This invention relates to flat or planar flexible carrier or cable with embedded electrical connectors that serves to connect devices such as camera modules used in mobile telephones to electrical circuits.
There is a need to provide flexible electrical connectors in tight spaces, between components on different planes or axis and where the components to be connected are not easily attached one to another. Connectors typically have been sockets or pins attached to flat flexible cables (FFC) that plug into an electrical device to complete electrical circuits. These connectors have a housing or support structure that is physically attached to the FFC. These structures take up space because they have support structures for the pins or sockets that add to the thickness of the FFC. Failure of the electrical circuit at the point of connection between the existing connectors and the FFC causes failure of the devices in which they are installed. A simple integrated connector with the FFC is needed to solve the space and failure problem and to save processing steps and materials.
One form of the invention uses embedded contacts on a flat flexible cable (FFC) to attach complimentary metal oxide silicon (CMOS) or charged coupled device (CCD) camera module at one end of the FFC to electrical components at the other end of the FFC. These electrical components may be a printed circuit Board (PCB), semiconductor or like devices. Also electrical subsystems may be attached to or embedded with contacts that are embedded on or in a FFC.
FFC is readily available in various configurations from vendors such as Luxidaâ„¢ Corporation. It is typically made by sandwiching conductive material such as copper in strips, also known as traces, between flexible insulators. The insulation may be stripped from the FFC to provide areas in which the traces are exposed allowing electrical contact. In the present invention electrical connectors are directly adhered onto the exposed traces.
Referring to
The connector array 104 on the other end of flex cable 100 may be secured via a clamp 110 to an electrical circuit, component or device (not shown) such as a printed circuit board, semiconductor device, or like electrical circuit. The resulting flexible assembly allows electrical connections in varying spatial and component configurations.
Referring to
Neoconix invented a process for forming electrical contacts in three dimensions using techniques similar to that used to make printed circuit boards as more fully described in U.S. Pat. Nos. 6,916,181; 6,869,290 and U.S. patent applications Ser. Nos. 11/1265,205 filed on Nov. 3,2005 and 10/412,729 filed on Apr. 11, 2003. The process comprises attaching a sheet of conductive material to a substrate, masking the sheet and chemically etching it, or other techniques, to predetermined shape and isolating, also known as singulating, the resulting contacts from each other. An electrical connection may be made between the contacts and circuits on, through or within the substrate by plating or mechanical connections.
In this invention, electrical contacts, in the form of spring flanges 202 or other shapes are formed directly onto the exposed electrical traces 302 in the FFC 100. In the forming process, a sheet of conductive material, nominally BeCu is adhered to the FFC 100 in registration with the electrical traces 302. The sheet is then masked and etched to form spring flanges 202 and then the resulting flanges are chemically etched, or other techniques may be used, to electrically isolate them from each other which is a process also known as singulation. This produces FFC 100 with embedded spring flanges 202 electrically and structurally connected to the electrical traces 302.
Referring to
Referring to
Yet another variation of the process to manufacture FFC is to use build up techniques described above to embed conductive material that terminates in pads on which to mount spring contacts in layers of flexible dielectric materials. Circuits are formed on flex material with surface mount pads at a terminus and spring contacts are laminated onto the pads by adhesives, typically acrylic. The springs and pads are then plated to form an integral structure. The construction of these pads as part of the manufacture of the flat flex material eliminates the steps of stripping the insulation away from the conductive traces and bonding pads to the terminus of the traces.
Referring to
Referring to
The FFC 100 can be manufactured by embedding trace conductors 302 in FFC 100 and forming the spring contacts 902 onto FFC 100. The result is an electrical circuit beginning at the electrical contacts on camera module 106 (not shown) through spring flanges 202 via trace conductors 302 to contacts 902 at the other end of flat flex cable 100. The contacts 902 may then be engaged by a clamp, not shown, to make electrical connection to an electrical device such as a printed circuit board, semiconductor or like structure.
This invention may be implemented in variations of steps, configurations, shapes, sizes and materials all of which are contemplated herein.
This application is a continuation of co-pending U.S. patent application Ser. No. 11/408,566 filed Apr. 21, 2006, an application which was a continuation-in-part of U.S. patent application Ser. No. 11/265,205 filed on Nov. 3, 2005 (and issued as U.S. Pat. No. 7,114,961 on Oct. 3, 2006) which was a continuation-in-part of U.S. patent application Ser. No. 10/412,729 filed Apr. 11, 2003 (and issued as U.S. Pat. No. 7,056,131 on Jun. 6, 2006). The benefit of the filing dates of these earlier patents and patent applications is requested under 35 USC 120.
Number | Date | Country | |
---|---|---|---|
Parent | 11408566 | Apr 2006 | US |
Child | 12590443 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11265205 | Nov 2005 | US |
Child | 11408566 | US | |
Parent | 10412729 | Apr 2003 | US |
Child | 11265205 | US |