Selective layer formation using deposition and removing

Information

  • Patent Grant
  • 11804373
  • Patent Number
    11,804,373
  • Date Filed
    Friday, September 23, 2022
    2 years ago
  • Date Issued
    Tuesday, October 31, 2023
    a year ago
Abstract
Methods and systems for selectively depositing dielectric films on a first surface of a substrate relative to a passivation layer previously deposited on a second surface are provided. The methods can include at least one cyclical deposition process used to deposit material on the first surface while the passivation layer is removed, thereby preventing deposition over the passivation layer.
Description
BACKGROUND
Field

The present disclosure relates generally to the field of semiconductor device manufacturing and, more particularly, to selective formation of layers employing deposition and removal of films.


Description of the Related Art

In the semiconductor industry, there is an increasing need for selective processes. For example, film growth may be desired on one surface but not on a second, different surface. These two different surfaces can comprise different materials, for example a metal and a dielectric. Good selective processes could reduce the number process steps by avoiding more complicated processes for separate patterning of the deposited material, such as photolithographic masking and patterning, thus saving time and money.


SUMMARY

In one aspect a method is provided for an atomic layer deposition (ALD) process for selectively forming a dielectric material on a first surface of a patterned substrate. The method includes providing a substrate comprising a first surface and a second surface, wherein the second surface comprises a passivation layer thereover. The method further includes conducting at least one deposition cycle comprising alternately and sequentially contacting the substrate with a first precursor and a second reactant comprising oxygen. The method further includes wherein the second reactant reacts with the first precursor to form a dielectric material on the first surface, and wherein the passivation layer is ashed by the second reactant during each deposition cycle.


In some embodiments, the method for an ALD process further includes wherein the first surface is a dielectric surface. In some embodiments, the dielectric surface comprises silicon oxide. In some embodiments, the first surface comprises a low-k material. In some embodiments, the second surface is a metal surface. In some embodiments, the metal surface comprises at least one of Co, Cu or W. In some embodiments, the dielectric material is an oxide. In some embodiments, the oxide is silicon oxide. In some embodiments, the oxide is a metal oxide.


In some embodiments, the first precursor comprises a metal precursor, a silicon precursor, or mixtures thereof. In some embodiments, the first precursor is an alkylaminosilane.


In some embodiments, the passivation layer comprises an organic material. In some embodiments, the passivation layer is selectively deposited on the second surface relative to the first surface prior to beginning the first deposition cycle. In some embodiments, the deposition cycle is repeated a plurality of times to form an oxide film of a desired thickness on the dielectric surface. In some embodiments, additional passivation layer is selectively deposited on the passivation layer between the beginning and end of each deposition cycle.


In some embodiments, the ALD process is a plasma enhanced atomic layer deposition (PEALD) process. In some embodiments, the at least one deposition cycle begins with contacting the substrate with the second reactant before contact with the first precursor. In some embodiments, the at least one deposition cycle further comprises contacting the substrate with at least one additional reactant in each cycle. In some embodiments, the second reactant further comprises plasma. In some embodiments, contacting the substrate with the second reactant further comprises activating the second reactant with plasma.


In some embodiments, the dielectric material is selectively formed on the first surface relative to the passivation layer. In some embodiments, the dielectric material is formed on the passivation layer and the dielectric material is removed from the passivation layer with the ashing of the passivation layer, thereby selectively forming the dielectric material on the first surface.


In another aspect a cyclical deposition process is provided for selectively a forming a material on a surface of a patterned substrate. The method includes providing a substrate comprising a first surface and a second surface, wherein the second surface comprises a passivation layer thereover. The method further includes conducting at least one deposition cycle comprising alternately and sequentially contacting the substrate with a first precursor and a second reactant. The second reactant reacts with the first precursor to form the material on the first surface, and the passivation layer is etched by the second reactant during each deposition cycle.


In some embodiments, the process comprises atomic layer deposition (ALD). In some embodiments, the process comprises plasma enhanced ALD (PEALD). In some embodiments, the second reactant comprises plasma-activated species. In some embodiments, the second reactant comprises oxygen, the passivation layer comprises an organic layer, and etching comprises ashing. In some embodiments, the passivation layer comprises a polymer.


In some embodiments, deposition is halted before the etching of the passivation layer exposes the second surface. In some embodiments, the method includes further depositing additional passivation layer over the second surface after halting the deposition and prior to continuing the deposition.


In another aspect a plasma enhanced atomic layer deposition (PEALD) process is provided for selectively forming an oxide material on a first dielectric surface of a patterned substrate. The method includes providing a substrate comprising a first dielectric surface and a second metallic surface, wherein the second metallic surface comprises an organic passivation layer thereover. The method further includes conducting at least one deposition cycle comprising alternately and sequentially contacting the substrate with a first precursor and a second reactant comprising oxygen and plasma. The second reactant reacts with the first precursor to form an oxide material on the first dielectric surface, and the organic passivation layer is ashed by the second reactant during each deposition cycle.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a flow diagram illustrating a selective deposition process for depositing a material on a first surface while reducing the thickness of a passivation layer over a second surface.



FIG. 1B is a flow diagram illustrating a selective deposition process for depositing a material on a first surface while reducing the thickness of a passivation layer selectively deposited over a second surface.



FIG. 2 is a graph of some embodiments showing the thickness of a polyimide layer versus the number of cycles of oxidation performed, wherein a passivation ash rate is calculated.



FIG. 3 illustrates the selective deposition of a material on a first surface of a substrate by a cyclical deposition process, while the cyclical deposition process removes a passivation layer over a second surface.





DETAILED DESCRIPTION

Dielectric films, such as metal oxide or silicon oxide (e.g., SiO) films, have a wide variety of applications, as will be apparent to the skilled artisan, for example in integrated circuit fabrication. According to some embodiments of the present disclosure, various dielectric films, particularly oxide films, precursors, and methods for depositing such films are provided.


In some embodiments, a material is formed on a first surface of a substrate relative to a second surface by a selective deposition process. In some embodiments, the material is an oxide material. In some embodiments, a dielectric film is formed selectively using a cyclical deposition process on a dielectric surface of a substrate relative to a passivation layer on a metal surface.


For example, FIG. 1A is a flow diagram 100 illustrating a selective deposition process of depositing a material on a first surface while reducing the thickness of a passivation layer over a second surface. In the first illustrated block 102 a substrate with a first surface and a second surface is provided, wherein the second surface comprises a passivation layer thereover. In block 104 the substrate is contacted with a first reactant, and in block 106 the substrate is contacted with a second reactant. In some embodiments, blocks 104 and 106 are performed alternately and sequentially. In illustrated decision block 108, the substrate may be repeatedly exposed to the first and second reactants in blocks 104 and 106 until a material of sufficient thickness is formed. In some embodiments, a sufficiently thick material is formed and therefore blocks 104 and 106 are not repeated. In some embodiments, a sufficiently thick material is not formed and therefore blocks 104 and 106 are repeated, and the repetition of blocks 104 and 106 is referred to as a cyclical deposition process. Blocks 104 and 106 need not be in the same sequence nor identically performed in each repetition. In some embodiments, blocks 104 and 106 are performed consecutively. In some embodiments, blocks 104 and 106 are separated by one or more intermittent processes. In some embodiments, the repetition of blocks 104 and 106 are performed consecutively. In some embodiments, the repetition of blocks 104 and 106 is separated by one or more intermittent processes. In some embodiments, intermittent processes may be selected from at least one of excess reactant and byproduct removal (e.g., vacuum and/or inert gas purge), selective deposition of an additional passivation layer, additional clean up etch, repeated exposure of the same reactant prior to exposure of another reactant, and/or exposure to an additional reactant in some or all cycles. Intervening removal of excess reactant and byproduct aids in separating the supply of different reactants to minimize risk of gas phase interaction and limit the deposition reactions to surface reactions. Skilled artisans will appreciate that some interactions with residual gases may be tolerated in order to minimize duration of the intervening removal (e.g., purge) steps. Avoiding overlap in the supply of reactants to the reaction space typically reduces gas phase reactions sufficiently, and optimization of flow paths together with intervening purging can further minimize residual gas interactions. Once a desired material is thickness is formed, the selective deposition process is completed in block 110, where the material is selectively obtained on a first surface and a passivation layer with a reduced thickness is obtained on the second surface. Reactants can be precursors that leave one or more elements in the deposited film. In some embodiments, one or more reactants can serve to chemically reduce, oxidize or getter products of the deposited material.


Similar to FIG. 1A, FIG. 1B is an example flow diagram 200 illustrating the selective deposition of a material on a first surface while reducing the thickness of a passivation layer, however FIG. 1B includes selectively forming a passivation layer on a second surface. It is to be understood that any of the same or similar features or functions discussed with regard to FIG. 1A may also be applied to the same or similar features or functions of FIG. 1B. In the first illustrated block 202 a passivation layer is selectively formed on a second surface of a substrate relative to a first surface. In block 204 the substrate is contacted with a first reactant, and in block 206 the substrate is contacted with a second reactant. In illustrated decision block 208, a sufficiently thick material may be formed and therefore the material is selectively obtained on the first surface with a passivation layer of a reduced thickness as shown in block 212. If a sufficiently thick material is not yet formed and if the passivation layer is not at risk of being fully consumed by exposure to the reactants, decision block 210 illustrates that the substrate may be repeatedly and alternately exposed to the first and second reactants in blocks 204 and 206. Alternatively, if the passivation layer is at risk of being fully consumed by exposure to the reactants, decision block 210 illustrates that first illustrated block 202 may be repeated where a passivation layer is selectively formed on a second surface of a substrate relative to a first surface before the substrate is exposed to the first and second reactants in blocks 204 and 206.


In some embodiments, the cyclical deposition process is atomic layer deposition (ALD). In some embodiments, the cyclical deposition process is cyclical chemical vapor deposition (CVD). In some embodiments, the passivation layer was previously deposited on the second surface (for example, the metal surface). In some embodiments, the passivation layer is partially removed during the cyclical deposition process. During an ALD process, for example, the passivation layer may be slowly removed, such as by etching, during ALD phases. For example, for an organic (e.g., polymer) passivation layer, etching (e.g., ashing) may be accomplished during deposition phases in which oxidants are supplied, while simultaneously a dielectric film is deposited on the dielectric surface. In another example, a passivation layer is simultaneously removed while an oxide material is deposited on the dielectric surface during exposure of the substrate to a second reactant in the ALD process. The slow etching of the passivation layer may prevent deposition of the dielectric on the passivation layer and on the metal.


In some embodiments, the ALD process may be a plasma enhanced atomic layer deposition process (PEALD). In some embodiments, plasma power is provided to generate more reactive species from reactants containing oxygen. In some embodiments, reactant containing oxygen comprises O2 gas, which is subjected to plasma generating power. In some embodiments, the plasma may be generated remotely from the deposition chamber and plasma products supplied to the deposition chamber. In some remote plasma embodiments, the delivery path optimizes delivery of neutral O species while minimizing ion delivery to the substrate. In some embodiments, the plasma may be generated in situ within the deposition chamber.


In some embodiments, the first surface of the substrate comprises a dielectric surface. In some embodiments, the dielectric surface of the substrate comprises a silicon oxide (e.g., SiO2). In some embodiments, the dielectric surface of the substrate comprises a low-k material.


In some embodiments, the second surface comprises a metal surface. Unless otherwise indicated, if a surface is referred to as a metal surface herein, it may be a metal surface or a metallic surface. In some embodiments the metal or metallic surface may comprise metal, metal oxides, and/or mixtures thereof. In some embodiments the metal or metallic surface may comprise surface oxidation. In some embodiments the metal or metallic material of the metal or metallic surface is electrically conductive with or without surface oxidation. In some embodiments metal or a metallic surface comprises one or more transition metals. In some embodiments the metal or metallic surface comprises one or more of Al, Cu, Co, Ni, W, Nb, Fe. In some embodiments the metal or metallic surface comprises at least one of Co, Cu or W. In some embodiments the metal or metallic surface comprises one or more noble metals, such as Ru. In some embodiments the metal or metallic surface comprises a conductive metal oxide, nitride, carbide, boride, or combination thereof. For example, the metal or metallic surface may comprise one or more of RuOx, NbCx, NbBx, NiOx, CoOx, NbOx and WNCx. In some embodiments the substrate may comprise a metal nitride, including, but not limited to TiN and/or TaN. In some embodiments the metal surface may comprise a metal carbide, including, but not limited to TiC and/or TaC. In some embodiments the metal surface may comprise a metal chalcogenide, including, but not limited to MoS2, Sb2Te3, and/or GeTe. In some embodiments the metal surface is a TiN surface. In some embodiments the metal surface is a W surface.


Selectivity


Selectivity can be given as a percentage calculated by [(deposition on first surface)-(deposition on second surface)]/(deposition on the first surface). Deposition can be measured in any of a variety of ways. In some embodiments deposition may be given as the measured thickness of the deposited material. In some embodiments deposition may be given as the measured amount of material deposited.


In some embodiments selectivity is greater than about 10%, greater than about 50%, greater than about 75%, greater than about 85%, greater than about 90%, greater than about 93%, greater than about 95%, greater than about 98%, greater than about 99% or even greater than about 99.5%. In embodiments described herein, the selectivity can change over the duration or thickness of a deposition.


In some embodiments deposition of the dielectric, such as an oxide, only occurs on the first dielectric surface and does not occur on the passivation layer over the second metal surface. In some embodiments deposition on the first surface of the substrate relative to the passivation layer is at least about 80% selective, which may be selective enough for some particular applications. In some embodiments the deposition on the first surface of the substrate relative to the passivation layer is at least about 50% selective, which may be selective enough for some particular applications. In some embodiments the deposition on the first surface of the substrate relative to the passivation layer is at least about 10% selective, which may be selective enough for some particular applications.


In some embodiments the passivation layer may be selectively formed on the metal surface prior to selective deposition of the dielectric material on the dielectric surface. For example, in some embodiments, a passivation layer may be blanket deposited on a patterned substrate, and patterned and etched by traditional processes to leave the passivation layer selectively where the subsequent deposition is to be avoided, such as over a metal surface. In other embodiments, a passivation layer may be selectively deposited on a metal layer. Selective deposition of a passivation layer may be carried out, for example, as described below, and as described in US Patent Publication No. 2017-0352533 A1 (application Ser. No. 15/170,769) or US Patent Publication No. 2017-0352550 A1 (application Ser. No. 15/486,124), the entire disclosure of each of which is incorporated by reference herein in its entirety.


As noted above, the selective formation of the passivation layer over metal surfaces need not be 100% selective in order to achieve 100% selectivity. For example, the passivation layer deposition may be partially selective such that it is formed to be thicker over the metal surface than over the dielectric surface. A subsequent short, timed etch of the passivation material may be conducted for a duration to expose the dielectric surface while leaving some passivation layer covering the metal surface.


ALD Process


According to some embodiments, a dielectric film is deposited on a first surface of a substrate with an oxygen based ALD process. In some embodiments, the deposited dielectric film may be, for example, silicon oxide (e.g., SiO2) or other metal oxide that can be grown with a PEALD process. In some embodiments, the deposited dielectric film can comprise SiO2, TiO2, ZrO2, HfO2, Nb2O5, Ta2O5, WO3, NiO and combinations thereof. The second surface of the substrate may be covered by a passivation layer. In some embodiments, the passivation layer is an organic layer. The organic passivation layer may be a polymer, such as polyimide or polyamide.


In some embodiments, an oxide material film is deposited on a first surface of a substrate with an oxygen based ALD process. In some embodiments, the deposited oxide material film may be a conductive oxide film. For example, in some embodiments the conductive oxide film is an indium tin oxide (ITO) film. In some embodiments, the deposited oxide material film may be a dielectric film, as described herein.


In some embodiments, the passivation layer inhibits oxide material film and/or dielectric film deposition there. However, in some embodiments, the passivation layer does not inhibit deposition of the oxide material film or dielectric film, that is, the oxide material film or dielectric film chemistry may not be selective as between the underlying dielectric substrate surface and the passivation layer. This is due to the fact that conditions are selected to ensure some removal of the passivation layer during the ALD process, thus undercutting and removing any deposition of the oxide material film or dielectric film over the passivation layer. As the passivation layer is sacrificial, the passivation layer is slowly removed (e.g., etched) during one of the cyclical deposition phases. For example, in an ALD sequence, an organic (e.g., polymer) passivation layer may be slowly ashed by an oxidant phase of the ALD sequence, which prevents oxide material film or dielectric film growth on the passivation layer. In another example, in an ALD sequence, a passivation layer is removed during exposure of the substrate to a second reactant in the ALD process, which prevents oxide material film or dielectric film growth on the passivation layer. Relative to the growth over the passivation layer, the oxide material film or dielectric film is deposited normally (non-selectively, or with low selectivity) on the dielectric surface. Regardless of whether the oxide material film or dielectric material is deposited normally or selectively on the dielectric surface, slowly etching (e.g., ashing) the sacrificial passivation layer by an oxidant phase of the ALD sequence has the end effect of selectively forming the oxide material film or dielectric material on the dielectric substrate relative to the passivation layer. Thus, using the process of FIG. 1A or 1B can effectively increase selectivity of the formation of the oxide material film or dielectric film.


In some embodiments, before deposition of the oxide material film or dielectric film is performed but after the passivation layer is formed, any passivation layer remaining on the dielectric surface can be removed with a plasma pretreatment with suitable parameters. In some embodiments, rather than a separate process to remove any passivation material from over the dielectric surface, any passivation layer remaining on the dielectric surface is removed by initial phases of the ALD process, including oxidation phase, or by simply conducting the oxidation phase of the ALD process before initiating the full ALD process wherein after the thinner passivation layer on dielectric is completely ashed the oxide material film or dielectric film deposition process begins. Thus, the ALD sequence may start with the second reactant, including oxidant, to serve for a short timed etch of undesired passivation material from the first surface, without removal of all the passivation material from the second surface, before selective deposition on the first surface.


In some embodiments, the oxidation phase of the ALD process is a plasma process in a PEALD sequence. In some embodiments, the plasma is oxygen based. For example, the plasma may be generated in O2 gas or a mixture of O2 and a noble gas, such as Ar. In some embodiments the plasma may be generated in a gas comprising oxygen, or may otherwise comprise excited oxygen species. In some embodiments, the oxidation phase of the ALD process is a non-plasma oxidation process (e.g., H2O or O3).


In some embodiments plasma, for example oxygen containing plasma, may be generated by applying RF power of from about 10 W to about 2000 W, from about 50 W to about 1000 W, from about 100 W to about 500 W, from about 30 W to 100 W, or about 100 W in some embodiments. In some embodiments the RF power density may be from about 0.02 W/cm2 to about 2.0 W/cm2, or from about 0.05 W/cm2 to about 1.5 W/cm2. The RF power may be applied to a reactant that flows during the plasma contacting time, that flows continuously through the reaction chamber, and/or that flows through a remote plasma generator. Thus in some embodiments the plasma is generated in situ, while in other embodiments the plasma is generated remotely. In some embodiments a showerhead reactor is utilized and plasma is generated in situ between a susceptor (on top of which the substrate is located) and a showerhead plate. In some embodiments the gap between the susceptor and showerhead plate is from about 0.1 cm to about 20 cm, from about 0.5 cm to about 5 cm, or from about 0.8 cm to about 3.0 cm.


The thickness of the oxide film that can be formed on dielectric surface before the passivation layer is completely removed depends on the passivation layer initial thickness, ash rate of the passivation layer, and the growth rate of the oxide deposition process. For example, FIG. 2 demonstrates that with an ash rate of ˜0.2 Å/cycle, a 20 nm sacrificial polyimide layer on a metal surface, and a growth per cycle (GPC) of 1 Å/cycle, 50 nm of SiO2 may be deposited on a dielectric surface by applying 500 cycles of the oxygen based PEALD process. FIG. 2 shows the ash rate of polyimide when exposed to oxidant phases in which argon is supplied at 700 sccm, O2 is supplied at 100 sccm, pressure is kept at 2 Torr, plasma power is set to 100 W, substrate temperature is maintained at 100° C., and each oxidant phase includes 1 second of O2 plasma and 1 second of purge. The PEALD would include one phase of the above oxidant phase alternated with supply of a silicon precursor and purge, where the silicon precursor is selected for adsorption on the dielectric or growing silicon oxide film and to react with the oxidant phases to form silicon oxide. In other embodiments, oxidant phases can be alternated with a supply of one or more metal precursor phase(s) and attendant purge phase(s), where the metal precursor is selected to adsorb on the dielectric surface or the growing metal oxide film and to react to with the oxidant phases to form the desired oxide.


In some embodiments, optimization of the etch rate of the sacrificial passivation layer can be tuned so that growth of the oxide material film or dielectric film does not result in net deposition on the passivation layer during the ALD process. In some embodiments, the incubation time for deposition on the passivation layer is sufficiently long enough that a desired oxide layer thickness is deposited on the dielectric surface. In some embodiments a thick enough passivation layer is formed over the metal surface such that a sufficiently thick oxide film may be deposited over the dielectric surface using the ALD process without further depositing another passivation film layer, i.e., without fully consuming the initial passivation layer.


In some embodiments, a selective passivation layer deposition and the selective ALD process are performed in an iterative manner, for example such using the process described in FIG. 1B. This iterative process may enable the thickness of the passivation layer to be replenished after the ALD process is performed, therefore allowing subsequent ALD processes to be performed. For example, if the passivation layer is ashed away in 100 cycles or if the incubation on passivation layer is 100 cycles before the deposited oxide begins to form on the passivation layer faster than it can be removed by undercutting, 90 cycles of a first ALD process may be performed to selectively deposit the oxide on the dielectric surface, deposition of a subsequent passivation layer over the previous passivation layer may be performed, and a second 90 cycles of the ALD process may be performed. In some embodiments, this iterative process may be repeated as many times as desired to obtain a desired oxide layer thickness on the dielectric surface. A person of ordinary skill in the art would appreciate that the number of iterative processes necessary would vary depending on a number of factors such as, for example, the thickness of the deposited oxide desired, the thickness of the passivation layer, and the ash rate or incubation period of the passivation layer.


In some embodiments, the PEALD deposition may be carried out essentially as described above. In other embodiments, the substrate is alternately and sequentially contacted with a first reactant comprising elements to be included in the deposited material, such as a metal or silicon, and a second reactant comprising oxygen, and a second plasma reactant. In some embodiments the second plasma reactant does not comprise oxygen species. In some embodiments no reactants comprising oxygen species are used other than the second reactant. The plasma and precursors (i.e. the first and second reactants) may be provided in pulses separated by a removal process (e.g., purge) in which excess reactant and reaction byproducts, if any, are removed from the reaction space. In some embodiments, a PEALD deposition process begins with the plasma pulse followed by the precursors, and the reaction sequence, or deposition cycle, may be repeated a desired number of times (A):

A×(plasma pulse/purge/precursors/purge)


In some embodiments the deposition cycle begins with the non-plasma precursors, which is then followed by the plasma pulse.


According to some embodiments, PEALD processes utilized may be any suitable oxygen based plasma processes. In some embodiments, the deposited dielectric film is an oxide film. In some embodiments, the deposited dielectric film is a metal oxide film. In some embodiments, the deposited dielectric film may be selected from the group consisting of SiO2, TiO2, ZrO2, HfO2, Nb2O5, Ta2O5, WO3 and NiO. In some embodiments, the deposited dielectric film is silicon oxide. In some embodiments, an oxide precursor is an alkylaminosilane, which is used to deposit silicon oxide films.


In some embodiments, an oxide film is selectively formed on a first dielectric surface of a substrate relative to a second, different metal or metallic surface of the substrate by an oxygen-based PEALD process. For example, silicon oxide may be selectively deposited by oxygen-based PEALD on a low-k dielectric surface (e.g., silicon oxide-based surface) relative to a metal surface.



FIG. 3 shows a schematic of some embodiments, wherein a substrate 302 comprises a first surface of a first structure 304 (for example, a dielectric surface of a dielectric layer) and a second surface of a second structure 306 that has a different material composition (for example, a metal surface of a metal layer, such as a cobalt, copper or tungsten surface) further comprising an initial passivation layer 308A having a first thickness (for example, 20 nm of a polyimide organic layer), in which a material 312 is selectively deposited on the first surface relative to the second surface (due to selectively relative to the overlying initial passivation layer 308A). In some embodiments the selectively deposited material 312 is an oxide material. In some embodiments, the oxide material is a dielectric material. In examples described herein, the dielectric oxide is a film of silicon oxide. As can be seen in FIG. 3, after one or more cycles of a selective deposition process 310 (for example, 500 cycles of an oxygen based PEALD silicon oxide deposition process), the material 312 (for example, 50 nm of SiO) is deposited over the first surface of the first structure 304 and the remaining passivation layer 308B has decreased to a second thickness (for example, 10 nm of a polyimide organic layer). In some embodiments, the selective deposition process halts before all of the initial passivation layer is removed. In some embodiments, after the selective deposition process is completed, the reduced thickness of the remaining passivation layer 308B may be subsequently removed (for example, by ashing) without deposition to expose the second surface of the second structure 306.


In some embodiments, the PEALD process disclosed may accomplish selective formation of silicon oxide or other oxides on dielectric surfaces. In some embodiments, the PEALD process disclosed may accomplish a reduction in the number of steps for forming desired patterns in various device manufacturing process flows, relative to convention patterning processes.


It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. The described features, structures, characteristics and precursors can be combined in any suitable manner. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention. All modifications and changes are intended to fall within the scope of the invention, as defined by the appended claims.

Claims
  • 1. A method of selectively forming a dielectric material on a first surface of a substrate, the method comprising: providing a substrate comprising a first surface and a second surface, wherein the second surface comprises a passivation layer thereover; andconducting a cyclical deposition process to selectively form a dielectric material on the first surface, wherein the cyclical deposition process comprises deposition cycles, wherein at least one deposition cycle of the deposition cycles comprises separately contacting the substrate with a precursor and a reactant to form the dielectric material on the first surface, and wherein passivation of the passivation layer on the second surface is removed during the at least one deposition cycle.
  • 2. The method of claim 1, further comprising depositing additional passivation over the passivation layer between two of the deposition cycles.
  • 3. The method of claim 1, wherein the cyclical deposition process is halted before the second surface is exposed by removal of the passivation of the passivation layer.
  • 4. The method of claim 1, wherein the passivation of the passivation layer on the second surface is removed in each of the deposition cycles of the cyclical deposition process that include contacting the substrate with the reactant.
  • 5. The method of claim 1, further comprising selectively depositing the passivation layer on the second surface relative to the first surface prior to beginning a first deposition cycle of the at least one deposition cycle.
  • 6. The method of claim 1, wherein the dielectric material comprises an oxide film.
  • 7. The method of claim 6, wherein the oxide film is a silicon oxide film.
  • 8. The method of claim 6, wherein the oxide film is a metal oxide film.
  • 9. The method of claim 1, wherein said contacting the substrate with the reactant comprises activating the reactant with plasma.
  • 10. The method of claim 1, wherein the cyclical deposition process is a plasma enhanced atomic layer deposition process.
  • 11. The method of claim 1, wherein the first surface is a dielectric surface and the second surface is a metal surface.
  • 12. The method of claim 11, wherein the metal surface comprises at least one of Co, Cu or W.
  • 13. The method of claim 1, wherein the reactant comprises oxygen.
  • 14. The method of claim 1, wherein the passivation layer comprises a polymer.
  • 15. The method of claim 1, wherein the passivation layer comprises an organic material.
  • 16. The method of claim 1, wherein the at least one deposition cycle begins with contacting the substrate with the reactant before contacting the substrate with the precursor.
  • 17. A plasma enhanced method for selectively forming an oxide material on a dielectric surface of a substrate, the plasma enhanced method comprising: providing a substrate comprising a dielectric surface and a metallic surface, wherein the metallic surface comprises a passivation layer thereover; andconducting deposition cycles to selectively form an oxide material on the dielectric surface, at least one deposition cycle of the deposition cycles comprising separately contacting the substrate with a precursor and a reactant to form the oxide material on the dielectric surface, wherein the reactant comprises oxygen and plasma, and wherein passivation of the passivation layer on the metallic surface is removed by the reactant during the at least one deposition cycle.
  • 18. The plasma enhanced method of claim 17, further comprising depositing passivation material over the metallic surface between a first deposition cycle of the deposition cycles and a last deposition cycle of the deposition cycles.
  • 19. The plasma enhanced method of claim 17, wherein the passivation of the passivation layer is removed in each of the deposition cycles that comprises contacting the substrate with the reactant.
  • 20. The plasma enhanced method of claim 17, wherein the passivation layer comprises a polymer.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 17/113,383, filed Dec. 7, 2020, which is a continuation of U.S. patent application Ser. No. 16/399,328, filed Apr. 30, 2019, now U.S. Pat. No. 10,872,765, which claims priority to U.S. Provisional Patent Application No. 62/666,039, filed May 2, 2018, the disclosures of each of which are incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (284)
Number Name Date Kind
4804640 Kaganowicz Feb 1989 A
4863879 Kwok Sep 1989 A
4948755 Mo Aug 1990 A
5288697 Schrepp et al. Feb 1994 A
5447887 Filipiak et al. Sep 1995 A
5604153 Tsubouchi et al. Feb 1997 A
5633036 Seebauer et al. May 1997 A
5869135 Vaeth et al. Feb 1999 A
5925494 Horn Jul 1999 A
6046108 Liu et al. Apr 2000 A
6416577 Suntola et al. Jul 2002 B1
6455414 Hillman et al. Sep 2002 B1
6482740 Soininen et al. Nov 2002 B2
6586330 Ludviksson et al. Jul 2003 B1
6679951 Soininen et al. Jan 2004 B2
6759325 Raaijmakers et al. Jul 2004 B2
6811448 Paton Nov 2004 B1
6844258 Fair et al. Jan 2005 B1
6858533 Chu et al. Feb 2005 B2
6878628 Sophie et al. Apr 2005 B2
6887795 Soininen et al. May 2005 B2
6921712 Soininen et al. Jul 2005 B2
6958174 Klaus et al. Oct 2005 B1
7041609 Vaartstra May 2006 B2
7067407 Kostamo et al. Jun 2006 B2
7084060 Furukawa et al. Aug 2006 B1
7118779 Verghese et al. Oct 2006 B2
7220669 Hujanen et al. May 2007 B2
7241677 Soininen et al. Jul 2007 B2
7323411 Blosse Jan 2008 B1
7405143 Leinikka et al. Jul 2008 B2
7425350 Todd Sep 2008 B2
7476618 Kilpela et al. Jan 2009 B2
7494927 Kostamo et al. Feb 2009 B2
7595271 White Sep 2009 B2
7611751 Elers Nov 2009 B2
7695567 Fu Apr 2010 B2
7754621 Putkonen Jul 2010 B2
7790631 Sharma et al. Sep 2010 B2
7799135 Verghese et al. Sep 2010 B2
7910177 Li Mar 2011 B2
7914847 Verghese et al. Mar 2011 B2
7927942 Raaijmakers Apr 2011 B2
7951637 Weidman et al. May 2011 B2
7955979 Kostamo et al. Jun 2011 B2
7964505 Khandelwal et al. Jun 2011 B2
8030212 Yang et al. Oct 2011 B2
8084087 Bent et al. Dec 2011 B2
8293597 Raaijmakers Oct 2012 B2
8293658 Shero et al. Oct 2012 B2
8425739 Wieting Apr 2013 B1
8536058 Kostamo et al. Sep 2013 B2
8623468 Lin et al. Jan 2014 B2
8778815 Yamaguchi et al. Jul 2014 B2
8890264 Dewey et al. Nov 2014 B2
8956971 Haukka et al. Feb 2015 B2
8962482 Albertson et al. Feb 2015 B2
8980418 Darling et al. Mar 2015 B2
8993404 Korbrinsky et al. Mar 2015 B2
9067958 Romero Jun 2015 B2
9112003 Haukka et al. Aug 2015 B2
9129897 Pore et al. Sep 2015 B2
9136110 Rathsack Sep 2015 B2
9159558 Cheng et al. Oct 2015 B2
9236292 Romero et al. Jan 2016 B2
9257303 Haukka et al. Feb 2016 B2
9349687 Gates et al. May 2016 B1
9455138 Fukazawa et al. Sep 2016 B1
9490145 Niskanen et al. Nov 2016 B2
9502289 Haukka et al. Nov 2016 B2
9512541 Shimizu et al. Dec 2016 B2
9552979 Knaepen et al. Jan 2017 B2
9679808 Haukka et al. Jun 2017 B2
9754779 Ishikawa et al. Sep 2017 B1
9786491 Suzuki et al. Oct 2017 B2
9786492 Suzuki et al. Oct 2017 B2
9803277 Longrie et al. Oct 2017 B1
9805974 Chen et al. Oct 2017 B1
9816180 Haukka et al. Nov 2017 B2
9895715 Haukka et al. Feb 2018 B2
9911595 Smith et al. Mar 2018 B1
10014212 Chen et al. Jul 2018 B2
10041166 Longrie et al. Aug 2018 B2
10047435 Haukka et al. Aug 2018 B2
10049924 Haukka et al. Aug 2018 B2
10115603 Niskanen et al. Oct 2018 B2
10157786 Haukka et al. Dec 2018 B2
10186420 Fukazawa Jan 2019 B2
10204782 Maes et al. Feb 2019 B2
10316406 Lecordier Jun 2019 B2
10343186 Pore et al. Jul 2019 B2
10373820 Tois et al. Aug 2019 B2
10378105 Yu et al. Aug 2019 B2
10378810 Yu et al. Aug 2019 B2
10428421 Haukka et al. Oct 2019 B2
10443123 Haukka et al. Oct 2019 B2
10453701 Tois et al. Oct 2019 B2
10480064 Longrie et al. Nov 2019 B2
10508337 Iwaji Dec 2019 B2
10546741 Muramaki et al. Jan 2020 B2
10695794 Pore et al. Jun 2020 B2
10872765 Tois et al. Dec 2020 B2
11501966 Tois Nov 2022 B2
20010019803 Mirkanimi Sep 2001 A1
20010025205 Chern et al. Sep 2001 A1
20020027261 Blesser et al. Mar 2002 A1
20020047144 Nguyen et al. Apr 2002 A1
20020068458 Chiang et al. Jun 2002 A1
20020090777 Forbes et al. Jul 2002 A1
20020107316 Bice et al. Aug 2002 A1
20030027431 Sneh et al. Feb 2003 A1
20030066487 Suzuki Apr 2003 A1
20030143839 Raaijmakers et al. Jul 2003 A1
20030176559 Bice et al. Sep 2003 A1
20030181035 Yoon et al. Sep 2003 A1
20030185997 Hsieh Oct 2003 A1
20030192090 Meilland Oct 2003 P1
20030193090 Otani et al. Oct 2003 A1
20040092073 Cabral May 2004 A1
20040219746 Vaartstra et al. Nov 2004 A1
20050012975 George et al. Jan 2005 A1
20050136604 Al-Bayati et al. Jun 2005 A1
20050160575 Gambino et al. Jul 2005 A1
20050223989 Lee et al. Oct 2005 A1
20060019493 Li Jan 2006 A1
20060047132 Shenai-Khatkhate et al. Mar 2006 A1
20060121271 Frey et al. Jun 2006 A1
20060121733 Kilpela et al. Jun 2006 A1
20060128150 Gandikota et al. Jun 2006 A1
20060141155 Gordon et al. Jun 2006 A1
20060156979 Thakur et al. Jul 2006 A1
20060176559 Takatoshi et al. Aug 2006 A1
20060199399 Muscat Sep 2006 A1
20060226409 Burr et al. Oct 2006 A1
20060292845 Chiang et al. Dec 2006 A1
20070014919 Hamalainen et al. Jan 2007 A1
20070026654 Huotari et al. Feb 2007 A1
20070063317 Kim et al. Mar 2007 A1
20070098894 Verghese et al. May 2007 A1
20070099422 Wijekoon et al. May 2007 A1
20070232082 Balseanu et al. Oct 2007 A1
20070241390 Tanaka et al. Oct 2007 A1
20070251444 Gros-Jean et al. Nov 2007 A1
20070292604 Dordi et al. Dec 2007 A1
20080066680 Sherman Mar 2008 A1
20080072819 Rahtu Mar 2008 A1
20080124932 Tateishi et al. May 2008 A1
20080179741 Streck et al. Jul 2008 A1
20080241575 Lavoie et al. Oct 2008 A1
20080282970 Heys et al. Nov 2008 A1
20090035949 Niinisto et al. Feb 2009 A1
20090071505 Miya et al. Mar 2009 A1
20090081385 Heys et al. Mar 2009 A1
20090081827 Yang et al. Mar 2009 A1
20090203222 Dussarrat et al. Aug 2009 A1
20090269507 Yu et al. Oct 2009 A1
20090274887 Millward et al. Nov 2009 A1
20090275163 Lacey et al. Nov 2009 A1
20090311879 Blasco et al. Dec 2009 A1
20100015756 Weidman et al. Jan 2010 A1
20100102417 Ganguli et al. Apr 2010 A1
20100147396 Yamagishi et al. Jun 2010 A1
20100178468 Jiang et al. Jul 2010 A1
20100248473 Ishizaka et al. Sep 2010 A1
20100270626 Raisanen Oct 2010 A1
20100297474 Dameron Nov 2010 A1
20100314765 Liang et al. Dec 2010 A1
20110039420 Nakao Feb 2011 A1
20110053800 Jung et al. Mar 2011 A1
20110120542 Levy May 2011 A1
20110124192 Ganguli et al. May 2011 A1
20110146568 Haukka et al. Jun 2011 A1
20110146703 Chen et al. Jun 2011 A1
20110221061 Prakash Sep 2011 A1
20110244680 Tohnoe et al. Oct 2011 A1
20110311726 Liu et al. Dec 2011 A1
20120032311 Gates Feb 2012 A1
20120046421 Darling et al. Feb 2012 A1
20120052681 Marsh Mar 2012 A1
20120088369 Weidman et al. Apr 2012 A1
20120189868 Borovik et al. Jul 2012 A1
20120219824 Prolier et al. Aug 2012 A1
20120241411 Darling et al. Sep 2012 A1
20120264291 Ganguli et al. Oct 2012 A1
20120269970 Ido et al. Oct 2012 A1
20130005133 Lee et al. Jan 2013 A1
20130078793 Sun et al. Mar 2013 A1
20130089983 Sugita et al. Apr 2013 A1
20130095664 Matero et al. Apr 2013 A1
20130115763 Takamure et al. May 2013 A1
20130115768 Pore et al. May 2013 A1
20130126815 Kim et al. May 2013 A1
20130143401 Yu et al. Jun 2013 A1
20130146881 Yamazaki et al. Jun 2013 A1
20130157409 Vaidya et al. Jun 2013 A1
20130189837 Haukka et al. Jul 2013 A1
20130196502 Haukka et al. Aug 2013 A1
20130203267 Pomarede et al. Aug 2013 A1
20130280919 Yuasa et al. Oct 2013 A1
20130284094 Pavol et al. Oct 2013 A1
20130309457 Rathsack et al. Nov 2013 A1
20130316080 Yamaguchi et al. Nov 2013 A1
20130323930 Chattopadhyay et al. Dec 2013 A1
20140001572 Bohr et al. Jan 2014 A1
20140024200 Kato et al. Jan 2014 A1
20140091308 Dasgupta et al. Apr 2014 A1
20140120738 Jung et al. May 2014 A1
20140152383 Nikonov et al. Jun 2014 A1
20140190409 Matsumoto et al. Jul 2014 A1
20140193598 Traser et al. Jul 2014 A1
20140205766 Lyon et al. Jul 2014 A1
20140209022 Inoue et al. Jul 2014 A1
20140227461 Darwish et al. Aug 2014 A1
20140272194 Xiao et al. Sep 2014 A1
20140273290 Somervell Sep 2014 A1
20140273477 Niskanen et al. Sep 2014 A1
20140273514 Somervell et al. Sep 2014 A1
20140273523 Rathsack Sep 2014 A1
20140273527 Niskanen et al. Sep 2014 A1
20150004806 Ndiege et al. Jan 2015 A1
20150011032 Kunimatsu et al. Jan 2015 A1
20150011093 Singh et al. Jan 2015 A1
20150037972 Danek et al. Feb 2015 A1
20150064931 Kumagi et al. Mar 2015 A1
20150083415 Monroe et al. Mar 2015 A1
20150087158 Sugita et al. Mar 2015 A1
20150093890 Blackwell et al. Apr 2015 A1
20150097292 He et al. Apr 2015 A1
20150118863 Rathod et al. Apr 2015 A1
20150162214 Thompson et al. Jun 2015 A1
20150170961 Romero et al. Jun 2015 A1
20150179798 Clendenning et al. Jun 2015 A1
20150217330 Haukka Aug 2015 A1
20150240121 Sugita et al. Aug 2015 A1
20150270140 Gupta et al. Sep 2015 A1
20150275355 Mallikarjunan et al. Oct 2015 A1
20150299848 Haukka et al. Oct 2015 A1
20150371866 Chen et al. Dec 2015 A1
20150376211 Girard et al. Dec 2015 A1
20160075884 Chen Mar 2016 A1
20160079524 Do et al. Mar 2016 A1
20160086850 Romero et al. Mar 2016 A1
20160172189 Tapily Jun 2016 A1
20160186004 Hustad et al. Jun 2016 A1
20160190060 Bristol et al. Jun 2016 A1
20160222504 Haukka et al. Aug 2016 A1
20160247695 Niskanen Aug 2016 A1
20160276208 Haukka et al. Sep 2016 A1
20160284568 Morris et al. Sep 2016 A1
20160293398 Danek et al. Oct 2016 A1
20160346838 Fujita et al. Dec 2016 A1
20160365280 Brink et al. Dec 2016 A1
20170037513 Haukka et al. Feb 2017 A1
20170040164 Wang et al. Feb 2017 A1
20170058401 Blackwell et al. Mar 2017 A1
20170069527 Haukka et al. Mar 2017 A1
20170100742 Pore et al. Apr 2017 A1
20170100743 Pore et al. Apr 2017 A1
20170107413 Wang et al. Apr 2017 A1
20170154806 Wang et al. Jun 2017 A1
20170298503 Maes et al. Oct 2017 A1
20170301542 Maes et al. Oct 2017 A1
20170323776 Färm et al. Nov 2017 A1
20170332179 Bright et al. Nov 2017 A1
20170352533 Tois et al. Dec 2017 A1
20170352550 Tois et al. Dec 2017 A1
20180040708 Narayanan et al. Feb 2018 A1
20180080121 Longrie et al. Mar 2018 A1
20180151345 Haukka et al. May 2018 A1
20180151355 Fukazawa May 2018 A1
20180182618 Blanquart et al. Jun 2018 A1
20180190489 Li et al. Jul 2018 A1
20180222933 Romero Aug 2018 A1
20180233350 Tois et al. Aug 2018 A1
20190017170 Sharma et al. Jan 2019 A1
20190057858 Hausmann et al. Feb 2019 A1
20190074441 Kikuchi et al. Mar 2019 A1
20190155159 Knaepen et al. May 2019 A1
20190283077 Pore et al. Sep 2019 A1
20190333761 Tois et al. Oct 2019 A1
20190341245 Tois et al. Nov 2019 A1
20200051829 Tois et al. Feb 2020 A1
20200066512 Tois et al. Feb 2020 A1
20210118669 Tois et al. Apr 2021 A1
Foreign Referenced Citations (33)
Number Date Country
0469456 Feb 1992 EP
0880168 Nov 1998 EP
1340269 Feb 2009 EP
2004-281479 Oct 2004 JP
4333900 Sep 2009 JP
2010-232316 Oct 2010 JP
2011-187583 Sep 2011 JP
2014-093331 May 2014 JP
2017-222928 Dec 2017 JP
102001001072 Feb 2001 KR
20030027392 Apr 2003 KR
1020040056026 Jun 2004 KR
10-0869326 Nov 2008 KR
10-0920033 Oct 2009 KR
10-2012-0120902 Nov 2012 KR
2017-0046591 May 2017 KR
175767 Aug 2003 TW
2005-39321 Dec 2005 TW
2010-05827 Feb 2010 TW
2014-39365 Oct 2014 TW
WO 2002045167 Jun 2002 WO
WO 2011156705 Dec 2011 WO
WO 2013161772 Oct 2013 WO
WO 2014156782 Oct 2014 WO
WO 2014209390 Dec 2014 WO
WO 2015047345 Apr 2015 WO
WO 2015094305 Jun 2015 WO
WO 2015147843 Oct 2015 WO
WO 2015147858 Oct 2015 WO
WO 2017184357 Oct 2017 WO
WO 2017184358 Oct 2017 WO
WO 2018204709 Nov 2018 WO
WO 2018213018 Nov 2018 WO
Non-Patent Literature Citations (71)
Entry
Aaltonen et al. (2004) Atomic layer deposition of iridium thin films. Journal of the Electrochemical Society. 151(8):G489-G492.
Au et al., “Selective Chemical Vapor Deposition of Manganese Self-Aligned Capping Layer for Cu Interconnections in Microelectronics”, Journal of the Electrochemical Society, vol. 157, No. 6, 2010, pp. D341-D345.
Benzotriazole, Wikipedia via https://en.wikipedia.org/wiki/Benzotriazole; pp. 1-5, no date available.
Bernal-Ramos, et al., “Atomic Layer Deposition of Cobalt Silicide Thin Films Studied by in Situ Infrared Spectroscopy”, Chem. Mater. 2015, 27, pp. 4943-4949.
Bouteville et al., “Selective R.T.L.P.C.V.D. of Tungsten by Silane Reduction on Patterned PPQ/Si Wafers” Journal De Physique IV, Colloque C2, suppl. au Journal de Physique II, vol. 1, Sep. 1991, pp. C2-857-C2-864.
Burton, B.B. et al., “Atomic Layer Deposition of MgO Using Bis(ethylcyclopentadienyl)magnesium and H20”. J. Phys. Chem. C, 2009, 113, 1939-1946.
Burton, B.B., et al., “Si02 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy”. J. Phys. Chem. C, 2009, 113, 8249-8257.
Carlsson, J., “Precursor Design for Chemical Vapour Deposition”, Acta Chemica Scandinavica, vol. 45, 1991, pp. 864-869.
Chang et al, “Influences of damage and contamination from reactive ion etching on selective tungsten deposition in a low-pressure chemical-vapor-deposition reactor”, J. Appl. Phys., vol. 80, No. 5, Sep. 1, 1996, pp. 3056-3061.
Chen et al., Highly Stable Monolayer Resists for Atomic Layer Deposition on Germanium and Silicon, Chem. Matter, vol. 18, No. 16, pp. 3733-3741, 2006.
Cho et al., “Atomic layer deposition of Al2O3 thin films using dimethylaluminum isopropoxide and water”, Journal of Vacuum Science & Technology A 21, (2003), doi: 10.1116/1.1562184, pp. 1366-1370.
Coclite, et al.; 25th Anniversary Article: CVD Polymers: A New Paradigm for Surface Modification and Device Fabrication; Advanced Materials; Oct. 2013; 25; pp. 5392-5423.
Elam et al., “Kinetics of the WF6 and Si2H6 surface reactions during tungsten atomic layer deposition”, Surface Science, vol. 479, 2001, pp. 121-135.
Elam et al., “Nucleation and growth during tungsten atomic layer deposition on SiO2 surfaces”, Thin Solid Films, vol. 386, 2001 pp. 41-52.
Ellinger et al., “Selective Area Spatial Atomic Layer Deposition of ZnO, Al2O3, and Aluminum-Doped ZnO Using Poly(vinyl pyrrolidone)”, Chem. Mater. 2014, 26, pp. 1514-1522.
Fabreguette et al., Quartz crystal microbalance study of tungsten atomic layer deposition using WF6 and Si2H6, Thin Solid Films, vol. 488, 2005, pp. 103-110.
Farm et al. Selective-Area Atomic Layer Deposition Using Poly( methyl methacrylate) Films as Mask Layers, J. Phys. Chem. C, 2008, 112, pp. 15791-15795. (Year: 2008).
Farm et al., “Self-Assembled Octadecyltrimethoxysilane Monolayers Enabling Selective-Area Atomic Layer Deposition of Iridium”, Chem. Vap. Deposition, 2006, 12, pp. 415-417.
Farr, Isaac Vincent; Synthesis and Characterization of Novel Polyimide Gas Separation Membrane Material Systems, Chapter 2; Virginia Tech Chemistry PhD Dissertation; URN # etd-080999-123034; Jul. 26, 1999.
Formic Acid, Wikipedia via https://en.wikipedia.org/wiki/Formic_acid; pp. 1-5, no date available.
George, Steven M.; Atomic Layer Deposition: An Overview; Chem. Rev. 2010, 110, pp. 111-131; Feb. 12, 2009.
Ghosal et al., Controlling Atomic Layer Deposition of Ti02 in Aerogels through Surface Functionalization, Chem. Matter, vol. 21, pp. 1989-1992, 2009.
Grubbs et al., “Nucleation and growth during the atomic layer deposition of W on Al2O3 and Al2O3 on W”, Thin Solid Films, vol. 467, 2004, pp. 16-27.
Hashemi et al., “A New Resist for Area Selective Atomic and Molecular Layer Deposition on Metal-Dielectric Patterns”, J. Phys. Chem. C 2014, 118, pp. 10957-10962.
Hashemi et al., “Selective Deposition of Dieletrics: Limits and Advantages of Alkanethiol Blocking Agents on Metal-Dielectric Patterns”, ACS Appl. Mater. Interfaces 2016, 8, pp. 33264-33272.
Hymes et al., “Surface cleaning of copper by thermal and plasma treatment in reducing and inert ambients”, J. Vac. Sci. Technol. B, vol. 16, No. 3, May/Jun. 1998, pp. 1107-1109.
International Search Report and Written Opinion dated Feb. 17, 2012 in Application No. PCT/US2011/039970, filed Jun. 10, 2011.
International Search Report and Written Opinion dated Aug. 8, 2018 in Application No. PCT/US2018/030974, filed May 3, 2018.
International Search Report and Written Opinion dated Jul. 24, 2018 in Application No. PCT/US2018/030979, filed May 3, 2018.
King, Dielectric Barrier, Etch Stop, and Metal Capping Materials for State of the Art and beyond Metal Interconnects, ECS Journal of Solid State Science and Technology, vol. 4, Issue 1, pp. N3029-N3047, 2015.
Klaus et al., Atomic layer deposition of tungsten using sequential surface chemistry with a sacrificial stripping reaction, Thin Solid Films, 2000, vol. 360, pp. 145-153.
Klaus et al., Atomically controlled growth of tungsten and tungsten nitride using sequential surface reactions, Applied Surface Science, 2000, vol. 162-163, pp. 479-491.
Kukli et al., “Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen”, J. Appl. Phys., vol. 92, No. 10, Nov. 15, 2002, pp. 5698-5703.
Lecordier et al., “Vapor-deposited octadecanethlol masking layer on copper to enable area selective Hf3N4 atomic layer deposition on dielectrics studied by in situ spectroscopic ellipsometry”, J. Vac. Sci. Technol. A36(3), May/Jun. 2018, pp. 031605-1-031605-8.
Lee et al., Area-Selective Atomic Layor Deposition Using Self-Assembled Monolayer and Scanning Probe Lithography, Journal of the Electrochemical Society, vol. 156, Issue 9, pp. G125-G128, 2009.
Lei et al., “Real-time observation and opitimization of tungsten atomic layer deposition process cycle”, J. Vac. Sci. Technol. B, vol. 24, No. 2, Mar./Apr. 2006, pp. 780-789.
Lemonds, Andrew Michael, “Atomic Layer Deposition and Properties of Refractory Transition Metal-Based Copper-Diffusion Barriers for ULSI Interconnect”, The University of Texas at Austin, 2003, pp. 1-197.
Lemonds, A.M., “Atomic layer deposition of TaSix thin films on SiO2 using TaF5 and Si2H6”, Thin Solid Films 488, 2005 pp. 9-14.
Leusink et al., “Growth kinetics and inhibition of growth of chemical vapor deposited thin tungsten films on silicon from tungsten hexafluoride”, J. Appl. Phys., vol. 72, No. 2, Jul. 15, 1992, pp. 490-498.
Liang et al., “Growth of Ge Nanofilms Using Electrochemical Atomic Layer Deposition, with a “Bait and Switch” Surface-Limited Reaction”. Journal of the American Chemical Society, 2011, 133, 8199-8024.
Lohokare et al., “Reactions of Disilane on Cu(111): Direct Observation of Competitive Dissociation, Disproportionation, and Thin Film Growth Processes”, Langmuir 1995, vol. 11, pp. 3902-3912.
Low et al., Selective deposition of CVD iron on silicon dioxide and tungsten, Microelectronic Engineering 83, pp. 2229-2233, 2006.
Mackus et al., Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis, Chem. Matter, vol. 25, pp. 1905-1911, 2013.
Mackus et al., Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition, Journal of Applied Physics, vol. 107, pp. 116102-1-116102-3, 2010.
Mackus et al., “The use of atomic layer deposition in advanced nanopatterning”, Nanoscale, 2014, 6, pp. 10941-10960.
Maluf et al., “Selective tungsten filling of sub-0.25μm trenches for the fabrication of scaled contacts and x-ray masks”, J. Vac. Sci. Technol. B, vol. 8, No. 3, May/Jun. 1990, pp. 568-569.
Norrman, et al.; 6 Studies of Spin-Coated Polymer Films; Annu. Rep. Prog. Chem.; Sect. C; 2005; 101; pp. 174-201.
Office Action dated Jun. 8, 2017 in Korean Application No. 2013-7000596.
Overhage et al., Selective Atomic Layer Deposition (SALD) of Titanium Dioxide on Silicon and Copper Patterned Substrates, Journal of Undergraduate Research 4, Mar. 29, 2011 in 4 pages.
Parulekar et al., Atomic Layer Deposition of Zirconium Oxide on Copper Patterned Silicon Substrate, Journal of Undergraduate Research, vol. 7, pp. 15-17, 2014.
Parulekar et al., Selective atomic layer deposition of zirconium oxide on copper patterned silicon substrate, pp. 1-6, 2013.
Prasittichai et al., “Area Selective Molecular Layer Deposition of Polyurea Film”, Applied Materials & Interfaces, 2013, vol. 5, pp. 13391-13396.
Proslier et al., “Atomic Layer Deposition and Superconducting Properties of NbSi Films”, The Journal of Physical Chemistry C, 2011, vol. 115, No. 50, pp. 1-26.
Putkonen, et al.; Atomic Layer Deposition of Polyimide Thin Films; Journal of Materials Chemistry; 2007, 17, pp. 664-669.
Ratta, Varun; Crystallization, Morphology, Thermal Stability and Adhesive Properties of Novel High Performance Semicrystalline Polyimides, Chapter 1; Virginia Tech Chemistry PhD Dissertation; URN # etd-051799-162256; Apr. 26, 1999.
Roberts et al., “Selective Mn deposition on Cu lines”, poster presentation, 12th International Conference on Atomic Layer Deposition, Jun. 19, 2012, Dresden, Germany.
Sapp, et al.; Thermo-Mechanical and Electrical Characterization of Through-Silicon Vias with a Vapor Deposited Polyimide Dielectric Liner; IEEE; 2012.
Schmeißer, Decomposition of formic acid, Chemnitz University of Technology, pp. 1-13, Aug. 31, 2011.
Schmeißer, Reduction of Copper Oxide by Formic Acid an ab-initio study, Chemnitz University of Technology, pp. 1-42, Sep. 2011.
Schuisky et al., “Atomic Layer Deposition of Thin Films Using O2 as Oxygen Source”, Langmuir, vol. 17, No. 18, 2001, pp. 5508-5512.
Selvaraj et al., Selective atomic layer deposition of zirconia on copper patterned silicon substrates using ethanol as oxygen source as well as copper reductant, Journal of Vacuum Science & Technology A, vol. 32, No. 1, pp. 010601-1-010601-4, Jan. 2014.
Senesky et al., “Aluminum nitride as a masking material for the plasma etching of silicon carbide structures,” 2010, IEEE, pp. 352-355.
Sundberg, et al.; Organic and Inorganic—Organic Thin Film Structures by Molecular Layer Deposition: A Review; Beilstein J. Nanotechnol; 2014, 5, pp. 1104-1136.
Suntola, Tuomo, “Thin Films and Epitaxy Part B: Grown mechanism and Dynamics”, Handbook of Crystal Growth vol. 3, Elsevier, 1994, 33 pages.
Ting, et al., “Selective Electroless Metal Deposition for Integrated Circuit Fabrication”, J. Electrochem. Soc., vol. 136, No. 2, Feb. 1989, pp. 456-462.
Toirov, et al.; Thermal Cyclodehydration of Polyamic Acid Initiated by UV-Irradiation; Iranian Polymer Journal; vol. 5, No. 1; pp. 16-22; 1996; Iran.
“Tungsten and Tungsten Silicide Chemical Vapor Deposition”, TimeDomain CVD, Inc., retrieved from link: http://www.timedomaincvd.com/CVD_Fundamentals/films/W_WSi.html, Last modified Jul. 11, 2008.
Vallat et al., Selective deposition of Ta2O5 by adding plasma etching super-cycles in plasma enhanced atomic layer deposition steps, Journal of Vacuum Science & Technology A, vol. 35, No. 1, pp. 01B104-1-01B104-7, Jan. 2017.
Vervuurt et al., “Area-selective atomic layer deposition of platinum using photosensitive polyimide”, Nanotechnology 27, 2016, in 6 pages.
Yu et al., “Gas/surface reactions in the chemical vapor deposition of tungsten using WF6/SiH4 mixtures”, J. Vac. Sci. Technol. A, vol. 7, No. 3, May/Jun. 1989, pp. 625-629.
Zhou, et al.; Fabrication of Organic Interfacial Layers by Molecular Layer Deposition: Present Status and Future Opportunities; Journal of Vacuum Science & Technology; A 31 (4), 040801-1 to 040801-18; 2013.
Related Publications (1)
Number Date Country
20230016537 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
62666039 May 2018 US
Continuations (2)
Number Date Country
Parent 17113383 Dec 2020 US
Child 17934817 US
Parent 16399328 Apr 2019 US
Child 17113383 US