single


linear



150
AUGCUGUUAC CAUCA 15






15 base pairs


nucleic acid


single


linear



151
UGCUGUUACC AUCAG 15






15 base pairs


nucleic acid


single


linear



152
GGCCCCUCCU CCUGA 15






15 base pairs


nucleic acid


single


linear



153
GUCCCUUCCU CAGCC 15






15 base pairs


nucleic acid


single


linear



154
UUACCAUCAG GGCAG 15






15 base pairs


nucleic acid


single


linear



155
GGGAGUUUAG UCUGA 15






15 base pairs


nucleic acid


single


linear



156
CAGCCCUACA CCUUC 15






15 base pairs


nucleic acid


single


linear



157
CUGGCCUUAG CACCG 15






15 base pairs


nucleic acid


single


linear



158
GGUCCCUUCC UCAGC 15






15 base pairs


nucleic acid


single


linear



159
CCCAGCUCCU GCCCC 15






15 base pairs


nucleic acid


single


linear



160
CCAGCCUCCA GGCUC 15






15 base pairs


nucleic acid


single


linear



161
CCCAGCUCCU GCCCC 15






15 base pairs


nucleic acid


single


linear



162
CCAUGGUCCC UUCCU 15






15 base pairs


nucleic acid


single


linear



163
GUGGGCUCAG CUGCG 15






15 base pairs


nucleic acid


single


linear



164
AUGAGUUUUC CCCCA 15






15 base pairs


nucleic acid


single


linear



165
CUCCUGUUCG AGUCU 15






15 base pairs


nucleic acid


single


linear



166
CCCCAGUUCU AACCC 15






15 base pairs


nucleic acid


single


linear



167
CAGUUCUAAC CCCGG 15






15 base pairs


nucleic acid


single


linear



168
GGGUCCUCCC CAGUC 15






15 base pairs


nucleic acid


single


linear



169
CUUUUCUCAA GCUGA 15






15 base pairs


nucleic acid


single


linear



170
ACGCUGUCGG AAGCC 15






15 base pairs


nucleic acid


single


linear



171
CUGCAGUUUG AUGCU 15






15 base pairs


nucleic acid


single


linear



172
UGCAGUUUGA UGCUG 15






15 base pairs


nucleic acid


single


linear



173
GGGGCCUUGC UUGGC 15






15 base pairs


nucleic acid


single


linear



174
CCUUGCUUGG CAACA 15






15 base pairs


nucleic acid


single


linear



175
GGAGUGUUCA CAGAC 15






15 base pairs


nucleic acid


single


linear



176
GAGUGUUCAC AGACC 15






15 base pairs


nucleic acid


single


linear



177
CUGGCAUCUG UGGAC 15






15 base pairs


nucleic acid


single


linear



178
CUUCGGUAGG GAACU 15






15 base pairs


nucleic acid


single


linear



179
GACAACUCAG AGUUU 15






15 base pairs


nucleic acid


single


linear



180
UCAGAGUUUC AGCAG 15






15 base pairs


nucleic acid


single


linear



181
CAGAGUUUCA GCAGC 15






15 base pairs


nucleic acid


single


linear



182
AGAGUUUCAG CAGCU 15






15 base pairs


nucleic acid


single


linear



183
GGUGCAUCCC UGUGU 15






15 base pairs


nucleic acid


single


linear



184
AUGGAGUACC CUGAA 15






15 base pairs


nucleic acid


single


linear



185
UGAAGCUAUA ACUCG 15






15 base pairs


nucleic acid


single


linear



186
AAGCUAUAAC UCGCC 15






15 base pairs


nucleic acid


single


linear



187
UAUAACUCGC CUGGU 15






15 base pairs


nucleic acid


single


linear



188
CUCUCCUAGA GAGGG 15






15 base pairs


nucleic acid


single


linear



189
CCCAGCUCCU GCCCC 15






15 base pairs


nucleic acid


single


linear



190
UCCUGCUUCG GUAGG 15






15 base pairs


nucleic acid


single


linear



191
CGGGGCUUCC CAAUG 15






15 base pairs


nucleic acid


single


linear



192
CUGACCUCUG CCCAG 15






15 base pairs


nucleic acid


single


linear



193
CUCUGCUUCC AGGUG 15






15 base pairs


nucleic acid


single


linear



194
UCUGCUUCCA GGUGA 15






15 base pairs


nucleic acid


single


linear



195
CUCGCUUUCG GAGGU 15






15 base pairs


nucleic acid


single


linear



196
AAUGGCUCGU CUGUA 15






15 base pairs


nucleic acid


single


linear



197
GGCUCGUCUG UAGUG 15






15 base pairs


nucleic acid


single


linear



198
CGUCUGUAGU GCACG 15






15 base pairs


nucleic acid


single


linear



199
GAACUGUUCC CCCUC 15






15 base pairs


nucleic acid


single


linear



200
AACUGUUCCC CCUCA 15






15 base pairs


nucleic acid


single


linear



201
UCCCCCUCAU CUUCC 15






15 base pairs


nucleic acid


single


linear



202
CCCUCAUCUU CCCGG 15






15 base pairs


nucleic acid


single


linear



203
CUCAUCUUCC CGGCA 15






15 base pairs


nucleic acid


single


linear



204
UCAUCUUCCC GGCAG 15






15 base pairs


nucleic acid


single


linear



205
CAGGCCUCUG GCCCC 15






15 base pairs


nucleic acid


single


linear



206
GGCCCCUAUG UGGAG 15






15 base pairs


nucleic acid


single


linear



207
UGGAGAUCAU UGAGC 15






15 base pairs


nucleic acid


single


linear



208
AGAUCAUUGA GCAGC 15






15 base pairs


nucleic acid


single


linear



209
AUGCGCUUCC GCUAC 15






15 base pairs


nucleic acid


single


linear



210
UGCGCUUCCG CUACA 15






15 base pairs


nucleic acid


single


linear



211
UUCCGCUACA AGUGC 15






15 base pairs


nucleic acid


single


linear



212
GGGCGCUCCG CGGGC 15






15 base pairs


nucleic acid


single


linear



213
GCAGCAUCCC AGGCG 15






15 base pairs


nucleic acid


single


linear



214
CACAGAUACC ACCAA 15






15 base pairs


nucleic acid


single


linear



215
CCACCAUCAA GAUCA 15






15 base pairs


nucleic acid


single


linear



216
UCAAGAUCAA UGGCU 15






15 base pairs


nucleic acid


single


linear



217
AAUGGCUACA CAGGA 15






15 base pairs


nucleic acid


single


linear



218
UGCGCAUCUC CCUGG 15






15 base pairs


nucleic acid


single


linear



219
CGCAUCUCCC UGGUC 15






15 base pairs


nucleic acid


single


linear



220
CCCUGGUCAC CAAGG 15






15 base pairs


nucleic acid


single


linear



221
GGACCCUCCU CACCG 15






15 base pairs


nucleic acid


single


linear



222
CCCUCCUCAC CGGCC 15






15 base pairs


nucleic acid


single


linear



223
CCGGCCUCAC CCCCA 15






15 base pairs


nucleic acid


single


linear



224
ACGAGCUUGU AGGAA 15






15 base pairs


nucleic acid


single


linear



225
AGCUUGUAGG AAAGG 15






15 base pairs


nucleic acid


single


linear



226
GAUGGCUUCU AUGAG 15






15 base pairs


nucleic acid


single


linear



227
AUGGCUUCUA UGAGG 15






15 base pairs


nucleic acid


single


linear



228
GGCUUCUAUG AGGCU 15






15 base pairs


nucleic acid


single


linear



229
CUGAGCUCUG CCCGG 15






15 base pairs


nucleic acid


single


linear



230
GCUGCAUCCA CAGUU 15






15 base pairs


nucleic acid


single


linear



231
CCACAGUUUC CAGAA 15






15 base pairs


nucleic acid


single


linear



232
CACAGUUUCC AGAAC 15






15 base pairs


nucleic acid


single


linear



233
ACAGUUUCCA GAACC 15






15 base pairs


nucleic acid


single


linear



234
UGGGAAUCCA GUGUG 15






15 base pairs


nucleic acid


single


linear



235
GGCUCCUUUU CGCAA 15






15 base pairs


nucleic acid


single


linear



236
GCUCCUUUUC GCAAG 15






15 base pairs


nucleic acid


single


linear



237
CUCCUUUUCG CAAGC 15






15 base pairs


nucleic acid


single


linear



238
UCCUUUUCGC AAGCU 15






15 base pairs


nucleic acid


single


linear



239
UGGCCAUUGU GUUCC 15






15 base pairs


nucleic acid


single


linear



240
AUUGUGUUCC GGACC 15






15 base pairs


nucleic acid


single


linear



241
UUGUGUUCCG GACCC 15






15 base pairs


nucleic acid


single


linear



242
GACCCCUCCC UACGC 15






15 base pairs


nucleic acid


single


linear



243
CCUCCCUACG CAGAC 15






15 base pairs


nucleic acid


single


linear



244
GCAGGCUCCU GUGCG 15






15 base pairs


nucleic acid


single


linear



245
UGCGUGUCUC CAUGC 15






15 base pairs


nucleic acid


single


linear



246
CGUGUCUCCA UGCAG 15






15 base pairs


nucleic acid


single


linear



247
GCGGCCUUCC GACCG 15






15 base pairs


nucleic acid


single


linear



248
CGGCCUUCCG ACCGG 15






15 base pairs


nucleic acid


single


linear



249
GGGAGCUCAG UGAGC 15






15 base pairs


nucleic acid


single


linear



250
AUGGAAUUCC AGUAC 15






15 base pairs


nucleic acid


single


linear



251
UGGAAUUCCA GUACC 15






15 base pairs


nucleic acid


single


linear



252
UUCCAGUACC UGCCA 15






15 base pairs


nucleic acid


single


linear



253
GCCAGAUACA GACGA 15






15 base pairs


nucleic acid


single


linear



254
AGACGAUCGU CACCG 15






15 base pairs


nucleic acid


single


linear



255
CGAUCGUCAC CGGAU 15






15 base pairs


nucleic acid


single


linear



256
ACCGGAUUGA GGAGA 15






15 base pairs


nucleic acid


single


linear



257
GAAACGUAAA AGGAC 15






15 base pairs


nucleic acid


single


linear



258
AGGACAUAUG AGACC 15






15 base pairs


nucleic acid


single


linear



259
GAGACCUUCA AGAGC 15






15 base pairs


nucleic acid


single


linear



260
AGACCUUCAA GAGCA 15






15 base pairs


nucleic acid


single


linear



261
AGAGCAUCAU GAAGA 15






15 base pairs


nucleic acid


single


linear



262
GAAGAGUCCU UUCAG 15






15 base pairs


nucleic acid


single


linear



263
GAGUCCUUUC AGCGG 15






15 base pairs


nucleic acid


single


linear



264
AGUCCUUUCA GCGGA 15






15 base pairs


nucleic acid


single


linear



265
GUCCUUUCAG CGGAC 15






15 base pairs


nucleic acid


single


linear



266
CCGGCCUCCA CCUCG 15






15 base pairs


nucleic acid


single


linear



267
UCCACCUCGA CGCAU 15






15 base pairs


nucleic acid


single


linear



268
GACGCAUUGC UGUGC 15






15 base pairs


nucleic acid


single


linear



269
UGUGCCUUCC CGCAG 15






15 base pairs


nucleic acid


single


linear



270
GUGCCUUCCC GCAGC 15






15 base pairs


nucleic acid


single


linear



271
CGCAGCUCAG CUUCU 15






15 base pairs


nucleic acid


single


linear



272
CUCAGCUUCU GUCCC 15






15 base pairs


nucleic acid


single


linear



273
UCAGCUUCUG UCCCC 15






15 base pairs


nucleic acid


single


linear



274
CUUCUGUCCC CAAGC 15






15 base pairs


nucleic acid


single


linear



275
CAGCCCUAUC CCUUU 15






15 base pairs


nucleic acid


single


linear



276
GCCCUAUCCC UUUAC 15






15 base pairs


nucleic acid


single


linear



277
UAUCCCUUUA CGUCA 15






15 base pairs


nucleic acid


single


linear



278
AUCCCUUUAC GUCAU 15






15 base pairs


nucleic acid


single


linear



279
UCCCUUUACG UCAUC 15






15 base pairs


nucleic acid


single


linear



280
UUUACGUCAU CCCUG 15






15 base pairs


nucleic acid


single


linear



281
ACGUCAUCCC UGAGC 15






15 base pairs


nucleic acid


single


linear



282
GCACCAUCAA CUAUG 15






15 base pairs


nucleic acid


single


linear



283
AUCAACUAUG AUGAG 15






15 base pairs


nucleic acid


single


linear



284
GAAGACUUCU CCUCC 15






15 base pairs


nucleic acid


single


linear



285
AAGACUUCUC CUCCA 15






15 base pairs


nucleic acid


single


linear



286
GACUUCUCCU CCAUU 15






15 base pairs


nucleic acid


single


linear



287
UUCUCCUCCA UUGCG 15






15 base pairs


nucleic acid


single


linear



288
CCUCCAUUGC GGACA 15






15 base pairs


nucleic acid


single


linear



289
AUGGACUUCU CAGCC 15






15 base pairs


nucleic acid


single


linear



290
UGGACUUCUC AGCCC 15






15 base pairs


nucleic acid


single


linear



291
GACUUCUCAG CCCUG 15






15 base pairs


nucleic acid


single


linear



292
GCUGAGUCAG AUCAG 15






15 base pairs


nucleic acid


single


linear



293
GUCAGAUCAG CUCCU 15






15 base pairs


nucleic acid


single


linear



294
AUCAGCUCCU AAGGG 15






15 base pairs


nucleic acid


single


linear



295
AGCUCCUAAG GGGGU 15






15 base pairs


nucleic acid


single


linear



296
CUGCCCUCCC CAGAG 15






15 base pairs


nucleic acid


single


linear



297
GCAGGCUAUC AGUCA 15






15 base pairs


nucleic acid


single


linear



298
AGGCUAUCAG UCAGC 15






15 base pairs


nucleic acid


single


linear



299
UAUCAGUCAG CGCAU 15






15 base pairs


nucleic acid


single


linear



300
AGCGCAUCCA GACCA 15






15 base pairs


nucleic acid


single


linear



301
AACCCCUUCC AAGUU 15






15 base pairs


nucleic acid


single


linear



302
ACCCCUUCCA AGUUC 15






15 base pairs


nucleic acid


single


linear



303
UCCAAGUUCC UAUAG 15






15 base pairs


nucleic acid


single


linear



304
CCAAGUUCCU AUAGA 15






15 base pairs


nucleic acid


single


linear



305
AGUUCCUAUA GAAGA 15






15 base pairs


nucleic acid


single


linear



306
UUCCUAUAGA AGAGC 15






15 base pairs


nucleic acid


single


linear



307
GGGGACUACG ACCUG 15






15 base pairs


nucleic acid


single


linear



308
UGCGGCUCUG CUUCC 15






15 base pairs


nucleic acid


single


linear



309
CUCUGCUUCC AGGUG 15






15 base pairs


nucleic acid


single


linear



310
UCUGCUUCCA GGUGA 15






15 base pairs


nucleic acid


single


linear



311
GACCCAUCAG GCAGG 15






15 base pairs


nucleic acid


single


linear



312
GGCCCCUCCG CCUGC 15






15 base pairs


nucleic acid


single


linear



313
CGCCUGUCCU UCCUC 15






15 base pairs


nucleic acid


single


linear



314
CUGUCCUUCC UCAUC 15






15 base pairs


nucleic acid


single


linear



315
UGUCCUUCCU CAUCC 15






15 base pairs


nucleic acid


single


linear



316
CCUUCCUCAU CCCAU 15






15 base pairs


nucleic acid


single


linear



317
UCCUCAUCCC AUCUU 15






15 base pairs


nucleic acid


single


linear



318
AUCCCAUCUU UGACA 15






15 base pairs


nucleic acid


single


linear



319
CCCAUCUUUG ACAAU 15






15 base pairs


nucleic acid


single


linear



320
CCAUCUUUGA CAAUC 15






15 base pairs


nucleic acid


single


linear



321
UGACAAUCGU GCCCC 15






15 base pairs


nucleic acid


single


linear



322
CCGAGCUCAA GAUCU 15






15 base pairs


nucleic acid


single


linear



323
UCAAGAUCUG CCGAG 15






15 base pairs


nucleic acid


single


linear



324
CGAAACUCUG GCAGC 15






15 base pairs


nucleic acid


single


linear



325
GCUGCCUCGG UGGGG 15






15 base pairs


nucleic acid


single


linear



326
AUGAGAUCUU CCUAC 15






15 base pairs


nucleic acid


single


linear



327
GAGAUCUUCC UACUG 15






15 base pairs


nucleic acid


single


linear



328
AGAUCUUCCU ACUGU 15






15 base pairs


nucleic acid


single


linear



329
UCUUCCUACU GUGUG 15






15 base pairs


nucleic acid


single


linear



330
AGGACAUUGA GGUGU 15






15 base pairs


nucleic acid


single


linear



331
GAGGUGUAUU UCACG 15






15 base pairs


nucleic acid


single


linear



332
GGUGUAUUUC ACGGG 15






15 base pairs


nucleic acid


single


linear



333
GUGUAUUUCA CGGGA 15






15 base pairs


nucleic acid


single


linear



334
UGUAUUUCAC GGGAC 15






15 base pairs


nucleic acid


single


linear



335
CGAGGCUCCU UUUCG 15






15 base pairs


nucleic acid


single


linear



336
GAUGAGUUUC CCACC 15






15 base pairs


nucleic acid


single


linear



337
AUGAGUUUCC CACCA 15






15 base pairs


nucleic acid


single


linear



338
UGAGUUUCCC ACCAU 15






15 base pairs


nucleic acid


single


linear



339
AUGGUGUUUC CUUCU 15






15 base pairs


nucleic acid


single


linear



340
UGGUGUUUCC UUCUG 15






15 base pairs


nucleic acid


single


linear



341
GGUGUUUCCU UCUGG 15






15 base pairs


nucleic acid


single


linear



342
GUUUCCUUCU GGGCA 15






15 base pairs


nucleic acid


single


linear



343
UUUCCUUCUG GGCAG 15






15 base pairs


nucleic acid


single


linear



344
GGCAGAUCAG CCAGG 15






15 base pairs


nucleic acid


single


linear



345
CAGGCCUCGG CCUUG 15






15 base pairs


nucleic acid


single


linear



346
UCGGCCUUGG CCCCG 15






15 base pairs


nucleic acid


single


linear



347
GGCCCCUCCC CAAGU 15






15 base pairs


nucleic acid


single


linear



348
CCCAAGUCCU GCCCC 15






15 base pairs


nucleic acid


single


linear



349
CCAGGCUCCA GCCCC 15






15 base pairs


nucleic acid


single


linear



350
CCCUGCUCCA GCCAU 15






15 base pairs


nucleic acid


single


linear



351
CCAUGGUAUC AGCUC 15






15 base pairs


nucleic acid


single


linear



352
AUGGUAUCAG CUCUG 15






15 base pairs


nucleic acid


single


linear



353
AUCAGCUCUG GCCCA 15






15 base pairs


nucleic acid


single


linear



354
CCCCUGUCCC AGUCC 15






15 base pairs


nucleic acid


single


linear



355
UCCCAGUCCU AGCCC 15






15 base pairs


nucleic acid


single


linear



356
CAGUCCUAGC CCCAG 15






15 base pairs


nucleic acid


single


linear



357
AGGCCCUCCU CAGGC 15






15 base pairs


nucleic acid


single


linear



358
CCCUCCUCAG GCUGU 15






15 base pairs


nucleic acid


single


linear



359
ACGCUGUCAG AGGCC 15






15 base pairs


nucleic acid


single


linear



360
CUGCAGUUUG AUGAU 15






15 base pairs


nucleic acid


single


linear



361
UGCAGUUUGA UGAUG 15






15 base pairs


nucleic acid


single


linear



362
GGGGCCUUGC UUGGC 15






15 base pairs


nucleic acid


single


linear



363
CCUUGCUUGG CAACA 15






15 base pairs


nucleic acid


single


linear



364
GCUGUGUUCA CAGAC 15






15 base pairs


nucleic acid


single


linear



365
CUGUGUUCAC AGACC 15






15 base pairs


nucleic acid


single


linear



366
CUGGCAUCCG UCGAC 15






15 base pairs


nucleic acid


single


linear



367
CAUCCGUCGA CAACU 15






15 base pairs


nucleic acid


single


linear



368
GACAACUCCG AGUUU 15






15 base pairs


nucleic acid


single


linear



369
UCCGAGUUUC AGCAG 15






15 base pairs


nucleic acid


single


linear



370
CCGAGUUUCA GCAGC 15






15 base pairs


nucleic acid


single


linear



371
CGAGUUUCAG CAGCU 15






15 base pairs


nucleic acid


single


linear



372
AGGGCAUACC UGUGG 15






15 base pairs


nucleic acid


single


linear



373
AUGGAGUACC CUGAG 15






15 base pairs


nucleic acid


single


linear



374
UGAGGCUAUA ACUCG 15






15 base pairs


nucleic acid


single


linear



375
AGGCUAUAAC UCGCC 15






15 base pairs


nucleic acid


single


linear



376
UAUAACUCGC CUAGU 15






15 base pairs


nucleic acid


single


linear



377
CUCGCCUAGU GACAG 15






15 base pairs


nucleic acid


single


linear



378
CCCAGCUCCU GCUCC 15






15 base pairs


nucleic acid


single


linear



379
UCCUGCUCCA CUGGG 15






15 base pairs


nucleic acid


single


linear



380
CGGGGCUCCC CAAUG 15






15 base pairs


nucleic acid


single


linear



381
AUGGCCUCCU UUCAG 15






15 base pairs


nucleic acid


single


linear



382
GCCUCCUUUC AGGAG 15






15 base pairs


nucleic acid


single


linear



383
CCUCCUUUCA GGAGA 15






15 base pairs


nucleic acid


single


linear



384
CUCCUUUCAG GAGAU 15






36 base pairs


nucleic acid


single


linear



385
UCCUGUGCUG AUGAGGCCGA AAGGCCGAAA GCCAUU 36






36 base pairs


nucleic acid


single


linear



386
CACCACGCUG AUGAGGCCGA AAGGCCGAAA GGAGCU 36






36 base pairs


nucleic acid


single


linear



387
UGUCCGCCUG AUGAGGCCGA AAGGCCGAAA UGGAGG 36






36 base pairs


nucleic acid


single


linear



388
GAGGGGACUG AUGAGGCCGA AAGGCCGAAA CAGAUC 36






36 base pairs


nucleic acid


single


linear



389
UGAGGGGCUG AUGAGGCCGA AAGGCCGAAA ACAGAU 36






36 base pairs


nucleic acid


single


linear



390
GAAAGAUCUG AUGAGGCCGA AAGGCCGAAA GGGGAA 36






36 base pairs


nucleic acid


single


linear



391
AGGGAAACUG AUGAGGCCGA AAGGCCGAAA UGAGGG 36






36 base pairs


nucleic acid


single


linear



392
UGAGGGACUG AUGAGGCCGA AAGGCCGAAA GAUGAG 36






36 base pairs


nucleic acid


single


linear



393
CUGAGGGCUG AUGAGGCCGA AAGGCCGAAA AGAUGA 36






36 base pairs


nucleic acid


single


linear



394
AGGCCCACUG AUGAGGCCGA AAGGCCGAAA AGCCUG 36






36 base pairs


nucleic acid


single


linear



395
CUCCACACUG AUGAGGCCGA AAGGCCGAAA AGGCCC 36






36 base pairs


nucleic acid


single


linear



396
GUUCGAUCUG AUGAGGCCGA AAGGCCGAAA UCUCCA 36






36 base pairs


nucleic acid


single


linear



397
GCUGUUCCUG AUGAGGCCGA AAGGCCGAAA UGAUCU 36






36 base pairs


nucleic acid


single


linear



398
AUAGCGGCUG AUGAGGCCGA AAGGCCGAAA UCGCAU 36






36 base pairs


nucleic acid


single


linear



399
UAUAGCGCUG AUGAGGCCGA AAGGCCGAAA AUCGCA 36






36 base pairs


nucleic acid


single


linear



400
GCAUUUACUG AUGAGGCCGA AAGGCCGAAA GCGGAA 36






36 base pairs


nucleic acid


single


linear



401
GCCCGCUCUG AUGAGGCCGA AAGGCCGAAA GCGCCC 36






36 base pairs


nucleic acid


single


linear



402
CGCCAGGCUG AUGAGGCCGA AAGGCCGAAA UACUGC 36






36 base pairs


nucleic acid


single


linear



403
UUGGUGGCUG AUGAGGCCGA AAGGCCGAAA UCUGUG 36






36 base pairs


nucleic acid


single


linear



404
UGAUCUUCUG AUGAGGCCGA AAGGCCGAAA UGGUGG 36






36 base pairs


nucleic acid


single


linear



405
AGCCAUUCUG AUGAGGCCGA AAGGCCGAAA UCUUGA 36






36 base pairs


nucleic acid


single


linear



406
UCCUGUGCUG AUGAGGCCGA AAGGCCGAAA GCCAUU 36






36 base pairs


nucleic acid


single


linear



407
CCAGGGACUG AUGAGGCCGA AAGGCCGAAA UUCGAA 36






36 base pairs


nucleic acid


single


linear



408
GACCAGGCUG AUGAGGCCGA AAGGCCGAAA GAUUCG 36






36 base pairs


nucleic acid


single


linear



409
CCUUGGUCUG AUGAGGCCGA AAGGCCGAAA CCAGGG 36






36 base pairs


nucleic acid


single


linear



410
UCAGGAGCUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36






36 base pairs


nucleic acid


single


linear



411
GGCCGGUCUG AUGAGGCCGA AAGGCCGAAA GGUGGA 36






36 base pairs


nucleic acid


single


linear



412
UGUGGAUCUG AUGAGGCCGA AAGGCCGAAA GGCCGG 36






36 base pairs


nucleic acid


single


linear



413
UCCCCACCUG AUGAGGCCGA AAGGCCGAAA GUUCAU 36






36 base pairs


nucleic acid


single


linear



414
GCUGUUCCUG AUGAGGCCGA AAGGCCGAAA UGAUCU 36






36 base pairs


nucleic acid


single


linear



415
CUCAUAGCUG AUGAGGCCGA AAGGCCGAAA GCCAUC 36






36 base pairs


nucleic acid


single


linear



416
CUCCGGACUG AUGAGGCCGA AAGGCCGAAA GACCAU 36






36 base pairs


nucleic acid


single


linear



417
AGCCUCACUG AUGAGGCCGA AAGGCCGAAA GUAGCC 36






36 base pairs


nucleic acid


single


linear



418
CUGGGCACUG AUGAGGCCGA AAGGCCGAAA GGUCAG 36






36 base pairs


nucleic acid


single


linear



419
AGCUAUGCUG AUGAGGCCGA AAGGCCGAAA UACUGC 36






36 base pairs


nucleic acid


single


linear



420
CUAUGGACUG AUGAGGCCGA AAGGCCGAAA CUGCGG 36






36 base pairs


nucleic acid


single


linear



421
GUUCUGGCUG AUGAGGCCGA AAGGCCGAAA GCUAUG 36






36 base pairs


nucleic acid


single


linear



422
GGUUCUGCUG AUGAGGCCGA AAGGCCGAAA AGCUAU 36






36 base pairs


nucleic acid


single


linear



423
CACACUGCUG AUGAGGCCGA AAGGCCGAAA UCCCCA 36






36 base pairs


nucleic acid


single


linear



424
CGAACAGCUG AUGAGGCCGA AAGGCCGAAA GCCUGG 36






36 base pairs


nucleic acid


single


linear



425
GCUGGCUCUG AUGAGGCCGA AAGGCCGAAA UGGCUU 36






36 base pairs


nucleic acid


single


linear



426
CUGAUCUCUG AUGAGGCCGA AAGGCCGAAA CUCAAA 36






36 base pairs


nucleic acid


single


linear



427
UGGUCUGCUG AUGAGGCCGA AAGGCCGAAA UUCGCU 36






36 base pairs


nucleic acid


single


linear



428
AACGUGACUG AUGAGGCCGA AAGGCCGAAA GGGGUU 36






36 base pairs


nucleic acid


single


linear



429
GAACGUGCUG AUGAGGCCGA AAGGCCGAAA AGGGGU 36






36 base pairs


nucleic acid


single


linear



430
CUAUAGGCUG AUGAGGCCGA AAGGCCGAAA CGUGAA 36






36 base pairs


nucleic acid


single


linear



431
UCUAUAGCUG AUGAGGCCGA AAGGCCGAAA ACGUGA 36






36 base pairs


nucleic acid


single


linear



432
UCCUCUACUG AUGAGGCCGA AAGGCCGAAA GGAACG 36






36 base pairs


nucleic acid


single


linear



433
GCUCCUCCUG AUGAGGCCGA AAGGCCGAAA UAGGAA 36






36 base pairs


nucleic acid


single


linear



434
CAAGUCACUG AUGAGGCCGA AAGGCCGAAA GUCCCC 36






36 base pairs


nucleic acid


single


linear



435
GGAAGCACUG AUGAGGCCGA AAGGCCGAAA GGCGCA 36






36 base pairs


nucleic acid


single


linear



436
CACCUGGCUG AUGAGGCCGA AAGGCCGAAA GCAGAG 36






36 base pairs


nucleic acid


single


linear



437
UCACCUGCUG AUGAGGCCGA AAGGCCGAAA AGCAGA 36






36 base pairs


nucleic acid


single


linear



438
GCUGGCUCUG AUGAGGCCGA AAGGCCGAAA UGGCUU 36






36 base pairs


nucleic acid


single


linear



439
UCAGGAGCUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36






36 base pairs


nucleic acid


single


linear



440
GUGAGAGCUG AUGAGGCCGA AAGGCCGAAA CAGGGG 36






36 base pairs


nucleic acid


single


linear



441
GAUGUGACUG AUGAGGCCGA AAGGCCGAAA GGACAG 36






36 base pairs


nucleic acid


single


linear



442
GGCUGAGCUG AUGAGGCCGA AAGGCCGAAA AGGGAC 36






36 base pairs


nucleic acid


single


linear



443
CAUGGCUCUG AUGAGGCCGA AAGGCCGAAA GGAAGG 36






36 base pairs


nucleic acid


single


linear



444
GAGAUGGCUG AUGAGGCCGA AAGGCCGAAA GCAGGA 36






36 base pairs


nucleic acid


single


linear



445
UAUCAAACUG AUGAGGCCGA AAGGCCGAAA UCGGAU 36






36 base pairs


nucleic acid


single


linear



446
GUUAUCACUG AUGAGGCCGA AAGGCCGAAA AAUCGG 36






36 base pairs


nucleic acid


single


linear



447
GGUUAUCCUG AUGAGGCCGA AAGGCCGAAA AAAUCG 36






36 base pairs


nucleic acid


single


linear



448
GGAACACCUG AUGAGGCCGA AAGGCCGAAA UGGCCA 36






36 base pairs


nucleic acid


single


linear



449
AGAUCUUCUG AUGAGGCCGA AAGGCCGAAA GCUCGG 36






36 base pairs


nucleic acid


single


linear



450
CUCGGCACUG AUGAGGCCGA AAGGCCGAAA UCUUGA 36






36 base pairs


nucleic acid


single


linear



451
GCUCCCACUG AUGAGGCCGA AAGGCCGAAA GUUCCG 36






36 base pairs


nucleic acid


single


linear



452
CCCCACCCUG AUGAGGCCGA AAGGCCGAAA GGCAGC 36






36 base pairs


nucleic acid


single


linear



453
GCAAGAACUG AUGAGGCCGA AAGGCCGAAA UCUCAU 36






36 base pairs


nucleic acid


single


linear



454
CAGCAAGCUG AUGAGGCCGA AAGGCCGAAA GAUCUC 36






36 base pairs


nucleic acid


single


linear



455
ACAGCAACUG AUGAGGCCGA AAGGCCGAAA AGAUCU 36






36 base pairs


nucleic acid


single


linear



456
CGCAAUGCUG AUGAGGCCGA AAGGCCGAAA GGAGAA 36






36 base pairs


nucleic acid


single


linear



457
ACACCUCCUG AUGAGGCCGA AAGGCCGAAA UGUCUU 36






36 base pairs


nucleic acid


single


linear



458
CGUGAAACUG AUGAGGCCGA AAGGCCGAAA CACCUC 36






36 base pairs


nucleic acid


single


linear



459
CCCGUGACUG AUGAGGCCGA AAGGCCGAAA UACACC 36






36 base pairs


nucleic acid


single


linear



460
UCCCGUGCUG AUGAGGCCGA AAGGCCGAAA AUACAC 36






36 base pairs


nucleic acid


single


linear



461
GUCCCGUCUG AUGAGGCCGA AAGGCCGAAA AAUACA 36






36 base pairs


nucleic acid


single


linear



462
AGAAAAGCUG AUGAGGCCGA AAGGCCGAAA GCCUCG 36






36 base pairs


nucleic acid


single


linear



463
UUGAGAACUG AUGAGGCCGA AAGGCCGAAA GGAGCC 36






36 base pairs


nucleic acid


single


linear



464
CUUGAGACUG AUGAGGCCGA AAGGCCGAAA AGGAGC 36






36 base pairs


nucleic acid


single


linear



465
GCUUGAGCUG AUGAGGCCGA AAGGCCGAAA AAGGAG 36






36 base pairs


nucleic acid


single


linear



466
AGCUUGACUG AUGAGGCCGA AAGGCCGAAA AAAGGA 36






36 base pairs


nucleic acid


single


linear



467
GGAACACCUG AUGAGGCCGA AAGGCCGAAA UGGCCA 36






36 base pairs


nucleic acid


single


linear



468
AGUCCGGCUG AUGAGGCCGA AAGGCCGAAA CACAAU 36






36 base pairs


nucleic acid


single


linear



469
GAGUCCGCUG AUGAGGCCGA AAGGCCGAAA ACACAA 36






36 base pairs


nucleic acid


single


linear



470
GCGUACGCUG AUGAGGCCGA AAGGCCGAAA GGAGUC 36






36 base pairs


nucleic acid


single


linear



471
GUCGGCGCUG AUGAGGCCGA AAGGCCGAAA CGGAGG 36






36 base pairs


nucleic acid


single


linear



472
CGAACAGCUG AUGAGGCCGA AAGGCCGAAA GCCUGG 36






36 base pairs


nucleic acid


single


linear



473
GCAUGGACUG AUGAGGCCGA AAGGCCGAAA CUCGAA 36






36 base pairs


nucleic acid


single


linear



474
CUGCAUGCUG AUGAGGCCGA AAGGCCGAAA GACUCG 36






36 base pairs


nucleic acid


single


linear



475
CGAUCAGCUG AUGAGGCCGA AAGGCCGAAA GGCCGC 36






36 base pairs


nucleic acid


single


linear



476
GCGAUCACUG AUGAGGCCGA AAGGCCGAAA AGGCCG 36






36 base pairs


nucleic acid


single


linear



477
GCUCACUCUG AUGAGGCCGA AAGGCCGAAA GCUCGC 36






36 base pairs


nucleic acid


single


linear



478
GUACUGGCUG AUGAGGCCGA AAGGCCGAAA CUCCAU 36






36 base pairs


nucleic acid


single


linear



479
AGUACUGCUG AUGAGGCCGA AAGGCCGAAA ACUCCA 36






36 base pairs


nucleic acid


single


linear



480
UGGCAAGCUG AUGAGGCCGA AAGGCCGAAA CUGGAA 36






36 base pairs


nucleic acid


single


linear



481
UCAUGUGCUG AUGAGGCCGA AAGGCCGAAA UGAGGC 36






36 base pairs


nucleic acid


single


linear



482
CGGUGGCCUG AUGAGGCCGA AAGGCCGAAA UCAUCU 36






36 base pairs


nucleic acid


single


linear



483
GUCUGGCCUG AUGAGGCCGA AAGGCCGAAA GUACUG 36






36 base pairs


nucleic acid


single


linear



484
UCUCUUCCUG AUGAGGCCGA AAGGCCGAAA UCCGGU 36






36 base pairs


nucleic acid


single


linear



485
ACUCUUGCUG AUGAGGCCGA AAGGCCGAAA GGUCUC 36






36 base pairs


nucleic acid


single


linear



486
GGUCUCACUG AUGAGGCCGA AAGGCCGAAA GGUCCU 36






36 base pairs


nucleic acid


single


linear



487
ACUCUUGCUG AUGAGGCCGA AAGGCCGAAA GGUCUC 36






36 base pairs


nucleic acid


single


linear



488
UACUCUUCUG AUGAGGCCGA AAGGCCGAAA AGGUCU 36






36 base pairs


nucleic acid


single


linear



489
UCUUCAUCUG AUGAGGCCGA AAGGCCGAAA UACUCU 36






36 base pairs


nucleic acid


single


linear



490
UUGAAAGCUG AUGAGGCCGA AAGGCCGAAA CUCUUC 36






36 base pairs


nucleic acid


single


linear



491
CCAUUGACUG AUGAGGCCGA AAGGCCGAAA GGACUC 36






36 base pairs


nucleic acid


single


linear



492
UCCAUUGCUG AUGAGGCCGA AAGGCCGAAA AGGACU 36






36 base pairs


nucleic acid


single


linear



493
GUCCAUUCUG AUGAGGCCGA AAGGCCGAAA AAGGAC 36






36 base pairs


nucleic acid


single


linear



494
CGGGUUGCUG AUGAGGCCGA AAGGCCGAAA GGCCGG 36






36 base pairs


nucleic acid


single


linear



495
UUGGAUCCUG AUGAGGCCGA AAGGCCGAAA GGUGUA 36






36 base pairs


nucleic acid


single


linear



496
GCACAGCCUG AUGAGGCCGA AAGGCCGAAA UACGCC 36






36 base pairs


nucleic acid


single


linear



497
UUUCGGGCUG AUGAGGCCGA AAGGCCGAAA GGCACA 36






36 base pairs


nucleic acid


single


linear



498
ACUUCGGCUG AUGAGGCCGA AAGGCCGAAA AGGCUU 36






36 base pairs


nucleic acid


single


linear



499
AGAAGUUCUG AUGAGGCCGA AAGGCCGAAA GUUUCG 36






36 base pairs


nucleic acid


single


linear



500
GGGACAGCUG AUGAGGCCGA AAGGCCGAAA GUUGAG 36






36 base pairs


nucleic acid


single


linear



501
GGGGACACUG AUGAGGCCGA AAGGCCGAAA AGUUGA 36






36 base pairs


nucleic acid


single


linear



502
GCUUGGGCUG AUGAGGCCGA AAGGCCGAAA CAGAAG 36






36 base pairs


nucleic acid


single


linear



503
GAAGGUGCUG AUGAGGCCGA AAGGCCGAAA GGGCUG 36






36 base pairs


nucleic acid


single


linear



504
GUAAGGCCUG AUGAGGCCGA AAGGCCGAAA UAUGGC 36






36 base pairs


nucleic acid


single


linear



505
UGGUGCUCUG AUGAGGCCGA AAGGCCGAAA GGGAUG 36






36 base pairs


nucleic acid


single


linear



506
AUGCUGGCUG AUGAGGCCGA AAGGCCGAAA AGGUGU 36






36 base pairs


nucleic acid


single


linear



507
GAAGCUGCUG AUGAGGCCGA AAGGCCGAAA GAUGGA 36






36 base pairs


nucleic acid


single


linear



508
GCGCGCUCUG AUGAGGCCGA AAGGCCGAAA AGUAAA 36






36 base pairs


nucleic acid


single


linear



509
GCUGAGGCUG AUGAGGCCGA AAGGCCGAAA UGCUGG 36






36 base pairs


nucleic acid


single


linear



510
CAAAGUUCUG AUGAGGCCGA AAGGCCGAAA UGGUGC 36






36 base pairs


nucleic acid


single


linear



511
CUCAUCACUG AUGAGGCCGA AAGGCCGAAA GUUGAU 36






36 base pairs


nucleic acid


single


linear



512
GGGGGAACUG AUGAGGCCGA AAGGCCGAAA CUCAUC 36






36 base pairs


nucleic acid


single


linear



513
UGGGGGACUG AUGAGGCCGA AAGGCCGAAA ACUCAU 36






36 base pairs


nucleic acid


single


linear



514
AUGGGGGCUG AUGAGGCCGA AAGGCCGAAA AACUCA 36






36 base pairs


nucleic acid


single


linear



515
UGAUGGUCUG AUGAGGCCGA AAGGCCGAAA CAGCAU 36






36 base pairs


nucleic acid


single


linear



516
CUGAUGGCUG AUGAGGCCGA AAGGCCGAAA ACAGCA 36






36 base pairs


nucleic acid


single


linear



517
UCAGGAGCUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36






36 base pairs


nucleic acid


single


linear



518
GGCUGAGCUG AUGAGGCCGA AAGGCCGAAA AGGGAC 36






36 base pairs


nucleic acid


single


linear



519
CUGCCCUCUG AUGAGGCCGA AAGGCCGAAA UGGUAA 36






36 base pairs


nucleic acid


single


linear



520
UCAGACUCUG AUGAGGCCGA AAGGCCGAAA ACUCCC 36






36 base pairs


nucleic acid


single


linear



521
GAAGGUGCUG AUGAGGCCGA AAGGCCGAAA GGGCUG 36






36 base pairs


nucleic acid


single


linear



522
CGGUGCUCUG AUGAGGCCGA AAGGCCGAAA GGCCAG 36






36 base pairs


nucleic acid


single


linear



523
GCUGAGGCUG AUGAGGCCGA AAGGCCGAAA GGGACC 36






36 base pairs


nucleic acid


single


linear



524
GGGGCAGCUG AUGAGGCCGA AAGGCCGAAA GCUGGG 36






36 base pairs


nucleic acid


single


linear



525
GAGCCUGCUG AUGAGGCCGA AAGGCCGAAA GGCUGG 36






36 base pairs


nucleic acid


single


linear



526
GGGGCAGCUG AUGAGGCCGA AAGGCCGAAA GCUGGG 36






36 base pairs


nucleic acid


single


linear



527
AGGAAGGCUG AUGAGGCCGA AAGGCCGAAA CCAUGG 36






36 base pairs


nucleic acid


single


linear



528
CGCAGCUCUG AUGAGGCCGA AAGGCCGAAA GCCCAC 36






36 base pairs


nucleic acid


single


linear



529
UGGGGGACUG AUGAGGCCGA AAGGCCGAAA ACUCAU 36






36 base pairs


nucleic acid


single


linear



530
AGACUCGCUG AUGAGGCCGA AAGGCCGAAA CAGGAG 36






36 base pairs


nucleic acid


single


linear



531
GGGUUAGCUG AUGAGGCCGA AAGGCCGAAA CUGGGG 36






36 base pairs


nucleic acid


single


linear



532
CCGGGGUCUG AUGAGGCCGA AAGGCCGAAA GAACUG 36






36 base pairs


nucleic acid


single


linear



533
GACUGGGCUG AUGAGGCCGA AAGGCCGAAA GGACCC 36






36 base pairs


nucleic acid


single


linear



534
UCAGCUUCUG AUGAGGCCGA AAGGCCGAAA GAAAAG 36






36 base pairs


nucleic acid


single


linear



535
GGCUUCCCUG AUGAGGCCGA AAGGCCGAAA CAGCGU 36






36 base pairs


nucleic acid


single


linear



536
AGCAUCACUG AUGAGGCCGA AAGGCCGAAA CUGCAG 36






36 base pairs


nucleic acid


single


linear



537
CAGCAUCCUG AUGAGGCCGA AAGGCCGAAA ACUGCA 36






36 base pairs


nucleic acid


single


linear



538
GCCAAGCCUG AUGAGGCCGA AAGGCCGAAA GGCCCC 36






36 base pairs


nucleic acid


single


linear



539
UGUUGCCCUG AUGAGGCCGA AAGGCCGAAA GCAAGG 36






36 base pairs


nucleic acid


single


linear



540
GUCUGUGCUG AUGAGGCCGA AAGGCCGAAA CACUCC 36






36 base pairs


nucleic acid


single


linear



541
GGUCUGUCUG AUGAGGCCGA AAGGCCGAAA ACACUC 36






36 base pairs


nucleic acid


single


linear



542
GUCCACACUG AUGAGGCCGA AAGGCCGAAA UGCCAG 36






36 base pairs


nucleic acid


single


linear



543
AGUUCCCCUG AUGAGGCCGA AAGGCCGAAA CCGAAG 36






36 base pairs


nucleic acid


single


linear



544
AAACUCUCUG AUGAGGCCGA AAGGCCGAAA GUUGUC 36






36 base pairs


nucleic acid


single


linear



545
CUGCUGACUG AUGAGGCCGA AAGGCCGAAA CUCUGA 36






36 base pairs


nucleic acid


single


linear



546
GCUGCUGCUG AUGAGGCCGA AAGGCCGAAA ACUCUG 36






36 base pairs


nucleic acid


single


linear



547
AGCUGCUCUG AUGAGGCCGA AAGGCCGAAA AACUCU 36






36 base pairs


nucleic acid


single


linear



548
ACACAGGCUG AUGAGGCCGA AAGGCCGAAA UGCACC 36






36 base pairs


nucleic acid


single


linear



549
UUCAGGGCUG AUGAGGCCGA AAGGCCGAAA CUCCAU 36






36 base pairs


nucleic acid


single


linear



550
CGAGUUACUG AUGAGGCCGA AAGGCCGAAA GCUUCA 36






36 base pairs


nucleic acid


single


linear



551
GGCGAGUCUG AUGAGGCCGA AAGGCCGAAA UAGCUU 36






36 base pairs


nucleic acid


single


linear



552
ACCAGGCCUG AUGAGGCCGA AAGGCCGAAA GUUAUA 36






36 base pairs


nucleic acid


single


linear



553
CCCUCUCCUG AUGAGGCCGA AAGGCCGAAA GGAGAG 36






36 base pairs


nucleic acid


single


linear



554
GGGGCAGCUG AUGAGGCCGA AAGGCCGAAA GCUGGG 36






36 base pairs


nucleic acid


single


linear



555
CCUACCGCUG AUGAGGCCGA AAGGCCGAAA GCAGGA 36






36 base pairs


nucleic acid


single


linear



556
CAUUGGGCUG AUGAGGCCGA AAGGCCGAAA GCCCCG 36






36 base pairs


nucleic acid


single


linear



557
CUGGGCACUG AUGAGGCCGA AAGGCCGAAA GGUCAG 36






36 base pairs


nucleic acid


single


linear



558
CACCUGGCUG AUGAGGCCGA AAGGCCGAAA GCAGAG 36






36 base pairs


nucleic acid


single


linear



559
UCACCUGCUG AUGAGGCCGA AAGGCCGAAA AGCAGA 36






36 base pairs


nucleic acid


single


linear



560
ACCUCCGCUG AUGAGGCCGA AAGGCCGAAA AGCGAG 36






36 base pairs


nucleic acid


single


linear



561
GGAGGAGCUG AUGAGGCCGA AAGGCCGAAA GUCUUC 36






36 base pairs


nucleic acid


single


linear



562
UGGAGGACUG AUGAGGCCGA AAGGCCGAAA AGUCUU 36






36 base pairs


nucleic acid


single


linear



563
AAUGGAGCUG AUGAGGCCGA AAGGCCGAAA GAAGUC 36






36 base pairs


nucleic acid


single


linear



564
CGCAAUGCUG AUGAGGCCGA AAGGCCGAAA GGAGAA 36






36 base pairs


nucleic acid


single


linear



565
UGUCCGCCUG AUGAGGCCGA AAGGCCGAAA UGGAGG 36






36 base pairs


nucleic acid


single


linear



566
AGCAGAGCUG AUGAGGCCGA AAGGCCGAAA GUCCAU 36






36 base pairs


nucleic acid


single


linear



567
GAGCAGACUG AUGAGGCCGA AAGGCCGAAA AGUCCA 36






36 base pairs


nucleic acid


single


linear



568
AAGAGCACUG AUGAGGCCGA AAGGCCGAAA GAAGUC 36






36 base pairs


nucleic acid


single


linear



569
CUGAUCUCUG AUGAGGCCGA AAGGCCGAAA CUCAAA 36






36 base pairs


nucleic acid


single


linear



570
AGGAGCUCUG AUGAGGCCGA AAGGCCGAAA UCUGAC 36






36 base pairs


nucleic acid


single


linear



571
ACCUUAGCUG AUGAGGCCGA AAGGCCGAAA GCUGAU 36






36 base pairs


nucleic acid


single


linear



572
AGCACCUCUG AUGAGGCCGA AAGGCCGAAA GGAGCU 36






36 base pairs


nucleic acid


single


linear



573
CUCUUGGCUG AUGAGGCCGA AAGGCCGAAA GCACUG 36






36 base pairs


nucleic acid


single


linear



574
UACAGACCUG AUGAGGCCGA AAGGCCGAAA GCCAUU 36






36 base pairs


nucleic acid


single


linear



575
CACUACACUG AUGAGGCCGA AAGGCCGAAA CGAGCC 36






36 base pairs


nucleic acid


single


linear



576
CGUGCACCUG AUGAGGCCGA AAGGCCGAAA CAGACG 36






36 base pairs


nucleic acid


single


linear



577
GAGGGGGCUG AUGAGGCCGA AAGGCCGAAA CAGUUC 36






36 base pairs


nucleic acid


single


linear



578
UGAGGGGCUG AUGAGGCCGA AAGGCCGAAA ACAGUU 36






36 base pairs


nucleic acid


single


linear



579
GGAAGAUCUG AUGAGGCCGA AAGGCCGAAA GGGGGA 36






36 base pairs


nucleic acid


single


linear



580
CCGGGAACUG AUGAGGCCGA AAGGCCGAAA UGAGGG 36






36 base pairs


nucleic acid


single


linear



581
UGCCGGGCUG AUGAGGCCGA AAGGCCGAAA GAUGAG 36






36 base pairs


nucleic acid


single


linear



582
CUGCCGGCUG AUGAGGCCGA AAGGCCGAAA AGAUGA 36






36 base pairs


nucleic acid


single


linear



583
GGGGCCACUG AUGAGGCCGA AAGGCCGAAA GGCCUG 36






36 base pairs


nucleic acid


single


linear



584
CUCCACACUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36






36 base pairs


nucleic acid


single


linear



585
GCUCAAUCUG AUGAGGCCGA AAGGCCGAAA UCUCCA 36






36 base pairs


nucleic acid


single


linear



586
GCUGCUCCUG AUGAGGCCGA AAGGCCGAAA UGAUCU 36






36 base pairs


nucleic acid


single


linear



587
GUAGCGGCUG AUGAGGCCGA AAGGCCGAAA GCGCAU 36






36 base pairs


nucleic acid


single


linear



588
UGUAGCGCUG AUGAGGCCGA AAGGCCGAAA AGCGCA 36






36 base pairs


nucleic acid


single


linear



589
GCACUUGCUG AUGAGGCCGA AAGGCCGAAA GCGGAA 36






36 base pairs


nucleic acid


single


linear



590
GCCCGCGCUG AUGAGGCCGA AAGGCCGAAA GCGCCC 36






36 base pairs


nucleic acid


single


linear



591
CGCCUGGCUG AUGAGGCCGA AAGGCCGAAA UGCUGC 36






36 base pairs


nucleic acid


single


linear



592
UUGGUGGCUG AUGAGGCCGA AAGGCCGAAA UCUGUG 36






36 base pairs


nucleic acid


single


linear



593
UGAUCUUCUG AUGAGGCCGA AAGGCCGAAA UGGUGG 36






36 base pairs


nucleic acid


single


linear



594
AGCCAUUCUG AUGAGGCCGA AAGGCCGAAA UCUUGA 36






36 base pairs


nucleic acid


single


linear



595
UCCUGUGCUG AUGAGGCCGA AAGGCCGAAA GCCAUU 36






36 base pairs


nucleic acid


single


linear



596
CCAGGGACUG AUGAGGCCGA AAGGCCGAAA UGCGCA 36






36 base pairs


nucleic acid


single


linear



597
GACCAGGCUG AUGAGGCCGA AAGGCCGAAA GAUGCG 36






36 base pairs


nucleic acid


single


linear



598
CCUUGGUCUG AUGAGGCCGA AAGGCCGAAA CCAGGG 36






36 base pairs


nucleic acid


single


linear



599
CGGUGAGCUG AUGAGGCCGA AAGGCCGAAA GGGUCC 36






36 base pairs


nucleic acid


single


linear



600
GGCCGGUCUG AUGAGGCCGA AAGGCCGAAA GGAGGG 36






36 base pairs


nucleic acid


single


linear



601
UGGGGGUCUG AUGAGGCCGA AAGGCCGAAA GGCCGG 36






36 base pairs


nucleic acid


single


linear



602
UUCCUACCUG AUGAGGCCGA AAGGCCGAAA GCUCGU 36






36 base pairs


nucleic acid


single


linear



603
CCUUUCCCUG AUGAGGCCGA AAGGCCGAAA CAAGCU 36






36 base pairs


nucleic acid


single


linear



604
CUCAUAGCUG AUGAGGCCGA AAGGCCGAAA GCCAUC 36






36 base pairs


nucleic acid


single


linear



605
CCUCAUACUG AUGAGGCCGA AAGGCCGAAA AGCCAU 36






36 base pairs


nucleic acid


single


linear



606
AGCCUCACUG AUGAGGCCGA AAGGCCGAAA GAAGCC 36






36 base pairs


nucleic acid


single


linear



607
CCGGGCACUG AUGAGGCCGA AAGGCCGAAA GCUCAG 36






36 base pairs


nucleic acid


single


linear



608
AACUGUGCUG AUGAGGCCGA AAGGCCGAAA UGCAGC 36






36 base pairs


nucleic acid


single


linear



609
UUCUGGACUG AUGAGGCCGA AAGGCCGAAA CUGUGG 36






36 base pairs


nucleic acid


single


linear



610
GUUCUGGCUG AUGAGGCCGA AAGGCCGAAA ACUGUG 36






36 base pairs


nucleic acid


single


linear



611
GGUUCUGCUG AUGAGGCCGA AAGGCCGAAA AACUGU 36






36 base pairs


nucleic acid


single


linear



612
CACACUGCUG AUGAGGCCGA AAGGCCGAAA UUCCCA 36






36 base pairs


nucleic acid


single


linear



613
UGACUGACUG AUGAGGCCGA AAGGCCGAAA GCCUGC 36






36 base pairs


nucleic acid


single


linear



614
GCUGACUCUG AUGAGGCCGA AAGGCCGAAA UAGCCU 36






36 base pairs


nucleic acid


single


linear



615
AUGCGCUCUG AUGAGGCCGA AAGGCCGAAA CUGAUA 36






36 base pairs


nucleic acid


single


linear



616
UGGUCUGCUG AUGAGGCCGA AAGGCCGAAA UGCGCU 36






36 base pairs


nucleic acid


single


linear



617
AACUUGGCUG AUGAGGCCGA AAGGCCGAAA GGGGUU 36






36 base pairs


nucleic acid


single


linear



618
GAACUUGCUG AUGAGGCCGA AAGGCCGAAA AGGGGU 36






36 base pairs


nucleic acid


single


linear



619
CUAUAGGCUG AUGAGGCCGA AAGGCCGAAA CUUGGA 36






36 base pairs


nucleic acid


single


linear



620
UCUAUAGCUG AUGAGGCCGA AAGGCCGAAA ACUUGG 36






36 base pairs


nucleic acid


single


linear



621
UCUUCUACUG AUGAGGCCGA AAGGCCGAAA GGAACU 36






36 base pairs


nucleic acid


single


linear



622
GCUCUUCCUG AUGAGGCCGA AAGGCCGAAA UAGGAA 36






36 base pairs


nucleic acid


single


linear



623
CAGGUCGCUG AUGAGGCCGA AAGGCCGAAA GUCCCC 36






36 base pairs


nucleic acid


single


linear



624
GGAAGCACUG AUGAGGCCGA AAGGCCGAAA GCCGCA 36






36 base pairs


nucleic acid


single


linear



625
CACCUGGCUG AUGAGGCCGA AAGGCCGAAA GCAGAG 36






36 base pairs


nucleic acid


single


linear



626
UCACCUGCUG AUGAGGCCGA AAGGCCGAAA AGCAGA 36






36 base pairs


nucleic acid


single


linear



627
CCUGCCUCUG AUGAGGCCGA AAGGCCGAAA UGGGUC 36






36 base pairs


nucleic acid


single


linear



628
GCAGGCGCUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36






36 base pairs


nucleic acid


single


linear



629
GAGGAAGCUG AUGAGGCCGA AAGGCCGAAA CAGGCG 36






36 base pairs


nucleic acid


single


linear



630
GAUGAGGCUG AUGAGGCCGA AAGGCCGAAA GGACAG 36






36 base pairs


nucleic acid


single


linear



631
GGAUGAGCUG AUGAGGCCGA AAGGCCGAAA AGGACA 36






36 base pairs


nucleic acid


single


linear



632
AUGGGAUCUG AUGAGGCCGA AAGGCCGAAA GGAAGG 36






36 base pairs


nucleic acid


single


linear



633
AAGAUGGCUG AUGAGGCCGA AAGGCCGAAA UGAGGA 36






36 base pairs


nucleic acid


single


linear



634
UGUCAAACUG AUGAGGCCGA AAGGCCGAAA UGGGAU 36






36 base pairs


nucleic acid


single


linear



635
AUUGUCACUG AUGAGGCCGA AAGGCCGAAA GAUGGG 36






36 base pairs


nucleic acid


single


linear



636
GAUUGUCCUG AUGAGGCCGA AAGGCCGAAA AGAUGG 36






36 base pairs


nucleic acid


single


linear



637
GGGGCACCUG AUGAGGCCGA AAGGCCGAAA UUGUCA 36






36 base pairs


nucleic acid


single


linear



638
AGAUCUUCUG AUGAGGCCGA AAGGCCGAAA GCUCGG 36






36 base pairs


nucleic acid


single


linear



639
CUCGGCACUG AUGAGGCCGA AAGGCCGAAA UCUUGA 36






36 base pairs


nucleic acid


single


linear



640
GCUGCCACUG AUGAGGCCGA AAGGCCGAAA GUUUCG 36






36 base pairs


nucleic acid


single


linear



641
CCCCACCCUG AUGAGGCCGA AAGGCCGAAA GGCAGC 36






36 base pairs


nucleic acid


single


linear



642
GUAGGAACUG AUGAGGCCGA AAGGCCGAAA UCUCAU 36






36 base pairs


nucleic acid


single


linear



643
CAGUAGGCUG AUGAGGCCGA AAGGCCGAAA GAUCUC 36






36 base pairs


nucleic acid


single


linear



644
ACAGUAGCUG AUGAGGCCGA AAGGCCGAAA AGAUCU 36






36 base pairs


nucleic acid


single


linear



645
CACACAGCUG AUGAGGCCGA AAGGCCGAAA GGAAGA 36






36 base pairs


nucleic acid


single


linear



646
ACACCUCCUG AUGAGGCCGA AAGGCCGAAA UGUCCU 36






36 base pairs


nucleic acid


single


linear



647
CGUGAAACUG AUGAGGCCGA AAGGCCGAAA CACCUC 36






36 base pairs


nucleic acid


single


linear



648
CCCGUGACUG AUGAGGCCGA AAGGCCGAAA UACACC 36






36 base pairs


nucleic acid


single


linear



649
UCCCGUGCUG AUGAGGCCGA AAGGCCGAAA AUACAC 36






36 base pairs


nucleic acid


single


linear



650
GUCCCGUCUG AUGAGGCCGA AAGGCCGAAA AAUACA 36






36 base pairs


nucleic acid


single


linear



651
CGAAAAGCUG AUGAGGCCGA AAGGCCGAAA GCCUCG 36






36 base pairs


nucleic acid


single


linear



652
UUGCGAACUG AUGAGGCCGA AAGGCCGAAA GGAGCC 36






36 base pairs


nucleic acid


single


linear



653
CUUGCGACUG AUGAGGCCGA AAGGCCGAAA AGGAGC 36






36 base pairs


nucleic acid


single


linear



654
GCUUGCGCUG AUGAGGCCGA AAGGCCGAAA AAGGAG 36






36 base pairs


nucleic acid


single


linear



655
AGCUUGCCUG AUGAGGCCGA AAGGCCGAAA AAAGGA 36






36 base pairs


nucleic acid


single


linear



656
GGAACACCUG AUGAGGCCGA AAGGCCGAAA UGGCCA 36






36 base pairs


nucleic acid


single


linear



657
GGUCCGGCUG AUGAGGCCGA AAGGCCGAAA CACAAU 36






36 base pairs


nucleic acid


single


linear



658
GGGUCCGCUG AUGAGGCCGA AAGGCCGAAA ACACAA 36






36 base pairs


nucleic acid


single


linear



659
GCGUAGGCUG AUGAGGCCGA AAGGCCGAAA GGGGUC 36






36 base pairs


nucleic acid


single


linear



660
GUCUGCGCUG AUGAGGCCGA AAGGCCGAAA GGGAGG 36






36 base pairs


nucleic acid


single


linear



661
CGCACAGCUG AUGAGGCCGA AAGGCCGAAA GCCUGC 36






36 base pairs


nucleic acid


single


linear



662
GCAUGGACUG AUGAGGCCGA AAGGCCGAAA CACGCA 36






36 base pairs


nucleic acid


single


linear



663
CUGCAUGCUG AUGAGGCCGA AAGGCCGAAA GACACG 36






36 base pairs


nucleic acid


single


linear



664
CGGUCGGCUG AUGAGGCCGA AAGGCCGAAA GGCCGC 36






36 base pairs


nucleic acid


single


linear



665
CCGGUCGCUG AUGAGGCCGA AAGGCCGAAA AGGCCG 36






36 base pairs


nucleic acid


single


linear



666
GCUCACUCUG AUGAGGCCGA AAGGCCGAAA GCUCCC 36






36 base pairs


nucleic acid


single


linear



667
GUACUGGCUG AUGAGGCCGA AAGGCCGAAA UUCCAU 36






36 base pairs


nucleic acid


single


linear



668
GGUACUGCUG AUGAGGCCGA AAGGCCGAAA AUUCCA 36






36 base pairs


nucleic acid


single


linear



669
UGGCAGGCUG AUGAGGCCGA AAGGCCGAAA CUGGAA 36






36 base pairs


nucleic acid


single


linear



670
UCGUCUGCUG AUGAGGCCGA AAGGCCGAAA UCUGGC 36






36 base pairs


nucleic acid


single


linear



671
CGGUGACCUG AUGAGGCCGA AAGGCCGAAA UCGUCU 36






36 base pairs


nucleic acid


single


linear



672
AUCCGGUCUG AUGAGGCCGA AAGGCCGAAA CGAUCG 36






36 base pairs


nucleic acid


single


linear



673
UCUCCUCCUG AUGAGGCCGA AAGGCCGAAA UCCGGU 36






36 base pairs


nucleic acid


single


linear



674
GUCCUUUCUG AUGAGGCCGA AAGGCCGAAA CGUUUC 36






36 base pairs


nucleic acid


single


linear



675
GGUCUCACUG AUGAGGCCGA AAGGCCGAAA UGUCCU 36






36 base pairs


nucleic acid


single


linear



676
GCUCUUGCUG AUGAGGCCGA AAGGCCGAAA GGUCUC 36






36 base pairs


nucleic acid


single


linear



677
UGCUCUUCUG AUGAGGCCGA AAGGCCGAAA AGGUCU 36






36 base pairs


nucleic acid


single


linear



678
UCUUCAUCUG AUGAGGCCGA AAGGCCGAAA UGCUCU 36






36 base pairs


nucleic acid


single


linear



679
CUGAAAGCUG AUGAGGCCGA AAGGCCGAAA CUCUUC 36






36 base pairs


nucleic acid


single


linear



680
CCGCUGACUG AUGAGGCCGA AAGGCCGAAA GGACUC 36






36 base pairs


nucleic acid


single


linear



681
UCCGCUGCUG AUGAGGCCGA AAGGCCGAAA AGGACU 36






36 base pairs


nucleic acid


single


linear



682
GUCCGCUCUG AUGAGGCCGA AAGGCCGAAA AAGGAC 36






36 base pairs


nucleic acid


single


linear



683
CGAGGUGCUG AUGAGGCCGA AAGGCCGAAA GGCCGG 36






36 base pairs


nucleic acid


single


linear



684
AUGCGUCCUG AUGAGGCCGA AAGGCCGAAA GGUGGA 36






36 base pairs


nucleic acid


single


linear



685
GCACAGCCUG AUGAGGCCGA AAGGCCGAAA UGCGUC 36






36 base pairs


nucleic acid


single


linear



686
CUGCGGGCUG AUGAGGCCGA AAGGCCGAAA GGCACA 36






36 base pairs


nucleic acid


single


linear



687
GCUGCGGCUG AUGAGGCCGA AAGGCCGAAA AGGCAC 36






36 base pairs


nucleic acid


single


linear



688
AGAAGCUCUG AUGAGGCCGA AAGGCCGAAA GCUGCG 36






36 base pairs


nucleic acid


single


linear



689
GGGACAGCUG AUGAGGCCGA AAGGCCGAAA GCUGAG 36






36 base pairs


nucleic acid


single


linear



690
GGGGACACUG AUGAGGCCGA AAGGCCGAAA AGCUGA 36






36 base pairs


nucleic acid


single


linear



691
GCUUGGGCUG AUGAGGCCGA AAGGCCGAAA CAGAAG 36






36 base pairs


nucleic acid


single


linear



692
AAAGGGACUG AUGAGGCCGA AAGGCCGAAA GGGCUG 36






36 base pairs


nucleic acid


single


linear



693
GUAAAGGCUG AUGAGGCCGA AAGGCCGAAA UAGGGC 36






36 base pairs


nucleic acid


single


linear



694
UGACGUACUG AUGAGGCCGA AAGGCCGAAA GGGAUA 36






36 base pairs


nucleic acid


single


linear



695
AUGACGUCUG AUGAGGCCGA AAGGCCGAAA AGGGAU 36






36 base pairs


nucleic acid


single


linear



696
GAUGACGCUG AUGAGGCCGA AAGGCCGAAA AAGGGA 36






36 base pairs


nucleic acid


single


linear



697
CAGGGAUCUG AUGAGGCCGA AAGGCCGAAA CGUAAA 36






36 base pairs


nucleic acid


single


linear



698
GCUCAGGCUG AUGAGGCCGA AAGGCCGAAA UGACGU 36






36 base pairs


nucleic acid


single


linear



699
CAUAGUUCUG AUGAGGCCGA AAGGCCGAAA UGGUGC 36






36 base pairs


nucleic acid


single


linear



700
CUCAUCACUG AUGAGGCCGA AAGGCCGAAA GUUGAU 36






36 base pairs


nucleic acid


single


linear



701
GGUGGGACUG AUGAGGCCGA AAGGCCGAAA CUCAUC 36






36 base pairs


nucleic acid


single


linear



702
UGGUGGGCUG AUGAGGCCGA AAGGCCGAAA ACUCAU 36






36 base pairs


nucleic acid


single


linear



703
AUGGUGGCUG AUGAGGCCGA AAGGCCGAAA AACUCA 36






36 base pairs


nucleic acid


single


linear



704
AGAAGGACUG AUGAGGCCGA AAGGCCGAAA CACCAU 36






36 base pairs


nucleic acid


single


linear



705
CAGAAGGCUG AUGAGGCCGA AAGGCCGAAA ACACCA 36






36 base pairs


nucleic acid


single


linear



706
CCAGAAGCUG AUGAGGCCGA AAGGCCGAAA AACACC 36






36 base pairs


nucleic acid


single


linear



707
UGCCCAGCUG AUGAGGCCGA AAGGCCGAAA GGAAAC 36






36 base pairs


nucleic acid


single


linear



708
CUGCCCACUG AUGAGGCCGA AAGGCCGAAA AGGAAA 36






36 base pairs


nucleic acid


single


linear



709
CCUGGCUCUG AUGAGGCCGA AAGGCCGAAA UCUGCC 36






36 base pairs


nucleic acid


single


linear



710
CAAGGCCCUG AUGAGGCCGA AAGGCCGAAA GGCCUG 36






36 base pairs


nucleic acid


single


linear



711
CGGGGCCCUG AUGAGGCCGA AAGGCCGAAA GGCCGA 36






36 base pairs


nucleic acid


single


linear



712
ACUUGGGCUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36






36 base pairs


nucleic acid


single


linear



713
GGGGCAGCUG AUGAGGCCGA AAGGCCGAAA CUUGGG 36






36 base pairs


nucleic acid


single


linear



714
GGGGCUGCUG AUGAGGCCGA AAGGCCGAAA GCCUGG 36






36 base pairs


nucleic acid


single


linear



715
AUGGCUGCUG AUGAGGCCGA AAGGCCGAAA GCAGGG 36






36 base pairs


nucleic acid


single


linear



716
GAGCUGACUG AUGAGGCCGA AAGGCCGAAA CCAUGG 36






36 base pairs


nucleic acid


single


linear



717
CAGAGCUCUG AUGAGGCCGA AAGGCCGAAA UACCAU 36






36 base pairs


nucleic acid


single


linear



718
UGGGCCACUG AUGAGGCCGA AAGGCCGAAA GCUGAU 36






36 base pairs


nucleic acid


single


linear



719
GGACUGGCUG AUGAGGCCGA AAGGCCGAAA CAGGGG 36






36 base pairs


nucleic acid


single


linear



720
GGGCUAGCUG AUGAGGCCGA AAGGCCGAAA CUGGGA 36






36 base pairs


nucleic acid


single


linear



721
CUGGGGCCUG AUGAGGCCGA AAGGCCGAAA GGACUG 36






36 base pairs


nucleic acid


single


linear



722
GCCUGAGCUG AUGAGGCCGA AAGGCCGAAA GGGCCU 36






36 base pairs


nucleic acid


single


linear



723
ACAGCCUCUG AUGAGGCCGA AAGGCCGAAA GGAGGG 36






36 base pairs


nucleic acid


single


linear



724
GGCCUCUCUG AUGAGGCCGA AAGGCCGAAA CAGCGU 36






36 base pairs


nucleic acid


single


linear



725
AUCAUCACUG AUGAGGCCGA AAGGCCGAAA CUGCAG 36






36 base pairs


nucleic acid


single


linear



726
CAUCAUCCUG AUGAGGCCGA AAGGCCGAAA ACUGCA 36






36 base pairs


nucleic acid


single


linear



727
GCCAAGCCUG AUGAGGCCGA AAGGCCGAAA GGCCCC 36






36 base pairs


nucleic acid


single


linear



728
UGUUGCCCUG AUGAGGCCGA AAGGCCGAAA GCAAGG 36






36 base pairs


nucleic acid


single


linear



729
GUCUGUGCUG AUGAGGCCGA AAGGCCGAAA CACAGC 36






36 base pairs


nucleic acid


single


linear



730
GGUCUGUCUG AUGAGGCCGA AAGGCCGAAA ACACAG 36






36 base pairs


nucleic acid


single


linear



731
GUCGACGCUG AUGAGGCCGA AAGGCCGAAA UGCCAG 36






36 base pairs


nucleic acid


single


linear



732
AGUUGUCCUG AUGAGGCCGA AAGGCCGAAA CGGAUG 36






36 base pairs


nucleic acid


single


linear



733
AAACUCGCUG AUGAGGCCGA AAGGCCGAAA GUUGUC 36






36 base pairs


nucleic acid


single


linear



734
CUGCUGACUG AUGAGGCCGA AAGGCCGAAA CUCGGA 36






36 base pairs


nucleic acid


single


linear



735
GCUGCUGCUG AUGAGGCCGA AAGGCCGAAA ACUCGG 36






36 base pairs


nucleic acid


single


linear



736
AGCUGCUCUG AUGAGGCCGA AAGGCCGAAA AACUCG 36






36 base pairs


nucleic acid


single


linear



737
CCACAGGCUG AUGAGGCCGA AAGGCCGAAA UGCCCU 36






36 base pairs


nucleic acid


single


linear



738
CUCAGGGCUG AUGAGGCCGA AAGGCCGAAA CUCCAU 36






36 base pairs


nucleic acid


single


linear



739
CGAGUUACUG AUGAGGCCGA AAGGCCGAAA GCCUCA 36






36 base pairs


nucleic acid


single


linear



740
GGCGAGUCUG AUGAGGCCGA AAGGCCGAAA UAGCCU 36






36 base pairs


nucleic acid


single


linear



741
ACUAGGCCUG AUGAGGCCGA AAGGCCGAAA GUUAUA 36






36 base pairs


nucleic acid


single


linear



742
CUGUCACCUG AUGAGGCCGA AAGGCCGAAA GGCGAG 36






36 base pairs


nucleic acid


single


linear



743
GGAGCAGCUG AUGAGGCCGA AAGGCCGAAA GCUGGG 36






36 base pairs


nucleic acid


single


linear



744
CCCAGUGCUG AUGAGGCCGA AAGGCCGAAA GCAGGA 36






36 base pairs


nucleic acid


single


linear



745
CAUUGGGCUG AUGAGGCCGA AAGGCCGAAA GCCCCG 36






36 base pairs


nucleic acid


single


linear



746
CUGAAAGCUG AUGAGGCCGA AAGGCCGAAA GGCCAU 36






36 base pairs


nucleic acid


single


linear



747
CUCCUGACUG AUGAGGCCGA AAGGCCGAAA GGAGGC 36






36 base pairs


nucleic acid


single


linear



748
UCUCCUGCUG AUGAGGCCGA AAGGCCGAAA AGGAGG 36






36 base pairs


nucleic acid


single


linear



749
AUCUCCUCUG AUGAGGCCGA AAGGCCGAAA AAGGAG 36






36 base pairs


nucleic acid


single


linear



750
GGAGGAGCUG AUGAGGCCGA AAGGCCGAAA GUCUUC 36






36 base pairs


nucleic acid


single


linear



751
UGGAGGACUG AUGAGGCCGA AAGGCCGAAA AGUCUU 36






36 base pairs


nucleic acid


single


linear



752
AAUGGAGCUG AUGAGGCCGA AAGGCCGAAA GAAGUC 36






36 base pairs


nucleic acid


single


linear



753
CGCAAUGCUG AUGAGGCCGA AAGGCCGAAA GGAGAA 36






36 base pairs


nucleic acid


single


linear



754
UGUCCGCCUG AUGAGGCCGA AAGGCCGAAA UGGAGG 36






36 base pairs


nucleic acid


single


linear



755
GGCUGAGCUG AUGAGGCCGA AAGGCCGAAA GUCCAU 36






36 base pairs


nucleic acid


single


linear



756
GGGCUGACUG AUGAGGCCGA AAGGCCGAAA AGUCCA 36






36 base pairs


nucleic acid


single


linear



757
CAGGGCUCUG AUGAGGCCGA AAGGCCGAAA GAAGUC 36






36 base pairs


nucleic acid


single


linear



758
CUGAUCUCUG AUGAGGCCGA AAGGCCGAAA CUCAGC 36






36 base pairs


nucleic acid


single


linear



759
AGGAGCUCUG AUGAGGCCGA AAGGCCGAAA UCUGAC 36






36 base pairs


nucleic acid


single


linear



760
CCCUUAGCUG AUGAGGCCGA AAGGCCGAAA GCUGAU 36






36 base pairs


nucleic acid


single


linear



761
ACCCCCUCUG AUGAGGCCGA AAGGCCGAAA GGAGCU 36






36 base pairs


nucleic acid


single


linear



762
CUCUGGGCUG AUGAGGCCGA AAGGCCGAAA GGGCAG 36






52 base pairs


nucleic acid


single


linear



763
UGAGGGGGAG AAGUUCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



764
GCUGCUUGAG AAGCUCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



765
GCCAUCCCAG AAGUCCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



766
GUUCUGGAAG AAGUGGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



767
GAAGGACAAG AAGCAGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



768
UUGAGCUCAG AAGUGUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



769
CCCACCGAAG AAGCUGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



770
AGGCUGGGAG AAGCGUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



771
GGUCGGAAAG AAGCCGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



772
UGACGAUCAG AAGUAUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



773
GUCGGUGGAG AAGCUGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



774
GGCCGGGGAG AAGUGGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



775
CAUCAUCAAG AAGCAGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



776
ACAGCUGGAG AAGUGCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



777
GAUGCCAGAG AAGUGAACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






16 base pairs


nucleic acid


single


linear



778
GAACUGUUCC CCCUCA 16






16 base pairs


nucleic acid


single


linear



779
GAGCAGCCCA AGCAGC 16






16 base pairs


nucleic acid


single


linear



780
GGACUGCCGG GAUGGC 16






16 base pairs


nucleic acid


single


linear



781
CCACAGUUUC CAGAAC 16






16 base pairs


nucleic acid


single


linear



782
CUGCCGCCUG UCCUUC 16






16 base pairs


nucleic acid


single


linear



783
ACACUGCCGA GCUCAA 16






16 base pairs


nucleic acid


single


linear



784
CAGCUGCCUC GGUGGG 16






16 base pairs


nucleic acid


single


linear



785
ACGCAGACCC CAGCCU 16






16 base pairs


nucleic acid


single


linear



786
CGGCGGCCUU CCGACC 16






16 base pairs


nucleic acid


single


linear



787
AUACAGACGA UCGUCA 16






16 base pairs


nucleic acid


single


linear



788
CAGCGGACCC ACCGAC 16






16 base pairs


nucleic acid


single


linear



789
CCACCGACCC CCGGCC 16






16 base pairs


nucleic acid


single


linear



790
CUGCAGUUUG AUGAUG 16






16 base pairs


nucleic acid


single


linear



791
GCACAGACCC AGCUGU 16






16 base pairs


nucleic acid


single


linear



792
UCACAGACCU GGCAUC 16






52 base pairs


nucleic acid


single


linear



793
GUUGCUUCAG AAGUUCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



794
GAGAUUCGAG AAGUUCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



795
GCCAUCCCAG AAGUCCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



796
GGGCAGAGAG AAGCCUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



797
UUGAGCUCAG AAGUGUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



798
CCCACCGAAG AAGCUCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



799
AGGCUGGGAG AAGCGUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



800
GAUCAGAAAG AAGCCGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



801
AGGUGUAGAG AAGCGGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



802
GGGCAGAGAG AAGUGCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



803
GGGCUUCCAG AAGCGUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



804
CAGCAUCAAG AAGCAGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



805
ACUCCUGGAG AAGUGCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



806
GAUGCCAGAG AAGUGAACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



807
AAGUCGGGAG AAGCUGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



808
UGGCUCCAAG AAGUCCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



809
UGGUGUCGAG AAGCACACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



810
AUUCUGAAAG AAGCCAACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






52 base pairs


nucleic acid


single


linear



811
UCAGUAAAAG AAGUCUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52






16 base pairs


nucleic acid


single


linear



812
GAACAGCCGA AGCAAC 16






16 base pairs


nucleic acid


single


linear



813
GAACAGUUCG AAUCUC 16






16 base pairs


nucleic acid


single


linear



814
GGACUGCCGG GAUGGC 16






16 base pairs


nucleic acid


single


linear



815
AGGCUGACCU CUGCCC 16






16 base pairs


nucleic acid


single


linear



816
ACACUGCCGA GCUCAA 16






16 base pairs


nucleic acid


single


linear



817
GAGCUGCCUC GGUGGG 16






16 base pairs


nucleic acid


single


linear



818
ACGCCGACCC CAGCCU 16






16 base pairs


nucleic acid


single


linear



819
CGGCGGCCUU CUGAUC 16






16 base pairs


nucleic acid


single


linear



820
CCGCAGCCCU ACACCU 16






16 base pairs


nucleic acid


single


linear



821
GCACCGUCCU CUGCCC 16






16 base pairs


nucleic acid


single


linear



822
ACGCUGUCGG AAGCCC 16






16 base pairs


nucleic acid


single


linear



823
CUGCAGUUUG AUGCUG 16






16 base pairs


nucleic acid


single


linear



824
GCACAGACCC AGGAGU 16






16 base pairs


nucleic acid


single


linear



825
UCACAGACCU GGCAUC 16






16 base pairs


nucleic acid


single


linear



826
CAGCUGCCCC CGACUU 16






16 base pairs


nucleic acid


single


linear



827
GGACAGACUG GAGCCA 16






16 base pairs


nucleic acid


single


linear



828
GUGCUGCCCG ACACCA 16






16 base pairs


nucleic acid


single


linear



829
UGGCCGCCUU CAGAAU 16






16 base pairs


nucleic acid


single


linear



830
AGACAGCCUU UACUGA 16







Claims
  • 1. A method for specifically cleaving RNA encoding a Rel-A subunit of NF-k B protein using an enzymatic RNA molecule, comprising the step of contacting said RNA with said enzymatic RNA molecule under conditions suitable for said cleaving.
  • 2. The method of claim 1, wherein said enzymatic RNA molecule is in a motif selected from the group consisting of Hammerhead, Hairpin, Hepatitis Delta Virus, Group I Intron, RNAse P RNA and VSRNA.
  • 3. A method of claim 1, wherein said enzymatic RNA molecule comprises between 12 and 100 nucleotides complementary to said RNA encoding the Rel-A subunit of the NF-kB protein.
  • 4. A method of claim 1, wherein said enzymatic RNA molecule comprises between 14 and 24 nucleotides complementary to said RNA encoding the Rel-A subunit of the NF-kB protein.
RELATED APPLICATIONS

This is continuation of application Ser. No. 08/291,932 filed Aug. 15, 1994, now U.S. Pat. No. 5,658,780, hereby incorporated by reference in its totality (including drawings), which is a continuation-in-part of Stinchcomb et al., “Method and Composition for Treatment of Restenosis and Cancer Using Ribozymes,” filed May 18, 1994, U.S. Ser. No. 08/245,466, now abandoned, which is a continuation-in-part of Draper, “Method and Reagent for Treatment of a Stenotic Condition”, filed Dec. 7, 1992, U.S. Ser. No. 07/987,132, now abandoned both hereby incorporated by reference herein.

US Referenced Citations (6)
Number Name Date Kind
4987071 Cech Jan 1991 A
5168053 Altman Dec 1992 A
5213580 Slepian et al. May 1993 A
5328470 Nabel et al. Jul 1994 A
5496698 Draper et al. Mar 1996 A
5525468 ReSwigger Jun 1996 A
Foreign Referenced Citations (15)
Number Date Country
9211298 Dec 1992 EP
9103162 Mar 1991 WO
9115580 Oct 1991 WO
9118624 Dec 1991 WO
9118625 Dec 1991 WO
9118913 Dec 1991 WO
9200080 Jan 1992 WO
9207065 Apr 1992 WO
9220348 Nov 1992 WO
9302654 Feb 1993 WO
9308845 May 1993 WO
9309789 May 1993 WO
9315187 Aug 1993 WO
9323569 Nov 1993 WO
9402595 Feb 1994 WO
Non-Patent Literature Citations (145)
Entry
Zaia et al., Status of ribozyme and antisense-based developmental approaches for anti-HIV-1 therapy, Annals N.Y. Acad. Sci., vol. 660, pp. 95-106, Jan. 1992.*
Geisler et al. Cell 71:613-621, Nov. 13, 1992.*
Thanos et al. Cell 71:777-789, Nov. 27, 1992.*
Laurence et al. J. Virology 65:213-219, Jan. 1991.*
Bours et al Molecular and Cellular Biology 12:685-695, Feb. 1992.*
Schmid et al. Nature 352:773-736, 1991.*
Ghosh et al. Cell 62:1019-1029, 1980.*
Kitajima et al. Science 258:1792-1795, Dec. 1992.*
Stull. Pharm. Res. 12:465-483 (1995).*
Rojanasakul, Adv. Drug Delivery 18 (1996) 115-131.*
Gewirtz et al. PNAS 93:3161-3163 (1996).*
Akhtar and Juliano, “Cellular Uptake and Intracellular Fate of Antisense Oligonucleotides,” Trends Cell Biol. 2:139-144 (1992).
Alitalo et al., “Aberrant Expression of An Amplified c-myb oncogene in two cell lines from a colon carcinoma,” Proc. Natl. Acad. Sci. USA 81:4534-4538 (1984).
Anfossi et al., “An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines,” Proc. Natl. Acad. Sci. USA 86:3379-3383 (1989).
Austin et al., “Intimal Proliferation of Smooth Muscle Cells as an Explanation for Recurrent Coronary Artery Stenosis After Percutaneous Transluminal Coronary Angioplasty,” J. Am. Coll. Cardiol. 6:369-375 (1985).
Ballantyne et al., “Nucleotide sequence of the cDNA for murine intracellular adhesion molecule-1 (ICAM-1),” Nucleic Acids Research 17:5853 (1989).
Banskota et al., “Insulin, Insulin-Like Growth Factor I and Platelet-Derived Growth Factor Interact Additively in the Induction of the Protooncogene c-myc and Cellular Proliferation in Cultured Bovine Aortic Smooth Muscle Cells,” Molec. Endocrinol., 3:1183-1190 (1989).
Barinaga, “Ribozymes: Killing the Messenger,” Science 262:1512-1514 (1993).
Belknap et al., “Transcriptional Regulation in Vascular Cells; Genetically Modified Animals,” J. Cell. Biochem. S18A:277 (1994).
Bennett et al., “Cationic Lipids Enhance Cellular Uptake and Activity of Phosphorothioate Antisense Oligonucleotides,” Mol. Pharmacology 41:1023-1033 (1992).
Biotech Abstracts Act. #91-00050 EP 388758 (Sep. 26, 1990).
Biro et al., “Inhibitory Effects of Antisense Oligodeoxynucleotides targeting c-myc mRNA on smooth muscle cell proliferation and migration,” Proc. Natl. Acad. Sci. U S A, 90:654-658 (1993).
Blam et al., “Addition of Growth Hormone Secretion Signal to Basic Fibroblast Growth Factors Results in Cell Transformation and Secretion of Aberrant Forms of the Protein,” Oncogene 3:129-136 (1988).
Brown et al.,“Expression of the c-myb Proto-oncogene in Bovine Vascular Smooth Muscle Cells,” J. Biol. Chem. 267:4625-4630 (1992).
Bywater et al., “Expression of Recombinant Platelet-Derived Growth Factor A-Chain and B-Chain Homodimers in Rat Cells and Human Fibroblastic Reveals Differences in Protein Processing and Autocrine Effects,” Mol. Cell. Biol. 8:2753-2762 (1988).
Calabretta et al., “Normal and Leukemic Hematopoietic Cells Manifest Differential Sensitivity to Inhibitory Effects of c-myb Antisense Oligodeoxynucleotides: An in vitro study relevant to bone marrow purging,” Proc. Natl. Acad. Sci. USA, 88:2351-2355 (1991).
Califf et al., “Restenosis: The Clinical Issues,” in Textbook of Interventional Cardiology, E.J. Topol, eds., W. B. Saunders, Philadelphia, pp. 363-394 (1990).
Cameron and Jennings, “Specific Gene Suppression by Engineered Ribozymes in Monkey Cells.” Proc. Natl. Acad. Sci. USA 86:9139 (1989).
Chen, “Multitarget-Ribozyme Directed to Cleave up to Nine Highly Conserved HIV-1 env RNA Regions Inhibits HIV-1 Replication-Potential Effectiveness Against Most Presently Sequenced HIV-1 Isolates,” Nucleic Acids Res. 20:4581-4589 (1992).
Chowrira and Burke, “Extensive Phosphorothioate Substitution Yields Highly Active and Nuclease-Resistant Hairpin Ribozymes,” Nucleic Acids Res. 20:2835-2840 (1992).
Chuat and Galibert, “Can Ribozymes be Used to Regulate Procaryote Gene Expression?” Biochem. and Biophys. Res. Commun. 162:1025 (1989).
Cleary et al., “Cloning and Structural Analysis of cDNAs for bcl-2 and A Hybrid bcl-2/Immunoglobulin Transcript Resulting From the t(14;18) Translocation,” Cell 47:199-28 (1986).
Clowes et al., “Kinetics of Cellular Proliferation After Arterial Injury,” Lab Invest. 49:327-333 (1983).
Collins and Olive, “Reaction Conditions and Kinetics of Self-Cleavage of a Ribozyme Derived From Neurospora VS RNA,” Biochemistry 32:2795-2799 (1993).
Cotten et al., “High Efficiency Receptor-Mediated Delivery of Small and Large (48 Kilobase Gene Constructs Using the Endosome-Disruption Activity of Defective or Chemically Inactivated Adenovirus Particles,” Proc. Natl. Acad. Sci. USA 89:6094-6098 (1992).
Cotten et al., “Transferrin-Polycation-Mediated Introduction of DNA into Human Leukemic Cells: Stimulation by Agents that Affect the Survival of Transfected DNA or Modulate Transferrin Receptor Levels” (Abstract), Proc. Natl. Acad. Sci. USA 87:4033-4037 (1990).
Cotten et al., “Chicken Adenovirus (CELO Virus) Particles Augment Receptor-Mediated DNA Delivery to Mammalian Cells and Yield Exceptional Levels of Stable Transformants,” J. Virol. 67:3777-3785 (1993).
Cristiano et al., “Hepatic Gene Therapy: Adenovirus Enhancement of Receptor-Mediated Gene Delivery and Expression in Primary Hepatocytes,” Proc. Natl. Acad. Sci. USA 90:2122-2126 (1993).
Curiel et al., “Adenovirus Enhancement of Transferrin-Polylysine-Mediated Gene Delivery,” Proc. Nat. Acad. Sci. USA, 88:8850-8854 (1991).
Dropulic et al., “Functional Characterization of a U5 Ribozyme: Intracellular Suppression of Human Immunodeficiency Virus Type I Expression,” J Virol. 66:1432-1441 (1992).
Eck et al., “Inhibition of Phorbol Ester-Induced Cellular Adhesion by Competitive Binding of NF-κB In Vivo,” Mol. Cell. Biol. 13:6530-6536 (1993).
Edgington, “Ribozymes: Stop Making Sense,” Biotechnology 10:256-262 (1992).
Elroy-Stein and Moss, “Cytoplasmic Expression Based on Constitutive Synthesis of Bacteriophage T7 RNA Polymerase in Mammalian Cells,” Proc. Natl. Acad. Sci. USA 87:6743-7 1990).
Ferguson et al., “Compensation for Treating Wounds to Inhibit Scar Tissue—Contains Agent Esp. Antibody, Which Selectively Neutralises Fibrotic Growth Factors,” WPI Acc#92-3659974/44.
Ferns et al., “Inhibition of Neointimal Smooth Muscle Accumulation After Angioplasty by an Antibody to PDGF,” Science 253:1129-1132 (1991).
Gao and Huang, “Cytoplasmic Expression of a Reporter Gene by Co-Delivery of T7 RNA Polymerase and T7 Promoter Sequence with Cationic Liposomes,” Nucleic Acids Res. 21:2867-72 (1993).
Garratt et al.,“Differential Histopathology of Primary Atherosclerotic and Restenotic Lesions in Coronary Arteries and Saphenous Vein Bypass Grafts: Analysis of Tissue Obtained From 73 Patients by Directional Atherectomy,” J. Am. Coll. Cardio. 17:442-428 (1991).
Goldberg et al., “Vascular Smooth Muscle Cell Kinetics: A New Assay for Studying Patterns of Cellular Proliferation in vivo,” Science, 205:920-922 (1979).
Griffin and Baylin, “Expression of the c-myb Oncogene in Human Small Cell Lung Carcinoma,” Cancer Res. 45:272-275 (1985).
Grotendorst et al., “Attachment of Smooth Muscle Cells to Collagen and Their Migration Toward Platelet-Derived Growth Factor,” Proc. Natl. Acad. Sci. USA 78:3669-3672 (982).
Guerrier-Takada et al., “The RNA Moiety of Ribonuclease P Is the Catalytic Subunit of the Enzyme,” Cell 35:849 (1983).
Hajjar et al., “Tumor Necrosis Factor-Mediated Release of Platelet-Derived Growth Factor From Cultured Endothelial Cells,” J. Exp. Med. 166:235-245 (1987).
Hampel et al., “‘Hairpin’ Catalytic RNA Model: Evidence for Helices and Sequence Requirement for Substrate RNA”, Nucleic Acids Research 18:299-304 (1990).
Harris et al., “Receptor-Mediated Gene Transfer to Airway Epithelial Cells in Primary Culture,” Am. J. Respir. Cell Mol. Biol., 9:441-447 (1993).
Haseloff and Gerlach, “Simple RNA Enzymes with New and Highly Specific Endoribonuclease Activities,” Nature 334:585-591 (1988).
Herschlag, “Implications of Ribozyme Kinetics for Targeting the Cleavage of Specific RNA Molecules in vivo: More Isn't Always Better,” Proc. Natl. Acad. Sci. USA 88:6921-5 (1991).
Hertel et al., “Numbering System for the Hammerhead,” Nucleic Acids Res. 20:3252 (1992).
Higashiyama et al., “A Heparin-Binding Growth Factor Secreted by Macrophage-Like Cells That is Related to EFG,” Science 251:936-939 (1991).
Jaeger et al., “Improved Predictions of Secondary Structures for RNA,” Proc. Natl. Acad. Sci. USA 86:7706-7710 (1989).
Jeffries and Symons, “A Catalytic 13-mer Ribozyme,” Nucleic Acids Research 17:1371 (1989).
Kashani-Sabet et al., “Reversal of the Malignant Phenotype by an Anti-ras Ribozyme,” Antisense Research & Development 1:3-15 (1992).
Kaye et al., “Structure and Expression of the Human L-myc Gene Reveal a Complex Pattern Of Alternative mRNA Processing,” Mol. Cell. Biol. 8:186-195 (1988).
Kindy and Sonenshein, “Regulation of Oncogene Expression in Cultured Aortic Smooth Muscle Cells,” J. Biol. Chem. 261:12865-12868 (1986).
Kita et al., “Sequence and expression of rat ICAM-1,” Biochem. Biophys. Acta 1131:108-110 91992).
Kitajima et al., “Ablation of Transplanted HTLV-I Tax-Transformed Tumors in Mice by Antisense Inhibition of NF-κB,” Science 258:1792-1795 (1992).
Klagsbrun and Edelman, “Biological and Biochemical Properties of Fibroblast Growth Factors,” Arteriosclerosis 9:269-278 (1989).
Koizumi et al., “Ribozymes Designed to Inhibit Transformation of NIH3T3 Cells by the Activated c-Ha-ras Gene,” Gene 117:179 (1992).
Komuro et al., “Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells,” FEBS Letters 238:249-252 (1988).
Kunapuli et al., “Molecular Cloning of Human Angiotensinogen cDNA and Evidence for the Presence of Its mRNA in Rat Heart—DNA Sequence,” Cir. Res. 60:786-790 (1987).
Kunsch and Rosen, “NF-κB and Subunit-Specific Regulation of the Interleukin-8 Promoter,” Mol. Cell. Biol. 13:6137-6146 (1993).
La Rosa et al., “Differential Regulation of the c-myc Oncogene Promoter by the NF-κB Rel Family of Transcription Factors,” Mol. Cell. Biol. 14:1039-1044 (1994).
Lenardo and Baltimore, “NF-κB: A Pleiotropic Mediator of Inducible and Tissue Specific Gene Control,” Cell 58:227-229 (1989).
Lieber et al., “Stable High-Level Gene Expression in Mammalian Cells by T7 Phage $NA Polymerase,” Methods Enzymol. 217:47-66 (1993).
L'Huillier et al., “Cytoplasmic Delivery of Ribozymes Leads to Efficient Reduction in α-Lactalbumin mRNA Levels in C1271 Mouse,” Embo J. 11:4411-4418 (1992).
Lindner and Reidy, “Proliferation of Smooth Muscle Cells After Vascular Injury Is Inhibited by an Antibody Against Basic Fibroblast Growth Factor,” Proc. Natl. Acad. Sci. USA 88:3739-3743 (1991).
Lisziewicz et al., “Inhibition of Human Immunodeficiency Virus Type 1 Replication by Regulated Expression of a Polymeric Tat Activation Response RNA Decoy as a Strategy for Gene Therapy in AIDS,” Proc. Natl. Acad. Sci. U.S.A. 90:8000-8004 (1993).
Liu et al., “Specific NF-κB Subunits Act in Concert with Tat To Stimulate Human Immunodeficiency Virus Type I Transcription,” J. Virology 66:3883-3887 (1992).
Majello et al., “Human c-myb Protooncogene: Nucleotide Sequence of cDNA and Organization of the Genomic Locus,” Proc. Natl. Acad. Sci. USA, 83:9636-9640 (1986).
Mamone et al., “Design of Hammerhead Ribozymes Targeted to Sequences in HIV, HSV and the RAT ANF Gene,” Abstract of Keystone, CO (May 27, 1992).
McGrath et al., “Structure and Organization of the Human Ki-ras Protooncogene And a Related Processed Pseudogene,” 304:501-506 (1983).
Melani et al., “Inhibition of Proliferation by c-myb Antisense Oligodeoxynucleotide in Colon Adenocarcinoma Cell Lines that Express c-myb,” Cancer Res. 51:2897-2901 (1991).
Minvielle et al., “A Novel Calcitonin Carboxyl-Terminal Peptide Produced in Medullary Thyroid Carcinoma by Alternative RNA Processing of the Calcitonin-Calcitonin Gene-Related Peptide Gene,” J. Biol. Chem. 266:24627-24631 (1991).
Nabel et al., “Site-Specific Gene Expression in Vivo by Direct Gene Transfer Into the Arterial Wall,” Science 249:1285-1288 (1990).
Nabel et al., “Recombinant Platelet-Derived Growth Factor B Gene Expression in Porcine Arteries Induces Intimal Hyperplasia In Vivo,” J. Clin. Invest. 91:1822-1829 1993).
Narayanan et al., “Evidence for Differential Functions of the p50 and p65 Subunits of NF-κB with a Cell Adhesion Model,” Mol. Cell. Biol. 13:3802-3810 (1993).
O'Brien et al., “Vascular Cell Adhesion Molecule-1 is Expressed in Human Coronary Atherosclerotic Plaques,” J. Clin. Invest. 92:945-951 (1993).
Ohno et al., “Gene Therapy for Vascular Smooth Muscle Cell Proliferation After Arterial Injury,” Science 265:781-784 (1994).
Ohkawa et al., Nucleic Acids Symp. Ser. 27:15-6 (1992).
Ojwang et al., “Inhibition of Human Immunodeficiency Virus Type 1 Expression by a Hairpin Ribozyme,” Proc. Natl. Acad. Sci. USA 89:10802-10806 (1992).
Pavco et al., “Regulation of Self-Splicing Reactions by Antisense RNA,” Abstract of Keystone, CO (May 27, 1992).
Perkins et al., “Distinct combinations of NF-κB subunits determine the specificity of transcriptional activation,” Proc. Natl. Acad. Sci. USA 89:1529-1533 (1992).
Perreault et al., “Mixed Deoxyribo- and Ribo-Oligonucleotides with Catalytic Activity,” Nature 344:565-568 (1990).
Perrotta and Been, “Cleavage of Oligoribonucleotides by a Ribozyme Derived from the Hepatitis δ Virus RNA Sequence,” Biochemistry 31:16 (1992).
Pieken et al., “Kinetic Characterization of Ribonuclease-Resistant 2′-Modified Hammerhead Ribozymes,” Science 253:314-317 (1991).
Popoma et al., “Clinical Trials of Restenosis After Coronary Angioplasty,” Circulation 84:1426-1436 (1991).
Raines et al., “Interleukin-1 Mitogenic Activity for Fibroblasts and Smooth Muscle Cells Is Due to PDGF-AA,” Science 243:393-396 (1989).
Raschella et al., “Inhibition of Proliferation by c-myb Antisense RNA and Oligodeoxynucleotides in Transformed Neuroectodermal Cell Lines,” Cancer Res. 52:4221-4226 (1992).
Ratajczak et al., “In Vivo Treatment of Human Leukemia in a scid Mouse Model With c-myb Antisense Oligodeoxynucleotides,” Proc. Natl. Acad. Sci. USA 89:11823-11827 (1992).
Ray and Prefontaine, “Physical association and functional antagonism between the p65 subunit of transcription factor NF-κB and the glucocorticoid receptor,” Proc. Natl. Acad. Sci. USA 91:752-756 (1994).
Read et al., “NF-κB and IκBα: An Inducible Regulatory System in Endothelial Activation,” J. Exp. Med. 179:503-512 (1994).
Riessen et al., “Arterial Gene Transfer Using Pure DNa Applied Directly to a Hydrogel-Coated Angioplasty Balloon,”Human Gene Therapy 4:749-758 (1993).
Ross et al., “A Platelet-Dependent Serum Factor That Stimulates the Proliferation of Arterial Smooth Muscle Cells In Vitro,” Proc. Natl. Acad. Sci. USA 71:1207-1210 (1974).
Roessler et al., “Adenovirus-mediated Gene Transfer to Rabbit Synovium In Vivo,” J. Clin. Invest. 92;1085-1092 (1993).
Rossi et al., J. Cell Biochem. Suppl 14A:D428 (1990).
Rossi et al., “Ribozymes as Anti-HIV-1 Therapeutic Agents: Principles, Applications, and Problems,” Aids Research and Human Retroviruses 8:183 (1992).
Ruben et al., “Isolation of a rel-related human cDNA that potentially encodes the 65-kD subunit of NF, kappba B,” Science 251:5000 (1991).
Ruben et al., “Isolation of a rel-related human cDNA that potentially encodes the 65-kD subunit of NF, kappba B,” Science 254:5028 (1991).
Ruben et al., Genes & Development 6:745-760 (1992).
Sarver et al., “Ribozymes as Potential Anti-HIV-1 Therapeutic Agents,” Science 247:1222-1225 (1990).
Sarver et al., “Catalytic RNAs (Ribozymes): A New Frontier in Biomedical Applications,” AIDS Res. Revs. 2:259 (1992).
Saville and Collins, “A Site-Specific Self-Cleavage Reaction Performed by a Novel RNA In Neurospora Mitochondria,” Cell 61:685-696 (1990).
Saville and Collins, “RNA-Mediated Ligation of Self-Cleavage Products of a Neurospora Mitochondrial Plasmid Transcript,” Proc. Natl. Acad. Sci. USA 88:8826-8830 (1991).
Scanlon et al., “Ribozyme-Mediated Cleavage of c-fos mRNA Reduces Gene Expression of DNA Synthesis Enzymes and Metallothionein,” Proc. Natl. Acad. Sci. USA 88:10591-10595 (1991).
Scaringe et al., “Chemical synthesis of biologically active oligoribonucleotides using β-cyanoethyl protected ribonucleoside phosphoramidites,” Nucl Acids Res. 18:5433-5441 (1990).
Semba, “A v-erbB-Related Protooncogene, C-erB-2, Is Distinct From the c-erbB-1/Epidermal Growth Factor-Receptor Gene and Is Amplified in A Human Salivary Gland Adenocarcinoma,” Proc. Natl. Acad. Sci. USA 82:6497-6501 (1985).
Seth et al., “Mechanism of Enhancement of DNA Expression Consequent to Cointernalization of a Replication-Deficient Adenovirus and Unmodified Plasmid dDNA,” J. Virol., 68:933-940 (1994).
Sessa et al., “Molecular Cloning and Expression of a cDNA Encoding Endothelial Cell Nitric Oxide Synthase,” J. Biol. Chem. 267:15274-15276 (1992).
Shi et al., “Downregulation of c-myc Expression by Antisense Oligonucleotides Inhibits Proliferation of Human Smooth Muscle Cell,” Circulation 88:1190-1195 (1993).
Shu et al., “Differential Regulation of Vascular Cell Adhesion Molecule 1 Gene Expression by Specific NF-κB Subunits in Endothelial and Epithelial Cells,” Mol. Cell. Biol. 13:6283-6289 (1993).
Simons et al., “Antisense c-myb Oligonucleotides Inhibit Intimal Arterial Smooth Muscle Cell Accumulation in vivo,” Nature 359:67-70 (1992).
Simons et al., “Relation Between Activated Smooth Muscle Cells in Coronary-Artery Lesions and Restenosis After Atherectomy,” New Engl. J. Med. 328:608-613 (1993).
Simmons et al., “ICAM, an adhesion ligand of LFA-1 is homologous to the neural cell adhesion molecule NCAM,” Nature 331:624-627 (1988).
Sioud and Drulica, “Prevention of Human Immunodeficiency Virus Type 1 Integrase Expression in Escherichia coli by a Ribozyme,” Proc. Natl. Acad. Sci. USA 88:7303 (1991).
Sjolund et al., “Arterial Smooth Muscle Cells Express Platelet-Derived Growth Factor (PDGF) A Chain mRNA, Secrete a PDGF-Like Mitogen, and Bind Exogenous PDGF in a Phenotype- and Growth State-Dependent Manner,” J. Cell. Biol. 106:403-413 (1988).
Slamon et al., “Studies of the Human c-myb Gene and its Products in Human Acute Leukemias,” Science 233:3467-351 (1986).
Slamon et al., “Expression of Cellular Oncogenes in Human Malignancies,” Science 224:256-262 (1984).
Stull and Szoka, “Antigene, Ribozyme and Aptamer Nucleic Acid Drugs: Progress and Prospects,” Pharmaceutical Research 12:465-483 (1995).
Taira et al., “Construction of a novel RNA-transcript-trimming plasmid which can be used both in vitro and in place of run-off and (G)-free transcriptions and in vivo as multi-sequences transcription vectors,” Nucleic Acids Research 19:5125-30 (1991).
Ten Dijke et al., “Recombinant Transforming Growth Factor Type Beta-3 Biological Activities and Receptor-Binding Properties in Isolated Bone Cells,” Mol. Cell Biol. 10:4473-4479 (1990).
Tessler et al, “Basic Fibroblast Growth Factor Accumulates in the Nuclei of Vairous BFGF-Producing Cell Types,” J. Cell. Physiol. 145:310-317 (1990).
Thiele et al., “Regulation of c-myb Expression in Human Neuroblastoma Cells During Retinoic Acid-Induced Differentiation,” Mol. Cell. Biol. 8:1677-1683 (1988).
Torelli et al., “Expression of c-myb Protooncogene and Other Cell Cycle-Related Genes in Normal and Neoplastic Human Colonic Mucosa,” Cancer Res. 47:5266-5269 (1987).
Uhlenbeck, “A Small Catalytic Oligoribonucleotide,” Nature 327:596-600 (1987).
Usman and Cedergren, “Exploiting the chemical synthesis of RNA,” Trends in Biochem. Sci. 17:334-339 (1992).
Usman et al.,“Automated Chemical Synthesis of Long Oligoribonucleotides Using 2′-O-Silylated Ribonucleoside 3′-O-Phosphoramidtes on a Controlled-Pore Glass Support: Synthesis of a 43-Nucleoside Sequence Similar to the 3′-Half Molecule of an Escherichia coli Formylmethoionine tRNA,” J. Am. Chem. Soc. 109:7845-7854 (1987).
van de Stolpe et al., “12-O-Tetradecanoylphorbol-13-acetate- and Tumor Necrosis Factor α-meidated Induction of Intercellular Adhesion Molecule-1 Is Inhibited by Dexamethasone,” J. Biol. Chem. 269:6185-6192 (1994).
Ventura et al., “Activation of HIV-Specific Ribozyme Activity by Self-Cleavage,” Nucleic Acids Res. 21:3249-55 (1993).
Weerasinghe et al., “Resistance to Human Immunodeficiency Virus Type 1 (HIV-1) Infection in Human CD4+ Lymphocyte-Derived Cell Lines Conferred by Using Retroviral Vectors Expressing and HIV-1 RNA-Specific Ribozyme,” Journal of Virology 65:5531-4 (1994).
Weiser et al., “The Growth-Related Transcription Factor OCT-1 is Expressed as a Function of Vascular Smooth Muscle Cell Modulation,” J. Cell. Biochem. S18A:282 (1994).
Westin et al., “Alternative Splicing of the Human c-myb Gene,” Oncogene 5:1117-1124 (1990).
Willard et al., Circulation 86:I-473 (1992).
Woolf et al., “Specificity of Antisense Oligonucleotides in vivo,” Proc. Natl. Acad. Sci. USA 89:7305-7309 (1992).
Yu et al., “A Hairpin Ribozyme Inhibits Expression of Diverse Strains of Human Immunodeficiency Virus Type 1,” Proc. Natl. Acad. Sci. U S A 90:6340-6344 (1993).
Zenke et al., “Receptor-mediated Endocytosis of Transferrin-Polycation Conjugates: An Efficient Way to Introduce DNA into Hematopoietic Cells” (Abstract), Proc. Natl. Acad. Sci. USA 87:3655-3659 (1990).
Zhou et al., “Synthesis of Function mRNA in Mammalian ells by Bacteriophage T3 RNA Polymerse,” Mol. Cell. Biol. 10:4529-4537 (1990).
Continuations (1)
Number Date Country
Parent 08/291932 Aug 1994 US
Child 08/777916 US
Continuation in Parts (2)
Number Date Country
Parent 08/245466 May 1994 US
Child 08/291932 US
Parent 07/987132 Dec 1992 US
Child 08/245466 US