This invention relates to stacking leaded integrated circuit devices and, in particular, to stacks and stacking integrated circuits in leaded packages.
A variety of systems and techniques are known for stacking packaged integrated circuits. Some techniques are devised for stacking chip-scale packaged devices (CSPs) while other systems and methods are better directed to leaded packages such as those that exhibit a set of leads extending from at least one lateral side of a typically rectangular package.
Memory devices are packaged in both chip-scale (CSP) and leaded packages. However, techniques for stacking CSP devices are typically not optimum for stacking leaded devices. Although CSP devices are gaining market share, in many areas, integrated circuits continue to be packaged in high volumes in leaded packages. For example, the well-known flash memory integrated circuit is typically packaged in a leaded package with fine-pitched leads emergent from one or both sides of the package. A common package for flash memory is the thin small outline package commonly known as the TSOP typified by leads emergent from one or more (typically a pair of opposite sides) lateral sides of the package. thin small outline package commonly known as the TSOP typified by leads emergent from one or more (typically a pair of opposite sides) lateral sides of the package.
The assignee of the present invention, Staktek Group L.P., has developed a wide variety of techniques, systems and designs for stacks and stacking with both leaded and CSP devices. In leaded package stacking, Staktek Group L.P. has developed, for example, U.S. Pat. No. 6,572,387 issued Jun. 3, 2003 and U.S. patent application Ser. No. 10/449,242 published as Pub. No. 2003/0203663 A1 which disclose and claim various techniques and apparatus related to stacking leaded packages.
Many other techniques have been developed for interconnecting the leads of the stacked devices. For example, U.S. Pat. No. 4,696,525 to Coller et al. purports to teach a socket connector for coupling adjacent devices in a stacked configuration to one another. The socket has external conductors that interconnect leads from like, adjacent devices to one another. Sockets, however, are limited in several respects. They are not versatile in their ability to implement complex interconnections. In addition, such sockets, which have relatively thick, plastic bodies, act as thermal insulators between upper and lower package surfaces, and inhibit the module's overall ability to dissipate heat.
Although the art has many techniques for stacking leaded devices, a new system and method for stacking leaded package devices is a welcome development. Accordingly, the present application discloses improved systems and methods for electrically and thermally coupling adjacent integrated circuit devices in stacked modules.
The present invention provides a system and method for stacks and stacking leaded package ICs packages. A flex circuit is disposed between leaded ICs to be stacked. In a preferred embodiment, leads of constituent leaded IC packages are configured to allow the lower surface of the leaded IC packages to contact the surface of the flex circuitry that provides connection between an upper and lower leaded IC package. In an optional embodiment, a part of the flex circuit emerges from between the leaded ICs and provides a connective facility for connection to external or application environments.
The present invention may also be employed with circuitry other than or in addition to memory such as the flash memory depicted in a number of the present Figs. Other exemplar types of circuitry that may be aggregated in stacks in accordance with embodiments of the invention include, just as non-limiting examples, DRAMs, FPGAs, and system stacks that include logic and memory as well as communications or graphics devices. It should be noted, therefore, that the depicted profile for ICs 20 and 22 is not a limitation and that upper and lower leaded ICs 20 and 22 respectively need not be TSOPs or TSOP-like and the packages employed may have more than one die or leads emergent from one, two, three or all sides of the respective package body. For example, a module 10 in accordance with embodiments of the present invention may employ leaded ICs 20 and 22 that have more than one die within each package and may exhibit leads emergent from only one side of the package. In such cases, adhesives will typically be employed between the IC and flex circuit. Further, a module 10 in accord with the present invention need not have two ICs as the invention may be employed to devise a stacked module 10 with two or more ICs as those of skill will understand after appreciating this disclosure. Further, techniques disclosed herein may be employed to stack a leaded IC in a leaded-CSP combination stack.
In the depicted preferred embodiment, flex circuit 12 (e.g., “flex”, “flex circuitry”, “flexible circuit” etc.) is disposed between leaded ICs 20 and 22 and exhibits a first side 15 having two pluralities of connective sites 34 and 36 adapted for connection to a leaded IC and, in this embodiment, another optional plurality of connective sites 32. Flex circuit 12 also exhibits a second side 17 having two pluralities of connective sites 44 and 46. Those of skill will recognize that flex circuit 12 may be comprised from traditional flexible circuitry or, in some of the alternative embodiments, what is sometimes called rigid-flex may be employed. Such rigid flex exhibits rigid areas and flexible areas to provide an interconnection function required of flex circuit 12 in the present invention.
Pluralities 34 and 36 and 44 and 46 of connective sites are adapted for connection to the leads of leaded packages IC 20 and IC 22, respectively, each of which has a plurality of peripheral sides, individual ones of which sides are identified as S1 and S2. Optional third plurality of connective sites 32 is adapted for connection of module 10 to an external circuit or environment.
Plural leads 24 are emergent from at least one of the plural sides of the ICs and typically, a plurality of leads 24 is emergent from one of the plural sides of each of the ICs 20 and 22 and a second plurality of leads 24 is emergent from another one of the plural sides of each of ICs 20 and 22. Leaded ICs 20 and 22 are connected to flex circuit 12 through the leads 24 of leaded ICs 20 and 22. As those of skill will recognize, many techniques exist for connecting the leads of leaded ICs 20 and 22 to the connective sites. Such techniques include, as a non-limiting example, use of solder or other conductive attachment. Other forms of bonding other than solder between the connecting sites and leads 24 may also be employed (such as brazing or welding for example) but soldering techniques are well understood and adapted for use in large scale manufacturing.
Leads 24 of leaded ICs 20 and 22 employed in an exemplar module 10 are shown in contact with connective sites 34C and 44C, for example, while lower surface 25 of the leaded ICs 20 and 22 are in contact with the respective sides 15 and 17 of flex circuit 12.
It will be seen by those skilled in the art that many embodiments taking a variety of specific forms and reflecting changes, substitutions, and alternations can be made without departing from the spirit and scope of the invention. Therefore, the described embodiments illustrate but do not restrict the scope of the claims.
This application is a divisional of U.S. patent application Ser. No. 11/330,307, filed Jan. 11, 2006, which is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 11330307 | Jan 2006 | US |
Child | 12402267 | US |