Aspects of the disclosed subject matter relate generally to bonding light emitting diode (LED) display structures, and more particularly to a system and method of structuring light emission engines using LED elements that enable or facilitate improvement of light extraction efficiency, modification of a color of light emitted, and angular output of light from LED structures.
Many investigators working with display instrumentalities have invested significant effort in the development of micro-LED technology with the intention of building high luminance pixelated structures for display and non-display light engine applications. Several technical challenges remain, however, which still need to be overcome to make this technology practical for most commercial applications. Specifically, several groups working in the micro-LED space have proposed a range of architectures for packaging, light extraction, interconnection, and color conversion. For example, a document authored by Shih, et al. (“LED Die Bonding.” Materials for Advanced Packaging, Ch. 17, Springer International Publishing, Switzerland, 2017) describes many conventional packaging techniques used for discrete LEDs, which have many similarities and a few differences from the requirements for micro-LEDs. One of the drawing figures from Shih, reproduced as
In some devices, e.g., such as those described by the Sakakibara et al. document (“Independent drive of integrated multicolor (RGBY) micro-LED array using regularly arrayed InGaN based nanocolumns.” 22nd Microoptics Conference (MOC2017), Tokyo, Japan, Nov. 19-22, 2017) an architecture employs LEDs that are patterned into mesas, and both the (negative and positive) n-and p-sides are contacted from the top side. Light in this architecture is extracted from the top side, but may also be extracted from the growth substrate (sapphire) side if the structure is inverted. This connection approach has the advantage of simplicity, but it also has a relatively poor fill factor due to both layers of interconnect sharing area with the patterned LEDs.
The Yeo et al. document (“Micro-LED arrays for display and communication: device structure and driver architecture.” 2017 IEEE 12th International Conference on ASIC (ASICON), Guiyang, China, Oct. 25-28, 2017) shows a similar architecture, with the same benefits and limitations as the system presented in Sakakibara. Mao describes a system in which a phosphor film is attached to an LED structure using a polysilazine binding layer. These color conversion materials can be used to shift the wavelength of light emitted by an LED to longer wavelengths than might otherwise naturally be emitted from the LED, and if patterned, can allow for multiple wavelengths of light from a single LED structure. Finally, the Maaskant document (U.S. Pat. No. 9,515,238) describes a system in which LED chiplets may be placed within a shaped reflector structure. This structure can modify many of the properties of light, including the wavelength (e.g., through the use of phosphors), emission angle (e.g., via lensing), and emission angle and overall light extraction efficiency through the use of scattering layers.
Though researchers are making advancements in LED display techniques, many of the issues associated with heat sinking, forming electrical contacts, and placement of phosphors for color conversion present universal and recurring challenges for those of skill in the art.
Therefore, there is a need for an improved a system and method of structuring light emission engines using LED elements that enable or facilitate improvement of light extraction efficiency, modification of a color of light emitted, and angular output of light from LED structures.
The following presents a simplified summary of the disclosure in order to provide a basic understanding of some aspects of various embodiments disclosed herein. This summary is not an extensive overview of the disclosure. It is intended neither to identify key or critical elements of the disclosed embodiments nor to delineate the scope of those embodiments. Its sole purpose is to present some concepts of the subject matter in a simplified form as a prelude to the more detailed description that is presented later.
The present disclosure describes a system and method of structuring light emission engines using LED elements that enable or facilitate improvement of light extraction efficiency, modification of a color of light emitted, and angular output of light from LED structures.
In accordance with one aspect of the disclosed subject matter, a method of fabricating display structures is disclosed comprising: receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate; patterning the epitaxial semiconductor layer of the wafer from a front face of the epitaxial semiconductor layer to form a common contact; bonding the common contact to a carrier substrate; releasing the growth substrate from the epitaxial semiconductor layer to expose a back face of the epitaxial semiconductor layer, the back face opposed from the front face across a thickness of the epitaxial semiconductor layer; providing individually addressable contacts on the back face of the epitaxial semiconductor layer, such that the common contact, the epitaxial semiconductor layer, and the individually addressable contacts form a set of micro-light emitting diodes (micro-LEDs); and electrically coupling a set of drive circuitry to the individually addressable contacts to control the micro-LEDs.
A method may further comprise patterning the epitaxial semiconductor layer to form a respective discrete semiconductor element for each of the micro-LEDs. A method is disclosed wherein bonding the common contact to a carrier substrate includes bonding the common contact to a transparent or translucent carrier substrate, where light emission from the micro-LEDs will pass through the transparent or translucent carrier substrate. A method is disclosed further comprising growing the epitaxial semiconductor layer on the first face of the growth substrate. A method is disclosed wherein electrically coupling a set of drive circuitry to the individually addressable contacts to control the micro-LEDs includes electrically coupling a set of complementary metal oxide semiconductor (CMOS) circuits to the individually addressable contacts to control the micro-LEDs.
A method may further comprise: depositing an insulating layer over individually addressable contacts; and forming vias in the insulating layer to provide a set of electrical connections to the individually addressable contacts through the insulating layer.
A method is disclosed wherein electrically coupling a set of drive circuitry to the individually addressable contacts to control the micro-LEDs includes electrically coupling a set of thin film transistor (TFT) circuits to the individually addressable contacts to control the micro-LEDs. A method is disclosed wherein bonding the common contact to a carrier substrate includes bonding the common contact to a translucent carrier substrate that is wavelength selective. A method is disclosed wherein releasing the growth substrate includes performing a laser lift-off. A method is disclosed wherein releasing the growth substrate includes polishing the growth substrate. A method may further comprise removing residue from the polishing of the growth substrate. A method may further comprise adding one or more optical features to the carrier substrate.
In accordance with another aspect of the disclosed subject matter, a method of fabricating display structures is disclosed comprising: receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate; patterning the epitaxial semiconductor layer of the wafer from a front face of the epitaxial semiconductor layer to form first conductive contacts at a relatively fine pitch; depositing an insulating layer over the first conductive contacts; forming vias in the insulating layer to provide a set of electrical connections to the first conductive contacts through the insulating layer; depositing second conductive contacts at a relatively coarse pitch that is relatively more coarse than the fine pitch over the insulating layer; selectively electrically connecting ones of the first conductive contacts, through the vias, to ones of the second conductive contacts using the set of electrical connections, such that the first conductive contacts, the epitaxial semiconductor layer, and the second conductive contacts form a set of micro-light emitting diodes (micro-LEDs); electrically coupling the second conductive contacts to a set of drive circuitry to control the micro-LEDs; and bonding the set of drive circuitry to a carrier substrate. A method may further comprise growing the epitaxial semiconductor layer on the first face of the growth substrate.
A method may further comprise adding one or more optical features to the carrier substrate. A method may further comprise releasing the growth substrate from the epitaxial semiconductor layer to expose a back face of the epitaxial semiconductor layer, the back face opposed from the front face across a thickness of the epitaxial semiconductor layer.
A method is disclosed wherein electrically coupling the second conductive contacts to a set of drive circuitry to control the micro-LEDs includes electrically coupling a set of thin film transistor (TFT) circuits or a set of complementary metal oxide semiconductor (CMOS) circuits to the second conductive contacts to control the micro-LEDs. A method is disclosed wherein bonding the set of drive circuitry to a carrier substrate comprises utilizing a material allowing emission of light through the carrier substrate. A method is disclosed wherein allowing emission of light through the carrier substrate comprises transmitting light at a selected wavelength generated by the micro-LEDs through the carrier substrate. A method is disclosed wherein releasing the growth substrate includes performing a laser lift-off. A method is disclosed wherein releasing the growth substrate includes polishing the growth substrate. A method is disclosed wherein releasing the growth substrate includes etching the growth substrate, possibly after other release steps have been performed.
A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the growth substrate is sapphire. Similarly, a method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the growth substrate is selected from the group consisting of GaN, InP, InGaAs, Si, SiC, and Ge.
A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the epitaxial semiconductor layer is Gallium Nitride.
A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the epitaxial semiconductor layer comprises Silicon. Similarly, a method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which epitaxial semiconductor layer comprises a material selected from the group consisting of GaN, InP, InGaAs, Si, SiC, and Ge.
In accordance with another aspect of the disclosed subject matter, a method of fabricating display structures is disclosed comprising: receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate; patterning the epitaxial semiconductor layer of the wafer from a front face of the epitaxial semiconductor layer to form first conductive contacts at a relatively fine pitch that is finer than a relatively coarse pitch; depositing an interposer layer on the front face of the epitaxial semiconductor layer over the first conductive contacts; providing drive circuitry which is electrically coupled to the interposer layer, opposed from the epitaxial semiconductor layer, with a set of second conductive contacts, the second conductive contacts disposed at the relatively coarse pitch that is coarser than the fine pitch; and selectively electrically connecting ones of the first conductive contacts, through the interposer layer, to ones of the second conductive contacts, such that the first conductive contacts, the epitaxial semiconductor layer, and the second conductive contacts form a set of micro-light emitting diodes (micro-LEDs) controlled by the drive circuitry. A method may further comprise growing the epitaxial semiconductor layer on the first face of the growth substrate.
A method is disclosed wherein providing drive circuitry comprises electrically coupling a set of thin film transistor (TFT) circuits or a set of complementary metal oxide semiconductor (CMOS) circuits to the interposer layer using the second conductive contacts. A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the growth substrate is sapphire. A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the epitaxial semiconductor layer is Gallium Nitride. A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the epitaxial semiconductor layer comprises Silicon.
In accordance with another aspect of the disclosed subject matter, a method of fabricating display structures is disclosed comprising: receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate; patterning the epitaxial semiconductor layer of the wafer from a front face of the epitaxial semiconductor layer to form an interconnect layer comprising drive circuitry; bonding the interconnect layer to a carrier substrate; releasing the growth substrate from the epitaxial semiconductor layer to expose a back face of the epitaxial semiconductor layer, the back face opposed from the front face across a thickness of the epitaxial semiconductor layer; and depositing a color conversion layer on the back face of the epitaxial semiconductor layer, such that the interconnect layer, the epitaxial semiconductor layer, and the color conversion layer form a set of micro-light emitting diodes (micro-LEDs) controlled by the drive circuitry. A method may further comprise growing the epitaxial semiconductor layer on the first face of the growth substrate. A method may further comprise adding a color filter layer to the back face of the epitaxial semiconductor layer, the color filter layer disposed over the color conversion layer.
A method is disclosed wherein releasing the growth substrate includes performing a laser lift-off. A method is disclosed wherein releasing the growth substrate includes polishing the growth substrate. A method is disclosed wherein releasing the growth substrate includes etching the growth substrate. A method is disclosed wherein releasing the growth substrate includes etching the growth substrate following other release process operations.
A method is disclosed wherein depositing a color conversion layer comprises depositing a layer of material that includes a phosphor. A method is disclosed wherein depositing a color conversion layer comprises depositing a layer of material that includes a nanophosphor. A method is disclosed wherein depositing a color conversion layer comprises depositing a layer of material that includes a quantum dot. A method is disclosed wherein depositing a color conversion layer comprises adding an epitaxial semiconductor layer. A method is disclosed wherein adding a color filter layer comprises adding a dielectric filter. A method is disclosed wherein adding a color filter layer comprises adding a dielectric or metallic mirror. A method is disclosed wherein adding a color filter layer comprises adding a plasmonic optical element. A method is disclosed wherein adding a color conversion layer comprises adding a photoluminescent semiconductor structure in which a light emitting bandgap is formed at the desired energy. A method is disclosed wherein adding a color conversion layer comprises adding a wide bandgap semiconductor doped with activators.
A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the growth substrate is sapphire. A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the epitaxial semiconductor layer is Gallium Nitride, Silicon, or Silicon Carbide. A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the epitaxial semiconductor layer comprises Silicon. A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the epitaxial semiconductor layer comprises a material selected from the group consisting of GaN, InP, InGaAs, Si, SiC, and Ge.
A method is disclosed wherein depositing a color conversion layer and adding a color filter layer comprise fabricating the color conversion layer and the color filter layer independently of the epitaxial semiconductor layer to create a color conversion module. A method may further comprise: bonding the color conversion module to the back face of the epitaxial semiconductor layer. A method is disclosed wherein bonding the color conversion module to the back face of the epitaxial semiconductor layer comprises using metal bonding. A method is disclosed wherein bonding the color conversion module to the back face of the epitaxial semiconductor layer comprises using plasma fusion bonding. A method is disclosed wherein bonding the color conversion module to the back face of the epitaxial semiconductor layer comprises use of an adhesive. A method is disclosed wherein bonding the color conversion module to the back face of the epitaxial semiconductor layer comprises using anodic bonding.
In accordance with yet another aspect of the disclosed subject matter, a method of fabricating display structures is disclosed comprising: receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate; patterning the epitaxial semiconductor layer of the wafer from a front face of the epitaxial semiconductor layer to form an interconnect layer comprising drive circuitry; bonding the interconnect layer to a carrier substrate; releasing the growth substrate from the epitaxial semiconductor layer to expose a back face of the epitaxial semiconductor layer, the back face opposed from the front face across a thickness of the epitaxial semiconductor layer; and patterning one or more optical extraction elements on the back face of the epitaxial semiconductor layer, such that the interconnect layer, the epitaxial semiconductor layer, and the one or more optical extraction elements form a set of micro-light emitting diodes (micro-LEDs) controlled by the drive circuitry. A method may further comprise growing the epitaxial semiconductor layer on the first face of the growth substrate.
A method may further comprise depositing an electrode on each of the one or more optical extraction elements. A method is disclosed wherein patterning one or more optical extraction elements comprises creating a prism. A method is disclosed wherein patterning one or more optical extraction elements comprises creating an optical grating. A method is disclosed wherein patterning one or more optical extraction elements comprises creating a photonic crystal. A method is disclosed wherein patterning one or more optical extraction elements comprises creating a lens. A method is disclosed wherein patterning one or more optical extraction elements comprises creating a shallow etched Fresnel lens.
A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the growth substrate is sapphire. A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the epitaxial semiconductor layer is Gallium Nitride, Gallium Arsenide, Indium Phosphide, or comprises Silicon.
A method is disclosed wherein growing the epitaxial semiconductor layer comprises allowing the semiconductor layer to grow to a thickness sufficient to accommodate a depth of the one or more optical extraction elements.
In accordance with another aspect of the disclosed subject matter, a method of fabricating display structures is disclosed comprising: receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate; patterning the epitaxial semiconductor layer of the wafer from a front face of the epitaxial semiconductor layer to form an interconnect layer comprising drive circuitry; bonding the interconnect layer to a carrier substrate; polishing the growth substrate to create a residual growth substrate layer on a back face of the epitaxial semiconductor layer, the back face opposed from the front face across a thickness of the epitaxial semiconductor layer; and patterning one or more optical extraction elements on the residual growth substrate layer, such that the interconnect layer, the epitaxial semiconductor layer, and the one or more optical extraction elements form a set of micro-light emitting diodes (micro-LEDs) controlled by the drive circuitry. A method may further comprise growing the epitaxial semiconductor layer on the first face of the growth substrate.
A method may further comprise depositing an electrode on each of the one or more optical extraction elements. A method may further comprise depositing a mirror on each of the one or more optical extraction elements. A method is disclosed wherein patterning one or more optical extraction elements comprises creating a prism. A method is disclosed wherein patterning one or more optical extraction elements comprises creating an optical grating. A method is disclosed wherein patterning one or more optical extraction elements comprises creating a photonic crystal. A method is disclosed wherein patterning one or more optical extraction elements comprises creating a lens. A method is disclosed wherein patterning one or more optical extraction elements comprises creating a shallow etched Fresnel lens. A method is disclosed wherein patterning one or more optical extraction elements comprises creating a series of scattering elements.
A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the growth substrate is sapphire. A method is disclosed wherein receiving a wafer which comprises a growth substrate and an epitaxial semiconductor layer grown on a first face of the growth substrate includes receiving a wafer in which the epitaxial semiconductor layer is Gallium Nitride, Gallium Arsenide, Indium Phosphide, or comprises Silicon. A method is disclosed wherein polishing the growth substrate comprises allowing the residual growth substrate layer to remain at a thickness sufficient to accommodate a depth of the one or more optical extraction elements.
In accordance with yet another aspect, a display structure is disclosed comprising: a semiconductor device layer having a front face and a back face, the back face opposed from the front face across a thickness of the semiconductor device layer, and comprising a set of micro-light emitting diodes (micro-LEDs); a carrier supporting the semiconductor device layer on the back face, the carrier having, for each respective micro-LED in the set of micro-LEDs, a respective aperture allowing light emitted by the respective micro-LED to exit the carrier; and a bond electrically coupling each respective micro-LED in the set of micro-LEDs to the carrier.
A display structure is disclosed wherein light emitted from a respective one of the micro-LEDs in the set of micro-LEDs is allowed to exit the carrier from the back face of the semiconductor device layer through the respective aperture and from the front face of the semiconductor device layer opposite the respective aperture.
A display structure may further comprise: for respective ones of the set of micro-LEDs, a respective reflective electrode to control a direction of light emitted from a respective micro-LED in the set of micro-LEDs. A display structure is disclosed wherein the respective reflective electrode is disposed on the back face of the semiconductor device layer proximal to the respective aperture to prevent light from exiting the respective aperture. A display structure is disclosed wherein the respective reflective electrode is disposed on the front face of the semiconductor device layer opposite the respective aperture to direct light through the respective aperture. A display structure is disclosed wherein the semiconductor device layer comprises Gallium Nitride or Silicon. A display structure is disclosed wherein the bond is a wire bond. A display structure is disclosed wherein the bond is a solder bump.
The foregoing and other aspects of various disclosed embodiments will be apparent through examination of the following detailed description thereof in conjunction with the accompanying drawing figures, in which like reference numerals are used to represent like components throughout, unless otherwise noted.
DESCRIPTION OF THE DRAWING FIGURES
Certain aspects and features of the disclosed subject matter may be further understood with reference to the following description and the appended drawing figures. In operation, a system and method may enable or facilitate integration of LED implementations with display technologies that allows for the co-integration of significant elements of the display structure with interconnect hardware, light management elements, and color conversion components. In that regard, one aspect of the disclosure addresses development of a structure that allows for a higher density of interconnections than is achievable with current or traditional approaches. In accordance with a second aspect, the disclosed subject matter addresses a structure that may allow for lower fabrication costs and higher performance; improvements may be achieved in terms of processing and handling techniques associated with fabrication of optical elements for LED device structures as well as the output performance and power consumption of these elements. Additionally or alternatively, the disclosed subject matter may enable or facilitate a superior fill factor for micro-LED displays, providing or allowing greater utilization of an active area of a device in situations or applications in which optimization of silicon real estate is desired or important.
Some implementations of disclosed optical elements include structures that may convert a color of a display, improve an angular emission profile, reduce crosstalk, and improve efficiency of light extraction from an LED device or structure. An additional benefit of the disclosed implementations may result in flexibility to extract light from either a first side (i.e., the free surface after epitaxial LED growth) or a second side (i.e., the surface attached to the single crystal substrate during epitaxial growth) after fabrication, as well as an option to configure a disclosed device for common electrodes made from the p- or n-type semiconductor material in the LED, which may offer advantages for circuit interconnect applications.
The LED structure may be released from growth substrate 120 (for example, via a laser lift-off technique, chemical etching, backgrinding, or other mechanism generally known in the art), and functional LED elements (e.g., contacts, solder balls, drive circuitry, and the like) may then be bonded individually, and sequentially, from the backside layer after removal of growth substrate 120. This implementation allows for the formation of individually addressable micro-LED elements in which singulated access is formed on the backside of the P/N junction layer. In the
As indicated at the bottom of
For example,
Reflective electrodes 1150 and 1160 may be utilized to control a direction of light emitted by wafer 1100 as it exits carrier 1199.
In the
The foregoing written description and the drawing figures are provided by way of example only, and not by way of limitation. Those of skill in the art will appreciate that the disclosed subject matter is susceptible of various modifications and alternations, which may be application-or materials-specific. Additional background material and use cases are described below, also by way of example and not by way of limitation.
LED epitaxial wafers are typically processed into array micro-LED displays by accessing the n-and p-layers from one side of the structure. Such typical processing allows for retaining the epitaxial wafer (i.e., the LED substrate or layer, such as 110) on the growth substrate (such as 120). Growth substrate 120 in many cases may be or include sapphire, but as noted above, the present disclosure is not intended to be so limited. In that regard, growth substrate 120 set forth herein may be implemented as GaN, SiC, Si, or other suitable crystalline material, and may be selected as a function of processing considerations, cost, operational characteristics, or other factors. Those of skill in the art will appreciate that any such crystalline material capable of maintaining the monolithic integrity of the LED assembly may be used as desired or as a design choice.
Recently, researchers and engineering teams have made significant advances in the processes used to release active semiconductor films from growth substrates; some of these advances include the use of laser lift-off procedures as well as precision grindback, polishing, and etching processes, which allow for the removal of most or all of the growth substrate while keeping the semiconductor layer intact and preserving the favorable qualities of the underlying semiconductor. Such processes open several options for interconnection of the LED structure which can provide advantages including, but not limited to, superior access to semiconductor junction layers for flexible circuit design and integration (e.g., the potential of configuring devices in a common anode or common cathode configuration independent of the growth sequence), superior heat extraction, and a reduced need for opaque metal layers or interconnect structures that can reduce the fill factor of the LED. An additional advantage of this approach is the ability to pattern electrodes on either side, or on both sides, of the LED structure. The ability to tune the polarity of the LEDs may have particular utility for co-integrated circuitry which offers only NMOS or PMOS transistors which will typically have superior current control in only one polarity.
One approach described herein includes the singulation of interconnect from the backside of the LED in structures in which the emission is effectuated from the semiconductor topside. In accordance with one aspect, a structure may be fabricated by first partially processing the LED structures and bonding the LED layer to a carrier (see, e.g.,
In some implementations, bonding to a target substrate may be performed before laser lift-off. Such bonding may be permanent (e.g., using metal bonding, cold plasma bonding, etc.) or temporary (e.g., using a solid temporary adhesive tape or attachment using a hot melt material such as CrystalBond or Piccolastic). As is generally known, debonding may occur through or be facilitated by application of ultraviolet or thermal energy, solvents, or other triggered release mechanisms.
In accordance with another implementation, an LED wafer may be partially processed, and then inverted and attached to a carrier substrate (as illustrated in
In typical or conventional systems or processing methodologies, the growth layer may be removed with laser lift-off techniques, in accordance with which laser output is applied; a laser is selected to output energy that is absorbed by the LED semiconductor layer but is transmitted by the growth substrate. When such laser output is applied to the backside of the substrate, an energetic disruption is created at the interface between the LED semiconductor layer and growth substrate. As an example, a 355 Nd-YaG third harmonic laser can be used to separate a GaN LED and a sapphire (Al2O3) growth substrate, though other laser solutions may be selected as a function of or influenced by the materials used and their physical and energy-transmissive properties, or as a combination of these and other factors. As an alternative to laser lift-off, it is also possible to use precision thinning techniques to polish the growth substrate and/or terminate a polishing or etch process through final etching of the growth substrate layer. As noted above with reference to
In accordance with another implementation (see, e.g.,
The stack constructed in accordance with the
In another implementation, a processed micro-LED device may be inverted and bonded to an interposer (see, e.g.,
For implementing a color conversion structure, a phosphor (or phosphor-based) conversion layer may be deposited on the LED or micro-LED structure after release from the growth substrate. This conversion layer can be a single color (e.g., a broad spectrum white), or multiple spatially patterned colors integrating two or more colors for emission. Phosphors that can be used include inorganic phosphors, quantum dots, organic materials, defect emitters in wide bandgap structures, and nanophosphors. Integration of the wavelength conversion elements on a thinned LED or micro-LED structure reduces the waveguiding that may otherwise occur in the substrate slab. This approach is illustrated in and described above with reference to
In accordance with one aspect, such color conversion layers may also be integrated with a filter before or after (or both before and after) the color conversion layer to improve spectral quality of the emitted light, such as by reducing a bandwidth of spectral output of quantum dots, removing excitation light from the emitted spectrum, or both. This is described above with reference to
In accordance with some disclosed implementations, a thinned LED layer, or even a residual growth layer, may be patterned to include optical extraction elements or wavelength control structures (see, e.g.,
Laser lift-off techniques typically remove all of the growth substrate, but as noted above with reference to the
In accordance with another feature, a disclosed alternative implementation employs a relatively thicker layer of semiconductor material (such as a thick underlying GaN layer, for instance); such a relatively thicker layer may generally provide extra material for patterning of required or desired optical extraction elements while allowing contacting through the stack. This approach, illustrated in
In cooperation or combination with any of the foregoing processing approaches, electrical connections to the electrodes may be made using conducting adhesives, anisotropic conducting elements (such as heat seal conductors or elastomeric connectors), or other bonding structures or methodologies generally known in the art. For example, electrical connection may be performed using bump bonding to a carrier or interposer that accommodates the driver chips. Such a carrier can be structured to accommodate contacts on either side (i.e., top or bottom) or on both sides of the LED wafer. Optical access may also be configured for top, bottom, or dual light extraction through the selection (and selective positioning) of reflective electrodes and optical access in the carrier as set forth above with particular reference to
Several features and aspects of a system and method have been illustrated and described in detail with reference to particular embodiments by way of example only, and not by way of limitation. All of the commonly assigned US patent application publications, US patent applications, foreign patents, and foreign patent applications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to U.S. Provisional Patent Application No. 62/787,505, filed Jan. 2, 2019, entitled “SYSTEM AND METHOD OF FABRICATING DISPLAY STRUCTURES” are incorporated herein by reference in their entirety. Those of skill in the art will appreciate that alternative implementations and various modifications to the disclosed embodiments are within the scope and contemplation of the present disclosure. Therefore, it is intended that the present disclosure be considered as limited only by the scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
62787505 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17417651 | Jun 2021 | US |
Child | 18619769 | US |