The invention pertains to methods of forming and patterning photoresist over silicon nitride materials, and to semiconductor wafer assemblies comprising photoresist over silicon nitride materials. The invention also relates generally to semiconductor processing methods of promoting adhesion of photoresist to an outer substrate layer predominantly comprising silicon nitride.
Silicon nitride is frequently utilized in modern semiconductor fabrication methods. For instance, silicon nitride is an insulative material, and can be utilized to electrically isolate conductive components from one another. Also, silicon nitride is selectively etchable relative to other materials utilized in semiconductor fabrication processes, such as, for example, silicon dioxide, and is can thus be utilized as an etch stop material. Another example use of silicon nitride is for LOCOS (LOCal Oxidation of Silicon). LOCOS comprises growing oxide over field regions of a semiconductor substrate, while not growing the oxide over other regions of the substrate. The other regions of the substrate are typically protected by a thin layer of silicon nitride during the oxide growth.
In many applications of silicon nitride, a silicon nitride layer is patterned into a specific shape. An example prior art patterning process is described with reference to
Substrate 12 can comprise, for example, monocrystalline silicon lightly doped with a p-type dopant. To aid in interpretation of the claims that follow, the term “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above.
Pad oxide 14 is a thin layer (from about 40 to about 50 nanometers thick) of silicon dioxide, and is provided to alleviate stresses that can be caused by silicon nitride layer 16. Pad oxide 14 can be formed by exposing a silicon-comprising substrate 12 to an oxidizing atmosphere.
Silicon nitride layer 16 can be formed over pad oxide 14 by, for example, chemical vapor deposition. A thickness of silicon nitride layer 16 will vary depending on the application of the silicon nitride layer. In LOCOS fabrication processes, silicon nitride layer 16 will typically be provided to a thickness of from about 100 nanometers to about 200 nanometers.
Antireflective coating 18 is a polymer film provided over silicon nitride layer 16 for two purposes. First, antireflective coating 18 absorbs light during photolithographic patterning of photoresist layer 20. Such absorption can prevent light that has passed through photoresist layer 20 from reflecting back into the layer to constructively or destructively interfere with other light passing through layer 20. Second, antireflective coating 18 functions as a barrier to prevent diffusion of nitrogen atoms from silicon nitride layer 16 into photoresist layer 20. It is found that if nitrogen atoms diffuse into photoresist 20, they can alter its sensitivity to light (so-called “poisoning” of the photoresist).
Photoresist layer 20 is provided to form a pattern over silicon nitride layer 16. Photoresist layer 20 comprises a polymer composition which becomes selectively soluble in a solvent upon exposure to light. If photoresist 20 comprises a negative photoresist, it is rendered insoluble in a solvent upon exposure to light, and if it comprises a positive photoresist, it is rendered soluble in solvent upon exposure to light.
Referring to
Referring to
The above-described processing sequence requires formation of four distinct layers (14, 16, 18, and 20), each of which is formed by processing conditions significantly different than those utilized for formation of the other three layers. For instance, antireflective coating 18 is commonly formed by a spin-on process, followed by a bake to remove solvent from the layer. In contrast, silicon nitride layer 16 is typically formed by a chemical vapor deposition process. The spin-on and baking of layer 18 will typically not occur in a common chamber as the chemical vapor deposition of layer 16, as processing chambers are generally not suited for such diverse tasks. Accordingly, after formation of silicon nitride layer 16, semiconductor wafer fragment 10 is transferred to a separate processing chamber for formation of antireflective coating 18. The semiconductive wafer fragment 10 may then be transferred to yet another chamber for formation of photoresist layer 20.
A continuing goal in semiconductive wafer fabrication processes is to minimize processing steps, and particularly to minimize transfers of semiconductive wafers between separate processing chambers. Accordingly, it would be desirable to develop alternative fabrication processes wherein fabrication steps could be eliminated.
It has been attempted to pattern silicon nitride layers without utilizing an antireflective coating over the layers. However, such creates complications, such as those illustrated in
Traditional silicon nitride layers have stoichiometries of about Si3N4. Silicon enriched silicon nitride layers (i.e., silicon nitride layers having a greater concentration of silicon than Si3N4, such as, for example, Si4N4) have occasionally been used in semiconductor fabrication processes. The silicon enriched silicon nitride was utilized as a layer having a substantially homogenous composition throughout its thickness, although occasionally a small portion of the layer (1% or less of a thickness of the layer) was less enriched with silicon than the remainder of the layer due to inherent deposition problems.
When the silicon enriched silicon nitride layers were utilized in a process such as that shown in
In additional aspect of the prior art, microcircuit fabrication involves provision of precisely controlled quantities of impurities into small regions of a silicon substrate, and subsequently interconnecting these regions to create components and integrated circuits. The patterns that define such regions are typically created by a photolithographic process. Such processing sets the horizontal dimensions on the various parts of the devices and circuits. Photolithography is a multistep pattern transfer process similar to stenciling or photography. In photolithograpy, the required pattern is first formed in reticles or photomasks and transferred into the surface layer(s) of the wafer through photomasking steps.
Inherent in photolithograpy is application and adherence of photoresist materials to underlying substrates. The resist must be capable of adhering to these surfaces through all the resist processing and etch steps. Poor adhesion brings about severe undercutting, loss of resolution, or possibly the complete loss of the pattern. Wet etching techniques demand a high level of adhesion of the resist film to the underlying substrates.
Various techniques are used to increase the adhesion between resist and a substrate such as, a) dehydration baking prior to coating; b) use of hexamethyldisilazane (HMDS) and vapor priming systems to promote resist adhesion for polysilicon, metals and SiO2 layers, and c) elevated temperature post-bake cycles. HMDS functions as an effective adhesion promoter for silicon and silicon oxide containing films, but provides effectively no surface-linking adhesion promotion with respect to silicon nitride films.
Accordingly, it would be desirable to develop alternate and improved techniques for providing better adhesion of photoresist to silicon nitride films.
In one aspect, the invention encompasses a semiconductor processing method of forming a photoresist over a silicon nitride material. The silicon nitride material has a surface. A barrier layer comprising silicon and nitrogen is formed over the surface. The photoresist is formed over and against the barrier layer.
In another aspect, the invention encompasses a semiconductor processing method of forming and patterning a photoresist layer over a silicon nitride material. The silicon nitride material has a surface. A barrier layer comprising silicon and nitrogen is formed over the surface. The photoresist is formed over and against the barrier layer. The photoresist is exposed to a patterned beam of light to render at least one portion of the photoresist more soluble in a solvent than an other portion. The barrier layer is an antireflective surface that absorbs light passing through the photoresist. The photoresist is exposed to the solvent to remove the at least one portion while leaving the other portion over the barrier layer.
In yet another aspect, the invention encompasses a semiconductor wafer assembly. The assembly includes a silicon nitride material, a barrier layer over a surface of the material, and a photoresist over and against the barrier layer. The barrier layer comprises silicon and nitrogen.
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
A semiconductor processing method of the present invention is described with reference to
Each of portions 38 and 40 preferably comprises silicon and nitrogen, but portion 40 preferably comprises a lower percentage of nitrogen than portion 38. Portion 38 can comprise, for example, a traditional silicon nitride composition, such as a composition having a stoichiometry of about Si3N4. Such traditional silicon nitride material can be formed by, for example, chemical vapor deposition. Portion 40 can comprise, for example, a silicon nitride material enriched in silicon relative to the material of portion 38. For example, portion 40 can comprise a stoichiometry of SixNy, where in x is greater than or equal to y. Example stoichiometries of portion 40 are Si4N4, Si7N4 and Si10N1.
Portion 40 is preferably formed from a silicon precursor gas and a nitrogen precursor gas in a common and uninterrupted deposition process with portion 38. By “common deposition process” it is meant a deposition process wherein a wafer is not removed from a reaction chamber between the time that an initial portion of a silicon nitride layer is formed and the time that a final portion of the silicon nitride layer is formed. By “uninterrupted deposition process” it is meant a process wherein the flow of at least one of the silicon precursor gas and the nitrogen precursor gas does not stop during the deposition process.
An example deposition process for forming silicon nitride layer 36 is a chemical vapor deposition (CVD) process utilizing SiH2Cl2 (dichlorosilane) as a silicon precursor gas, and NH3 (ammonia) as a nitrogen precursor gas. Substrate 32 is provided within a CVD reaction chamber, together with the dichlorosilane and ammonia. A pressure within the chamber is, for example, from about 100 mTorr to about 1 Torr, and a temperature within the chamber is, for example, from about 700° C. to about 800° C.
The dichlorosilane and ammonia are provided in the chamber to a first ratio, and such first ratio is utilized to deposit portion 38. The first ratio can be, for example, 0.33 to form a portion 38 have a stoichiometry of about Si3N4. After portion 38 is formed, the ratio of dichlorosilane to ammonia is altered to a second ratio having an increased relative amount of dichlorosilane. Such second ratio of dichlorosilane to ammonia is utilized to form second portion 40. An example second ratio is about 6, which forms a silicon nitride portion 40 having a stoichiometry of SixNy, wherein the ratio of x to y is greater than 1.
An alternative method of forming a nitrogen barrier portion 40 of silicon nitride layer 36 is to form the portion 40 from silicon, oxygen and nitrogen. For instance, portion 40 can comprise silicon oxynitride having a stoichiometry of SixNyOz, wherein x, y and z are greater than or equal to 1 and less than or equal to 5. An example composition of the silicon oxynitride is Si3N4O2.
The silicon oxynitride can be formed by exposing silicon nitride portion 38 to an atmosphere comprising oxygen. The oxygen can be in the form of, for example, one or more of ozone, NO or N2O. Methods for utilizing an atmosphere comprising oxygen to form silicon oxynitride over silicon nitride portion 30 include, for example, plasma-enhanced chemical vapor deposition, rapid thermal processing, high pressure oxidation and low pressure oxidation. For the purposes of interpreting this disclosure and the claims that follow, high pressure oxidation is defined as oxidation occurring at pressures of 1 atmosphere and above, and low pressure oxidation is defined as oxidation occurring at pressures of less than 1 atmosphere. Example temperatures for forming silicon oxynitride by high pressure oxidation are from about 600° C. to about 900° C., and example temperatures forming silicon oxynitride by low pressure oxidation are from about 700° C. to about 1000° C. Example conditions for forming silicon oxynitride by rapid thermal processing comprise a temperature of from about 700° C. to about 1000° C. and a ramp rate of from about 20° C./second to about 100° C./second.
If the silicon oxynitride is formed by chemical vapor deposition of silicon, oxygen, and nitrogen, it can be formed in a common and uninterrupted chemical vapor deposition process with portion 38. For example, portion 38 can be formed in a CVD reaction chamber from a first ratio of a silicon precursor gas and a nitrogen precursor gas. Subsequently, an oxygen precursor gas can be introduced into the reaction chamber. The oxygen precursor gas, silicon precursor gas and nitrogen precursor gas can, in combination, form a silicon oxynitride portion 40 over silicon nitride portion 38.
Referring to
Referring to
During the exposure of photoresist 42 to the beam of light, portion 40 of silicon nitride layer 36 can be an antireflective surface. It is found that a refractive index of a silicon nitride material increases as the stoichiometric amount of silicon within the material is increased. Silicon nitride materials having stoichiometries of SixNy, wherein x is greater than or equal to y, have refractive indices of greater than or equal to about 2.2. Such silicon nitride materials can effectively function as antireflective coatings. In contrast, traditional silicon nitride materials (i.e., silicon nitride materials having stoichiometries of Si3N4) have refractive indices of less than 2.0, and do not function as effective antireflective surfaces.
Referring to
In subsequent processing which is not shown, photoresist 42 can be removed from over stacks 44. Additional processing can be utilized to form field oxide between stacks 44, or to form conductive materials electrically isolated by the insulative stacks 44.
Other embodiments of the invention are described with reference to
Referring to
The preferred manner of depositing or otherwise providing nitride layer 116 is by chemical vapor deposition within a chemical vapor deposition reactor using a gaseous silicon containing precursor and a gaseous nitrogen containing precursor. An example preferred nitride precursor is dichlorosilane (DCS), with a preferred nitrogen containing precursor being ammonia (NH3). One example set of deposition parameters includes maintaining reactor temperature and pressure at 780° C. and 250 mTorr, respectively, with the precursors being provided at a volumetric ratio of DCS:NH3 at 1:3. Such is but one example set of conditions effective to deposit a Si3N4 layer on substrate 114/112.
Referring to
Referring to
An alternate embodiment 122 is described with reference to
Material 132 relative to outer surface 130 is preferably provided by feeding a gaseous oxygen containing precursor to the reactor under conditions effective to oxidize Si3N4 material 134 to SiO2 material 132. One example process for accomplishing such transformation of outer surface 130 is to cease feeding the dichlorosilane and ammonia precursors as described in the above example, and purging the reactor of such gaseous precursors. Immediately thereafter, N2O, O2, O3, or mixtures thereof are fed to the reactor under the same temperature and pressure conditions which effectively causes the outer surface of the nitride material to become oxidized to SiO2. The thickness of material 132 is preferably kept very low, such as from about 10 Angstroms to about 30 Angstroms. Purging of the Si3N4 precursors is highly desirable to prevent an undesired silicon dust from falling out onto the wafer as may occur without purging, which neither produces the SiO2 material of this example, nor readily adheres to the underlying substrate.
An example processing for O3, would be at atmospheric or subatmospheric pressure at a temperature of 600° C. for from one to two hours. For O2, an example oxidizing condition would be feeding both O2 and H2 at atmospheric pressure and temperatures ranging from 800° C. to 1100° C. for from 30 minutes to two hours.
Alternately but less preferred, the above processing could take place in two separate chambers, with the wafer(s) being moved from one to the other after provision of the nitride layer for subsequent provision of the adhesion promoting layer.
Referring to
Other alternate examples are described with reference to
Silicon can be deposited by any typical or known process for depositing polycrystalline silicon atop a semiconductor wafer. An example and preferred method for providing layer 150 to constitute SiO2 is to first purge the reactor after Si3N4 layer deposition, followed by feeding of DCS and N2O to the reactor under temperature conditions of 780° C. and 250 mTorr at a volumetric ratio of DCS:N2O of from 1:3 to 1:10. Subsequently provided photoresist will adhere to Si3N4 layer 152 with a greater degree of adhesion than would otherwise occur if the intermediate silicon, SiO2, or other adhesion promoting layer were not present.
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
This application resulted from a continuation application from U.S. patent application Ser. No. 09/995,372, filed on Nov. 26, 2001 U.S. Pat. No. 6,693,345, which resulted from a continuation application of U.S. patent application Ser. No. 09/724,749, which was filed on Nov. 27, 2000, now U.S. Pat. No. 6,417,559 which is a divisional application of U.S. patent application Ser. No. 09/457,093, which was filed Dec. 7, 1999, now U.S. Pat. No. 6,323,139 which is a continuation-in-part of U.S. patent application Ser. No. 09/057,155, filed Apr. 7, 1998, now U.S. Pat. No. 6,300,253; and a continuation-in-part of U.S. patent application Ser. No. 09/295,642, filed Apr. 20, 1999 now U.S. Pat. No. 6,297,171; which is a continuation of U.S. patent application Ser. No. 08/567,090, now U.S. Pat. No. 5,926,739.
Number | Name | Date | Kind |
---|---|---|---|
3549411 | Bean | Dec 1970 | A |
3649884 | Haneta | Mar 1972 | A |
3884698 | Kakihama et al. | May 1975 | A |
4075367 | Gulett | Feb 1978 | A |
4330569 | Gulett et al. | May 1982 | A |
4439270 | Powell et al. | Mar 1984 | A |
4446194 | Candelaria | May 1984 | A |
4485553 | Christian | Dec 1984 | A |
4499656 | Fabian et al. | Feb 1985 | A |
4543707 | Ito et al. | Oct 1985 | A |
4612629 | Harari | Sep 1986 | A |
4695872 | Chatterjee | Sep 1987 | A |
4698787 | Mukherjee et al. | Oct 1987 | A |
4732858 | Brewer et al. | Mar 1988 | A |
4868632 | Hayashi et al. | Sep 1989 | A |
4874716 | Rao | Oct 1989 | A |
4939559 | DiMaria et al. | Jul 1990 | A |
4996081 | Ellul et al. | Feb 1991 | A |
5041888 | Possin et al. | Aug 1991 | A |
5045345 | Singer | Sep 1991 | A |
5045847 | Tarui et al. | Sep 1991 | A |
5098865 | Machado et al. | Mar 1992 | A |
5160998 | Itoh et al. | Nov 1992 | A |
5178016 | Dauenhauer et al. | Jan 1993 | A |
5219788 | Abernathey et al. | Jun 1993 | A |
5304829 | Mori et al. | Apr 1994 | A |
5306946 | Yamamoto | Apr 1994 | A |
5442223 | Fujii | Aug 1995 | A |
5489542 | Iwai et al. | Feb 1996 | A |
5518946 | Kuroda | May 1996 | A |
5523616 | Den | Jun 1996 | A |
5554418 | Ito et al. | Sep 1996 | A |
5587344 | Ishikawa | Dec 1996 | A |
5756404 | Friedenreich et al. | May 1998 | A |
5773325 | Teramoto | Jun 1998 | A |
5795821 | Bacchetta et al. | Aug 1998 | A |
5831321 | Nagayama | Nov 1998 | A |
5834374 | Cabral, Jr. et al. | Nov 1998 | A |
5877069 | Robinson | Mar 1999 | A |
5882978 | Srinivasan et al. | Mar 1999 | A |
5891793 | Gardner et al. | Apr 1999 | A |
5904523 | Feldman et al. | May 1999 | A |
5918147 | Filipiak et al. | Jun 1999 | A |
5925494 | Horn | Jul 1999 | A |
5926739 | Rolfson et al. | Jul 1999 | A |
5985771 | Moore et al. | Nov 1999 | A |
6033971 | Motonami et al. | Mar 2000 | A |
6093956 | Moore et al. | Jul 2000 | A |
6103619 | Lai | Aug 2000 | A |
6140181 | Forbes et al. | Oct 2000 | A |
6143627 | Robinson | Nov 2000 | A |
6143662 | Rhodes et al. | Nov 2000 | A |
6265241 | Pan | Jul 2001 | B1 |
6300253 | Moore et al. | Oct 2001 | B1 |
6380611 | Yin et al. | Apr 2002 | B1 |
6417559 | Moore et al. | Jul 2002 | B1 |
6420777 | Lam et al. | Jul 2002 | B1 |
6670695 | Gau et al. | Dec 2003 | B1 |
6693345 | Moore et al. | Feb 2004 | B1 |
6756634 | Helm et al. | Jun 2004 | B1 |
Number | Date | Country |
---|---|---|
2129217 | May 1984 | GB |
2145243 | Mar 1985 | GB |
2170649 | Aug 1986 | GB |
362137854 | Jun 1987 | JP |
401086562 | Mar 1989 | JP |
403075158 | Mar 1991 | JP |
09055351 | Feb 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20040124441 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09457093 | Dec 1999 | US |
Child | 09724749 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09995372 | Nov 2001 | US |
Child | 10734419 | US | |
Parent | 09724749 | Nov 2000 | US |
Child | 09995372 | US | |
Parent | 08567090 | Dec 1995 | US |
Child | 09295642 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09057155 | Apr 1998 | US |
Child | 09457093 | US | |
Parent | 09295642 | Apr 1999 | US |
Child | 09057155 | US |