The subject matter herein generally relates to chip manufacture, particularly to selectively forming molding layers in semiconductor package devices and methods of manufacturing the semiconductor package devices.
Due to the demand for miniaturization of semiconductor devices, a reduced package size is required to meet the requirements for use. Therefore, there is a need not only for a miniaturized package structure, but also including more functions.
Many aspects of the present disclosure are better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements.
2H, 2I, 2J, 2K and 2L are schematic cross-sectional diagrams illustrating a process flow of a method of manufacturing a semiconductor package device according to an embodiment of the disclosure.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts have been exaggerated to better illustrate details and features of the present disclosure.
The disclosure is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean “at least one”.
The term “coupled” is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The connection can be such that the objects are permanently connected or releasably connected. The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series, and the like.
The redistribution layer 12 comprises a top surface (first surface) 11A, a bottom surface (second surface) 11B opposite to the top surface 11A, and a circuit layer 12A. According to an embodiment of the disclosure, the redistribution layer 12 can first be formed layer by layer on a carrier, then the carrier is removed after the formation of the redistributed layer 10 is completed. The formation of the redistribution layer 12 may involve multiple deposition or coating processes, patterning processes, and planarization processes. The deposition or coating processes can form insulating layers on the circuit layers 12A. The deposition or coating processes may comprise a spin coating process, an electroplating process, an electroless process, a chemical vapor deposition (CVD) process, a physical vapor deposition (PVD) process, an atomic layer deposition (ALD) process, and other applicable processes and combinations thereof. The patterning process can be used to pattern the formed insulating layers and circuit layers 12A. The patterning process may comprise a photolithography process, an energy beam drilling process (for example, a laser beam drilling process, an ion beam drilling process, or an electron beam drilling process), an etching process, a mechanical drilling process, or other applicable processes and combinations. The planarization process can be used to provide a flat top surface for the formed insulating layers and circuit layers 12A to facilitate subsequent processes. The planarization process may comprise a mechanical polishing process, a chemical mechanical polishing (CMP) process, or other applicable process and combinations thereof.
The redistribution layer 12 can also be formed by an additive buildup process. The additive buildup process may comprise the alternating stacking of one or more dielectric layers and conductive patterns or traces of the circuit layers 12A. The conductive patterns or traces fan out across the occupied space of the electronic device, or are in a fan-shaped layout allowing the electrical traces into the occupied space of the electronic device. The conductive patterns can be formed by a plating process such as an electroplating process or an electroless plating process. The conductive pattern may comprise a conductive material, such as copper or other plateable metals. The dielectric layer of the redistribution layer 12 can be made of a photo-definable organic dielectric such as polyimide (PI), benzocyclobutene (BCB), or polybenzoxazole (PBO). In other embodiments, the dielectric material of the redistribution layer 12 may also be an inorganic dielectric layer. The inorganic dielectric layer may comprise silicon nitride (Si3N4), silicon oxide (SiO2), or SiON. The inorganic dielectric layer can be formed by growing an inorganic dielectric layer using an oxidation or nitridation process.
The bottom surface (second surface) 11B of the redistribution layer 12 has a molding layer 14B with a plurality of through holes passing through the molding layer 14B. The number of the conductive terminals 19 corresponds to the through holes of the molding layer 14B, and the conductive terminals 19 are respectively disposed in the through holes and electrically connected to the circuit layer 12A. The conductive terminals 19 can be disposed on the bottom surface 11B of the redistribution layer 12 by ball implantation. The semiconductor package device 10 according to an embodiment of the disclosure can be electrically connected to an external device (such as a printed circuit board) by these conductive terminals 19. The conductive terminals 19 may include conductive balls, conductive posts, conductive bumps, combinations thereof, or other forms and shapes formed by a ball-mounting process, an electroless plating process, or other suitable processes. According to the embodiments of the disclosure, a soldering process and a reflowing process can be performed to enhance adhesion between the conductive terminals 19 and the redistribution layer 12.
According to an embodiment of the disclosure, the material of the molding layer 14B can be epoxy resin, cyanate resin, bismaleimide triazine, glass fiber, polybenzoxazole, polyimide, nitride (for example, silicon nitride), oxide (for example, silicon oxide), silicon oxynitride, or similar insulating materials, insulating organic material mixed with epoxy resin and glass fiber, or ceramic material.
As shown in
The electronic devices 16A and 16B and the electronic components 18A and 18B can be disposed on the redistribution layer 12 by a flip-chip packaging, and are electrically connected to the circuit layer 12A in the redistribution layer 12. In addition, the electronic devices 16A and 16B and the electronic components 18A and 18B can also be disposed on the redistribution layer 12 through an adhesive layer, and electrically connected to the circuit layer 12A in the redistribution layer 12 by wire bonding.
According to an embodiment of the disclosure, the adhesive layer can be formed of various materials, including a polyimide (PI), polyethylene terephthalate (PET), Teflon, liquid crystal polymer (LCP), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), nylon or polyamides, polymethylmethacrylate (PMMA), acrylonitrile-butadiene-styrene, phenolic resins, epoxy resin, polyester, silicone, polyurethane (PU), polyamide-imide (PAI) or a combination thereof, not being limited thereto, as long as such materials have the required adhesive properties.
The molding layer 14A is formed on the redistribution layer 12 and covers the electronic device 16A and the electronic components 18A. According to the embodiment of the disclosure, the molding layer 14A is not formed on the entirety of the top surface (the first surface) 11A of the redistribution layer 12. The molding layer 14A is only formed on the area A of the top surface 11A of the redistribution layer 12, and does not cover the area B of the top surface 11A of the redistribution layer 12. Specifically, the molding layer 14A is absent from the area B of the top surface 11A of the redistribution layer 12.
The area A and the area B are bounded by the boundary line 22. According to an embodiment of the disclosure, the material of the molding layer 14A can be epoxy resin, cyanate resin, bismaleimide triazine, glass fiber, polybenzoxazole, polyimide, nitride (for example, silicon nitride), oxide (for example, silicon oxide), silicon oxynitride, or similar insulating materials, insulating organic material mixed with epoxy resin and glass fiber, or ceramic material.
The antenna element 20 is disposed on the area B of the top surface 11A of the redistribution layer 12. The types of antenna element 20 may include loop antennas, broadband dipoles, monopole antennas, folded dipole antennas, microstrip or patch antennas, planar inverted-F antennas (PIFA), inverted-F antennas (IFA), tapered slot antennas (TSA), slotted waveguide antennas, half-wave and quarter-wave antennas, etc. The antenna element 20 can be connected with die attach pads, lead fingers, tie rods, and additional conductive elements to form antenna elements for applications including wireless handheld devices that require transmitting and receiving RF signals, such as smart phones, two-way communication devices, personal computers, tablet computers, RF tags, sensors, BLUETOOTH and WI-FI devices, Internet of Things (IOT), home protection devices, and remote control devices, etc.
The redistribution layer 12 can also be formed by an additive buildup process. The additive buildup process may comprise the alternating stacking of one or more dielectric layers and conductive patterns or traces of the circuit layers 12A. The conductive patterns or traces fan out across the occupied space of the electronic device, or are in a fan-shaped layout allowing the electrical traces into the occupied space of the electronic device. The conductive patterns can be formed by a plating process such as an electroplating process or an electroless plating process. The conductive pattern may comprise a conductive material, such as copper or other plateable metals. The dielectric layer of the redistribution layer 12 can be made of a photo-definable organic dielectric such as polyimide (PI), benzocyclobutene (BCB), or polybenzoxazole (PBO). In other embodiments, the dielectric material of the redistribution layer 12 may also be an inorganic dielectric layer. The inorganic dielectric layer may comprise silicon nitride (Si3N4), silicon oxide (SiO2), or SiON. The inorganic dielectric layer can be formed by growing an inorganic dielectric layer using an oxidation or nitridation process.
As
The electronic device 16A may be a semiconductor die, a semiconductor chip, or a package including a plurality of electronic devices. The electronic device 16A may be connected to the circuit layer 12A of the redistribution layer 12 via conductive wires such as gold wires, copper wires, or aluminum wires. The electronic device 16A may be optoelectronic devices, micro-electromechanical systems (MEMS), power amplifier chips, power management chips, biological identification devices, microfluidic systems, or a physical sensor measuring changes in physical quantities such as heat, light, and pressure. The electronic device 16A also can also comprise semiconductor chips such as imaging sensor devices, light-emitting diodes (LEDs), solar cells, accelerators, gyroscopes, fingerprint readers, micro actuators, surface acoustic wave devices, or process sensors or ink printer heads made by a wafer scale package (WSP) process. The electronic component 18A may be electrically connected to the circuit layer 12A of the redistribution layer 12. According to an embodiment of the disclosure, the electronic component 18A may be a passive component, such as a resistor, a capacitor, an inductor, a filter, an oscillator, and so on. In other embodiments, the electronic component 18A may also be an electronic terminal.
The electronic device 16A and the electronic components 18A can be disposed on the redistribution layer 12 by a flip-chip packaging, and are electrically connected to the circuit layer 12A in the redistribution layer 12. In addition, the electronic device 16A and the electronic components 18A can also be disposed on the redistribution layer 12 through an adhesive layer, and electrically connected to the circuit layer 12A in the redistribution layer 12 by wire bonding.
According to an embodiment of the disclosure, the adhesive layer can be formed of various materials, including a polyimide (PI), polyethylene terephthalate (PET), Teflon, liquid crystal polymer (LCP), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), nylon or polyamides, polymethylmethacrylate (PMMA), acrylonitrile-butadiene-styrene, phenolic resins, epoxy resin, polyester, silicone, polyurethane (PU), polyamide-imide (PAI) or a combination thereof, not being limited thereto, as long as such materials have the required adhesive properties.
In
In
In
Next, in
In
In
According to the embodiments of the disclosure, the molding layer is selectively formed on a part of the redistribution layer, and the area of the circuit redistribution layer not covered by the molding layer can be used to install antenna elements or other devices with heat dissipation requirements, effectively improving the integration density of the semiconductor packaging device and achieving the purpose of miniaturizing the semiconductor packaging device.
Many details are often found in the relevant art and many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, especially in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
202210869200.5 | Jul 2022 | CN | national |