Targeted chromosomal genomic alterations with modified single stranded oligonucleotides

Abstract
Presented are methods and compositions for targeted chromosomal genomic alterations using modified single-stranded oligonucleotides of the invention have at least one modified nuclease-resistant terminal region comprising phosphorothioate linkages, LNA analogs or 2′-O-Me base analogs.
Description


FIELD OF THE INVENTION

[0001] The technical field of the invention is oligonucleotide-directed repair or alteration of genetic information using novel chemically modified oligonucleotides. Such genetic information is preferably from a eukaryotic organism, i.e. a plant, animal or fungus.



BACKGROUND OF THE INVENTION

[0002] A number of methods have been developed specifically to alter the sequence of an isolated DNA in addition to methods to alter directly the genomic information of various plants, fungi and animals, including humans (“gene therapy”). The latter methods generally include the use of viral or plasmid vectors carrying nucleic acid sequences encoding partial or complete portions of a particular protein which is expressed in a cell or tissue to effect the alteration. The expression of the particular protein then results in the desired phenotype. For example, retroviral vectors containing a transgenic DNA sequence allowing for the production of a normal CFTR protein when administered to defective cells are described in U.S. Pat. No. 5,240,846. Others have developed different “gene therapy vectors” which include, for example, portions of adenovirus (Ad) or adeno-associated virus (AAV), or other viruses. The virus portions used are often long terminal repeat sequences which are added to the ends of a transgene of choice along with other necessary control sequences which allow expression of the transgene. See U.S. Pat. Nos. 5,700,470 and 5,139,941. Similar methods have been developed for use in plants. See, for example, U.S. Pat. No. 4,459,355 which describes a method for transforming plants with a DNA vector and U.S. Pat. No. 5,188,642 which describes cloning or expression vectors containing a transgenic DNA sequence which when expressed in plants confers resistance to the herbicide glyphosate. The use of such transgene vectors in any eukaryotic organism adds one or more exogenous copies of a gene, which gene may be foreign to the host, in a usually random fashion at one or more integration sites of the organism's genome at some frequency. The gene which was originally present in the genome, which may be a normal allelic variant, mutated, defective, and/or functional, is retained in the genome of the host.


[0003] These methods of gene correction are problematic in that complications which can compromise the health of the recipient, or even lead to death, may result. One such problem is that insertion of exogenous nucleic acid at random location(s) in the genome can have deleterious effects. Another problem with such systems includes the addition of unnecessary and unwanted genetic material to the genome of the recipient, including, for example, viral or other vector remnants, control sequences required to allow production of the transgene protein, and reporter genes or resistance markers. Such remnants and added sequences may have presently unrecognized consequences, for example, involving genetic rearrangements of the recipient genomes. Other problems associated with these types of traditional gene therapy methods include autoimmune suppression of cells expressing an inserted gene due to the presence of foreign antigens. Concerns have also been raised with consumption, especially by humans, of plants containing exogenous genetic material.


[0004] More recently, simpler systems involving poly- or oligo-nucleotides have been described for use in the alteration of genomic DNA. These chimeric RNA-DNA oligonucleotides, requiring contiguous RNA and DNA bases in a double-stranded molecule folded by complementarity into a double hairpin conformation, have been shown to effect single basepair or frameshift alterations, for example, for mutation or repair of plant or animal genomes. See, for example, WO 99/07865 and U.S. Pat. No. 5,565,350. In the chimeric RNA-DNA oligonucleotide, an uninterrupted stretch of DNA bases within the molecule is required for sequence alteration of the targeted genome while the obligate RNA residues are involved in complex stability. Due to the length, backbone composition, and structural configuration of these chimeric RNA-DNA molecules, they are expensive to synthesize and difficult to purify. Moreover, if the RNA-containing strand of the chimeric RNA-DNA oligonucleotide is designed so as to direct gene conversion, a series of mutagenic reactions resulting in nonspecific base alteration can result. Such a result compromises the utility of such a molecule in methods designed to alter the genomes of plants and animals, including in human gene therapy applications.


[0005] Alternatively, other oligo- or poly-nucleotides have been used which require a triplex forming, usually polypurine or polypyrimidine, structural domain which binds to a DNA helical duplex through Hoogsteen interactions between the major groove of the DNA duplex and the oligonucleotide. Such oligonucleotides may have an additional DNA reactive moiety, such as psoralen, covalently linked to the oligonucleotide. These reactive moieties function as effective intercalation agents, stabilize the formation of a triplex and can be mutagenic. Such agents may be required in order to stabilize the triplex forming domain of the oligonucleotide with the DNA double helix if the Hoogsteen interactions from the oligonucleotide/target base composition are insufficient. See, e.g., U.S. Pat. No. 5,422,251. The utility of these oligonucleotides for directing gene conversion is compromised by a high frequency of nonspecific base changes.


[0006] In more recent work, the domain for altering a genome is linked or tethered to the triplex forming domain of the bi-functional oligonucleotide, adding an additional linking or tethering functional domain to the oligonucleotide. See, e.g., Culver et al., Nature Biotechnology 17: 989-93 (1999). Such chimeric or triplex forming molecules have distinct structural requirements for each of the different domains of the complete poly- or oligo-nucleotide in order to effect the desired genomic alteration in either episomal or chromosomal targets.


[0007] Other genes, e.g. CFTR, have been targeted by homologous recombination using duplex fragments having several hundred basepairs. See, e.g., Kunzelmann et al., Gene Ther. 3:859-867 (1996). Early experiments to mutagenize an antibiotic resistance indicator gene by homologous recombination used an unmodified DNA oligonucleotide with no functional domains other than a region of complementary sequence to the target See Campbell et al., New Biologist 1: 223-227 (1989). These experiments required large concentrations of the oligonucleotide, exhibited a very low frequency of episomal modification of a targeted exogenous plasmid gene not normally found in the cell and have not been reproduced. However, as shown in the examples herein, we have observed that an unmodified DNA oligonucleotide can convert a base at low frequency which is detectable using the assay systems described herein.


[0008] Artificial chromosomes can be useful for the screening purposed identified herein. These molecules are man-made linear or circular DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al., 1983). The essential elements are: (1) Autonomous Replication Sequences (ARS), (2) Centromeres, and (3) Telomeres.


[0009] Yeast artificial chromosomes (YACs) allow large genomic DNA to be modified and used for generating transgenic animals [Burke et al., Science 236:806; Peterson et al., Trends Genet. 13:61 (1997); Choi, et al., Nat. Genet, 4:117-223 (1993), Davies, et al., Biotechnology 11:911-914 (1993), Matsuura, et al., Hum. Mol. Genet., 5:451-459 (1996), Peterson et al., Proc. Natl. Acad. Sci., 93:6605-6609 (1996); and Schedl, et al., Cell, 86:71-82 (1996)]. Other vectors also have been developed for the cloning of large segments of mammalian DNA, including cosmids, and bacteriophage P1 [Sternberg et al., Proc. Natl. Acad. Sci. U.S.A., 87:103-107 (1990)]. YACs have certain advantages over these alternative large capacity cloning vectors [Burke et al., Science, 236:806-812 (1987)]. The maximum insert size is 35-30 kb for cosmids, and 100 kb for bacteriophage P1, both of which are much smaller than the maximal insert for a YAC.


[0010] An alternative to YACs are E. coli based cloning systems based on the E. coli fertility factor that have been developed to construct large genomic DNA insert libraries. They are bacterial artificial chromosomes (BACs) and P-1 derived artificial chromosomes (PACs) [Mejia et al., Genome Res. 7:179-186 (1997); Shizuya et al., Proc. Natl. Acad. Sci. 89:8794-8797 (1992); Ioannou et al., Nat. Genet., 6:84-89 (1994); Hosoda et al., Nucleic Acids Res. 18:3863 (1990)]. BACs are based on the E. coli fertility plasmid (F factor); and PACs are based on the bacteriophage P1. These vectors propagate at a very low copy number (1-2 per cell) enabling genomic inserts up to 300 kb in size to be stably maintained in recombination deficient hosts. Furthermore, the PACs and BACs are circular DNA molecules that are readily isolated from the host genomic background by classical alkaline lysis [Birnboim et al., Nucleic Acids Res. 7:1513-1523 (1979].


[0011] Oligonucleotides designed for use in the alteration of genetic information are significantly different from oligonucleotides designed for antisense approaches. For example, antisense oligonucleotides are perfectly complementary to and bind an mRNA strand in order to modify expression of a targeted mRNA and are used at high concentration. As a consequence, they are unable to produce a gene conversion event by either mutagenesis or repair of a defect in the chromosomal DNA of a host genome. Furthermore, the backbone chemical composition used in most oligonucleotides designed for use in antisense approaches renders them inactive as substrates for homologous pairing or mismatch repair enzymes and the high concentrations of oligonucleotide required for antisense applications can be toxic with some types of nucleotide modifications. In addition, antisense oligonucleotides must be complementary to the mRNA and therefore, may not be complementary to the other DNA strand or to genomic sequences that span the junction between intron sequence and exon sequence.


[0012] A need exists for simple, inexpensive oligonucleotides capable of producing targeted alteration of genetic material such as those described herein as well as methods to identify optimal oligonucleotides that accurately and efficiently alter target DNA.



SUMMARY OF THE INVENTION

[0013] Novel, modified single-stranded nucleic acid molecules that direct gene alteration in plants, fungi and animals are identified and the efficiency of alteration is analyzed both in vitro using a cell-free extract assay and in vivo using a yeast cell system. The alteration in an oligonucleotide of the invention may comprise an insertion, deletion, substitution, as well as any combination of these. Site specific alteration of DNA is not only useful for studying function of proteins in vivo, but it is also useful for creating animal models for human disease, and in gene therapy. As described herein, oligonucleotides of the invention target directed specific gene alterations in genomic double-stranded DNA cells. The target DNA can be normal, cellular chromosomal DNA, extrachromosomal DNA present in cells in different forms including, e.g., mammalian artificial chromosomes (MACs), PACs from P-1 vectors, yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PLACs), as well as episomal DNA, including episomal DNA from an exogenous source such as a plasmid or recombinant vector. Many of these artificial chromosome constructs containing human DNA can be obtained from a variety of sources, including, e.g., the Whitehead Institute, and are described, e.g., in Cohen et al., Nature 336:698-701 (1993) and Chumakov, et al., Nature 377:174-297 (1995). The target DNA may be transitionally silent or active. In a preferred embodiment, the target DNA to be altered is the non-transcribed strand of a genomic DNA duplex.


[0014] The low efficiency of gene alteration obtained using unmodified DNA oligonucleotides is believed to be largely the result of degradation by nucleases present in the reaction mixture or the target cell. Although different modifications are known to have different effects on the nuclease resistance of oligonucleotides or stability of duplexes formed by such oligonucleotides (see, e.g., Koshkin et al., J. Am. Chem. Soc., 120:13252-3), we have found that it is not possible to predict which of any particular known modification would be most useful for any given alteration event, including for the construction of gene conversion oligonucleotides, because of the interaction of different as yet unidentified proteins during the gene alteration event. Herein, a variety of nucleic acid analogs have been developed that increase the nuclease resistance of oligonucleotides that contain them, including, e.g., nucleotides containing phosphorothioate linkages or 2′-O-methyl analogs. We recently discovered that single-stranded DNA oligonucleotides modified to contain 2′-O-methyl RNA nucleotides or phosphorothioate linkages can enable specific alteration of genetic information at a higher level than either unmodified single-stranded DNA or a chimeric RNA/DNA molecule. See priority applications incorporated herein in their entirety; see also Gamper et al., Nucleic Acids Research 28: 4332-4339 (2000). We also found that additional nucleic acid analogs which increase the nuclease resistance of oligonucleotides that contain them, including, e.g., “locked nucleic acids” or “LNAs”, xylo-LNAs and L-ribo-LNAs; see, for example, Wengel & Nielsen, WO 99/14226; Wengel, WO 00/56748 and Wengel, WO 00/66604; also allow specific targeted alteration of genetic information.


[0015] The assay allows for determining the optimum length of the oligonucleotide, optimum sequence of the oligonucleotide, optimum position of the mismatched base or bases, optimum chemical modification or modifications, optimum strand targeted for identifying and selecting the most efficient oligonucleotide for a particular gene alteration event by comparing to a control oligonucleotide. Control oligonucleotides may include a chimeric RNA-DNA double hairpin oligonucleotide directing the same gene alteration event, an oligonucleotide that matches its target completely, an oligonucleotide in which all linkages are phosphorothiolated, an oligonucleotide fully substituted with 2′-O-methyl analogs or an RNA oligonucleotide. Such control oligonucleotides either fail to direct a targeted alteration or do so at a lower efficiency as compared to the oligonucleotides of the invention. The assay further allows for determining the optimum position of a gene alteration event within an oligonucleotide, optimum concentration of the selected oligonucleotide for maximum alteration efficiency by systematically testing a range of concentrations, as well as optimization of either the source of cell extract by testing different organisms or strains, or testing cells derived from different organisms or strains, or cell lines. Using a series of single-stranded oligonucleotides, comprising all RNA or DNA residues and various mixtures of the two, several new structures are identified as viable molecules in nucleotide conversion to direct or repair a genomic mutagenic event. When extracts from mammalian, plant and fungal cells are used and are analyzed using a genetic readout assay in bacteria, single-stranded oligonucleotides having one of several modifications are found to be more active than a control RNA-DNA double hairpin chimera structure when evaluated using an in vitro gene repair assay. Similar results are also observed in vivo using yeast, mammalian, rodent, monkey, human and embryonic cells, including stem cells. Molecules containing various lengths of modified bases were found to possess greater activity than unmodified single-stranded DNA molecules.



DETAILED DESCRIPTION OF THE INVENTION

[0016] The present invention provides oligonucleotides having chemically modified, nuclease resistant residues, preferably at or near the termini of the oligonucleotides, and methods for their identificaton and use in targeted alteration of genetic material, including gene mutation, targeted gene repair and gene knockout. The oligonucleotides are preferably used for mismatch repair or alteration by changing at least one nucleic acid base, or for frameshift repair or alteration by addition or deletion of at least one nucleic acid base. The oligonucleotides of the invention direct any such alteration, including gene correction, gene repair or gene mutation and can be used, for example, to introduce a polymorphism or haplotype or to eliminate (“knockout”) a particular protein activity.


[0017] The oligonucleotides of the invention are designed as substrates for homologous pairing and repair enzymes and as such have a unique backbone composition that differs from chimeric RNA-DNA double hairpin oligonucleotides, antsense oligonucleotides, and/or other poly- or oligo-nucleotides used for altering genomic DNA, such as triplex forming oligonucleotides. The single-stranded oligonucleotides described herein are inexpensive to synthesize and easy to purify. In side-by-side comparisons, an optimized single-stranded oligonucleotide comprising modified residues as described herein is significantly more efficient than a chimeric RNA-DNA double hairpin oligonucleotide in directing a base substitution or frameshift mutation in a cell-free extract assay.


[0018] We have discovered that single-stranded oligonucleotides having a DNA domain surrounding the targeted base, with the domain preferably central to the poly- or oligo-nucleotide, and having at least one modified end, preferably at the 3′ terminal region are able to alter a target genetic sequence and with an efficiency that is higher than chimeric RNA-DNA double hairpin oligonucleotides disclosed in U.S. Pat. No. 5,565,350. Oligonucleotides of the invention can efficiently be used to introduce targeted alterations in a genetic sequence of DNA in the presence of human, animal, plant, fungal (including yeast) proteins and in cultured cells of human liver, lung, colon, cervix, kidney, epethelium and cancer cells and in monkey, hamster, rat and mouse cells of different types, as well as embryonic stem cells. Cells for use in the invention include, e.g., fungi including S. cerevisiae, Ustillago maydis and Candida albicans, mammalian, mouse, hamster, rat, monkey, human and embryonic cells including stem cells. The DNA domain is preferably fully complementary to one strand of the gene target, except for the mismatch base or bases responsible for the gene alteration or conversion events. On either side of the preferably central DNA domain, the contiguous bases may be either RNA bases or, preferably, are primarily DNA bases. The central DNA domain is generally at least 8 nucleotides in length. The base(s) targeted for alteration in the most preferred embodiments are at least about 8, 9 or 10 bases from one end of the oligonucleotide.


[0019] According to certain embodiments, the termini of the oligonucleotides of the present invention comprise phosphorothioate modifications, LNA backbone modifications, or 2′-O-methyl base analogs, or any combination of these modifications. Oligonucleotides comprising 2′-O-methyl or LNA analogs are a mixed DNA/RNA polymer. These oligonucleotides are, however, single-stranded and are not designed to form a stable internal duplex structure within the oligonucleotide. The efficiency of gene alteration is surprisingly increased with oligonucleotides having internal complementary sequence comprising phosphorothioate modified bases as compared to 2′-O-methyl modifications. This result indicates that specific chemical interactions are involved between the converting oligonucleotide and the proteins involved in the conversion. The effect of other such chemical interactions to produce nuclease resistant termini using modifications other than LNA, phosphorothioate linkages, or 2′-O-methyl analog incorporation into an oligonucleotide can not yet be predicted because the proteins involved in the alteration process and their particular chemical interaction with the oligonucleotide substituents are not yet known and cannot be predicted.


[0020] In the examples, correcting oligonucleotides of defined sequence are provided for correction of genes mutated in human diseases. In the tables of these examples, the oligonucleotides of the invention are not limited to the particular sequences disclosed. The oligonucleotides of the invention include extensions of the appropriate sequence of the longer 120 base oligonucleotides which can be added base by base to the smallest disclosed oligonucleotides of 17 bases. Thus the oligonucleotides of the invention include for each correcting change, oligonucleotides of length 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 with further single-nucleotide additions up to the longest sequence disclosed. Moreover, the oligonucleotides of the invention do not require a symmetrical extension on either side of the central DNA domain. Similarly, the oligonucleotides of the invention as disclosed in the various tables for correction of human diseases contain phosphorothioate linkages, 2′-O-methyl analogs or LNAs or any combination of these modifications just as the assay oligonucleotides do.


[0021] The present invention, however, is not limited to oligonucleotides that contain any particular nuclease resistant modification. Oligonucleotides of the invention may be altered with any combination of additional LNAs, phosphorothioate linkages or 2′-O-methyl analogs to maximize conversion efficiency. For oligonucleotides of the invention that are longer than about 17 to about 25 bases in length, internal as well as terminal region segments of the backbone may be altered. Alternatively, simple fold-back structures at each end of a oligonucleotide or appended end groups may be used in addition to a modified backbone for conferring additional nuclease resistance.


[0022] The different oligonucleotides of the present invention preferably contain more than one of the aforementioned backbone modifications at each end. In some embodiments, the backbone modifications are adjacent to one another. However, the optimal number and placement of backbone modifications for any individual oligonucleotide will vary with the length of the oligonucleotide and the particular type of backbone modification(s) that are used. If constructs of identical sequence having phosphorothioate linkages are compared, 2, 3, 4, 5, or 6 phosphorothioate linkages at each end are preferred. If constructs of identical sequence having 2′-O-methyl base analogs are compared, 1, 2, 3 or 4 analogs are preferred. The optimal number and type of backbone modifications for any particular oligonucleotide useful for altering target DNA may be determined empirically by comparing the alteration efficiency of the oligonucleotide comprising any combination of the modifications to a control molecule of comparable sequence using any of the assays described herein. The optimal positon(s) for oligonucleotide modifications for a maximally efficient altering oligonucleotide can be determined by testing the various modifications as compared to control molecule of comparable sequence in one of the assays disclosed herein. In such assays, a control molecule includes, e.g., a completely 2′-O-methyl substituted molecule, a completely complementary oligonucleotide, or a chimeric RNA-DNA double hairpin.


[0023] Increasing the number of phosphorothioate linkages, LNAs or 2′-O-methyl bases beyond the preferred number generally decreases the gene repair activity of a 25 nucleotide long oligonucleotide. Based on analysis of the concentration of oligonucleotide present in the extract after different time periods of incubation, it is believed that the terminal modifications impart nuclease resistance to the oligonucleotide thereby allowing it to survive within the cellular environment. However, this may not be the only possible mechanism by which such modifications confer greater efficiency of conversion. For example, as disclosed herein, certain modifications to oligonucleotides confer a greater improvement to the efficiency of conversion than other modifications.


[0024] Efficiency of conversion is defined herein as the percentage of recovered substate molecules that have undergone a conversion event. Depending on the nature of the target genetic material, e.g. the genome of a cell, efficiency could be represented as the proportion of cells or clones containing an extrachromosomal element that exhibit a particular phenotype. Alternatively, representative samples of the target genetic material can be sequenced to determine the percentage that have acquired the desire change. The oligonucleotides of the invention in different embodiments can alter DNA one, two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold more than control oligonucleotides. Such control oligonucleotides are oligonucleotides with fully phosphorothiolated linkages, oligonucleotides that are fully substituted with 2′-O-methyl analogs, a perfectly matched oligonucleotide that is fully complementary to a target sequence or a chimeric DNA-RNA double hairpin oligonucleotide such as disclosed in U.S. Pat. No. 5,565,350.


[0025] In addition, for a given oligonucleotide length, additional modifications interfere with the ability of the oligonucleotide to act in concert with the cellular recombination or repair enzyme machinery which is necessary and required to mediate a targeted substitution, addition or deletion event in DNA. For example, fully phosphorothiolated or fully 2-O-methylated molecules are inefficient in targeted gene alteration.


[0026] The oligonucleotides of the invention as optimized for the purpose of targeted alteration of genetic material, including gene knockout or repair, are different in structure from antisense oligonucleotides that may possess a similar mixed chemical composition backbone. The oligonucleotides of the invention differ from such antisense oligonucleotides in chemical composition, structure, sequence, and in their ability to alter genomic DNA. Significantly, antisense oligonucleotides fail to direct targeted gene alteration. The oligonucleotides of the invention may target either the Watson or the Crick strand of DNA and can include any component of the genome including, for example, intron and exon sequences. The preferred embodiment of the invention is a modified oligonucleotide that binds to the non-transcribed strand of a genomic DNA duplex. In other words, the preferred oligonucleotides of the invention target the sense strand of the DNA, i.e. the oligonucleotides of the invention are complementary to the non-transcribed strand of the target duplex DNA. The sequence of the non-transcribed strand of a DNA duplex is found in the mRNA produced from that duplex, given that mRNA uses uracil-containing nucleotides in place of thymine-containing nucleotides.


[0027] Moreover, the initial observation that single-stranded oligonucleotides comprising these modifications and lacking any particular triplex forming domain have reproducibly enhanced gene repair activity in a variety of assay systems as compared to a chimeric RNA-DNA double-stranded hairpin control or single-stranded oligonucleotides comprising other backbone modifications was surprising. The single-stranded molecules of the invention totally lack the complementary RNA binding structure that stabilizes a normal chimeric double-stranded hairpin of the type disclosed in U.S. Pat. No. 5,565,350 yet is more effective in producing targeted base conversion as compared to such a chimeric RNA-DNA double-stranded hairpin. In addition, the molecules of the invention lack any particular triplex forming domain involved in Hoogsteen interactions with the DNA double helix and required by other known oligonucleotides in other oligonucleotide dependant gene conversion systems. Although the lack of these functional domains was expected to decrease the efficiency of an alteration in a sequence, just the opposite occurs: the efficiency of sequence alteration using the modified oligonucleotides of the invention is higher than the efficiency of sequence alteration using a chimeric RNA-DNA hairpin targeting the same sequence alteration. Moreover, the efficiency of sequence alteration or gene conversion directed by an unmodified oligonucleotide is many times lower as compared to a control chimeric RNA-DNA molecule or the modified oligonucleotides of the invention targeting the same sequence alteration. Similarly, molecules containing at least 3 2′-O-methyl base analogs are about four to five fold less efficient as compared to an oligonucleotide having the same number of phosphorothioate linkages.


[0028] The oligonucleotides of the present invention for alteration of a single base are about 17 to about 121 nucleotides in length, preferably about 17 to about 74 nucleotides in length. Most preferably, however, the oligonucleotides of the present invention are at least about 25 bases in length, unless there are self-dimerization structures within the oligonucleotide. If the oligonucleotide has such an unfavorable structure, lengths longer than 35 bases are preferred. Oligonucleotides with modified ends both shorter and longer than certain of the exemplified, modified oligonucleotides herein function as gene repair or gene knockout agents and are within the scope of the present invention.


[0029] Once an oligomer is chosen, it can be tested for its tendency to self-dimerize, since self-dimerization may result in reduced efficiency of alteration of genetic information. Checking for self-dimerization tendency can be accomplished manually or, more preferably, by using a software program. One such program is Oligo Analyzer 2.0, available through Integrated DNA Technologies (Coralville, Iowa 52241) (http://www.idtdna.com); this program is available for use on the world wide web at http://www.idtdna.com/program/oligoanalyzer/oligoanalyzer.asp. For each oligonucleotide sequence input into the program, Oligo Analyzer 2.0 reports possible self-dimerized duplex forms, which are usually only partially duplexed, along with the free energy change associated with such self-dimerization. Delta G-values that are negative and large in magnitude, indicating strong self-dimerization potential, are automatically flagged by the software as “bad”. Another software program that analyzes oligomers for pair dimer formation is Primer Select from DNASTAR, Inc., 1228 S. Park St, Madison, Wis. 53715, Phone: (608) 258-7420 (http://www.dnastar.com/products/PrimerSelect.html). If the sequence is subject to significant self-dimerization, the addition of further sequence flanking the “repair” nucleotide can improve gene correction frequency.


[0030] Generally, the oligonucleotides of the present invention are identical in sequence to one strand of the target DNA, which can be either strand of the target DNA, with the exception of one or more targeted bases positioned within the DNA domain of the oligonucleotide, and preferably toward the middle between the modified terminal regions. Preferably, the difference in sequence of the oligonucleotide as compared to the targeted genomic DNA is located at about the middle of the oligonucleotide sequence. In a preferred embodiment, the oligonucleotides of the invention are complementary to the non-transcribed strand of a duplex. In other words, the preferred oligonucleotides target the sense strand of the DNA, i.e. the oligonucleotides of the invention are preferably complementary to the strand of the target DNA the sequence of which is found in the mRNA.


[0031] The oligonucleotides of the invention can include more than a single base change. In an oligonucleotide that is about a 70-mer, with at least one modified residue incorporated on the ends, as disclosed herein, multiple bases can be simultaneously targeted for change. The target bases may be up to 27 nucleotides apart and may not be changed together in all resultant plasmids in all cases. There is a frequency distribution such that the closer the target bases are to each other in the central DNA domain within the oligonucleotides of the invention, the higher the frequency of change in a given cell. Target bases only two nucleotides apart are changed together in every case that has been analyzed. The farther apart the two target bases are, the less frequent the simultaneous change. Thus, oligonucleotides of the invention may be used to repair or alter multiple bases rather than just one single base. For example, in a 74-mer oligonucleotide having a central base targeted for change, a base change event up to about 27 nucleotides away can also be effected. The positions of the altering bases within the oligonucleotide can be optimized using any one of the assays described herein. Preferably, the altering bases are at least about 8 nucleotides from one end of the oligonucleotide.


[0032] The oligonucleotides of the present invention can be introduced into cells by any suitable means. According to certain preferred embodiments, the modified oligonucleotides may be used alone. Suitable means, however, include the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, microinjecton and other methods known in the art to facilitate cellular uptake. According to certain preferred embodiments of the present invention, the isolated cells are treated in culture according to the methods of the invention, to mutate or repair a target gene. Modified cells may then be reintroduced into the organism as, for example, in bone marrow having a targeted gene. Alternatively, modified cells may be used to regenerate the whole organism as, for example, in a plant having a desired targeted genomic change. In other instances, targeted genomic alteration, including repair or mutagenesis, may take place in vivo following direct administration of the modified, single-stranded oligonucleotides of the invention to a subject.


[0033] The single-stranded, modified oligonucleotides of the present invention have numerous applications as gene repair, gene modification, or gene knockout agents. Such oligonucleotides may be advantageously used, for example, to introduce or correct multiple point mutations. Each mutation leads to the addition, deletion or substitution of at least one base pair. The methods of the present invention offer distinct advantages over other methods of altering the genetic makeup of an organism, in that only the individually targeted bases are altered. No additional foreign DNA sequences are added to the genetic complement of the organism. Such agents may, for example, be used to develop plants or animals with improved traits by rationally changing the sequence of selected genes in cultured cells. Modified cells are then cloned into whole plants or animals having the altered gene. See, e.g., U.S. Pat. No. 6,046,380 and U.S. Pat. No. 5,905,185 incorporated herein by reference. Such plants or animals produced using the compositions of the invention lack additional undesirable selectable markers or other foreign DNA sequences. Targeted base pair substitution or frameshift mutations introduced by an oligonucleotide in the presence of a cell-free extract also provides a way to modify the sequence of extrachromosomal elements, including, for example, plasmids, cosmids and artificial chromosomes. The oligonucleotides of the invention also simplify the production of transgenic animals having particular modified or inactivated genes. Altered animal or plant model systems such as those produced using the methods and oligonucleotides of the invention are invaluable in determining the function of a gene and in evaluating drugs. The oligonucleotides and methods of the present invention may also be used for gene therapy to correct mutations causative of human diseases.


[0034] The purified oligonucleotide compositions may be formulated in accordance with routine procedures as a pharmaceutical composition adapted for bathing cells in culture, for microinjecton into cells in culture, and for intravenous administration to human beings or animals. Typically, compositions for cellular administration or for intravenous administration into animals, including humans, are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anaesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients will be supplied either separately or mixed together in unit dosage form, for example, as a dry, lyophilized powder or water-free concentrate. The composition may be stored in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent in activity units. Where the composition is administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade “water for injection” or saline. Where the composition is to be administered by injection, an ampule of sterile water for injection or saline may be provided so that the ingredients may be mixed prior to administration.


[0035] Pharmaceutical compositions of this invention comprise the compounds of the present invention and pharmaceutically acceptable salts thereof, with any pharmaceutically acceptable ingredient, excipient, carrier, adjuvant or vehicle.


[0036] The oligonucleotides of the invention are preferably administered to the subject in the form of an injectable composition. The composition is preferably administered parenterally, meaning intravenously, intraarterially, intrathecally, interstitially or intracavitarilly. Pharmaceutical compositions of this invention can be administered to mammals including humans in a manner similar to other diagnostic or therapeutic agents. The dosage to be administered, and the mode of administration will depend on a variety of factors including age, weight, sex, condition of the subject and genetic factors, and will ultimately be decided by medical personnel subsequent to experimental determinations of varying dosage as described herein. In general, dosage required for correction and therapeutic efficacy will range from about 0.001 to 50,000 μg/kg, preferably between 1 to 250 μg/kg of host cell or body mass, and most preferably at a concentration of between 30 and 60 micromolar.


[0037] For cell administration, direct injection into the nucleus, biolistic bombardment, electroporation, liposome transfer and calcium phosphate precipitation may be used. In yeast, lithium acetate or spheroplast transformation may also be used. In a preferred method, the administration is performed with a liposomal transfer compound, e.g., DOTAP (Boehringer-Mannheim) or an equivalent such as lipofectin. The amount of the oligonucleotide used is about 500 nanograms in 3 micrograms of DOTAP per 100,000 cells. For electroporation, between 20 and 2000 nanograms of oligonucleotide per million cells to be electroporated is an appropriate range of dosages which can be increased to improve efficiency of genetic alteration upon review of the appropriate sequence according to the methods described herein.


[0038] Another aspect of the invention is a kit comprising at least one oligonucleotide of the invention. The kit may comprise an addition reagent or article of manufacture. The additional reagent or article of manufacture may comprise a cell extract, a cell, or a plasmid, such as one of those disclosed in the Figures herein, for use in an assay of the invention.







BRIEF DESCRIPTION OF THE DRAWINGS

[0039]
FIG. 1. Flow diagram for the generation of modified single-stranded oligonucleotides. The upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (A) 2′-O-methyl RNA nucleotides or (B) phosphorothioate linkages. Fold changes in repair activity for correction of kans in the HUH7 cell-free extract are presented in parenthesis. HUH7 cells are described in Nakabayashi et al., Cancer Research 42: 3858-3863 (1982). Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene. The numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the molecule. Hence oligo 12S/25G contains an all phosphorothioate backbone, displayed as a dotted line. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G). FIG. 1(C) provides a schematic plasmid indicating the sequence of the kan chimeric double-stranded hairpin oligonucleotide (left) and the sequence the tet chimeric double-stranded hairpin oligonucleotide used in other experiments. FIG. 1(D) provides a flow chart of a kan experiment in which a chimeric double-stranded hairpin oligonucleotide is used.


[0040]
FIG. 2. Genetic readout system for correction of a point mutation in plasmid pKsm4021. A mutant kanamycin gene harbored in plasmid pKsm4021 is the target for correction by oligonucleotides. The mutant G is converted to a C by the action of the oligo. Corrected plasmids confer resistance to kanamycin in E.coli (DH10B) after electroporation leading to the genetic readout and colony counts.


[0041]
FIG. 3: Target plasmid and sequence correction of a frameshift mutation by chimeric and single-stranded oligonucleotides. (A) Plasmid pTsΔ208 contains a single base deletion mutation at position 208 rendering it unable to confer tet resistance. The target sequence presented below indicates the insertion of a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) DNA sequence confirming base insertion directed by Tet 3S/25G; the yellow highlight indicates the position of frameshift repair.


[0042]
FIG. 4. DNA sequences of representative kanr colonies. Confirmation of sequence alteration directed by the indicated molecule is presented along with a table outlining codon distribution. Note that 10S/25G and 12S/25G elicit both mixed and unfaithful gene repair. The number of clones sequenced is listed in parentheses next to the designation for the single-stranded oligonucleotide. A plus (+) symbol indicates the codon identified while a figure after the (+) symbol indicates the number of colonies with a particular sequence. TAC/TAG indicates a mixed peak. Representative DNA sequences are presented below the table with yellow highlighting altered residues.


[0043]
FIG. 5. Gene correction in HeLa cells. Representative oligonucleotides of the invention are co-transfected with the pCMVneo()FlAsH plasmid (shown in FIG. 9) into HeLa cells. Ligand is diffused into cells after co-transfection of plasmid and oligonucleotides. Green fluorescence indicates gene correction of the mutation in the antibiotic resistance gene. Correction of the mutation results in the expression of a fusion protein that carries a marker ligand binding site and when the fusion protein binds the ligand, a green fluorescence is emitted. The ligand is produced by Aurora Biosciences and can readily diffuse into cells enabling a measurement of corrected protein function; the protein must bind the ligand directly to induce fluorescence. Hence cells bearing the corrected plasmid gene appear green while “uncorrected” cells remain colorless.


[0044]
FIG. 6. Z-series imaging of corrected cells. Serial cross-sections of the HeLa cell represented in FIG. 5 are produced by Zeiss 510 LSM confocal microscope revealing that the fusion protein is contained within the cell.


[0045]
FIG. 7. Hygromycin-eGFP target plasmids. (A) Plasmid pAURHYG(ins)GFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter. The target sequence presented below indicates the deletion of an A and the substitution of a C for a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) Plasmid pAURHYG(rep)GFP contains a base substitution mutation introducing a G at nucleotide 137, at codon 46, of the Hygromycin B coding sequence (cds). The target sequence presented below the diagram indicates the amino acid conservative replacement of G with C, restoring gene function.


[0046]
FIG. 8. Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined.


[0047]
FIG. 9. pAURNeo(−)FlAsH plasmid. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the gene alteration event by fluorescence.


[0048]
FIG. 10. pYESHyg(x)eGFP plasmid. This plasmid is a construct similar to the pAURHyg(x)eGFP construct shown in FIG. 7, except the promoter is the inducible GAL1 promoter. This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose.







[0049] The following examples are provided by way of illustration only, and are not intended to limit the scope of the invention disclosed herein.


EXAMPLE 1


Assay Method for Base Alteration and Preferred Oligonucleotide Selection

[0050] In this example, single-stranded and double-hairpin oligonucleotides with chimeric backbones (see FIG. 1 for structures (A and B) and sequences (C and D) of assay oligonucleotides) are used to correct a point mutation in the kanamycin gene of pKsm4021 (FIG. 2) or the tetracycline gene of pTsΔ208 (FIG. 3). All kan oligonucleotides share the same 25 base sequence surrounding the target base identified for change, just as all tet oligonucleotides do. The sequence is given in FIG. 1C and FIG. 1D. Each plasmid contains a functional ampicillin gene. Kanamycin gene function is restored when a G at position 4021 is converted to a C (via a substitution mutation); tetracycline gene function is restored when a deletion at position 208 is replaced by a C (via frameshift mutation). A separate plasmid, pAURNeo(−)FlAsH (FIG. 9), bearing the kans gene is used in the cell culture experiments. This plasmid was constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferase (kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FlAsH ligand into the pAUR123 shuttle vector (Panvera Corp., Madison, Wis.). The resulting construct replicates in S. cerevisiae at low copy number, confers resistance to aureobasidinA and constitutively expresses either the Neo+/FlAsH fusion product (after alteration) or the truncated Neo−/FlAsH product (before alteration) from the ADH1 promoter. By extending the reading frame of this gene to code for a unique peptide sequence capable of binding a small ligand to form a fluorescent complex, restoration of expression by correction of the stop codon can be detected in real time using confocal microscopy. Additional constructs can be made to test additional gene alteration events.


[0051] We also construct three mammalian expression vectors, pHyg(rep)eGFP, pHyg(Δ)eGFP, pHyg(ins)eGFP, that contain a substitution mutation at nucleotide 137 of the hygromycin-B coding sequence. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. All point mutations create a nonsense termination codon at residue 46. We use pHygEGFP plasmid (Invitrogen, CA) DNA as a template to introduce the mutations into the hygromycin-eGFP fusion gene by a two step site-directed mutagenesis PCR protocol. First, we generate overlapping 5′ and a 3′ amplicons surrounding the mutation site by PCR for each of the point mutation sites. A 215 bp 5′ amplicon for the (rep), (Δ) or (ins) was generated by polymerization from oligonucleotide primer HygEGFPf (5′-AATACGACTCACTATAGG-3′) to primer Hygrepr (5′GACCTATCCACGCCCTCC-3′), HygΔr (5′-GACTATCCACGCCCTCC-3′), or Hyginsr (5′-GACATTATCCACGCCCTCC-3′), respectively. We generate a 300 bp 3′ amplicon for the (rep), (Δ) or (ins) by polymerization from oligonucleotide primers Hygrepf (5′-CTGGGATAGGTCCTGCGG-3′), HygΔf (5′-CGTGGATAGTCCTGCGG-3′), Hyginsf (5′-CGTGGATAATGTCCTGCGG-3′), respectively to primer HygEGFPr (5′-AAATCACGCCATGTAGTG-3′). We mix 20 ng of each of the resultant 5′ and 3′ overlapping amplicon mutation sets and use the mixture as a template to amplify a 523 bp fragment of the Hygromycin gene spanning the KpnI and RsrII restriction endonuclease sites. We use the Expand PCR system (Roche) to generate all amplicons with 25 cycles of denaturing at 94° C. for 10 seconds, annealing at 55° C. for 20 seconds and elongation at 68° C. for 1 minute. We digest 10 μg of vector pHygEGFP and 5 μg of the resulting fragments for each mutation with KpnI and RsrII (NEB) and gel purify the fragment for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ration using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm the mutation by Sanger dideoxy chain termination sequencing and purify the plasmid using a Qiagen maxiprep kit.


[0052] Oligonucleotide synthesis and cells. Chimeric oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) are synthesized using available phosphoramidites on controlled pore glass supports. After deprotecton and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al., Biochem. 39, 5808-5816 (2000) and the concentrations determined spectrophotometrically (33 or 40 μg/ml per A260 unit of single-stranded or hairpin oligomer). HUH7 cells are grown in DMEM, 10% FBS, 2 mM glutamine, 0.5% pen/strep. The E.coli strain, DH10B, is obtained from Life Technologies (Gaithersburg, Md.); DH10B cells contain a mutation in the RECA gene (recA).


[0053] Cell-free extracts. We prepare cell-free extracts from HUH7 cells or other mammalian cells, as follows. We employ this protocol with essentially any mammalian cell including, for example, H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C127I (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma). We harvest approximately 2×108 cells. We then wash the cells immediately in cold hypotonic buffer (20 mM HEPES, pH7.5; 5 mM KCl; 1.5 mM MgCl2; 1 mM DTT) with 250 mM sucrose. We then resuspend the cells in cold hypotonic buffer without sucrose and after 15 minutes we lyse the cells with 25 strokes of a Dounce homogenizer using a tight fitting pestle. We incubate the lysed cells for 60 minutes on ice and centrifuge the sample for 15 minutes at 12000×g. The cytoplasmic fraction is enriched with nuclear proteins due to the extended co-incubation of the fractions following cell breakage. We then immediately aliquote and freeze the supernatant at −80° C. We determine the protein concentration in the extract by the Bradford assay.


[0054] We also perform these experiments with cell-free extracts obtained from fungal cells, including, for example, S. cerevisiae (yeast), Ustilago maydis, and Candida albicans. For example, we grow yeast cells into log phase in 2L YPD medium for 3 days at 30° C. We then centrifuge the cultures at 5000×g, resuspend the pellets in a 10% sucrose, 50 mM Tris, 1 mM EDTA lysis solution and freeze them on dry ice. After thawing, we add KCl, spermidine and lyticase to final concentrations of 0.25 mM, 5 mM and 0.1 mg/ml, respectively. We incubate the suspension on ice for 60 minutes, add PMSF and Triton X100 to final concentrations of 0.1 mM and 0.1% and continue to incubate on ice for 20 minutes. We centrifuge the lysate at 3000×g for 10 minutes to remove larger debris. We then remove the supernatant and clarify it by centrifuging at 30000×g for 15 minutes. We then add glycerol to the clarified extract to a concentration of 10% (v/v) and freeze aliquots at −80° C. We determine the protein concentration of the extract by the Bradford assay.


[0055] Reaction mixtures of 50 μl are used, consisting of 10-30 μg protein of cell-free extract, which can be optionally substituted with purified proteins or enriched fractions, about 1.5 μg chimeric double-hairpin oligonucleotide or 0.55 μg single-stranded molecule (3S/25G or 6S/25G, see FIG. 1), and 1 μg of plasmid DNA (see FIGS. 2 and 3) in a reaction buffer of 20 mM Tris, pH 7.4, 15 mM MgCl2, 0.4 mM DTT, and 1.0 mM ATP. Reactions are initiated with extract and incubated at 30° C. for 45 min. The reaction is stopped by placing the tubes on ice and then immediately deproteinized by two phenol/chloroform (1:1) extractions. Samples are then ethanol precipitated. The nucleic acid is pelleted at 15,000 r.p.m. at 4° C. for 30 min., is washed with 70% ethanol, resuspended in 50 μl H2O, and is stored at −20° C. 5 μl of plasmid from the resuspension (˜100 ng) was transfected in 20 μl of DH10B cells by electroporation (400 V, 300 μF, 4 kΩ) in a Cell-Porator apparatus (Life Technologies). After electroporation, cells are transferred to a 14 ml Falcon snap-cap tube with 2 ml SOC and shaken at 37° C. for 1 h. Enhancement of final kan colony counts is achieved by then adding 3 ml SOC with 10 μg/ml kanamycin and the cell suspension is shaken for a further 2 h at 37° C. Cells are then spun down at 3750×g and the pellet is resuspended in 500 μl SOC. 200 μl is added undiluted to each of two kanamycin (50 μg/ml) agar plates and 200 μl of a 105 dilution is added to an ampicillin (100 μg/ml) plate. After overnight 37° C. incubation, bacterial colonies are counted using an Accucount 1000 (Biologics). Gene conversion effectiveness is measured as the ratio of the average of the kan colonies on both plates per amp colonies multiplied by 10−5 to correct for the amp dilution.


[0056] The following procedure can also be used. 5 μl of resuspended reaction mixtures (total volume 50 μl) are used to transform 20 μl aliquots of electro-competent ΔH10B bacteria using a Cell-Porator apparatus (Life Technologies). The mixtures are allowed to recover in 1 ml SOC at 37° C. for 1 hour at which time 50 μg/ml kanamycin or 12 μg/ml tetracycline is added for an additional 3 hours. Prior to plating, the bacteria are pelleted and resuspended in 200 μl of SOC. 100 μl aliquots are plated onto kan or tet agar plates and 100 μl of a 10−4 dilution of the cultures are concurrently plated on agar plates containing 100 μg/ml of ampicillin. Plating is performed in triplicate using sterile Pyrex beads. Colony counts are determined by an Accu-count 1000 plate reader (Biologics). Each plate contains 200-500 ampicillin resistant colonies or 0-500 tetracycline or kanamycin resistant colonies. Resistant colonies are selected for plasmid extraction and DNA sequencing using an ABI Prism kit on an ABI 310 capillary sequencer (PE Biosystems).


[0057] Chimeric single-stranded oligonucleotides. In FIG. 1 the upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (FIG. 1A) 2′-O-methyl RNA nucleotides or (FIG. 1B) phosphorothioate linkages. Fold changes in repair activity for correction of kans in the HUH7 cell-free extract are presented in parenthesis. Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene.


[0058] Molecules bearing 3, 6, 8, 10 and 12 phosphorothioate linkages in the terminal regions at each end of a backbone with a total of 24 linkages (25 bases) are tested in the kans system. Alternatively, molecules bearing 2, 4, 5, 7, 9 and 11 in the terminal regions at each end are tested. The results of one such experiment, presented in Table 1 and FIG. 1B, illustrate an enhancement of correction activity directed by some of these modified structures. In this illustrative example, the most efficient molecules contained 3 or 6 phosphorothioate linkages at each end of the 25-mer; the activities are approximately equal (molecules IX and X with results of 3.09 and 3.7 respectively). A reduction in alteration activity may be observed as the number of modified linkages in the molecule is further increased. Interestingly, a single-strand molecule containing 24 phosphorothioate linkages is minimally active suggesting that this backbone modification when used throughout the molecule supports only a low level of targeted gene repair or alteration. Such a non-altering, completely modified molecule can provide a baseline control for determining efficiency of correction for a specific oligonucleotide molecule of known sequence in defining the optimum oligonucleotide for a particular alteration event.


[0059] The efficiency of gene repair directed by phosphorothioate-modified, single-stranded molecules, in a length dependent fashion, led us to examine the length of the RNA modification used in the original chimera as it relates to correction. Construct III represents the “RNA-containing” strand of chimera I and, as shown in Table 1 and FIG. 2A, it promotes inefficient gene repair. But, as shown in the same figure, reducing the RNA residues on each end from 10 to 3 increases the frequency of repair. At equal levels of modification, however, 25-mers with 2′-O-methyl ribonucleotides were less effective gene repair agents than the same oligomers with phosphorothioate linkages. These results reinforce the fact that an RNA containing oligonucleotide is not as effective in promoting gene repair or alteration as a modified DNA oligonucleotide.


[0060] Repair of the kanamycin mutation requires a G→C exchange. To confirm that the specific desired correction alteration was obtained, colonies selected at random from multiple experiments are processed and the isolated plasmid DNA is sequenced. As seen in FIG. 4, colonies generated through the action of the single-stranded molecules 3S/25G (IX), 6S/25G (X) and 8S/25G (XI) respectively contained plasmid molecules harboring the targeted base correction. While a few colonies appeared on plates derived from reaction mixtures containing 25-mers with 10 or 12 thioate linkages on both ends, the sequences of the plasmid molecules from these colonies contain nonspecific base changes. In these illustrative examples, the second base of the codon is changed (see FIG. 3). These results show that modified single-strands can direct gene repair, but that efficiency and specificity are reduced when the 25-mers contain 10 or more phosphorothioate linkages at each end.


[0061] In FIG. 1, the numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the exemplified molecule although other molecules with 2, 4, 5, 7, 9 and 11 modifications at each end can also be tested. Hence oligo 12S/25G represents a 25-mer oligonucleotide which contains 12 phosphorothioate linkages on each side of the central G target mismatch base producing a fully phosphorothioate linked backbone, displayed as a dotted line. The dots are merely representative of a linkage in the figure and do not depict the actual number of linkages of the oligonucleotide. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G).


[0062] Correction of a mutant kanamycin gene in cultured mammalian cells. The experiments are performed using different mammalian cells, including, for example, 293 cells (transformed human primary kidney cells), HeLa cells (human cervical carcinoma), and H1299 (human epithelial carcinoma, non-small cell lung cancer). HeLa cells are grown at 37° C. and 5% CO2 in a humidified incubator to a density of 2×105 cells/ml in an 8 chamber slide (Lab-Tek). After replacing the regular DMEM with Optimem, the cells are co-transfected with 10 μg of plasmid pAURNeo(−)FlAsH and 5 μg of modified single-stranded oligonucleotide (3S/25G) that is previously complexed with 10 μg lipofectamine, according to the manufacturer's directions (Life Technologies). The cells are treated with the liposome-DNA-oligo mix for 6 hrs at 37° C. Treated cells are washed with PBS and fresh DMEM is added. After a 16-18 hr recovery period, the culture is assayed for gene repair. The same oligonucleotide used in the cell-free extract experiments is used to target transfected plasmid bearing the kans gene. Correction of the point mutation in this gene eliminates a stop codon and restores full expression. This expression can be detected by adding a small non-fluorescent ligand that bound to a C-C-R-E-C-C sequence in the genetically modified carboxy terminus of the kan protein, to produce a highly fluorescent complex (FlAsH system, Aurora Biosciences Corporation). Following a 60 min incubation at room temperature with the ligand (FlAsH-EDT2), cells expressing full length kan product acquire an intense green fluorescence detectable by fluorescence microscopy using a fluorescein filter set. Similar experiments are performed using the HygeGFP target as described in Example 2 with a variety of mammalian cells, including, for example, COS-1 and COS-7 cells (African green monkey), and CHO-K1 cells (Chinese hamster ovary). The experiments are also performed with PG12 cells (rat pheochromocytoma) and ES cells (human embryonic stem cells).


[0063] Summary of experimental results. Tables 1, 2 and 3 respectively provide data on the efficiency of gene repair directed by single-stranded oligonucleotides. Table 1 presents data using a cell-free extract from human liver cells (HUH7) to catalyze repair of the point mutation in plasmid pkansm4021 (see FIG. 1). Table 2 illustrates that the oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity. Table 3 illustrates data from the repair of a frameshift mutation (FIG. 3) in the tet gene contained in plasmid pTetΔ208. Table 4 illustrates data from repair of the pkansm4021 point mutation catalyzed by plant cell extracts prepared from canola and musa (banana). Colony numbers are presented as kanr or tet and fold increases (single strand versus double hairpin) are presented for kanr in Table 1.


[0064]
FIG. 5A is a confocal picture of HeLa cells expressing the corrected fusion protein from an episomal target. Gene repair is accomplished by the action of a modified single-stranded oligonucleotide containing 3 phosphorothioate linkages at each end (3S/25G). FIG. 5B represents a “Z-series” of HeLa cells bearing the corrected fusion gene. This series sections the cells from bottom to top and illustrates that the fluorescent signal is “inside the cells”.


[0065] Results. In summary, we have designed a novel class of single-stranded oligonucleotides with backbone modifications at the termini and demonstrate gene repair/conversion activity in mammalian and plant cell-free extracts. We confirm that the all DNA strand of the RNA-DNA double-stranded double hairpin chimera is the active component in the process of gene repair. In some cases, the relative frequency of repair by the novel oligonucleotides of the invention is elevated approximately 3-4-fold when compared to frequencies directed by chimeric RNA-DNA double hairpin oligonucleotides.


[0066] This strategy centers around the use of extracts from various sources to correct a mutation in a plasmid using a modified single-stranded or a chimeric RNA-DNA double hairpin oligonucleotide. A mutation is placed inside the coding region of a gene conferring antibiotic resistance in bacteria, here kanamycin or tetracycline. The appearance of resistance is measured by genetic readout in E.coli grown in the presence of the specified antibiotic. The importance of this system is that both phenotypic alteration and genetic inheritance can be measured. Plasmid pKsm4021 contains a mutation (T→G) at residue 4021 rendering it unable to confer antibiotic resistance in E.coli. This point mutation is targeted for repair by oligonucleotides designed to restore kanamycin resistance. To avoid concerns of plasmid contamination skewing the colony counts, the directed correction is from G→C rather than G→T (wild-type). After isolation, the plasmid is electroporated into the DH10B strain of E.coli, which contains inactive RecA protein. The number of kanamycin colonies is counted and normalized by ascertaining the number of ampicillin colonies, a process that controls for the influence of electroporation. The number of colonies generated from three to five independent reactions was averaged and is presented for each experiment. A fold increase number is recorded to aid in comparison.


[0067] The original RNA-DNA double hairpin chimera design, e.g., as disclosed in U.S. Pat. No. 5,565,350, consists of two hybridized regions of a single-stranded oligonucleotide folded into a double hairpin configuration. The double-stranded targeting region is made up of a 5 base pair DNA/DNA segment bracketed by 10 base pair RNA/DNA segments. The central base pair is mismatched to the corresponding base pair in the target gene. When a molecule of this design is used to correct the kans mutation, gene repair is observed (I in FIG. 1A). Chimera II (FIG. 1B) differs partly from chimera I in that only the DNA strand of the double hairpin is mismatched to the target sequence. When this chimera was used to correct the kans mutation, it was twice as active. In the same study, repair function could be further increased by making the targeting region of the chimera a continuous RNA/DNA hybrid.


[0068] Frame shift mutations are repaired. By using plasmid pTsΔ208, described in FIG. 1(C) and FIG. 3, the capacity of the modified single-stranded molecules that showed activity in correcting a point mutation, can be tested for repair of a frameshift. To determine efficiency of correction of the mutation, a chimeric oligonucleotide (Tet I), which is designed to insert a T residue at position 208, is used. A modified single-stranded oligonucleotide (Tet IX) directs the insertion of a T residue at this same site. FIG. 3 illustrates the plasmid and target bases designated for change in the experiments. When all reaction components are present (extract, plasmid, oligomer), tetracycline resistant colonies appear. The colony count increases with the amount of oligonucleotide used up to a point beyond which the count falls off (Table 3). No colonies above background are observed in the absence of either extract or oligonucleotide, nor when a modified single-stranded molecule bearing perfect complementarity is used. FIG. 3 represents the sequence surrounding the target site and shows that a T residue is inserted at the correct site. We have isolated plasmids from fifteen colonies obtained in three independent experiments and each analyzed sequence revealed the same precise nucleotide insertion. These data suggest that the single-stranded molecules used initially for point mutation correction can also repair nucleotide deletions.


[0069] Comparison of phosphorothioate oligonucleotides to 2′-O-methyl substituted oligonucleotides. From a comparison of molecules VII and XI, it is apparent that gene repair is more subject to inhibition by RNA residues than by phosphorothioate linkages. Thus, even though both of these oligonucleotides contain an equal number of modifications to impart nuclease resistance, XI (with 16 phosphorothioate linkages) has good gene repair activity while VII (with 16 2′-O-methyl RNA residues) is inactive. Hence, the original chimeric double hairpin oligonucleotide enabled correction directed, in large part, by the strand containing a large region of contiguous DNA residues.


[0070] Oligonucleotides can target multiple nucleotide alterations within the same template. The ability of individual single-stranded oligonucleotides to correct multiple mutations in a single target template is tested using the plasmid pKsm4021 and the following single-stranded oligonucleotides modified with 3 phosphorothioate linkages at each end (indicated as underlined nucleotides): Oligo1 is a 25-mer with the sequence TTCGATAAGCCTATGCTGACCCGTG corrects the original mutation present in the kanamycin resistance gene of pKsm4021 as well as directing another alteration 2 basepairs away in the target sequence (both indicated in boldface); Oligo2 is a 70-mer with the 5′-end sequence TTCGGCTACGACTGGGCACAACAGACAATTGGC with the remaining nucleotides being completely complementary to the kanamycin resistance gene and also ending in 3 phosphorothioate linkages at the 3′ end. Oligo2 directs correction of the mutation in pKsm4021 as well as directing another alteration 21 basepairs away in the target sequence (both indicated in boldface).


[0071] We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pKsM4021 plasmid. These include, for example, a second 25-mer that alters two nucleotides that are three nucleotides apart with the sequence 5′-TTGTGCCCAGTCGTATCCGAATAGC-3′; a 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-CATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAA TAGCCTCTCCACCCAAGCGGCCGGAGA-3′; and another 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-GCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAAT AGCCT-3′. The nucleotides in the oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same way as the other oligonucleotides of the invention.


[0072] We assay correction of the original mutation in pKsm4021 by monitoring kanamycin resistance (the second alterations which are directed by Oligo2 and Oligo3 are silent with respect to the kanamycin resistance phenotype). In addition, in experiments with Oligo2, we also monitor cleavage of the resulting plasmids using the restriction enzyme Tsp509I which cuts at a specific site present only when the second alteration has occurred (at ATT in Oligo2). We then sequence these clones to determine whether the additional, silent alteration has also been introduced. The results of an analysis are presented below:
1Oligo1 (25-mer)Oligo2 (70-mer)Clones with both sites changed97Clones with a single site changed02Clones that were not changed41


[0073] Nuclease sensitivity of unmodified DNA oligonucleotide. Electrophoretic analysis of nucleic acid recovered from the cell-free extract reactions conducted here confirm that the unmodified single-stranded 25-mer did not survive incubation whereas greater than 90% of the terminally modified oligos did survive (as judged by photo-image analyses of agarose gels).


[0074] Plant extracts direct repair. The modified single-stranded constructs can be tested in plant cell extracts. We have observed gene alteration using extracts from multiple plant sources, including, for example, Arabidopsis, tobacco, banana, maize, soybean, canola, wheat, spinach as well as spinach chloroplast extract. We prepare the extracts by grinding plant tissue or cultured cells under liquid nitrogen with a mortar and pestle. We extract 3 ml of the ground plant tissue with 1.5 ml of extraction buffer (20 mM HEPES, pH7.5; 5 mM Kcl; 1.5 mM MgCl2; 10 mM DTT; 10% [v/v] glycerol; and 1% [w/v] PVP). We then homogenize the samples with 15 strokes of a Dounce homogenizer. Following homogenization, we incubate the samples on ice for 1 hour and centrifuge at 3000×g for 5 minutes to remove plant cell debris. We then determine the protein concentration in the supernatants (extracts) by Bradford assay. We dispense 100 μg (protein) aliquots of the extracts which we freeze in a dry ice-ethanol bath and store at −80° C.


[0075] We describe experiments using two sources here: a dicot (canola) and a monocot (banana, Musa acuminata cv. Rasthali). Each vector directs gene repair of the kanamycin mutation (Table 4); however, the level of correction is elevated 2-3 fold relative to the frequency observed with the chimeric oligonucleotide. These results are similar to those observed in the mammalian system wherein a significant improvement in gene repair occurred when modified single-stranded molecules were used.


[0076] Tables are attached hereto.
2TABLE IGene repair activity is directed by single-stranded oligonucleotides.OligonucleotidePlasmidExtract (ug)kanr coloniesFold increaseIpKSm402110300I20418 1.0 ×II10537II20748 1.78 ×III103III205 0.01 ×IV10112IV2096 0.22 ×V10217V20342 0.81 ×VI106VI20390.093 ×VII100VII200   0 ×VIII103VIII205 0.01 ×IX10936IX201295 3.09 ×X101140X201588 3.7 ×XI10480XI20681 1.6 ×XII1018XII20250.059 ×XIII100XIII2040.009 ×200I0


[0077] Plasmid pKsm4021 (1 μg), the indicated oligonucleotide (1.5 μg chimeric oligonucleotide or 0.55 μg single-stranded oligonucleotide; molar ratio of oligo to plasmid of 360 to 1) and either 10 or 20 μg of HUH7 cell-free extract were incubated 45 min at 37° C. Isolated plasmid DNA was electroporated into E. coli (strain DH10B) and the number of kanr colonies counted. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies generated from the same reaction and is the average of three experiments (standard deviation usually less than +/−15%). Fold increase is defined relative to 418 kanr colonies (second reaction) and in all reactions was calculated using the 20 μg sample.
3TABLE IIModified single-stranded oligomers are not dependent on MSH2or MSH3 for optimal gene repair activity.A.OligonucleotidePlasmidExtractkanr coloniesTX (3S/25G)HUH7637X (6S/25G)HUH7836IXMEF2−/−781XMEF2−/−676IXMEF3−/−582XMEF3−/−530IXMEF+/+332XMEF+/+497MEF2−/−10MEF3−/−5MEF+/+14


[0078] Chimeric oligonucleotide (1.5 μg) or modified single-stranded oligonucleotide (0.55 μg) was incubated with 1 μg of plasmid pKsm4021 and 20 μg of the indicated extracts. MEF represents mouse embryonic fibroblasts with either MSH2 (2−/−) or MSH3 (3−/−) deleted. MEF+/+ indicates wild-type mouse embryonic fibroblasts. The other reaction components were then added and processed through the bacterial readout system. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies.
4TABLE IIIFramesh1ft mutation repair is directed bysingle-stranded oligonucleotidesOligonucleotidePlasmidExtracttetr coloniesTet IX (3S/25A; 0.5 μg)pTSΔ2O8 (1 μg)020 μg0Tet IX (0.5 μg)48Tet IX (1.5 μg)130Tet IX (2.0 μg)68Tet I (chimera; 1.5 μg)48


[0079] Each reaction mixture contained the indicated amounts of plasmid and oligonucleotide. The extract used for these experiments came from HUH7 cells. The data represent the number of tetracycline resistant colonies per 106 ampicillin resistant colonies generated from the same reaction and is the average of 3 independent experiments. Tet I is a chimeric oligonucleotide and Tet IX is a modified single-stranded oligonucleotide that are designed to insert a T residue at position 208 of pTsΔ208. These oligonucleotides are equivalent to structures I and IX in FIG. 2.
5TABLE IVPlant cell-free extracts support gene repair bysingle-stranded oligonucleotidesOligonucleotidePlasmidExtractkanr coloniesII (chimera)pKSm402l30 μgCanola337IX (3S/25G)Canola763X (6S/25G)Canola882IIMusa203IXMusa343XMusa746Canola0Musa0IXCanola0XMusa0


[0080] Canola or Musa cell-free extracts were tested for gene repair activity on the kanamycin-sensitive gene as previously described in (18). Chimeric oligonucleotide II (1.5 μg) and modified single-stranded oligonucleotides IX and X (0.55 μg) were used to correct pKSm402 1. Total number of kanr colonies are present per 107 ampicillin resistant colonies and represent an average of four independent experiments.
6TABLE VGene repair activity in cell-free extracts prepared from yeast(Saccharomyces cerevisiae)Cell-typePlasmidChimeric OligoSS Oligokanr/ampr × 106Wild typepKansm40211 μg0.36Wild type1 μg0.81ΔRAD521 μg10.72ΔRAD521 μg17.41ΔPMS11 μg2.02ΔPMS11 μg3.23In this experiment, the kans gene in pKans4021 is corrected by either a chimeric double-hairpin oligonucleotide or a single-stranded oligonucleotide containing three thioate linkages at each end (3S/25G).



EXAMPLE 2


Yeast Cell Targeting Assay Method for Base Alteration and Preferred Oligonucleotide Selection

[0081] In this example, single-stranded oligonucleotides with modified backbones and double-hairpin oligonucleotides with chimeric, RNA-DNA backbones are used to measure gene repair using two episomal targets with a fusion between a hygromycin resistance gene and eGFP as a target for gene repair. These plasmids are pAURHYG(rep)GFP, which contains a point mutation in the hygromycin resistance gene (FIG. 7), pAURHYG(ins)GFP, which contains a single-base insertion in the hygromycin resistance gene (FIG. 7) and pAURHYG(Δ)GFP which has a single base deletion. We also use the plasmid containing a wild-type copy of the hygromycin-eGFP fusion gene, designated pAURHYG(wt)GFP, as a control. These plasmids also contain an aureobasidinA resistance gene. In pAURHYG(rep)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region. In pAURHYG(ins)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, at codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene.


[0082] We synthesize the set of three yeast expression constructs pAURHYG(rep)eGFP, pAURHYG(Δ)eGFP, pAURHYG(ins)eGFP, that contain a point mutation at nucleotide 137 of the hygromycin-B coding sequence as follows. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. We construct this set of plasmids by excising the respective expression cassettes by restriction digest from pHyg(x)EGFP and ligation into pAUR123 (Panvera, Calif.). We digest 10 μg pAUR123 vector DNA, as well as, 10 μg of each pHyg(x)EGFP construct with KpnI and SaII (NEB). We gel purify each of the DNA fragments and prepare them for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ration using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm by Sanger dideoxy chain termination sequencing and purify using a Qiagen maxiprep kit.


[0083] We use this system to assay the ability of five oligonucleotides (shown in FIG. 8) to support correction under a variety of conditions. The oligonucleotides which direct correction of the mutation in pAURHYG(rep)GFP can also direct correction of the mutation in pAURHYG(ins)GFP. Three of the four oligonucleotides (HygE3T/25, HygE3T/74 and HygGG/Rev) share the same 25-base sequence surrounding the base targeted for alteration. HygGG/Rev is an RNA-DNA chimeric double hairpin oligonucleotide of the type described in the prior art. One of these oligonucleotides, HygE3T/74, is a 74-base oligonucleotide with the 25-base sequence centrally positioned. The fourth oligonucleotide, designated HygE3T/74α, is the reverse complement of HygE3T/74. The fifth oligonucleotide, designated Kan70T, is a non-specific, control oligonucleotide which is not complementary to the target sequence. Alternatively, an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2-O-methylated modified oligonucleotide may be used as a control.


[0084] Oligonucleotide synthesis and cells. We synthesized and purified the chimeric, double-hairpin oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 1. Plasmids used for assay were maintained stably in yeast (Saccharomyces cerevisiae) strain LSY678 MATα at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30° C. We then add 30 ml of fresh YPD media to the overnight cultures and continue shaking at 30° C. until the OD600 was between 0.5 and 1.0 (3-5 hours). We then wash the cells by centrifuging at 4° C. at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water. We then centrifuge at 4° C. at 3000 rpm for 5 minutes and resuspend in 1 ml ice-cold 1M sorbitol and then finally centrifuge the cells at 4° C. at 5000 rpm for 5 minutes and resuspend the cells in 120 μl 1M sorbitol. To transform electrocompetent cells with plasmids or oligonucleotides, we mix 40 μl of cells with 5 μg of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes. We then transfer the mixture to a 0.2 cm electroporation cuvette and electroporate with a BIO-RAD Gene Pulser apparatus at 1.5 kV, 25 μF, 200 Ω for one five-second pulse. We then immediately resuspend the cells in 1 ml YPD supplemented with 1M sorbitol and incubate the cultures at 30° C. with shaking at 300 rpm for 6 hours. We then spread 200 μl of this culture on selective plates containing 300 μg/ml hygromycin and spread 200 μl of a 105 dilution of this culture on selective plates containing 500 ng/ml aureobasidinA and/or and incubate at 30° C. for 3 days to allow individual yeast colonies to grow. We then count the colonies on the plates and calculate the gene conversion efficiency by determining the number of hygromycin resistance colonies per 105 aureobasidinA resistant colonies.


[0085] Frameshift mutations are repaired in yeast cells. We test the ability of the oligonucleotides shown in FIG. 8 to correct a frameshift mutation in vivo using LSY678 yeast cells containing the plasmid pAURHYG(ins)GFP. These experiments, presented in Table 6, indicate that these oligonucleotides can support gene correction in yeast cells. These data reinforce the results described in Example 1 indicating that oligonucleotides comprising phosphorothioate linkages facilitate gene correction much more efficiently than control duplex, chimeric RNA-DNA oligonucleotides. This gene correction activity is also specific as transformation of cells with the control oligonucleotide Kan70T produced no hygromycin resistant colonies above background and thus Kan70T did not support gene correction in this system. In addition, we observe that the 74-base oligonucleotide (HygE3T/74) corrects the mutation in pAURHYG(ins)GFP approximately five-fold more efficiently than the 25-base oligonucleotide (HygE3T/25). We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)GFP. With this strain we observed that even without added oligonucleotides, there are too many hygromycin resistant colonies to count.


[0086] We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid. These include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGGTACGTCCTGCGGGTAAATAGCTGCGCCGATG GTTTCTAC-3′; a 74-mer that alters two basepairs that are 15 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAACAGCTGCGCCGATG GTTTCTAC-3′; and a 74-mer that alters two basepairs that are 27 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAATAGCTGCGCCGACG GTTTCTAC. The nucleotides in these oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same ways as the other oligonucleotides of the invention.


[0087] Oligonucleotides targeting the sense strand direct gene coffection more efficiently. We compare the ability of single-stranded oligonucleotides to target each of the two strands of the target sequence of both pAURHYG(ins)GFP and pAURHYG(rep)GFP. These experiments, presented in Tables 7 and 8, indicate that an oligonucleotide, HygE3T/74α, with sequence complementary to the sense strand (i.e. the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the non-transcribed strand which serves as the template for the synthesis of RNA. As indicated in Table 7, this effect was observed over a range of oligonucleotide concentrations from 0-3.6 μg, although we did observe some variability in the difference between the two oligonucleotides (indicated in Table 7 as a fold difference between HygE3T/74α and HygE3T/74). Furthermore, as shown in Table 8, we observe increased efficiency of correction by HygE3T/74α relative to HygE3T/74 regardless of whether the oligonucleotides were used to correct the base substitution mutation in pAURHYG(rep)GFP or the insertion mutation in pAURHYG(ins)GFP. The data presented in Table 8 further indicate that the single-stranded oligonucleotides correct a base substitution mutation more efficiently than an insertion mutation. However, this last effect was much less pronounced and the oligonucleotides of the invention are clearly able efficiently to correct both types of mutations in yeast cells. In addition, the role of transcription is investigated using plasmids with inducible promoters such as that described in FIG. 10.


[0088] Optimization of oligonucleotide concentration. To determine the optimal concentration of oligonucleotide for the purpose of gene alteration, we test the ability of increasing concentrations of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678. We chose this assay system because our previous experiments indicated that it supports the highest level of correction. However, this same approach could be used to determine the optimal concentration of any given oligonucleotide. We test the ability of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678 over a range of oligonucleotide concentrations from 0-10.0 μg. As shown in Table 9, we observe that the correction efficiency initially increases with increasing oligonucleotide concentration, but then declines at the highest concentration tested.


[0089] Tables are attached hereto.
7TABLE 6Correction of an insertion mutation in pAURHYG(ins)GFPby HygGG/Rev, HygE3T/25 and HygE3T/74Colonies onColonies onCorrectionOligonucleotide TestedHygromycinAureobasidin (/105)EfficiencyHygGG/Rev31570.02HygE3T/25641470.44HygE3T/742801741.61Kan70T0


[0090]

8





TABLE 7










An oligonucleotide targeting the sense strand


of the target sequence corrects more efficiently.









Colonies per hygromycin plate









Amount of Oligonucleotide (μg)
HygE3T/74
HygE3T/74α












0
0
0


0.6
24
128 (8.4x)*


1.2
69
140 (7.5x)*


2.4
62
167 (3.8x)*


3.6
29
367 (15x)*






*The numbers in parentheses represent the fold increase in efficiency for targeting the non-transcribed strand as compared to the other strand of a DNA duplex that encodes a protein.








[0091]

9





TABLE 8










Correction of a base substitution mutation


is more efficient than correction of a frame shift mutation.








Oligonucleotide
Plasmid tested (contained in LSY678)









Tested (5 μg)
pAURHYG(ins)GFP
pAURHYG(rep)GFP












HygE3T/74
72
277


HygE3T/74α
1464
2248


Kan70T
0
0










[0092]

10





TABLE 9










Optimization of oligonucleotide concentration


in electroporated yeast cells.











Colonies on
Colonies on



Amount (μg)
hygromycin
aureobasidin (/105)
Correction efficiency













0
0
67
0


1.0
5
64
0.08


2.5
47
30
1.57


5.0
199
33
6.08


7.5
383
39
9.79


10.0
191
33
5.79











EXAMPLE 3


Cultured Cell Manipulation

[0093] Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, Calif.). LinCD38 cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, Calif.). Cells used for microinjecton are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjecton. S Medium contains Iscoves' Modified Dulbecco's Medium without phenol red (IMDM) with 100 μg/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 μg/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM; Stem Cell Technologies), 40 μg/ml low-density lipoprotein (LDL; Sigma, St. Louis, Mo.), 50 mM HEPEs buffer and 50 μM 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, flt-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, N.J.). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing.


[0094] 35 mm dishes are coated overnight at 40° C. with 50 μg/ml Fibronectn (FN) fragment CH-296 (Retronectn; TaKaRa Biomedicals, Panvera, Madison, Wis.) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37° C. prior to microinjecton. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjecton. Pulled injection needles with a range of 0.22μ to 0.3μ outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37° C. and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are flourescently labeled allow determination of the amount of oligonucleotide delivered to the cells.


[0095] For in vitro erythropoiesis from LinCD38 cells, the procedure of Malik, 1998 can be used. Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks. Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny. CD34+ cells can convert a normal A (βA) to sickle T (βS) mutation in the β-globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene. Alternatively, stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.


[0096] Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporaton, biolistcs, calcium phophate precipitation, or any other method known in the art.


[0097] Notes on the Tables Presented Below:


[0098] Each of the following tables presents, for the specified human gene, a plurality of mutations that are known to confer a clinically-relevant phenotype and, for each mutation, the oligonucleotides that can be used to correct the respective mutation site-specifically in the human genome according to the present invention.


[0099] The left-most column identifies each mutation and the clinical phenotype that the mutation confers.


[0100] For most entries, the mutation is identified at both the nucleic acid and protein level. At the amino acid level, mutations are presented according to the following standard nomenclature. The centered number identifies the position of the mutated codon in the protein sequence; to the left of the number is the wild type residue and to the right of the number is the mutant codon. Codon numbering is according to the Human Gene Mutation Database, Cardiff, Wales, UK (http://archive.uwcm.ac.uk/search/mg/allgenes). Terminator codons are shown as “TERM”. At the nucleic acid level, the entire triplet of the wild type and mutated codons is shown.


[0101] The middle column presents, for each mutation, four oligonucleotides capable of repairing the mutation site-specifically in the human genome or in cloned human DNA including human DNA in artificial chromosomes, episomes, plasmids, or other types of vectors. The oligonucleotides of the invention, however, may include any of the oligonucleotides sharing portions of the sequence of the 121 base sequence. Thus, oligonucleotides of the invention for each of the depicted targets may be 18, 19, 20 up to about 121 nucleotides in length. Sequence may be added non-symmetrically.


[0102] All oligonucleotides are presented, per convention, in the 5′ to 3′ orientation. The nucleotide that effects the change in the genome is underlined and presented in bold.


[0103] The first of the four oligonucleotides for each mutation is a 121 nt oligonucleotide centered about the repair nucleotide. The second oligonucleotide, its reverse complement, targets the opposite strand of the DNA duplex for repair. The third oligonucleotide is the minimal 17 nt domain of the first oligonucleotide, also centered about the repair nucleotide. The fourth oligonucleotide is the reverse complement of the third, and thus represents the minimal 17 nt domain of the second.


[0104] The third column of each table presents the SEQ ID NO: of the respective repair oligonucleotide.



EXAMPLE 4


Adenosine Deaminase (ADA)

[0105] Adenosine deaminase (ADA, EC 3.5.4.4) catalyses the deamination of adenosine and 2′-deoxyadenosine to inosine or 2′-deoxyinosine respectively. ADA deficiency has been identified as the metabolic basis for 20-30% of cases with recessively inherited severe combined immunodeficiency (SCID). Affected infants are subject to recurrent chronic viral, fungal, protozoal, and bacterial infections and frequently present with persistent diarrhea, failure to thrive and candidiasis. In patients homozygous for ADA deficiency, 2′-deoxyadenosine accumulating during the rapid turnover of cells rich in DNA is converted back to dATP, either by adenosine kinase or deoxycytidine kinase. Many hypotheses have been advanced to explain the specific toxicity to the immune system in ADA deficiency. The apparently selective accumulation of dATP in thymocytes and peripheral blood B cells, with resultant inhibition of ribonucleotide reductase and DNA synthesis is probably the principal mechanism.


[0106] The structural gene for ADA is encoded as a single 32 kb locus containing 12 exons. Studies of the molecular defect in ADA-deficient patients have shown that mRNA is usually detectable in normal or supranormal amounts. Specific base substitution mutations have been detected in the majority of cases with the complete deficiency. A C-to-T base substitution mutation in exon 11 accounts for a high proportion of these, whilst a few patents are homozygous for large deletions encompassing exon I. A common point mutation resulting in a heat-labile ADA has been characterised in some patients with partial ADA deficiency, a disorder with an apparently increased prevalence in the Caribbean.


[0107] As yet no totally effective therapy for ADA deficiency has been reported, except in those few cases where bone marrow from an HLA/MLR compatible sibling donor was available.


[0108] Two therapeutic approaches have provided long-term benefit in specific instances. First, reconstitution using T cell depleted mismatched sibling marrow has been encouraging, particularly in early presenters completely deficient in ADA. Secondly, therapy with polyethylene glycol-modified adenosine deaminase (PEG-ADA) for more than 5 years has produced a sustained increase in lymphocyte numbers and mitogen responses together with evidence of in vivo B cell function. Success has generally been achieved in late presenters with residual ADA activity in mononuclear cells.


[0109] ADA deficiency has been chosen as the candidate disease for gene replacement therapy and the first human experiment commenced in 1990. The clinical consequences of overexpression of ADA activity—one of the potential hazards of gene implant—are known and take the form of an hereditary haemolytic anaemia associated with a tissue-specific increase in ADA activity. The genetic basis for the latter autosomal dominant disorder seemingly relates to markedly increased levels of structurally normal ADA mRNA.
11TABLE 10ADA Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Adenosine deaminaseAGAGACCCACCGAGCGGCGGCGGAGGGAGCAGCGCCGGGG1deficiencyCGCACGAGGGCACCATGGCCCAGACGCCCGCCTTCGACAAGGLN3TERMCCCAAAGTGAGCGCGCGCGGGGGCTCCGGGGACGGGGGTCCAG to TAGGACCCCCGTCCCCGGAGCCCCCGCGCGCGCTCACTTTGGG2CTTGTCGAAGGCGGGCGTCTGGGCCATGGTGCCCTCGTGCGCCCCGGCGCTGCTCCCTCCGCCGCCGCTCGGTGGGTCTCTCCATGGCCCAGACGCCC3GGGCGTCTGGGCCATGG4Adenosine deaminaseTATTTGTTCTCTCTCTCCCTTTCTCTCTCTCTTCCCCCTGCCC5deficiencyCCTTGCAGGTRAGAACTGCATGTCCACCTAGACGGATCCATCAHIS15ASPAGCCTGAAACCATCTTATACTATGGCAGGTAAGTCCCAT to GATGGACTTACCTGCCATAGTATAAGATGGTTTCAGGCTTGATGGA6TCCGTCTAGGTGGACATGCAGTTCTACCTGCAAGGGGGCAGGGGGAAGAGAGAGAGAAAGGGAGAGAGAGAACAAATATAGAACTGCATGTCCAC7GTGGACATGCAGTTCTA8Adenosine deaminaseTCCCTTTCTCTCTCTCTTCCCCCTGCCCCCTTGCAGGTAGAA9deficiencyCTGCATGTCCACCTAGACGGATCCATCAAGCCTGAAACCATCGLY20ARGTTATACTATGGCAGGTAAGTCCATACAGAAGAGCCCTGGA to AGAAGGGCTCTTCTGTATGGACTTACCTGCCATAGTATAAGATGGT10TTCAGGCTTGATGGATCCGTCTAGGTGGACATGCAGTTCTACCTGCAAGGGGGCAGGGGGAAGAGAGAGAGAAAGGGAACCTAGACGGATCCATC11GATGGATCCGTCTAGGT12Adenosine deaminaseCCTGGAGCTCCCAAGGGACTTGGGGAAGGTTGTTCCCAACC13deficiencyCCTTTCTTCCCTTCCCAGGGGCTGCCGGGAGGCTATCAAAAGGLY74CYSGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGGC to GGCCCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCTTTT14GATAGCCTCCCGGCAGCCCCTGGGAAGGGAAGAAAGGGGTTGGGAACAACCTTCCCCAAGTCCCTTGGGAGCTCCAGGCTATCGCGGGCTGCCGG15CCGGCAGCCCGCGATAG16Adenosine DeaminaseGCTCCCAAGGGACTTGGGGAAGGTTGTTCCCAACCCCTTTCT17DeficiencyTCCCTTCCCAGGGGCTGCCGGGAGGCTATCAAAAGGATCGCARG76TRPCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCGTGGCGG to TGGCCACGCCCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGAT18CCTTTTGATAGCCTCCCGGCAGCCCCTGGGAAGGGAAGAAAGGGGTTGGGAACAACCTTCCCCAAGTCCCTTGGGAGCGGGGCTGCCGGGAGGCT19AGCCTCCCGGCAGCCCC20Adenosine DeaminaseTTGGGGAAGGTTGTTCCCAACCCCTTTCTTCCCTTCCCAGGG21DeficiencyGCTGCCGGGAGGCTATCAAAAGGATCGCCTATGAGTTTGTAGLYS80ARGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAGGTAAA to AGAACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTACAA22ACTCATAGGCGATCCTTTTGATAGCCTCCCGGCAGCCCCTGGGAAGGGAAGAAAGGGGTTGGGAACAACCTTCCCCAAGGCTATCAAAAGGATCG23CGATCCTTTTGATAGCC24Adenosine deaminaseGTTGTTCCCAACCCCTTTCTTCCCTTCCCAGGGGCTGCCGGG25deficiencyAGGCTATCAAAAGGATCGCCTATGAGTTTGTAGAGATGAAGGALA83ASPCCAAAGAGGGCGTGGTGTATGTGGAGGTGCGGTACAGGCC to GACCTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTC26ATCTCTACAAACTCATAGGCGATCCTTTTGATAGCCTCCCGGCAGCCCCTGGGAAGGGAAGAAAGGGGTTGGGAACAACAAGGATCGCCTATGAGT27ACTCATAGGCGATCCTT28Adenosine deaminaseAGGCTATCAAAAGGATCGCCTATGAGTTTGTAGAGATGAAGG29deficiencyCCAAAGAGGGCGTGGTGTATGTGGAGGTGCGGTACAGTCCGTYR97CYSCACCTGCTGGCCAACTCCAAAGTGGAGCCAATCCCCTGTAT to TGTCAGGGGATTGGCTCCACTTTGGAGTTGGCCAGCAGGTGCGG30ACTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCTTTTGATAGCCTCGTGGTGTATGTGGAGG31CCTCCACATACACCACG32Adenosine deaminaseGGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCG33deficiencyTGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGCCARG101GLNAACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTGACGG to CAGTCAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCC34AGCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCGGAGGTGCGGTACAGTC35GACTGTACCGCACCTCC36Adenosine deaminaseGGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCG37deficiencyTGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGCCARG101LEUAACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTGACGG to CTGTCAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCC38AGCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCGGAGGTGCGGTACAGTC39GACTGTACCGCACCTCC40Adenosine deaminaseAGGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGC41deficiencyGTGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGCARG101TRPCAACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTGCGG to TGGCAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCCA42GCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCTTGGAGGTGCGGTACAGT43ACTGTACCGCACCTCCA44Adenosine deaminaseATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATG45deficiencyTGGAGGTGCGGTACAGTCCGCACCTGCTGGCCAACTCCAAAPRO104LEUGTGGAGCCAATCCCCTGGAACCAGGCTGAGTGAGTGATCCG to CTGATCACTCACTCAGCCTGGTTCCAGGGGATTGGCTCCACTTTG46GAGTTGGCCAGCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTACAAACTCATGTACAGTCCGCACCTGC47GCAGGTGCGGACTGTAC48Adenosine deaminaseTTTGTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAG49deficiencyGTGCGGTACAGTCCGCACCTGCTGGCCAACTCCAAAGTGGALEU106VALGCCAATCCCCTGGAACCAGGCTGAGTGAGTGATGGGCCCTG to GTGGGCCCATCACTCACTCAGCCTGGTTCCAGGGGATTGGCTCCA50CTTTGGAGTTGGCCAGCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTACAAAGTCCGCACCTGCTGGCC51GGCCAGCAGGTGCGGAC52Adenosine deaminaseTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAGGTG53deficiencyCGGTACAGTCCGCACCTGCTGGCCAACTCCAAAGTGGAGCCLEU107PROAATCCCCTGGAACCAGGCTGAGTGAGTGATGGGCCTGGACTG to CCGTCCAGGCCCATCACTCACTCAGCCTGGTTCCAGGGGATTGGC54TCCACTTTGGAGTTGGCCAGCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTAGCACCTGCTGGCCAACT55AGTTGGCCAGCAGGTGC56Adenosine deaminaseGCCTTCCTTTTGCCTCAGGCCCATCCCTACTCCTCTCCTCAC57deficiencyACAGAGGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGPRO126GLNGGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCCA to CAAACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCAC58TAGGGCCACCACCTCGTCTGGGGTGAGGTCCCCTCTGTGTGAGGAGAGGAGTAGGGATGGGCCTGAGGCAAAAGGAAGGCCCTCACCCCAGACGAGG59CCTCGTCTGGGGTGAGG60Adenosine deaminaseTTTGCCTCAGGCCCATCCCTACTCCTCTCCTCACACAGAGGG61deficiencyGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCAGGGTAL129METCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCCGTG to ATGGGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCC62TGGCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCCTCTGTGTGAGGAGAGGAGTAGGGATGGGCCTGAGGCAAACAGACGAGGTGGTGGCC63GGCCACCACCTCGTCTG64Adenosine deaminaseACAGAGGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTG65deficiencyGGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAGLY140GLUAGGCCCGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGGGG to GAGCTGGGCTGGTGGCGCATGCAGCACAGGATGGACCGGGCCTT66GACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCCTCTGTGCAGGAGGGGGAGCGAG67CTCGCTCCCCCTCCTGC68Adenosine deaminaseGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCAG69deficiencyGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCCARG142GLNGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTACGA to CAATACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCG70GGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCGGGGGAGCGAGACTTCG71CGAAGTCTCGCTCCCCC72Adenosine deaminaseGGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCA73deficiencyGGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCARG142TERMCGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTCGA to TGAACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCGG74GCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCCAGGGGGAGCGAGACTTC75GAAGTCTCGCTCCCCCT76Adenosine deaminaseTGGTGGCCCTAGTGGGCCAGGGCCTGCAGGAGGGGGAGCG77deficiencyAGACTTCGGGGTCAAGGCCCGGTCCATCCTGTGCTGCATGCARG149GLNGCCACCAGCCCAGTGAGTAGGATCACCGCCCTGCCCAGGGCGG to CAGCCCTGGGCAGGGCGGTGATCCTACTCACTGGGCTGGTGGCG78CATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCACAAGGCCCGGTCCATCC79GGATGGACCGGGCCTTG80Adenosine deaminaseGTGGTGGCCCTAGTGGGCCAGGGCCTGCAGGAGGGGGAGC81deficiencyGAGACTTCGGGGTCAAGGCCCGGTCCATCCTGTGCTGCATGARG149TRPCGCCACCAGCCCAGTGAGTAGGATCACCGCCCTGCCCAGGCGG to TGGCCTGGGCAGGGCGGTGATCCTACTCACTGGGCTGGTGGCGC82ATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCACTCAAGGCCCGGTCCATC83GATGGACCGGGCCTTGA84Adenosine deaminaseCTAGTGGGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCG85deficiencyGGGTCAAGGCCCGGTCCATCCTGTGCTGCATGCGCCACCAGLEU152METCCCAGTGAGTAGGATCACCGCCCTGCCCAGGGCCGCCCGTCTG to ATGACGGGCGGCCCTGGGCAGGGCGGTGATCCTACTCACTGGG86CTGGTGGCGCATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGTCCATCCTGTGCTGC87GCAGCACAGGATGGACC88Adenosine deaminaseGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC89deficiencyGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTAGARG156CYSGATCACCGCCCTGCCCAGGGCCGCCCGTCTCACCCTGGCCCGC to TGCGGCCAGGGTGAGACGGGCGGCCCTGGGCAGGGCGGTGATC90CTACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCGCTGCATGCGCCACCAG91CTGGTGGCGCATGCAGC92Adenosine deaminaseGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCCG93deficiencyGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTAGGARG156H1SATCACCGCCCTGCCCAGGGCCGCCCGTCTCACCCTGGCCCCGC to CACGGGCCAGGGTGAGACGGGCGGCCCTGGGCAGGGCGGTGAT94CCTACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCTGCATGCGCCACCAGC95GCTGGTGGCGCATGCAG96Adenosine deaminaseCTGCCCACAGACTGGTCCCCCAAGGTGGTGGAGCTGTGTAA97deficiencyGAAGTACCAGCAGCAGACCGTGGTAGCCATTGACCTGGCTGVAL177METGAGATGAGACCATCCCAGGAAGCAGCCTCTTGCCTGGACGTG to ATGGTCCAGGCAAGAGGCTGCTTCCTGGGATGGTCTCATCTCCAG98CCAGGTCAATGGCTACCACGGTCTGCTGCTGGTACTTCTTACACAGCTCCACCACCTTGGGGGACCAGTCTGTGGGCAGAGCAGACCGTGGTAGCC99GGCTACCACGGTCTGCT100Adenosine deaminaseCAGACTGGTCCCCCAAGGTGGTGGAGCTGTGTAAGAAGTAC101deficiencyCAGCAGCAGACCGTGGTAGCCATTGACCTGGCTGGAGATGAALA179ASPGACCATCCCAGGAAGCAGCCTCTTGCCTGGACATGTCCAGCC to GACTGGACATGTCCAGGCAAGAGGCTGCTTCCTGGGATGGTCTCA102TCTCCAGCCAGGTCAATGGCTACCACGGTCTGCTGCTGGTACTTCTTACACAGCTCCACCACCTTGGGGGACCAGTCTGCGTGGTAGCCATTGACC103GGTCAATGGCTACCACG104Adenosine deaminaseCCATTGACCTGGCTGGAGATGAGACCATCCCAGGAAGCAGC105deficiencyCTCTTGCCTGGACATGTCCAGGCCTACCAGGTGGGTCCTGTGLN199PROGAGAAGGAATGGAGAGGCTGGCCCTGGGTGAGCTTGTCTCAG to CCGAGACAAGCTCACCCAGGGCCAGCCTCTCCATTCCTTCTCACA106GGACCCACCTGGTAGGCCTGGACATGTCCAGGCAAGAGGCTGCTTCCTGGGATGGTCTCATCTCCAGCCAGGTCAATGGACATGTCCAGGCCTACC107GGTAGGCCTGGACATGT108Adenosine deaminaseGCTAGGGCACCCATGACCTGGCTCTCCCCCTTCCAGGAGGC109deficiencyTGTGAAGAGCGGCATTCACCGTACTGTCCACGCCGGGGAGGARG211CYSTGGGCTCGGCCGAAGTAGTAAAAGAGGTGAGGGCCTGGGCGT to TGTCCCAGGCCCTCACCTCTTTTACTACTTCGGCCGAGCCCACCT110CCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGTCATGGGTGCCCTAGCGCATTCACCGTACTGTC111GACAGTACGGTGAATGC112Adenosine deaminaseCTAGGGCACCCATGACCTGGCTCTCCCCCTTCCAGGAGGCT113deficiencyGTGAAGAGCGGCATTCACCGTACTGTCCACGCCGGGGAGGTARG211HISGGGCTCGGCCGAAGTAGTAAAAGAGGTGAGGGCCTGGGCCGT to CATGCCCAGGCCCTCACCTCTTTTACTACTTCGGCCGAGCCCACC114TCCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGTCATGGGTGCCCTAGCATTCACCGTACTGTGC115GGACAGTACGGTGAATG116Adenosine deaminaseATGACCTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGG117deficiencyCATTCACCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCGALA215THRAAGTAGTAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGGGCC to ACCCCCCATGGCCAGCGCAGGCCCTCACCTCTTTTACTACTTCGG118CCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGTCATCTGTCCACGCCGGGGAG119CTCCCCGGCGTGGACAG120Adenosine deaminaseACCTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGGCAT121deficiencyTCACCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCGAAGGLY216ARGTAGTAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGGTCCGGG to AGGGGACCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTACTT122CGGCCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGTTCCACGCCGGGGAGGTG123CACCTCCCCGGCGTGGA124Adenosine deaminaseTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGGCATTCA125deficiencyCCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCGAAGTAGGLU217LYSTAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGGTCCCTCGAG to AAGGAGGGACCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTA126CTTCGGCCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAACGCCGGGGAGGTGGGC127GCCCACCTCCCCGGCGT128Adenosine deaminaseCTGCCTCCTCCCATACTTGGCTCTATTCTGCTTCTCTACAGGC129deficiencyTGTGGACATACTCAAGACAGAGCGGCTGGGACACGGCTACCTHR233ILEACACCCTGGAAGACCAGGCCCTTTATAACAGGCTGCGACA to ATACGCAGCCTGTTATAAAGGGCCTGGTCTTCCAGGGTGTGGTAG130CCGTGTCCCAGCCGCTCTGTCTTGAGTATGTCCACAGCCTGTAGAGAAGCAGAATAGAGCCAAGTATGGGAGGAGGCAGACTCAAGACAGAGCGGC131GCCGCTCTGTCTTGAGT132Adenosine deaminaseCAGAGCGGCTGGGACACGGCTACCACACCCTGGAAGACCAG133deficiencyGCCCTTTATAACAGGCTGCGGCAGGAAAACATGCACTTCGAGARG253PROGTAAGCGGGCCAGGGAGTGGGGAGGAACCATCCCCGGCCGG to CCGGCCGGGGATGGTTCCTCCCCACTCCCTGGCCCGCTTACCTC134GAAGTGCATGTTTTCCTGCCGCAGCCTGTTATAAAGGGCCTGGTCTTCCAGGGTGTGGTAGCCGTGTCCCAGCCGCTCTGCAGGCTGCGGCAGGAAA135TTTCCTGCCGCAGCCTG136Adenosine deaminaseGAGCGGCTGGGACACGGCTACCACACCCTGGAAGACCAGGC137deficiencyCCTTTATAACAGGCTGCGGCAGGAAAACATGCACTTCGAGGTGLN254TERMAAGCGGGCCAGGGAGTGGGGAGGAACCATCCCCGGCTGCAG to TAGCAGCCGGGGATGGTTCCTCCCCACTCCCTGGCCCGCTTACC138TCGAAGTGCATGTTTTCCTGCCGCAGCCTGTTATAAAGGGCCTGGTCTTCCAGGGTGTGGTAGCCGTGTCCCAGCCGCTCGGCTGCGGCAGGAAAAC139GTTTTCCTGCCGCAGCC140Adenosine deaminaseCCACACACCTGCTCTTCCAGATCTGCCCCTGGTCCAGCTACC141deficiencyTCACTGGTGCCTGGAAGCCGGACACGGAGCATGCAGTCATTPRO274LEUCGGTGAGCTCTGTTCCCCTGGGCCTGTTCAATTTTGTTCCG to CTGAACAAAATTGAACAGGCCCAGGGGAACAGAGCTCACCGAATG142ACTGCATGCTCCGTGTCCGGCTTCCAGGCACCAGTGAGGTAGCTGGACCAGGGGCAGATCTGGAAGAGCAGGTGTGTGGCTGGAAGCCGGACACGG143CCGTGTCCGGCTTCCAG144Adenosine deaminaseGGAGGCTGATTCTCTCCTCCTCCCTCTTCTGCAGGCTCAAAA145deficiencyATGACCAGGCTAACTACTCGCTCAACACAGATGACCCGCTCASER291LEUTCTTCAAGTCCACCCTGGACACTGATTACCAGATGACTCG to TTGGTCATCTGGTAATCAGTGTCCAGGGTGGACTTGAAGATGAGC146GGGTCATCTGTGTTGAGCGAGTAGTTAGCCTGGTCATTTTTGAGCCTGCAGAAGAGGGAGGAGGAGAGAATCAGCCTCCTAACTACTCGCTCAACA147TGTTGAGCGAGTAGTTA148Adenosine deaminaseCCTCCCTCTTCTGCAGGCTCAAAAATGACCAGGCTAACTACT149deficiencyCGCTCAACACAGATGACCCGCTCATCTTCAAGTCCACCCTGGPRO297GLNACACTGATTACCAGATGACCAAACGGGACATGGGCTTCCG to CAGAAGCCCATGTCCCGTTTGGTCATCTGGTAATCAGTGTCCAGG150GTGGACTTGAAGATGAGCGGGTCATCTGTGTTGAGCGAGTAGTTAGCCTGGTCATTTTTGAGCCTGCAGAAGAGGGAGGAGATGACCCGCTCATCT151AGATGAGCGGGTCATCT152Adenosine deaminaseAAAATGACCAGGCTAACTACTCGCTCAACACAGATGACCCGC153deficiencyTCATCTTCAAGTCCACCCTGGACACTGATTACCAGATGACCAALEU304ARGACGGGACATGGGCTTTACTGAAGAGGAGTTTAAAAGCTG to CGGCTTTTAAACTCCTCTTCAGTAAAGCCCATGTCCCGTTTGGTCA154TCTGGTAATCAGTGTCCAGGGTGGACTTGAAGATGAGCGGGTCATCTGTGTTGAGCGAGTAGTTAGCCTGGTCATTTTGTCCACCCTGGACACTG155CAGTGTCCAGGGTGGAC156Adenosine deaminaseGCCTTCTTTGTTCTCTGGTTCCATGTTGTCTGCCATTCTGGCC157deficiencyTTTCCAGAACATCAATGCGGCCAAATCTAGTTTCCTCCCAGAAALA329TALGATGAAAAGAGGGAGCTTCTCGACCTGCTCTATAAC-to-T at base 1081TTATAGAGCAGGTCGAGAAGCTCCCTCTTTTCATCTTCTGGGA158GGAAACTAGATTTGGCCGCATTGATGTTCTGGAAAGGCCAGAATGGCAGACAACATGGAACCAGAGAACAAAGAAGGCCATCAATGCGGCCAAAT159ATTTGGCCGCATTGATG160



EXAMPLE 5


P53 Mutations

[0110] The p53 gene codes for a protein that acts as a transcription factor and serves as a key regulator of the cell cycle. Mutation in this gene is probably the most significant genetic change characterizing the transformation of cells from normalcy to malignancy.


[0111] Inactivation of p53 by mutation disrupts the cell cycle which, in turn, sets the stage for tumor formation. Mutations in the p53 gene are among the most commonly diagnosed genetic disorders, occuring in as many as 50% of cancer patients. For some types of cancer, most notably of the breast, lung and colon, p53 mutations are the predominant genetic alternations found thus far. These mutations are associated with genomic instability and thus an increased susceptibility to cancer. Some p53 lesions result in malignancies that are resistant to the most widely used therapeutic regimens and therefore demand more aggressive treatment.


[0112] That p53 is associated with different malignant tumors is illustrated in the Li-Fraumeni autosomal dominant hereditary disorder characterized by familial multiple tumors due to mutation in the p53 gene. Affected individuals can develop one or more tumors, including: brain (12%); soft-tissue sarcoma (12%); breast cancer (25%); adrenal tumors (1%); bone cancer (osteosarcoma) (6%); cancer of the lung, prostate, pancreas, and colon as well as lymphoma and melanoma can also occur.


[0113] Certain of the most frequently mutated codons are codons 175, 248 and 273, however a variety of oligonucleotides are described below in the atttached table.
12TABLE 11p53 Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:In 2 families withGACTGTACCACCATCCACTACAACTACATGTGTAACAGTTCCT161Li-FraumeniGCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATCsyndrome, there was aACACTGGAAGACTCCAGGTCAGGAGCCACTTGCCACCC-to-T mutation at thefirst nucleotide ofGGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTGTGATGA162codon 248 whichTGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAAchanged arginine toCTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTCtryptophan.GCATGAACCGGAGGCCC163GGGCCTCCGGTTCATGC164In a family with theTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCAT165Li-FraumeniCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCACsyndrome, a G-to-ATTGCCACCCTGCACACTGGCCTGCTGTGCCCCAGCCTCmutation at the firstnucleotide of codonGAGGCTGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGT166258 resulting in theGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATsubstitution of lysineGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACAfor glutamic acid.TCACACTGGAAGACTCC167GGAGTCTTCCAGTGTGA168In a family with theGTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTA169Li-FraumeniACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCsyndrome, a G-to-TACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCAmutation atthe first nucleotide ofcodon 245 resulting inthe substitution ofcysteine for glycine.A gly245-to-ser,TGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGA170GGC-to-AGC,TGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACAmutation was found inTGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAACa patient in whomosteosarcoma wasGCATGGGCGGCATGAAC171diagnosed at the ageof 18 years.GTTCATGCCGCCCATGC172In a family with theTCCACTACAACTACATGTGTAACAGTTCCTGCATGGGCGGCA173Li-FraumeniTGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGACTsyndrome, a germlineCCAGGTCAGGAGCCACTTGCCACCCTGCACACTGGCCmutation at codon 252:a T-to-C change at theGGCCAGTGTGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTC174second positionTTCCAGTGTGATGATGGTGAGGATGGGCCTCCGGTTCATGCCresulted in substitutionGCCCATGCAGGAACTGTTACACATGTAGTTGTAGTGGAof proline for leucine.GCCCATCCTCACCATCA175TGATGGTGAGGATGGGC176Researchers analyzedTACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCATG177for mutations in p53GGCGGCATGAACCGGAGGCCCATCCTCACCATCATCACACThepatocellularGGAAGACTCCAGGTCAGGAGCCACTTGCCACCCTGCAcarcinomas frompatents in Qidong, anTGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTG178area of high incidenceTGATGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGin China, in which bothCAGGAACTGTTACACATGTAGTTGTAGTGGATGGTGGTAhepatitis B virus andaflatoxin B1 are riskAACCGGAGGCCCATCCT179factors. Eight of 16tumors had a pointAGGATGGGCCTCCGGTT180mutation at the thirdbase position of codon249. The G-to-Tmutation at codon 249led to a change fromarginine to serine(AGG to AGT).In cases ofCTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTCCACA181hepatocellularCCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAcarcinoma in southernGCAGTCACAGCACATGACGGAGGTTGTGAGGCGCTGCCAfrica, a G-to-Tsubstitution in codonGGCAGCGCCTCACAACCTCCGTCATGTGCTGTGACTGCTTGT182157 resulting in aAGATGGCCATGGCGCGGACGCGGGTGCCGGGCGGGGGTGTchange from valine toGGAATCAACCCACAGCTGCACAGGGCAGGTCTTGGCCAGphenylahanine.GCACCCGCGTCCGCGCC183GGCGCGGACGCGGGTGC184In a family withTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTAA185Li-Fraumeni in whichCAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCAnoncancerous skinCCATCATCACACTGGAAGACTCCAGGTCAGGAGCCACfibroblasts fromaffected individualsGTGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGG186showed an unusualATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACradiation-resistantATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAAphenotype, a pointmutation in codon 245CATGGGCGGCATGAACC187of the P53 gene. Achange from GGC toGGTTCATGCCGCCCATG188GAC predictedsubstitution of asparticacid for glycine.In 2 of 8 families withACTGTACCACCATCCACTACAACTACATGTGTAACAGTTCCTG189Li-FraumeniCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATCAsyndrome, a mutationCACTGGAAGACTCCAGGTCAGGAGCCACTTGCCACCCin codon 248: aGGGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTGTGAT190CGG-to-CAG changeGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGresulting in substitutionAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTof glutamine forCATGAACCGGAGGCCCA191arginine.TGGGCCTCCGGTTCATG192In 9 members of anCCCTGACTTTCAACTCTGTCTCCTTCCTCTTCCTACAGTACTC193extended family withCCCTGCCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGLi-FraumeniCCCTGTGCAGCTGTGGGTTGATTCCACACCCCCGCCsyndrome, a germlinemutation at codon 133GGCGGGGGTGTGGAATCAACCCACAGCTGCACAGGGCAGGT194(ATG-to-ACG),CTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCAGGGGAGTAresulted in theCTGTAGGAAGAGGAAGGAGACAGAGTTGAAAGTCAGGGsubstitution ofthreonine forCAACAAGATGTTTTGCC195methionine (M133T),and completelyGGCAAAACATCTTGTTG196cosegregated with thecancer syndrome.In 1 pedigreeTCTTGCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGG197consistent with theGACGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGALi-FraumeniGAGACCGGCGCACAGAGGAAGAGAATCTCCGCAAGAsyndrome, a germlineG-to-T transversion atTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCCCAG198codon 272 (valine toGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCAGTAleucine) was found.GATTACCACTACTCAGGATAGGAAAAGAGAAGCAAGAGCTTTGAGGTGCGTGTT199AACACGCACCTCAAAGC200A ser241-to-pheTTATCTCCTAGGTTGGCTCTGACTGTACCACCATCCACTACAA201mutation due to aCTACATGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGTCC-to-TTC changeGCCCATCCTCACCATCATCACACTGGAAGACTCCAGwas found in a patientwith hepatoblastomaCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGGGCCTCCG202and multiple foci ofGTTCATGCCGCCCATGCAGGAACTGTTACACATGTAGTTGTAosteosarcoma.GTGGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAATAACAGTTCCTGCATGG203CCATGCAGGAACTGTTA204An AAG-to-TAGCAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTC205change of codon 120,TTGCATTCTGGGACAGCCAAGTCTGTGACTTGCACGGTCAGTresulting in conversionTGCCCTGAGGGGCTGGCTTCCATGAGACTTCAATGCCfrom lysine to a stopcodon, was found in aGGCATTGAAGTCTCATGGAAGCCAGCCCCTCAGGGCAACTG206patient withACCGTGCAAGTCACAGACTTGGCTGTCCCAGAATGCAAGAAGosteosarcoma andCCCAGACGGAAACCGTAGCTGCCCTGGTAGGTTTTCTGadenocarcinoma ofthe lung at age 18 andGGACAGCCAAGTCTGTG207brain tumor (glioma) atthe age of 27.CACAGACTTGGCTGTCC208A CGG-to-TGGGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTGTTTGT209change at codon 282,GCCTGTCCTGGGAGAGACCGGCGCACAGAGGAAGAGAATCTresulting in theCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCCCCAGsubstitution oftryptophan for arginine,CTGGGGGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGA210was found in aTTCTCTTCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAApatient who developedACACGCACCTCAAAGCTGTTCCGTCCCAGTAGATTACCosteosarcoma at theage of 10 years.GGAGAGACCGGCGCACA211TGTGCGCCGGTCTCTCC212In 5 of 6 anaplasticGCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGACG213carcinomas of theGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGAthyroid and in anCCGGCGCACAGAGGAAGAGAATCTCCGCAAGAAAGGanaplastic carcinomathyroid cell line ARO, aCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTC214CGT-to-CAT mutationCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCconvertedAGTAGATTACCACTACTCAGGATAGGAAAAGAGAAGCarginine-273 tohistidine.TGAGGTGCGTGTTTGTG215CACAAACACGCACCTCA216A germlineTCCTAGCACTGCCCAACAACACCAGCTCCTCTCCCCAGCCAA217GGA-to-GTA mutationAGAAGAAACCACTGGATGGAGAATATTTCACCCWTCAGGTACTresulting in a changeAAGTCTTGGGACCTCTTATCAAGTGGAAAGTTTCCAofglycine-325 to valineTGGAAACTTTCCACTTGATAAGAGGTCCCAAGACTTAGTACCT218was found in a patientGAAGGGTGAAATATTCTCCATCCAGTGGTTTCTTCTTTGGCTGwho had non-HodgkinGGGAGAGGAGCTGGTGTTGTTGGGCAGTGCTAGGAAlymphoma diagnosedat age 17 and colonACTGGATGGAGAATATT219carcinoma at age 26.AATATTCTCCATCCAGT220CGC-CCCAATGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAA221Arg-72 to ProTGCCAGAGGCTGCTCCCCGCGTGGCCCCTGCACCAGCAGCTassociation with LungCCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCCcancerGGCCAGGAGGGGGCTGGTGCAGGGGCCGCCGGTGTAGGAG222CTGCTGGTGCAGGGGCCACGCGGGGAGCAGCCTCTGGCATTCTGGGAGCTTCATCTGGACCTGGGTCTTCAGTGAACCATTTGCTCCCCGCGTGGCCC223GGGCCACGCGGGGAGCA224CCG-CTGAAGCTCCCAGAATGCCAGAGGCTGCTCCCCGCGTGGCCCCT225Pro-82 to LeuGCACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCCBreast cancerCTCCTGGCCCCTGTCATCTTCTGTCCCTTCCCAGAAAACGTTTTCTGGGAAGGGACAGAAGATGACAGGGGCCAGGAGGG226GGCTGGTGCAGGGGCCGCCGGTGTAGGAGCTGCTGGTGCAGGGGCCACGCGGGGAGCAGCCTCTGGCATTCTGGGAGCTTTCCTACACCGGCGGCCC227GGGCCGCCGGTGTAGGA228cCAA-TAATTCAACTCTGTCTCCTTCCTCTTCCTACAGTACTCCCCTGCCC229Gln-136 to TermTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCLi-Fraumeni syndromeAGCTGTGGGTTGATTCCACACCCCCGCCCGGCACCCGGGTGCCGGGCGGGGGTGTGGAATCAACCCACAGCTGCACA230GGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCAGGGGAGTACTGTAGGAAGAGGAAGGAGACAGAGTTGAATGTTTTGCCAACTGGCC231GGCCAGTTGGCAAAACA232TGC-TACTCCTCTTCCTACAGTACTCCCCTGCCCTCAACAAGATGTTTTG233Cys-141 to TyrCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTCLi-Fraumeni syndromeCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCGCCATGGCGCGGACGCGGGTGCCGGGCGGGGGTGTGGAAT234CAACCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCAGGGGAGTACTGTAGGAAGAGGACAAGACCTGCCCTGTGC235GCACAGGGCAGGTCTTG236aCCC-TCCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAG237Pro-151 to SerCTGTGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGLi-Fraumeni syndromeCGCCATGGCCATCTACAAGCAGTCACAGCACATGACGGCCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCGCGG238ACGCGGGTGCCGGGCGGGGGTGTGGAATCAACCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTTATTCCACACCCCCGCCC239GGGCGGGGGTGTGGAAT240CCG-CTGAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGT241Pro-152 to LeuGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCAdrenocorticalATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGTcarcinomaACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCG242CGGACGCGGGTGCCGGGCGGGGGTGTGGAATCAACCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCTCACACCCCCGCCCGGCA243TGCCGGGCGGGGGTGTG244GGC-GTCTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTG245Gly-154 to ValATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCGlioblastomaATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGCTCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCC246ATGGCGCGGACGCGGGTGCCGGGCGGGGGTGTGGAATCAACCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAACCCGCCCGGCACCCGCG247CGCGGGTGCCGGGCGGG248CGC-CACCCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCAC249Arg-175 to HisATGACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGLi-Fraumeni syndromeCTCAGATAGCGATGGTGAGCAGCTGGGGCTGGAGAGACGCGTCTCTCCAGCCCCAGCTGCTCACCATCGCTATCTGAGCAG250CGCTCATGGTGGGGGCAGCGCCTCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCGCGGACGCGGGTGTGAGGCGCTGCCCCC251GGGGGCAGCGCCTCACA252tGAG-AAGATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTG253GTu-180 to LysAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGLi-Fraumeni syndromeTGAGCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGCGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTCACCAT254CGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCCTCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCATCCCACCATGAGCGCTGC255GCAGCGCTCATGGTGGG256gCGC-TGCGCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGG257Arg-181 to CysCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTGABreast cancerGCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGCCCATGGGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTCA258CCATCGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCCTCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCACCATGAGCGCTGCTCA259TGAGCAGCGCTCATGGT260CGC-CACCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGGC261Arg-81 to HisGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTGAGBreast cancerCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGCCCAGCTGGGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTC262ACCATCGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCCTCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGAGCGCTGCTCAG263CTGAGCAGCGCTCATGG2640 CAT-CGTCCAGGGTCCCCAGGCCTCTGATTCCTCACTGATTGCTCTTAG265His-193 to ArgGTCTGGCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTLi-Fraumeni syndromeTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGCGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAATTTC266CTTCCACTCGGATAAGATGCTGAGGAGGGGCCAGACCTAAGAGCAATCAGTGAGGAATCAGAGGCCTGGGGACCCTGGTCCTCAGCATCTTATCC267GGATAAGATGCTGAGGA268cCGA-TGACCCAGGCCTCTGATTCCTCACTGATTGCTCTTAGGTCTGGCC269Arg-196 to TermCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTGAdrenocorticalGAGTATTTGGATGACAGAAACACTTTTCGACATAGTGcarcinomaCACTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACG270CAAATTTCCTTCCACTCGGATAAGATGCTGAGGAGGGGCCAGACCTAAGAGCAATCAGTGAGGAATCAGAGGCCTGGGATCTTATCCGAGTGGAA271TTCCACTCGGATAAGAT272cAGA-TGAGCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGT273Arg-209 to TermGTGGAGTATTTGGATGACAGAAACACTTTTCGACATAGTGTGLi-Fraumeni syndromeGTGGTGCCCTATGAGCCGCCTGAGGTCTGGTTTGCAATTGCAAACCAGACCTCAGGCGGCTCATAGGGCACCACCACA274CTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAATTTCCTTCCACTCGGATAAGATGCTGAGGAGGGGCTGGATGACAGAAACACT275AGTGTTTCTGTCATCCA276tCGA-TGACATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTG277Arg-213 to TermGATGACAGAAACACTTTTCGACATAGTGTGGTGGTGCCCTATLi-Fraumeni syndromeGAGCCGCCTGAGGTCTGGTTTGCAACTGGGGTCTCTGCAGAGACCCCAGTTGCAAACCAGACCTCAGGCGGCTCATAG278GGCACCACCACACTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAATTTCCTTCCACTCGGATAAGATGACACTTTTCGACATAGT279ACTATGTCGAAAAGTGT280gCCC-TCCGGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTC281Pro-219 to SerGACATAGTGTGGTGGTGCCCTATGAGCCGCCTGAGGTCTGGAdrenocorticalTTTGCAACTGGGGTCTCTGGGAGGAGGGGTTAAGGGTcarcinomaACCCTTAACCCCTCCTCCCAGAGACCCCAGTTGCAAACCAGA282CCTCAGGCGGCTCATAGGGCACCACCACACTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAATTTCCTGGTGGTGCCCTATGAG283CTCATAGGGCACCACCA284TAT-TGTATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGACA285Tyr-220 to CysTAGTGTGGTGGTGCCCTATGAGCCGCCTGAGGTCTGGTTTGLi-Fraumeni syndromeCAACTGGGGTCTCTGGGAGGAGGGGTTAAGGGTGGTTAACCACCCTTAACCCCTCCTCCCAGAGACCCCAGTTGCAAAC286CAGACCTCAGGCGGCTCATAGGGCACCACCACACTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAATGGTGCCCTATGAGCCGC287GCGGCTCATAGGGCACC288cTCT-ACTCACAGGTCTCCCCAAGGCGCACTGGCCTCATCTTTGGGCCTG289Ser-227 to ThrTGTTATCTCCTAGGTTGGCTCTGACTGTACCACCATCCACTACRhabdomyosarcomaAACTACATGTGTAACAGTTCCTGCATGGGCGGCATGATCATGCCGCCCATGCAGGAACTGTTACACATGTAGTTGTAGT290GGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGGCCAGTGCGCCTTGGGGAGACCTGTGAGGTTGGCTCTGACTGT291ACAGTCAGAGCCAACCT292cCAC-AACGCACTGGCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGC293His-233 to AsnTCTGACTGTACCACCATCCACTACAACTACATGTGTAACAGTTGliomaCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCATGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTG294TTACACATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGGCCAGTGCCCACCATCCACTACAAC295GTTGTAGTGGATGGTGG296cAAC-GACGCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGCTCTGAC297Asn-235 to AspTGTACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCAAdrenocorticalTGGGCGGCATGAACCGGAGGCCCATCCTCACCATCAcarcinomaTGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAG298GAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGGCTCCACTACAACTACATG299CATGTAGTTGTAGTGGA300AAC-AGCCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGCTCTGACT301Asn-235 to SerGTACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCATRhabdomyosarcomaGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATATGATGGTGAGGATGGGCCTCCGGTTTCATGCCGCCCATGCA302GGAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGGCCACTACAACTACATGT303ACATGTAGTTGTAGTGG304ATCc-ATGCATCCACTACAACTACATGTGTAACAGTTCCTGCATGGGCGG305Ile-251 to MetCATGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGAGliomaCTCCAGGTCAGGAGCCACTTGCCACCCTGCACACTGGCCAGTGTGCAGGGTGGCAAGTGGCTCCTGACGTGGAGTCTT306CCAGTGTGATGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACATGTAGTTGTAGTGGATGAGGCCCATCCTCACCAT307ATGGTGAGGATGGGCCT308ACA-ATAACATGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGG309Thr-256 to IleCCCATCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGlioblastomaGCCACTTGCCACCCTGCACACTGGCCTGCTGTGCCCCATGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGTGGCTCC310TGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACATGTCATCATCACACTGGAAG311CTTCCAGTGTGATGATG312CTG-CAGTGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCC313Leu-257 to GlnATCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCLi-Fraumeni syndromeACTTGCCACCCTGCACACTGGCCTGCTGTGCCCCAGCCGGCTGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGTGG314CTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACACATCACACTGGAAGACT315AGTCTTCCAGTGTGATG316CTG-CCGGACCTGATTTCCTTACTGCCTCTTGCTTCTCTTTTCCTATCCT317Leu-265 to ProGAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGLi-Fraumeni syndromeTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGATCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCAC318CTCAAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGATAGGAAAAGAGAAGCAAGAGGCAGTAAGGAAATCAGGTCTAATCTACTGGGACGGA319TCCGTCCCAGTAGATTA320gCGT-TGTTGCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGAC321Arg-273 to CysGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGALi-Fraumeni syndromeGACCGGCGCACAGAGGAAGAGAATCTCCGCAAGAAAGcmCTrGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCC322CAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAOGATAGGAAAAGAGAAGCATTGAGGTGCGTGTTTGT323ACAAACACGCACCTCAA324TGT-TATCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGACGGAACA325Cys-275 to TyrGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGLi-Fraumeni syndromeCGCACAGAGGAAGAGAATCTCCGCAAGAAAGGGGAGCCGGCTCCCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGG326TCTCTCCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGATAGGAAAAGGCGTGTTTGTGCCTGTC327GACAGGCACAAACACGC328CCT-CTTTCCTGAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGG329Pro-278 to LeuTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAGBreast cancerGAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGATCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTCCTCT330GTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGATGCCTGTCCTGGGAGAG331CTCTCCCAGGACAGGCA332AGA-AAAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTG333Arg-280 to LysTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAGGAAGAGGliomaAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCGGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCT334TCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCAGTAGATTACCACTACTCCTGGGAGAGACCGGC335GCCGGTCTCTCCCAGGA336GAA-GCAGGAACAGCTTTGAGGTGCGTGWTTGTGCCTGTCCTGGGAGA337GTu-286 to AlaGACCGGCGCACAGAGGAAGAGAATCTCCGCAAGAATTAGGGGAAdrenocorticalGCCTCACCACGAGCTGCCCCCAGGGAGCACTAAGCGAGGcarcinomaCCTCGCTTAGTGCTCCCTGGGGGCAGCTCGTGGTGAGGCTC338CCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCAGAGGAAGAGAATCTCC339GGAGATTCTCTTCCTCT340CGA-CCAAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTG341Arg-306 to ProCCCCCAGGGAGCACTAAGCGAGGTAAGCAAGCAGGACAAGARhabdomyosarcomaAGCGGTGGAGGAGACCAAGGGTGCAGTTATGCCTCAGATATCTGAGGCATAACTGCACCCTTGGTCTCCTCCACCGCTTCT342TGTCCTGCTTGCTTACCTCGCTTAGTGCTCCCTGGGGGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTCACTAAGCGAGGTAAGC343GCTTACCTCGCTTAGTG344gCGA-TGAGAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCT345Arg-306 to TermGCCCCCAGGGAGCACTAAGCGAGGTAAGCAAGCAGGACAAGLi-Fraumeni syndromeAAGCGGTGGAGGAGACCAAGGGTGCAGTTATGCCTCAGATCTGAGGCATAACTGCACCCTTGGTCTCCTCCACCGCTTCTT346GTCCTGCTTGCTTACCTCGCTTAGTGCTCCCTGGGGGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTCGCACTAAGCGAGGTAAG347CTTACCTCGCTTAGTGC348gCGC-TGCGGTACTGTGAATATACTTACTTCTCCCCCTCCTCTGTTGCTGC349Arg-337 to CysAGATCCGTGGGCGTGAGCGCTTCGAGATGTTCCGAGAGCTGOsteosarcomaAATGAGGCCTTGGAACTCAAGGATGCCCAGGCTGGGATCCCAGCCTGGGCATCCTTGAGTTCCAAGGCCTCATTCAGCT350CTCGGAACATCTCGAAGCGCTCACGCCCACGGATCTGCAGCAACAGAGGAGGGGGAGAAGTAAGTATATTCACAGTACCGGCGTGAGCGCTTCGAG351CTCGAAGCGCTCACGCC352CTG-CCGCTCTCCCCCTCCTCTGTTGCTGCAGATCCGTGGGCGTGAGCGC353Leu-344 to ProTTCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCAAGLi-Fraumeni syndromeGATGCCCAGGCTGGGAAGGAGCCAGGGGGGAGCAGGGCGCCCTGCTCCCCCCTGGCTCCTTCCCAGCCTGGGCATCCTT354GAGTTCCAAGGCCTCATTCAGCTCTCGGAACATCTCGAAGCGCTCACGCCCACGGATCTGCAGCAACAGAGGAGGGGGAGCCGAGAGCTGAATGAGG355CCTCATTCAGCTCTCGG356



EXAMPLE 6


Beta Globin

[0114] Hemoglobin, the major protein in the red blood cell, binds oxygen reversibly and is responsible for the cells' capacity to transport oxygen to the tissues. In adults, the major hemoglobin is hemoglobin A, a tetrameric protein consisting of two identical alpha globin chains and two beta globin chains. Disorders involving hemoglobin are among the most common genetic disorders worldwide, with approximately 5% of the world's population being carriers for clinically important hemoglobin mutations. Approximately 300,000 severely affected homozygotes or compound heterozygotes are born each year.


[0115] Mutation of the glutamic acid at position 7 in beta globin to valine causes sickle cell anemia, the clinical manifestations of which are well known. Mutations that cause absence of beta chain cause beta-zero-thalassemia. Reduced amounts of detectable beta globin causes beta-plus-thalassemia. For clinical purposes, beta-thalassemia is divided into thalassemia major (transfusion dependent), thalassemia intermedia (of intermediate severity), and thalassemia minor (asymptomatic). Patients with thalassemia major present in the first year of life with severe anemia; they are unable to maintain a hemoglobin level about 5 gm/dl.


[0116] The beta-thalassemias were among the first human genetic diseases to be examined by means of recombinant DNA analysis. Baysal et al., Hemoglobin 19(3-4):213-36 (1995) and others provide a compendium of mutations that result in beta-thalassemia.


[0117] Hemoglobin disorders were among the first to be considered for gene therapy. Transcriptional silencing of genes transferred into hematopoietic stem cells, however, poses one of the most significant challenges to its success. If the transferred gene is not completely silenced, a progressive decline in gene expression is often observed. Position effect variegation (PEV) and silencing mechanisms may act on a transferred globin gene residing in chromatin outside of the normal globin locus during the important terminal phases of erythroblast development when globin transcripts normally accumulate rapidly despite heterochromatization and shutdown of the rest of the genome. The attached table discloses the correcting oligonucleotide base sequences for the beta globin oligonucleotides of the invention.
13TABLE 12Beta Globin Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Sickle Cell AnemiaTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCA357GLU-7-VALTGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCGAG to GTGCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGATCACCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCA358GTAACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGAGACTCCTGAGGAGAAGT359ACTTCTCCTCAGGAGTC360Thalassaemia BetaCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA361MET-0-ARGACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAATG to AGGAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC362CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAGAGACACCATGGTGCACC363GGTGCACCATGGTGTCT364Thalassaemia BetaTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA365MET-0-ILECCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAATG to ATAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCT366CCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAGACACCATGGTGCACCT367AGGTGCACCATGGTGTC368Thalassaemia BetaTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA369MET-0-ILECCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAATATG to ATTGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCT370CCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAGACACCATGGTGCACCT371AGGTGCACCATGGTGTC372Thalassaemia BetaCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA373MET-0-LYSACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAATG to AAGAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC374CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAGAGACACCATGGTGCACC375GGTGCACCATGGTGTCT376Thalassaemia BetaCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA377MET-0-THRACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAATG to ACGAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC378CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAGAGACACCATGGTGCACC379GGTGCACCATGGTGTCT380Thalassaemia BetaTCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGC381MET-0-VALAACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGATG to GTGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGCGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCC382TCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAGACAGACACCATGGTGCAC383GTGCACCATGGTGTCTG384Thalassaemia BetaTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGT385TRP-16-TermCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAATGG to TGAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTATAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTTC386ATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGCCCTGTGGGGCAAGGT387ACCTTGCCCCACAGGGC388Thalassaemia BetaCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAG389TRP-16-TermTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGATGG to TAGAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTTCA390TCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGTGCCCTGTGGGGCAAGG391CCTTGCCCCACAGGGCA392Thalassaemia BetaACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGC393LYS-18-TermCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGAAG to TAGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAGCTTGTAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAA394CTTCATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTGTGGGGCAAGGTGAAC395GTTCACCTTGCCCCACA396Thalassaemia BetaCCATGGTGCACCTGACTCGTGAGGAGAAGTCTGCCGTTACT397ASN-20-SERGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAAAC to AGCGGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGGTTAACCTGTCTTGTAACCTTGATACCAACCTGCCCAGGGCCTCA398CCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGGCAAGGTGAACGTGGATG399CATCCACGTTCACCTTG400Thalassaemia BetaACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGG401GLU-23-ALAGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGAA to GCAGCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGACGTCTCCTTAAACCTGTCTTGTAACCTTGATACCAACCTGCCC402AGGGCCTCACCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGTCGTGGATGAAGTTGGTG403CACCAACTTCATCCACG404Thalassaemia BetaCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTG405GLU-23-termGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGAA to TAAGGCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGATCTCCTTAAACCTGTCTTGTAACCTTGATACCAACCTGCCCA406GGGCCTCACCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGTGACGTGGATGAAGTTGGT407ACCAACTTCATCCACGT408Thalassaemia BetaGAGGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAA409GLU-27-LYSCGTGGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATGAG to AAGCAAGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACTAGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGATAC410CAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGTTCACTTTGCCCCACAGGGCATTGACAGCAGTCTTCTCCTCTTGGTGGTGAGGCCCTG411CAGGGCCTCACCACCAA412Thalassaemia BetaGAGGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAA413GLU-27-TermCGTGGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATGAG to TAGCAAGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACTAGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGATAC414CAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGTTCACTTTGCCCCACAGGGCATTGACAGCAGTCTTCTCCTCTTGGTGGTGAGGCCCTG415CAGGGCCTCACCACCAA416Thalassaemia BetaGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAACGT417ALA-28-SERGGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGCC to TCCGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACTGGGCCCAGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGA418TACCAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGTTCACTTTGCCCCACAGGGCATTGACAGCAGTCTTCTCGTGGTGAGGCCCTGGGC419GCCCAGGGCCTCACCAC420Thalassaemia BetaCTGTCAATGCCCTGTGGGGCAAAGTGAACGTGGATGCAGTT421ARG-31-THRGGTGGTGAGGCCCTGGGCAGGTTGGTATGAAGGTTATAAGAAGG to ACGGAGGCTCAAGGAGGCAAATGGAAACTGGGCATGTGTAGATCTACACATGCCCAGTTTCCATTTGCCTCCTTGAGCCTCTCTT422ATAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGTTCACTTTGCCCCACAGGGCATTGACAGCCTGGGCAGGTTGGTAT423ATACCAACCTGCCCAGG424Thalassaemia BetaTGGGTTTCTGATAGGCACTGACTCTCTGTCCCTTGGGCTGTT425Leu-33-GLNTTCCTACCCTCAGATTACTGGTGGTCTACCCTTGGACCCAGACTG to CAGGGTTCTTTGAGTCCTTTGGGGATCTGTCCTCTCCTGATCAGGAGAGGAGAGATCCCCAAAGGACTCAAAGAACCTCTG426GGTCCAAGGGTAGACCACCAGTAATCTGAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGTGCCTATCAGAAACCCACAGATTACTGGTGGTCT427AGACCACCAGTAATCTG428Thalassaemia BetaATAGGCACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCT429TYR-36-TermCAGATTACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGATAC to TAAGTCCTTTGGGGATCTGTCCTCTCCTGATGCTGTTATGCATAACAGCATCAGGAGAGGACAGATCCCCAAAGGACTCAAA430GAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCTGAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGTGCCTATGTGGTCTACCCTTGGAC431GTCCAAGGGTAGACCAC432Thalassaemia BetaACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGATT433TRP-38-TermACTGGTGGTCTACCCGTTGGACCCAGAGGTTCTTTGAGTCCTTTGG to TGATGGGGATCTGTCCTCTCCTGATGCTGTTATGGGCAACGTTGCCCATAACAGCATCAGGAGAGGACAGATCCCCAAAGG434ACTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCTGAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGTTACCCTTGGACCCAGAG435CTCTGGGTCCAAGGGTA436Thalassaemia BetaCACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGAT437TRP-38-TermTACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTGAGTCCTTGG to TAGTTGGGGATCTGTCCTCTCCTGATGCTGTTATGGGCAATTGCCCATAACAGCATCAGGAGAGGACAGATCCCCAAAGGA438CTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCTGAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGTGCTACCCTTGGACCCAGA439TCTGGGTCCAAGGGTAG440Thalassaemia BetaACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGATTACTG441GLN-40-TermGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGCAG-TAGGATCTGTCCTCTCCTGATGCTGTTATGGGCAACCCTATAGGGTTGCCCATAACAGCATCAGGAGAGGACAGATCCCCA442AAGGACTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCTGAGGGTAGGAAAACAGCCCAAGGGAGAGAGAGTCTTGGACCCAGAGGTTC443GAACCTCTGGGTCCAAG444Thalassaemia BetaTTGGGCTGTTTTCCTACCCTCAGATTACTGGTGGTCTACCCT445GLU-44-TermTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCTCTGAG to TAGCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTCGAGCCTTCACCTTAGGGTTGCCCATAACAGCATCAGGAGAG446GACAGATCCCCAAAGGACTCAAAGAACCTGTGGGTCCAAGGGTAGACCACCAGTAATCTGAGGGTAGGAAAACAGCCCAAGGTTCTTTGAGTCCTTT447AAAGGACTCAAAGAACC448Thalassaemia BetaTTCTTTGAGTCCTTTGGGGATCTGTCCTCTCCTGATGCTGTTA449LYS-62-TermTGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAGGTGCTAAAG to TAGGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCGGTTGTCCAGGTGAGCCAGGCCATCACTAAAGGCACCTAGC450ACCTTCTTGCCATGAGCCTTCACCTTAGGGTTGCCCATAACAGCATCAGGAGAGGACAGATCCCCAAAGGACTCAAAGAACTAAGGTGAAGGCTCAT451ATGAGCCTTCACCTTAG452Thalassaemia BetaTGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGA453SER-73-ARGAGGTGCTAGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAGT to AGAAACCTCAAGGGCACTTTTTCTCAGCTGAGTGAGCTGCACGTGCAGCTCACTCAGCTGAGAAAAAGTGCCCTTGAGGTTGTC454CAGGTGAGCCAGGCCATCACTAAAGGCACCTAGCACCTTCTTGCCATGAGCCTTCACCTTAGGGTTGCCCATAACAGCAGCCTTTAGTGATGGCCT455AGGCCATCACTAAAGGC456Haemolylic AnaemiaTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAGGTG457GLY-75-VALCTAGGTGCCTTTTAGTGATGGCCTGGCTCACCTGGACAACCTGGC to GTCCAAGGGCACTTTTTCTCAGCTGAGTGAGCTGCACTGTGATCACAGTGCAGCTCACTCAGCTGAGAAAAAGTGCCCTTGAG458GTTGTCCAGGTGAGCCAGGCCATCACTAAAGGCACCTAGCACCTTCTTGCCATGAGCCTTCACCTTAGGGTTGCCCATAATAGTGATGGCCTGGCTC459GAGCCAGGCCATCACTA460Thalassaemia BetaGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGG461GLU-91-TermCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCGAG to TAGACGTGGATCCTGAGAACTTCAGGGTGAGTCTATGGGACCGGTCCCATAGACTCACCCTGAAGTTCTCAGGATCCACGTGCA462GCTTGTCACAGTGCAGCTCACTCAGTGTGGCAAAGGTGCCCTTGAGGTTGTCCAGGTGAGCCAGGCCATCACTAAAGGCCACTGAGTGAGCTGCAC463GTGCAGCTCACTCAGTG464Thalassaemia BetaCTGGACAACCTCAAGGGCACTTTTTCTCAGCTGAGTGAGCTG465VAL-99-METCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGGTGTG to ATGGAGTCCAGGAGATGCTTCACTTTTCTCTTTTTACTTTCGAAAGTAAAAAGAGAAAAGTGAAGCATCTCCTGGACTCACCC466TGAAGTTCTCAGGATCCACGTGCAGCTTGTCACAGTGCAGCTCACTCAGCTGAGAAAAAGTGCCCTTGAGGTTGTCCAGAGCTGCACGTGGATCCT467AGGATCCACGTGCAGCT468Thalassaemia BetaCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACA469LEU-111-PROGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTCTG-CCGTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCCAAAGTG470ATGGGCCAGCACACAGACCAGCACGTTGCCCAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACATGATTAGCAAAAGGGCAACGTGCTGGTCTGTG471CACAGACCAGCACGTTG472Thalassaemia BetaGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTG473CYS-113-TermGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAATGT to TGAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAATTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCC474AAAGTGATGGGCCAGCACACAGACCAGCACGTTGCCCAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACATGATTAGCCTGGTCTGTGTGCTGGC475GCCAGCACACAGACCAG476Thalassaemia BetaTCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCA477LEU-115-PROACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATCTG to CCGTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCT478TTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCCCAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACATGACTGTGTGCTGGCCCATC479GATGGGCCAGCACACAG480Thalassaemia BetaTGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACG481ALA-116-ASPTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCAGCC to GACCCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCGCCACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAA482TTCTTTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCCCAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACATGTGCTGGCCCATCACT483AGTGATGGGCCAGCACA484Thalassaemia BetaTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCT485GLU-122-TermGGCCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGGAA to TAACTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCGGGCATTAGCCACACCAGCCACCACTTTCTGATAGGCAGCC486TGCACTGGTGGGGTGAATTCTTTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCCCAGGAGCTGTGGGAGGAATTGGCAAAGAATTCACC487GGTGAATTCTTTGCCAA488Thalassaemia BetaGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAA489GLN-128-PROGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTCAG to CCGGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTATAGTGATACTTGTGGGCCAGGGCATTAGCCACACCAGCCAC490CACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCACCAGTGCAGGCTGCCT491AGGCAGCCTGCACTGGT492Thalassaemia BetaGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAA493GLN-128-TermAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTCAG to TAGGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTAGTGATACTTGTGGGCCAGGGCATTAGCCACACCAGCCACC494ACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCCCACCAGTGCAGGCTGCC495GGCAGCCTGCACTGGTG496Thalassaemia BetaGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACCCCA497GLN-132-LYSCCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCCAG to AAGTAATGCCCTGGCCCACAAGTATCACTAAGCTCGCTTTCGAAAGCGAGCTTAGTGATACTTGTGGGCCAGGGCATTAGCC498ACACCAGCCACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCCAAAGTGATGGGCCAGCACACAGACCTGCCTATCAGAAAGTG499CACTTTCTGATAGGCAG500



EXAMPLE 7


Retinoblastoma

[0118] Retinoblastoma (RB) is an embryonic neoplasm of retinal origin. It almost always presents in early childhood and is often bilateral. The risk of osteogenic sarcoma is increased 500-fold in bilateral retinoblastoma patients, the bone malignancy being at sites removed from those exposed to radiation treatment of the eye tumor.


[0119] The retinoblastoma susceptibility gene (pRB; pRb) plays a pivotal role in the regulation of the cell cycle. pRB restrains cell cycle progression by maintaining a checkpoint in late G1 that controls commitment of cells to enter S phase. The critical role that pRB plays in cell cycle regulation explains its status as archetypal tumor suppressor: loss of pRB function results in an inability to maintain control of the G1 checkpoint; unchecked progression through the cell cycle is, in turn, a hallmark of neoplasia.


[0120] Blanquet et al., Hum. Molec. Genet. 4: 383-388 (1995) performed a mutation survey of the RB1 gene in 232 patients with hereditary or nonhereditary retinoblastoma. They systematically explored all 27 exons and flanking sequences, as well as the promoter. All types of point mutations were represented and found to be unequally distributed along the RB1 gene sequence. In the population studied, exons 3, 8, 18, and 19 were preferentially altered. The attached table discloses the correcting oligonucleotide base sequences for the retinoblastoma oligonucleotides of the invention.
14TABLE 13pRB Mutations and Genome-Correcting OligosClinical PhenotypeSEQ IDMutationCorrecting OligosNO:RetinoblastomaAATATTTGATCTTTATTTTTTGTTCCCAGGGAGGTTATATTCAA501Trp99TermAAGAAAAAGGAACTGTGGGGAATCTGTATCTTTATTGCAGCATGG-TAGGTTGACCTAGATGAGATGTCGTTCACTTTTACTGATCAGTAAAAGTGAACGACATCTCATCTAGGTCAACTGCTGCA502ATAAAGATACAGATTCCCCACAGTTCCTTTTTCTTTTGAAIATAACCTCCCTGGGAACAAAAAATAAAGATCAAATATTGGAACTGTGGGGAATCT503AGATTCCCCACAGTTCC504RetinoblastomaATTTACTTTTTTCTATTCTTTCCTTTGTAGTGTCCATAAATTCTT505Glu137AspTAACTTACTAAAAGAAATTGATACCAGTACCAAAGTTGATAATGAA-GATGCTATGTCAAGACTGTTGAAGAAGTATGAIGTATACATCATACTTCTTCAACAGTCTTGACATAGCATTATCAACTT506TGGTACTGGTATCAATTTCTTTTAGTAAGTTAAAGAATTTATGGACACTACAAAGGAAAGAATAGAAAAAAGTAAATCTAAAAGAAATTGATAC507GTATCAATTTCTTTTAG508RetinoblastomaTGATTTACTTTTTTTCTATTCTTTCCTTTGTAGTGTCCATAAATT509Glu137TermCTTTAACTTACTAAAAGAAATTGATACCAGTACCAAAGTTGATGAA-TAAAATGCTATGTCAAGACTGTTGAAGAAGTATGATGCATCATACTTCTTCAACAGTCTTGACATAGCATTATCAACTTT510GGTACTGGTATCAATTTCTTTTAGTAAGTTAAAGAATTTATGGACACTACAAAGGAAAGAATAGAAAAAAGTAAATCATACTAAAAGAAATTGAT511ATCAATTTCTTTTAGTA512RetinoblastomaAAAATGTTAAAAAGTCATAATGTTTTTCTTTTCAGGACATGTGA513Gln176TermACTTATATATTTGACACAACCCAGCAGTTCGTAAGTAGTTCACCAA-TAAAGAATGTTATTTTTCACTTAAAAAAAAAGATTTTAAAATCTTTTTTTTTAAGTGAAAAATAACATTCTGTGAACTACT514TACGAACTGCTGGGTTGTGTCAAATATATAAGTTCACATGTCCTGAAAAGAAAAACATTATGACTTTTTAACATTTTATTTGACACAACCCAGC515GCTGGGTTGTGTCAAAT516RelinoblastomaTGATACATTTTTCCTGTTTTTTTTCTGCTTTCTATTTGTTTAATA517lle185ThrGGATATCTACTGAAATAAATTCTGCATTGGTGCTAAAAGTTTCATA-ACATTGGATCACATTTTTATTAGCTAAAGGTAAGTTAACTTACCTTTAGCTAATAAAAATGTGATCCAAGAAACTTTTA518GCACCAATGCAGAATTTATTTCAGTAGATATCCTATTAAACAAATAGAAAGCAGAAAAAAAACAGGAAAAATGTATCATACTGAAATAAATTCTG519CAGAATTTATTTCAGTA520RetinoblastomaAAAGATCTGAATCTCTAACTTTCTTTAAAAATGTACATTTTTTT521Gln207TermTTCAGGGGAAGTATTACAAATGGAAGATGATCTGGTGATTTCCAA-TAAATTTCAGTTAATGCTATGTGTCCTTGACTATTTTATAAAATAGTCAAGGACACATAGCATTAACTGAAATGAAATCAC522CAGATCATCTTCCATTTGTAATACTTCCCCTGAAAAAAAAAATGTACATTTTTAAAGAAAGTTAGAGATTCAGATCTTTAAGTATTACAAATGGAA523TTCCATTTGTAATACTT524RetinoblastomaGTTCTTATCTAATTTACCACTTTTACAGAAACAGCTGTTATACC525Arg251TermCATTAATGGTTCACCTCGAACACCCAGGCGAGGTCAGAACACGA to TGAGGAGTGCACGGATAGCAAAACAACTAGAAAATGATATATCATTTTCTAGTTGTTTTGCTATCCGTGCACTCCTGTTCTG526ACCTCGCCTGGGTGTTCGAGGTGAACCATTAATGGGTATAACAGCTGTTTCTGTAAAAGTGGTAAATTAGATAAGAACGTTCACCTCGAACACCC527GGGTGTTCGAGGTGAAC528RetinoblastomaTTTACCACTTTTACAGAAACAGCTGTTATACCCATTAATGGTT529Arg255TermCACCTCGAACACCCAGGCGAGGTCAGAACAGGAGTGCACGCGA to TGAGATAGCAAAACAACTAGAAAATGATACAAGAATTATTGCAATAATTCTTGTATCATTTTCTAGTTGTTTTGCTATCCGTGCA530CTCCTGTTCTGACCTCGCCTGGGTGTTCGAGGTGAACCATTAATGGGTATAACAGCTGTTTCTGTAAAAGTGGTAAACACCCAGGCGAGGTCAG531CTGACCTCGCCTGGGTG532RetinoblastomaATTAATGGTTCACCTCGAACACCCAGGCGAGGTCAGAACAG533Gln266TermGAGTGCACGGATAGCAAAACAACTAGAAAATGATACAAGAATCAA to TAATATTGAAGTTCTCTGTAAAGAACATGAATGTAATATAGCTATATTACATTCATGTTCTTTACAGAGAACTTCAATAATTCTT534GTATCATTTTCTAGTTGTTTTGCTATCCGTGCACTCCTGTTCTGACCTCGCCTGGGTGTTCGAGGTGAACCATTAATTAGCAAAACAACTAGAA535TTCTAGTTGTTTTGCTA536RetinoblastomaTGACATGTAAAGGATAATTGTCAGTGACTTTTTTCTTTCAAGG537Arg320TermTTGAAAATCTTTCTAAACGATACGAAGAAATTTATCTTAAAAATCGA to TGAAAAGATCTAGATGCAAGATTATTTTTGGATCATGCATGATCCAAAAATAATCTTGCATCTAGATCTTTATTTTTAAGA538TAAATTTCTTCGTATCGTTTAGAAAGATTTTCAACCTTGAAAGAAAAAAGTCACTGACAATTATCCTTTACATGTCATTTCTAAACGATACGAA539TTCGTATCGTTTAGAAA540RetinoblastomaACAAATTGTAAATTTTCAGTATGAAGACTTGACTTCACTTATTGTT541Gln354TermATTTAGTTTTGAAACACAGAGAACACCACGAAAAAGTAACCTTCAG to TAGGATGAAGAGGTGAATGTAATTCCTCCACACACTCGAGTGTGTGGAGGAATTACATTCACCTCTTCATCAAGGTTAC542TTTTTCGTGGTGTTCTCTGTGTTTCAAAACTAAATAACAATAAGTGAAGTCATTCACATACTGAAAATTTACAATTTGTTTGAAACACAGAGAACA543TGTTCTCTGTGTTTCAA544RetinoblastomaTTTTCAGTATGIGAATGACTTCACTTATTGTTATTTAGTTTTGA545Arg358GlyAACACAGAGAACACCACGAAAAAGTAACCTTGATGAAGAGGTCGA to GGAGAATGTAATTCCTCCACACACTCCAGTTAGGTATGCATACCTAACTGGAGTGTGTGGAGGAATTACATTCACCTCTT546CATCAAGGTTACTTTTTCGTGGTGTTCTCTGTGTTTCAAAACTAAATAACAATAAGTGAAGTCATTCACATACTGAAAAGAACACCACGAAAAAGT547ACTTTTTCGTGGTGTTC548RetinoblastomaTTTTCAGTATGTGAATGACTTCACTTATTGTTATTTATTTTTGA549Arg358TermAACACAGAGAACACCACGAAAAAGTAACCTTGATGAAGAGGTCGA to TGAGAATGTAATTCCTCCACACACTCCAGTTAGGTATGCATACCTAACTGGAGTGTGTGGAGGAATTACATTCACCTCTT550CATCAAGGTTACTTTTTCGTGGTGTTCTCTGTGTTTCAAAACTAAATAACAATAAGTGAAGTCATTCACATACTGAAAAGAACACCACGAAAAAGT551ACTTTTTCGTGGTGTTC552RetinoblastomaCTGTTATGAACACTATCCAACAATTAATGATGATTTTAAATTCA553Ser397TermGCAAGIGATCAACCTTCAGAAAATCTGATTTCCTATTTTAACGTCA to TAATAAGCCATATATGAAACATTATTTATTGTAATATATATTACAATAAATAATGTTTCATATATGGCTTACGTTAAAATA554GGAAATCAGATTTTCTGAAGGTTGATCACTTGCTGAATTTAAAATCATCATTAATTGTTGGATAGTGTTCATAACAGTCAACCTTCAGAAAATC555GATTTTCTGAAGGTTGA556RetinoblastomaTTTCATAATTGTGATTTTCTAAAATAGCAGGCTCTTATTTTTCT557Arg445TermTTTTGTTTGTTTGTAGCGATACAAACTTGGAGTTCGCTTGTATCGA to TGATACCGAGTAATGGAATCCATGCTTAAATCAGTAATTACTGATTTAAGCATGGATTCCATTACTCGGTAATACAAGCG558AACTCCAAGTTTGTATCGCTACAAACAAACAAAAAGAAAAATAAGAGCCTGCTATTTTAGAAAATCACAATTATGAAAGTTTGTAGCGATACAAA559TTTGTATCGCTACAAAC560RetinoblastomaGCTCTTATTTTTCTTTTTGTTTGTTTGTAGCGATACAAACTTGG561Arg455TermAGTTCGCTTGTATTACCGAGTAATGGAATCCATGCTTAAATCACGA to TGAGTAAGTAAAAACAATATAAAAAAATTTCAGCCGCGGCTGAAATTTTTTTATATTGTTTTTAACTTACTGATTTAAGC562ATGGATTCCATTACTCGGTAATACAAGCGAACTCCAAGTTTGTATCGCTACAAACAAACAAAAAGAAAAATAAGAGCTGTATTACCGAGTAATG563CATTACTCGGTAATACA564RetinoblastomaATCGAAAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAA565Arg552TermATGATAAAACATTTAGAACGATGTGAACATCGAATCATGGAATCGA to TGACCCTTGCATGGCTCTCAGTAAGTAGCTAAATAATTGCAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGATTCCAT566GATTCGATGTTCACATCGTTCTAAATGTTTTATCATTTCTCTTGTCAAGTTGCCTTCTGCTTTGATAAAACTTTCGATATTTAGAACGATGTGAA567TTCACATCGTTCAAAT568RetinoblastomaAAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAAATGATA569Cys553TermAAACATTTAGAACGATGTGAACATCGAATCATGGAATCCCTTGTGT to TGACATGGCTCTCAGTAAGTAGCTAAATAATTGAAGAATTCTTCAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGAT570TCCATGATTCGATGTTCACATCGTTCTAAATGTTTTATCATTTCTCTTGTCAAGTTGCCTTCTGCTTTGATAAAACTTGAACGATGTGAACATCG571CGATGTTCACATCGTTC572RetinoblastomaAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAAATGATAA573Glu554TermAACATTTAGAACGATGTGAACATCGAATCATGGAATCCCTTGGAA to TAACATGGCTCTCAGTAAGTAGCTAAATAATTGAAGAAATTTCTTCAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGA574TTCCATGATTCGATGTTCACATCGTTCTAAATGTTTTATCATTTCTCTTGTCAAGTTGCCTTCTGCTTTGATAAAACTAACGATGTGAACATCGA575TCGATGTTCACATCGTT576RetinoblastomaTACCTGGGAAAATTATGCTTACTAATGTGGTTTTAATTTCATC577Ser567LeuATGTTTCATATAGGATTCACCTTTATTTGATCTTATTAAACAATTCA to TTACAAAGGACCGAGAAGGACCAACTGATCACCTTGATCAAGGTGATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAA578TAAGATCAAATAAAGGTGAATCCTATATGAAACATGATGAAATTAAAACCACATTAGTAAGCATAATTTTCCCAGGTAATAGGATTCACCTTTAT579ATAAAGGTGAATCCTAT580RetinoblastomaAATGTGGTTTTAATTTCATCATGTTTFCATATAGGATTCACCTTT581Gln575TermATTTGATCTTATTAAACAATCAAAGGACCGAGAAGGACCAACTCAA to TAAGATCACCTTGAATCTGCTTGTCCTCTTAATCTTCGAAGATTAAGAGGACAAGCAGATTCAAGGTGATCAGTTGGTC582CTTCTCGGTCCTTTGATTGTTTAATAAGATCAAATAAAGGTGAATCCTATATGAAACATGATGAAATTAAAACCACATTTTATTAAACAATCAAAG583CTTTGATTGTTTAATAA584RetinoblastomaATTTCATCATGTTTCATATAGGATTCACCTTTATTTGATCTTAT585Arg579TermTAAACAATCAAAGGACCGAGAAGGACCAACTGATCACCTTGACGA to TGAATCTGCTTGTCCTCTTAATCTTCCTCTCCAGAATATATTCTGGAGAGGAAGATTAAGAGGACAAGCAGATTCAAGGT586GATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAATAAGATCAAATAAAGGTGAATCCTATATGAAACATGATGAAATCAAAGGACCGAGAAGGA587TCCTTCTCGGTCCTTTG588RetinoblastomaTCATCATGTTTCATATAGGATTCACCTTTATTTGATCTTATTAA589Glu580TermACAATCAAAGGACCGAGAAGGACCAACTGATCACCTTGAATCGAA to TAATGCTTGTCCTCTTAATCTTCCTCTCCAGAATAATCGATTATTCTGGAGAGGAAGATTAAGAGGACAAGCAGATTCAA590GGTGATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAATAAGATCAAATAAAGGTGAATCCTATATGAAACATGATGAAGGACCGAGAAGGACCA591TGGTCCTTCTCGGTCCT592RetinoblastomaAGAAAAAAGGTTCAACTACGCGTGTAAATTCTACTGCAAATG593Ser634TermCAGAGACACAAGCAACCTCAGCCTTCCAGACCCAGAAGCCATCA to TGATTGAAATCTACCTCTCTTTCACTGTTTTATAAAAAAGGCCTTTTTTATAAAACAGTGAAAGAGAGGTAGATTTCAATGGCT594TCTGGGTCTGGAAGGCTGAGGTTGCTTGTGTCTCTGCATTTGCAGTAGAATTTACACGCGTAGTTGAACCTTTTTTCTAGCAACCTCAGCCTTCC595GGAAGGCTGAGGTTGCT596RetinoblastomaAAAAAAGGTTCAACTACGCGTGTAAATTCTACTGCAAATGCA597Ala635ProGAGACACAAGCAACCTCAGCCTTCCAGACCCAGAAGCCATTGCC to CCCGAAATCTACCTCTCTTTCACTGTTTTATAAAAAAGGTTAACCTTTTTTATAAAACAGTGAAAGAGAGGTAGATTTCAATGG598CTTCTGGGTCTGGAAGGCTGAGGTTGCTTGTGTCTCTGCATTTGCAGTAGAATTTACACGCGTAGTTGAACCTTTTTTCAACCTCAGCCTTCCAG599CTGGAAGGCTGAGGTTG600RetinoblastomaACTACGCGTGTAAATTCTACTGCAAATGCAGAGACACAAGCA601Gln639TermACCTCAGCCTTCCAGACCCAGAAGCCATTGAAATCTACCTCTCAG to TAGCTTTCACTGTTTTATAAAAAAGGTTAGTAGATGATTATAATCATCTACTAACCTTTTTTATAAAACAGTGAAAGAGAGGT602AGATTTCAATGGCTTCTGGGTCTGGAAGGCTGAGGTTGCTTGTGTCTCTGCATTTGCAGTAGAATTTACACGCGTAGTTCCAGACCCAGAAGCCA603TGGCTTCTGGGTCTGGA604RetinoblastomaTTGTAATTCAAAATGAACAGTAAAAATGACTAATTTTTCTTATT605Leu657ProCCCACAGTGTATCGGCTAGCCTATCTCCGGCTAAATACACTTCTA to CCATGTGAACGCCTTCTGTCTGAGCACCCAGAATTAGATCTAATTCTGGGTGCTCAGACAGAAGGCGTTCACAAAGTGTA606TTTAGCCGGAGATAGGCTAGCCGATACACTGTGGGAATAAGAAAAATTAGTCATTTTTACTGTTCATTTTGAATTACAAGTATCGGCTAGCCTATC607GATAGGCTAGCCGATAC608RetinoblastomaAATGAACAGTAAAAATGACTAATTTTTCTTATTCCCACAGTGTA609Arg661TrpTCGGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGCCTCGG to TGGTCTGTCTGAGCACCCAGAATTAGAACATATCATCTAGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGGCGTT610CACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATACACTGTGGGAATAAGAAAAATTAGTCATTTTTACTGTTCATTCCTATCTCCGGCTAAAT611ATTTAGCCGGAGATAGG612RetinoblastomaAACAGTAAAAATGACTAATTTTTCTTATTCCCACAGTGTATCG613Leu662ProGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGCCTTCTCTA to CCAGTCTGAGCACCCAGAATTAGAACATATCATCTGGACGTCCAGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGG614CGTTCACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATACACTGTGGGAATAAGAAAAATTAGTCATTTTTACTGTTTCTCCGGCTAAATACAC615GTGTATTTAGCCGGAGA616RetinoblastomaTATCGGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGC617Glu675TermCTTCTGTCTGAGCACCCAGAATTAGAACATATCATCTGGACCGAA to TAACTTTTCCAGCACACCCTGCAGAATGAGTATGAACTCATGAGTTCATACTCATTCTGCAGGGTGTGCTGGAAAAGGGTCC618AGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGGCGTTCACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATAAGCACCCAGAATTAGAA619TTCTAATTCTGGGTGCT620RetinoblastomaTTTGTGAACGCCTTCTGTCTGAGCACCCAGAATTAGAACATA621Gln685ProTCATCTGGACCCTTTTCCAGCACACCCTGCAGAATGAGTATGCAG to CCGAACTCATGAGAGACAGGCATTTGGACCAAGTAAGAAATTTCTTACTTGGTCCAAATGCCTGTCTCTCATGAGTTCATACT622CATTCTGCAGGGTGTGCTGGAAAAGGGTCCAGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGGCGTTCACAAACCTTTTCCAGCACACCC623GGGTGTGCTGGAAAAGG624RetinoblastomaAAAACCATGTAATAAAATTCTGACTACTTTTACATCAATTTATT625Cys706TyrTACTAGATTATGATGTGTTCCATGTATGGCATATGCAAAGTGATGT to TATAGAATATAGACCTTAAATTCAAAATCATTGTAACGTTACAATGATTTTGAATTTAAGGTCTATATTCTTCACTTTGCA626TATGCCATACATGGAACACATCATAATCTAGTAAATAAATTGATGTAAAAGTAGTCAGAATTTTATTACATGGTTTTTATGATGTGTTCCATGT627ACATGGAACACATCATA628RetinoblastomaTTCTGACTACTTTTACATCAATTTATTTACTAGATTATGATGTG629Cys712ArgTTCCATGTATGGCATATGCAAAGTGAAGAATATAGACCTTAAATGC to CGCTTCAAAATCATTGTAACAGCATACAAGGATCTTCGAAGATCCTTGTATGCTGTTACAATGATTTTGAATTTAAGGTC630TATATTCTTCACTTTGCATATGCCATACATGGAACACATCATAATCTAGTAAATAAATTGATGTAAAAGTAGTCAGAAATGGCATATGCAAAGTG631CACTTTGCATATGCCAT632RetinoblastomaGTATGGCATATGCAAAGTGAAGAATATAGACCTTAAATTCAAA633Tyr728TermATCATTGTAACAGCATACAAGGATCTTCCTCATGCTGTTCAGTAC to TAAGAGGTAGGTAATTTTCCATAGTAAGTTTTTTTGATATATCAAAAAAACTTACTATGGAAAATTACCTACCTCCTGAACA634GGATGAGGAAGATCCTTGTATGCTGTTACAATGATTTTGAATTTAAGGTCTATATTCTTCACTTTGCATATGCCATACACAGCATACAAGGATCT635AGATGCTTGTATGCTGT636RetinoblastomaTTTTTTTTTTTTTTTACTGTTGTTCCTCAGACATTCAAACGTGT637Glu748TermTTTGATCAAAGAAGAGGAGTATGATTCTATTATAGTATTCTATAGAG to TAGACTCGGTCTTCATGCAGAGACTGAAAACAAATATATTTGTTTTCAGTCTCTGCATGAAGACCGAGTTATAGAATAC638TATAATAGAATCATACTCCTCTTCTTTGATCAAAACACGTTTGAATGTCTGAGGAAGAACAGTAAAAAAAAAAAAAAAAAGAAGAGGAGTATGAT639ATCATACTCCTCTTCTT640RetinoblastomaGTTTTGATCAAAGAAGAGGAGTATGATTCTATTATAGTATTCT641Gln762TermATAACTCGGTCTTCATGCAGAGACTGAAAACAAATATTTTGCACAG to TAGGTATGCTTCCACCAGGGTAGGTGAAAAGTATCCTTAAGGATACTTTTGACCTACCCTGGTGGAAGCATACTGCAAAA642TATTTGTTTTCAGTCTCTGCATGAAGACCGAGTTATAGAATACTATAATAGAATCATACTCCTCTTCTTTGATCAAAACTCTTCATGCAGAGACTG643CAGTCTCTGCATGAAGA644RetinoblastomaTAATCTACTTTTTTGTTTTTGCTCTAGCCCCCTACCTTGTCAC645Arg787TermCAATACCTCACATTCCTCGAAGCCCTTACAAGTTTCCTAGTTCCGA-TGAACCCTTACGGATTCCTGGAGGGAACATCTATATTTAAATATAGATGTTCCCTCCAGGAATCCGTAAGGGTGAACTAG646GAAACTTGTAAGGGGCTTCGAGGAATGTGAGGTATTGGTGACAAGGTAGGGGGCTAGAGCAAAAACAAAAAAGTAGATTAACATTCCTCGAAGCCCT647AGGGCTTCGAGGAATGT648RetinoblastomaCCTTACGGATTCCTGGAGGGAACATCTATATTTCACCCCTGA649Ser816TermAGAGTCCATATAAAATTTCAGAAGGTCTGCCAACACCAACAATCA to TGAAAATGACTCCAAGATCAAGGTGTGTGTTTTCTCTTTATAAAGAGAAAACACACACCTTGATCTTGGAGTCATTTTTGTTG650GTGTTGGCAGACCTTCTGAAATTTTATATGGACTCTTCAGGGGTGAAATATAGATGTTCCCTCCAGGAATCCGTAAGGTAAAATTTCAGAAGGTC651GACCTTCTGAAATTTTA652



EXAMPLE 8


BRCA1 and BRCA2

[0121] Breast cancer is the second major cause of cancer death in American women, with an estimated 44,190 lives lost (290 men and 43,900 women) in the US in 1997. While ovarian cancer accounts for fewer deaths than breast cancer, it still represents 4% of all female cancers. In 1994, two breast cancer susceptibility genes were identified: BRCA1 on chromosome 17 and BRCA2 on chromosome 13. When a woman carries a mutation in either BRCA1 or BRCA2, she is at increased risk of being diagnosed with breast or ovarian cancer at some point in her life.


[0122] Ford et al., Am. J. Hum. Genet 62: 676-689 (1998) assessed the contribution of BRCA1 and BRCA2 to inherited breast cancer by linkage and mutation analysis in 237 families, each with at least 4 cases of breast cancer. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16%, suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority (76%) of families with both male and female breast cancer were due to BRCA2. The largest proportion (67%) of families due to other genes were families with 4 or 5 cases of female breast cancer only.


[0123] More than 75% of the reported mutations in the BRCA1 gene result in truncated proteins. Couch et al., Hum. Mutat. 8: 8-18, 1996. (1996) reported a total of 254 BRCA1 mutations, 132 (52%) of which were unique. A total of 221 (87%) of all mutations or 107 (81%) of the unique mutations are small deletions, insertions, nonsense point mutations, splice variants, and regulatory mutations that result in truncation or absence of the BRCA1 protein. A total of 11 disease-associated missense mutations (5 unique) and 21 variants (19 unique) as yet unclassified as missense mutations or polymorphisms had been detected. Thirty-five independent benign polymorphisms had been described. The most common mutations were 185delAG and 5382insC, which accounted for 30 (11.7%) and 26 (10.1%), respectively, of all the mutations.


[0124] Most BRCA2 mutations are predicted to result in a truncated protein product. The smallest known cancer-associated deletion removes from the C terminus only 224 of the 3,418 residues constituting BRCA2, suggesting that these terminal amino acids are critical for BRCA2 function. Studies (Spain et al., Proc. Natl. Acad. Sci. 96:13920-13925 (1999)) suggest that such truncations eliminate or interfere with 2 nuclear localization signals that reside within the final 156 residues of BRCA2, suggesting that the vast majority of BRCA2 mutants are nonfunctional because they are not translocated into the nucleus.


[0125] The attached table discloses the correcting oligonucleotide base sequences for the BRACA1 and BRACA2 oligonucleotides of the invention.
15TABLE 14BRCA1 Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Breast CancerCTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGGTAAAGTT653Met-1-IleCATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTGATG to ATTAAGAAGTACAAAATGTCATTAATGCTATGCAGAAAATCGATTTTCTGCATAGCATTAATGACATTTTGTACTTCTTCAACGCGAAGAGCAGATAAATCCATTTCTTTCTGTTCCAATGAACTTTACCCAGAGCAGAGGGTGAAGGCCTCCTGAGCGCAGAAAGAAATGGATTTATC655GATAAATCCATTTCTTT656Breast CancerCTGGGTAAAGTTCATTGGAACAGAAAGAAATGGATTTATCTG657Val-11-AlaCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATGCTATGCAGTA to GCAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGATATCAACTCCAGACAGATGGGACACTCTAAGATTTTCTGCATA658GCATTAATGACATTTTGTACTTCTTCAACGCGAAGAGCAGATAAATCCATTTCTTTCTGTTCCAATGAACTTTACCCAGTGAAGAAGTACAAAATG659CATTTTGTACTTCTTCA660Breast CancerATGGATTTATCTCTCTTCGCGTTGAAGAAGTACAAAATGTCA661Ile-21-ValTTAATGCTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGGATC to GTCAGTTGATCAAGGAACCTGTCTCCACAAAGTGTGACCGGTCACACTTTGTGGAGACAGGTTCCTTGATCAACTCCAGAC662AGATGGGACACTCTAAGATTTTCTGCATAGCATTAATGACATTTTGTACTTCTTCAACGCGAAGAGCAGATAAATCCATTGCAGAAAATCTTAGAG663CTCTAAGATTTTCTGCA664Breast CancerATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAA665Leu-22-SerTGCTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTTTA to TCAGATCAAGGAACCTGTCTCCACAAAGTGTGACCACATATGTGGTCACACTTTGTGGAGACAGGTTCCTTGATCAACTCC666AGACAGATGGGACACTCTAAGATTTTCTGCATAGCATTAATGACATTTTGTACTTCTTCAACGCGAAGAGCAGATAAATGAAAATCTTAGAGTGTC667GACACTCTAAGATTTTC668Breast CancerAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGATCAAGG669Cys-39-TyrAACCTGTCTCCACAAAGTGTGACCACATATTTTGCAAATTTTGTGT to TATCATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTCGAAGGCCCTTTCTTCTGGTTGAGAAGTTTCAGCATGCAAAAT670TTGCAAAATATGTGGTCACACTTTGTGGAGACAGGTTCCTTGATCAACTCCAGACAGATGGGACACTCTAAGATTTTCTCACAAAGTGTGACCACA671TGTGGTCACACTTTGTG672Breast CancerCACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGA673Cys-61-GlyAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGATATAACTGT to GGTCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCGACTAAATCTCGTACTTTCTTGTAGGCTCCTTTTGGTTATATC674ATTCTTACATAAAGGACACTGTGAAGGCCCTTTCTTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGCAAAATATGTGCTTCACAGTGTCCTTTA675TAAAGGACACTGTGAAG676Breast CancerTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGG677Leu-63-StopGCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGTTA to TAAAGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTTTGG678TTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTTCTTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGCAAAGTGTCCTTTATGTAAGA679TCTTACATAAAGGACAC680Breast CancerTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGG681Cys-64-ArgCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGATGT to CGTGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGBreast CancerCAACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTTT682Cys-64-GlyGGTTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTTCTGT to GGTTTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGCAGTCCTTTATGTAAGAAT683ATTCTTACATAAAGGAC684Breast CancerGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGGC685Cys-64-TyrCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGAGTGT to TATCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGATCAACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTT686TGGTTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTTCTTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGCTCCTTTATGTAAGAATG687CATTCTTACATAAAGGA688Breast CancerCAGAAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGAT689Gln-74-StopATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAACAA to TAACTTGTTGAAGAGCTATTGAAAATCATTTGTGCTTTTCGAAAAGCACAAATGATTTTCAATAGCTCTTCAACAAGTTGACT690AAATCTCGTACTTTCTTGTAGGCTCCTTTTGGTTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTTCTTCTGGGAGCCTACAAGAAAGT691ACTTTCTTGTAGGCTCC692Breast CancerAGCTATTGAAAATCATTTGTGCTTTTCAGCTTGACACAGGTTT693Tyr-105-CysGGAGTATGCAAACAGCTATAATTTTGCAAAAAAGGAAAATAACTAT to TGTTCTCCTGAACATCTAAAAGATGAAGTTTCTATCATATGATAGAAACTTCATCTTTTAGATGTTCAGGAGAGTTATTTT694CCTTTTTTGCAAAATTATAGCTGTTTGCATACTCCAAACCTGTGTCAAGCTGAAAAGCACAAATGATTTTCAATAGCTAAACAGCTATAATTTTG695CAAAATTATAGCTGTTT696Breast CancerCTACAGAGTGAACCCGAAAATCCTTCCTTGCAGGAAACCAGT697Asn-158-TyrCTCAGTGTCCAACTCTCTAACCTTGGAACTGTGAGAACTCTGAAC to TACAGGACAAAGCAGCGGATACAACCTCAAAAGACGTCTGCAGACGTCTTTTGAGGTTGTATCCGCTGCTTTGTCCTCAGAG698TTCTCACAGTTCCAAGGTTAGAGAGTTGGACACTGAGACTGGTTTCCTGCAAGGAAGGATTTTCGGGTTCACTCTGTAGAACTCTCTAACCTTGGA699TCCAAGGTTAGAGAGTT700Breast CancerGAAACCAGTCTCAGTGTCCAACTCTCTAACCTTGGAACTGTG701Gln-169-StopAGAACTCTGAGGACAAAGCAGCGGATACAACCTCAAAAGACCAG to TAGGTCTGTCTACATTGAATTGGGATCTGATTCTTCTGAAGCTTCAGAAGAATCAGATCCCAATTCAATGTAGACAGACGTCTT702TTGAGGTTGTATCCGCTGCTTTGTCCTCAGAGTTCTCACAGTTCCAAGGTTAGAGAGTTGGACACTGAGACTGGTTTCGGACAAAGCAGCGGATA703TATCCGCTGCTTTGTCC704Breast CancerCTCCCAGCACAGAAAAAAAGGTAGATCTGAATGCTGATCCCC705Trp-353-StopTGTGTGAGAGAAAAGAATGGAATAAGCAGAAACTGCCATGCTTGG to TAGCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGATATCCAAGGAACATCTTCAGTATCTCTAGGATTCTCTGAGCAT706GGCAGTTTCTGCTTATTCCATTCTTTTCTCTCACACAGGGGATCAGCATTCAGATCTACCTTTTTTTCTGTGCTGGGAGAAAAGAATGGAATAAGC707GCTTATTCCATTCTTTT708Breast CancerATGCTCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGAT709Ile-379-MetAACACTAAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTTCCATT to ATGAGAAGTGATGAACTGTTAGGTTCTGATGACTCACATATGTGAGTCATCAGAACCTAACAGTTCATCACTTCTGGAAAAC710CACTCATTAACTTTCTGAATGCTGCTATTTAGTGTTATCCAAGGAACATCTTCAGTATCTCTAGGATTCTCTGAGCATAGCAGCATTCAGAAAGT711ACTTTCTGAATGCTGCT712Breast CancerGGGAGTCTGAATCAAATGCCAAAGTAGCTGATGTATTGGACG713Glu-421-GlyTTCTAAATGAGGTAGATGAATATTCTGGTTCTTCAGAGAAAATGAA to GGAAGACTTACTGGCCAGTGATCCTCATGAGGCTTTAATATTAAAGCCTCATGAGGATCACTGGCCAGTAAGTCTATTTTCT714CTGAAGAACCAGAATATTCATCTACCTCATTTAGAACGTCCAATACATCAGCTACTTTGGCATTTGATTCAGACTCCCGGTAGATGAATATTCTG715CAGAATATTCATCTACC716Breast CancerATATGTAAAAGTGAAAGAGTTCACTCCAAATCAGTAGAGAGTA717Phe-461-LeuATATTGAAGACAAAATATTTGGGAAAACCTATCGGAAGAAGGTTT to CTTCAAGCCTCCCCAACTTAAGCCATGTAACTGAAAATCGATTTTCAGTTACATGGCTTAAGTTGGGGAGGCTTGCCTTCT718TCCGATAGGTTTTCCCAAATATTTTGTCTTCAATATTACTCTCTACTGATTTGGAGTGAACTCTTTCACTTTTACATATACAAAATATTTGGGAAA719TTTCCCAAATATTTTGT720Breast CancerGAAAGAGTTCACTCCAAATCAGTAGAGAGTAATATTGAAGAC721Tyr-465-LeuAAAATATTTGGGAAAACCTATCGGAAGAAGGCAAGCCTCCCCTAT to GATAACTTAAGCCATGTAACTGAAAATCTAATTATAGGAGCTCCTATAATTAGATTTTCAGTTACATGGCTTAAGTTGGGGAG722GCTTGCCTTCTTCCGATAGGTTTTCCCAAATATTTTGTCTTCAATATTACTCTCTACTGATTTGGAGTGAACTCTTTCGGAAAACCTATCGGAAG723CTTCCGATAGGTTTTCC724Breast CancerACCTATCGGAAGAAGGCAAGCCTCCCCAACTTAAGCCATGTA725Gly-484-StopACTGAAAATCTAATTATAGGAGCATTTGTTACTGAGCCACAGAGGA to TGATAATACAAGAGCGTCCCCTCACAAATAAATTAAAGCGCTTTAATTTATTTGTGAGGGGACGCTCTTGTATTATCTGTGG726CTCAGTAACAAATGCTCCTATAATTAGATTTTCAGTTACATGGCTTAAGTTGGGGAGGCTTGCCTTCTTCCGATAGGTTAATTATAGGAGCATTT727AAATGCTCCTATAATTA728Breast CancerTTACTGAGCCACAGATAATACAAGAGCGTCCCCTCACAAATA729Arg-507-IleAATTAAAGCGTAAAAGGAGACCTACATCAGGCCTTCATCCTGAGA to ATAAGGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAATTTTGAACTGCCAAATCTGCTTTCTTGATAAAATCCTCAGGAT730GAAGGCCTGATGTAGGTCTCCTTTTACGCTTTAATTTATTTGTGAGGGGACGCTCTTGTATTATCTGTGGCTCAGTAATAAAAGGAGACCTACAT731ATGTAGGTCTCCTTTTA732Breast CancerCACAGATAATACAAGAGCGTCCCCTCACAAATAAATTAAAGC733Ser-510-StopGTAAAAGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCA to TGATCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAQ TCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATAAAAT734CCTCAGGATGAAGGCCTGATGTAGGTCTCCTTTTACGCTTTAATTTATTTGTGAGGGGACGCTCTTGTATTATCTGTGACCTACATCAGGCCTTC735GAAGGCCTGATGTAGGT736Breast CancerAGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCAAG737Gln-526-StopAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATCCAA to TAAAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGATCACTTGACCATTCTGCTCCGTTTGGTTAGTTCCCTGATTTAT738CATTTCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATAAAATCCTCAGGATGAAGGCCTGATGTAGGTCTCCTTGGCAGTTCAAAAGACT739AGTCTTTTGAACTGCCA740Breast CancerAGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCAAG741Gln-541-StopAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATCCAG to TAGAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGATCACTTGACCATTCTGCTCCGTTTGGTTAGTTCCCTGATTTAT742CATTTCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATAAAATCCTCAGGATGAAGGCCTGATGTAGGTCTCCTAAACGGAGCAGAATGGT743ACCATTCTGCTCCGTTT744Breast CancerTAAATCAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA745Gly-552-ValTGAATATTACTAATAGTGGTCATGAGAATAAAACAAAAGGTGAGGT to GTTTTCTATTCAGAATGAGAAAAATCCTAACCCAATAGATCTATTGGGTTAGGATTTTTCTCATTCTGAATAGAATCACCTTT746TGTTTTATTCTCATGACCACTATTAGTAATATTCATCACTTGACCATTCTGCTCCGTTTGGTTAGTTCCCTGATTTATAATAGTGGTCATGAGA747TCTCATGACCACTATTA748Breast CancerGGTCAAGTGATGAATATTACTAATAGTGGTCATGAGAATAAAA749Gln-563-StopCAAAAGGTGATTCTATTCAGAATGAGAAAAATCCTAACCCAATCAT to TAGAGAATCACTCGAAAAAGAATCTGCTTTCAAAACGATCGTTTTGAAAGCAGATTCTTTTTCGAGTGATTCTATTGGGTT750AGGATTTTTCTCATTCTGAATAGAATCACCTTTTGTTTTATTCTCATGACCACTATTAGTAATATTCATCACTTGACCATTCTATTCAGAATGAG751CTCATTCTGAATAGAAT752Ovarian CancerATAAGCAGCAGTATAAGCAATATGGAACTCGAATTAAATATCC753Lys-607-StopACAATTCAAAAGCACCTAAAAAGAATAGGCTGAGGAGGAAGTAAA to TAACTTCTACCAGGCATATTCATGCGCTTGAACTAGTAGCTACTAGTTCAAGCGCATGAATATGCCTGGTAGAAGACTTCC754TCCTCAGCCTATTCTTTTTAGGTGCTTTTGAATTGTGGATATTTAATTCGAGTTCCATATTGCTTATACTGCTGCTTATAAGCACCTAAAAAGAAT755ATTCTTTTTAGGTGCTT756Breast CancerATATTCATGCGCTTGAACTAGTAGTCAGTAGAAATCTAAGCCC757Leu-639-StopACCTAATTGTACTGAATTGCAAATTGATAGTTGTTCTAGCAGTTTG to TAGGAAGAGATAAAGAAAAAAAAGTACAACCAAATGCCGGCATTTGGTTGTACTTTTTTTTCTTTATCTCTTCACTGCTAGA758ACAACTATCAATTTGCAATTCAGTACAATTAGGTGGGCTTAGATTTCTACTGACTACTAGTTCAAGCGCATGAATATTACTGAATTGCAAATTG759CAATTTGCAATTCAGTA760Breast CancerGAACCTGCAACTGGAGCCAAGAAGAGTAACAAGCCAAATGAA761Asp-693-AsnCAGACAAGTAAAAGACATGACAGCGATACTTTCCCAGAGCTGGAC to AACAAGTTAACAAATGCACCTGGTTCTTTTACTAAGTGTTAACACTTAGTAAAAGAACCAGGTGCATTTGTTAACTTCAGCTC762TGGGAAAGTATCGCTGTCATGTCTTTTACTTGTCTGTTCATTTGGCTTGTTACTCTTCTTGGCTCCAGTTGCAGGTTCAAAGACATGACAGCGAT763ATCGCTGTCATGTCTTT764Ovarian CancerCTGAAGTTAACAAATGCACCTGGTTCTTTTACTAAGTGTTCAA765Glu-720-StopATACCAGTGAACTTAAAGAATTTGTCAATCCTAGCCTTCCAAGGAA to TAAAGAAGAAAAAGAAGAGAAACTAGAAACAGTTAAAGCTTTAACTGTTTCTAGTTTCTCTTCTTTTTCTTCTCTTGGAAGG766CTAGGATTGACAAATTCTTTAAGTTCACTGGTATTTGAACACTTAGTAAAAGAACCAGGTGCATTTGTTAACTTCAGAACTTAAAGAATTTGTC767GACAAATTCTTTAAGTT768Breast CancerCTAGAAACAGTTAAAGTGTCTAATAATGCTGAAGACCCCAAA769Glu-755-StopGATCTCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGAGAA to TAATCTGTAGAGAGTAGCAGTATTTCATTGGTACCTGGTATACCAGGTACCAATGAAATACTGCTACTCTCTACAGATCTTTC770AGTTTGCAAAACCCTTTCTCCACTTAACATGAGATCTTTGGGGTCTTCAGCATTATTAGACACTTTAACTGTTTCTAGTAAGTGGAGAAAGGGTT771AACCCTTTCTCCACTTA772Breast CancerTCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTG773Ser-770-StopTAGAGAGTAGCAGTATTTCATTGGTACCTGGTACTGATTATGTCA to TAAGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCACGTGCTAACTTCCAGTAACGAGATACTTTCCTGAGTGCCATAA774TCAGTACCAGGTACCAATGAAATACTGCTACTCTCTACAGATCTTTCAGTTTGCAAAACCCTTTCTCCACTTAACATGACAGTATTTCATTGGTAC775GTACCAATGAAATACTG776Breast CancerTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTGTAGAGA777Val-772-AlaGTAGCAGTATTTCATTGGTACCTGGTACTGATTATGGCACTCGTA to GCAAGGAAAGTATCTCGTTACTGGAAGTTAGCACTCTAGGCCTAGAGTGCTAACTTCCAGTAACGAGATACTTTCCTGAGTG778CCATAATCAGTACCAGGTACCAATGAAATACTGCTACTCTCTACAGATCTTTCAGTTTGCAAAACCCTTTCTCCACTTATTCATTGGTACCTGGTA779TACCAGGTACCAATGAA780Breast CancerACTGAAAGATCTGTAGAGAGTAGCAGTATTTCATTGGTACCT781Gln-780-StopGGTACTGATTATGGCACTCAGGAAAGTATCTCGTTACTGGAACAG to TAGGTTAGCACTCTAGGGAAGGCAAAAACAGAACCAAATATATTTGGTTCTGTTTTTGCCTTCCCTAGAGTGCTAACTTCCAG782TAACGAGATACTTTCCTGAGTGCCATAATCAGTACCAGGTACCAATGAAATACTGCTACTCTCTACAGATCTTTCAGTATGGCACTCAGGAAAGT783ACTTTCCTGAGTGCCAT784Breast CancerTATGGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCACT785Glu-797-StopCTAGGGAAGGCAAAAACAGAACCAAATAAATGTGTGAGTCAGGAA to TAATGTGCAGCATTTGAAAACCCCAAGGGACTAATTCATGCATGAATTAGTCCCTTGGGGTTTTCAAATGCTGCACACTGAC786TCACACATTTATTTGGTTCTGTTTTTGCCTTCCCTAGAGTGCTAACTTCCAGTAACGAGATACTTTCCTGAGTGCCATACAAAAACAGAACCAAAT787ATTTGGTTCTGTTTTTG788Breast CancerAAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGGA789Lys-820-GluCTAATTCATGGTTGTTCCAAAGATAATAGAAATGACACAGAAGAAA to GAAGCTTTAAGTATCCATTGGGACATGAAGTTAACCACATGTGGTTAACTTCATGTCCCAATGGATACTTAAAGCCTTCTGT790GTCATTTCTATTATCTTTGGAACAACCATGAATTAGTCCCTTGGGGTTTTCAAATGCTGCACACTGACTCACACATTTGTTGTTCCAAAGATAAT791ATTATCTTTGGAACAAC792Breast CancerCAGCATTTGAAAACCCCAAGGGACTAATTCATGGTTGTTCCA793Thr-826-LysAAGATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGGACA to AAAGACATGAAGTTAACCACAGTCGGGAAACAAGCATAGATCTATGCTTGTTTCCCGACTGTGGTTAACTTCATGTCCCAATG794GATACTTAAAGCCTTCTGTGTCATTTCTATTATCTTTGGAACAACCATGAATTAGTCCCTTGGGGTTTTCAAATGCTGAAATGACACAGAAGGCT795AGCCTTCTGGTCATTT796Breast CancerGATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGGGA797Arg-841-TrpCATGAAGTTAACCACAGTTGGGAAACAAGCATAGAAATGGAACGG to TGGGAAAGTGAACTTGATGCTCAGTATTTGCAGAATACAT798ATGTATTCTGCAAATACTGAGCATCAAGTTCACTTTCTTCCATGGATACTTAAAGCCTTCTGTGTCATTTCTATTATCACCACAGTCGGGAAACA799TGTTTCCCGACTGTGGT800Breast CancerAACTTGATGCTCAGTATTTGCAGAATACATTCAAGGTTTCAAA801Pro-871-LeuGCGCCAGTCATTTGCTCCGTTTTCAAATCCAGGAAATGCAGACCG to CTGAGAGGAATGTGCAACATTCTCTGCCCACTCTGGGTCGACCCAGAGTGGGCAGAGAATGTTGCACATTCCTCTTCTGCA802TTTCCTGGATTTGAAAACGGAGCAAATGACTGGCGCTTTGAAACCTTGAATGTATTCTGCAAATACTGAGCATCAAGTTATTTGCTCCGTTTTCAA803TTGAAAACGGAGCAAAT804Breast CancerTTTCAAATCCAGGAAATGCAGAAGAGGAATGTGCAACATTCTLeu-892-SerCTGCCCACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCATTA to TCACTTTTGAATGTGAACAAAAGGAAGAAAATCAAGGAAATTTCCTTGATTTTCTTCCTTTTGTTCACATTCAAAAGTGACTTT806TGGACTTTGTTTCTTTAAGGACCCAGAGTGGGCAGAGAATGTTGCACATTCCTCTTCTGCATTTCCTGGATTTGAAATGGGTCCTTAAAGAAAC807GTTTCTTTAAGGACCCA808Breast CancerCACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCACTTTTG809Glu-908-StopAATGTGAACAAAAGGAAGAAAATCAAGGAAAGAATGAGTCTAGAA to TAAATATCAAGCCTGTACAGACAGTTAATATCACTGCAGCTGCAGTGATATTAACTGTCTGTACAGGCTTGATATTAGACTC810ATTCTTTCCTTGATTTTCTTCCTTTTGTTCACATTCAAAAGTGACTTTTGGACTTTGTTTCTTTAAGGACCCAGAGTGAAAAGGAAGAAAATCAA811TTGATTTTCTTCCTTTT812Breast CancerATAATGCCAAATGTAGTATCAAAGGAGGCTCTAGGTTTTGTCT813Gly-960-AspATCATCTCAGTTCAGAGGCAACGAAACTGGACTCATTACTCCGGC to GACAAATAAACATGGACTTTTACAAAACCCATATCGTATATACGATATGGGTTTTGTAAAAGTCCATGTTTATTTGGAGTAA814TGAGTCCAGTTTCGTTGCCTCTGAACTGAGATGATAGACAAAACCTAGAGCCTCCTTTGATACTACATTTGGCATTATGTTCAGAGGCAACGAAA815TTTCGTTGCCTCTGAAC816Breast CancerATTTGTTAAAACTAAATGTAAGAAAAATCTGCTAGAGGAAAAC817Met-1008-IleTTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAAATATG to ATAGAGAACATTCCAAGTACAGTGAGCACAATTAGCCGTACGGCTAATTGTGCTCACTGTACTTGGAATGTTCTCATTTCCC818ATTTCTCTTTCAGGTGACATTGAATGTTCCTCAAAGTTTTCCTCTAGCAGATTTTTCTTACATTTAGTTTTAACAAATCATTCAATGTCACCTGA819TCAGGTGACATTGAATG820Breast CancerACTTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAA821Thr-1025-IleATGAGAACATTCCAAGTACAGTGAGCACAATTAGCCGTAATAACA to ATAACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTCAAGCTTGAGCTGGCTTCTTTAAAAACATTTTCTCTAATGTTATTACG822GCTAATTGTGCTCACTGTACTTGGAATGTTCTCATTTCCCATTTCTCTTTCAGGTGACATTGAATGTTCCTCAAAGTTCCAAGTACAGTGAGCA823TGCTCACTGTACTTGGA824Breast CancerACATTCCAAGTACAGTGAGCACAATTAGCCGTAATAACATTAG825Glu-1038-GlyAGAAAATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAAGAA to GGAGTAGGTTCCAGTACTAATGAAGTGGGCTCCAGTATATACTGGAGCCCACTTCATTAGTACTGGAACCTACTTCATTAA826TATTGCTTGAGCTGGCTTCTTTAAAAACATTTTCTCTAATGTTATTACGGCTAATTGTGCTCACTGTACTTGGAATGTTTTTAAAGAAGCCAGCT827AGCTGGCTTCTTTAAAA828Breast CancerCAAGTACAGTGAGCACAATTAGCCGTAATAACATTAGAGAAA829Ser-1040-AsnATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAAGTAGGAGC to AACTTCCAGTACTAATGAAGTGGGCTCCAGTATTAATGATCATTAATACTGGAGCCCACTTCATTAGTACTGGAACCTACTT830CATTAATATTGCTTGAGCTGGCTTCTTTAAAAACATTTTCTCTAATGTTATTACGGCTAATTGTGCTCACTGTACTTGAGAAGCCAGCTCAAGCA831TGCTTGAGCTGGCTTCT832Breast CancerGCCGTAATAACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTC833Val-1047-AlaAAGCAATATTAATGAAGTAGGTTCCAGTACTAATGAAGTGGGGTA to GCACTCCAGTATTAATGAAATAGGTTCCAGTGATGAAAATTTTCATCACTGGAACCTATTTCATTAATACTGGAGCCCACTT834CATTAGTACTGGAACCTACTTCATTAATATTGCTTGAGCTGGCTTCTTTAAAAACATTTTCTCTAATGTTATTACGGCTAATGAAGTAGGTTCCA835TGGAACCTACTTCATTA836Breast CancerAAATAGGTTCCAGTGATGAAAACATTCAAGCAGAACTAGGTA837Leu-1080-StopGAAACAGAGGGCCAAAATTGAATGCTATGCTTAGATTAGGGGTTG to TAGTTTTGCAACCTGAGGTCTATAAACAAAGTCTTCCTGGCCAGGAAGACTTTGTTTATAGACCTCAGGTTGCAAAACCCCT838AATCTAAGCATAGCATTCAATTTTGGCCCTCTGTTTCTACCTAGTTCTGCTTGAATGTTTTCATCACTGGAACCTATTTGCCAAAATTGAATGCTA839TAGCATTCAATTTTGGC840Breast CancerAAAACATTCAAGCAGAACTAGGTAGAAACAGAGGGCCAAAAT841Leu-1086-StopTGAATGCTATGCTTAGATTAGGGGTTTTGCAACCTGAGGTCTTTA to TGAATAAACAAAGTCTTCCTGGAAGTAATTGTAAGCATCCGGATGCTTACAATTACTTCCAGGAAGACTTTGTTTATAGACCT842CAGGTTGCAAAACCCCTAATCTAAGCATAGCATTCAATTTTGGCCCTCTGTTTCTACCTAGTTCTGCTTGAATGTTTTGCTTAGATTAGGGGTTT843AAACCCCTAATCTAAGC844Breast CancerAGCAAGAATATGAAGAAGTAGTTCAGACTGTTAATACAGATTT845Ser-1130-StopCTCTCCATATCTGATTTCAGATAACTTAGAACAGCCTATGGGATCA to TGAAGTAGTCATGCATCTCAGGTTTGTTCTGAGACACCGGTGTCTCAGAACAAACCTGAGATGCATGACTACTTCCCATA846GGCTGTTCTAAGTTATCTGAAATCAGATATGGAGAGAAATCTGTATTAACAGTCTGAACTACTTCTTCATATTCTTGCTTCTGATTTCAGATAACT847AGTTATCTGAAATCAGA848Breast CancerCTAGTTTTGCTGAAAATGACATTAAGGAAAGTTCTGCTGTTTT849Lys-1183-ArgTAGCAAAAGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAAAA to AGAGCCCTTTCACCCATACACATTTGGCTCAGGGTTACCGCGGTAACCCTGAGCCAAATGTGTATGGGTGAAAGGGCTAGG850ACTCCTGCTAAGCTCTCCTTTCTGGACGCTTTTGCTAAAAACAGCAGAACTTTCCTTAATGTCATTTTCAGCAAAACTAGCGTCCAGAAAGGAGAGC851GCTCTCCTTTCTGGACG852Breast CancerAGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTT853Gln-1200-StopCACCCATACACATTTGGCTCAGGGTTACCGAAGAGGGGCCACAG to TAGAGAAATTAGAGTCCTCAGAAGAGAACTTATCTAGTGAGGCCTCACTAGATAAGTTCTCTTCTGAGGACTCTAATTTCTTGGC854CCCTCTTCGGTAACCCTGAGCCAAATGTGTATGGGTGAAAGGGCTAGGACTCCTGCTAAGCTCTCCTTTCTGGACGCTATTTGGCTCAGGGTTAC855GTAACCCTGAGCCAAAT856Breast CancerAAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTTCACCCATACA857Arg-1203-StopCATTTGGCTCAGGGTTACC AGGGTTACCGAAGAGGGGCCACAG to TAGGCTGTGTTAGAACAGCATGGGAGCCAGCCTTCTAACATGTTAGAAGGCTGGCTCCCATGCTGTTCTAACACAGCTTCTA906GTTCAGCCATTTCCTGCTGGAGCTTTATCAGGTTATGTTGCATGGTATCCCTCTGCTTCAAAAACGATAAATGGCACCATAAAGCTCCAGCAGGAA907TTCCTGCTGGAGCTTTA908Breast CancerAGCCAGCCTTCTAACAGCTACCCTTCCATCATAAGTGACTCT909Arg-1443-GlyTCTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGCACATCACGA to GGAGAAAAAGGTGTGTATTGTTGGCCAAACACTGATATCTArg-1443-StopAGATATCAGTGTTTGGCCAACAATACACACCTTTTTCTGATGT910CGA to TGAGCTTTGTTCTGGATTTCGCAGGTCCTCAAGGGCAGAAGAGTCACTTATGATGGAAGGGTAGCTGTTAGAAGGCTGGCTAGGACCTGCGAAATCCA911TGGATTTCGCAGGTCCT912Breast CancerCAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTT913Ser-1512-IleGTTGATGTGGAGGAGCAACAGCTGGAAGAGTCTGGGCCACAAGT to ATTCGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATCGATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAAATCGTGTG914GCCCAGACTCTTCCAGCTGTTGCTCCTCCACATCAACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCTGAGGAGCAACAGCTGGAA915TTCCAGCTGTTGCTCCT916Breast CancerATCTTTCTAGGTCATCCCCTTCTAAATGCCCATCATTAGATGA917Gln-1538-StopTAGGTGGTACATGCACAGTTGCTCTGGGAGTCTTCAGAATAGCAG to TAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCT918GAAGACTCCCAGAGCAACTGTGCATGTACCACCTATCATCATATGATGGGCATTTAGAAGGGGATGACCTAGAAAGATCATGCACAGTTGCTCTG919CAGAGCAACTGTGCATG920Breast CancerCAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTT921Glu-1541-StopGTTGATGTGGAGGAGCAACAGCTGGAAGAGTCTGGGCCACAGAG to TAGCGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATCGATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAAATCGTGTG922GCCCAGACTCTTCCAGCTGTTGCTCCTCCACATCAACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCTGAGGAGCAACAGCTGGAA923TTCCAGCTGTTGCTCCT924Breast CancerAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTTGATGTG925Thr-1561-IleGAGGAGCAACAGCTGGAAGAGTCTGGGCCACACGATTTGACACC to ATCGGAAACATCTTACTTGCCAAGGCAAGATCTAGGTAATATATTACCTAGATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAA926ATCGTGTGGCCCAGACTCTTCCAGCTGTTGCTCCTCCACATCAACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTTAGCTGGAAGAGTCTGGG927CCCAGACTCTTCCAGCT928Breast CancerTTTGTAATTCAACATTCATCGTTGTGTAAATTAAACTTCTCCCA929Tyr-1563-StopTTCCTTTCAGAGGGGAACCCCTTACCTGGAATCTGGAATCAGCTAC to TAGCTCTTCTCTGATGACCCTGAATCTGATCCTTCTGATCAGAAGGATCAGATTCAGGGTCATCAGAGAAGAGGCTGATT930CCAGATTCCAGGTAAGGGGTTCCCTCTGAAAGGAATGGGAGAAGTTTAATTTACACAACGATGAATGTTGAATTACAAAAGAGGGAACCCCTTACC931GGTAAGGGGTTCCCTCT932Breast CancerCAACATTCATCGTTGTGTAAATTAAACTTCTCCCATTCCTTTC933Leu-1564-ProAGAGGGAACCCCTTACCTGGAATCTGGAATCAGCCTCTTCTCCTG to CCGTGATGACCCTGAATCTGATCCTTCTGAAGACAGAGCGCTCTGTCTTCAGAAGGATCAGATTCAGGGTCATCAGAGAAG934AGGCTGATTCCAGATTCCAGGTAAGGGGTTCCCTCTGAAAGGAATGGGAGAAGTTTAATTTACACAACGATGAATGTTGCCCTTACCTGGAATCTG935CAGATTCCAGGTAAGGG936Breast CancerGCCCCAGAGTCAGCTCGTGTTGGCAACATACCATCTTCAACC937Gln-1604-StopTCTGCATTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCCCAA to TAACAGAGTCCAGCTGCTGCTCATACTACTGATACTGCTGCAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCTGGGCA938GATTCTGCAACTTTCAATTGGGGAACTTTCAATGCAGAGGTTGAAGATGGTATGTTGCCAACACGAGCTGACTCTGGGGCAAGTTCCCCAATTGAAA939TTTCAATTGGGGAACTT940Breast CancerGAGTCAGCTCGTGTTGGCAACATACCATCTTCAACCTCTGCA941Lys-1606-GluTTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCCCAGAGTAAA to GAACCAGCTGCTGCTCATACTACTGATACTGCTGGGTATATATACCCAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCT942GGGCAGATTCTGCAACTTTCAATTGGGGAACTTTCAATGCAGAGGTTGAAGATGGTATGTTGCCAACACGAGCTGACTCCCCAATTGAAAGTTGCA943TGCAACTTTCAATTGGG944Breast CancerCAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGATA945Met-1628-ThrCTGCTGGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGAGATG to ACGAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAATTGTTGACCCTTTCTGTTGAAGCTGTCAATTCTGGCTTCTCCC946TGCTCACACTTTCTTCCATTGCATTATACCCAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCTGGGCAGATTCTGTAATGCAATGGAAGAAA947TTTCTTCCAee TtGCATTA948Breast CancerGCAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGAT949Met-1628-ValACTGCTGGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGAATG to GTGGAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACATGTTGACCCTTTCTGTTGAAGCTGTCAATTCTGGCTTCTCCCT950GCTCACACTTTCTTCCATTGCATTATACCCAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCTGGGCAGATTCTGCATAATGCAATGGAAGAA951TTCTTCCATTGCATTAT952Breast CancerCTCATACTACTGATACTGCTGGGTATAATGCAATGGAAGAAA953Pro-1637-LeuGTGTGAGCAGGGAGAAGCCAGAATTGACAGCTTCAACAGAACCA to CTAAGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTAGGCCAGACACCACCATGGACATTCTTTTGTTGACCCTTTCT954GTTGAAGCTGTCAATTCTGGCTTCTCCCTGCTCACACTTTCTTCCATTGCATTATACCCAGCAGTATCAGTAGTATGAGGGAGAAGCCAGAATTGA955TCAATTCTGGCTTCTCC956Breast CancerGAGCAGGGAGAAGCCAGAAtTGACAGCTTCAACAGAAAGGG957Met-1652-IleTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTGACCCCAGATG to ATAAAGAATTTGTGAGTGTATCCATATGTATCTCCCTAATGCATTAGGGAGATACATATGGATACACTCACAAATTCTTCTGG958GGTCAGGCCAGACACCACCATGGACATTCTTTTGTTGACCCTTTCTGTTGAAGCTGTCAATTCTGGCTTCTCCCTGCTCATGTCCATGGTGGTGTC959GACACCACCATGGACAT960960Breast CancerCACTTCCTGATTTTGTTTTCAACTTCTAATCCTTTGAGTGTTTT961Glu-1694-StopTCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGACACTAAGAG to TAGATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAGCTACCCATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGT962CCGTTCACACACAAACTCAGCATCTGCAGAATGAAAAACACTCAAAGGATTAGAAGTTGAAAACAAAATCAGGAAGTGCAGATGCTGAGTTTGTG963CACAAACTCAGCATCTG964Breast CancerGTGTTTTTTCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGA965Gly-1706-GluCACTGAAATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAGGGA to GAATTAGCTATTTCTGTAAGTATAATACTATTTCTCCCCTAGGGGAGAAATAGTATTATACTTACAGAAATAGCTAACTACCC966ATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGTCCGTTCACACACAAACTCAGCATCIGCAGAATGAAAAACACTTTTCTAGGAATTGCGG967CCGCAATTCCTAGAAAA968Breast CancerTTCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGACACTGA969Ala-1708-GluAATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAGTTAGCTGCG to GAGATTTCTGTAAGTATAATACTATTTCTCCCCTCCTCCCGGGAGGAGGGGAGAAATAGTATTATACTTACAGAAATAGCTA970ACTACCCATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGTCCGTTCACACACAAACTCAGCATCTGCAGAATGAAAGGAATTGCGGGAGGAA971TTCCTCCCGCAATTCCT972Breast CancerCTGAGTTTGTGTGTGAACGGACACTGAAATATTTTCTAGGAAT973Val-1713-AlaTGCGGGAGGAAAATGGGTAGTTAGCTATTTCTGTAAGTATAAGTA to GCATACTATTTCTCCCCTCCTCCCTTTAACACCTCAGAATTCTGAGGTGTTAAAGGGAGGAGGGGAGAAATAGTATTATAC974TTACAGAAATAGCTAACTACCCATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGTCCGTTCACACACAAACTCAGAAAATGGGTAGTTAGCT975AGCTAACTACCCATTTT976Breast CancerAACGGACACTGAAATATTTTCTAGGAATTGCGGGAGGAAAAT977Trp-1718-StopGGGTAGTTAGCTATTTCTGTAAGTATAATACTATTTCTCCCCTTGG to TAGCCTCCCTTTAACACCTCAGAATTGCATTTTTACACCGGTGTAAAAATGCAATTCTGAGGTGTTAAAGGGAGGAGGGG978AGAAATAGTATTATACTTACAGAAATAGCTAACTACCCATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGTCCGTTCTATTTCTGTAAGTATA979TATACTTACAGAAATAG980Breast CancerTTCTGCTGTATGTAACCTGTCTTTTCTATGATCTCTTTAGGGG981Glu-1725-StopTGACCCAGTCTATTAAAGAAAGAAAAATGCTGAATGAGGTAAGAA to TAAGTACTTGATGTTACAAACTAACCAGAGATATTCATTAATGAATATCTCTGGTTAGTTTGTAACATCAAGTACTTACCTC982ATTCAGCATTTTTCTTTCTTTAATAGACTGGGTCACCCCTAAAGAGATCATAGAAAAGACAGGTTACATACAGCAGAACTATTAAAGAAAGAAAA983TTTTCTTTCTTTAATAG984Breast CancerTGTATGTAACCTGTCTTTTCTATGATCTCTTTAGGGGTGACCC985Lys-1727-StopAGTCTATTAAAGAAAGAAAAATGCTGAATGAGGTAAGTACTTGAAA to TAAATGTTACAAACTAACCAGAGATATTCATTCAGTCATGACTGAATGAATATCTCTGGTTAGTTTGTAACATCAAGTACT986TACCTCATTCAGCATTTTTCTTTCTTTAATAGACTGGGTCACCCCTAAAGAGATCATAGAAAAGACAGGTTACATACAAAGAAAGAAAAATGCTG987CAGCATTTTTCTTTCTT988Breast CancerTCTTTCAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATG989Pro-1749-ArgGAAGAAACCACCAAGGTCCAAAGCGAGCAAGAGAATCCCAGCCA to CGAGACAGAAAGGTAAAGCTCCCTCCCTCAAGTTGACAAAATTTTGTCAACTTGAGGGAGGGAGCTTTACCTTTCTGTCCTGG990GATTCTCTTGCTCGCTTTGGACCTTGGTGGTTTCTTCCATTGACCACATCTCCTCTGACTTCAAAATCATGCTGAAAGACCAAGGTCCAAAGCGAG991CTCGCTTTGGACCTTGG992Breast CancerCAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATGGAAGA993Arg-1751-StopAACCACCAAGGTCCAAAGCGAGCAAGAGAATCCCAGGACAGCGA to TGAAAAGGTAAAGCTCCCTCCCTCAAGTTGACAAAAATCTCGAGATTTTGTCAACTTGAGGGAGGGAGCTTTACCTTTCTGT994CCTGGGATTCTCTTGCTCGCTTTGGACCTTGGTGGTTTCTTCCATTGACCACATCTCCTCTGACTTCAAAATCATGCTGGTCCAAAGCGAGCAAGA995TCTTGCTCGCTTTGGAC996Breast CancerGTCAGAGGAGATGTGGTCAATGGAAGAAACCACCAAGGTCC997Gln-1756-StopAAAGCGAGCAAGAGAATCCCAGGACAGAAAGGTAAAGCTCCCAG to TAGCTCCCTCAAGTTGACAAAAATCICACCCCACCACTCTGTACAGAGTGGTGGGGTGAGATTTTTGTCAACTTGAGGGAGGG998AGCTTTACCTTTCTGTCCTGGGATTCTCTTGCTCGCTTTGGACCTTGGTGGTTTCTTCCATTGACCACATCTCCTCTGACGAGAATCCCAGGACAGA999TCTGTCCTGGGATTCTC1000Breast CancerCTCTCTTCTTCCAGATCTTCAGGGGGCTAGAAATCTGTTGCT1001Met-1775-ArgATGGGCCCTTCACCAACATGCCCACAGGTAAGAGCCTGGGAATG to AGGGAACCCCAGAGTTCCAGCACCAGCCTTTGTCTTACATATATGTAAGACAAAGGCTGGTGCTGGAACTCTGGGGTTCTCCC1002AGGCTCTTACCTGTGGGCATGTTGGTGAAGGGCCCATAGCAACAGATTTCTAGCCCCCTGAAGATCTGGAAGAAGAGAGCACCAACATGCCCACAG1003CTGTGGGCATGTTGGTG1004Breast CancerAGTATGCAGATTACTGCAGTGATTTTACATCTAAAATGTCCATT1005Trp-1782-StopTTAGATCAACTGGAATGGATGGTACAGCTGTGTGGTGCTTCTTGG to TGAGTGGTGAAGGAGCTTTCATCATTCACCCTTGGCACATGTGCCAAGGGTGAATGATGAAAGCTCCTTCACCACAGAAGC1006ACCACACAGCTGTACCATCCATTCCAGTTGATCTAAAATGGACATTTAGATGTAAAATCACTGCAGTAATCTGCATACTCTGGAATGGATGGTACA1007TGTACCATCCATTCCAG1008Breast CancerATTACTGCAGTGATTTTACATCTAAATGTCCATTTTAGATCAAC1009Gln-1785-HisTGGAATGGATGGTACAGCTGTGTGGTGCTTCTGTGGTGAAGCAG to CATGAGCTTTCATCATTCACCCTTGGCACAGTAAGTATTAATACTTACTGTGCCAAGGGTGAATGATGAAAGCTCCTTCAC1010CACAGAAGCACCACACAGCTGTACCATCCATTCCAGTTGATCTAAAATGGACATTTAGATGTAAAATCACTGCAGTAATATGGTACAGCTGTGTGG1011CCACACAGCTGTACCAT1012Breast CancerGTCCATTTTAGATCAACTGGAATGGATGGTACAGCTGTGTGG1013Glu-1794-AspTGCTTCTGTGGTGAAGGAGCTTTCATCATTCACCCTTGGCACGAG to GATAGTAAGTATTGGGTGCCCTGTCAGAGAGGGAGGACACGTGTCCTCCCTCTCTGACAGGGCACCCAATACTTACTGTGCC1014AAGGGTGAATGATGAAAGCTCCTTCACCACAGAAGCACCACACAGCTGTACCATCCATTCCAGTTGATCTAAAATGGACGTGAAGGAGCTTTCATC1015GATGAAAGCTCCTTCAC1016Breast CancerCTCTGCTTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGT1017Arg-1835-StopGAGGCACCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTCGA to TGAAGCACTCTACCAGTGCCAGGAGCTGGACACCTACCTGATCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAGTGCTACA1018CTGTCCAACACCCACTCTCGGGTCACCACAGGTGCCTCACACATCTGCCCAATTGCTGGAGACAGAGAACACAAGCAGAGTGGTGACCCGAGAGTGG1019CCACTCTCGGGTCACCA1020Breast CancerTTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGTGAGGCA1021Trp-1837-ArgCCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTAGCACTTGG to CGGCTACCAGTGCCAGGAGCTGGACACCTACCTGATACCCCGGGGTATCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAGT1022GCTACACTGTCCAACACCCACTCTCGGGTCACCACAGGTGCCTCACACATCTGCCCAATTGCTGGAGACAGAGAACACAACCCGAGAGTGGGTGTTG1023CAACACCCACTCTCGGG1024Breast CancerTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGTGAGGCAC1025Trp-1837-StopCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTAGCACTCTGG to TAGTACCAGTGCCAGGAGCTGGACACCTACCTGATACCCCATGGGGTATCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAG1026TGCTACACTGTCCAACACCCACTCTCGGGTCACCACAGGTGCCTCACACATCTGCCCAATTGCTGGAGACAGAGAACACACCGAGAGTGGGTGTTGG1027CCAACACCCACTCTCGG1028


[0126]

16






TABLE 15










BRCA2 Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Breast cancer
GTTAAAACTAAGGTGGGATTTTTTTTTTAAATAGATTTAGGAC
1029



PHE32LEU
CAATAAGTCTTAATTGGTTTGAAGAACTTTCTTCAGAAGCTCC


TTT to CTT
ACCCTATAATTCTGAACCTGCAGAAGAATCTGAAC






GTTCAGATTCTTCTGCAGGTTCAGAATTATAGGGTGGAGCTT
1030



CTGAAGAAAGTTCTTCAAACCAATTAAGACTTATTGGTCCTAA



ATCTATTTAAAAAAAAAATCCCACCTTAGTTTTAAC






TTAATTGGTTTGAAGAA
1031






TTCTTCAAACCAATTAA
1032





Breast cancer
TAGATTTAGGACCAATAAGTCTTAATTGGTTTGAAGAACTTTC
1033


TYR42CYS
TTCAGAAGCTCCACCCTATAATTCTGAACCTGCAGAAGAATC


TAT to TGT
TGAACATAAAAACAACAATTACGAACCAAACCTATT






AATAGGTTTGGTTCGTAATTGTTGTTTTTATGTTCAGATTCTTC
1034



TGCAGGTTCAGAATTATAGGGTGGAGCTTCTGAAGAAGTTC



TTCAAACCAATTAAGACTTATTGGTCCTAAATCTA






TCCACCCTATAATTCTG
1035






CAGAATTATAGGGTGGA
1036





Breast cancer
AAGAACTTTCTTCAGAAGCTCCACCCTATAATTCTGAACCTGC
1037


LYS53ARG
AGAAGAATCTGAACATAAAAACAACAATTACGAACCAAACCTA


AAA to AGA
TTTAAAACTCCACAAAGGAAACCATCTTATAATCA






TGATTATAAGATGGTTTCCTTTGTGGAGTTTTAAATAGGTTTG
1038



GTTCGTAATTGTTGTTTTTATGTTCAGATTCTTCTGCAGGTTC



AGAATTATAGGGTGGAGCTTCTGAAGAAAGTTCTT






TGAACATAAAAACAACA
1039






TGTTGTTTTTATGTTCA
1040





Breast cancer
CTATTTAAAACTCCACAAAGGAAACCATCTTATAATCAGCTGG
1041


Phe81Leu
CTTCAACTCCAATAATATTCAAAGAGCAAGGGCTGACTCTGC


TTC to CTC
CGCTGTACCAATCTCCTGTAAAAGAATTAGATAAAT






ATTTATCTAATTCTTTTACAGGAGATTGGTACAGCGGCAGAGT
1042



CAGCCCTTGCTCTTTGAATATTATTGGAGTTGAAGCCAGCTG



ATTATAAGATGGTTTCCTTTGTGGAGTTTTAAATAG






CAATAATATTCAAAGAG
1043






CTCTTTGAATATTATTG
1044





Breast cancer
GTCAGACACCAAAACATATTTCTGAAAGTCTAGGAGCTGAGG
1045


TRP194TERM
TGGATCCTGATATGTCTTGGTCAAGTTCTTTAGCTACACCACC


TGG to TAG
CACCCTTAGTTCTACTGTGCTCATAGGTAATAATAG






CTATTATTACCTATGAGCACAGTAGAACTAAGGGTGGGTGGT
1046



GTAGCTAAAGAACTTGACCAAGACATATCAGGATCCACCTCA



GCTCCTAGACTTTCAGAAATATGTTTTGGTGTCTGAC






TATGTCTTGGTCAAGTT
1047






AACTTGACCAAGACATA
1048





Breast cancer
CTGAAAGTCTAGGAGCTGAGGTGGATCCTGATATGTCTTGGT
1049


PRO201ARG
CAAGTTCTTTAGCTACACCACCCACCCTTAGTTCTACTGTGCT


CCA to CGA
CATAGGTAATAATAGCAAATGTGTATTTACAAGAAA






TTTCTTGTAAATACACATTTGCTATTATTACCTATGAGCACAGT
1050



AGAACTAAGGGTGGGTGGTGTAGCTAAAGAACTTGACCAAGA



CATATCAGGATCCACCTCAGCTCCTAGACTTTCAC






AGCTACACCACCCACCC
1051






GGGTGGGTGGTGTAGCT
1052





Breast cancer
ACAATACACATAAATTTTTATCTTACAGTCAGAAATGAAGAAG
1053


Pro222Ser
CATCTGAAACTGTATTTCCTCATGATACTACTGCTGTAAGTAA


CCT to TCT
ATATGACATTGATTAGACTGTTGAAATTGCTAACA






TGTTAGCAATTTCAACAGTCTAATCAATGTCATATTTACTTACA
1054



GCAGTAGTATCATGAGGAAATACAGTTTCAGATGCTTCTTCAT



TTCTGACTGTAAGATAAAAATTTATGTGTATTGT






CTGTATTTCCTCATGAT
1055






ATCATGAGGAAATACAG
1056





Breast cancer
AATGGTCTCAACTAACCCTTTCAGGTCTAAATGGAGCCCAGA
1057


Leu-414-Term
TGGAGAAAATACCCCTATTGCATATTTCTTCATGTGACCAAAA


TTG to TAG
TATTTCAGAAAAAGACCTATTAGACACAGAGAACAA






TTGTTCTCTGTGTCTAATAGGTCTTTTTCTGAAATATTTTGGTC
1058



ACATGAAGAAATATGCAATAGGGGTATTTTCTCCATCTGGGC



TCCATTTAGACCTGAAAGGGTTAGTTGAGACCATT






ACCCCTATTGCATATTT
1059






AAATATGCAATAGGGGT
1060





Breast cancer, male
AGCCTCTGAAAGTGGACTGGAAATACATACTGTTTGCTCACA
1061


Cys554Trp
GAAGGAGGACTCCTTATGTCCAAATTTAATTGATAATGGAAG


TGT to TGG
CTGGCCAGCCACCACCACACAGAATTCTGTAGCTTTG






CAAAGCTACAGAATTCTGTGTGGTGGTGGCTGGCCAGCTTC
1062



CATTATCAATTAAATTTGGACATAAGGAGTCCTCCTTCTGTGA



GCAAACAGTATGTATTTCCAGTCCACTTTCAGAGGCT






TCCTTATGTCCAAATTT
1063






AAATTTGGACATAAGGA
1064





Breast cancer
AACTCTACCATGGTTTTATATGGAGACACAGGTGATAAACAA
1065


Lys944Term
GCMCCCAAGTGTCAATTAAAAAAGATTTGGTTTATGTTCTTG


AAA to TAA
CAGAGGAGAACAAAAATAGTGTAAAGCAGCATATAA






TTATATGCTGCTTTACACTATTTTTGTTCTCCTCTGCAAGAAC
1066



ATAAACCAAATCTTTTTTAATTGACACTTGGGTTGCTTGTTTAT



CACCTGTGTCTCCATATAAAACCATGGTAGAGTT






TGTCAATTAAAAAAGAT
1067






ATCTTTTTTAATTGACA
1068





Breast cancer, male
ATGACTACTGGCACTTTTGTTGAAGAAATTACTGAAAATTACA
1069


Glu1320Term
AGAGAAATACTGAAAATGAAGATAACAAATATACTGCTGCCAG


GAA to TAA
TAGAAATTCTCATAACTTAGAATTTGATGGCAGTG






CACTGCCATCAAATTCTAAGTTATGAGAATTTCTACTGGCAGC
1070



AGTATATTTGTTATCTTCATTTCAGTATTTCTCTTGTAATTTTC



AGTAATTTCTTCAACAAAAGTGCCAGTAGTCAT






CTGAAAATGAAGATAAC
1071






GTTATCTTCATTTTCAG
1072





Breast cancer
CATGAAACAATTAAAAAAGTGAAAGACATATTTACAGACAGTT
1073


Glu1876Term
TCAGTAAAGTAATTAAGGAAAACAACGAGAATAAATCAAAAAT


GAA to TAA
TTGCCAAACGAAAATTATGGCAGGTTGTTACGAGG






CCTCGTAACAACCTGCCATAATTTTCGTTTGGCAAATTTTTGA
1074



TTTATTCTCGTTGTTTTCCTTAATTACTTTACTGAAACTGTCTG



TAAATATGTCTTTCACTTTTTTAATTGTTTCATG






TAATTAAGGAAAACAAC
1075






GTTGTTTTCCTTAATTA
1076





Breast cancer
TGAAAGACATATTTACAGACAGTTTCAGTAAAGTAATTAAGGA
1077


Ser1882Term
AAACAACGAGAATAAATCAAAAATTTGCCAAACGAAAATTATG


TCA to TAA
GCAGGTTGTTACGAGGCATTGGATGATTCAGAGGA






TCCTCTGAATCATCCAATGCCTCGTAACAACCTGCCATAATTT
1078



TCGTTTGGCAAATTTTTGATTTATTCTCGTTGTTTTCCTTAATT



ACTTTACTGAAACTGTCTGTAAATATGTCTTTCA






GAATAAATCAAAAATTT
1079






AAATTTTTGATTTATTC
1080





Breast cancer
AACCAAAATATGTCTGGATTGGAGAAAGTTTCTAAAATATCAC
1081


Glu1953Term
CTTGTGATGTTAGTTTGGAAACTTCAGATATATGTAAATGTAG


GAA to TAA
TATAGGGAAGCTTCATAAGTCAGTCTCATCTGCAA






TTGCAGATGAGACTGACTTATGAAGCTTCCCTATACTACATTT
1082



ACATATATCTGAAGTTTCCAAACTAACATCACAAGGTGATATT



TTAGAAACTTTCTCCAATCCAGACATATTTTGGTT






TTAGTTTGGAAACTTCA
1083






TGAAGTTTCCAAACTAA
1084





Breast cancer
TTAGTTTGGAAACTTCAGATATATGTAAATGTAGTATAGGGAA
1085


Ser1970Term
GCTTCATAAGTCAGTCTCATCTGCAAATACTTGTGGGATTTTT


TCA to TAA
AGCACAGCAAGTGGAAAATCTGTCCAGGTATCAGA






TCTGATACCTGGACAGATTTTCCACTTGCTGTGCTAAAAATCC
1086



CACAAGTATTTGCAGATGAGACTGACTTATGAAGCTTCCCTAT



ACTACATTTACATATATCTGAAGTTTCCAAACTAA






GTCAGTCTCATCTGCAA
1087






TTGCAGATGAGACTGAC
1088





Breast cancer
AAGTCAGTCTCATCTGCAAATACTTGTGGGATTTTTAGCACAG
1089


Gln1987Term
CAAGTGGAAAATCTGTCCAGGTATCAGATGCTTCATTACAAAA


GAG to TAG
CGCAAGACAAGTGTTTTCTGAAATAGAAGATAGTA






TACTATCTTCTATTTCAGAAAACACTTGTCTTGCGTTTTGTAAT
1090



GAAGCATCTGATACCTGGACAGATTTTCCACTTGCTGTGCTA



AAAATCCCACAAGTATTTGCAGATGAGACTGACTT






AATCTGTCCAGGTATCA
1091






TGATACCTGGACAGATT
1092





Breast cancer
AAAATAAGATTAATGACAATGAGATTCATCAGTTTAACAAAAA
1093


Ala2466Val
CAACTCCAATCAAGCAGCAGCTGTAACTTTCACAAAGTGTGA


GCA to GTA
AGAAGAACCTTTAGGTATTGTATGACAATTTGTGTG






CACACAAATTGTCATACAATACCTAAAGGTTCTTCTTCACACT
1094



TTGTGAAAGTTACAGCTGCTGCTTGATTGGAGTTGTTTTTGTT



AAACTGATGAATCTCATTGTCATTAATCTTATTTT






TCAAGCAGCAGCTGTAA
1095






TTACAGCTGCTGCTTGA
1096





Breast cancer
AGGCAACGCGTCTTTCCACAGCCAGGCAGTCTGTATCTTGCA
1097


Arg2520Term
AAAACATCCACTCTGCCTCGAATCTCTCTGAAAGCAGCAGTA


CGA to TGA
GGAGGCCAAGTCCCCTCTGCGTGTCCTCATAAACAGG






CCTGTTTATGAGGACACGCAGAGGGGACTTGGCCTCCTACT
1098



GCTGCTTTCAGAGAGATTCGAGGCAGAGTGGATGTTTTTGCA



AGATACAGACTGCCTGGCTGTGGAAAGACGCGTTGCCT






CTCTGCCTCGAATCTCT
1099






AGAGATTCGAGGCAGAG
1100





Breast cancer
ATTTCATTGAGCGCAAATATATCTGAAACTTCTAGCAATAAAA
1101


Gln2714Term
CTAGTAGTGCAGATACCCAAAAAGTGGCCATTATTGAACTTA


CAA to TAA
CAGATGGGTGGTATGCTGTTAAGGCCCCAGTTAGATC






GATCTAACTGGGCCTTAACAGCATACCACCCATCTGTAAGTT
1102



CAATAATGGCCACTTTTTGGGTATCTGCACTACTAGTTTTATT



GCTAGAAGTTTCAGATATATTTGCGCTCAATGAAAT






CAGATACCCAAAAAGTG
1103






CACTTTTTGGGTATCTG
1104





Breast cancer
CAGAACTGGTGGGCTCTCCTGATGCCTGTACACCTCTTGAAG
1105


Leu2776Term
CCCCAGAATCTCTTATGTTAAAGGTAAATTAATTTGCACTCTT


TTA to TGA
GGTAAAAATCAGTCATTGATTCAGTTAAATTCTAGA






TCTAGAATTTAACTGAATCAATGACTGATTTTTACCAAGAGTG
1106



CAAATTAATTTACCTTTAACATAAGAGATTCTGGGGCTTCAAG



AGGTGTACAGGCATCAGGAGAGCCCACCAGTTCTG






TCTTATGTTAAAGATTT
1107






AAATCTTTAACATAAGA
1108





Breast cancer
CCTTTTGTTTTCTTAGAAAACACAACAAAACCATATTTACCATC
1109


Gln2893Term
ACGTGCACTAACAAGACAGCAAGTTCGTGCTTTGCAAGATGG


CAG to TAG
TGCAGAGCTTTATGAAGCAGTGAAGAATGCAGCAG






CTGCTGCATTCTTCACTGCTTCATAAAGCTCTGCACCATCTTG
1110



CAAAGCACGAACTTGCTGTCTTGTTAGTGCACGTGATGGTAA



ATATGGTETTGTTGTGTTTTCTAAGAAAACAAAAGG






TAACAAGACAGCAAGTT
1111






AACTTGCTGTCTTGTTA
1112





Breast cancer
AATCACAGGCAAATGTTGAATGATAAGAAACAAGCTCAGATC
1113


Ala2951Thr
CAGTTGGAAATTAGGAAGGCCATGGAATCTGCTGAACAAAAG


GCC to ACC
GAACAAGGTTTATCAAGGGATGTCACAACCGTGTGGA






TCCACACGGTTGTGACATCCCTTGATAAACCTTGTTCCTTTTG
1114



TTCAGCAGATTCCATGGCCTTCCTAATTTCCAACTGGATCTGA



GCTTGTTTCTTATCATTCAACATTVGCCTGTGATT






TTAGGAAGGCCATGGAA
1115






TTCCATGGCCTTCCTAA
1116





Breast cancer
ACAATTTACTGGCAATAAAGTTTTGGATAGACCTTAATGAGGA
1117


Met3118Thr
CATTATTAAGCCTCATATGTTAATTGCTGCAAGCAACCTCCAG


ATG to ACG
TGGCGACCAGAATCCAAATCAGGCCTTCTTACTTT






AAAGTAAGAAGGCCTGATTTGGATTCTGGTCGCCACTGGAG
1118



GTTGCTTGCAGCAATTAACATATGAGGCTTAATAATGTCCTCA



TTAAGGTCTATCCAAAACTTTATTGCCAGTAAATTGT






GCCTCATATGTTAATTG
1119






CAATTAACATATGAGGC
1120





Breast cancer
GACTGAAACGACGTTGTACTACATCTCTGATCAAAGAACAGG
1121


Thr3401Met
AGAGTTCCCAGGCCAGTACGGAAGAATGTGAGAAAAATAAGC


ACG to ATG
AGGACACAATTACAACTAAAAAATATATCTAAGCATT






AATGCTTAGATATATTTTTTAGTTGTAATTGTGTCCTGCTTATT
1122



TTTCTCACATTCTTCCGTACTGGCCTGGGAACTCTCCTGTTCT



TTGATCAGAGATGTAGTACAACGTCGTTTCAGTC






GGCCAGTACGGAAGAAT
1123






ATTCTTCCGTACTGGCC
1124





Breast cancer
AAAGAACAGGAGAGTTCCCAGGCCAGTACGGAAGAATGTGA
1125


lle3412Val
GAAAAATAAGCAGGACACAATTACAACTAAAAAATATATCTAA


ATT to GTT
GCATTTGCAAAGGCGACAATAAATTATTGACGCTTAA






TTAAGCGTCAATAATTTATTGTCGCCTTTTGCAAATGCTTAGAT
1126



ATATTTTTTAGTTGTAATTGTGTCCTGCTTATTTTTCTCACATT



CTTCCGTACTGGCCTGGGAACTCTCCTGTTCTTT






AGGACACAATTACAACT
1127






AGTTGTAATTGTGTCCT
1128











EXAMPLE 9


Cystic Fibrosis—CFTR

[0127] Cystic fibrosis is a lethal disease affecting approximately one in 2,500 live Caucasian births and is the most common autosomal recessive disease in Caucasians. Patents with this disease have reduced chloride ion permeability in the secretory and absorptive cells of organs with epithelial cell linings, including the airways, pancreas, intestine, sweat glands and male genital tract. This, in turn, reduces the transport of water across the epithelia. The lungs and the GI tract are the predominant organ systems affected in this disease and the pathology is characterized by blocking of the respiratory and GI tracts with viscous mucus. The chloride impermeability in affected tissues is due to mutations in a specific chloride channel, the cystic fibrosis transmembrane conductance regulator protein (CFTR), which prevents normal passage of chloride ions through the cell membrane (Welsh et al., Neuron, 8:821-829 (1992)). Damage to the lungs due to mucus blockage, frequent bacterial infections and inflammation is the primary cause of morbidity and mortality in CF patients and, although maintenance therapy has improved the quality of patients' lives, the median age at death is still only around 30 years. There is no effective treatment for the disease, and therapeutic research is focused on gene therapy using exogenous transgenes in viral vectors and/or activating the defective or other chloride channels in the cell membrane to normalize chloride permeability (Tizzano et al., J. Pediat., 120:337-349 (1992)). However, the death of a teenage patient treated with an adenovirus vector carrying an exogenous CFTR gene in clinical trials in the late 1990's has impacted this area of research.


[0128] The oligonucleotides of the invention for correction of the CFTR gene are attached as a table.
17TABLE 16CFTR Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Cystic fibrosisAAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAA1129Ala46AspTCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATTGGAGCT to GATAAGGTATGTTCATGTACATTGTTTAGTTGAAGAGAGCTCTCTTCAACTAAACAATGTACATGAACATACCTTTCCAATTT1130TTCAGATAGATTGTCAGCAGAATCAACAGAAGGGATTTGGTATATGTCTGACAATTCCAGGCGCTGTCTGTATCCTTTGATTCTGCTGACAATC1131GATTGTCAGCAGAATCA1132Cystic fibrosisAGCGCCTGGAATTGTCAGACATATACCAAATCCCTTCTGTTG1133Ser50TyrATTCTGCTGACAATCTATCTGAAAAATTGGAAAGGTATGTTCATCT to TATTGTACATTGTTTAGTTGAAGAGAGAAATTCATATTATAATATGAATTTCTCTCTTCAACTAAACAATGTACATGAACATA1134CCTTTCCAATTTTTCAGATAGATTGTCAGCAGAATCAACAGAAGGGATTTGGTATATGTCTGACAATTCCAGGCGCTCAATCTATCTGAAAAAT1135ATTTTTCAGATAGATTG1136Congenital absence ofAGGACAACTAAAATATTTGCACATGCAACTTATTGGTCCCACT1137vas deferensTTTTATTCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGlu56LysGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATGAA-AAAATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTTCTTGAAGC1138CAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGACCAATAAGTVGCATGTGCAAATATTTAGTTGTCCTTTTGCAGAGAATGGGAT1139ATCCCATTCTCTGCAAA1140Cystic fibrosisAGGACAACTAAAATATTTGCACATGCAACTTATTGGTCCCACT1141Trp57GlyTTTTTATTCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAATGG to GGGGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATATCGCCGAAGGGCATTAATGAGTTTTAGGATTTTTTCTTTGAAGC1142CAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGACCAATAAGTTGCATGTGCAAATATTTTTAGTTGTCCTTTTGCAGAGAATGGGAT1143ATCCCATTCTCTGCAAA1144Cystic fibrosisAACTAAAATATTTTGCACATGCAACTTATTGGTCCCACTTTTTAT1145Trp57TermTCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAATGG to TGAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTTT1146GAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGACCAATAAGTTGCATGTGCAAATATTTTAGTTAGAGAATGGGATAGAGA1147TCTCTATCCCATTCTCT1148Congenital absence ofACTAAAATATTTGCACATGCAACTTATTGGTCCCACTTTTTATT1149vas deferensCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAAAsp58AsnTCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTGAT to AATAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTT1150TGAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGACCAATAAGTTGCATGTGCAAATATTTTAGTGAGAATGGGATAGAGAG1151CTCTCTATCCCATTCTC1152Cystic fibrosisATATTTGCACATGCAACTTATTGGTCCCACTTTTTATTCTTTTG1153Gtu60TermCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAGAG to TAGACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGATCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGAT1154TTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGACCAATAAGTTGCATGTGCAAATATGGGATAGAGAGCTGGCT1155AGCCAGCTCTCTATCCC1156Cystic fibrosisGGTCCCACTTTTTATTCTTTTGCAGAGAATGGGATAGAGAGC1157Pro67LeuTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGCCCT to CTTGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTTAAGATTCCATAGAACATAAATCTCCAGAAAAAACATCGCCGAA1158GGGCATTAATGAGTTTAGGATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGACCGAAAAATCCTAAACTCA1159TGAGTTTAGGAATTTTC1160Cystic fibrosisTGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCT1161Arg74TrpAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTACGG to TGGTGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT1162CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTGCAATGCCCTTCGGCGATGT1163ACATCGCCGAAGGGCAT1164Congenital absence ofGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAAC1165vas deferensTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTTATGTTARG75GLNCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCCGA to CAAGAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAA1166ATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCCCTTCGGCGATGTTTTT1167AAAAACATCGCCGAAGGTT68Cystic fibrosisGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAAC1169Arg75LeuTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTTATGTTCGA to CTACTATGGAATCTTTTTATATTAGGGGTAAGGATCTCGAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAA1170ATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCCCTTCGGCGATGTTTTT1171AAAAACATCGCCGAAGG1172Cystic fibrosisAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAA1173Arg75TermCTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGTCGA to TGATCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAA1174TCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTTAGGATTTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTCCCTTCGGCGATGTTTT1175AAAACATCGCCGAAGGG1176Cystic fibrosisATTAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTG1177Gly85GluGAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGGGA to GAAATCTCATTTGTACATTCATATGTATCACATAACTAGTTATGTGATACATAATGAATGTACAAATGAGATCCTTACCC1178CTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTGTTCTATGGAATCTTTT1179AAAAGATTCCATAGAAC1180Cystic fibrosisAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTG1181Gly85ValGAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGGGA to GTAATCTCATTTGTACATTCATTATGTATCACATAACTAGTTATGTGATACATAATGAATGTACAAATGAGATCCTTTACCC1182CTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTGTTCTATGGAATCTTTT1183AAAAGATTCCATAGAAC1184Cystic fibrosisAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTAT1185Leu88SerGTTCTATGGAATCTTTTTTATATTTAGGGGTAAGGATCTCATTTTTA to TCAGTACATTCATTATGTATCACATAACTATATGCATTAATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA1186TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTAATCTTTTTATATTTAG1187CTAAATATAAAAAGATT1188Cystic fibrosisCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGAT1189Phe87LeuTTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCTTT to CTTATTTGTACATTCATTATGTATCACATAACTATATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGATCCT1190TACCCCTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATGGAATCTTTTTATAT1191ATATAAAAAGATTCCAT1192Cystic fibrosisAACTCATTAATGCCCHCGGCGATGTTTTTTCTGGAGATTTAT1193Leu88TermGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCATTTTTA to TGAGTACATTCATTATGTATCACATAACTATATGCATTAATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA1194TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTAATCTTTTTATATTTAG1195CTAAATATAAAAAGATT1196Cystic fibrosisAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTAT1197Leu88TermGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCATTTTTA to TAAGTACATTCATTATGTATCACATAACTATATGCATTAATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA1198TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAGAATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTAATCTTTTTATATTTAG1199CTAAATATAAAAAGATT1200Cystic fibrosisAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGTTCTATG1201Gly91ArgGAATCTTTTTATATTTAGGGGTAAGGATCTCATTTGTACATTCGGG to AGGATTATGTATCACATAACTATATGCATTTTTGTGATATCACAAAAATGCATATAGTTATGTGATACATAATGAATGTAC1202AAATGAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAAACATCGCCGAAGGGCATTTATATTTAGGGGTAAGG1203CCTTACCCCTAAATATA1204Cystic fibrosisAATAAATGAAATTTAATTTCTCTGGTTTTCCCCTTGTGTAGGAA1205Gln98ArgGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCATACAG to CGGGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCGAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATT1206CTTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAAAAGGGGAAAAACAGAGAAATTAAATTTCATTTATTAGCAGTACAGCCTCTCT1207AGAGAGGCTGTACTGCT1208Cystic fibrosisAAATAAATGAAATTTAATTTCTCTGTTTTTCCCCTTTTGTAGGA1209Gln98TermAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCATCAG-TAGAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTC1210TTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAAAAGGGGAAAAACAGAGAAATTAAATTTCATTTATTTAAGCAGTACAGCCTCTC1211GAGAGGCTGTACTGCTT1212Cystic fibrosisCCCTTTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTAC1213Ser108PheTGGGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGTCC to TTCAACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCCTCC1214TTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAAAAGGGCATAGCTTCCTATGACC1215GGTCATAGGAAGCTATG1216Cystic fibrosisTTTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGG1217Tyr109CysGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGAACTAT to TGTGCTCTATCGCGATTATCTAGGCATAGGCTTATGCCTAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCC1218TCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAAAAAGCTTCCTATGACCCGG1219CCGGGTCATAGGAAGCT1220Cystic fibrosisTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGA1221Asp110HisAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGAACGCGAC to CACTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCGAAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTT1222CCTCCYTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAACTTCCTATGACCCGGAT1223ATCCGGGTCATAGGAAG1224Congenital absence ofAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAA1225vas deferensTCATAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTAPro111LeuTCGCGATTTATCTAGGCATAGGCTTATGCCTTCTTCTCCG to CTGAAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAG1226CGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTCTATGACCCGGATAACA1227TGTTATCCGGGTCATAG1228Cystic fibrosisGTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGAC1229Arg117CysCCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCCGC to TGCATAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCTA1230GATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTACAGGAGGAACGCTCTATC1231GATAGAGCGTTCCTCCT1232Cystic fibrosisTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACC1233Arg117HisCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCACGC to CACTAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCTAGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT1234AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTAGGAGGAACGCTCTATCG1235CGATAGAGCGTTCCTCC1236Cystic fibrosisTACAGCCTCTCGTACTGGGAAGAATCATAGCTTCCTATGACC1237Arg117LeuCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCACGC to CTCTAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCTAGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT1238AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTAGGAGGAACGCTCTATCG1239CGATAGAGCGTTCCTCC1240Cystic fibrosis TACAGCCTCTCTTTACTGGGAAGAATCATAGCTTCCTATGACC1241Arg117ProCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCACGC to CCCTAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCTAGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT1242AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTAGGAGGAACGCTCTATCG1243CGATAGAGCGTTCCTCC1244Cystic fibrosisCTCTTACTGGGAAGAATCATAGCTTCCTATGACCCGGATAAC1245Ala120ThrAAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTAGCG-ACGTGCCTTCTCTTTATTGTGAGGACACTGCTCCTACACCGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGCATAAG1246CCTATGCCTAGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAGGCTCTATCGCGATTTAT1247ATAAATCGCGATAGAGC1248Cystic fibrosisGGGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGA1249Tyr122TermACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCTTAT to TAACTTTATTGTGAGGACACTGCTCCTACACCCAGCCATTAATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAA1250GGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCGCGATTTATCTAGGCAT1251ATGCCTAGATAAATCGC1252Cystic fibrosisTAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCG1253Gly126AspCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAGGGC-GACGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCAC1254AATAAAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTAAGGCA1255GGCATAAGCCTATGCCT1256Cystic fibrosisTCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGT1257Hist139ArgGAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACAC to CGCCATTGGAATGCAGATGAGAATAGCTATGTTTAGTTTAAACTAAACATAGCTATTCTCATCTGCATTCCAATGTGATGAA1258GGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGAGCTCCTACACCCAGCCA1259TGGCTGGGTGTAGGAGC1260Cystic fibrosisTTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAGGAC1261Ala141AspACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGGGCC to GACAATGCAGATGAGAATAGCTATGTTTAGTTTGATTTATAAATCAAACTAAACATAGCTATTCTCATCTGCATTCCAATGT1262GATGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCTAGATAAAACACCCAGCCATTTTTG1263CAAAAATGGCTGGGTGT1264Cystic fibrosisGCCTTCTCTTTATTGTGAGGACACTGCTCCTACACCCAGCCA1265lle148ThrTTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATATT to ACTGTTAGTTTGATTTATAAGAAGGTAATACTTCCTTGCAAGGAAGTATTACCTTCTTATAAATCAAACTAAACATAGCTA1266TTCTCATCTGCATTCCAATGTGATGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGCTCATCACATTGGAATGC1267GCATTCCAATGTGATGA1268Cystic fibrosisCTTCTCGTTATTGTGAGGACACTGCTCCTACACCCAGCCATTT1269Gly149ArgTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTGGA to AGATAGTTTGATTATAAGAAGGTAATACTTCCTTGCATGCAAGGAAGTATTACCTTCTTATAAATCAAACTAAACATAGC1270TATTCTCATCTGCATTCCAATGTGATGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGATCACATTGGAATGCAG1271CTGCATTCCAATGTGAT1272Cystic fibrosisTTTATTGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGC1273Gln1511TermCTTCATCACATTGGAATGCAGATGAGAATAGCTATGGTTAGTTCAG to TAGTGATTTATAAGAAGGTAATACTTCCTTGCACAGGCCGGCCTGTGCAAGGAAGTATTACCTTCTTATAAATCAAACTAAA1274CATAGCTATTCTCATCTGCATTCCAATGTGATGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAATTGGAATGCAGATGAGA1275TCTCATCTGCATTCCAA1276Cystic fibrosisAATATATTTGTATTTTGTTTGTTGAAATTATCTAACTTTCCATTT1277Lys166GluTTCTTTTAGACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAAAAG-GAGTAAGTATTGGACAACTTGTTAGTCTCCTTTCCATGGAAAGGAGACTAACAAGTTGTCCAATACTTATTTTATCTAG1278AACACGGCTTGACAGCTTTAAAGTCTAAAAGAAAAATGGAAAGTTAGATAATTTCAACAAACAAAATACAAATATATTAGACTTTAAAGCTGTCA1279TGACAGCTTTAAAGTCT1280Cystic fibrosisTTATCTAACTTTCCATTTTTCTTTTAGACTTTAAAGCTGTCAAG1281lle175ValCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCATA-GTACTTTCCAACAACCTGAACAAATTTGATGAAGTATATACTTCATCAAATTTGTTCAGGTTGTTGGAAAGGAGACTAAC1282AAGTTGTCCAATACTTATTTTATCTAGAACACGGCTTGACAGCTTTAAAGTCTAAAAGAAAAATGGAAAGTTAGATAATAGATAAAATAAGTATT1283AATACTTATTTTATCTA1284Cystic fibrosisTTTCCATTTTTCTTTTAGACTTTAAAGCTGTCAAGCCGTGTTCT1285Gly178ArgAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACGGA to AGAAACCTGAACAAATTTGATGAAGTATGTACCTATTAATAGGTACATACTTCATCAAATTTGTTCAGGTTGTTGGAAAG1286GAGACTAACAAGTTGTCCAATACTTATTTTATCTAGAACACGGCTTGACAGCTTTAAAGTCTAAAAGAAAAATGGAAATAAGTATTGGACAACTT1287AAGTTGTCCAATACTTA1288Cystic fibrosisAAGATACAATGACACCTGTTTTTGCTGTGCTTTTATTTTCCAG1289His199GlnGGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGCAACAT to CAGGTGGCACTCCTCATGGGGCTAATCTGGGAGTTGTTATAACAACTCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAA1290AGGAGCGATCCACACGAAATGTGCCAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAAAACAGGTGTCATTGTATCTTTTGGCACATTTCGTGTG1291CACACGAAATGTGCCAA1292Cystic fibrosisGGAAGATACAATGACACCTGTTTTTGCTGTGCTTTTATTTTCC1293His199TyrAGGGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGCCAT to TATAAGTGGCACTCCTCATGGGGCTAATCTGGGAGTTGTACAACTCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAAAG1294GAGCGATCCACACGAAATGTGCCAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAAAACAGGTGTCATTGTATCTTCCCATTGGCACATTTCGTG1295CACGAAATGTGCCAATG1296Cystic fibrosisTGTTTTTGCTGTGCTTTATTTTCCAGGGACTTGCATTGGCAC1297Pro205SerATTTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGGCCT to TCTGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCATG1298AGGAGTGCCACTTGCAAAGGAGCGATCCACACGAAATGTGCCAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAAAACAGGATCGCTCCTTTGCAA1299TTGCAAAGGAGCGATCC1300Cystic fibrosisTTTGCTGTGCTTTATTTTCCAGGGACTTGCATTGGCACATTT1301Leu206TrpCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGGGGCTTG to TGGTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGCCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCC1302CATGAGGAGTGCCACTTGCAAAGGAGCGATCCACACGAAATGTGCCAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAACGCTCCTTTGCAAGTGG1303CCACTTGCAAAGGAGCG1304Cystic fibrosisTTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGGG1305Gln220TermGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACTCAG to TAGTGGTTTCCTGATAGTCCTTGCCCTTTTTCAGGCTGGGCGCCCAGCCTGAAAAAGGGCAAGGACTATCAGGAAACCAAGT1306CCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAAAGGAGCGATCCACACGAAAGTTGTTACAGGCGTCT1307AGACGCCTGTAACAACT1308Cystic fibrosisCCTTTGCAAGTGGCACTCCTCATGGGGCTAATCTGGGAGTT1309Cys225ArgGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGTTGT-CGTCCTTGCCCTTTTTCAGGCTGGGCTAGGGAGAATGATGATCATCATTCTCCCTAGCCCAGCCTGAAAAAGGGCAAGGACTA1310TCAGGAAACCAAGTCCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAAAGGCTGCCTTCTGTGGACTT1311AAGTCCACAGAAGGCAG1312Cystic fibrosisTGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGT1313Val232AspGGACTTGGTTTCCTGATAGTCCTTGCCCTTTTTCAGGCTGGGGTC to GACCTAGGGAGAATGATGATGAAGTACAGGTAGCAACCTATATAGGTTGCTACCTGTACTTCATCATCATTCTCCCTAGCCCA 1314GCCTGAAAAAGGGCAAGGACTATCAGGAAACCAAGTCCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCACCTGATAGTCCTTGCCC1315GGGCAAGGACTATCAGG1316Cystic fibrosisGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGT1317Gly239ArgCCTTGCCCTTTTTCAGGCTGGGCTAGGGAGAATGATGATGAAGGG to AGGGTACAGGTAGCAACCTATTTTCATAACTTGAAAGTTTAAACTTTCAAGTTATGAAAATAGGTTGCTACCTGTACTTCATC1318ATCATTCTCCCTAGCCCAGCCTGAAAATTAGGGCAAGGACTATCAGGAAACCAAGTCCACAGAAGGCAGACGCCTGTAACTTTCAGGCTGGGCTAGG1319CCTAGCCCAGCCTGAAA1320



EXAMPLE 10


Cyclin-Dependent Kinase Inhibitor 2A—CDKN2A

[0129] The human CDKN2A gene was also designated MTS-1 for multiple tumor suppressor-1 and has been implicated in multiple cancers including, for example, malignant melanoma. Malignant melanoma is a cutaneous neoplasm of melanocytes. Melanomas generally have features of asymmetry, irregular border, variegated color, and diameter greater than 6 mm. The precise cause of melanoma is unknown, but sunlight and heredity are risk factors. Melanoma has been increasing during the past few decades.


[0130] The CDKN2A gene has been found to be homozygously deleted at high frequency in cell lines derived from tumors of lung, breast, brain, bone, skin, bladder, kidney, ovary, and lymphocyte. Melanoma cell lines carried at least one copy of CDKN2A in combination with a deleted allele. Melanoma cell lines that carried at least 1 copy of CDKN2A frequently showed nonsense, missense, or frameshift mutations in the gene. Thus, CDKN2A may rival p53 (see Example 5) in the universality of its involvement in tumorigenesis. The attached table discloses the correcting oligonucleotide base sequences for the CDKN2A oligonucleotides of the invention.
18TABLE 17CDKN2A Mutations and Genome-Correcting OligosSEQ IDClinical Phenotype &Correcting OligosNO:MelanomaGGGCGGCGGGGAGCAGCATGGAGCCGGCGGCGGGGAGCAG1321Trp15TermTGG-TAGCATGGAGCCTTCGGCTGACTGCTGGCCACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCCGACCCCG1322GGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCGCCGGCTCCATGCTGCTCCCCGCCGCCCGGCTGACTGGCTGGCCA1323TGGCCAGCCAGTCAGCC1324MelanomaCGGCGGGGAGCAGCATGGAGCCGGCGGCGGGGAGCAGCAT1325Leu16ProCTG-CCGGGAGCCTTCGGCTGACTGGCTGGCCACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGCGCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCGACC1326CCGGGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCGCCGGCTCCATGCTGCTCCCCGCCGTGACTGGCTGGCCACGG1327CCGTGGCCAGCCAGTCA1328MelanomaCGGCGGCGGGGAGCAGCATGGAGCCTTCGGCTGACTGGCTG1329Gly23AspCTG-CCGGCCACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGCGCTGCCCAACGCACCGAATAGCTATTCGGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGCGC1330CCGCACCTCCTCTACCCGACCCCGGGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCGCCGGGCCCGGGGTCGGGTAG1331CTACCCGACCCCGGGCC1332MelanomaCGGCGGGGAGCAGCATGGAGCCTTCGGCTGACTGGCTGGCC1333Arg24ProCGG-CCGACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGCGCTGCCCAACGCACCGAATAGTTATAACTATTCGGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGC1334GCCCGCACCTCCTCTACCCGACCCCGGGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCGCCGGGGTCGGGTAGAGG1335CCTCTACCCGACCCCGG1336MelanomaCGGCTGACTGGCTGGCCACGGCCGCGGCCCGGGGTCGGGT1337Leu32ProCTG-CCGAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGCGCTGCCCAACGCACCGAATAGTTACGGTCGGAGGCCGATCCAGGTGGGCCCACCTGGATCGGCCTCCGACCGTAACTATTCGGTGCGTTG1338GGCAGCGCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCCGACCCCGGGCCGCGGCCGTGGCCAGCCAGTCAGCCGGGCGCTGCTGGAGGCGG1339CCGCCTCCAGCAGCGCC1340MelanomaGGCTGGCCACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGT1341Gly35AlaGGG-GCGGCGGGCGCTGCTGGAGGCGGGGGCGCTGCCCAACGCACCGAATAGTTACGGTCGGAGGCCGATCCAGGTGGGTAGAGGGTCGACCCTCTACCCACCTGGATCGGCCTCCGACCGTAACTATTC1342GGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCCGACCCCGGGCCGCGGCCGTGGCCAGCCGGAGGCGGGGGCGCTGC1343GCAGCGCCCCCGCCTCC1344MelanomaGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGCGCTG1345Tyr44TermTACg-TAACCCAACGCACCGAATAGTTACGGTCGGAGGCCGATCCAGGTGGGTAGAGGGTCTGCAGCGGGAGCAGGGGATGGCGGGCGATCGCCCGCCATCCCCTGCTCCCGCTGCAGACCCTCTACCCAC1346CTGGATCGGCCTCCGACCGTAACTATTCGGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCAATAGTTACGGTCGGAG1346CTCCGACCGTAACTATT1348MelanomaTCTCCCATACCTGCCCCCACCCTGGCTCTGACCACTCTGCTC1349Met53IIeATGa-ATCTCTCTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGGAGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCATGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCTCCG1350CCACGCGGGCGCTGCCCATCATCATGACCTGCCAGAGAGAGCAGAGTGGTCAGAGCCAGGGTGGGGGCAGGTATGGGAGAGTCATGATGATGGGCAG1351CTGCCCATCATCATGAC1352MelanomaCCCATACCTGCCCCCACCCTGGCTCTGACACTCTGCTCTCT1353Met54IIeATGg-ATVCTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGGAGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCAGACGTCTGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCT1354CCGCCACGCGGGCGCTGCCCATCATCATGACCTGCCAGAGAGAGCAGAGTGGTCAGAGCCAGGGTGGGGGCAGGTATGGGATGATGATGGGCAGCGC1355GCGCTGCCCATCATCAT1356MelanomaGCCGGCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGC1357Ser56IIeAGC-ATCAGGTCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCA1358GCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGACCTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGGCCGGCGATGGGCAGCGCCCGAG1359CTCGGGCGCTGCCCATC1360MelanomaGGCCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGG1361Ala57ValGCC-GTCTCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCA1362GCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGACCTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGGCCGGGCAGCGCCCGAGTGG1363CCACTCGGGCGCTGCCC1364MelanomaCCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGGTC1365Arg58TermcCGA-TGAATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAG1366CAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGACCTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGGGCAGCGCCCGAGTGGCG1367CGCCACTCGGGCGCTGC1368MelanomaCACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGGTCATGAT1369Val59GlyGTG-GGGGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTG1370GAGCAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGACCTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGCGCCCGAGTGGCGGAGC1371GCTCCGCCACTCGGGCG1372MelanomaTCTGACCACTCTGCTCTCTCTGGCAGGTCATGATGATGGGCA1373Leu62ProCTG-CCGGCGCCCGCGTGGCGGAGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCAGACCCTGCCACTCTCACCCGACCGGTACCGGTCGGGTGAGAGTGGCAGGGTCTGCGCAGTTGGGCTC1374CGCGCCGTGGAGCAGCAGCAGCTCCGCCACGCGGGCGCTGCCCATCATCATGACCTGCCAGAGAGAGCAGAGTGGTCAGAGGCGGAGCTGCTGCTGC1375GCAGCAGCAGCTCCGCC1376MelanomaTCTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGGAG1377Ala68ValGCG-GTGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCAGACCCTGCCACTCTCACCCGACCGGTGCATGATGCTGCCCGGGATCCCGGGCAGCATCATGCACCGGTCGGGTGAGAGTGGCAGG1378GTCTGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCTCCGCCACGCGGGCGCTGCCCATCATCATGACCTGCCAGACCACGGCGCGGAGCCCA1379TGGGCTCCGCGCCGTGG1380MelanomaCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGC1381Asn71LysAACt-AAATCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGCAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGA1382GAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGGAGCCCAACTGCGCCGA1383TCGGCGCAGTTGGGCTC1384MelanomaTCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTG1385Asn71SerAAC-AGCCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAG1386AGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGAGGAGCCCAACTGCGCCG1387CGGCGCAGTTGGGCTCC1388MelanomaAGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCCGAC1389Pro81LeuCCC-CTCCCCGCCACTCTCACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGCCGGCCGGCCCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTC1390CCGGGCAGCGTCGTGCACGGGTCGGGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCTCACCCGACCCGTGCACG1391CGTGCACGGGTCGGGTG1392MelanomaCTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCAC1393Asp84TyrcGAC-TACTCTCACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCGCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCCAGG1394AAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCCGTGCACGACGCTGCC1395GGCAGCGTCGTGCACGG1396MelanomaCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCT1397Ala85ThrcGCT-ACTCACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCC1398AGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGTGCACGACGCTGCCCGG1399CCGGGCAGCGTCGTGCA1400MelanomaGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCGA1401Arg87ProCGG-CCGCCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGCGCGCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAG1402CGTGTCCAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGCTGCCCGGGAGGGCT1403AGCCCTCCCGGGCAGCG1404MelanomaGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCG1405Arg87TrpcCGG-TGGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGCGCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGC1406GTGTCCAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCACGCTGCCCGGGAGGGC1407GCCCTCCCGGGCAGCGT1408MelanomaCTCTCACCCGACCGGTGCATGATGCTGCCCGGGAGGGCTTC1409Leu97ArgCTG-CGGCTGGACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGCGCGATGCCTGGGGTCGTCTGCCCGTGGACTTAAGTCCACGGGCAGACGACCCCAGGCATCGCGCACGTCCAG1410CCGCGCCCCGGGCCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTCCCGGGCAGCATCATGCACCGGTCGGGTGAGAGGGTGGTGCTGCACCGGG1411CCCGGTGCAGCACCACC1412MelanomaCCCGACCGGTGCATGATGCTGCCCGGGAGGGCTTCCTGGAC1413Arg99ProCGG-CCGACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGCGCGATGCCTGGGGTCGTCTGCCCGTGGACTTGGCCGATCGGCCAAGTCCACGGGCAGACGACCCCAGGCATCGCGCAC1414GTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTCCCGGGCAGCATCATGCACCGGTCGGGGCTGCACCGGGCCGGGG1415CCCCGGCCCGGTGCAGC1416MelanomaCCGGTGCATGATGCTGCCCGGGAGGGCTTCCTGGACACGCT1417Gly101TrpcGGG-TGGGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGCGCGATGCCTGGGGTCGTCTGCCCGTGGACTTGGCCGAGGAGCGCTCCTCGGCCAAGTCCACGGGCAGACGACCCCAGGCATCG1418CGCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTCCCGGGCAGCATCATGCACCGGACCGGGCCGGGGCGCGG1419CCGCGCCCCGGCCCGGT1420MelanomaCGGGAGGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGC1421Arg107CysgCGC-TGCCGGGGCGCGGCTGGACGTGCGCGATGCCTGGGGTCGTCTGCCCGTGGACTTGGCCGAGGAGCGGGGCCACCGCGACGTTGCAACGTCGCGGTGGCCCCGCTCCTCGGCCAAGTCCACGGGC1422AGACGACCCCAGGCATCGCGCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTCCCGTGGACGTGCGCGATGCC1423GGCATCGCGCACGTCCA1424MelanomaCACCGGGCCGGGGCGCGGCTGGACGTGCGCGATGCCTGGG1425Ala118ThrgGCT-ACTGCCGTCTGCCCGTGGACCTGGCTGAGGAGCTGGGCCATCGCGATGTCGCACGGTACCTGCGCGCGGCTGCGGGGGGCACCATGGTGCCCCCCGCAGCCGCGCGCAGGTACCGTGCGACATCG1426CGATGGCCCAGCTCCTCAGCCAGGTCCACGGGCAGACGGCCCCAGGCATCGCGCACGTCCAGCCGCGCCCCGGCCCGGTGTGGACCTGGCTGAGGAG1427CTCCTCAGCCAGGTCCA1428MelanomaTGCGCGATGCCTGGGGCCGTCTGCCCGTGGACCTGGCTGAG1429Val126AspGTC-GACGAGCTGGGCCATCGCGATGTCGCACGGTACCTGCGCGCGGCTGCGGGGGGCACCAGAGGCAGTAACCATGCCCGCATAGATCTATGCGGGCATGGTTACTGCCTCTGGTGCCCCCCGCAGCC1430GCGCGCAGGTACCGTGCGACATCGCGATGGCCCAGCTCCTCAGCCAGGTCCACGGGCAGACGGCCCCAGGCATCGCGCATCGCGATGTCGCACGGT1431ACCGTGCGACATCGCGA1432



EXAMPLE 11


Adenomatous Polyposis of the Colon—APC

[0131] Adenomatous polyposis of the colon is characterized by adenomatous polyps of the colon and rectum; in extreme cases the bowel is carpeted with a myriad of polyps. This is a viciously premalignant disease with one or more polyps progressing through dysplasia to malignancy in untreated gene carriers with a median age at diagnosis of 40 years.


[0132] Mutations in the APC gene are an initiating event for both familial and sporadic colorectal tumorigenesis and many alleles of the APC gene have been identified. Carcinoma may arise at any age from late childhood through the seventh decade with presenting features including, for example, weight loss and inanition, bowel obstruction, or bloody diarrhea. Cases of new mutation still present in these ways but in areas with well organized registers most other gene carriers are detected. The attached table discloses the correcting oligonucleotide base sequences for the APC oligonucleotides of the invention.
19TABLE 18APC Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting oligosNO:Adenomatous polyposisGGATCTGTATCAAGCCGTTCTGGAGAGTGCAGTCCTGTTCCT1433coliATGGGTTCATTTCCAAGAAGAGGGTTTGTAAATGGAAGCAGAArg121TermGAAAGTACTGGATATTTAGAAGAACTTGAGAAAGAGAAGA-TGATCTCTTTCTCAAGTTCTTCTAAATATCCAGTACTTTCTCTGCTT1434CCATTTACAAACCCTCTTCTTGGAAATGAACCCATAGGAACAGGACTGCACTCTCCAGAACGGCTTGATACAGATCCTTCCAAGAAGAGGGTTT1435AAACCCTCTTCTTGGAA1436Adenomatous polyposisAAAAAAAAAATAGGTCATTGCTTCTTGCTGATCTTGACAAAGAA1437coilGAAAAGGAAAAAGACTGGTATTACGCTCAACTTCAGAATCTCATrp157TermCTAAAAGAATAGATAGTCTTCCTTTAACTGAAAATGG-TAGTTTTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGAGATTCTG1438AAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTCTTTGTCAAGATCAGCAAGAAGCAATGACCTATTTTTTTTTTAAAAGACTGGTATTACG1439CGTAATACCAGTCTTTT1440Adenomatous polyposisAAATAGGTCATTGCTTCTTGCTGATCTTGACAAAGAAGAAAAG1441coliGAAAAAGACTGGTATTACGCTCAACTTCAGAATCTCACTAAAATyr159TermGAATAGATAGTCTTCCTTTAACTGAAAATGTAAGTTAG-TAGACTTACATTTTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGA1442GATTCTGAAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTCTTTGTCAAGATCAGCAAGAAGCAATGACCTATTTTGGTATTACGCTCAACT1443AGTTGAGCGTAATACCA1444Adenomatous polyposisTTGCTTCTTGCTGATCTTGACAAAGAAGAAAAGGAAAAAGACT1445coliGGTATTACGCTCAACTTCAGAATCTCACTAAAAGAATAGATAGGln163TermTCTTCCTTTAACTGAAAATGTAAGTAACTGGCAGTCAG-TAGACTGCCAGTTACTTACATTTTCAGTTAAAGGAAGACTATCTATT1446CTTTTAGTGAGATTCTGAAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTCTTTGTCAAGATCAGCAAGAAGCAACTCAACTTCAGAATCTC1447GAGATTCTGAAGTTGAG 1448Adenomatous polyposisCTTGACAAAGAAGAAAAGGAAAAAGACTGGTATTACGCTCAAC1449coliTTCAGAATCTCACTAAAAGAATAGATAGTCTTCCTTTAACTGAAArg168TermAATGTAAGTAACTGGCAGTACAACTTATTTGAAAAGA-TGATTTCAAATAAGTTGTACTGCCAGTTACTTACATTTTCAGTTAAA1450GGAAGACTATCTATTCTTTTAGTGAGATTCTGAAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTCTTTGTCAAGTCACTAAAAGAATAGAT1451ATCTATTCTTTTAGTGA1452Adenomatous polyposisAAGAAAAGGAAAAAGACTGGTATTACGCTCAACTTCAGAATCT1453coliCACTAAAAGAATAGATAGTCTTCCTTTAACTGAAAATGTAAGTASer171IleACTGGCAGTACAACTTATTTGAAACTTTAATAACAGT-ATTGTTATTAAAGTTTCAAATAAGTTGTACTGCCAGTTACTTACATT1454TTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGAGATTCTGAAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTAATAGATAGTCTTCCTT1455AAGGAAGACTATCTATT1456Adenomatous polyposisGATTAACGTAAATACAAGATATTGATACTTTTTTATTATTTGTGG1457coliTTTTAGTTTTCCTTACAAACAGATATGACCAGAAGGCAATTGGGln181TermAATATGAAGCAAGGCAAATCAGAGTTGCGATGGCAA-TAACCATCGCAACTCTGATTTGCCTTGCTTCATATTCCAATTGCCT1458TCTGGTCATATCTGTTTGTAAGGAAAACTAAAACCACAAATAATAAAAAAGTATCAATATCTTGTATTTACGTTAATCTTTCCTTACAAACAGAT1459ATCTGTTTGTAAGGAAA1460Adenomatous polyposisCTTTTTTATTATTTGTGGTTTTAGTTTTCCTTACAAACAGATATG1461coliACCAGAAGGCAATTGGAATATGAAGCAAGGCAAATCAGAGTTGlu190TermGCGATGGAAGAACAACTAGGTACCTGCCAGGATAGAA-TAATATCCTGGCAGGTACCTAGTTGTTCTTCCATCGCAACTCTGAT1462TTGCCTTGCTTCATATTCCAATTGCCTTCTGGTCATATCTGTTTGTAAGGAAAACTAAAACCACAAATAATAAAAAAGGGCAATTGGAATATGAA1463TTCATATTCCAATTGCC1464Adenomatous polyposisCAATTGGAATATGAAGCAAGGCAAATCAGAGTTGCGATGGAAcoliGAACAACTAGGTACCTGCCAGGATATGGAAAAACGAGCACAGGln208TermGTAAGTTACTTGTTTCTAAGTGATAAAACAGCGAAGACAG-TAGTCTTCGCTGTTTTATCACTTAGAAACAAGTAACTTACCTGTGCT1466CGTTTTTCCATATCCTGGCAGGTACCTAGTTGTTCTTCCATCGCAACTCTGATTTGCCTTGCTTCATATTCCAATTGGTACCTGCCGCAGGTAC1467CATATCCTGGCAGGTAC1468Adenomatous polyposisGCAAGGCAAATCAGAGTTGCGATGGAAGAACAACTAGGTACC1469coliTGCCAGGATATGGAAAAACGAGCACAGGTAAGTTACTTGTTTCArg213TermTAAGTGATAAAACAGCGAAGAGCTATTAGGAATAAACGA-TGATTTATTCCTAATAGCTCTTCGCTGTTTTATCACTTAGAAACAAG1470TAACTTACCTGTGCTCGTTTTTCCATATCCTGGCAGGTACCTAGTTGTTCTTCCATCGCAACTCTGATTTGCCTTGCTGGAAAAACGAGCACAG1471CTGTGCTCGTTTTTCCA1472Adenomatous polyposisGTTTTATTTTAGCGAAGAATAGCCAGAATTCAGCAAATCGAAA1473coliAGGACATACTTCGTATACGACAGCTTTTACAGTCCCAAGCAACArg232TermAGAAGCAGAGGTTAGTAAATTGCCTTTCTTGTTTGCGA-TGACAAACAAGAAAGGCAATTTACTAACCTCTGCTTCTGTTGCTTG1474GGACTGTAAAAGCTGTCGTATACGAAGTATGTCCTTTTCGATTTGCTGAATTCTGGCTATTCTTCGCTAAAATAAAACTTCGTATACGACAGCTT1475AAGCTGTCGTATACGAA1476Adenomatous polyposisTTATTTTAGCGAAGAATAGCCAGAATTCAGCAAATCGAAAAGG1477coliACATACTTCGTATACGACAGCTTTTACAGTCCCAAGCAACAGAGln233TermAGCAGAGGTTAGTAAATTGCCTTTCTTGTTTGTGGCAG-TAGCCACAAACAAGAAAGGCAATTTACTAACCTCTGCTTCTGTTGC1478TTGGGACTGTAAAAGCTGTCGTATACGAAGTATGTCCTTTTCGATTTGCTGAATTCTGGCTATTCTTCGCTAAAATAAGTATACGACAGCTTTTA1479TAAAAGCTGTCGTATAC1480Adenomatous polyposisAGAAAGCCTACACCATTTTTGCATGTACTGATGTTAACTCCAT1481coliCTTAACAGAGGTCATCTCCTCACAGAACAAGCATGAAACCGGCTCACGln247TermATGATGCTGAGCGGCAGAATGAAGGTCAAGGAGTGGCAG-TAGCCACTCCTTGACCTTCATTCTGCCGCTCAGCATCATGTGAGC1482CGGTTTCATGCTTGTTCTGAGATGACCTCTGTTAAGATGGAGTTAACATCAGTACATGCAAAAATGGTGTAGGCTTTCTGGTCATCTCAGAACAAG1483CTTGTTCTGAGATGACC1484Adenomatous polyposisCAGAACAAGCATGAAACCGGCTCACATGATGCTGAGCGGCAG1485coliAATGAAGGTCAAGGAGTGGGAGAAATCAACATGGCAACTTCTGly267TermGGTAATGGTCAGGTAAATAAATTATTTTATCATATTTGGA-TGAAAATATGATAAAATAATTTATTTACCTGACCATTACCAGAAGTT1486GCCATGTTGATTTCTCCCACTCCTTGACCTTCATTCTGCCGCTCAGCATCATGTGAGCCGGTTTCATGCTTGTTCTGAAGGAGTGGGAGAAATC1487GATTTCTCCCACTCCTT1488Adenomatous polyposisCTTCAAATAACAAAGCATTATGGTTTATGTTGATTTTATTTTTCA1489coliGTGCCAGCTCCTGTTGAACATCAGATCTGTCCTGCTGTGTGTGlu443TermGTTCTAATGAAACTTTCATTTGATGAAGAGCATAGAA-TAATATGCTCTTCATCAAATGAAAGTTTCATTAGAACACACACAGCA1490GGACAGATCTGATGTTCAACAGGAGCTGGCACTGAAAAATAAAATCAACATAAACCATAATGCTTTGTTATTTGAAGCTCCTGTTGAACATCAG1491CTGATGTTCAACAGGAG1492Adenomatous polyposisCAGTGCCAGCTCCTGTTGAACATCAGATCTGTCCTGCTGTGT1493coliGTGTTCTAATGAAACTTTCATTTGATGAAGAGCATAGACATGCSER457TERAATGAATGAACTAGGTAAGACAAAAATGTTTTTTAATCA-TAATTAAAAACATTTTTGTCTTACCTAGTTCATTCATTGCATGTCTA1494TGCTCTTCATCAAATGAAAGTTTCATTAGAACACACACAGCAGGACAGATCTGATGTTCAACAGGAGCTGGCACTGGAAACTTTCATTTGATG1495CATCAAATGAAAGTTTC1496Adenomatous polyposisAGTTGTTTTATTTTAGATGATTGTCTTTTTCCTCTTGCCCTTTTT1497coliAAATTAGGGGGACTACAGGCCATTGCAGAATTATTGCAAGTGGln473TermGACTGTGAAATGTACGGGCTTACTAATGACCACTCAG-TAGAGTGGTCATTAGTAAGCCCGTACATTTCACAGTCCACTTGCAA1498TAATTCTGCAATGGCCTGTAGTCCCCCTAATTTAAAAAGGGCAAGAGGAAAAAGACAATCATCTAAAATAAAACAACTGGGGACTACAGGCCATT1499AATGGCCTGTAGTCCCC1500Adenomatous polyposisTTTTAAATTAGGGGGACTACAGGCCATTGCAGAATTATTGCAA1501coliGTGGACTGTGAAATGTACGGGCTTACTAATGACCACTACAGTATyr486TermTTACACTAAGACGATATGCTGGAATGGCTTTGACATAC-TAGTGTCAAAGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAG1502TGGTCATTAGTAAGCCCGTACATTTCACAGTCCACTTGCAATAATTCTGCAATGGCCTGTAGTCCCCCTAATTTAAAAGAAATGTACGGGCTTAC1503GTAAGCCCGTACATTTC1504Adenomatous polyposisTTGCAAGTGGACTGTGAAATGTATGGGCTTACTAATGACCACT1505coliACAGTATTACACTAAGACGATATGCTGGAATGGCTTTGACAAAArg499TermCTTGACTTTTGGAGATGTAGCCAACAAGGTATGTTCGA-TGAAACATACCTTGTTGGCTACATCTCCAAAAGTCAAGTTTGTCAA1506AGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAGTGGTCATTAGTAAGCCCATACATTTCACAGTCCACTTGCAACACTAAGACGATATGCT1507AGCATATCGTCTTAGTG1508Adenomatous polyposisAGTGGACTGTGAAATGTATGGGCTTACTAATGACCACTACAGT1509coliATTACACTAAGACGATATGCTGGAATGGCTTTGACAAACTTGATyr500TermCTTTTGGAGATGTAGCCAACAAGGTATGTTTTTATTAT-TAGATAAAAACATACCTTGTTGGCTACATCTCCAAAAGTCAAGTTTG1510TCAAAGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAGTGGTCATTAGTAAGCCCATACATTTCACAGTCCACTAGACGATATGCTGGAAT1511ATTCCAGCATATCGTCT1512Adenomatous polyposisGACAAATTCCAACTCTAATTAGATGACCCATATTCTGTTTCTTA1513coliCTAGGAATCAACCCTCAAAAGCGTATTGAGTGCCTTATGGAATLys586TermTTGTCAGCACATTGCACTGAGAATAAAGCTGATAAAA-TAATATCAGCTTTATTCTCAGTGCAATGTGCTGACAAATTCCATAA1514GGCACTCAATACGCTTTTGAGGGTTGATTCCTAGTAAGAAACAGAATATGGGTCATCTAATTAGAGTTGGAATTTGTCCAACCCTCAAAAGCGTA1515TACGCTTTTGAGGGTTG1516Adenomatous polyposisTAGATGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAA1517coliAGCGTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTGLeu592TermAGAATAAAGCTGATATATGTGCTGTAGATGGTGCTTA-TGAGCACCATCTACAGCACATATATCAGCTTTATTCTCAGTGCAAT1518GTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGAGGGTTGATTCCTAGTAAGAAACAGAATATGGGTCATCTAGAGTGCCTTATGGAATT1519AATTCCATAAGGCACTC1520Adenomatous polyposisATGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAAAG1521coliCGTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTGAGTrp593TermAATAAAGCTGATATATGTGCTGTAGATGGTGCACTTGG-TAGAGTGCACCATCTACAGCACATATATCAGCTTTATTCTCAGTGC1522AATGTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGAGGGTTGATTCCTAGTAAGAAACAGAATATGGGTCATTGCCTTATGGAATTTGT1523ACAAATTCCATAAGGCA1524Adenomatous polyposisTGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAAAGC1525coliGTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTGAGATrp593TermATAAAGCTGATATATGTGCTGTAGATGGTGCACTTTGG-TGAAAGTGCACCATCTACAGCACATATATCAGCTTTATTCTCAGTG1526CAATGTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGAGGGTTGATTCCTAGTAAGAAACAGAATATGGGTCAGCCTTATGGAATTTGTC1527GACAAATTCCATAAGGC1528Adenomatous polyposisTAAAGCTGATATATGTGCTGTAGATGGTGCACTTGCATTTTTG1529coliGTTGGCACTCTTACTTAICCGGAGCCAGACAAACACTTTAGCCTyr622TermATTATTGAAAGTGGAGGTGGGATATTACGGAATGTGTAC-TAACACATTCCGTAATATCCCACCTCCACTTTCAATAATGGCTAAA1530GTGTTTGTCTGGCTCCGGTAAGTAAGAGTGCCAACCAAAAATGCAAGTGCACCATCTACAGCACATATATCAGCTTTACTTACTTACCGGAGCCA1531TGGCTCCGGTAAGTAAG1532Adenomatous polyposisGATATATGTGCTGTAGATGGTGCACTTGCATTTTTGGTTGGCA1533coliCTCTTACTTACCGGAGCCAGACAAACACTTTAGCCATTATTGAGln625TermAAGTGGAGGTGGGATATTACGGAATGTGTCCAGCTCAG-TAGAGCTGGACACATTCCGTAATATCCCACCTCCACTTTCAATAAT1534GGCTAAAGTGTTTGTCTGGCTCCGGTAAGTAAGAGTGCCAACCAAAAATGCAAGTGCACCATCTACAGCACATATATCACCGGAGCCAGACAAAC1535GTTTGTCTGGCTCCGGT1536Adenomatous polyposisTAGATGGTGCACTTGCATTTTTGGTTGGCACTCTTACTTACCG1537coliGAGCCAGACAAACACTTTAGCCATTATTGAAAGTGGAGGTGGLeu629TermGATATTACGGAATGTGTCCAGCTTGATAGCTACAAATTA-TAATTTGTAGCTATCAAGCTGGACACATTCCGTAATATCCCACCTC1538CACTTTCAATAATGGCTAAAGTGTTTGTCTGGCTCCGGTAAGTAAGAGTGCCAACCAAAAATGCAAGTGCACCATCTAAAACACTTTAGCCATTA1539TAATGGCTAAAGTGTTT1540Adenomatous polyposisGCCATTATTGAAAGTGGAGGTGGGATATTACGGAATGTGTCC1541coliAGCTTGATAGCTACAAATGAGGACCACAGGTATATATAGAGTTGlu650TermTTATATTACTTTTAAAGTACAGAATTCATACTCTCAGAG-TAGTGAGAGTATGAATTCTGTACTTTAAAAGTAATATAAAACTCTAT1542ATATACCTGTGGTCCTCATTTGTAGCTATCAAGCTGGACACATTCCGTAATATCCCACCTCCACTTTCAATAATGGCCTACAAATGAGGACCAC1543GTGGTCCTCATTTGTAG1544Adenomatous polyposisTGCATGTGGAACTTTGTGGAATCTCTCAGCAAGAAATCCTAAA1545coliGACCAGGAAGCATTATGGGACATGGGGGCAGTTAGCATGCTCTrp699TermAAGAACCTCATTCATTCAAAGCACAAAATGATTGCTTGG-TGAAGCAATCATTTTGTGCTTTGAATGAATGAGGTTCTTGAGCATG1546CTAACTGCCCCCATGTCCCATAATGCTTCCTGGTCTTTAGGATTTCTTGCTGAGAGATTCCACAAAGTTCCACATGCAGCATTATGGGACATGGG1547CCCATGTCCCATAATGC1548Adenomatous polyposisAAGACCAGGAAGCATTATGGGACATGGGGGCAGTTAGCATGC1549coliTCAAGAACCTCATTCATTCAAAGCACAAAATGATTGCTATGGGSer713TermAAGTGCTGCAGCTTTAAGGAATCTCATGGCAAATAGTCA-TGACTATTTGCCATGAGATTCCTTAAAGCTGCAGCACTTCCCATAG1550CAATCATTTTGTGCTTTGAATGAATGAGGTTCTTGAGCATGCTAACTGCCCCCCATGTCCCATAATGCTTCCTGGTCTTCATTCATTCAAAGCACA1551TGTGCTTTGAATGAATG1552Adenomatous polyposisGGGGCAGTTAGCATGCTCAAGAACCTCATTCATTCAAAGCAC1553coliAAAATGATTGCTATGGGAAGTGCTGCAGCTTTAAGGAATCTCASer722GlyTGGCAAATAGGCCTGCGAAGTACAAGGATGCCAATAAGT-GGTTATTGGCATCCTTGTACTTCGCAGGCCTATTTGCCATGAGATT1554CCTTAAAGCTGCAGCACTTCCCATAGCAATCATTTTGTGCTTTGAATGAATGAGGTTCTTGAGCATGCTAACTGCCCCCTATGGGAAGTGCTGCA1555TGCAGCACTTCCCATAG1556Adenomatous polyposisTCTCCTGGCTCAGCTTGCCATCTCTTCATGTTAGGAAACAAAA1557coliAGCCCTAGAAGCAGAATTAGATGCTCAGCACTTATCAGAAACTLeu764TermTTTGACAATATAGACAATTTAAGTCCCAAGGCATCTTA-TAAGATGCCTTGGGACTTAAATTGTCTATATTGTCAAAAGTTTCTGA1558TAAGTGCTGAGCATCTAATTCTGCTTCTAGGGCTTTTTGTTTCCTAACATGAAGAGATGGCAAGCTGAGCCAGGAGAAGCAGAATTAGATGCTC1559GAGCATCTAATTCTGCT1560Adenomatous polyposisTTAGATGCTCAGCACTTATCAGAAACTTTTGACAATATAGACAA1561coliTTTAAGTCCCAAGGCATCTCATCGTAGTAAGCAGAGACACAGSer784ThrCAAGTCTCTATGGTGATTATGTTTTTGACACCATCTCT-ACTGATGGTGTCAAAAACATAATCACCATAGAGACTTGCTGTGTCT1562CTGCTTACTACGATGAGATGCCTTGGGACTTAAATTGTCTATATTGTCAAAAGTTTCTGATAAGTGCTGAGCATCTAACCAAGGCATCTCATCGT1563ACGATGAGATGCCTTGG1564Adenomatous potyposisCTCATCGTAGTAAGCAGAGACACAGCAAGTCTCTATGGTGATT1565coliATGTTTTTGACACCAATCGACATGATGATAATAGGTCAGACATArg805TermTTTAATACTGGCACATGACTGTCCTTTCACCATATCGA-TGAATATGGTGAAAGGACAGTCATGTGCCAGTATTAAAATGTCTGA1566CCTATTATCATCATGTCGATTGGTGTCAAAAACATAATCACCATAGAGACTTGCTGTGTCTCTGCTTACTACGATGAGACACCAATCGACATGAT1567ATCATGTCGATTGGTGT1568Adenomatous polyposisGGTCTAGGCAACTACCATCCAGCAACAGAAAATCCAGGAACT1569coliTCTTCAAAGCGAGGTTTGCAGATCTCCACCACTGCAGCCCAGGln879TermATTGCCAAAGTCATGGAAGAAGTGTCAGCCATTCATACAG-TAGTATGAATGGCTGACACTTCTTCCATGACTTTGGCAATCTGGGC1570TGCAGTGGTGGAGATCTGCAAACCTCGCTTTGAAGAAGTTCCTGGATTTTCTGTTGCTGGATGGTAGTTGCCTAGACCGAGGTTTGCAGATCTCC1571GGAGATCTGCAAACCTC1572Adenomatous polyposisTACATTGTGTGACAGATGAGAGAAATGCACTTAGAAGAAGCTC1573coliTGCTGCCCATACACATTCAAACACTTACAATTTCACTAAGTCGSer932TermGAAAATTCAAATAGGACATGTTCTATGCCTTATGCTCA-TAAGCATAAGGCATAGAACATGTCCTATTTGAATTTTCCGACTTAG1514TGAAATTGTAAGTGTTTGAATGTGTATGGGCAGCAGAGCTTCTTCTAAGTGCATTTCTCTCATCTGTCACACAATGTATACACATTCAAACACTT1575AAGTGTTTGAATGTGTA1576Adenomatous potyposisTACATTGTGTGACAGATGAGAGAAATGCACTTAGAAGAAGCTC1577coliTGCTGCCCATACACATTCAAACACTTACAATTTCACTAAGTCGSer932TermGAAAATTCAAATAGGACATGTTCTATGCCTTATGCTCA-TGAGCATAAGGCATAGAACATGTCCTATTTGAATTTTCCGACTTAG1578TGAAATTGTAAGTGTTTGAATGTGTATGGGCAGCAGAGCTTCTTCTAAGTGCATTTCTCTCATCTGTCACACAATGTATACACATTCAAACACTT1579AAGTGTTTGAATGTGTA1580Adenomatous polyposisGACAGATGAGAGAAATGCACTTAGAAGAAGCTCTGCTGCCCA1581coliTACACATTCAAACACTTACAATTTCACTAAGTCGGAAAATTCAATyr935TermATAGGACATGTTCTATGCCTTATGCCAAATTAGAATAC-TAGTTCTAATTTGGCATAAGGCATAGAACATGTCCTATTTGAATTTT1582CCGACTTAGTGAAATTGTAAGTGTTTGAATGTGTATGGGCAGCAGAGCTTCTTCTAAGTGCATTTCTCTCATCTGTCAACACTTACAATTTCAC1583GTGAAATTGTAAGTGTT1584Adenomatous polyposisGACAGATGAGAGAAATGCACTTAGAAGAAGCTCTGCTGCCCA1585coliTACACATTCAAACACTTACAATTTCACTAAGTCGGAAAATTCAATyr935TermATAGGACATGTTCTATGCCTTATGCCAAATTAGAATAC-TAATTCTAATTTGGCATAAGGCATAGAACATGTCCTATTTGAATTTT1586CCGACTTAGTGAAATTGTAAGTGTTTGAATGTGTATGGGCAGCAGAGCTTCTTCTAAGTGCATTTCTCTCATCTGTCAACACTTACAATTTCAC1587GTGAAATTGTAAGTGTT1588Adenomatous polyposisACCCTCGATTGAATCCTATTCTGAAGATGATGAAAGTAAGTTTT1589coliGCAGTTATGGTCAATACCCAGCCGACCTAGCCCATAAAATACATyr1000TermTAGTGCAAATCATATGGATGATAATGATGGAGAATAC-TAATTCTCCATCATTATCATCCATATGATTTGCACTATGTATTTTAT1590GGGCTAGGTCGGCTGGGTATTGACCATAACTGCAAAACTTACTTTCATCATCTTCAGAATAGGATTCAATCGAGGGTGGTCAATACCCAGCCGA1591TCGGCTGGGTATTGACC1592Adenomatous polyposisTACCCAGCCGACCTAGCCCATAAAATACATAGTGCAAATCATA1593coliTGGATGATAATGATGGAGAACTAGATACACCAATAAATTATAGGlu1020TermTCTTAAATATTCAGATGAGCAGTTGAACTCTGGAAGAA-TAATTCCAGAGTTCAACTGCTCATCTGAATATTTAAGACTATAATTT1594ATTGGTGTATCTAGTTCTCCATCATTATCATCCATATGATTTGC-ACTATGTATTTTATGGGCTAGGTCGGCTGGGTAATGATGGAGAACTAGAT1595ATCTAGTTCTCCATCAT1596Adenomatous polyposisATGAAACCCTCGATTGAATCCTATTCTGAAGATGATGAAAGTA1597coliAGTTTTGCAGTTATGGTCAATACCCAGCCGACCTAGCCCATAASer1032TermAATACATAGTGCAAATCATATGGATGATAATGATGTCA-TAACATCATTATCATCCATATGATTTGCACTATGTATTTTATGGGCT1598AGGTCGGCTGGGTATTGACCATAACTGCAAAACTTACTTTCATCATCTTCAGAATAGGATTCAATCGAGGGTTTCATGTTATGGTCAATACCCA1599TGGGTATTGACCATAAC1600Adenomatous polyposisTGAAGATGATGAAAGTAAGTTTTGCAGTTATGGTCAATACCCA1601coliGCCGACCTAGCCCATAAAATACATAGTGCAAATCATATGGATGGln1041TermATAATGATGGAGAACTAGATACACCAATAAATTATCAA-TAAATAATTTATTGGTGTATCTAGTTCTCCATCATTATCATCCATAT1602GATTTGCACTATGTATTTTATGGGCTAGGTCGGCTGGGTATTGACCATAACTGCAAAACTTACTTTCATCATCTTCAGCCCATAAAATACATAG1603CTATGTATTTTATGGGC1604Adenomatous polyposisATAAATTATAGTCTTAAATATTCAGATGAGCAGTTGAACTCTGG1605coliAAGGCAAAGTCCTTCACAGAATGAAAGATGGGCAAGACCCAAGln1045TermACACATAATAGAAGATGAAATAAAACAAAGTGAGCCAG-TAGGCTCACTTTGTTTTATTTCATCTTCTATTATGTGTTTGGGTCTT1606GCCCATCTTTCATTCTGTGAAGGACTTTGCCTTCCAGAGTTCAACTGCTCATCTGAATATTTAAGACTATAATTTATGTCCTTCACAGAATGAA1607TTCATTCTGTGAAGGAC1608Adenomatous polyposisGAAAGATGGGCAAGACCCAAACACATAATAGAAGATGAAATAA1609coliAACAAAGTGAGCAAAGACAATCAAGGAATCAAAGTACAACTTAGln1067TermTCCTGTTTATACTGAGAGCACTGATGATAAACACCCAA-TAAGGTGTTTATCATCAGTGCTCTCAGTATAAACAGGATAAGTTGT1610ACTTTGATTCCTTGATTGTCTTTGCTCACTTTGTTTTATTTCATCTTCTATTATGTGTTTGGGTCTTGCCCATCTTTCAGCAAAGACAATCAAGG1611CCTTGATTGTCTTTGCT1612Adenomatous polyposisAATAGAAGATGAAATAAAACAAAGTGAGCAAAGACAATCAAGG1613coliAATCAAAGTACAACTTATCCTGTTTATACTGAGAGCACTGATGTyr1075TermATAAACACCTCAAGTTCCAACCACATTTTGGACAGTAT-TAGCTGTCCAAAATGTGGTTGGAACTTGAGGTGTTTATCATCAGTG1614CTCTCAGTATAAACAGGATAAGTTGTACTTTGATTCCTTGATTGTCTTTGCTCACTTTGTTTTATTTCATCTTCTATTACAACTTATCCTGTTTA1615TAAACAGGATAAGTTGT1616Adenomatous polyposisTGATGATAAACACCTCAAGTTCCAACCACATTTTGGACAGCAG1617coliGAATGTGTTTCTCCATACAGGTCACGGGGAGCCAATGGTTCATyr1102TermGAAACAAATCGAGTGGGTTCTAATCATGGAATTAATTAC-TAGATTAATTCCATGATTAGAACCCACTCGATTTGTTTCTGAACCAT1618TGGCTCCCCGTGACCTGTATGGAGAAACACATTCCTGCTGTCCAAAATGTGGTTGGAACTTGAGGTGTTTATCATCATCTCCATACAGGTCACG1619CGTGACCTGTATGGAGA1620Adenomatous polyposisAACCACATTTTGGACAGCAGGAATGTGTTTCTCCATACAGGTC1621coliACGGGGAGCCAATGGTTCAGAAACAAATCGAGTGGGTTCTAASer1101TermTCATGGAATTAATCAAAATGTAAGCCAGTCTTTGTGTCA-TGACACAAAGACTGGCTTACATTTTGATTAATTCCATGATTAGAACC1622CACTCGATTTGTTTCTGAACCATTGGCTCCCCGTGACCTGTATGGAGAAACACATTCCTGCTGTCCAAAATGTGGTTCAATGGTTCAGAAACAA1623TTGTTTCTGAACCATTG1624Adenomatous polyposisGGACAGCAGGAATGTGTTTCTCCATACAGGTCACGGGGAGCC1625coliAATGGTTCAGAAACAAATCGAGTGGGTTCTAATCATGGAATTAArg1114TermATCAAAATGTAAGCCAGTCTTTGTGTCAAGAAGATGCGA-TGACATCTTCTTGACACAAAGACTGGCTTACATTTTGATTAATTCCA1626TGATTAGAACCCACTCGATTTGTTTCTGAACCATTGGCTCCCCGTGACCTGTATGGAGAAACACATTCCTGCTGTCCAAACAAATCGAGTGGGT1627ACCCACTCGATTTGTTT1628Adenomatous polyposisGGGTTCTAATCATGGAATTAATCAAAATGTAAGCCAGTCTTTG1629coliTGTCAAGAAGATGACTATGAAGATGATAAGCCTACCAATTATATyr1135TermGTGAACGTTACTCTGAAGAAGAACAGCATGAAGAATAT-TAGTTCTTCATGCTGTTCTTCTTCAGAGTAACGTTCACTATAATTGG1630TAGGCTTATCATCTTCATAGTCATCTTCTTGACACAAAGACTGGCTTACATTTTGATTAATTCCATGATTAGAACCCGATGACTATGAAGATGA1631TCATCTTCATAGTCATC1632Adenomatous polyposisGAAGATGACTATGAAGATGATAAGCCTACCAATTATAGTGAAC1633coliGTTACTCTGAAGAAGAACAGCATGAAGAAGAAGAGAGACCAAGln1152TermCAAATTATAGCATAAAATATAATGAAGAGAAACGTCCAG-TAGGACGTTTCTCTTCATTATATTTTATGCTATAATTTGTTGGTCTCT1634CTTCTTCTTCATGCTGTTCTTCTTCAGAGTAACGTTCACTATAATTGGTAGGCTTATCATCTTCATAGTCATCTTCAAGAAGAACAGCATGAA1635TTCATGCTGTTCTTCTT1636Adenomatous polyposisGAAGAAGAGAGACCAACAAATTATAGCATAAAATATAATGAAG1637coliAGAAACGTCATGTGGATCAGCCTATTGATTATAGTTTAAAATATGln1175TermGCCACAGATATTCCTTCATCACAGAAACAGTCATCAG-TAGATGACTGTTTCTGTGATGAAGGAATATCTGTGGCATATTTTAAA1638CTATAATCAATAGGCTGATCCACATGACGTTTCTCTTCATTATATTTTATGCTATAATTTGTTGGTCTCTCTTCTTCATGTGGATCAGCCTATT1639AATAGGCTGATCCACAT1640Adenomatous polyposisAAGAGAGACCAACAAATTATAGCATAAAATATAATGAAGAGAA1641coliACGTCATGTGGATCAGCCTATTGATTATAGTTTAAAATATGCCAPro1176LeuCAGATATTCCTTCATCACAGAAACAGTCATTTTCCCT-CTTGAAAATGACTGTTTCTGTGATGAAGGAATATCTGTGGCATATT1642TTAAACTATAATCAATAGGCTGATCCACATGACGTTTCTCTTCATTATATTTTATGCTATAATTTGTTGGTCTCTCTTGGATCAGCCTATTGATT1643AATCAATAGGCTGATCC1644Adenomatous polyposisATAAAATATAATGAAGAGAAACGTCATGTGGATCAGCCTATTG1645coliATTATAGTTTAAAATATGCCACAGATATTCCTTCATCACAGAAAAla1184ProCAGTCATTTTCATTCTCAAAGAGTTCATCTGGACGCC-CCCGTCCAGATGAACTCTTTGAGAATGAAAATGACTGTTTCTGTGA1646TGAAGGAATATCTGTGGCATATTTTAAACTATAATCAATAGGCTGATCCACATGACGTTTCTCTTCATTATATTTTATTAAAATATGCCACAGAT1647ATCTGTGGCATATTTTA1648Adenomatous polyposisATCAGCCTATTGATTATAGTTTAAAATATGCCACAGATATTCCT1649coliTCATCACAGAAACAGTCATTTTCATTCTCAAAGAGTTCATCTGSer1194TermGACAAAGCAGTAAAACCGAACATATGTCTTCAAGTCA-TGACTTGAAGACATATGTTCGGTTTTACTGCTTTGTCCAGATGAAC1650TCTTTGAGAATGAAAATGACTGTTTCTGTGATGAAGGAATATCTGTGGCATATTTTAAACTATAATCAATAGGCTGATGAAACAGTCATTTTCAT1651ATGAAAATGACTGTTTC1652Adenomatous polyposisATTATAGTTTAAAATATGCCACAGATATTCCTTCATCACAGAAA1653coliCAGTCATTTTCATTCTCAAAGAGTTCATCTGGACAAAGCAGTASer1198TermAAACCGAACATATGTCTTCAAGCAGTGAGAATACTCA-TGAGTATTCTCACTGCTTGAAGACATATGTTCGGTTTTACTGCTTTG1654TCCAGATGAACTCTTTGAGAATGAAAATGACTGTTTCTGTGATGAAGGAATATCTGTGGCATATTTTAAACTATAATTTCATTCTCAAAGAGTT1655AACTCTTTGAGAATGAA1656Adenomatous polyposisACCGAACATATGTCTTCAAGCAGTGAGAATACGTCCACACCTT1657coliCATCTAATGCCAAGAGGCAGAATCAGCTCCATCCAGTTCTGCGln1228TermACAGAGTAGAAGTGGTCAGCCTCAAAGGCTGCCACTCAG-TAGAGTGGCAGCCTTTGAGGCTGACCACTTCTACTCTGTGCAGAA1658CTGGATGGAGCTGATTCTGCCTCTTGGCATTAGATGAAGGTGTGGACGTATTCTCACTGCTTGAAGACATATGTTCGGTCCAAGAGGCAGAATCAG1659CTGATTCTGCCTCTTGG1660Adenomatous polyposisCATATGTCTTCAAGCAGTGAGAATACGTCCACACCTTCATCTA1661coliATGCCAAGAGGCAGAATCAGCTCCATCCAGTTCTGCACAGAGGln1230TermTAGAAGTGGTCAGCCTCAAAGGCTGCCACTTGCAAGCAG-TAGCTTGCAAGTGGCAGCCTTTGAGGCTGACCACTTCTACTCTGT1662GCAGAACTGGATGGAGCTGATTCTGCCTCTTGGCATTAGATGAAGGTGTGGACGTATTCTCACTGCTTGAAGACATATGGGCAGAATCAGCTCCAT1663ATGGAGCTGATTCTGCC1664Adenomatous polyposisTCAGCTCCATCCAAGTTCTGCACAGAGTAGAAGTGGTCAGCC1665coliTCAAAAGGCTGCCACTTGCAAAGTTTCTTCTATTAACCAAGAACys1249TermACAATACAGACTTATTGTGTAGAAGATACTCCAATATGC-TGATATTGGAGTATCTTCTACACAATAAGTCTGTATTGTTTCTTGGT1666TAATAGAAGAAACTTTGCAAGTGGCAGCCTTTTGAGGCTGACCACTTCTACTCTGTGCAGAACTTGGATGGAGCTGAGCCACTTGCAAAGTTTC1667GAAACTTTGCAAGTGGC1668Adenomatous polyposisAGTTTCTTCTATTAACCAAGAAACAATACAGACTTATTGTGTAG1669coliAAGATACTCCAATATGTTTTTCAAGATGTAGTTCATTATCATCTCys1270TermTTGTCATCAGCTGAAGATGAAATAGGATGTAATTGT-TGAATTACATCCTATTTCATCTTCAGCTGATGACAAAGATGATAATG1670AACTACATCTTGAAAAACATATTGGAGTATCTTCTACACAATAAGTCTGTATTGTTTCTTGGTTAATAGAAGAAACTCCAATATGTTTTTCAAG1671CTTGAAAAACATATTGG1672Adenomatous polyposisAAGAAACAATACAGACTTATTGTGTAGAAGATACTCCAATATGT1673coliTTTTCAAGATGTAGTTCATTATCATCTTTGTCATCAGCTGAAGASer1276TermTGAAATAGGATGTAATCAGACGACACAGGAAGCTCA-TGAGCTTCCTGTGTCGTCTGATTACATCCTATTTCATCTTCAGCTG1674ATGACAAAGATGATAATGAACTACATCTTGAAAAACATATTGGAGTATCTTCTACACAATAAGTCTGTATTGTTTCTTATGTAGTTCATTATCAT1675ATGATAATGAACTACAT1676Adenomatous polyposisGATACTCCAATATGTTTTTCAAGATGTAGTTCATTATCATCTTT1677coliGTCATCAGCTGAAGATGAAATAGGATGTAATCAGACGACACAGlu1286TermGGAAGCAGATTCTGCTAATACCCTGCAAATAGCAGGAA-TAACTGCTATTTGCAGGGTATTAGCAGAATCTGCTTCCTGTGTCGT1678CTGATTACATCCTATTTCATCTTCAGCTGATGACAAAGATGATAATGAACTACATCTTGAAAAACATATTGGAGTATCCTGAAGATGAAATAGGA1679TCCTATTTCATCTTCAG1680Adenomatous polyposisTGTAGTTCATTATCATCTTTGTCATCAGCTGAAGATGAAATAGG1681coliATGTAATCAGACGACACAGGAAGCAGATTCTGCTAATACCCTGGln1294TermCAAATAGCAGAAATAAAAGAAAAGATTGGAACTACAG-TAGTAGTTCCAATCTTTTCTTTTATTTCTGCTATTTGCAGGGTATTA1682GCAGAATCTGCTTCCTGTGTCGTCTGATTACATCCTATTTCATCTTCAGCTGATGACAAAGATGATAATGAACTACAAGACGACACAGGAAGCA1683TGCTTCCTGTGTCGTCT1684Predisposition to,TAGGATGTAATCAGACGACACAGGAAGCAGATTCTGCTAATAC1685association with,CCTGCAAATAGCAGAAATAAAAGAAAAGATTGGAACTAGGTCAcolorectal cancerGCTGAAGATCCTGTGAGCGAAGTTCCAGCAGTGTCIle1307LysATA-AAAGACACTGCTGGAACTTCGCTCACAGGATCTTCAGCTGACCTA1686GTTCCAATCTTTTCTTTTATTTCTGCTATTTGCAGGGTATTAGCAGAATCTGCTTCCTGTGTCGTCTGATTACATCCTAAGCAGAAATAAAAGAAA1687TTTCTTTTATTTCTGCT1688Adenomatous polyposisCCAAGAAACAATACAGACTTATTGTGTAGAAGATACTCCAATA 1689coilTGTTTTTCAAGATGTAGTTCATTATCATCTTTGTCATCAGCTGAGlu1309TermAGATGAAATAGGATGTAATCAGACGACACAGGAAGAA-TAATTCCTGTGTCGTCTGATTACATCCTATTTCATCTTCAGCTGATG1690ACAAAGATGATAATGAACTACATCTTGAAAAACATATTGGAGTATCTTCTACACAATAAGTCTGTATTGTTTCTTGGAGATGTAGTTCATTATC1691GATAATGAACTACATCT1692Predisposition toGATTCTGCTAATACCCTGCAAATAGCAGAAATAAAAGAAAAGA1693Colorectal CancerTTGGAACTAGGTCAGCTGAAGATCCTGTGAGCGAAGTTCCAGGlu1317GlnCAGTGTCACAGCACCCTAGAACCAAATCCAGCAGACGAA-CAAGTCTGCTGGATTTGGTTCTAGGGTGCTGTGACACTGCTGGAA1694CTTCGCTCACAGGATCTTCAGCTGACCTAGTTCCAATCTTTTCTTTTATTTCTGCTATTTGCAGGGTATTAGCAGAATCGGTCAGCTGAAGATCCT1695AGGATCTTCAGCTGACC1696Adenomatous polyposisAAAGAAAAGATTGGAACTAGGTCAGCTGAAGATCCTGTGAGC1697coliGAAGTTCCAGCAGTGTCACAGCACCCTAGAACCAAATCCAGCGln1328TermAGACTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCACAG-TAGTGGCTGATTCTGAAGATAAACTAGAACCCTGCAGTCTGCTGG 1698ATTTGGTTCTAGGGTGCTGTGACACTGCTGGAACTTCGCTCACAGGATCTTCAGCTGACCTAGTTCCAATCTTTTCTTTCAGTGTCACAGCACCCT1699AGGGTGCTGTGACACTG1700Adenomatous polyposisGATCCTGTGAGCGAAGTTCCAGCAGTGTCACAGCACCCTAGA1701coliACCAAATCCAGCAGACTGCAGGGTTCTAGTTTATCTTCAGAATGln1338TermCAGCCAGGCACAAAGCTGTTGAATTTTCTTCAGGAGCAG-TAGCTCCTGAAGAAAATTCAACAGCTTTGTGCCTGGCTGATTCTGA1702AGATAAACTAGAACCCTGCAGTCTGCTGGATTTGGTTCTAGGGTGCTGTGACACTGCTGGAACTTCGCTCACAGGATCGCAGACTGCAGGGTTCT1703AGAACCCTGCAGTCTGC1704Adenomatous polyposisAAGTTCCAGCAGTGTCACAGCACCCTAGAACCAAATCCAGCA1705coliGACTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCAGGCACAALeu1342TermAGCTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTCTTA-TAAGAGGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTTGTGC1706CTGGCTGATTCTGAAGATAAACTAGAACCCTGCAGTCTGCTGGATTTGGTTCTAGGGTGCTGTGACACTGCTGGAACTTTTCTAGTTTATCTTCAG1707CTGAAGATAAACTAGAA1708Adenomatous polyposisCAGCACCCTAGAACCAAATCCAGCAGACTGCAGGGTTCTAGT1709coliTTATCTTCAGAATCAGCCAGGCACAAAGCTGTTGAATTTTCTTArg1348TrpCAGGAGCGAAATCTCCCTCCCGAAAGTGGTGCTCAGAGG-TGGCTGAGCACCACTTTCGGGAGGGAGATTTCGCTCCTGAAGAAA1710ATTCAACAGCTTTGTGCCTGGCTGATTCTGAAGATAAACTAGAACCCTGCAGTCTGCTGGATTTGGTTCTAGGGTGCTGAATCAGCCAGGCACAAA1711TTTGTGCCTGGCTGATT1712Adenomatous polyposisCTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCAGGCACAAAG1713coliCTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTCCCGAAAGTGGly1357TermGTGCTCAGACACCCCAAAGTCCACCTGAACACTATGGA-TGAATAGTGTTCAGGTGGACTTTGGGGTGTCTGAGCACCACTTTC1714GGGAGGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTTGTGCCTGGCTGATTCTGAAGATAAACTAGAACCCTGCAGTTTCTTCAGGAGCGAAA1715TTTCGCTCCTGAAGAAA1716Adenomatous polyposisCCAGGCACAAAGCTGTTGAATTTTCTTCAGGAGCGAAATCTCC1717coliCTCCCGAAAGTGGTGCTCAGACACCCCAAAGTCCACCTGAACGln1367TermACTATGTTCAGGAGACCCCACTCATGTTTAGCAGATCAG-TAGATCTGCTAAACATGAGTGGGGTCTCCTGAACATAGTGTTCAG1718GTGGACTTTGGGGTGTCTGAGCACCACTTTCGGGAGGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTTGTGCCTGGGTGGTGCTCAGACACCC1719GGGTGTCTGAGCACCAC1720Adenomatous polyposisAAAGCTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTCCAAAA1721coliGTGGTGCTCAGACACCCAAAAGTCCACCTGAACACTATGTTCLys1370TermAGGAGACCCCACTCATGTTTAGCAGATGTACTTCTGAAA-TAACAGAAGTACATCTGCTAAACATGAGTGGGGTCTCCTGAACATA1722GTGTTCAGGTGGACTTTTGGGTGTCTGAGCACCACTTTTGGAGGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTTAGACACCCAAAAGTCCA1723TGGACTTTTGGGTGTCT1724Adenomatous polyposisCACCTGAACACTATGTTCAGGAGACCCCACTCATGTTTAGCA1725coliGATGTACTTCTGTCAGTTCACTTGATAGTTTTGAGAGTCGTTCSer1392TermGATTGCCAGCTCCGTTCAGAGTGAACCATGCAGTGGTCA-TAACCACTGCATGGTTCACTCTGAACGGAGCTGGCAATCGAACGA1726CTCTCAAAACTATCAAGTGAACTGACAGAAGTACATCTGCTAAACATGAGTGGGGTCTCCTGAACATAGTGTTCAGGTGTGTCAGTTCACTTGATA1727TATCAAGTGAACTGACA1728Adenomatous polyposisCACCTGAACACTATGTTCAGGAGACCCCACTCATGTTTAGCA1729coliGATGTACTTCTGTCAGTTCACTTGATAGTTTTGAGAGTCGTTCSer1392TermGATTGCCAGCTCCGTTCAGAGTGAACCATGCAGTGGTCA-TGACCACTGCATGGTTCACTCTGAACGGAGCTGGCAATCGAACGA1730CTCTCAAAACTATCAAGTGAACTGACAGAAGTACATCTGCTAAACATGAGTGGGGTCTCCTGAACATAGTGTTCAGGTGTGTCAGTTCACTTGATA1731TATCAAGTGAACTGACA1732Adenomatous polyposisGTTCAGGAGACCCCACTCATGTTTAGCAGATGTACTTCTGTCA1733coliGTTCACTTGATAGTTTTGAGAGTCGTTCGATTGCCAGCTCCGTGlu1397TermTCAGAGTGAACCATGCAGTGGAATGGTAGGTGGCAGAG-TAGTGCCACCTACCATTCCACTGCATGGTTCACTCTGAACGGAGC1734TGGAATCGAACGACTCTCAAAACTATCAAGTGAACTGACAGAAGTACATCTGCTAAACATGAGTGGGGTCTCCTGAACATAGTTTTGAGAGTCGT1735ACGACTCTCAAAACTAT1736Adenomatous polyposisCAAACCATGCCACCAAGCAGAAGTAAAACACCTCCACCACCT1737coliCCTCAAACAGCTCAAACCAAGCGAGAAGTACCTAAAAATAAAGLys1449TermCACCTACTGCTGAAAAGAGAGAGAGTGGACCTAAGCAAG-TAGGCTTAGGTCCACTCTCTCTCTTTTCAGCAGTAGGTGCTTTATT1738TTTAGGTACTTCTCGCTTGGTTTGAGCTGTTTGAGGAGGTGGTGGAGGTGTTTTACTTCTGCTTGGTGGCATGGTTTGCTCAAACCAAGCGAGAA1739TTCTCGCTTGGTTTGAG1740Adenomatous polyposisACCATGCCACCAAGCAGAAGTAAAACACCTCCACCACCTCCT1741coliCAAACAGCTCAAACCAAGCGAGAAGTACCTAAAAATAAAGCACArg1450TermCTACTGCTGAAAAGAGAGAGAGTGGACCTAAGCAAGCGA-TGA CTTGCTTAGGTCCACTCTCTCTCTTTTCAGCAGTAGGTGCTTT1742ATTTTTAGGTACTTCTCGCTTGGTTTGAGCTGTTTGAGGAGGTGGTGGAGGTGTTTTACTTCTGCTTGGTGGCATGGTAAACCAAGCGAGAAGTA1743TACTTCTCGCTTGGTTT1744Adenomatous polyposisCAGATGCTGATACTTTATTACATTTTGCCACGGAAAGTACTCC1145coliAGATGGATTTTCTTGTTCATCCAGCCTGAGTGCTCTGAGCCTCSeR1503TermGATGAGCCATTTATACAGAAAGATGTGGAATTAAGTCA-TAACTTAATTCCACATCTTTCTGTATAAATGGCTCATCGAGGCTCA1746GAGCACTCAGGCTGGATGAACAAGAAAATCCATCTGGAGTACTTTCCGTGGCAAAATGTAATAAAGTATCAGCATCTGTTCTTGTTCATCCAGCC1747GGCTGGATGAACAAGAA1748Adenomatous polyposisCTGAGCCTCGATGAGCCATTTATACAGAAAGATGTGGAATTAA1749coliGAATAATGCCTCCAGTTCAGGAAAATGACAATGGGAATGAAACI Gln1529TermAGAATCAGAGCAGCCTAAAGAATCAAATGAAAACCCAG-TAGGGTTTTCATTTGATTCTTTAGGCTGCTCTGATTCTGTTTCATTC1750CCATTGTCATTTTCCTGAACTGGAGGCATTATTCTTAATTCCACATCTTTCTGTATAAATGGCTCATCGAGGCTCAGCTCCAGTTCAGGAAAAT1751ATTTTCCTGAACTGGAG1752Adenomatous polyposisATGTGGAATTAAGAATAATGCCTCCAGTTCAGGAAAATGACAA1753coliTGGGAATGAAACAGAATCAGAGCAGCCTAAAGAATCAAATGAASer1539TermAACCAAGAGAAAGAGGCAGAAAAAACTATTGATTCTCA-TAAGAATCAATAGTTTTTTCTGCCTCTTTCTCTTGGTTTTCATTTGA1754TTCTTTAGGCTGCTCTGATTCTGTTTCATTCCCATTGTCATTTTCCTGAACTGGAGGCATTATTCTTAATTCCACATAACAGAATCAGAGCAGC1755GCTGCTCTGATTCTGTT1756Adenomatous polyposisAAAACCAAGAGAAAGAGGCAGAAAAAACTATTGATTCTGAAAA1757coliGGACCTATTAGATGATTCAGATGATGATGATATTGAAATACTASer1567TermGAAGAATGTATTATTTCTGCCATGCCAACAAAGTCTCA-TGAGACTTTGTTGGCATGGCAGAAATAATACATTCTTCTAGTATTTC1758AATATCATCATCATCTGAATCATCTAATAGGTCCTTTTCAGAATCAATAGTTTTTTCTGCCTCTTTCTCTTGGTTTTAGATGATTCAGATGATG1759CATCATCTGAATCATCT1760Adenomatous poiyposisAGAGAGTTTTCTCAGACAACAAAGATTCAAAGAAACAGAATTT1761coliGAAAAATAATTCCAAGGACTTCAATGATAAGCTCCCAAATAATAsp1822ValGAAGATAGAGTCAGAGGAAGTTTTGCTTTTGATTCGAC-GTCGAATCAAAAGCAAAACTTCCTCTGACTCTATCTTCATTATTTGG1762GAGCTTATCATTGAAGTCCTTGGAATTATTTTTCAAATTCTGTTTCTTTGAATCTTTGTTGTCTGAGAAAACTCTCTTTCCAAGGACTTCAATG1763CATTGAAGTCCTTGGAA 1764Adenomatous polyposisAAAACTGACAGCACAGAATCCAGTGGAACCCAAAGTCCTAAG1765coliCGCCATTCTGGGTCTTACCTTGTGACATCTGTTTAAAAGAGAGLeu2839PheGAAGAATGAAACTAAGAAAATTCTATGTTAATTACACTT-TTTTGTAATTAACATAGAATTTTCTTAGTTTCATTCTTCCTCTCTTTT1766AAACAGATGTCACAAGGTAAGACCCAGAATGGCGCTTAGGACTTTGGGTTCCACTGGATTCTGTGCTGTCAGTTTTGGTCTTACCTTGTGACA1767TGTCACAAGGTAAGACC1768



EXAMPLE 12


Parahemophilia—Factor V Deficiency

[0133] Deficiency in clotting Factor V is associated with a lifelong predisposition to thrombosis. The disease typically manifests itself with usually mild bleeding, although bleeding times and clotting times are consistently prolonged. Individuals that are heterozygous for a mutation in Factor V have lowered levels of factor V but probably never have abnormal bleeding. A large number of alleles with a range of presenting symptoms have been identified. The attached table discloses the correcting oligonucleotide base sequences for the Factor V oligonucleotides of the invention.
20TABLE 19Factor V Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Factor V deficiencyTTGACTGAATGCTTATTTTGGCCTGTGTCTCTCCCTCTTTCTCA1768Ala221ValGATATAACAGTTTGTGCCCATGACCACATCAGCTGGCATCTGCGCC-GTCTGGGAATGAGCTCGGGGCCAGAATTATTCTCCATATGGAGAATAATTCTGGCCCCGAGCTCATTCCCAGCAGATGC1769CAGCTGATGTGGTCATGGGCACAAACTGTTATATCTGAGAAAGAGGGAGAGACACAGGCCAAAATAAGCATTCAGTCAAAGTTTGTGCCCATGACC1770GGTCATGGGCACAAACT1771ThrombosisTGTCCTAACTCAGCTGGGATGCAGGCTTACATTGACATTAAAA1712Arg306GlyACTGCCCAAAGAAAACCAGGAATCTTAAGAAAATAACTCGTGAAGG-GGGGCAGAGGCGGCACATGAAGAGGTGGGAATACTTCATGAAGTATTCCCACCTCTTCATGTGCCGCCTCTGCTCACGAGT1773TATTTTCTTAAGATTCCTGGTTTTCTTTGGGCAGTTTTTAATGTCAATGTAAGCCTGCATCCCAGCTGAGTTAGGACAAGAAAACCAGGAATCTT1774AAGATTCCTGGTTTTCT1775ThrombosisGTCCTAACTCAGCTGGGATGCAGGCTTACATTGACATTAAAAA1776Arg306ThrCTGCCCAAAGAAAACCAGGAATCTTAAGAAAATAACTCGTGAGAGG-ACGCAGAGGCGGCACATGAAGAGGTGGGAATACTTCATATGAAGTATTCCCACCTCTTCATGTGCCGCCTCTGCTCACGA1777GTTATTTTCTTAAGATTCCTGGTTTTCTTTGGGCAGTTTTTAATGTCAATGTAAGCCTGCATCCCAGCTGAGTTAGGACGAAAACCAGGAATCTTA1778TAAGATTCCTGGTTTTC1779Increased RiskCCACAGAAAATGATGCCCAGTGCTTAACAAGACCATACTACAG1780ThrombosisTGACGTGGACATCATGAGAGACATCGCCTCTGGGCTAATAGGArg485LysACTACTTCTAATCTGTAAGAGCAGATCCCTGGACAGAGA-AAACTGTCCAGGGATCTGCTCTTACAGATTAGAAGTAGTCCTATTA1781GCCCAGAGGCGATGTCTCTCATGATGTCCACGTCACTGTAGTATGGTCTTGTTAAGCACTGGGCATCATTTTCTGTGGCATCATGAGAGACATCG1782CGATGTCTCTCATGATG1783Increased RiskACATCGCCTCTGGGCTAATAGGACTACTTCTAATCTGTAAGAG1784ThrombosisCAGATCCCTGGACAGGCGAGGAATACAGGTATTTTGTCCTTGArg506GlnAAGTAACCTTTCAGAAATTCTGAGAATTTCTTCTGGCGA-CAACCAGAAGAAATTCTCAGAATTTCTGAAAGGTTACTTCAAGGAC1785AAAATACCTGTATTCCTCGCCTGTCCAGGGATCTGCTCTTACAGATTAGAAGTAGTCCTATTAGCCCAGAGGCGATGTGGACAGGCGAGGAATAC1786GTATTCCTCGCCTGTCC1787Factor V DeficiencyGACATCGCCTCTGGGCTAATAGGACTACTTCTAATCTGTAAGA1788Arg506TermGCAGATCCCTGGACAGGCGAGGAATACAGGTATTTTGTCCTTCGA-TGAGAAGTAACCTTTCAGAAATTCTGAGAATTTCTTCTGCAGAAGAAATTCTCAGAATTTCTGAAAGGTTACTTCAAGGACA1789AAATACCTGTATTCCTCGCCTGTCCAGGGATCTGCTCTTACAGATTAGAAGTAGTCCTATTAGCCCAGAGGCGATGTCTGGACAGGCGAGGAATA1790TATTCCTCGCCTGTCCA1791ThrombosisAGTGATGCTGACTATGATTACCAGAACAGACTGGCTGCAGCA1792Arg712TermTTAGGAATCAGGTCATTCCGAAACTCATCATTGAATCAGGAAGCGA-TGAAAGAAGAGTTCAATCTTACTGCCCTAGCTCTGGAGATCTCCAGAGCTAGGGCAGTAAGATTGAACTCTTCTTCTTCCTG1793ATTCAATGATGAGTTTCGGAATGACCTGATTCCTAATGCTGCAGCCAGTCTGTTCTGGTAATCATAGTCAGCATCACTGGTCATTCCGAAACTCA1794TGAGTTTCGGAATGACC1795ThrombosisTCAGTCAGACAAACCTTTCCCCAGCCCTCGGTCAGATGCCCA1796His1299ArgTTTCTCCAGACCTCAGCCATACAACCCTTTCTCTAGACTTCAGCAT-CGTCCAGACAAACCTCTCTCCAGAACTCAGTCAAACAAATTTGTTTGACTGAGTTCTGGAGAGAGGTTTGTCTGGCTGAAGT1797CTAGAGAAAGGGTTGTATGGTCTGGAGAAATGGGCATCTGACCGAGGGCTGGGGAAAGGTTTGTCTGACTGACCTCAGCCATACAACCC1798GGGTTGTATGGCTGAGG1799



EXAMPLE 13


Hemophilia—Factor VIII Deficiency

[0134] The attached table discloses the correcting oligonucleotide base sequences for the Factor VIII oligonucleotides of the invention.
21TABLE 20Factor VIII Mutations and Genome-Correcting OligosClinicaI Phenotype &SEQ IDMutationCorrecting OligosNO:Haemophilia AAGCTCTCCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTT1800Tyr5CysTAGTGCCACCAGAAGATACTACCTGGGTGCAGTGGAACTGTCTAC-TGCATGGGACTATATGCAAAGTGATCTCGGTGAGCTGCCGGCAGCTCACCGAGATCACTTTGCATATAGTCCCATGACAGT1801TCCACTGCACCCAGGTAGTATCTTCTGGTGGCACTAAAGCAGAATCGCAAAAGGCACAGAAAGAAGCAGGTGGAGAGCTCAGAAGATACTACCTGG1802CCAGGTAGTATCTTCTG1803Haemophilia ACCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTTTAGTGC1804Leu7ArgCACCAGAAGATACTACCTGGGTGCAGTGGAACTGTCATGGGACTG-CGGCTATATGCAAAGTGATCTCGGTGAGCTGCCTGTGGATCCACAGGCAGCTCACCGAGATCACTTTGCATATAGTCCCAT1805GACAGTTCCACTGCACCCAGGTAGTATCTTCTGGTGGCACTAAAGCAGAATCGCAAAAGGCACAGAAAGAAGCAGGTGGATACTACCTGGGTGCAG1806CTGCACCCAGGTAGTAT1807Haemophilia AAGTCATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTT1808Ser(−1)ArgTTGCGATTCTGCTTTAGTGCCACCAGAAGATACTACCTGGGTAGTg-AGGGCAGTGGAACTGTCATGGGACTATATGCAAAGTGATATCACTTTGCATATAGTCCCATGACAGTTCCACTGCACCCAG1809GTAGTATCTTCTGGTGGCACTAAAGCAGAATCGCAAAAGGCACAGAAAGAAGCAGGTGGAGAGCTCTATTTGCATGACTTGCTTTAGTGCCACCAG1810CTGGTGGCACTAAAGCA1811Haemophilia ACATTTGTAGCAAATAAGTCATGCAAATAGAGCTCTCCACCTGCT1812Arg(−5)TermTCTTTCTGTGCCTTTTGCGATTCTGCTTTAGTGCCACCAGAAGgCGA-TGAATACTACCTGGGTGCAGTGGAACTGTCATGGGACTAGTCCCATGACAGTTCCACTGCACCCAGGTAGTATCTTCTGG1813TGGCACTAAAGCAGAATCGCAAAAGGCACAGAAAGAAGCAGGTGGAGAGCTCTATTTGCATGACTTATTGCTACAAATGGCCTTTTGCGATTCTGC1814GCAGAATCGCAAAAGGC1815Haemophilia ATTCTGTGCCTTTTGCGATTCTGCTTTAGTGCCACCAGAAGATA1816Glu11ValCTACCTGGGTGCAGTGGAACTGTCATGGGACTATATGCAAAGGAA-GTATGATCTCGGTGAGCTGCCTGTGGACGCAAGGTAAAGCTTTACCTTGCGTCCACAGGCAGCTCACCGAGATCACTTTGC1817ATATAGTCCCATGACAGTTCCACTGCACCCAGGTAGTATCTTCTGGTGGCACTAAAGCAGAATCGCAAAAGGCACAGAATGCAGTGGAACTGTCAT1818ATGACAGTTCCACTGCA1819Haemophilia ACTTTTGCGATTCTGCTTTAGTGCCACCAGAAGATACTACCTGG1820Trp14GlyGTGCAGTGGAACTGTCATGGGACTATATGCAAAGTGATCTCGaTGG-GGGGTGAGCTGCCTGTGGACGCAAGGTAAAGGCATGTCCGGACATGCCTTTACCTTGCGTCCACAGGCAGCTCACCGAGAT1821CACTTTGCATATAGTCCCATGACAGTTCCACTGCACCCAGGTAGTATCTTCTGGTGGCACTAAAGCAGAATCGCAAAAGAACTGTCATGGGACTAT1822ATAGTCCCATGACAGTT1823Haemophilia ATTCACGCAGATTTCCTCCTAGAGTGCCAAAATCTTTTCCATTC1824Tyr46TermAACACCTCAGTCGTGTACAAAAAGACTCTGTTTGTAGAATTCATACa-TAACGGATCACCTTTTCAACATCGCTAAGCCAAGGCCATGGCCTTGGCTTAGCGATGTTGAAAAGGTGATCCGTGAATTC1825TACAAACAGAGTCTTTTTGTACACGACTGAGGTGTTGAATGGAAAAGATTTTGGCACTCTAGGAGGAAATCTGCGTGAAGTCGTGTACAAAAAGAC1826GTCTTTTTGTACACGAC1827Haemophilia AATCTTTTCCATTCAACACCTCAGTCGTGTACAAAAAGACTCTG1828Asp56GluTTTGTAGAATTCACGGATCACCTTTTCAACATCGCTAAGCCAAGATc-GAAGGCCACCCTGGATGGGTAATGAAAACAATGTTGAATTCAACATTGTTTTCATTACCCATCCAGGGTGGCCTTGGCTTA1829GCGATGTTGAAAAGGTGATCCGTGAATTCTACAAACAGAGTCTTTTTGTACACGACTGAGGTGTTGAATGGAAAAGATTTCACGGATCACCTTTT1830AAAAGGTGATCCGTGAA1831Haemophilia ATTCTGGAGTACTATCCCCAAGTAACCTTTGGCGGACATCTCAT1832Gly73ValTCTTACAGGTCTGCTAGGTCCTACCATCCAGGCTGAGGTTTAGGT-GTTTGATACAGTGGTCATTACACTTAAGAACATGGCTTCGAAGCCATGTTCTTAAGTGTAATGACCACTGTATCATAAACCT1833CAGCCTGGATGGTAGGACCTAGCAGACCTGTAAGAATGAGATGTCCGCCAAAGGTTACTTGGGGATAGTACTCCAGAATCTGCTAGGTCCTACCA1834TGGTAGGACCTAGCAGA1835Haemophilia ACAAGTAACCTTTGGCGGACATCTCATTCTTACAGGTCTGCTAG1836Glu79LysGTCCTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACtGAG-AAGACTTAAGAACATGGCTTCCCATCCTGTCAGTCTTCGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGA1837CCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCTAGCAGACCTGTAAGAATGAGATGTCCGCCAAAGGTTACTTGTCCAGGCTGAGGTTTAT1838ATAAACCTCAGCCTGGA1839Haemophilia ATAACCTTTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCC1840Val80AspTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACACTTGTT-GATAAGAACATGGCTTCCCATCCTGTCAGTCTTCATGCGCATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTA1841ATGACCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCTAGCAGACCTGTAAGAATGAGATGTCCGCCAAAGGTTAGGCTGAGGTTTATGATA1842TATCATAAACCTCAGCC1843Haemophilia ATTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCCTACCAT1844Asp82ValCCAGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAACGAT-GTTATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGGCCAACAGCATGAAGACTGACAGGATGGGAAGCCATGTTCTTA1845AGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCTAGCAGACCTGTAAGAATGAGATGTCCGCCAAGGTTTATGATACAGTGG1846CCACTGTATCATAAACC1847Haemophilia ATTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCCTACCAT1848Asp82GlyCCAGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAACGAT-GGTATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGGCCAACAGCATGAAGACTGACAGGATGGGAAGCCATGTTCTTA1849AGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTA-GGACCTAGCAGACCTGTAAGAATGAGATGTCCGCCAAGGTTTATGATACAGTGG1850CCACTGTATCATAAACC1851Haemophilia AATCTCATTCTTACAGGTCTGCTAGGTCCTACCATCCAGGCTGA1852Val85AspGGTTTATGATACAGTGGTCATTACACTTAAGAACATGGCTTCCGTC-GACCATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTATAGGATACACCAACAGCATGAAGACTGACAGGATGGGAAGCC1853ATGTTCTTAAGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCTAGCAGACCTGTAAGAATGAGATTACAGTGGTCATTACAC1854GTGTAATGACCACTGTA1855Haemophilia ACAGGTCTGCTAGGTCCTACCATCCAGGCTGAGGTTTATGATA1856Lys89ThrCAGTGGTCATTACACTTAAGAACATGGCTTCCCATCCTGTCAAAG-ACGGTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCTTCGAAGCTTTCCAGTAGGATACACCAACAGCATGAAGACTGACA1857GGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCTAGCAGACCTGTACACTTAAGAACATGG1858CCATGTTCTTAAGTGTA1859Haemophilia ACTGCTAGGTCCTACCATCCAGGCTGAGGTTTATGATACAGTG1860Met91ValGTCATTACACTTAAGAACATGGCTTCCCATCCTGTCAGTCTTCcATG-GTGATGCTGTTGGTGTATCCTACTGGAAAGCTTCTGAGGCCTCAGAAGCTTTCCAGTAGGATACACCAACAGCATGAAGAC1861TGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCTAGCAGTTAAGAACATGGCTTCC1862GGAAGCCATGTTCTTAA1863Haemophilia ACTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACACT1864His94ArgTAAGAACATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGGTCAT-CGTGTATCCTACTGGAAAGCTTCTGAGGGTGAGTAAAATTTTACTCACCCTCAGAAGCTTTCCAGTAGGATACACCAACAG1865CATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTAGGGCTTCCCATCCTGTCA1866TGACAGGATGGGAAGCC1867Haemophilia ACCTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACAC1868His94TyrTTAAGAACATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGGcCAT-TATTGTATCCTACTGGAAAGCTTCTGAGGGTGAGTAAATTTACTCACCCTCAGAAGCTTTCCAGTAGGATACACCAACAGC1869ATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTAGGTGGCTTCCCATCCTGTC1870GACAGGATGGGAAGCCA1871Haemophilia ACTGAGGTTTATGATACAGTGGTCATTACACTTAAGAACATGGC1872Leu98ArgTTCCCATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTACTGGCTT-CGTAAAGCTTCTGAGGGTGAGTAAAATACCCTCCTATTAATAGGAGGGTATTTTACTCACCCTCAGAAGCTTTCCAGTAGG1873ATACACCAACAGCATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATCATAAACCTCAGTGTCAGTCTTCATGCTG1874CAGCATGAAGACTGACA1875Haemophilia AGATACAGTGGTCATTACACTTAAGAACATGGCTTCCCATCCTG1876Gly102SerTCAGTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCTTCTGAtGGT-AGTGGGTGAGTAAAATACCCTCCTATTGTCCTGTCATTAATGACAGGACAATAGGAGGGTATTTTACTCACCCTCAGAAG1877CTTTCCAGTAGGATACACCAACAGCATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATCATGCTGTTGGTGTATCC1878GGATACACCAACAGCAT1879Haemophilia ACTTTGAGTGTACAGTGGATATAGAAAGGACAATTTTATTTCTTC1880Glu113AspCTGCTATAGGAGCTGAATATGATGATCAGACCAGTCAAAGGGGAAt-GACAGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCGCTTCCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGA1881CTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAATAAAATTGTCCTTTCTATATCCACTGTACACTCAAAGGGAGCTGAATATGATGA1882TCATCATATTCAGCTCC1883Haemophilia ATTGAGTGTACAGTGGATATAGAAAGGACAATTTTATTTCTTCCT1884Tyr114CysGCTATAGGAGCTGAATATGATGATCAGACCAGTCAAAGGGAGTAT-TGTAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCCATGGCTTCCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTT1885GACTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAATAAATTGTCCTTTCTATATCCACTGTACACTCAAAGCTGAATATGATGATC1886GATCATCATATTCAGCT1887Haemophilia AGTACAGTGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATA1888Asp116GlyGGAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAAGAT-GGTGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTTCTTTCT1889CCCTTTGACTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAATAAAATTGTCCTTTCTATATCCACTGTACATATGATGATCAGACCA1890TGGTCTGATCATCATAT1891Haemophilia AACAGTGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATAG1892Gln117TermGAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAAGtCAG-TAGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGCATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTTCTTT1893CTCCCTTTGACTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAATAAAATTGTCCTTTCTATATCCACTGTATGATGATCAGACCAGT1894ACTGGTCTGATCATCAT1895Haemophilia ATGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATAGGAGC1896Thr118IleTGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAAGATGAACC-ATCTAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGCAGACATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTT1897CTTTCTCCCTTTGACTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAATAAAATTGTCCTTTCTATATCCATGATCAGACCAGTCAAA1898TTTGACTGGTCTGATCA1899Haemophilia AAGGACAATTTTATTTCTTCCTGCTATAGGAGCTGAATATGATG1900Glu122TermATCAGACCAGTCAAAGGGAGAAAGAAGATGATAAAGTCTTCCgGAG-TAGCTGGTGGAAGCCATACATATGTCTGGCAGGTCCTGATCAGGACCTGCCAGACATATGTATGGCTTCCACCAGGGAAGA1901CTTTATCATCTTCTTTCTCCCTTTGACTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAATAAAATTGTCCTGTCAAAGGGAGAAAGAA1902TTCTTTCTCCCTTTGAC1903Haemophilia ATTTCTTCCTGCTATAGGAGCTGAATATGATGATCAGACCAGTC1904Asp126HisAAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCCtGAT-CATATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCGACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCC1905ACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGACTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAAAAGAAGATGATAAAGTC1906GACTTTATCATCTTCTT1907Haemophilia AAGTCAAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGA1908Gln139TermAGCCATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAgCAG-TAGATGGCCTCTGACCCACTGTGCCTTACCTACTCATATCGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGA1909CCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGACTATGTCTGGCAGGTCCTG1910CAGGACCTGCCAGACAT1911Haemophilia AAAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCC1912Val140AlaATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGGGTC-GCCCCTCTGACCCACTGTGCCTTACCTACTCATATCTTTCGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATT1913GGACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTTCTGGCAGGTCCTGAAAG1914CTTTCAGGACCTGCCAG1915Haemophilia AAGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTG1916Asn144LysGCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTAATg-AAAGTGCCTTACCTACTCATATCTTTCTCATGTGGACCTGCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGG1917GTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTAAAGAGAATGGTCCAAT1918ATTGGACCATTCTCTTT1919Haemophilia AGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCA1920Gly145AspGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGGGT-GATCCTTACCTACTCATATCTTTCTCATGTGGACCTGGTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGT1921GGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCCACCAGGGAAGACTTTATCATAGAGAATGGTCCAATGG1922CCATTGGACCATTCTCT1923Haemophilia AATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCA1924Gly145ValGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGGGT-GTTCCTTACCTACTCATATCTTTCTCATGTGGACCTGGTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGT1925GGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCCACCAGGGAAGACTTTATCATAGAGAATGGTCCAATGG1926CCATTGGACCATTCTCT1927Haemophilia AGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCAG1928Pro146SerGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGCtCCA-TCACTTACCTACTCATATCTTTCTCATGTGGACCTGGTAATTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACA1929GTGGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCCACCAGGGAAGACTTTATCAGAATGGTCCAATGGCC1930GGCCATTGGACCATTCT1931Haemophilia ACCATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAAT1932Cys153TrpGGCCTCTGACCCACTGTGCCTTACCTACTCATATCTTTCTCATTGCc-TGGGTGGACCTGGTAAAAGACTTGAATTCAGGCCTCATTAATGAGGCCTGAATTCAAGTCTTTTACCAGGTCCACATGAGAA1933AGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCCACTGTGCCTTACCTA1934TAGGTAAGGCACAGTGG1935Haemophilia ATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGA1936Tyr156TermCCCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCTGTACt-TAAGTAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTATAGGGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGTC1937CACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGACACTTACCTACTCATATCT1938AGATATGAGTAGGTAAG1939Haemophilia AGTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGAC1940Ser157ProCCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCTGGcTCA-CCATAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTACGTAGGGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGT1941CCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGACTTACCTACTCATATCTT1942AAGATATGAGTAGGTAA1943Haemophilia AGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGC1944Ser160ProCTTACCTACTCATATCTTTCTCATGTGGACCTGGTAAAAGACTtTCT-CCTTGAATTCAGGCCTCATTGGAGCCCTACTAGTATGTATACATACTAGTAGGGCTCCAATGAGGCCTGAATTCAAGTCTTT1945TACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCATATCTTTCTCATGTG1946CACATGAGAAAGATATG1947Haemophilia AAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGCCTTACC1948Val162MetTACTCATATCTTTCTCATGTGGACCTGGTAAAAGACTTGAATTtGTG-ATGCAGGCCTCATTGGAGCCCTACTAGTATGTAGAGAAGCTTCTCTACATACTAGTAGGGCTCCAATGAGGCCTGAATTCAA1949GTCTTTTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGACCATTCTCTTTTTTCTCATGTGGACCTG1950CAGGTCCACATGAGAAA1951Haemophilia ACAATGGCCTCTGACCCACTGTGCCTTACCTACTCATATCTTTC1952Lys166ThrTCATGTGGACCTGGTAAAAGACTTGAATTCAGGCCTCATTGGAAA-ACAAGCCCTACTAGTATGTAGAGAAGGTAAGTGTATGAATTCATACACTTACCTTCTCTACATACTAGTAGGGCTCCAATGA1953GGCCTGAATTCAAGTCTTTTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGCCTGGTAAAAGACTTGA1954TCAAGTCTTTTACCAGG1955Haemophilia AACCCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCT1956Ser170LeuGGTAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTACTAGTTCA-TTAATGTAGAGAAGGTAAGTGTATGAAAGCGTAGGATTGCAATCCTACGCTTTCATACACTTACCTTCTCTACATACTAGTAG1957GGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCTTGAATTCAGGCCTCA1958TGAGGCCTGAATTCAAG1959Haemophilia AAATGTTCTCACTTCTTTTTCAGGGAGTCTGGCCAAGGAAAAGA1960Phe195ValCACAGACCTTGCACAAATTTATACTACTTTTTGCTGTATTTGATaTTT-GTTGAAGGTTAGTGAGTCTTAATCTGAATTTTGGATTAATCCAAAATTCAGATTAAGACTCACTAACCTTCATCAAATACA1961GCAAAAAGTAGTATAAATTTGTGCAAGGTCTGTGTCTTTTCCTTGGCCAGACTCCCTGAAAAAGAAGTGAGAACATTTGCACAAATTTATACTA1962TAGTATAAATTTGTGCA1963Haemophilia ACTTCTTTTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCT1964Leu198HisTGCACAAATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAGCTT-CATTGAGTCTTAATCTGAATTTTGGATTCCTGAAAGAATTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACTAACCTTC1965ATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAAGGTCTGTGTCTTTTCCTTGGCCAGACTCCCTGAAAAAGAAGTATACTACTTTTTGCTG1966CAGCAAAAAGTAGTATA1967Haemophilia ATTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCTTGCACA1968Ala200AspAATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAGTGAGTCGCT-GATTTAATCTGAATTTTGGATTCCTGAAAGAAATCCTCGAGGATTTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACT1969AACCTTCATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAAGGTCTGTGTCTTTTCCTTGGCCAGACTCCCTGAAAACTTTTTGCTGTATTTG1970CAAATACAGCAAAAAGT1971Haemophilia ATTTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCTTGCAC1972Ala200ThrAAATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAGTGAGTtGCT-ACTCTTAATCTGAATTTTGGATTCCTGAAAGAAATCCTAGGATTTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACTA1973ACCTTCATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAAGGTCTGTGTCTTTTCCTTGGCCAGACTCCCTGAAAATACTTTTTGCTGTATTT1974AAATACAGCAAAAAGTA1975Haemophilia AAACTCCTTGATGCAGGATAGGGATGCTGCATCTGCTCGGGCC1976Val234PheTGGCCTAAAATGCACACAGTCAATGGTTATGTAAACAGGTCTCaGTC-TTCTGCCAGGTATGTACACACCTGCTCAACAATCCTCAGCTGAGGATTGTTGAGCAGGTGTGTACATACCTGGCAGAGACC1977TGTTTACATAACCATTGACTGTGTGCATTTTAGGCCAGGCCCGAGCAGATGCAGCATCCCTATCCTGCATCAAGGAGTTTGCACACAGTCAATGGT1978ACCATTGACTGTGTGCA1979Haemophilia AATTTCAGATTCTCTACTTCATAGCCATAGGTGTCTTATTCCTAC1980Gly247GluTTTACAGGTCTGATTGGATGCCACAGGAAATCAGTCTATTGGCGGA-GAAATGTGATTGGAATGGGCACCACTCCTGAAGTGCATGCACTTCAGGAGTGGTGCCCATTCCAATCACATGCCAATAG1981ACTGATTTCCTGTGGCATCCAATCAGACCTGTAAAGTAGGAATAAGACACCTATGGCTATGAAGTAGAGAATCTGAAATTCTGATTGGATGCCACA1982TGTGGCATCCAATCAGA1983Haemophilia AATAGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCAC1984Trp255CysAGGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTTGGc-TGTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGT1985GCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGGCATCCAATCAGACCTGTAAAGTAGGAATAAGACACCTATGTCTATTGGCATGTGAT1986ATCACATGCCAATAGAC1987Haemophilia AATAGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCAC1988Trp255TermAGGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTTGGc-TGACCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGT1989GCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGGCATCCAATCAGACCTGTAAAGTAGGAATAAGACACCTATGTCTATTGGCATGTGAT1990ATCACATGCCAATAGAC1991Haemophilia AAGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCACAG1992His256LeuGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCCAT-CTTTGAAGTGCACTCAATATTCCTCGAAGGTCACACATTAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTG1993GTGCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGGCATCCAATCAGACCTGTAAAGTAGGAATAAGACACCTCTATTGGCATGTGATTG1994CAATCACATGCCAATAG1995Haemophilia ATATTCCTACTTTACAGGTCTGATTGGATGCCACAGGAAATCAG1996Gly259ArgTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAAGTGCtGGA-AGAACTCAATATTCCTCGAAGGTCACACATTTCTTGTGATCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTC1997AGGAGTGGTGCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGGCATCCAATCAGACCTGTAAAGTAGGAATAATGTGATTGGAATGGGC1998GCCCATTCCAATCACAT1999Haemophilia ATTGGATGCCACAGGAAATCAGTCTATTGGCATGTGATTGGAAT2000Val266GlyGGGCACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCAGTG-GGGCACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCT2001TCGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGGCATCCAATCCTGAAGTGCACTCAA2002TTGAGTGCACTTCAGGA2003Haemophilia ACAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAAG2004Glu272GlyTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGAAGAA-GGACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAACGTTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTC2005ACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCATTCCAATCACATGCCAATAGACTGATTCCTCGAAGGTCACA2006TGTGACCTTCGAGGAAT2007Haemophilia ATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAA2008Glu272LysGTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGAcGAA-AAAACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAATTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCA2009CAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCATTCCAATCACATGCCAATAGACTGATATTCCTCGAAGGTCAC2010GTGACCTTCGAGGAATA2011Haemophilia AGGCATGTGATTGGAATGGGCACCACTCCTGAAGTGCACTCAA2012Thr275IleTATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCATCGCCAACA-ATAGGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTACGTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGA2013TGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCATTCCAATCACATGCCAGGTCACACATTTCTTG2014CAAGAAATGTGTGACCT2015Haemophilia ATTGGAATGGGCACCACTCCTGAAGTGCACTCAATATTCCTCG2016Val278AlaAAGGTCACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTGTG-GCGTGGAAATCTCGCCAATAACTTTCCTTACTGCTCAAACGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCAAGGAC2017GCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCATTCCAAATTTCTTGTGAGGAACC2018GGTTCCTCACAAGAAAT2019Haemophilia ATGGGCACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTC2020Asn280IleACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAAAAC-ATCTCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTTAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCA2021AGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCATGTGAGGAACCATCGCC2022GGCGATGGTTCCTCACA2023Haemophilia AACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACAT2024Arg282CysTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCtCGC-TGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGA2025TTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGTGGAACCATCGCCAGGCG2026CGCCTGGCGATGGTTCC2027Haemophilia ACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATT2028Arg282HisTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCCCGC-CACAATAACTTTCCTTACTGCTCAAACACTCTTGATGGATCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAG2029ATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGGAACCATCGCCAGGCGT2030ACGCCTGGCGATGGTTC2031Haemophilia ACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATT2032Arg282LeuTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCCCGC-CTCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGATCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAG2033ATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGGAACCATCGCCAGGCGT2034ACGCCTGGCGATGGTTC2035Haemophilia ACTGAAGTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGT2036Ala284GluGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAACGCG-GAGTTTCCTTACTGCTCAAACACTCTTGATGGACCTTGGCCAAGGTCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATT2037GGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGTCGCCAGGCGTCCTTGG2038CCAAGGACGCCTGGCGA2039Haemophilia ACCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATTTCTTG2040Ala284ProTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAAgGCG-CCGCTTTCCTTACTGCTCAAACACTCTTGATGGACCTTGCAAGGTCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTG2041GCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGATCGCCAGGCGTCCTTG2042CAAGGACGCCTGGCGAT2043Haemophilia ATATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCATCGCCA2044Ser289LeuGGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTACTGCTCAATCG-TTGACACTCTTGATGGACCTTGGACAGTTTCTACTGTTAACAGTAGAAACTGTCCAAGGTCCATCAAGAGTGTTTGAGCA2045GTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATAGGAAATCTCGCCAATAA2046TTATTGGCGAGATTTCC2047Haemophilia AGTCACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGG2048Phe293SerAAATCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATTTC-TCCGGACCTTGGACAGTTTCTACTGTTTTGTCATATCTCGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCATCAAG2049AGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACAATAACTTTCCTTACTG2050CAGTAAGGAAAGTTATT2051Haemophilia AACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATC2052Thr295AlaTCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACCtACT-GCTTTGGACAGTTTCTACTGTTTTGTCATATCTCTTCCCGGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCA2053TCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTCTTTCCTTACTGCTCAA2054TTGAGCAGTAAGGAAAG2055Haemophilia ACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCT2056Thr295IleCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACCTACT-ATTTGGACAGTTTCTACTGTTTTGTCATATCTCTTCCCATGGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCC2057ATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTTTCCTTACTGCTCAAA2058TTTGAGCAGTAAGGAAA2059Haemophilia ATTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGC2060Ala296ValCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACCTTGGGCT-GTTACAGTTTCTACTGTTTTGTCATATCTCTTCCCACCATGGTGGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGG2061TCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAACCTTACTGCTCAAACAC2062GTGTTTGAGCAGTAAGG2063Haemophilia ATCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGA2064Leu308ProCCTTGGACAGTTTCTACTGTTTTGTCATATCTCTTCCCACCAACTG-CCGCATGGTAATATCTTGGATCTTTAAAATGAATATTATAATATTCATTTTAAAGATCCAAGATATTACCATGTTGGTGGGA2065AGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGAGTTTCTACTGTTTTGTC2066GACAAAACAGTAGAAAC2067Haemophilia AACAGCCTAATATAGCAAGACACTCTGACATTGTTTGGTTTGTC2068Glu321LysTGACTCCAGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTgGAA-AAAGTCCAGAGGAACCCCAACTACGAATGAAAAATAATGCATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGACAGCTGTC2069TACTTTGACATAAGCTTCCATGCCATCTGGAGTCAGACAAACCAAACAATGTCAGAGTGTCTTGCTATATTAGGCTGTATGGCATGGAAGCTTAT2070ATAAGCTTCCATGCCAT2071Haemophilia AATATAGCAAGACACTCTGACATTGTTTGGTTTGTCTGACTCCA2072Tyr323TermGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGTCCAGAGTATg-TAAGAACCCCAACTACGAATGAAAAATAATGAAGAAGCGCGCTTCTTCATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGA2073CAGCTGTCTACTTTGACATAAGCTTCCATGCCATCTGGAGTCAGACAAACCAAACAATGTCAGAGTGTCTTGCTATATGAAGCTTATGTCAAAGT2074ACTTTGACATAAGCTTC2075Haemophilia AAAGACACTCTGACATTGTTTGGTTTGTCTGACTCCAGATGGCA2076Val326LeuTGGAAGCTTATGTCAAAGTAGACAGCTGTCCAGAGGAACCCCaGTA-CTAAACTACGAATGAAAAATAATGAAGAAGCGGAAGACTAGTCTTCCGCTTCTTCATTATTTTTCATTCGTAGTTGGGGTTC2077CTCTGGACAGCTGTCTACTTTGACATAAGCTTCCATGCCATCTGGAGTCAGACAAACCAAACAATGTCAGAGTGTCTTATGTCAAAGTAGACAGC2078GCTGTCTACTTTGACAT2079Haemophilia ATGACATTGTTTGGTTTGTCTGACTCCAGATGGCATGGAAGCTT2080Cys329ArgATGTCAAAGTAGACAGCTGTCCAGAGGAACCCCAACTACGAAcTGT-CGTTGAAAAATAATGAAGAAGCGGAAGACTATGATGATGCATCATCATAGTCTTCCGCTTCTTCATTATTTTTCATTCGTAGT2081TGGGGTTCCTCTGGACAGCTGTCTACTTTGACATAAGCTTCCATGCCATCTGGAGTCAGACAAACCAAACAATGTCATAGACAGCTGTCCAGAG2082CTCTGGACAGCTGTCTA2083Haemophilia AGACATTGTTTGGTTTGTCTGACTCCAGATGGCATGGAAGCTTA2084Cys329TyrTGTCAAAGTAGACAGCTGTCCAGAGGAACCCCAACTACGAATTGT-TATGAAAAATAATGAAGAAGCGGAAGACTATGATGATGATCATCATCATAGTCTTCCGCTTCTTCATTATTTTTCATTCGTAG2085TTGGGGTTCCTCTGGACAGCTGTCTACTTTGACATAAGCTTCCATGCCATCTGGAGTCAGACAAACCAAACAATGTCAGACAGCTGTCCAGAGG2086CCTCTGGACAGCTGTCT2087Haemophilia AACTCCAGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGT2088Arg336TermCCAGAGGAACCCCAACTACGAATGAAAAATAATGAAGAAGCGaCGA-TGAGAAGACTATGATGATGATCTTACTGATTCTGAAATGGCCATTTCAGAATCAGTAAGATCATCATCATAGTCTTCCGCTTC2089TTCATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGACAGCTGTCTACTTTGACATAAGCTTCCATGCCATCTGGAGTCCCAACTACGAATGAAA2090TTTCATTCGTAGTTGGG2091Haemophilia AGATTCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTC2092Arg372CysCTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAtCGC-TGCAACTTGGGTACATTACATTGCTGCTGAAGAGGAGGCCTCCTCTTCAGCAGCAATGTCAATGTACCCAAGTTTTAGGATG2093CTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGAGTTGTCATCATCAAACCTGACCACATCCATTTCAGAATCTCCAAATTCGCTCAGTT2094AACTGAGCGAATTTGGA2095Haemophilia AATTCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCC2096Arg372HisTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAACGC-CACACTTGGGTACATTACATTGCTGCTGAAGAGGAGGATCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGAT2097GCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGAGTTGTCATCATCAAACCTGACCACATCCATTTCAGAATCCAAATTCGCTCAGTTG2098CAACTGAGCGAATTTGG2099Haemophilia ACTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTTC2100Ser373LeuCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACTTCA-TTATGGGTACATTACATTGCTGCTGAAGAGGAGGACTGCAGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAG2101GATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGAGTTGTCATCATCAAACCTGACCACATCCATTTCAGAATTCGCTCAGTTGCCA2102TGGCAACTGAGCGAATT2103Haemophilia ATCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTT2104Ser373ProCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACcTCA-CCATTGGGTACATTACATTGCTGCTGAAGAGGAGGACTAGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGG2105ATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGAGTTGTCATCATCAAACCTGACCACATCCATTTCAGAAAATTCGCTCAGTTGCC2106GGCAACTGAGCGAATTT2107Haemophilia ACTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTTC2108Ser373TermCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACTTCA-TAATGGGTACATTACATTGCTGCTGAAGAGGAGGACTGCAGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAG2109GATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGAGTTGTCATCATCAAACCTGACCACATCCATTTCAGATTCGCTCAGTTGCCA2110TGGCAACTGAGCGAATT2111Haemophilia ACCTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTA2112Ile386PheAAACTTGGGTACATTACATTGCTGCTGAAGAGGAGGACTGGGcATT-TTTACTATGCTCCCTTAGTCCTCGCCCCCGATGACAGGTACCTGTCATCGGGGGCGAGGACTAAGGGAGCATAGTCCCAG2113TCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGTACATTACATTGCTGCT2114AGCAGCAATGTAATGTA2115Haemophilia ACTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAA2116Ile386SerAACTTGGGTACATTACATTGCTGCTGAAGAGGAGGACTGGGAATT-AGTCTATGCTCCCTTAGTCCTCGCCCCCGATGACAGGTATACCTGTCATCGGGGGCGAGGACTAAGGGAGCATAGTCCCA2117GTCCTCCTCTTCAGCAGCAIATGTAATGTACCCAAGTTTTAGGATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGACATTACATTGCTGCTG2118CAGCAGCAATGTAATGT2119Haemophilia AAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACTTGGGTACA2120Glu390GlyTTACATTGCTGCTGAAGAGGAGGACTGGGACTATGCTCCCTTGAG-GGGAGTCCTCGCCCCCGATGACAGGTAAGCACTTTTTGATCAAAAAGTGCTTACCTGTCATCGGGGGCGAGGACTAAGGGA2121GCATAGTCCCAGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGATGCTTCTTGGCAACTGAGCGAATTTTGCTGAAGAGGAGGACT2122AGTCCTCCTCTTCAGCA2123Haemophilia ATCAGTTGCCAAGAAGCATCCTAAAACTTGGGTACATTACATTG2124Trp393GlyCTGCTGAAGAGGAGGACTGGGACTATGCTCCCTTAGTCCTCGcTGG-GGGCCCCCGATGACAGGTAAGCACTTTTTGACTATTGGTACCAATAGTCAAAAAGTGCTTACCTGTCATCGGGGGCGAGGA2125CTAAGGGAGCATAGTCCCAGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGATGCTTCTTGGCAACTGAAGGAGGACTGGGACTAT2126ATAGTCCCAGTCCTCCT2127Haemophilia AGCCTACCTAGAATTTTTCTTCCCAACCTCTCATCTTTTTTTCTC2128Lys408IleTTATACAGAAGTTATAAAAGTCAATATTTGAACAATGGCCCTCAAA-ATAAGCGGATTGGTAGGAAGTACAAAAAAGTCCGATTAATCGGACTTTTTTGTACTTCCTACCAATCCGCTGAGGGCCAT2129TGTTCAAATATTGACTTTTATAACTTCTGTATAAGAGAAAAAAAGATGAGAGGTTGGGAAGAAAAATTCTAGGTAGGCAAGTTATAAAAGTCAAT2130ATTGACTTTTATAACTT2131Haemophilia ATTTTCTTCCCAACCTCTCATCTTTTTTTCTCTTATACAGAAGTT2132Leu412PheATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTAGTTGa-TTTGAAGTACAAAAAAGTCCGATTTATGGCATACACATGTGTATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATC2133CGCTGAGGGCCATTGTTCAAATATTGACTTTTATAACTTCTGTATAAGAGAAAAAAAGATGAGAGGTTGGGAAGAAAACAATATTTGAACAATGG2134CCATTGTTCAAATATTG2135Haemophilia ATCATCTTTTTTTCTCTTATACAGAAGTTATAAAAGTCAATATTTG2136Arg418TrpAACAATGGCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTCgCGG-TGGCGATTTATGGCATACACAGATGAAACCTTTAAGATCTTAAAGGTTTCATCTGTGTATGCCATAAATCGGACTTTTTTG2137TACTTCCTACCAATCCGCTGAGGGCCATTGTTCAAATATTGACTTTATAACTTCTGTATAAGAGAAAAAAAGATGAGCCCTCAGCGGATTGGT2138ACCAATCCGCTGAGGGC2139Haemophilia ATTTTTCTCTTATACAGAAGTTATAAAAGTCAATATTTGAACAAT2140Gly420ValGGCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTCCGATTTGGT-GTTATGGCATACACAGATGAAACCTTTAAGACTCGTGATCACGAGTCTTAAAGGTTTCATCTGTGTATGCCATAAATCGGA2141CTTTTTTGTACTTCCTACCAATCCGCTGAGGGCCATTGTTCAAATATTGGACTTTTATAACTTCTGTATAAGAGAAAAAGCGGATTGGTAGGAAGT2142ACTTCCTACCAATCCGC2143Haemophilia AGAAGTTATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGAT2144Lys425ArgTGGTAGGAAGTACAAAAAAGTCCGATTTATGGCATACACAGATAAA-AGAGAAACCTTTAAGACTCGTGAAGCTATTCAGCATGATCATGCTGAATAGCTTCACGAGTCTTAAAGGTTTCATCTGTGT2145ATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATCCGCTGAGGGCCATTGTTCAAATATTGACTTTTATAACTTCGTACAAAAAAGTCCGAT2146ATCGGACTTTTTTGTAC2147Haemophilia ATATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTA2148Arg427TermGGAAGTACAAAAAAGTCCGATTTATGGCATACACAGATGAAACcCGA-TGACTTTAAGACTCGTGAAGCTATTCAGCATGAATCAGCTGATTCATGCTGAATAGCTTCACGAGTCTTAAAGGTTTCATC2149TGTGTATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATCCGCTGAGGGCCATTGTTCAAATATTGACTTTTATAAAAAAGTCCGATTTATG2150CATAAATCGGACTTTTT2151Haemophilia ATATTTGAACAATGGCCCTCAGCGGATTGGTAGGAAGTACAAA2152Tyr431AsnAAAGTCCGATTTATGGCATACACAGATGAAACCTTTAAGACTCaTAC-AACGTGAAGCTATTCAGCATGAATCAGGAATCTTGGGACGTCCCAAGATTCCTGATTCATGCTGAATAGCTTCACGAGTCTT2153AAAGGTTTCATCTGTGTATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATCCGCTGAGGGCCATTGTTCAAATATTATGGCATACACAGAT2154ATCTGTGTATGCCATAA2155Haemophilia AGCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTCCGATTTA2156Thr435IleTGGCATACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCAACC-ATCGCATGAATCAGGAATCTTGGGACCTTTACTTTATGGCCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAATAG2157CTTCACGAGTCTTAAAGGTTTCATCTGTGTATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATCCGCTGAGGGCAGATGAAACCTTTAAGA2158TCTTAAAGGTTTCATCT2159Haemophilia AACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCAGCATGA2160Pro451LeuATCAGGAATCTTGGGACCTTTACTTTATGGGGAAGTTGGAGACCT-CTTCACACTGTTGGTAAGTTGAAGAAAAGATTTAAGGTCGACCTTAAATCTTTTCTTCAACTTACCAACAGTGTGTCTCCAA2161CTTCCCCATCAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAATAGCTTCACGAGTCTTAAAGGTTTCATCTGTGTCTTGGGACCTTTACTTT2162AAAGTAAAGGTCCCAAG2163Haemophilia ATACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCAGCATG2164Pro451ThrAATCAGGAATCTTGGGACCTTTACTTTATGGGGAAGTTGGAGAaCCT-ACTCACACTGTTGGTAAGTTGAAGAAAAGATTTAAGGTACCTTAAATCTTTTCTTCAACTTACCAACAGTGTGTCTCCAACT2165TCCCCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAATAGCTTCACGAGTCTTAAAGGTTTCATCTGTGTATCTTGGGACCTTTACTT2166AAGTAAAGGTCCCAAGA2167Haemophilia AACCTTTAAGACTCGTGAAGCTATTCAGCATGAATCAGGAATCT2168Gly455ArgTGGGACCTTTACTTTATGGGGAAGTTGGAGACACACTGTTGGtGGG-AGGTAAGTTGAAGAAAAGATTTAAGGTCAGGTAAGAAGATCTTCTTACCTGACCTTAAATCTTTTCTTCAACTTACCAACAGT2169GTGTCTCCAACTTCCCCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAATAGCTTCACGAGTCTTAAAGGTTACTTTATGGGGAAGTT2170AACTTCCCCATAAAGTA2171Haemophilia ACCTTTAAGACTCGTGAAGCTATTCAGCATGAATCAGGAATCTT2172Gly455GluGGGACCTTTACTTTATGGGGAAGTTGGAGACACACTGTTGGTGGG-GAGAAGTTGAAGAAAAGATTTAAGGTCAGGTAAGAAGAATTCTTCTTACCTGACCTTAAATCTTTTCTTCAACTTACCAACAG2173TGTGTCTCCAACTTCCCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAATAGCTTCACGAGTCTTAAAGGACTTTATGGGGAAGTTG2174CAACTTCCCCATAAAGT2175Haemophilia ACGTGAAGCTATTCAGCATGAATCAGGAATCTTGGGACCTTTAC2176Asp459AsnTTTATGGGGAAGTTGGAGACACACTGTTGGTAAGTTGAAGAAaGAC-AACAAGATTTAAGGTCAGGTAAGAAGAAAAAGTCTGGAGCTCCAGACTTTTTCTTCTTACCTGACCTTAAATCTTTTCTTCAA2177CTTACCAACAGTGTGTCTCCAACTTCCCCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAATAGCTTCACGAAGTTGGAGACACACTG2178CAGTGTGTCTCCAACTT2179Haemophilia ATGTTGATCCTAGTCGTTTTAGGATTTGATCTTAGATCTCGCTTA2180Phe465CysTACTTTCAGATTATATTTAAGAATCAAGCAAGCAGACCATATAATTT-TGTCATCTACCCTCACGGAATCACTGATGTCCGTCCGGACGGACATCAGTGATTCCGTGAGGGTAGATGTTATATGGT2181CTGCTTGCTTGATTCTTAAATATAATCTGAAAGTATAAGCGAGATCTAAGATCAAATCCTAAAACGACTAGGATCAACAGATTATATTTAAGAATC2182GATTCTTAAATATAATC2183Haemophilia ATCGTTTTAGGATTTGATCTTAGATCTCGCTTATACTTTCAGATT2184Ala469GlyATATTTAAGAATCAAGCAAGCAGACCATATAACATCTACCCTCGCA-GGAACGGAATCACTGATGTCCGTCCTTTGTATTCAAGCTTGAATACAAAGGACGGACATCAGTGATTCCGTGAGGGTAG2185ATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATCTGAAAGTATAAGCGAGATCTAAGATCAAATCCTAAAACGAGAATCAAGCAAGCAGAC2186GTCTGCTTGCTTGATTC2187Haemophilia ATTAGGATTTGATCTTAGATCTCGCTTATACTTTCAGATTATATT2188Arg471GlyTAAGAATCAAGCAAGCAGACCATATAACATCTACCCTCACGGcAGA-GGAAATCACTGATGTCCGTCCTTTGTATTCAAGGAGATATCTCCTTGAATACAAAGGACGGACATCAGTGATTCCGTGAG2189GGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATCTGAAAGTATAAGCGAGATCTAAGATCAAATCCTAAAAGCAAGCAGACCATAT2190ATATGGTCTGCTTGCTT2191Haemophilia ATTGATCTTAGATCTCGCTTATACTTTCAGATTATATTTAAGAAT2192Tyr473CysCAAGCAAGCAGACCATATAACATCTACCCTCACGGAATCACTTAT-TGTGATGTCCGTCCTTTGTATTCAAGGAGATTACCAAATTTGGTAATCTCCTTGAATACAAAGGACGGACATCAGTGATTC2193CGTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATCTGAAAGTATAAGCGAGATCTAAGATCAACAGACCATATAACATCT2194AGATGTTATATGGTCTG2195Haemophilia ATTTGATCTTAGATCTCGCTTATACTTTCAGATTATATTTAAGAA2196Tyr473HisTCAAGCAAGCAGACCATATAACATCTACCCTCACGGAATCACTaTAT-CATGATGTCCGTCCTTTGTATTCAAGGAGATTACCAATTGGTAATCTCCTTGAATACAAAGGACGGACATCAGTGATTCC2197GTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATCTGAAAGTATAAGCGAGATCTAAGATCAAAGCAGACCATATAACATC2198GATGTTATATGGTCTGC2199Haemophilia ATTAGATCTCGCTTATACTTTCAGATTATATTTAAGAATCAAGCA2200Ile475ThrAGCAGACCATATAACATCTACCCTCACGGAATCACTGATGTCCATC-ACCGTCCTTTGTATTCAAGGAGATTACCAAAAGGTAATTACCTTTTGGTAATCTCCTTGAATACAAAGGACGGACATCAG2201TGATTCCGTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATCTGAAAGTATAAGCGAGATCTAAATATAACATCTACCCTC2202GAGGGTAGATGTTATAT2203Haemophilia ATTATACTTTCAGATTATATTTAAGAATCAAGCAAGCAGACCATA2204Gly419ArgTAACATCTACCCTCACGGAATCACTGATGTCCGTCCTTTGTATcGGA-AGATCAAGGAGATTACCAAAAGGTAAATATTCCCTCGCGAGGGAATATTTACCTTTTGGTAATCTCCTTGAATACAAAGG2205ACGGACATCAGTGATTCCGTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATCTGAAAGTATAAACCCTCACGGAATCACT2206AGTGATTCCGTGAGGGT2207Haemophilia ACCAATTCTGCCAGGAGAAATATTCAAATATAAATGGACAGTGA2208Thr522SerCTGTAGAAGATGGGCCAACTAAATCAGATCCTCGGTGCCTGAaACT-TCTCCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAGCTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGC2209ACCGAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATATTTGAATATTTCTCCTGGCAGAATTGGATGGGCCAACTAAATCA2210TGATTTAGTTGGCCCAT2211Haemophilia ACCAGGAGAAATATTCAAATATAAATGGACAGTGACTGTAGAAG2212Asp525AsnATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTaGAT-AATACTCTAGTTTCGTTAATATGGAGAGAGATCTAGCTTAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCG2213GGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATATTTGAATATTTCTCCTGGCTAAATCAGATCCTCGG2214CCGAGGATCTGATTTAG2215Haemophilia AGAAATATTCAAATATAAATGGACAGTGACTGTAGAAGATGGGC2216Arg527TrpCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAtCGG-TGGGTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGACGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTA2217ATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATATTTGAATATTTCCAGATCCTCGGTGCCTG2218CAGGCACCGAGGATCTG2219Haemophilia ATATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCA2220Arg531CysGATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATAcCGC-TGCTGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA2221CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATAGCCTGACCCGCTATTAC2222GTAATAGCGGGTCAGGC2223Haemophilia ATATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCA2224Arg531GlyGATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATAcCGC-GGCTGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA2225CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATAGCCTGACCCGCTATTAC2226GTAATAGCGGGTCAGGC2227Haemophilia AATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCAG2228Arg531HisATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATATCGC-CACGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCTAGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA2229CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATCCTGACCCGCTATTACT2230AGTAATAGCGGGTCAGG2231Haemophilia AACAGTGACTGTAGAAGATGGGCCAACTAAATCAGATCCTCGG2232Ser534ProTGCCTGACCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAGcTCT-CCTATCTAGCTTCAGGACTCATTGGCCCTCTCCTCATCTAGATGAGGAGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCT2233CCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGTGCTATTACTCTAGTTTC2234GAAACTAGAGTAATAGC2235Haemophilia AGTGACTGTAGAAGATGGGCCAACTAAATCAGATCCTCGGTGC2236Ser535GlyCTGACCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAGATCtAGT-GGTTAGCTTCAGGACTCATTGGCCCTCTCCTCATCTGCTAGCAGATGAGGAGAGGGCCAATGAGTCCTGAAGCTAGATCTC2237TCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCACATTACTCTAGTTTCGTT2238AACGAAACTAGAGTAAT2239Haemophilia ATAGAAGATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCC2240Val537AspGCTATTACTCTAGTTTCGTTAATATGGAGAGAGATCTAGCTTCGTT-GATAGGACTCATTGGCCCTCTCCTCATCTGCTACAAAGATCTTTGTAGCAGATGAGGAGAGGGCCAATGAGTCCTGAAGCT2241AGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTATAGTTTCGTTAATATGG2242CCATATTAACGAAACTA2243Haemophilia ACAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA2244Arg541ThrGTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGAGA-ACACCCTCTCCTCATCTGCTACAAAGAATCTGTAGATCATGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAATG2245AGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGTATGGAGAGAGATCTAG2246CTAGATCTCTCTCCATA2247Haemophilia ACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTTT2248Asp542GlyCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCGAT-GGTTCTCCTCATCTGCTACAAAGAATCTGTAGATCAAAGCTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCA2249ATGAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAGGGAGAGAGATCTAGCTT2250AAGCTAGATCTCTCTCC2251Haemophilia AACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTT2252AspS42HisTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCaGAT-CATCTCTCCTCATCTGCTACAAAGAATCTGTAGATCAAATTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAAT2253GAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGAGAGAGATCTAGCT2254AGCTAGATCTCTCTCCA2255Haemophilia AACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTT2256Asp542TyrTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCaGAT-TATCTCTCCTCATCTGCTACAAAGAATCTGTAGATCAAATTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAAT2257GAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGAGAGAGATCTAGCT2258AGCTAGATCTCTCTCCA2259Haemophilia AGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCT2260Glu557TermCTCCTCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCaGAA-TAAAGGTGAGTTCTTGCCTTTCCAAGTGCTGGGTTTCATATGAAACCCAGCACTTGGAAAGGCAAGAACTCACCTGGTTTC2261CTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAACGCTACAAAGAATCTGTA2262TACAGATTCTTTGTAGC2263Haemophilia AATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCTCC2264Ser558PheTCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGGTTCT-TTTCAGTTCTTGCCTTTCCAAGTGCTGGGTTTCATTCTCGAGAATGAAACCCAGCACTTGGAAAGGCAAGAACTCACCTGG2265TTTCCTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATCAAAGAATCTGTAGATC2266GATCTACAGATTCTTTG2267Haemophilia ATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCTCCTCA2268Val559AlaTCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGGTGAGTA-GCAGTTCTTGCCTTTCCAAGTGCTGGGTTTCATTCTCAGTACTGAGAATGAAACCCAGCACTTGGAAAGGCAAGAACTCACC2269TGGTTTCCTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCAAGAATCTGTAGATCAAA2270TTTGATCTACAGATTCT2271



EXAMPLE 14


Hemophilia—Factor IX Deficiency

[0135] The attached table discloses the correcting oligonucleotide base sequences for the Factor IX oligonucleotides of the invention.
22TABLE 21Factor IX Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Haemophilia BATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAA2272Asn2AspTCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTtAAT-GATCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAATTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCT2273TCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAATAGAGGTATAATTCAGGT2274ACCTGAATTATACCTCT2275Haemophilia BTTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAAT2276Asn2lleCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTAAT-ATTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAATTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTC2277TTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAAGAGGTATAATTCAGGTA2278TACCTGAATTATACCTC2279Haemophilia BATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAA2280Asn2TyrTCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTtAAT-TATCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAATTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCT2281TCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAATAGAGGTATAATTCAGGT2282ACCTGAATTATACCTCT2283Haemophilia BTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATC2284Ser3ProGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAtTCA-CCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAAC2285TCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAGGTATAATTCAGGTAAA2286TTTACCTGAATTATACC2287Haemophilia BTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCC2288Gly4AspAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGGGT-GATAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGCTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAAC2289AAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAATAATTCAGGTAAATTGG2290CCAATTTACCTGAATTA2291Haemophilia BGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGC2292Gly4SerCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGaGGT-AGTGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTATACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACA2293AACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACATAATTCAGGTAAATTG2294CAATTTACCTGAATTAT2295Haemophilia BTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAA2296Lys5GluAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAAtAAA-GAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGA2297ACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAATTCAGGTAAATTGGAA2298TTCCAATTTACCTGAAT2299Haemophilia BATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTA2300Glu7AlaTAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGGAA-GCAAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGATCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTT2301CCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATTAAATTGGAAGAGTTTG2302CAAACTCTTCCAATTTA2303Haemophilia BGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGG2304Glu7LysTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGgGAA-AAAAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTC2305CCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCGTAAATTGGAAGAGTTT2306AAACTCTTCCAATTTAC2307Haemophilia BATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTA2308Glu7ValTAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGGAA-GTAAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGATCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTT2309CCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATTAAATTGGAAGAGTTTG2310CAAACTCTTCCAATTTA2311Haemophilia BATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA2312Glu8AlaTTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGGAG-GCGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAG2313GTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATATTGGAAGAGTTTGTTC2314GAACAAACTCTTCCAAT2315Haemophilia BATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA2316Glu8GlyTTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGGAG-GGGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAG2317GTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATATTGGAAGAGTTTGTTC2318GAACAAACTCTTCCAAT2319Haemophilia BAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTC2320Phe9CysAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGATTT-TGTATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTC2321AAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTGGAAGAGTTTGTTCAAG2322CTTGAACAAACTCTTCC2323Haemophilia BGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATT2324Phe9lleCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGgTTT-ATTAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCA2325AGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCTGGAAGAGTTTGTTCAA2326TTGAACAAACTCTTCCA2327Haemophilia BTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTC2328Arg(-1)SerTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTAGGt-AGCTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAATTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCC2329AATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAATGTAACCAAAGAGGTATAATTC2330GAATTATACCTCTTTGG2331Haemophilia BTTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATT2332Arg(-1)ThrCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGAGG-ACGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGATCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCA2333ATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAATGTAAAGCCAAAGAGGTATAATT2334AATTATACCTCTTTGGC2335Haemophilia BCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAA2336Lys(-2)AsnTTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAAAGa-AATGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAAT2337TTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAATGTAAAAGCGGCCAAAGAGGTATAA2338TTATACCTCTTTGGCCG2339Haemophilia BAATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCC2340Arg(-4)GlnAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATCGG-CAGTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGATCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTG2341AATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAATGTAAAAGAATAATTTCTGAATCGGCCAAAGA2342TCTTTGGCCGATTCAGA2343Haemophilia BAATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCC2344Arg (-4) LeuAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATCGG-CTGTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGATCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTG2345AATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAATGTAAAAGAATAATTTCTGAATCGGCCAAAGA2346TCTTTGGCCGATTCAGA2347Haemophilia BGAATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGC2348Arg(-4)TrpCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAAtCGG-TGGTTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGA2349ATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAATGTAAAAGAATAATTCTTCTGAATCGGCCAAAG2350CTTTGGCCGATTCAGAA2351Haemophilia BGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTA2352Gln11TermAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATtCAA-TAAGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGCTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCT2353CTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCAGTTTGTTCAAGGGAAC2354GTTCCCTTGAACAAACT2355Haemophilia BACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATT2356Gly12AlaGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAGGG-GCGAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACA2357TTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGTTCAAGGGAACCTTG2358CAAGGTTCCCTTGAACA2359Haemophilia BAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAAT2360Gly12ArgTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGaGGG-AGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACAT2361TCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTTTGTTCAAGGGAACCTT2362AAGGTTCCCTTGAACAA2363Haemophilia BACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATT2364Gly12GluGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAGGG-GAGAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACA2365TTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGTTCAAGGGAACCTTG2366CAAGGTTCCCTTGAACA2367Haemophilia BCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTC2368Glu17GlnAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTaGAA-CAATTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAATTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACAC2369TTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGTTGAGAGAGAATGTATG2370CATACATTCTCTCTCAA2371Haemophilia BCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTC2372Glu17LysAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTaGAA-AAATTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAATTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACAC2373TTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGTTGAGAGAGAATGTATG2374CATACATTCTCTCTCAA2375Haemophilia BCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAG2376Cys18ArgGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGaTGT-CGTAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAATTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTA2377CACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGAGAGAGAATGTATGGAA2378TTCCATACATTCTCTCT2379Haemophilia BCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGG2380Cys18TyrGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAATGT-TATGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACT2381ACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGAGAGAATGTATGGAAG2382CTTCCATACATTCTCTC2383Haemophilia BGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCT2384Glu20ValTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCGAA-GTAACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGCTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTC2385AAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCATGTATGGAAGAAAAGT2386ACTTTTCTTCCATACAT2387Haemophilia BTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTG2388Glu21LysAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACaGAA-AAAGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTATACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCT2389TCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATAGTATGGAAGAAAAGTGT2390ACACTTTTCTTCCATAC2391Haemophilia BTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGA2392Cys23ArgGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAgTGT-CGTGTTTTTGAAAACACTGAAAGAACAGTGAGTATTTCCATGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGT2393GCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAAAGAAAAGTGTAGTTTT2394AAAACTACACTTTTCTT2395Haemophilia BCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAG2396Cys23TyrAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTGT-TATTTTTGAAAACACTGAAAGAACAGTGAGTATTTCCACGTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTC2397GTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAGAAAAGTGTAGTTTTG2398CAAAACTACACTTTTCT2399Haemophilia BAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTAT2400Phe25SerGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAATTT-TCTAACACTGAAAGAACAGTGAGTATTTCCACATAATATATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAAC2401TTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTGTGTAGTTTTGAAGAAG2402CTTCTTCAAAACTACAC2403Haemophilia BTTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATG2404Glu26GlnGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAtGAA-CAAACACTGAAAGAACAGTGAGTATTTCCACATAATACCGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAA2405ACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAAGTAGTTTTGAAGAAGCA2406TGCTTCTTCAAAACTAC2407Haemophilia BAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAG2408Glu27AlaAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACGAA-GCATGAAAGAACAGTGAGTATTTCCACATAATACCCTTCGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTT2409CAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTTTTTGAAGAAGCACGAG2410CTCGTGCTTCTTCAAAA2411Haemophilia BAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGA2412Glu27AspAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAg-GACGAAAGAACAGTGAGTATTTCCACATAATACCCTTCATGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTT2413TCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTTTGAAGAAGCACGAGA2414TCTCGTGCTTCTTCAAA2415Haemophilia BGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAA2416Glu27LysGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACAaGAA-AAACTGAAAGAACAGTGAGTATTTCCACATAATACCCTTAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTC2417AAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCGTTTTGAAGAAGCACGA2418TCGTGCTTCTTCAAAAC2419Haemophilia BAAGAGTTTGTTCAAGGGAACTTGAGAGAGAATGTATGGAAG2420Glu27ValAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACGAA-GTATGAAAGAACAGTGAGTATTTCCACATAATACCCTTCGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTT2421CAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTTTTTGAAGAAGCACGAG2422CTCGTGCTTCTTCAAAAJ 2423Haemophilia BTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT2424Arg29GlnGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGCGA-CAAAACAGTGAGTATTTCCACATAATACCCTTCAGATGCGCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAG2425TGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAAGAAGCACGAGAAGTTT2426AAACTTCTCGTGCTTCT2427Haemophilia BTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT2428Arg29ProGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGCGA-CCAAACAGTGAGTATTTCCACATAATACCCTTCAGATGCGCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAG2429TGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAAGAAGCACGAGAAGTTT2430AAACTTCTCGTGCTTCT2431Haemophilia BTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT2432Arg29TermGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGaCGA-TGAAACAGTGAGTATTTCCACATAATACCCTTCAGATGCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGT2433GTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAAAAGAAGCACGAGAAGTT2434AACTTCTCGTGCTTCTT2435Haemophilia BGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGT2436Glu30LysAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAAaGAA-AAACAGTGAGTATTTCCACATAATACCCTTCAGATGCAGCTGCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTC2437AGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAGCACGAGAAGTTTTT2438AAAAACTTCTCGTGCTT2439Haemophilia BGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGT2440Glu30TermAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAAaGAA-TAACAGTGAGTATTTCCACATAATACCCTTCAGATGCAGCTGCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTC2441AGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAGCACGAGAAGTTTTT2442AAAAACTTCTCGTGCTT2443Haemophilia BCCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAA2444Glu33AspGCACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTATTTGAAa-GACCCACATAATACCCTTCAGATGCAGAGCATAGAATATATTCTATGCTCTGCATCTGAAGGGTATTATGTGGAAATACTC2445ACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGGTTTTTGAAAACACTGA2446TCAGTGTTTTCAAAAAC2447Haemophilia BAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAG2448Glu33TermAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTATtGAA-TAATTCCACATAATACCCTTCAGATGCAGAGCATAGAATTCTATGCTCTGCATCTGAAGGGTATTATGTGGAAATACTCAC2449TGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTAAGTTTTTGAAAACACT2450AGTGTTTTCAAAAACTT2451Haemophilia BCAAAACACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTT2452Trp42TermTATAGACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCATTGG-TAGTTTATCCTCTAGCTAATATATGAAACATATGAGCTCATATGTTTCATATATTAGCTAGAGGATAAAATGAATTGCTT2453ACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATAAAAGAAGACAAATTAACGGTAATATCTAAAGTGTTTTGTGAATTTTGGAAGCAGT2454ACTGCTTCCAAAATTCA2455Haemophilia BAAACACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTTTA2456Lys43GluTAGACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCATTTgAAG-GAGTATCCTCTAGCTAATATATGAAACATATGAGAATTCTCATATGTTTCATATATTAGCTAGAGGATAAAATGAATTGC2457TTACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATAAAAGAAGACAAATTAACGGTAATATCTAAAGTGTTTAATTTTGGAAGCAGTAT2458ATACTGCTTCCAAAATT2459Haemophilia BCACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTTTATAG2460Gln44TermACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCATTTTATCgCAG-TAGCTCTAGCTAATATATGAAACATATGAGAATTATAATTCTCATATGTTTCATATATTAGCTAGAGGATAAAATGAAT2461TGCTTACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATAAAAGAAGACAAATTAACGGTAATATCTAAAGTGTTTGGAAGCAGTATGTT2462AACATACTGCTTCCAAA2463Haemophilia BCCGGGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAAC2464Asp49GlyCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAGAT-GGTAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATG2465GATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAACTGCTTAGAATGCCCGGAGATGGAGATCAGTGTG2466CACACTGATCTCCATCT2467Haemophilia BGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATC2468Gln50HisTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCAGt-CACCGGCAGTTGCAAGGATGACATTAATTCCTATGAATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAA2469CATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAACTGCTTAGAATGCGGAGATCAGTGTGAGTC2470GACTCACACTGATCTCC2471Haemophilia BGGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTA2472Gln50ProTCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATCAG-CCGGGCGGCAGTTGCAAGGATGACATTAATTCCTATGATCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAAC2473ATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAACTGCTTAGAATGCCTGGAGATCAGTGTGAGT2474ACTCACACTGATCTCCA2475Haemophilia BGGGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCT2476Gln50TermATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAAtCAG-TAGTGGCGGCAGTTGCAAGGATGACATTAATTCCTATGCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACA2477TGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAACTGCTTAGAATGCCCATGGAGATCAGTGTGAG2478CTCACACTGATCTCCAT2479Haemophilia BCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCT2480Cys51ArgCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGgTGT-CGTCGGCAGTTGCAAGGATGACATTAATTCCTATGAATATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAA2481ACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAACTGCTTAGAATGGAGATCAGTGTGAGTCC2482GGACTCACACTGATCTC2483Haemophilia BCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCT2484Cys51SerCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGgTGT-AGTCGGCAGTTGCAAGGATGACATTAATTCCTATGAATATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAA2485ACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAACTGCTTAGAATGGAGATCAGTGTGAGTCC2486GGACTCACACTGATCTC2487Haemophilia BTTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCTCA2488Cys51TrpAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGTGTg-TGGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTT2489AAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAACTGCTTAGAAGATCAGTGTGAGTCCAA2490TTGGACTCACACTGATC2491Haemophilia BTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCTCAA2492Glu52TermAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGtGAG-TAGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATT2493TAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAACTGCTTAGAATCAGTGTGAGTCCAAT2494ATTGGACTCACACTGAT2495Haemophilia BTTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAG2496Pro55AlaATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAtCCA-GCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACT2497GCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAAAGTCCAATCCATGTTTA2498TAAACATGGATTGGACT2499Haemophilia BTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA2500Pro55ArgTCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAACCA-CGAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC2501TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAGTCCAATCCATGTTTAA2502TTAAACATGGATTGGAC2503Haemophilia BTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA2504Pro55GlnTCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAACCA-CAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC2505TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAGTCCAATCCATGTTTAA2506TTAAACATGGATTGGAC2507Haemophilia BTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA2508Pro55LeuTCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAACCA-CTAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC2509TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAGTCCAATCCATGTTTAA2510TTAAACATGGATTGGAC2511Haemophilia BTTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAG2512Pro55SerATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAtCCA-TCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACT2513GCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTAAAAGTCCAATCCATGTTTA2514TAAACATGGATTGGACT2515Haemophilia BACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATC2516Cys56ArgAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGaTGT-CGTATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCA2517ACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTCCAATCCATGTTTAAAT2518ATTTAAACATGGATTGG2519Haemophilia BACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATC2520Cys56SerAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGaTGT-AGTATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCA2521ACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGTCCAATCCATGTTTAAAT2522ATTTAAACATGGATTGG2523Haemophilia BCGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATCA2524Cys56SerGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGT-TCTTGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGC2525AACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGCAATCCATGTTTAAATG2526CATTTAAACATGGATTG2527Haemophilia BCGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATCA2528Cys56TyrGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGT-TATTGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGC2529AACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGCAATCCATGTTTAAATG2530CATTTAAACATGGATTG2531Haemophilia BATTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAG2532Asn58LysTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAATg-AAGATTCCTATGAATGTTGGTGTCCCTTGGATTTGAATTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCA2533TCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAATTGTTTAAATGGCGGCAG2534CTGCCGCCATTTAAACA2535Haemophilia BTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTC2536Gly59AspCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATGGC-GACTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGT2537CATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGATTTAAATGGCGGCAGTT2538AACTGCCGCCATTTAAA2539Haemophilia BTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTC2540Gly59ValCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATGGC-GTCTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGT2541CATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGATTTAAATGGCGGCAGTT2542AACTGCCGCCATTTAAA2543Haemophilia BTTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGT2544Gly59SerCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAtGGC-AGCTTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTC2545ATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTGAAGTTTAAATGGCGGCAGT2546ACTGCCGCCATTTAAAC2547Haemophilia BAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA2548Gly60SerATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCcGGC-AGCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAATTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT2549GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTTAAATGGCGGCAGTTGC2550GCAACTGCCGCCATTTA2551Haemophilia BAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA2552Gly60CysATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCcGGC-TGCCTATGAATGTTGGTGTCCCTTTGGATTGAAGGAATTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT2553GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTTAAATGGCGGCAGTTGC2554GCAACTGCCGCCATTTA2555Haemophilia BATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAA2556Gly60AspTCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCGGC-GACTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAATTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAA2557TGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATAAATGGCGGCAGTTGCA2558TGCAACTGCCGCCATTT2559Haemophilia BAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA2560Gly60ArgATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCcGGC-CGCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAATTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT2561GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAAATTTAAATGGCGGCAGTTGC2562GCAACTGCCGCCATTTA2563Haemophilia BTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATG2564Cys62TyrTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGC-TACTGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGCAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGG2565AATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTACGGCAGTTGCAAGGATG2566CATCCTTGCAACTGCCG2567Haemophilia BTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATG2568Cys62SerTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGC-TCCTGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGCAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGG2569AATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTACGGCAGTTGCAAGGATG2570CATCCTTGCAACTGCCG2571Haemophilia BAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGT2572Cys62TermTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATTGCa-TGAGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG2573GAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTGGCAGTTGCAAGGATGA2574TCATCCTTGCAACTGCC2575Haemophilia BTCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAAT2576Asp64GluGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGGATg-GAGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTATAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACAT2577TCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATGCAAGGATGACATTAA2578TTAATGTCATCCTTGCA2579Haemophilia BATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAA2580Asp64GlyTGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGAT-GGTGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATT2581CATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATTTGCAAGGATGACATTA2582TAATGTCATCCTTGCAA2583Haemophilia BTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAA2584Asp64AsnATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGgGAT-AATGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTC2585ATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGTTGCAAGGATGACATT2586AATGTCATCCTTGCAAC2587Haemophilia BAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCG2588lle66SerGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCATT-AGTCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAATTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACC2589AACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTGGATGACATTAATTCCT2590AGGAATTAATGTCATCC2591Haemophilia BAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCG2592lle66ThrGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCATT-ACTCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAATTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACC2593AACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCTTGGATGACATTAATTCCT2594AGGAATTAATGTCATCC2595Haemophilia BTGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAG2596Asn67LysTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTAATt-AAAGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTAATTACTTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGAC2597ACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCAGACATTAATTCCTATGA2598TCATAGGAATTAATGTC2599Haemophilia BATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCA2600Tyr69CysAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTAT-TGTTGAAGGAAAGAACTGTGAATTAGGTAAGTAACTATTAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAATCCAAA2601GGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACTGATTAATTCCTATGAATGTT2602AACATTCATAGGAATTA2603Haemophilia BTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGA2604Cys71TermCATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGATGTt-TGAAAGAACTGTGAATTAGGTAAGTAACTATTTTTTGAATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAA2605ATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCATATGAATGTTGGTGTCC2606GGACACCAACATTCATA2607Haemophilia BGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG2608Cys71SerACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGTGT-TCTAAAGAACTGTGAATTAGGTAAGTAACTATTTTTTGATCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAA2609TCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACCTATGAATGTTGGTGTC2610GACACCAACATTCATAG2611Haemophilia BGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG2612Cys71TyrACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGTGT-TATAAAGAACTGTGAATTAGGTAAGTAACTATTTTTTGATCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAA2613TCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACCTATGAATGTTGGTGTC2614GACACCAACATTCATAG2615Haemophilia BTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGAT2616Cys71SerGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGaTGT-AGTGAAAGAACTGTGAATTAGGTAAGTAACTATTTTTTGCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAAT2617CCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACCTATGAATGTTGGTGT2618ACACCAACATTCATAGG2619Haemophilia BGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGAC2620Trp72ArgATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAtTGG-AGGAGAACTGTGAATTAGGTAAGTAACTATTTTTTGAATATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCA2621AATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCATGAATGTTGGTGTCCC2622GGGACACCAACATTCAT2623Haemophilia BGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACAT2624Trp72TermTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGTGGt-TGAAACTGTGAATTAGGTAAGTAACTATTTTTTGAATACGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTT2625CAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACGAATGTTGGTGTCCCTT2626AAGGGACACCAACATTC2627Haemophilia BCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAA2628Cys73TyrTTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGT-TATTGTGAATTAGGTAAGTAACTATTTTTTGAATACTCGAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCC2629TTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGATGTTGGTGTCCCTTTG2630CAAAGGGACACCAACAT2631Haemophilia BTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTA2632Cys73ArgATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAAgTGT-CGTCTGTGAATTAGGTAAGTAACTATTTTTTGAATACTAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCT2633TCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGAAATGTTGGTGTCCCTTT2634AAAGGGACACCAACATT2635Haemophilia BCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAA2636Cys73PheTTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGT-TTTTGTGAATTAGGTAAGTAACTATTTTTTGAATACTCGAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCC2637TTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGATGTTGGTGTCCCTTTG2638CAAAGGGACACCAACAT2639Haemophilia BCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAT2640Cys73TermTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTTGTc-TGAGTGAATTAGGTAAGTAACTATTTTTTGAATACTCATGAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTC2641CTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGTGTTGGTGTCCCTTTGG2642CCAAAGGGACACCAACA2643Haemophilia BGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGA2644Gly76ValATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGA-GTAGGTAAGTAACTATTTTTTGAATACTCATGGTTCAATTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTCACA2645GTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACTCCCTTTGGATTTGAAG2646CTTCAAATCCAAAGGGA2647Haemophilia BTGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATG2648Gly76ArgAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTtGGA-AGAAGGTAAGTAACTATTTTTTGAATACTCATGGTTCATGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTCACAG2649TTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACAGTCCCTTTGGATTTGAA2650TTCAAATCCAAAGGGAC2651Haemophilia BTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG2652Phe77CysTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTTTT-TGTAAGTAACTATTTTTTGAATACTCATGGTTCAAAGTACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC2653ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTACTTTGGATTTGAAGGAA2654TTCCTTCAAATCCAAAG2655Haemophilia BTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG2656Phe77SerTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTTTT-TCTAAGTAACTATTTTTTGAATACTCATGGTTCAAAGTACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC2657ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTACTTTGGATTTGAAGGAA2658TTCCTTCAAATCCAAAG2659Haemophilia BTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG2660Phe77TyrTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTTTT-TATAAGTAACTATTTTTTGAATACTCATGGTTCAAAGTACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC2661ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTACTTTGGATTTGAAGGAA2662TTCCTTCAAATCCAAAG2663Haemophiiia BAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTT2664Glu78LysGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAtGAA-AAAGTAACTATTTTTTGAATACTCATGGTTCAAAGTTTAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAAT2665TCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTTGGATTTGAAGGAAAG2666CTTTCCTTCAAATCCAA2667Haemophilia BGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGT2668Gly79ValGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTAGGA-GTAACTATTTTTTGAATACTCATGGTTCAAAGTTTCCCTAGGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTAC2669CTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCATTTGAAGGAAAGAACT2670AGTTCTTTCCTTCAAAT2671Haemophilia BGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGG2672Gly79ArgTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTaGGA-AGAAACTATTTTTTGAATACTCATGGTTCAAAGTTTCCCGGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACC2673TAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCGATTTGAAGGAAAGAAC2674GTTCTTTCCTTCAAATC2675Haemophilia BGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGT2676Gly79GluGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTAGGA-GAAACTATTTTTTGAATACTCATGGTTCAAAGTTTCCCTAGGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTAC2677CTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCATTTGAAGGAAAGAACT2678AGTTCTTTCCTTCAAAT2679Haemophilia BTTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT2680Cys88SerCTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCTGT-TCTAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC2681TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCATCATTTAACATGCATTTCTAATGTAACATGTAACATTA2682TAATGTTACATGTTACA2683Haemophilia BTTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT2684Cys88PheCTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCTGT-TTTAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC2685TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCATCATTTAACATGCATTTCTAATGTAACATGTAACATTA2686TAATGTTACATGTTACA2687Haemophilia BTTTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCT2688Cys88ArgTCTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGaTGT-CGTCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGCCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATCT2689GCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCATCATTTAACATGCATTTCTAAAATGTAACATGTAACATT2690AATGTTACATGTTACAT2691Haemophilia BTTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT2692Cys88TyrCTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCTGT-TATAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC2693TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCATCATTTAACATGCATTTCTAATGTAACATGTAACATTA2694TAATGTTACATGTTACA2695Haemophilia BATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTA2696lle90ThrGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTATT-ACTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCGAGCAAACCACCTTGTTATCAGCACTATTTTTACAAAACTGCT2697CGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCATCATTTAACATGCATATGTAACATTAAGAATG2698CATTCTTAATGTTACAT2699Haemophilia BTGTTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGT2700Asn92HisAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAgAAT-CATAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTATACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACAAAA2701CTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCATCATTTAACAACATTAAGAATGGCAGA2702TCTGCCATTCTTAATGT2703Haemophilia BTTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAA2704Asn92LysCATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAAAATg-AAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACAA2705AACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCATCATTTAAATTAAGAATGGCAGATG2706CATCTGCCATTCTTAAT2707Haemophilia BAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACA2708Gly93AspTGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGGC-GACGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGATCAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTAC2709AAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCATCATTTTAAGAATGGCAGATGCG2710CGCATCTGCCATTCTTA2711Haemophilia BTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAAC2712Gly93SerATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATtGGC-AGCAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGCAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACA2713AAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCATCATTTATTAAGAATGGCAGATGC2714GCATCTGCCATTCTTAA2715Haemophilia BGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTA2716Arg94SerACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCAGAt-AGTTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTT2717TTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCATCAATGGCAGATGCGAGCA2718TGCTCGCATCTGCCATT2719Haemophilia BTGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAAC2720Cys95TyrATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGTGC-TACATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTAT2721TTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCATGGCAGATGCGAGCAGT2722ACTGCTCGCATCTGCCA2723Haemophilia BGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACA2724Cys95TrpTTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATGCg-TGGTAACAAGGTGGTTTGCTCCTGTACTGAGGGATATATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTA2725TTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCGGCAGATGCGAGCAGTT2726AACTGCTCGCATCTGCC2727Haemophilia BGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACA2728Cys95TermTTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATGCg-TGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTA2729TTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAACAGCGGCAGATGCGAGCAGTT2730AACTGCTCGCATCTGCC2731Haemophilia BTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAG2732Gln97ProAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACACAG-CCGAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTAGTCGATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCA2733GCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAATGCGAGCAGTTTTGTA2734TACAAAACTGCTCGCAT2735Haemophilia BTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAA2736Gln97GluGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACgCAG-GAGAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACGTCGATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAG2737CACTATTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGACAGTAAGATGCGAGCAGTTTTGT2738ACAAAACTGCTCGCATC2739Haemophilia BTCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAGAATGG2740Cys99ArgCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGtTGT-CGTGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGCTGCAAGTCGATATCCCTCAGTACAGGAGCAAACCACCTTGT2741TATCAGCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGAAGCAGTTTTGTAAAAAT2742ATTTTTACAAAACTGCT2743Haemophilia BCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAGAATGGC2744Cys99TyrAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGTGT-TATGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGATCTGCAAGTCGATATCCCTCAGTACAGGAGCAAACCACCTTG2745TTATCAGCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATAGGCAGTTTTGTAAAAATA2746TATTTTTACAAAACTGC2747Warfarin sensitivityTTTTTTGCTAAAACTAAAGAATTATTCTTTTACATTTCAGTTTTT2748Ala(-10)ThrCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAcGCC-ACCGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCG2749ATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAATGTAAAAGAATAATTCTTTAGTTTTAGCAAAAAAATGAAAACGCCAACAAA2750TTTGTTGGCGTTTTCAT2751Warfarin sensitivityTTTTTGCTAAAACTAAAGAATTATTCTTTTACATTTCAGTTTTTC2752Ala(-10)ValTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGCC-GTCGTATAATTCAGGTAAATTGGAAGAGTTTGTTCATGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCC2753GATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAATGTAAAAGAATAATTCTTTAGTTTTAGCAAAAATGAAAACGCCAACAAAA2754TTTTGTTGGCGTTTTCA2755Haemophilia BTGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCCTCA2756Gly(-26)ValTCACCATCTGCCTTTTAGGATATCTACTCAGTGCTGAATGTACGGA-GTAAGGTTTGTTTCCTTTTTTAAAATACATTGAGTATGCGCATACTCAATGTATTTTAAAAAAGGAAACAAACCTGTACATTC2757AGCACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGCCTGGTGATTCTGCCATGATCATGTTCACGCGCTGCACCTTTTAGGATATCTAC2758GTAGATATCCTAAAAGG2759Haemophilia BTTATGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCC2760Leu(-27)TermTCATCACCATCTGCCTTTTAGGATATCTACTCAGTGCTGAATGTTA-TAATACAGGTTTGTTTCCTTTTTTAAAATACATTGAGTATACTCAATGTATTTTAAAAAAGGAAACAAACCTGTACATTCAGC2761ACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGCCTGGTGATTCTGCCATGATCATGTTCACGCGCTGCATAACTGCCTTTTAGGATATC2762GATATCCTAAAAGGCAG2763Haemophilia BTAGCAAAGGTTATGCAGCGCGTGAACATGATCATGGCAGAAT2764lle(-30)AsnCACCAGGCCTCATCACCATCTGCCTTTTAGGATATCTACTCAGATC-AACTGCTGAATGTACAGGTTTGTTTCCTTTTTTAAAATATATTTTAAAAAAGGAAACAAACCTGTACATTCAGCACTGAGTA2765GATATCCTAAAAGGCAGATGGTGATGAGGCCTGGTGATTCTGCCATGATCATGTTCACGCGCTGCATAACCTTTGCTACATCACCATCTGCCTTT2766AAAGGCAGATGGTGATG2767Haemophilia BACTAATCGACCTTACCACTTTCACAATCTGCTAGCAAAGGTTTA2768lle(-40)PheTGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCCTCAgATC-TTCTCACCATCTGCCTTTTAGGATATCTACTCAGTGCTGCAGCACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGC2769CTGGTGATTCTGCCATGATCATGTTCACGCGCTGCATAACCTTTGCTAGCAGATTGTGAAAGTGGTAAGGTCGATTAGTTGAACATGATCATGGCA2770TGCCATGATCATGTTCA2771Haemophilia BACTTTGGTACAACTAATCGACCTTACCACTTTCACAATCTGCT2772Arg(-44)HisAGCAAAGGTTATGCAGCGCGTGAACATGATCATGGCAGAATCCGC-CACACCAGGCCTCATCACCATCTGCCTTTTAGGATATCTAGATATCCTAAAAGGCAGATGGTGATGAGGCCTGGTGATTCT2773GCCATGATCATGTTCACGCGCTGCATAACCTTTGCTAGCAGATTGTGAAAGTGGTAAGGTCGATTAGTTGTACCAAAGTTATGCAGCGCGTGAACA2774TGTTCACGCGCTGCATA2775



EXAMPLE 15


Alpha Thalassemia—Hemoglobin Alpha Locus 1

[0136] The thalassemia syndromes are a heterogeneous group of inherited anemias characterized by defects in the synthesis of one or more globin chain subunits. For example, beta-thalassemia discussed in Example 6, is caused by a decrease in beta-chain production relative to alpha-chain production; the converse is the case for alpha-thalassemia. The attached table discloses the correcting oligonucleotide base sequences for the hemoglobin alpha locus 1 oligonucleotides of the invention.
23TABLE 22HBA1 Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Thalassaemia alphaCCCTGGCGCGCTCGCGGCCCGGCACTCTTCIGGTCCCCACA2776Met(−1)ValGACTCAGAGAGAACCCACCATGGTGCTGICTCCTGCCGACAcATG-GTGAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTG2777TCGGCAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGTGGGGACCAGAAGAGTGCCGGGCCGCGAGCGCGCCAGGGAACCCACCATGGTGCTG2778CAGCACCATGGTGGGTT2779Haemoglobin variantCACAGACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCC2780Ala12AspGACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCC-GACGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTGCACCTCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGC2781GCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGGCAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGTGCGTCAAGGCCGCCTGGG2782CCCAGGCGGCCTTGACG2783Haemoglobin variantAGAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCA2784Gly15AspACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGGGGT-GATCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCTAGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCC2785AGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGGCAGGAGACAGCACCATGGTGGGTTCTCTCTCGCCTGGGGTAAGGTCG2786CGACCTTACCCCAGGCG2787Haemoglobin variantCTGCCGACAAGACCMCGTCAAGGCCGCCTGGGGTAAGGTC2788Tyr24CysGGCGCGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGATAT-TGTGGTGAGGCTCCCTCCCCTGCTCCGACCCGGGCTCCTCGCCGGCGAGGAGCCCGGGTCGGAGCAGGGGAGGGAGCCTCACC2789TCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGGCAGTGGCGAGTATGGTGCGG2790CCGCACCATACTCGCCA2791Haemoglobin variantGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCAC2792Glu27AspGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTGAGg-GATCCCTCCCCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGACCGGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGGGGAG2793GGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCGGTGCGGAGGCCCTGGA2794TCCAGGGCCTCCGCACC27955Haemoglobin variantGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGG2796Asn68LysTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGAAACg-AAGCATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG2797TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTCCTGACCAACGCCGTGGC2798GCCACGGCGTTGGTCAG2799Haemoglobin variantAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGACC2800Asp74GlyAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCTGTCGAC-GGCCGCCCTGAGCGACCTGCACGCGCACAAGCHCGGGTGGATCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGA2801CAGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGCACGTGGACGACATGC2802GCATGTCGTCCACGTGC2803Haemoglobin variantCAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGAC2804Asp74HisCAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCTGTgGAC-CACCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGGCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGAC2805AGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGCGCACGTGGACGACATG2806CATGTCGTCCACGTGCG2807Haemoglobin variantCACGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGG2808Asn78HisCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCcAAC-CACGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACTAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCG2809CTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCGTGACATGCCCAACGCGCTG2810CAGCGCGTTGGGCATGT2811Haemoglobin variantACCAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCT2812His87TyrGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGGgCAC-TACACCCGGTCAACTTCAAGGTGAGCGGCGGGCCGGGAGCGATCGCTCCCGGCCCGCCGCTCACCTTGAAGTTGACCGGGTCC2813ACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGHGGTGCGACCTGCACGCGCAC2814GTGCGCGTGCAGGTCGC2815Haemogiobin variantGGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGA2816Lys90AsnGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACAAGc-AACTTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAGCTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGT2817TGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCCGCGCACAAGCTTCGGGT2818ACCCGAAGCTTGTGCGC2819Haemoglobin variantTGGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTG2820Lys90ThrAGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAAAAG-ACGCTTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGATCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGTT2821GACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCCACGCGCACAAGCTTCGGG2822CCCGAAGCTTGTGCGCG2823Haemoglobin variantACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGAC2824Arg92GlnCTGCACGCGCACAAGAAGCTTCGGGTGGACCCGGTCAACTTCAACGG-CAGGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGCGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTT2825GAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTCAAGCTTCGGGTGGACC2826GGTCCACCCGAAGCTTG2827Haemoglobin variantACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCAC2828Asp94GlyGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAGGAC-GGCCGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGGCCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCT2829CACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTTCGGGTGGACCCGGTCA2830TGACCGGGTCCACCCGA2831Haemoglobin variantACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG2832Pro95ArgCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAGCGGCCG-CGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGGCGCGCGCCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCC 2833GCTCACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTGGTGGACCCGGTCAACT2834AGTTGACCGGGTCCACC2835Haemoglobin variantCGGCGGCTGCGGGCCTGGGCCCTCGGCCCCACTGACCCTC2836Ser102ArgTCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTGAGCc-AGAGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCC2837AGGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAAGAGGGTCAGTGGGGCCGAGGGCCCAGGCCCGCAGCCGCCGCTCCTAAGCCACTGCCT2838AGGCAGTGGCTTAGGAG2839Haemoglobin variantTTCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTG2840Glu116LysGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCcGAG-AAGCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCGCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCG2841TGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAATCCCCGCCGAGTTCACC2842GGTGAACTCGGCGGGGA2843Haemoglobin variantTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTC2844Ala120GluCCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGCG-GAGGTTCCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAATATATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTG2845TCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGACACCCCTGCGGTGCACG2846CGTGCACCGCAGGGGTG2847Thalassaemia alphaTGGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCAC2848Leu129ProGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCTGCTG-CCGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTGGCCATATGGCCACCGAGGCTCCAGCHAACGGTATTTGGAGGTCAGC2849ACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCACAAGTTCCTGGCTTCTG2850CAGAAGCCAGGAACTTG2851Haemoglobin variantTGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCG2852Arg141LeuTGCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTGGCCACGT-CTTTGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTAGGAGGGGCTGGGGGGAGGCCCAAGGGGCMGMGCATGG2853CCACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCACMATACCGTTAAGCTG2854CAGCTTAACGGTATTTG2855



EXAMPLE 16


Alpha-Thalassemia—Hemoglobin Alpha Locus 2

[0137] The attached table discloses the correcting oligonucleotide base sequences for the hemoglobin alpha locus 2 oligonucleotides of the invention.
24TABLE 23HBA2 Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNOThalassaemia alphaCCTGGCGCGCTCGCGGGCCGGCACTCTTCTGGTCCCCACAG2856Met(-1)ThrACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGATG-ACGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCATGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTT2857GTCGGCAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGTGGGGACCAGAAGAGTGCCGGCCCGCGAGCGCGCCAGGACCCACCATGGTGCTGT2858ACAGCACCATGGTGGGT2859Haemoglobin variantCACAGACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCC2860Ala12AspGACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCC-GACGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTGCACCTCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGC 2861GCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGGCAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGTGCGTCAAGGCCGCCTGGG2862CCCAGGCGGCCTTGACG2863Haemoglobin variantAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCAAC2864Lys16GluGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGGCGtAAG-GAGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCTCCGGAGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCG 2865CCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGGCAGGAGACAGCACCATGGTGGGTTCTCTCCTGGGGTAAGGTCGGC2866GCCGACCTTACCCCAGG2867Haemoglobin variantGGTGCTGTCTCCTGCCGACAAGACCAACGTCAAGGCCGCCT2868His20GlnGGGGTAAGGTCGGCGCGCACGCTGGCGAGTATGGTGCGGACACg-CAAGGCCCTGGAGAGGTGAGGCTCCCTCCCCTGCTCCGACCCGCGGGTCGGAGCAGGGGAGGGAGCCTCACCTCTCCAGGGCC2869TCCGCACCATACTCGCCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGGCAGGAGACAGCACCGGCGCGCACGCTGGCGA2870TCGCCAGCGTGCGCGCC2871Haemoglobin variantGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCAC2872Glu27AspGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTGAGg-GACCCCTCCCCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGACCGGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGGGGAG2873GGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCHGACGHGGTCGGTGCGGAGGCCCTGGA2874TCCAGGGCCTCCGCACC2875Thalassaemia alphaACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGG2876Leu29ProCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCTCCCTG-CCGCCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGACCCACAGCTGTGGGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGG 2877GGAGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTGGAGGCCCTGGAGAGGT2878ACCTCTCCAGGGCCTCC2879Haemoglobin variantGCTTCTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACCAAG2880Asp47HisACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCAcGAC-CACGGHAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGATCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGG2881GCAGAGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAGGTCTTGGTGGTGGGGAAGGACAGGAACATCCTGCGGGGAGAAGCCGCACTTCGACCTGAGC2882GCTCAGGTCGAAGTGCG2883Haemoglobin variantCTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACCAAGACCT2884Leu48ArgACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCAGGTTACTG-CGGAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGACCAATTGGTCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAAC2885CTGGGCAGAGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAGGTCTTGGTGGTGGGGAAGGACAGGAACATCCTGCGGGGAGCTTCGACCTGAGCCACG2886CGTGGCTCAGGTCGAAG2887Haemoglobin variantCTGTCCTTCCCCACCACCAAGACCTACTTCCCGCACTTCGAC2888Gln54GluCTGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAcCAG-GAGGGTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCACCHC 2889TTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAGGTCTTGGTGGTGGGGAAGGACAGGCTCTGCCCAGGTTAAG2890CTTAACCTGGGCAGAGC2891Haemoglobin variantCCAAGACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTG 2892Gly59AspCCCAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGGC-GACGACCAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAG 2893CGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAGGTCTTGGGGGCCACGGCAAGAAGG2894CCTTCTTGCCGTGGCCC2895Haemoglobin variantGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGG2896Asn68LysTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGAAACg-AAGT CATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG 2897TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTCCTGACCAACGCCGTGGC2898GCCACGGCGTTGGTCAG2899Haemoglobin variantGAGCCACGGCTCTGCCCAGGTAAAGGGCCACGGCAAGAAGG2900Asn68LysTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGAAACg-AAACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG2901TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTCCTGACCAACGCCGTGGC2902GCCACGGCGTTGGTCAG2903Haemoglobin variantCGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGGCG2904Asn78LysCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGAAACg-AAACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCGAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGT2905CGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCGATGCCCAACGCGCTGTC2906GACAGCGCGTTGGGCAT2907Haemoglobin variantCGCTGACCAACGCCGTGGCGCACGTGGACGACATGCCCAAC2908Asp85ValGCGCTGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGAC-GTCGGTGGACCCGGTCAACTTCAAGGTGAGCGGCGGGCCGGGCCCGGCCCGCCGCTCACCTTGAAGTTGACCGGGTCCACCCG2909AAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAGCGCCTGAGCGACCTGCACG2910CGTGCAGGTCGCTCAGG2911Haemoglobin variantGGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGA2912Lys90AsnGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACAAGc-AATTTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAGCTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGT2913TGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCCGCGCACAAGCTTCGGGT2914ACCCGAAGCTTGTGCGC2915Haemoglobin variantGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCA2916Asp94HisCGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAgGAC-CACGCGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCTC2917ACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTC. TTCGGGTGGACCCGGTC2918GACCGGGTCCACCCGAA2919Haemoglobin variantACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG2920Pro95LeuCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAGCGGCCG-CTGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGGCGCGCGCCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCC2921GCTCACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTGGTGGACCCGGTCAACT2922AGTTGACCGGGTCCACC2923Haemoglobin variantTAGCGCAGGCGGCGGCTGCGGGCCTGGGCCGCACTGACCC2924Ser102ArgTCTTCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCaAGC-CGCTGGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCAG2925GGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAAGAGGGTCAGTGCGGCCCAGGCCCGCAGCCGCCGCCTGCGCTAAGCTCCTAAGCCACTGC2926GCAGTGGCTTAGGAGCT2927Haemoglobin H diseaseGGCGGCGGCTGCGGGCCTGGGCCGCACTGACCCTCTTCTCT2928Cys104TyrGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCTGC-TACCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTCGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGG2929CGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAAGAGGGTCAGTGCGGCCCAGGCCCGCAGCCGCCGCCAAGCCACTGCCTGCTGG2930CCAGCAGGCAGTGGCTT2931Haemoglobin variantCCGCACTGACCCTCTTCTCTGCACAGCTCCTAAGCCACTGCC2932Ala111ValTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTCACCGCC-GTCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGCTTCGAAGCCAGGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGT2933GAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAAGAGGGTCAGTGCGGCCTGGCCGCCCACCTCC2934GGAGGTGGGCGGCCAGG2935Haemoglobin variantTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTC2936Ala210GluCCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGCG-GAGGTTCCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAATATATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTG2937TCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGACACCCCTGCGGTGCACG2938CGTGCACCGCAGGGGTG2939Haemoglobin variantCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCG2940His122GlnAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGCACq-CAGGCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAATTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAG2941GAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTGGGCGGTGCACGCCTCCCT2942AGGGAGGCGTGCACCGC2943Haemoglobin variantCACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGA2944Ala123SerGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGcGCC-TCCCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAGCTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCA2945GGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTGCGGTGCACGCCTCCCTG2946CAGGGAGGCGTGCACCG2947Thalassaemia alphaTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTCACC2948Leu125ProCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTCTG-CCGGAGCACCGTGCTGACCTCCAAATACCGTTAAGCTGGAGCGQTCCAGCTTAACGGTATTTGGAGGTCAGCACGGTGCTCACA2949GAAGCCAGGAACHGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCACGCCTCCCTGGACAAGT2950ACTTGTCCAGGGAGGCG2951Haemoglobin variantGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTC2952Ser131ProCCTGGACAAGTfCCTGGCTTCTGTGAGCACCGTGCTGACCTCtTCT-CCTCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTTCCTCGAGGAACGGCTACCGAGGCTCCAGCTTAACGGTATTTGGAG2953GTCAGCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCTCCTGGCTTCTGTGAGC2954GCTCACAGAAGCCAGGA2955Haemoglobin variantGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCT2956Leu136MetGGCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAGCgCTG-ATGTGGAGCCTCGGTAGCCGTTCCTCCTGCCCGCTGGGCCTAGGCCCAGCGGGCAGGAGGAACGGCTACCGAGGCTCCAGC2957TTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGCACCGTGCTGACCTCC2958GGAGGTCAGCACGGTGC2959Haemoglobin variantAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTG2960Leu136ProGCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAGCTCTG-CCGGGAGCCTCGGTAGCCGTTCCTCCTGCCCGCTGGGCCTCGAGGCCCAGCGGGCAGGAGGAACGGCTACCGAGGCTCCAG2961CTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCACCGTGCTGACCTCCA2962TGGAGGTCAGCACGGTG2963Haemoglobin variantGTGCACGCCTCGCTGGACAAGTTCCTGGCTTCTGTGAGCACC2964Arg141CysGTGCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCcCGT-TGTGTTCCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCGGAGGGCCCGTTGGGAGGCCCAGCGGGGAGGAGGAACGGC2965TACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCACCCAAATACCGTTAAGCT2966AGCTTAACGGTATTTGG2967Haemoglobin variantCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTG2968Term142GlnCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTTtTAA-CAACCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCCGGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGGAAC2969GGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGAATACCGTTAAGCTGGA2970TCCAGCTTAACGGTATT2971Haemoglobin variantCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTG2972Term142LysCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTTtTAA-AAACCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCCGGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGGAAC2973GGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGAATACCGTTAAGCTGGA2974TCCAGCTTAACGGTATT2975Haemoglobin variantCGCCTCCGTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCT2976Term142TyrGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTTCCTAAg-TATTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCCCCGGGGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGG2977AACGGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACHGTCCAGGGAGGCGTACCGTTAAGCTGGAGC2978GCTCCAGCTTAACGGTA2979



EXAMPLE 17


Human Mismatch Repair—MLH1

[0138] The human MLH1 gene is homologous to the bacterial mutL gene, which is involved in mismatch repair. Mutations in the MLH1 gene have been identified in many individuals with hereditary nonpolyposis colorectal cancer (HNPCC). Mutations in the MLH1 gene are also implicated in predisposition to a variety of cancers associated with, for example, Muir-Torre syndrome and Turcot syndrome. The attached table discloses the correcting oligonucleotide base sequences for the MLH1 oligonucleotides of the invention.
25TABLE 24MLH1 Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Non-polyposisTTGGCTGAAGGCACTTCCGTTGAGCATCTAGACGTTTCCTTG2980colorectal cancerGCTCTTCTGGCGCCAAAATGTCGTTCGTGGCAGGGGTTATTCMet1ArgGGCGGCTGGACGAGACAGTGGTGAACCGCATCGCGGCATG-AGGGCCGCGATGCGGTTCACCACTGTCTCGTCCAGCCGCCGAAT2981AACCCCTGCCACGAACGACATTTTGGCGCCAGAAGAGCCAAGGAAACGTCTAGATGCTCAACGGAAGTGCCTTCAGCCAACGCCAAAATGTCGTTCG2982CGAACGACATTTTGGCG2983Non-polyposisTTGGCTGAAGGCACTTCCGTTGAGCATCTAGACGTTTCCTTG2984colorectal cancerGCTCTTCTGGCGCCAAAATGTCGTTCGTGGCAGGGGTTATTCMet1LysGGCGGCTGGACGAGACAGTGGTGAACCGCATCGCGGCATG-AAGGCCGCGATGCGGTTCACCACTGTCTCGTCCAGCCGCCGAAT2985AACCCCTGCCACGAACGACATTTTGGCGCCAGAAGAGCCAAGGAAACGTCTAGATGCTCAACGGAAGTGCCTTCAGCCAACGCCAAAATGTCGTTCG2986CGAACGACATTTTGGCG2987Non-polyposisTGGTGAACCGCATCGCGGCGGGGGAAGTTATCCAGCGGCCA2988colorectal cancerGCTAATGCTATCAAAGAGATGATTGAGAACTGGTACGGAGGGMet35ArgAGTCGAGCCGGGCTCACTTAAGGGCTACGACTTAACGGATG-AGGCCGTTAAGTCGTAGCCCTTAAGTGAGCCCGGCTCGACTCCCT2989CCGTACCAGTTCTCAATCATCTCTTTGATAGCATTAGCTGGCCGCTGGATAACTTCCCCCGCCGCGATGCGGTTCACCACAAAGAGATGATTGAGA2990TCTCAATCATCTCTTTG2991Non-polyposisTAGAGTAGTTGCAGACTGATAAATTATTTTCTGTTTGATTTGCC2992colorectal cancerAGTTTAGATGCTAAAATCCACAAGTATTCAAGTGATTGTTAAAGSer44PheAGGGAGGCCTGAAGTTGATTCAGATCCAAGACAATCC-TTCTTGTCTTGGATCTGAATCAACTTGAGGCCTCCCTCTTTAACAA2993TCACTTGAATACTTGTGGATTTTGCATCTTAAACTGGCAAATCAAACAGAAAATAATTTATCAGTCTGCAACTACTCTATGCAAAATCCACAAGTA2994TACTTGTGGATTTTGCA2995Non-polyposisGCAAAATCCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGC2996colorectal cancerCTGAAGTTGATTCAGATCCAAGACAATGGCACCGGGATCAGGGln62LysGTAAGTAAAACCTCAAAGTAGCAGGATGTTTGTGCGCCAA-AAAGCGCACTAAACATCCTGCTACTTTGAGGTTTTACTTACCCTGAT2997CCCGGTGCCATTGTCTTGGATCTGAATCAACTTCAGGCCTCCCTCTTTAACAATCACTTGAATACTTGTGGATTTTGCTTCAGATCCAAGACAAT2998ATTGTCTTGGATCTGAA2999Non-polyposisGCAAAATCCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGC3000colorectal cancerCTGAAGTTGATTCAGATCCAAGACAATGGCACCGGGATCAGGGln62TermGTAAGTAAAACCTCAAAGTAGCAGGATGTTTGTGCGCCAA-TAAGCGCACAAACATCCTGCTACTTTGAGGTTTTACTTACCCTGAT3001CCCGGTGCCATTGTCTTGGATCTGAATCAACTTCAGGCCTCCCTCTTTAACAATCACTTGAATACTTGTGGATTTTGCTTCAGATCCAAGACAAT3002ATTGTCTTGGATCTGAA3003Non-polyposisCCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGT3004colorectal cancerTGATTCAGATCCAAGACAATGGCACCGGGATCAGGGTAAGTAAsn64SerAAACCTCAAAGTAGCAGGATGTTTGTGCGCTTCATGGAAT-AGTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGTTTTACTTA3005CCCTGATCCCGGTGCCATTCTCTTGGATCTGAATCAACTTCAGGCCTCCCTCTTTAACAATCACTTGAATACTTGTGGCCAAGACAATGGCACCG3006CGGTGCCATTGTCTTGG3007Non-polyposisATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTCAGA3008colorectal cancerTCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAAACCTCAAGly67ArgAGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCAGGG-AGGTGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT3009TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATCAACTTCAGGCCTCCGTCTTTAACAATCACTTGAATATGGCACCGGGATCAGG3010CCTGATCCCGGTGCCAT3011Non-polyposisATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTCAGA3012colorectal cancerTCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAACCTCAAGly67ArgAGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCAGGG-CGGTGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT3013TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATCAACTTCAGGCCTCCCTCTTTAACAATCACTTGAATATGGCACCGGGATCAGG3014CCTGATCCCGGTGCCAT3015Non-polyposisATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTTCAGA3016colorectal cancerTCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAACCTCAAGly67TrpAGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCAGGG-TGGTGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT3017TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATCAACTTCAGGCCTCCCTCTTTAACAATCACTTGAATATGGCACCGGGATCAGG3018CCTGATCCCGGTGCCAT3019Non-polyposisGTAACATGATTATTTACTCATCTTTTGGTATCTAACAGAPAGA3020colorectal cancerAGATCTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTGCys77ArgCAGTCCTTTGAGGATTTAGCCAGTATTTCTACCTTGT-CGTAGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTTTACT3021AGTAGTGAACCTTTCACATACAATATCCAGATCTTTCTTTGTTAGATACCAAAAAGATGAGTAAATAATCATGTTACATATTGTATGTGAAAGG3022CCTTTCACATACAATAT3023Non-polyposisTAACATGATTATTTACTCATCTTTTTGGTATCTAACAGAAGAA3024colorectal cancerGATCTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTGCCys77TyrAGTCCTTTGAGGATTTAGCCAGTATTTCTACCTATGT-TATTAGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTTTAC3025TAGTAGTGAACCTTTCACATACAATATCCAGATCTTCTTTCTGTTAGATACCAAAAAGATGAGTAAATAATCATGTTATATTGTATGTGAAAGGT3026ACCTTTCACATACAATA3027Non-polyposisCTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTGCAGT3028colorectal cancerCCTTTGAGGATTTAGCCAGTATTTCTACCTATGGCTTTCGAGGSer93GlyTGAGGTAAGCTAAAGATTCAAGAAATGTGTAAAATAGT-GGTATTTTACACATTTCTTGAATCTTTAGCTTACCTCACCTCGAAAG3029CCATAGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTTTACTAGTAGTGAACCTTTCACATACAATATCCAGATTTAGCCAGTATTTCT3030AGAAATACTGGCTAAAT3031Non-polyposisTTCACTACTAGTAAACTGCAGTCCTTTGAGGATTTAGCCAGTA3032colorectal cancerTTTCTACCTATGGCTTTCGAGGTGAGGTAAGCTAAAGATTCAAArg100TermGAAATGTGTAAAATATCCTCCTGTGATGACATTGTCGA-TGAACAATGTCATCACAGGAGGATATTTTACACATTTCTTGAATCTT 3033TAGCTTACCTCACCTCGAAAGCCATAGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTTTACTAGTAGTGAAATGGCTTTCGAGGTGAG3034CTCACCTCGAAAGCCAT3035Non-polyposisACCCAGCAGTGAGTTTTTCTTTCAGTCTATTTTCTTTTCTTCCT3036colorectal cancerTAGGCTTTGGCCAGCATAAGCCATGTGGCTCATGTTACTATTAIle107ArgCAACGAAAACAGCTGATGGAAAGTGTGCATACAGATA-AGACTGTATGCACACTTTCCATCAGCTGTTTTCGTTGTAATAGTAA3037CATGAGCCACATGGCTTATGCTGGCCAAAGCCTTAGGAAGAAAAGAAAATAGACTGAAAGAAAAACTCACTGCTGGGTGGCCAGCATAAGCCATG3038CATGGCTTATGCTGGCC3039Non-polyposisTTTCTTTTCTTCCTTAGGCTTTGGCCAGCATAAGCCATGTGGC3040colorectal cancerTCATGTTACTATTACAACGAAAACAGCTGATGGAAAGTGTGCAThr117ArgTACAGGTATAGTGCTGACTTCTTTTACTCATATATACG-AGGATATATGAGTAAAAGAAGTCAGCACTATACCTGTATGCACACT3041TTCCATCAGCTGTTTTCGTTGTAATAGTAACATGAGCCACATGGCTTATGCTGGCCAAAGCCTAAGGAAGAAAAGAAATATTACAACGATAAACAG3042CTGTTTTCGTTGTAATA3043Non-polyposisTTTCTTTTCTTCCTTAGGCTTTGGCCAGCATAAGCCATGTGGC3044colorectal cancerTCATGTTACTATTACAACGAAAACAGCTGATGGAAAGTGTGCAThr117MetTACAGGTATAGTGCTGACTTCTTTTACTCATATATACG-ATGATATATGAGTTAAAAGAAGTCAGCACTATACCTGTATGCACACT3045TTCCATCAGCTGTTTTCGTTGTAATAGTAACATGAGCCACATGGCTTATGCTGGCCAAAGCGTAAGGAAGAAAAGAAATATTACAACGAAAACAG3046CTGTTTTCGTTGTAATA3047Non-polyposisTCTATCTCTCTACTGGATATTAATTTGTTATATTTTCTCATTAGA3048colorectal cancerGCAAGTTACTCAGATGGAAAACTGAAAGCCCCTCCTAAACCAGly133TermTGTGCTGGCAATCAAGGGACCCAGATCACGGTAAGGA-TGATTACCGTGATCTGGGTCCCTTGATTGCCAGCACATGGTTTAG3049GAGGGGCTTTCAGTTTTCCATCTGAGTAACTTGCTCTAATGAGATAAATATAACAAATTAATATCCAGTAGAGAGATAGAACTCAGATGGAAAACTG3050CAGTTTTCCATCTGAGT3051Non-polyposisTAGTGTGTGTTTTTGGCAACTCTTTTCTTACTCTTTTGTTTTTC3052colorectal cancerTTTTCCAGGTATTCAGTACACAATGCAGGCATTAGTTTTCTCAGVal185GlyTTAAAAAAGTAAGTTCTTGGTTTATGGGGGATGGGTA-GGACCATCCCCCATAAACCAAGAAGTTACTTTTTTAACTGAGAAAC3053TAATGCCTGCATTGTGTACTGAATACCTGGAAAAGAATAAACAAAAGAGTAAGTAAAAGAGTTGCCAAAAACACACACTAGTATTCAGTACACAATG3054CATTGTGTACTGAATAC3055Non-polyposisTTTCTTACTCTTTTGTTTTTCTTTTCCAGGTATTCAGTACACAAT3056colorectal cancerGCAGGCATTAGTTTCTCAGTTAAAAAAGTAAGTTCTTGGTTTATSer193ProGGGGGATGGTTTTGTTTTATGTAAAAGAAAAAATCA-CCATTTTTTCTTTTCATAAAACAAAACCATCCCCCATAAACCAAGAA3057CTTACTTTTTTAACTGAGAAACTAATGCCTGCATTGTGTACTGAATACCTGGAAAAGAAAAACAAAAGAGTAAGAAATTAGTTTCTCAGTTAAA3058TTTAACTGAGAAACTAA3059Non-polyposisTTTGTTTATCAGCTAGGAGAGACAGTAGCTGATGTTAGGACA3060colorectal cancerCTACCCAATGCCTCAACCGTGGACAATATTCGCTCCATCTTTGGAAATGCTGTTAGTCGGTATGTCGATAACCTATATATATATAGGTTATCGACATACCGACTAACAGCATTTCCAAAGAT3061GGAGCGAATATTGTCCACGGTTGAGGCATTGGGTAGTGTCCTAACATCAGCTACTGTCTCTCCTTGCTGATAAACAAACCTCAACCGTGGACAAT3062ATTGTCCACGGTTGAGG3063Non-polyposisCAAGGAGAGACAGTAGCTGATGTTAGGACACTACCCAATGCC3064colorectal cancerTCAACCGTGGACAATATTCGCTCCATCTTTGGAAATGCTGTTAArg217CysGTCGGTATGTCGATAACCTATATAAAAAAAATCTTTTCGC-TGCAAAAGATTTTTTTATATAGGTTATCGACATACCGACTAACAGCA3065TTTCCAAAGATGGAGCGAATATTGTCCACGGTTGAGGCATTGGGTAGTGTCCTAACATCAGCTACTGTCTCTCCTTGACAATATTCGCTCCATC3066GATGGAGCGAATATTGT3067Non-polyposisGAGACAGTAGCTGATGTTAGGACACTACCCAATGCCTCAACC3068colorectal cancerGTGGACAATATTCGCTCCATCTTTGGAAATGCTGTTAGTCGGTIle219ValATGTCGATAACCTATATAAAAAAATCTTTTACATTTATC-GTCAAATGTAAAAGATTTTTTTATATAGGTTATCGACATACCGACTA3069ACAGCATTTCCAAAGATGGAGCGAATATTGTCCACGGTTGAGGCATTGGGTAGTGTCCTAACATCAGCTACTGTCTCTTCGCTCCATCTTTGGA3070TCCAAAGATGGAGCGAA3071Non-polyposisCTAATAGAGAACTGATAGTAAATTGGATGTGAGGATAAAACCCT3072colorectal cancerAGCCTTCAAAATGAATGGTTACATATCCAATGCAAACTACTCAGly244AspGTGAAGAAGTGCATCTTCTTACTCTTCATCAACCGGGT-GATCGGTTGATGAAGAGTAAGAAGATGCACTTCTTCACTGAGTAG3073TTTGCATTGGATATGTAACCATTCATTTTGAAGGCTAGGGTTTATCCTCACATCCAATTTCTATCAGTTCTCTATTAGAATGAATGGTTACATAT3074ATATGTAACCATTCATT3075Non-polyposisGATGTGAGGATAAAACCCTAGCCTTCAAPATGAATGGTTACAT3076colorectal cancerATCCAATGCAAACTACTCAGTGAAGAAGTGCATCTCTTACTCSer252TermTTCATCAACCGTAAGTTAAAAAGAACCACATGGGATCA-TAATCCCATGTGGTTCTTTTTAACTTACGGTTGATGAAGAGTAAGA3077AGATGCACTTCTTCACTGAGTAGTTTGCATTGGATATGTAACCATTCATTTTGAAGGCTAGGGTTTTATCCTCACATCAAACTACTCAGTGAAGA3078TCTTCACTGAGTAGTTT3079Non-polyposisCACCCCTCAGGACAGTTTTGAACTGGTTGCTTTCTTTTTATTG3080colorectal cancerTTTAGATCGTCTGGTAGAATCAACTTCCTTGAGAAAAGCCATAGlu268GlyGAAACAGTGTATGCAGCCTATTTGCCCAAAAACACGAA-GGAGTGTTTTTGGGCAAATAGGCTGCATACACTGTTTCTATGGCTT3081TTCTCAAGGAAGTTGATTCTACCAGACGATCTAAACAATAAAAAGAAAGCAACCAGTTCAAAACTGTCCTGAGGGGTGTCTGGTAGAATCAACTT3082AAGTTGATTCTACCAGA3083Non-polyposisCCCTCAGGACAGTTTTGAACTGGTTGCTTTCTTTTTATTGTTTA3084colorectal cancerGATCGTCTGGTAGAATCAACTTCCTTGAGTAAAGCCATAGAAASer269TermCAGTGTATGCAGCCTATTTGCCCAAAAACACACATCA-TGATGTGTGTTTTTGGGCAAATAGGCTGCATACACTGTTTCTATGG3085CTTTTCTCAAGGAAGTTGATTCTACCAGACGATCTAAACAATAAAAAGAAAGCAACCAGTTCAAAACTGTCCTGAGGGGGTAGAATCAACTTCCT3086AGGAAGTTGATTCTACC3087Non-polyposisCTTTTTCTCCCCCTCCCACTATCTAAGGTAATTGTTCTCTCTTA3088colorectal cancerTTTTCCTGACAGTTTAGAAATCAGTCCCCAGAATGTGGATGTTGlu297TermAATGTGCACCCCACTAAAGCATGAAGTTCACTTCCGAA-TAAGGAAGTGAACTTCATGCTTTGTGGGGTGCACATTAACATCCA3089CATTCTGGGGACTGATTTCTAAACTGTCAGGAAAATAAGAGAGAACAATTACCTTAGATAGTGGGAGGGGGAGAAAAAGACAGTTTAGAAATCAGT3090ACTGATTTCTAAACTGT3091Non-polyposisCTCCCACTATCTAAGGTAATTGTTCTCTCTTATTTTCCTGACAG3092colorectal cancerTTTAGAAATCAGTCCCCAGAATGTGGATGTTAATGTGCACCCCGln301TermACAAAGCATGAAGTTCACTTCCTGCACGAGGAGACAG-TAGTCTCCTCGTGCAGGAAGTGAACTTCATGCTTTGTGGGGTGCA3093CATTAACATCCACATTCTGGGGACTGATTTCTAAACTGTCAGGAAAATAAGAGAGAACAATTACCTTAGATAGTGGGAGTCAGTCCCCAGAATGTG3094CACATTCTGGGGACTGA3095Non-polyposisATGTGCACCCCACAAAGCATGAAGTTCACTTCGTGCACGAGG3096colorectal cancerAGAGCATCCTGGAGCGGGTGCAGCAGCACATCGAGAGCAAGVal326AlaCTCCTGGGCTCCAATTCCTCCAGGATGTACTTCACCCAGTG-GCGTGGGTGAAGTACATCCTGGAGGAATTGGAGCCCAGGAGCTT3097GCTCTCGATGTGCTGCTGCACCCGCTCCAGGATGCTCTCCTCGTGCAGGAAGTGAACTTCATGCTTTGTGGGGTGCACATGGAGCGGGTGCAGCAGC3098GCTGCTGCACCCGCTCC3099Non-polyposisCCACAAAGCATGAAGTTCACTTCCTGCACGAGGAGAGCATCC3100colorectal cancerTGGAGCGGGTGCAGCAGCACATCGAGAGCAAGCTCCTGGGCHis329ProTCCAATTCCTCCAGGATGTACTTCACCCAGGTCAGGGCCAC-CCCGCCCTGACCTGGGTGAAGTACATCCTGGAGGAATTGGAGCC3101CAGGAGCTTGCTCTCGATGTGCTGCTGCACCCGCTCCAGGATGCTCTCCTCGTGCAGGAAGTGAACTTCATGCTTTGTGGGCAGCAGCACATCGAGA3102TCTCGATGTGCTGCTGC3103Non-polyposisCAAGTCTGACCTCGTCTTCTACTTCTGGAAGTAGTGATAAGGT3104colorectal cancerCTATGCCCACCAGATGGTTCGTACAGATTCCCGGGAACAGAAVal384AspGCTTGATGCATTTCTGCAGCCTCTGAGCAAACCCCTGTT-GATAGGGGTTTGCTCAGAGGCTGCAGAAATGCATCAAGCTTCTGT3105TCCCGGGAATCTGTACGAACCATCTGGTGGGCATAGACCTTATCACTACTTCCAGAAGTAGAAGACGAGGTCAGACTTGCCAGATGGTTCGTACAG3106CTGTACGAACCATCTGG3107Non-polyposisAGTGGCAGGGCTAGGCAGCAAGATGAGGAGATGCTTGAACT3108colorectal cancerCCCAGCCCCTGCTGAAGTGGCTGCCAAAAATCAGAGCTTGGAAla441ThrGGGGGATACAACAAAGGGGACTTCAGAAATGTCAGAGAGCT-ACTTCTCTGACATTTCTGAAGTCCCCTTTGTTGTATCCCCCTCCAA 3109GCTCTGATTTTTGGCAGCCACTTCAGCAGGGGCTGGGAGTTCAAGCATCTCCTCATCTTGCTGCCTAGCCCTGCCACTCTGAAGTGGCTGCCAAA3110TTTGGCAGCCACTTCAG3111Non-polyposisCTTCATTGCAGAAAGAGACATCGGGAAGATTCTGATGTGGAA3112colorectal cancerATGGTGGAAGATGATTCCCGAAAGGAAATGACTGCAGCTTGTArg487TermACCCCCCGGAGAAGGATCATTAACCTCACTAGTGTTTCGA-TGAAAACACTAGTGAGGTTAATGATCCTTCTCCGGGGGGTACAAG3113CTGCAGTCATTTCCTTTCGGGAATCATCTTCCACCATTTCCACATCAGAATCTTCCCGATGTCTCTTTCTGCAATGAAGATGATTCCCGTAAAGGAA3114TTCCTTTCGGGAATCAT3115Non-polyposisAGACATCGGGAAGATTCTGATGTGGAAATGGTGGAAGATGAT3116colorectal cancerTCCCGAAAGGAAATGACTGCAGCTTGTACCCCCCGGAGAAGAla492ThrGATCATTAACCTCACTAGTGTTTTGAGTCTCCAGGAAGGCA-ACACTTCCTGGAGACTCAAAACACTAGTGAGGTTAATGATCCTTCT3117CCGGGGGGTACAAGCTGCAGTCATTTCCTTTCGGGAATCATCTTCCACCATTTCCACATCAGAATCTTCCCGATGTCTAAATGACTGCAGCTTGT3118ACAAGCTGCAGTCATTT3119Non-polyposisCCCGAAAGGAAATGACTGCAGCTTGTACCCCCCGGAGAAGG3120colorectal cancerATCATTAACCTCACTAGTGTTTTGAGTCTCCAGGAAGAAATTAVal506AlaATGAGCAGGGACATGAGGGTACGTAAACGCTGTGGCCGTT-GCTGGCCACAGCGTTTACGTACCCTCATGTCCCTGCTCATTAATTT3121CTTCCTGGAGACTCAAAACACTAGTGAGGTTAATGATCCTTCTCCGGGGGGTACAAGCTGCAGTCATTTCCTTTCGGGCACTAGTGTTTTGAGTC3122GACTCAAAACACTAGTG3123Non-polyposisGGGAGATGTTGCATAACCACTCCTTCGTGGGCTGTGTGTGAATC3124colorectal cancerCTCAGTGGGCCTTGGCACAGCATCAAACCAAGTTATACCTTCTGln542LeuTTCAACACCACCAAGCTTAGGTAAATCAGCTGAGTGTGCAG-CTGCACACTCAGCTGATTTACCTAAGCTTGGTGGTGTTGAGAAGG3125TATAACTTGGTTTGATGCTGTGCCAAGGCCCACTGAGGATTCACACAGCCCACGTAGGAGTGGTTATGCTACATCTCCCCTTGGCACAGCATCAAA3126TTTGATGCTGTGCCAAG3127Non-polyposisCCTTCGTGGGCTGTGTGAATCCTCAGTGGGCCTTGGCACAG3128colorectal cancerCATCAAACCAAGTTATACCTTCTCAACACCACCAAGCTTAGGTLeu549ProAAATCAGCTGAGTGTGTGAACAAGCAGAGCTACTACACTT-CCTTGTAGTAGCTCTGCTTGTTCACACACTCAGCTGATTTACCTAA3129GCTTGGTGGTGTTGAGAAGGTATAACTTGGTTTGATGCTGTGCCAAGGCCCACTGAGGATTCACACAGCCCACGAAGGGTTATACCTTCTCAACA3130TGTTGAGAAGGTATAAC3131Non-polyposisTGGGCTGTGTGAATCCTCAGTGGGCCTTGGCACAGCATCAAA3132colorectal cancerCCAAGTTATACCTTCTCAACACCACCAAGCTTAGGTAAATCAGAsn551ThrCTGAGTGTGTGAACAAGCAGAGCTACTACAACAATGAAC-ACCCATTGTTGTAGTAGCTCTGCTTGTTCACACACTCAGCTGATTT3133ACCTAAGCTTGGTGGTGTTGAGAAGGTATAACTTGGTTTGATGCTGTGCCAAGGCCCACTGAGGATTCACACAGCCCACCTTCTCAACACCACCA3134TGGTGGTGTTGAGAAGG3135Non-polyposisATGAATTCAGCTTTTCCTTAAAGTCACTTCATTTTTATTTTCAG3136colorectal cancerTGAAGAACTGTTCTACCAGATACTCATTTATGATTTTGCCAATTGln562TermTTGGTGTTCTCAGGTTATCGGTAAGTTTAGATCCAG-TAGGATCTAAACTTACCGATAACCTGAGAACACCAAAATTGGCAAA3137ATCATAAATGAGTATCTGGTAGAACAGTTCTTCACTGAAAATAAAAATGAAGTGACTTTAAGGAAAAGCTGAATTCATTGTTCTACCAGATACTC3138GAGTATCTGGTAGAACA3139Non-polyposisGCTTTTCCTTAAAGTCACTTCATTTTTATTTTCAGTGAAGAACT3140colorectal cancerGTTCTACCAGATACTCATTTATGATTTTGCCAATTTTGGTGTTCIle565PheTCAGGTTATCGGTAAGTTTAGATCCTTTTCACTATT-TTTAGTGAAAAGGATCTAAACTTACCGATAACCTGAGAACACCAAA3141ATTGGCAAAATCATAAATGAGTATCTGGTAGAACAGTTCTTCACTGAAAATAAAAATGAAGTGACTTTAAGGAAAAGCAGATACTCATTTATGAT3142ATCATAAATGAGTATCT3143Non-polyposisTTTTCAGTGAAGAACTGTTCTACCAGATACTCATTTATGATTTT3144colorectal cancerGCCAATTTTGGTGTTCTCAGGTTATCGGTAAGTTTAGATCCTTLeu574ProTTCACTTCTGAAATTTCAACTGATCGTTTCTGAACTC-CCCTTCAGAAACGATCAGTTGAAATTTCAGAAGTGAAAAGGATCTA3145AACTTACCGATAACCTGAGAACACCAAAATTGGCAAAATCATAAATGAGTATCTGGTAGAACAGTTCTTCACTGAAAATGGTGTTCTCAGGTTAT3146ATAACCTGAGAACACCA3147Non-polyposisTGGATGCTCCGTTTAAAGCTTGCTCCTTCATGTTCTTGCTTCTT3148colorectal cancerCCTAGGAGCCAGCACCGCTCTTTGACCTTGCCATGCTTGCCTLeu582ValTAGATAGTCCAGAGAGTGGCTGGACAGAGGAAGATGCTC-GTCCATCTTCCTCTGTCCAGCCACTCTCTGGACTATCTAAGGCAA3149GCATGGCAAGGTCAAAGAGCGGTGCTGGCTCCTAGGAAGAAGCAAGAACATGAAGGAGCAAGCTTTAACGGAGCATCCACAGCACCGCTCTTTGAC3150GTCAAAGAGCGGTGCTG3151Non-polyposisTGCTTGCCTTAGATAGTCCAGAGAGTGGCTGGACAGAGGAAG3152colorectal cancerATGGTCCCAAAGAAGGACTTGCTGAATACATTGTTGAGTTTCTLeu607HisGAAGAAGAAGGCTGAGATGCTTGCAGACTATTTCTCCTT-CATGAGAAATAGTCTGCAAGCATCTCAGCCTTCTTCTTCAGAAACT3153CAACAATGTATTCAGCAAGTCCTTCTTTGGGACCATCTTCCTCTGTCCAGCCACTCTCTGGACTATCTAAGGCAAGCAAGAAGGACTTGCTGAAT3154ATTCAGCAAGTCCTTCT3155Non-polyposisACAGAGGAAGATGGTCCCAAAGAAGGACTTGCTGAATACATT3156colorectal cancerGTTGAGTTTCTGAAGAAGAAGGCTGAGATGCTTGCAGACTATLys618TermTTCTCTTTGGAAATTGATGAGGTGTGACAGCCATTCTAAG-TAGAGTATGGCTGTCACACCTCATCAATTTCCAAAGAGAAATAGTC3157TGCAAGCATCTCAGCCTTCTTCTTCAGAAACTCAACAATGTATTCAGCAAGTCCTTCTTTGGGACCATCTTCCTCTGTTGAAGAAGAAGGCTGAG3158CTCAGCCTTCTTCTTCA3159Non-polyposisCAGAGGAAGATGGTCCCAAAGAAGGACTTGCTGAATACATTG3160colorectal cancerTTGAGTTTCTGAAGAAGAAGGCTGAGATGCTTGCAGACTATTTLys618ThrCTCTTTGGAAATTGATGAGGTGTGACAGCCATTCTTAAG-ACGAAGAATGGCTGTCACACCTCATCAATTTCCAAAGAGAAATAGT3161CTGCAAGCATCTCAGCCTTCTTCTTCAGAAACTCAACAATGTATTCAGCAAGTCCTTCTTTGGGACCATCTTCCTCTGGAAGAAGAAGGCTGAGA3162TCTCAGCCTTCTTCTTC3163Non-polyposisTACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGAC3164colorectal cancerTGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATCAArg659LeuAGCAGATACTAAGCATTTCGGTACATGCATGTGTGCCGA-CTAGCACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCAC3165TGACCTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCTCCAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTACATTCTTCGACTAGCCA3166TGGCTAGTCGAAGAATG3167Non-polyposisTACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGAC3168colorectal cancerTGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATCAArg659ProAGCAGATACTAAGCATTTCGGTACATGCATGTGTGCCGA-CCAGCACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCAC3169TGACGTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCTCCTAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTACATTCTTCGACTAGCCA3170TGGCTAGTCGAAGAATG3171Non-polyposisTTACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGA3172colorectal cancerCTGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATCArg659TermAAGCAGATACTAAGCATTTCGGTACATGCATGTGTGCGA-TGACACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCACT3173GACCTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCTCCAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTAATCATTCTTCGACTAGCC3174GGCTAGTCGAAGAATGA3175Non-polyposisTTGGACCAGGTGAATTGGGACGAAGAAAAGGAATGTTTTGAA3176colorectal cancerAGCCTCAGTAAAGAATGCGCTATGTTCTATTCCATCCGGAAGAla681ThrCAGTACATATCTGAGGAGTCGACCCTCTCAGGCCAGCGCT-ACTGCTGGCCTGAGAGGGTCGACTCCTCAGATATGTACTGCTTCC3177GGATGGAATAGAACATAGCGCATTCTTTACTGAGGCTTTCAAAACATTCCTTTTCTTCGTCCCAATTCACCTGGTCCAAAAGAATGCGCTATGTTC3178GAACATAGCGCATTCTT3179Non-polyposisAGGCTTATGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGG3180colorectal cancerCTCCATTCCPAACTCCTGGAAGTGGACTGTGGAACACATTGTTrp712TermCTATAAAGCCTTGCGCTCACACATTCTGCCTCCTAATGG-TAGTTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATAGACAATG3181TGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGAGCCAGGCACTTCACTCTGGAAAACACATTAGATGTCATAAGCCTAAACTCCTGGAAGTGGA3182TCCACTTCCAGGAGTTT3183Non-polyposisATGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCAT3184colorectal cancerTCCAAACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAATrp714TermGCCTTGCGCTCACACATTCTGCCTCCTAAACATTTTGG-TAGAAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATAG3185ACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGAGCCAGGCACTTCACTCTGGAAAACACATTAGATGTCATCTGGAAGTGGACTGTGG3186CCACAGTCCACTTCCAG3187Non-polyposisTGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCATT3188colorectal cancerCCAAACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAATrp714TermGCCTTGCGCTCACACATTCTGCCTCCTAAACATTTCTGG-TGAGAAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATA3189GACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGAGCCAGGCACTTCACTCTGGAAkACACATTAGATGTCATGGAAGTGGACTGTGGA3190TCCACAGTCCACTTCCA3191Non-polyposisATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCATTCCAA3192colorectal cancerACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAAGCCTTVal716MetGCGCTCACACATTCTGCCTCCTAAACATTTCACAGGTG-ATGCTGTGAAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTT3193TATAGACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGAGCCAGGCACTTCACTCTGGAAAACACATTAGATAGTGGACTGTGGAACAC3194GTGTTCCACAGTCCACT3195Non-polyposisGAGTGAAGTGCCTGGCTCCATTCCAAACTCCTGGAAGTGGAC3196colorectal cancerTGTGGAACACATTGTCTATAAAGCCTTGCGCTCACACATTCTGTyr721TermCCTCCTAAACATTTCACAGAAGATGGAAATATCCTGTAT-TAACAGGATATTTCCATCTTCTGTGAAATGTTTAGGAGGCAGAATG3197TGTGAGCGCAAGGCTTTATAGACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGAGCCAGGCACTTCACTCATTGTCTATAAAGCCTT3198AAGGCTTTATAGACAAT3199Non-polyposisCTAAACATTTCACAGAAGATGGAAATATCCTGCAGCTTGCTAA3200colorectal cancerCCTGCCTGATCTATACAAAGTCTTTGAGAGGTGTTAAATATGGLys751ArgTTATTTATGCACTGTGGGATGTGTTCTTCTTTCTCAAA-AGAGAGTAAGAAGAACACATCCCACAGTGCATAAATAACCATATTT3201AACACCTCTCAAAGACTTTGTATAGATCAGGCAGGTTAGCAAGCTGCAGGATATTTCCATCTTCTGTGAAATGTTTAGTCTATACAAAGTCTTTG3202CAAAGACTTTGTATAGA3203Non-polyposisACAGAAGATGGAAATATCCTGCAGCTTGCTAACCTGCCTGAT3204colorectal cancer CTATACAAAGTCTTTGAGAGGTGTTAAATATGGTTATTTATGCAArg755TrpCTGTGGGATGTGTTCTTCTTTCTCTGTATTCCGATAGG-TGGATCGGAATACAGAGAAAGAAGAACACATCCCAGAGTGCATAA3205ATAACCATATTTAACACCTCTCAAAGACTTTGTATAGATCAGGCAGGTTAGCAAGCTGCAGGATATTTCCATCTTCTGTTCTTTGAGAGGTGTTAA3206TTAACACCTCTCAAAGA3207



EXAMPLE 18


Human Mismatch Repair—MSH2

[0139] The human MSH2 gene is homologous to the bacterial mutS gene, which is involved in mismatch repair. Mutations in the MSH2 gene have been identified in a variety of cancers, including, for example, ovarian tumors, colorectal cancer, endometrial cancer, uterine cancer. The attached table discloses the correcting oligonucleotide base sequences for the MSH2 oligonucleotides of the invention.
26TABLE 25MSTT2 Mutations and Genome-Connecting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Non polyposisTTTTCCACAAAAGACATTTATCAGGACCTCAACCGGTTGTTGA3208colorectal cancerAAGGCAAAAAGGGAGAGCAGATGAATAGTGCTGTATTGCCAGGln252TermAAATGGAGAATCAGGTACATGGATTATAAATGTGAACAG-TAGTTCACATTTATAATCCATGTACCTGATTCTCCATTTCTGGCAAT3209ACAGCACTATTCATCTGCTCTCCCTTTTTGCCTTTCAACAACCGGTTGAGGTCCTGATAAATGTCTTTTGTGGAAAAAGGGAGAGCAGATGAAT3210ATTCATCTGCTCTCCCT3211Non polyposisTCATCACTGTCTGCGGTAATCAAGTTTTTAGAACTCTTATCAG3212colorectal cancerATGATTCCAACTTTGGACAGTTTGAACTGACTACTTTTGACTTGln288TermCAGCCAGTATATGAAATTGGATATTGCAGCAGTCACAG-TAGTGACTGCTGCAATATCCAATTTCATATACTGGCTGAAGTCAAA3213AGTAGTCAGTTCAAACTGTCCAAAGTTGGAATCATCTGATAAGAGTTCTAAAAACTTGATTACCGCAGACAGTGATGAACTTTGGACAGTTTGAA3214TTCAAACTGTCCAAAGT3215Non polyposisAACTTTGGACAGTTTGAACTGACTACTTTTGACTTCAGCCAGT3216colorectal cancerATATGAAATTGGATATTGCAGCAGTCAGAGCCCTTAACCTTTTAla305ThrTCAGGTAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGCA-ACACCTTTTTTTTTTTTTTTTTTTTTTTTTACCTGAAAAAGGTTAAG3217GGCTCTGACTGCTGCAATATCCAATTTCATATACTGGCTGAAGTCAAAAGTAGTCAGTTCAAACTGTCCAAAGTTTGGATATTGCAGGAGTC3218GACTGCTGCAATATCCA3219Non polyposisAGCTTGCCATTCTTTCTATTTTATTTTTTGTTTACTAGGGTTCT3220colorectal cancerGTTGAAGATACCACTGGCTCTCAGTCTCTGGCTGCCTTGCTGGly322AspAATAAGTGTAAAACCCCTCAAGGACAAAGACTTGTGGC-GACACAAGTCTTTGTCCTTGAGGGGTTTTACACTTATTCAGCAAGG3221CAGCCAGAGACTGAGAGCCAGTGGTATCTTCAACAGAACCCTAGTAAACAAAAAATAAAATAGAAAGAATGGCAAGCTTACCACTGGCTCTCAGT3222ACTGAGAGCCAGTGGTA3223Non polyposisTTGCCATTCTTTCTATTTTATTTTTTGTTTACTAGGGTTCTGTTG3224colorectal cancerAAGATACCACTGGCTCTCAGTCTGTGGCTGGCTTGCTGAATASer323CysAGTGTAAAACCCCTCAAGGACAAAGACTTGTTAATCT-TGTTTAACAAGTCTTTGTCCTTGAGGGGTTTTACACTTATTCAGCA3225AGGCAGCCAGAGACTGAGAGCCAGTGGTATCTTCAACAGAACCCTAGTAAACAAAAAATAAAATAGAAAGAATGGCAACACTGGCTCTCAGTCTC3226GAGACTGAGAGCCAGTG3227Non polyposisGTGGAAGCTTTTGTAGAAGATGCAGAATGAGGCAGACTTTA3228colorectal cancerCAAGAAGATTTACTTCGTCGATTCGCAGATCTTAACCGACTTGArg383TermCCAAGAAGTTTCAAAGACAAGCAGCAAACTTACAAGCGA-TGACTTGTAAGTTTGCTGCTTGTCTTTGAAACTTCTTGGCAAGTCG 3229GTTAAGATCTGGGAATCGACGAAGTAAATCTTCTTGTAAAGTCTGCCTCAATTCTGCATCTTCTACAAAAGCTTCCACTACTTCGTCGATTCCCA3230TGGGAATCGACGAAGTA3231Non polyposisCAAGAAGATTTACTTCGTCGATTCCCAGATCTTAACCGACTTG3232colorectal cancerCCAAGAAGTTTCAAAGACAAGCAGCAAACTTACAAGATTGTTAGln397TermCCGACTCTATCAGGGTATAAAATCAACTACCTAATGCAA-TAACATTAGGTAGTTGATTTATACCCTGATAGAGTCGGTAACAATC3233TTGTAAGTTTGCTGCTTGTCTTTGAAACTTCTTGGCAAGTCGGTTAAGATCTGGGAATCGACGAAGTAAATCTTCTTGTTCAAAGACAAGCAGCA3234TGCTGCTTGTCTTTGAA3235Non polyposisGATCTTAACCGACTTGCCAAGAAGTTTCAAAGACAAGCAGCA3236colorectal cancerAACTTACAAGATTGTTACCGACTCTATCAGGGTATAAATCAACArg406TermTACCTAATGTTATACAGGCTCTGGAAAAACATGAAGCGA-TGACTTCATGTTTTTCCAGAGCCTGTATAACATTAGGTAGTTGATTT3237ATACCCTGATAGAGTCGGTAACAATCTTGTAAGTTTGCTGCTTGTCTTTGAAACTTCTTGGCAAGTCGGTTAAGATCATTGTTACCGACTCTAT3238ATAGAGTCGGTAACAAT3239Non polyposisGCAAACTTACAAGATTGTTACCGACTCTATCAGGGTATAAATC3240colorectal cancerAACTACCTAATGTTATACAGGCTCTGGAAAATTACATGAAGGTAAGln419TermCAAGTGATTTTGTTTTTTTGTTTTCTTCAACTCACAG-TAGTGAGTTGAAGGAAAACAAAAAAACAAAATCACTTGTTACCTTC3241ATGTTTTTCGAGAGCCTGTATAACATTAGGTAGTTGATTTATACCCTGATAGAGTCGGTAACAATCTTGTAAGTTTGCATGTTATACAGGCTCTG3242CAGAGCCTGTATAACAT3243Non polyposisTATTCTGTAAAATGAGATCTTTTTATTTGTTGTTTTACTACTTT3244colorectal cancerCTTTTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTTGTGAGln429TermCTCCTCTTACTGATCTTCGTTCTGACTTCTCCAGAG-TAGTGGAGAAGTCAGAACGAAGATCAGTAAGAGGAGTCACAAAAA3245CTGCCAACAATAATTTCTGGTGTTTTCCTAAAAGAAAGTAGTAAAACAAACAAATAAAAAGATCTCATTTTACAGAATAGAAAACACCAGAAATTA3246TAATTTTGGTGTTTTC3247Non polyposisCTCCTCTTACTGATCTTCGTTCTGACTTCTCCAAGTTTCAGGA3248colorectal cancerAATGATAGAAACAACTTTAGATATGGATCAGGTATGGAATATALeu458TermCTTTTTAATTTAAGCAGTAGTTATTTTTAAAAAGCTTA-TGAGCTTTTTAAAAATAACTACTGCTTAAATTTAAAAGTATATTGCA3249TACCTGATCCATATCTAAAGTTGTTTCTATCATTTCCTGAAACTTGGAGAAGTCAGAACGAAGATCAGTAAGAGGAGAACAACTTTAGATATGG3250CCATATCTAAAGTTGTT3251Non polyposisTTTCTTCTTGATTATCAAGGCTTGGACCCTGGCAAAGAGATTA3252colorectal cancerAACTGGATTCCAGTGCACAGTTTGGATATTACTTCGTGTAACGln518TermCTGTAAGGAAGAAAAAGTCCTTCGTAACAATAAAACAG-TAGTTTTATTGTTACGAAGGACTTTTTCTTCCTTACAGGTTACACGA3253AAGTAATATCCAAACTGTGCACTGGAATCCAGTTTAATCTGTTTGCCAGGGTCCAAGCCTTGATAATCAAGAAGAAACCAGTGCACAGTTTGGA3254TCCAAACTGTGCACTGG3255Non polyposisGCTTGGACCCTGGCAAACAGATTAAACTGGATTCCAGTGCAC3256colorectal cancerAGTTTGGATATTACTTTCGTGTAACCTGTAAGGAAGAAAAAGTArg524ProCCTTCGTAACAATAAAAACTTTAGTACTGTAGATATCGT-CCTATATCTACAGTACTTAAAGTTTTTATTGTTACGAAGGACTTTTTC3257TTCCTTACAGGTTACACGTAAAGTAATATCCAAACTGTGCACTGGAATCCAGTTTAATCTGTTTGCCAGGGTCCAAGCTTACTTTCGTGTAACCT3258AGGTTACACGAAAGTAA3259Non polyposisTTAATATTTTTAATAAAACTGTTATTTCGATTTGCAGCAAATTGA3260colorectal cancerCTTCTTTAAATGAAGAGTATACCAAAAATAAAACAGAATATGAAGlu562TalGAAGCCCAGGATGCCATTGTTAAAGAAATTGTGAG-GTGACAATTTCTTTAACAATGGCATCCTGGGCTTCTTCATATTCTGT3261TTTATTTTTGGTATACTCTTCATTTAAAGAAGTCAATTTGCTGCAAATCGAAATAACAGTTTTATTAAAAATATTAAAAATGAAGAGTATACCA3262TGGTATACTCTTCATTT3263GliomaAATGAAGAGTATACCAAAAATAAAACAGAATATGAAGAAGCCC3264Glu580TermAGGATGCCATTGTAAAGAAATTGTCAATATTTGTTCAGGTAAAGAA-TAACTTAATAGAACTAATAATGTTCTGAATGTCACCTAGGTGACATTCAGAACATTATTAGTTCTATTAAGTTTACCTGAA3265GAAATATTGACAATTTCTTTAAGAATGGCATCCTGGGCTTCTTCATATTCTGTTTTATTTTTGGTATACTCTTCATTTTGTTAAAGAAATTGTC3266GACAATTTCTTTAACAA3267Non polyposisTGTTTTTATTTTTATACAGGGTATGTAGAACCAATGCAGACACT3268colorectal cancerCAATGATGTGTTAGCTCAGCTAGATGCTGTTGTCAGCTTTGCTGln601TermCACGTGTCAAATGGAGCACCTGTTCCATATGTACCAG-TAGGTACATATGGAACAGGTGCTCCATTTGACACGTGAGCAAAGC3269TGACAACAGCATCTAGCTGAGCTAACACATCATTGAGTGTCTGCATTGGTTCTACATAGCCTGTATAAAAATAAAAACATGTTAGCTCAGCTAGAT3270ATCTAGCTGAGCTAACA3271Non polyposisAGCTCAGCTAGATGCTGTTGTCAGCTTTGCTCACGTGTCAAAT3272colorectal cancerGGAGCACCTGTTCCATATGTACGACCAGCCATTTTGGAGAAATyr619TermGGACAAGGAAGAATTATATTAAAAGCATCCAGGCATTAT-TAGATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTCTCCA3273AAATGGCTGGTCGTACATATGGAACAGGTGCTCCATTTGACACGTGAGCAAAGCTGACAACAGCATCTAGCTGAGCTGTTCCATATGTACGACC3274GGTCGTACATATGGAAC3275Non polyposisCAGCTAGATGCTGTTGTCAGCTTTGCTCACGTGTCAAATGGA3276colorectal cancerGCACCTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGAArg621TermCAAGGAAGAATTATATTAATAGCATCCAGGCATGCTTCGA-TGAAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTC3277TCCAAAATGGCTGGTCGTACATATGGAACAGGTGCTCCATTTGACACGTGAGCAAAGCTGACAACAGCATCTAGCTGCATATGTACGACCAGCC3278GGCTGGTCGTACATATG3279Non polyposisTAGATGCTGTTGTCAGCTTTGCTCAGGTGTCAAATGGAGCAC3280colorectal cancerCTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGACAAGPro622LeuGAAGAATTATATTAAAAGCATCCAGGCATGCTTGTGTCCA-CTAACACAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTC3281CTTTCTCCAAAATGGCTGGTCGTACATATGGAACAGGTGCTCCATTTGACACGTGAGCAAAGCTGACAACAGCATCTATGTACGACCAGCCATTT3282AAATGGCTGGTCGTACA3283Non polyposisCCTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGACAA3284colorectal cancerGGAAGAATTATATTAAAAGCATCCAGGCATGCTTGTGTTGAAGAla636ProTTCAAGATGAAATTGCATTTATTCCTAATGACGTATGCA-CCAATACGTCATTAGGAATAAATGCAATTTCATCTTGAAGTTCAACA3285CAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTCTCCAAAATGGCTGGTCGTACATATGGAACAGGTATTAAAAGCATCCAGG3286CCTGGATGCTTTTAATA3287Non polyposisATGTACGACCAGCCATTTTGGAGAAAGGACAAGGAAGAATTA3288colorectal cancerTATTAAAAGCATCCAGGCATGCTTGTGTTGAAGTTCAAGATGATTis639ArgAATTGCATTTATTCCTAATGACGTATACTTTGAAAACAT-CGTTTTTCAAAGTATACGTCATTAGGAATAAATGCAATTTCATCTTG3289AACTTCAACACAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTCTCCAAAATGGCTGGTCGTACATATCCAGGCATGCTTGTG3290CACAAGCATGCCTGGAT3291Non polyposisTATGTACGACCAGCCATTTTGGAGAAAGGACAAGGAAGAATT3292colorectal cancerATATTAAAAGCATCCAGGCATGCTTGTGTTGAAGTTCAAGATGTTis639TyrAAATTGCATTTATTCCTAATGACGTATACTTTGAAACAT-TATTTTCAAAGTATACGTCATTAGGAATAAATGCAATTTCATCTTGA 3293ACTTCAACACAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTCTCCAAAATGGCTGGTCGTACATACATCCAGGCATGCTTGT3294ACAAGCATGCCTGGATG3295Non polyposisAAAGGACAAGGAAGAATTATATTAAAAGCATCCAGGCATGGTT3296colorectal cancerGTGTTGAAGTTCAAGATGAAATTGCATTTATTCCTAATGACGTGlu647LysATACTTTGAAAAAGATAAACAGATGTTCCACATCAGAA-AAATGATGTGGAACATCTGThTATCTTTTTCAAAGTATACGTCATTA3297GGAATAAATGCAATTTCATCTTGAACTTCAACACAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTTTCAAGATGAAATTGCA3298TGCAATTTCATCTTGAA3299Non polyposisATCCAGGCATGCTTGTGTTGAAGTTCAAGATGAAATTGCATTT3300colorectal cancerATTCCTAATGACGTATACTTTGAAAAAGATAAACAGATGTTCCATyr656TermCATCATTACTGGTAAAAAACCTGGTTTTTGGGCTTAC-TAGAGCCCAAAAACCAGGTTTTTTACCAGTAATGATGTGGAACATC3301TGTTTATCTTTTTCAAAGTATACGTCATTAGGAATAAATGCAATTTCATCTTGAACTTCAACACAAGCATGCCTGGATGACGTATACTTTGTAAAA3302TTTTCAAAGTATACGTC3303Non polyposisGAAAGAAGTTTAAAATCTTGCTTTCTGATATAATTTGTTTTGTA3304colorectal cancerGGCCCCAATATGGGAGGTTAATCAACATATATTCGACAAACTGly674AspGGGGTGATAGTACTCATGGCCCAAATTGGGTGTTTGGT-GATAAACACCCAATTTGGGCCATGAGTAGTATCACCCCAGTTTGTC3305GAATATATGTTGATTTACCTCCCATATTGGGGCCTACAAAACAAATTATATCAGAAAGCAAGATTTTAAACTTCTTTTCTATGGGAGGTAAATCAA3306TTGATTTACCTCCCATA3307Non polyposisTTGCTTTCTGATATAATTTGTTTTGTAGGCCCCAATATGGGAG3308colorectal cancerGTAAATCAACATATATTCGACAAACTGGGGTGATAGTACTCATArg680TermGGCCCAAATTGGGTGTTTTGTGCCATGTGAGTCAGCGA-TGACTGACTCACATGGCACAAAACACCCAATTTGGGCCATGAGTA3309CTATCACCCCAGTTTGTCGAATATATGTTGATTTACCTCCCATATTGGGGCCTACAAAACAAATTATATCAGAAAGCAACATATATTCGACAAACT3310AGTTTGTCGAATATATG3311Non polyposisATGGGAGGTAAATCAACATATATTCGACAAAACTGGGGTGATA3312colorectal cancerGTACTCATGGCCCAAATTGGGTGTTTTGTGCCATGTGAGTCAGly692ArgGCAGAAGTGTCCATTGTGGACTGCATCTTAGCCCGAGGGG-CGGCTCGGGCTAAGATGCAGTCCACAATGGACACTTCTGCTGACT3313CACATGGCACAAAACACCCAATTTGGGCCATGAGTACTATCACCCCAGTTTGTCGAATATATGTTGATTTACCTCCCATCCCAAATTGGGTGTTTT3314AAAACACCCAATTTGGG3315Non polyposisACATATATTCGACAAACTGGGGTGATAGTACTCATGGCCCAAA3316colorectal cancerTTGGGTGTTTTGTGCCATGTGAGTCAGCAGAAGTGTCCATTGCys697ArgTGGACTGCATCTTAGCCCGAGTAGGGGCTGGTGACATGT-CGTTGTCACCAGCCCCTACTCGGGCTAAGATGCAGTCCACAATGG3317ACACTTCTGCTGACTCACATGGCACAAAACACCCAATTTGGGCCATGAGTACTATCACCCCAGTTTGTCGAATATATGTTTGTGCCATGTGAGTCA3318TGACTCACATGGCACAA3319Non polyposisCATATATTCGACAAACTGGGGTGATAGTACTCATGGCCCAAAT3320colorectal cancerTGGGTGTTTTGTGCCATGTGAGTCAGCAGAAGTGTCCATTGTCys697PheGGACTGCATCTTAGCCCGAGTAGGGGCTGGTGACAGTGT-TTTCTGTCACCAGCCCCTACTCGGGCTAAGATGCAGTCCACAATG3321GACACTTCTGCTGACTCACATGGCACAAAACACCCAATTTGGGCCATGAGTACTATCACCCCAGTTTGTCGAATATATGTGTGCCATGTGAGTCAG3322CTGACTCACATGGCACA3323Non polyposisGAGTCAGCAGAAGTGTCCATTGTGGACTGCATCTTAGCCCGA3324colorectal cancerGTAGGGGCTGGTGACAGTCAATTGAAAGGAGTCTCCACGTTCGln718TermATGGCTGAAATGTTGGAAACTGCTTCTATCCTCAGGTCAA-TAAACCTGAGGATAGAAGCAGTTTCCAACATTTCAGCCATGAACG3325TGGAGACTCCTTTCAATTGACTGTCACCAGCCCCTACTCGGGCTAAGATGCAGTCCACAATGGACACTTCTGCTGACTCGTGACAGTCAATTGAAA3326TTTCAATTGACTGTCAC3327Non polyposisCCAATCAGATACCAACTGTTAATAATCTACATGTCACAGCACT3328colorectal cancerCACCACTGAAGAGACCTTAACTATGCTTTATCAGGTGAAGAAALeu811TermGGTATGTACTATTGGAGTACTCTTAAATTCAGAACTTTA-TGAAGTTCTGAATTTAGAGTACTCCAATAGTACATACCTTTCTTCAC3329CTGATTAAAGCATAGTTAAGGTCTCTTCAGTGGTGAGTGCTGTGACATGTAGATTATTAACAGTTGGTATCTGATTGGAGAGACCTTAACTATGC3330GCATAGTTAAGGTCTCT3331Non polyposisTTCCCCAAATTTCTTATAGGTGTCTGTGATCAAAGTTTTGGGA3332colorectal cancerTTCATGTTGCAGAGCTTGCTAATTTCCCTAAGCATGTAATAGAAla834ThrGTGTGCTAAACAGAAAGCCCTGGAACTTGAGGAGTGCT-ACTACTCCTCAAGTTCCAGGGCTTTCTGTTTAGCACACTCTATTAC3333ATGCTTAGGGAAATTAGCAAGCTCTGCAACATGAATCCCAAAACTTTGATCACAGACACCTATAAGAAATTTGGGGAACAGAGCTTGCTAATTTC3334GAAATTAGCAAGCTCTG3335Non polyposisATAGAGTGTGCTAAACAGAAAGCCCTGGAACTTGAGGAGTTT3336colorectal cancerCAGTATATTGGAGAATCGCAAGGATATGATATCATGGAACCAGGln861TermCAGCAAAGAAGTGCTATCTGGAAAGAGAGGTTTGTCCAA-TAAGACAAACCTCTCTTTCCAGATAGCACTTCTTTGCTGCTGGTTC3337CATGATATCATATCCTTGCGATTCTCCAATATACTGAAACTCCTCAAGTTCCAGGGCTTTCTGTTTAGCACACTCTATGAGAATCGCAAGGATAT3338ATATCCTTGCGATTCTC3339Non polyposisAGGAGTTCCTGTCCAAGGTGGAACAAATGCCCTTTACTGAAAT3340colorectal cancerGTCAGAAGAAAACATCACAATAAAGTTAAAACAGCTAAAAGCTThr905ArgGAAGTAATAGCAAAGAATAATAGCTTTGTAAATGAACA-AGATCATTTACAAAGCTATTATTCTTTGCTATTACTTCAGCTTTTAG3341CTGTTTTAACTTTATTGTGATGTTTTCTTCTGACATTTCAGTAAAGGGCATTTGTTTCACCTTGGACAGGAACTCCTAAACATCACAATAAAGT3342ACTTTATTGTGATGTTT3343



EXAMPLE 19


Human Mismatch Repair—MSH6

[0140] The human MSH6 gene is homologous to the bacterial mutS gene, which is involved in mismatch repair. Mutations in the MSH6 gene have been identified in a variety of cancers, including particularly hereditary nonpolyposis colorectal cancer. The attached table discloses the correcting oligonucleotide base sequences for the MSH6 oligonucleotides of the invention.
27TABLE 26MSH6 Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Non-polyposisGGAAATCAGTCCGTGTTCATGTACAGTTTTTTGATGACAGCCC3344colorectal cancerAACAAGGGGCTGGGTTAGCAAAAGGCTTTTAAAGCCATATACSer144lleAGGTAAGAGTCACTACTGCCATGTGTGTGTGTTTGTAGC-ATCACAAACACACACACATGGCAGTAGTGACTCTTACCTGTATATG3345GCTTTAAAAGCCTTTTGCTAACCCAGCCCCTTGTTGGGCTGTCATCAAAAAACTGTACATGAACACGGACTGATTTCCCTGGGTTAGCAAAAGGC3346GCCTTTTGCTAACCCAG3347Endometrial cancerCGTGAGCCTCTGCACCCGGCCCTTATTGTTTATAAATACATTT3348Ser156TermCTTTCTAGGTTCAAAATCAAAGGAAGCCCAGAAGGGAGGTCATCA-TGATTTTTACAGTGCAAAGCCTGAAATACTGAGAGCAATATTGCTCTCAGTATTTCAGGCTTTGCACTGTAAAAATGACCTC3349CCTTCTGGGCTTCCTTTGATTTTGAACCTAGAAAGAAATGTATTTATAAACAATAAGGGCCGGGTGCAGAGGCTCACGTTCAAAATCAAAGGAAG3350CTTCCTTTGATTTTGAA3351Early onset colorectalTTCCAAATTTTGATTTGTTTTTAAATACTCTTTCCTTGCCTGGC3352cancerAGGTAGGCACAACTTACGTAACAGATAAGAGTGAAGAAGATATyr214TermATGAAATTGAGAGTGAAGAGGAAGTACAGCCTAAGTAC-TAGCTTAGGCTGTACTTCCTCTTCACTCTCAATTTCATTATCTTCTT3353CACTCTTATCTGTTACGTAAGTTGTGCCTACCTGCCAGGCAAGGAAAGAGTATTTAAAAACAAATCAAAATTTGGAAACAACTTACGTAACAGA3354TCTGTTACGTAAGTTGT3355Endometrial cancerGAAGAGGAAGTACAGCCTAAGACACAAGGATCTAGGCGAAGT3356Arg248TermAGCCGCCAAATXAATTAAACGAAGGGTCATATCAGATTCTGAGCGA-TGAAGTGACATTGGTGGCTCTGATGTGGAATTTAAGCCAGCTGGCTTAAATTCCACATCAGAGCCACCAATGTCACTCTCAGA3357ATCTGATATGACCCTTCGTTTTTTTATTTGGCGGCTACTTCGCCTAGATCCTTGTGTCTTAGGCTGTACTTCCTCTTCTAAAAAAACGAAGGGGTC3358GACCCTTCGTTTTTTTA3359Colorectal cancerTTAAGCCAGACACTAAGGAGGAAGGAAGCAGTGATGAAATAA3360Ser285lleGCAGTGGAGTGGGGGATAGTGAGAGTGAAGGCCTGAACAGCAGT-ATTCCTGTCAAAGTTGCTCGAAAGCGGAAGAGAATGGTGACGTCACCATTCTCTTCCGCTTTCGAGCAACTTTGACAGGGCTG3361TTCAGGCCTTCACTCTCACTATCCCCCACTCCACTGCTTATTTCATCACTGCTTCCTTCCTCCTTAGTGTCTGGCTTAAGGGGGATAGTGAGAGTG3362CACTCTCACTATCCCCC3363Colorectal cancerGAGGAAGATTCTTCTGGCCATACTCGTGCATATGGTGTGTGC3364Gly566ArgTTTGTTGATACTTCACTGGGAAAGTTTTTCATAGGTCAGTTTTCGGA-AGAAGATGATCGCCATTGTTCGAGATTTAGGACTCTAGCTAGAGTCCTAAATCTCGAACJAATGGCGATCATCTGAAAACTG3365ACCTATGAAAAACTTTCCCAGTGAAGTATCAACAAAGCACACACCATATGCACGAGTATGGCCAGAAGAATCTTCCTCCTTCACTGGGAAAGTTT3366AAACTTTCCCAGTGAAG3367Non-polyposisGAATTGGCCCTCTCTGCTCTAGGTGGTTGTGTCTTCTACCTC3368colorectal cancerAAAAAATGCCTTATTGATCAGGAGCTTTTATCAATGGCTAATTTGln698GluTGAAGAATATATTCCCTTGGATTCTGACACAGTCACAG-GAGTGACTGTGTCAGAATCCAAGGGAATATATTCTTCAAAATTAGC3369CATTGATAAAAGCTCCTGATCAATAAGGCATTTTTTGAGGTAGAAGACACAACCACCTAGAGCAGAGAGGGCCAATTCTTATTGATCAGGAGCTT3370AAGCTCCTGATCAATAA3371Endometrial cancerCCCTTGGATTCTGACACAGTCAGCACTACAAGATCTGGTGCT3372Gln731TermATCTTCACCAAAGCCTATCAACGAATGGTGCTAGATGCAGTGCAA-TAAACATTAAACAACTTGGAGATTTTTCTGAATGGAACAATTGTTCCATTCAGAAAAATCTCCAAGTTGTTTAATGTCACTGCA3373TCTAGCACCATTCGTTGATAGGCTTTGGTGAAGATAGCACCAGATCTTGTAGTGCTGACTGTGTCAGAATCCAAGGGAAGCCTATCAACGAATG3374CATTCGTTGATAGGCTT3375Colorectal cancerGCCCCACTCTGTAACCATTATGCTATTAATGATCGTCTAGATG3376Val800LeuCCATAGAAGACCTCATGGTTGTGCCTGACAAAATCTCCGAAGGTT-CTTTTGTAGAGCTTCTAAAGAAGCTTCCAGATCTTGAGATCTCAAGATCTGGAAGCTTCTTTAGAAGCTCTACAACTTCGGA3377GATTTTGTCAGGCACAACCATGAGGTCTTCTATGGCATCTAGACGATCATTAATAGCATAATGGTTACAGAGTGGGGCACCTCATGGTTGTGCCT3378AGGCACAACCATGAGGT3379Colorectal cancerGTAACCATTATGCTATTAATGATCGTCTAGATGGCATAGAAGA3380Asp803GlyCCTCATGGTTGTGCCTGACAAAATCTCCGAAGTTGTAGAGCTGAC-GGCTCTAAAGAAGCTTCCAGATCTTGAGAGGCTACTCAGCTGAGTAGCCTCTCAAGATCTGGAAGCTTCTTTAGAAGCTCTA 3381CAACTTCGGAGATTTTGTCAGGCACAACCATGAGGTCTTCTATGGCATCTAGACGATCATTAATAGCATAATGGTTACTGTGCGTGACAAAATCT3382AGATTTTGTCAGGCACA3383Non-polyposisCTCCCCTGAAGAGTCAGAACCACCCAGACAGCAGGGCTATAA3384colorectal cancerTGTATGAAGAAACTACATACAGCAAGAAGAAGATTATTGATTTTyr850CysTCTTTCTGCTCTGGAAGGATTCAAAGTAATGTGTAATAC-TGCTTACACATTACTTTGAATCCTTCCAGAGCAGAAAGAAATCAA3385TAATCTTCTTCTTGCTGTATGTAGTTTCTTCATACATTATAGCCCTGCTGTCTGGGTGGTTCTGACTCTTCAGGGGAGAACTACATACAGCAAGA3386TCTTGCTGTATGTAGTT3387Colorectal cancerTATAGTCGAGGGGGTGATGGTCCTATGTGTCGCCCAGTAATT3388Pro1087ThrCTGTTGCCGGAAGATACCCCCCCCTTCTTAGAGCTTAAAGGACCC-ACCTCACGCCATCCTTGCATTACGAAGACTTTTTTTGGAGCTCCAAAAAAAGTCTTCGTAATGCAAGGATGGCGTGATCCTTT3389AAGCTCTAAGAAGGGGGGGGTATCTTCCGGCAACAGAATTACTGGGCGACACATAGGACCATCACCCCCTCGACTATAAAGATACCCCCCCCTTC3390GAAGGGGGGGGTATCTT3391Non-polyposisACTATAAAATGTCGTACATTATTTFCAACTCACTACCATTCATT3392colorectal cancerAGTAGAAGATTATTCTCAAAATGTTGCTGTGCGCCTAGGACATGln1258TermATGGTATGTGCAAATTGTTTTFTTCCACAAATTCCAA-TAAGAATTTGTGGAAAAAAACAATTTGCACATACCATATGTCCTAG3393GCGCACAGCAACATTTTGAGAATAATCTTCTACTAATGAATGGTAGTGAGTTGAAAATAATGTACGACATTTTATAGTATTATTCTCAAAATGTT3394AACATTTTGAGAATAAT3395



EXAMPLE 20


Hyperlipidemia—APOE

[0141] Hyperlipidemia is the abnormal elevation of plasma cholesterol and/or triglyceride levels and it is one of the most common diseases. The human apolipoprotein E protein is involved in the transport of endogenous lipids and appears to be crucial for both the direct removal of cholesterol-rich LDL from plasma and conversion of IDL particles to LDL particles. Individuals who either lack apolipoprotein E or who are homozygous for particular alleles of apoE may have have a condition known as dysbetalipoproteinemia, which is characterized by elevated plasma cholesterol and triglyceride levels and an increased risk for atherosclerosis.


[0142] In a comprehensive review of apoE variants, de Knijff et al., Hum. Mutat. 4:178-194 (1994) found that 30 variants had been characterized, including the most common variant, apoE3. To that time, 14 apoE variants had been found to be associated with familial dysbetalipoproteinemia. The attached table discloses the correcting oligonucleotide base sequences for the APOE oligonucleotides of the invention.
28TABLE 27APOE Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:ApolipoproteinTTGTTCCACACAGGATGCCAGGCCAAGGTGGAGCAAGCGGT3396Glu13LysGGAGACAGAGCCGGAGCCCGAGCTGCGCCAGCAGACCGAGcGAG-AAGTGGCAGAGCGGCCAGCGCTGGGAACTGGCACTGGGTCGCTAGCGACCCAGTGCCAGTTCCCAGCGCTGGCCGCTCTGCCAC3397TCGGTCTGCTGGCGCAGCTCGGGCTCCGGCTCTGTCTCCACCGCTTGCTCCACCHGGCCTGGCATCCTGTGTGGAACAACGGAGCCCGAGCTGCGC3398GCGCAGCTCGGGCTCCG3399Apolipoprotein ECAAGGTGGAGCAAGCGGTGGAGACAGAGCCGGAGCCCGAG3400Trp20TermCTGCGCCAGCAGACCGAGTGGCAGAGCGGCCAGCGCTGGGTGGc-TGAAACTGGCACTGGGTCGCTTFTGGGATTACCTGCGCTGGGTGCACCCAGCGCAGGTAATCCCAAAAGCGACCCAGTGCCAGTT3401CCCAGCGCTGGCCGCTCTGCCACTCGGTCTGCTGGCGCAGCTCGGGCTCCGGCTCTGTCTCCACCGCTTGCTGCACCTTGACCGAGTGGCAGAGCGG3402CCGCTCTGCCACTCGGT3403Apolipoprotein ECAGAGCCGGAGCCCGAGCTGCGCCAGCAGACCGAGTGGCA3404Leu28ProGAGCGGCCAGCGCTGGGAACTGGCACTGGGTCGCTTTTGGGCTG-CCGATTACCTGCGCTGGGTGCAGACACTGTCTGAGCAGGTGCATGCACCTGCTCAGACAGTGTCTGCACCCAGCGCAGGTAATCC3405CAAAAGCGACCCAGTGCCAGTTCCCAGCGCTGGCCGCTCTGCCACTCGGTGTGCTGGCGCAGCTCGGGCTCCGGCTCTGCTGGGAACTGGCACTGG3406CCAGTGCCAGTTCCCAG3407Apolipoprotein ECGGCTGTCCAAGGAGCTGCAGGCGGCGCAGGCCCGGCTGG3408Cys112ArgGCGCGGACATGGAGGACGTGTGCGGCCGCCTGGTGCAGTAgTGC-CGCCCGCGGCGAGGTGCAGGCCATGCTCGGCCAGAGCACCGAGGCCTCGGTGCTCTGGCCGAGCATGGCCTGCACCTCGCCGCGG3409TACTGCACCAGGCGGCCGCACACGTCCTCCATGTCCGCGCCCAGCCGGGCCTGCGCCGCCTGCAGCTCCTTGGACAGCCGAGGACGTGTGCGGCCGC3410GCGGCCGCACACGTCCT3411Apolipoprotein EACATGGAGGACGTGTGCGGCCGCCTGGTGCAGTACCGCGG3412Gly127AspCGAGGTGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGTGGC-GACCGGGTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCACCC3413GCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCACCAGGCGGCCGCACACGTCCTCCATGTCATGCTCGGCCAGAGCA3414TGCTCTGGCCGAGCATG3415Apolipoprotein EGTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGA3416Arg136CysGCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCGgCGC-TGCCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGC GCAGGTCATGGGCATCGCGGAGGAGCCGCTTACGCAGCTTG3417CGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCACTGCGGGTGCGCCTCGCC3418GGCGAGGCGCACCCGCA3419Apolipoprotein ETGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGAG3420Arg136HisCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCGCCGC-CACAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGCATGCAGGTCATCGGCATCGCGGAGGAGCCGCTTACGCAGCTT3421GCGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCAGCGGGTGCGCCTCGCCT3422AGGCGAGGCGCACCCGC3423Apolipoprotein EGTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGA3424Arg136SerGCACCGAGGAGCTGCGGGTGCGCCTCGCCTCGCACCTGCGgCGC-AGCCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGCGCAGGTCATCGGCATCGCGGAGGAGCCGCTTACGCAGTTG3425CGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCACTGCGGGTGCGCCTCGCC3426GGCGAGGCGCACCCGCA3427Apolipoprotein EGTGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGCGGG3428Arg142CysTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCgCGC-TGCCTCCGCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGTACACTGCCAGGCGCTTCTGCAGGTCATCGGCATCGCGGAGG3429AGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCACCCCACCTGCGCAAGCTG3430CAGCTTGCGCAGGTGGG3431Apolipoprotein ETGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGCGGGT3432Arg142LeuGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCCGC-CTCTCCGCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGTATACACTGCCAGGCGCTTCTGCAGGTCATCGGCATCGCGGAG3433GAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCACCACCTGCGCAAGCTGC3434GCAGCTTGCGCAGGTGG3435Apolipoprotein EATGCTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCG3436Arg145CysCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATgCGT-TGTGCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGCA3437TCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCACCCGCAGGTCCTCGGTGCTCTGGCCGAGCATGCAAGCTGCGTAAGCGG3438CCGCTTACGCAGCTTGC3439Apolipoprotein ETGCTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGC3440Arg145ProCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCGT-CCTCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGCCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGC3441ATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAGCACAAGCTGCGTAAGCGGC3442GCCGCTTACGCAGCTTG3443Apolipoprotein ECTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGCCT3444Lys146GlnCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCtAAG-CAGGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGGCCCCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCG3445GCATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGCTGTGGCCGAGAGCTGCGTAAGCGGCTC3446GAGCCGCTTACGCAGCT3447Apolipoprotein ECTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGCCT3448Lys146GluCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCtAAG-GAGGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGGCCCCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCG3449GCATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAGAGCTGCGTAAGCGGCTC3450GAGCCGCTTACGCAGCT3451Apolipoprotein EGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGA3452Arg158CysTGCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGgCGC-TGCGGGCCCGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCCGGATGGCGCTGAGGCCGCGCTCGGCGCCCTCGCGGGCCCC3453GGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGCATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCTGCAGAAGCGCCTGGCA3454TGCCAGGCGCTTCTGCA3455Apolipoprotein ECGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCCGCGAGC3456Gln187GluGCCTGGGGCCCCTGGTGGAACAGGGCCGCGTGCGGGCCGCaCAG-GAGCACTGTGGGCTCCCTGGCCGGCCAGCCGCTACAGGAGCGGGCCCGCTCCTGTAGCGGCTGGCCGGCCAGGGAGCCCACAGT3457GGCGGCCCGCACGCGGCCCTGTTCCACCAGGGGCCCCAGGCGCTCGCGGATGGCGCTGAGGCCGCGCTCGGCGCCCTCGCGTGGTGGAACAGGGCCGC3458GCGGCCCTGTTCCACCA3459Apolipoprotein ETGCGGGCCGCCACTGTGGGCTCCCTGGCCGGCCAGCCGCT3460Trp210TermACAGGAGCGGGCCCAGGCCTGGGGCGAGCGGCTGCGCGCTGG-TAGGCGGATGGAGGAGATGGGCAGCCGGACCCGCGACCGCCTGGATCCAGGCGGTCGCGGGTCCGGCTGCCCATCTCCTCCATCCG3461CGCGCGCAGCCGCTCGCCCCAGGCCTGGGCCCGCTCCTGTAGCGGCTGGCCGGCCAGGGAGCCCACAGTGGCGGCCCGCACCAGGCCTGGGGCGAGC3462GCTCGCCCCAGGCCTGG3463Apolipoprotein ECAGGCCTGGGGCGAGCGGCTGCGCGCGCGGATGGAGGAGA3464Arg228CysTGGGCAGCCGGACCCGCGACCGCCTGGACGAGGTGAAGGAcCGC-TGCGCAGGTGGCGGAGGTGCGCGCCAAGCTGGAGGAGCAGGCCCGGGCCTGCTCCTCCAGCTTGGCGCGCACCTCCGCCACCTGC3465TCCTTCACCTCGTCCAGGCGGTCGCGGGTCCGGCTGCCCATCTCCTCCATCCGCGCGCGCAGCCGCTCGCCCCAGGCCTGCCCGCGACCGCCTGGAC3466GTCCAGGCGGTCGCGGG3467Apolipoprotein ECGGACCCGCGACCGCCTGGACGAGGTGAAGGAGCAGGTGG3468Glu244LysCGGAGGTGCGCGCCAAGCTGGAGGAGCAGGCCCAGCAGATgGAG-AAGACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCTAGCTCTTGAGGCGGGCCTGGAAGGCCTCGGCCTGGAGGCGT3469ATCTGCTGGGCCTGCTCCTCCAGCTTGGCGCGCACCTCCGCCACCTGCTCCTTCACCTCGTCCAGGCGGTCGCGGGTCCGCCAAGCTGGAGGAGCAG3470CTGCTCCTCCAGCTTGG3471



EXAMPLE 21


Familial Hypercholesterolemia—LDLR

[0143] Familial hypercholesterolemia is characterized by elevation of serum cholesterol bound to low density lipoprotein (LDL) and is, hence, one of the conditions producing a hyperlipoproteinemia phenotype. Familial hypercholesterolemia is an autosomal dominant disorder characterized by elevation of serum cholesterol bound to low density lipoprotein (LDL). Mutations in the LDL receptor (LDLR) gene cause this disorder. The attached table discloses the correcting oligonucleotide base sequences for the LDLR oligonucleotides of the invention.
29TABLE 28LDLR Mutations and Genome-Correcting OligosCilnical Phenotype &SEQ IDMutationCorrecting OligosNO:HypercholesterolaemiaGCGTTGAGAGACCCTTTCTCCTTTTCCTCTCTCTCAGTGGGC3472Glu10TermGACAGATGCGAAAGAAACGAGTTCCAGTGCCAAGACGGGAAcGAG-TAGATGCATCTCCTACAAGTGGGTCTGCGATGGCAGCGCTGCAGCGCTGCCATCGCAGACCCACTTGTAGGAGATGCATTTCC3473CGTCTTGGCACTGGAACTCGTTTCTTTCGCATCTGTCGCCCACTGAGAGAGAGGAAAAGGAGAAAGGGTCTCTCAACGCAAAGAAACGAGTTCCAG3474CTGGAACTCGTTTCTTT3475HypercholesterolaemiaAGAGACCCTTTCTCCTTTTCCTCTCTCTCAGTGGGCGACAGA3476Gln12TermTGCGAAAGAAACGAGTTCCAGTGCCAAGACGGGAAATGCATCcCAG-TAGTCCTACAAGTGGGTCTGCGATGGCAGCGCTGAGTGCCGGCACTCAGCGCTGCCATCGCAGACCCACTTGTAGGAGATG3477CATTTCCCGTCTTGGCACTGGAAGTCGTTTCTTTCGCATCTGTCGCCCACTGAGAGAGAGGAAAAGGAGAAAGGGTCTCTACGAGTTCCAGTGCCAA3478TTGGCACTGGAACTCGT3479HyperchoiesterolaemiaCCTTTCTCCTTTTCCTCTCTCTCAGTGGGCGACAGATGCGAA3480Gln14TermAGAAACGAGTTCCAGTGCCAAGACGGGAAATGCATCTCCTACcCAA-TAAAAGTGGGTCTGCGATGGCAGCGCTGAGTGCCAGGATGCATCCTGGCACTCAGCGCTGCCATCGCAGACCCACTTGTAG3481GAGATGCATTTCCCGTCTTGGCACTGGAACTCATCTGTCGCCCACTGAGAGAGAGGAAAAGGAGAAAGGTCCAGTGCCAAGACGGG3482CCCGTCTTGGCACTGGA3483HypercholesterolaemiaGCGACAGATGCGAAAGAAACGAGTTCCAGTGCCAAGACGGG3484Trp23TermAAATGCATCTCCTACAAGTGGGTCTGCGATGGCAGCGCTGAGTGG-TAGTGCCAGGATGGCTCTGATGAGTCCCAGGAGACGTGCTGCAGCACGTCTCCTGGGACTCATCAGAGCCATCCTGGCACTCA3485GCGCTGCCATCGCAGACCCACTTGTAGGAGATGCATTTCCCGTCTTGGCACTGGAACTCGTTTCTTTCGCATCTGTCGCCTACAAGTGGGTCTGCG3486CGCAGACCCACTTGTAG3487HypercholesterolaemiaAACGAGTTCCAGTGCCAAGACGGGAAATGCATCTCCTACAAG3488Ala29SerTGGGTCTGCGATGGCAGCGCTGAGTGCCAGGATGGCTCTGAcGCT-TCTTGAGTCCCAGGAGACGTGCTGTGAGTCCCCTTTGGGCATGCCCAAAGGGGACTCACAGCACGTCTCCTGGGACTCATCA3489GAGCCATCCTGGCACTCAGCGCTGCCATCGCAGACCCACTTGTAGGAGATGCATTTCCCGTCTTGGCACTGGAACTCGTTATGGCAGCGCTGAGTGC3490GCACTCAGCGCTGCCAT3491HypercholesterolaemiaTCCAGTGCCAAGACGGGAAATGCATCTCCTACAAGTGGGTCT3492Cys31TyrGCGATGGCAGCGCTGAGTGCCAGGATGGCTCTGATGAGTCCTGC-TACCAGGAGACGTGCTGTGAGTCCCCTTTGGGCATGATATGCATATCATGCCCAAAGGGGACTCACAGCACGTCTCCTGGGAC3493TCATCAGAGCCATCCTGGCACTCAGCGCTGCCATCGCAGACCCACTTGTAGGAGATGCATTTCCCGTCTTGGCACTGGACGCTGAGTGCCAGGATG3494CATCCTGGCACTCAGCG3495HypercholesterolaemiaAATCCTGTCTCTTCTGTAGTGTCTGTCACCTGCAAATCCGGG3496Arg57CysGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATTCCTCAcCGT-TGTGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAACGCGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAG3497GAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATTTGCAGGTGACAGACACTACAGAAGAGACAGGATTGTGGGGGCCGTGTCAAC3498GTTGACACGGCCCCCAC3499HypercholesterolaemiaTCTGTCACCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCG3500Gln64TermTGTCAACCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAtCAG-TAGAGTGGACTGCGACAACGGCTCAGACGAGCAAGGCTGTCGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCACTTGGC3501CATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATTTGCAGGTGACAGAGCATTCCTCAGTTCTGG3502CCAGAACTGAGGAATGC3503HypercholesterolaemiaACCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAA3504Trp66GlyCCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGcTGG-GGGACTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCA3505CTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATTTGCAGGTCTCAGTTCTGGAGGTGC3506GCACCTCCAGAACTGAG3507HypercholesterolaemiaCCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAAC3508Trp66TermCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGATGG-TAGCTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTG CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCC3509ACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTGACACGGCCCCCACAGCTGAAGTCCCCGGATTTGCAGGTCAGTTCTGGAGGTGCG3510CGCACCTCCAGAACTGA3511HypercholesterolaemiaAAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTG3512Cys68ArgCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGAgTGC-CGCCAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGC3513AGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATTTTCTGGAGGTGCGATGGC3514GCCATCGCACCTCCAGA3515HypercholesterolaemiaATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCA3516Cys68TrpTTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACATGCg-TGGACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTAGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTC3517GCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATTGGAGGTGCGATGGCCA3518TGGCCATCGCACCTCCA3519HypercholesterolaemiaAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGC3520Cys68TyrATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACTGC-TACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTC3521GCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATTCTGGAGGTGCGATGGCC3522GGCCATCGCACCTCCAG3523HypercholesterolaemiaTCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCAT3524Asp69AsnTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAcGAT-AATACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTGCAGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGT3525CGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGAGGAGGTGCGATGGCCAA3526TTGGCCATCGCACCTCC3527HypercholesterolaemiaCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATT3528Asp69GlyCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAAGAT-GGTCGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTGCGCAGGGCCACACTTACGACAGCCTTGGTCGTCTGAGCCGTT3529GTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGGAGGTGCGATGGCCAAG3530CTTGGCCATCGCACCTC3531HypercholesterolaemiaTCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCAT3532Asp69TyrTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAcGAT-TATACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTGCAGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGT3533CGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGAGGAGGTGCGATGGCCAA3534TTGGCCATCGCACCTCC3535HypercholesterolaemiaGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATTCCTCA3536Gln71GluGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAACGGCTcCAA-GAACAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTGCCTTTGCAAAGGCAGGGCCACACTTACGACAGCCTTGCTCGTCTGAG3537CCGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCGCGATGGCCAAGTGGAC3538GTCCACTTGGCCATCGC3539HypercholesterolaemiaTGTGGGGGCCGTGTCAACCGCTGCATTCCTCAGTTCTGGAG3540Cys74GlyGTGCGATGGCCAAGTGGACTGCGACAACGGCTCAGACGAGCcTGC-GGCAAGGCTGTCGTAAGTGTGGCCCTGCCTTTGCTATTGAGCGCTCAATAGCAAAGGCAGGGCCACACTTACGACAGCCTTGCT3541CGTCTGAGCCGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACAAAGTGGACTGCGACAAC3542GTTGTCGCAGTCCACTT3543HypercholesterolaemiaTCAACCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAG3544Ser78TermTGGACTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTCA-TGATGTGGCCCTGCGTTTGCTATTGAGCCTATCTGAGTCCTAGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCACACTTA3545CGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACAACGGCTCAGACGAGC3546GCTCGTCTGAGCCGTTG3547HypercholesterolaemiaCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGA3548Glu80LysCTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGcGAG-AAGGCCCTGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGATCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCA3549CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGCTCAGACGAGCAAGGC3550GCCTTGCTCGTCTGAGC3551HypercholesterolaemiaCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGA3552GTu80TermCTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGcGAG-TAGGCCCTGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGATCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCA3553CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGCTCAGACGAGCAAGGC3554GCCTTGCTCGTCTGAGC3555HypercholesterolaemiaTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGC3556Gln81TermGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCgCAA-TAATGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGAGTGCACTCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGG3557CCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCACAGACGAGCAAGGCTGT3558ACAGCCTTGCTCGTCTG3559HypercholesterolaemiaTGGGAGACTTCACACGGTGATGGTGGTCTCGGCCCATCCAT3560Cys88ArgCCCTGCAGCCCCCAAGACGTGCTCCCAGGACGAGTTTCGCTgTGC-CGCGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTCTGTGCACAGACGAACTGCCGAGAGATGCAGTTCCCATCGTGGCAG3561CGAAACTCGTCCTGGGAGCACGTCTTGGGGGCTGCAGGGATGGATGGGCCGAGACCACCATCACCGTGTGAAGTCTCCCACCAAGACGTGCTCCCAG3562CTGGGAGCACGTCTTGG3563HypercholesterolaemiaCACGGTGATGGTGGTCTCGGCCCATCCATCCCTGCAGCCCC3564Glu92TermCAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGATGGGAcGAG-TAGAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGGCCCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTTC3565CCATCGTGGCAGCGTAAACTCGTCCTGGGAGCACGTCTTGGGGGCTGCAGGGATGGATGGGCCGAGACCACCATCACCGTGCCCAGGACGAGTTFCGC3566GCGAAACTCGTCCTGGG3567HypercholesterolaemiaGGTGGTCTCGGCCCATCCATCCCTGCAGCCCCCAAGACGTG3568Cys95ArgCTCCCAGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCTcTGC-CGCCTCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGG CCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGCCGAGAG3569ATGCACTTCCCATCGTGGCAGCGAAACTCGTCCTGGGAGCACGTCTTGGGGGCTGCAGGGATGGATGGGCCGAGACCACCAGTTTCGCTGCCACGAT3570ATCGTGGCAGCGAAACT3571HypercholesterolaemiaCTCGGCCCATCCATCCCTGCAGCCCCCAAGACGTGCTCCCA3572Asp91TyrGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCTCTCGGCcGAT-TATAGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACGGCT AGCCGTCCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGC3573CGAGAGATGCACTTCCCATCGTGGCAGCGAAACTCGTCCTGGGAGCACGTCTTGGGGGCTGCAGGGATGGATGGGCCGAG GCTGCCACGATGGGAAG3574CTTCCCATCGTGGCAGC3575HypercholesterolaemiaGGGTCGGGACACTGCCTGGCAGAGGCTGCGAGCATGGGGC3576Trp(−12)ArgCCTGGGGCTGGAAATTGCGCTGGACCGTCGCCTTGCTCCTCcTGG-AGGGCCGCGGCGGGGACTGCAGGTAAGGCTTGCTCCAGGCGCCGGCGCCTGGAGCAAGCCTTACCTGCAGTCCCCGCCGCGGC3577GAGGAGCAAGGCGACGGTCCAGCGCAATTCCAGCCCCAGGGCCCCATGCTCGCAGCCTCTGCCAGGCAGTGTCCCGACCCAATTGCGCTGGACCGTC3578GACGGTCCAGCGCAATT3579HypercholesterolaemiaCAGCAGGTCGTGATCCGGGTCGGGACACTGCCTGGCAGAGG3580Trp(−18)TermCTGCGAGCATGGGGCCCTGGGGCTGGAAATTGCGCTGGACCTGGg-TGAGTCGCCTTGCTCCTCGCCGCGGCGGGGACTGCAGGTAAGCTTACCTGCAGTCCCCGCCGCGGCGAGGAGCAAGGCGACG3581GTCCAGCGCAATTTCCAGCCCCAGGGCCCCATGCTCGCAGCCTCTGCCAGGCAGTGTCCCGACCCGGATCACGACCTGCTGGGGCCCTGGGGCTGGAA3582TTCCAGCCCCAGGGCCC3583HypercholesterolaemiaCAGCTAGGACACAGCAGGTCGTGATCCGGGTCGGGACACTG3584Met(−21)LeuCCTGGCAGAGGCTGCGAGCATGGGGCCCTGGGGCTGGcATG-TTGTTGCGCTGGACCGTCGCCTTGCTCCTCGCCGCGGCGGGGATCCCCGCCGCGGCGAGGAGCAAGGCGACGGTCCAGCGCAA3585TTTCCAGCCCCAGGGCCCCATGCTCGCAGCCTCTGCCAGGCAGTGTGCCGACCCGGATCACGACCTGCTGTGTCCTAGCTGCTGCGAGCATGGGGCCC3586GGGCCCCATGCTCGCAG3587HypercholesterolaemiaCAGCTAGGACACAGCAGGTCGTGATCCGGGTCGGGACACTG3588Met(−21 )ValCCTGGCAGAGGCTGCGAGCATGGGGCCCTGGGGCTGGcATG-GTGTTGCGCTGGACCGTCGCCTTGCTCCTCGCCGCGGCGGGGATCCCCGCCGCGGCGAGGAGCAAGGCGACGGTCCAGCGCAA3589TTTCCAGCCCCAGGGCCCCATGCTCGCAGCCTCTGCCAGGCAGTGTCCCGACCCGGATCACGACCTGCTGTGTCCTAGCTGCTGCGAGCATGGGGCCC3590GGGCCCCATGCTCGCAG3591HypercholesterolaemiaATCCCTGCAGCCCCCAAGACGTGCTCCCAGGACGAGTTTCG3592lle101PheCTGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTCTGTGAcATC-TTCCTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGCCTAGGCCTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCA 3593CAGACGAACTGCCGAGAGATGCACTTCCCATCGTGGCAGCGAAACTCGTCCTGGGAGCACGTCTTGGGGGCTGCAGGGATGGAAGTGCATCTCTCGG3594CCGAGAGATGCACTTCC3595HypercholesterolaemiaGCCCCCAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGA3596Gln104TermTGGGAAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGgCAG-TAGGGACTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGCCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCAGTCCCG3597GTCTGAGTCACAGACGAACTGCCGAGAGATGCACTTCCCATCGTGGCAGCGAAACTCGTCCTGGGAGCACGTCTTGGGGGCTCTCTCGGCAGTTCGTC3598GACGAACTGCCGAGAGA3599HypercholesterolaemiaTTFCGCTGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTC3600Cys113ArgTGTGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGCcTGC-CGCCTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCCGGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGC3601CTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTTCCCATCGTGGCAGCGAAAACCGGGACTGCTTGGAC3602GTCCAAGCAGTCCCGGT3603HypercholesterolaemiaAAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGGAC3604Glu119LysTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCACcGAG-AAGCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTG3605AGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCATTAGCAGTCCCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTTGCTCAGACGAGGCCTCC3606GGAGGCCTCGTCTGAGC3607HypercholesterolaemiaAAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGGAC3608Glu119TermTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCACcGAG-TAGCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTG3609AGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTTGCTCAGACGAGGCCTCC3610GGAGGCCTCGTCTGAGC3611HypercholesterolaemiaTCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACG3612Cys122TermGCTCAGACGAGGCCTCCTGCCCGGTGCTCACCTGTGGTCCCTGCc-TGAGCCAGCTFCCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGG3613GACCACAGGTGAGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGCCGAGCCTCCTGCCCGGTGCT3614AGCACCGGGCAGGAGGC3615HypercholesterolaemiaTGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGCCT3616Cys127TrpCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCCAGTGCTGTg-TGGAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGACGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGC3617ACTGGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCACTCACCTGTGGTCCCGC3618GCGGGACCACAGGTGAG3619HypercholesterolaemiaTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCAC3620Gln133TermCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATcCAG-TAGCCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGCGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT3621GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCACCAGCTTCCAGTGCAAC3622GTTGCACTGGAAGCTGG3623HypercholesterolaemiaTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCACCTG3624Cys134GlyTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATCCgTGC-GGCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGCTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGG3625ATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCTTCCAGTGCAACAGC3626GCTGTTGCACTGGAAGC3627HypercholesterolaemiaGAGGCCTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTT3628Cys139GlyCCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTcTGC-GGCGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAG3629GCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGCCTCGCTCCACCTGCATCCCC3630GGGGATGCAGGTGGAGC3631HypercholesterolaemiaAGGCCTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTC3632Cys139TyrCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTGTGC-TACCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGCACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCA3633GGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGCCTCTCCACCTGCATCCCCC3634GGGGGATGCAGGTGGAG3635HypercholesterolaemiaCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCAT3636Cys146TermCCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGTGCg-TGAATGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTTC3637GCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGTGGGCCTGCGACAACGA3638TCGTTGTCGCAGGCCCA3639HypercholesterolaemiaTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC3640Asp147AsnCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGAcGAC-AACTGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTAAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT3641CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGGCCTGCGACAACGAC3642GTCGTTGTCGCAGGCCC3643HypercholesterolaemiaTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC3644Asp147HisCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGAcGAC-CACTGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTAAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT3645CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGGCCTGCGACAACGAC3646GTCGTTGTCGCAGGCCC3647HypercholesterolaemiaTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC3648Asp147TyrCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGAcGAC-TACTGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTAAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT3649CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGGCCTGCGACAACGAC3650GTCGTTGTCGCAGGCCC3651HypercholesterolaemiaTTCCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGC3652Cys152ArgCTGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTcTGC-CGCGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCAC3653TCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAACCCCGACTGCGAAGAT3654ATCTTCGCAGTCGGGGT3655HypercholesterolaemiaTTCCAGTGCAACAGCTCCACCTGCATGCCCCAGCTGTGGGC3656Cys152GlyCTGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTcTGC-GGCGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCAC3657TCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAACCCCGACTGCGAAGAT3658ATCTTCGCAGTCGGGGT3659HypercholesterolaemiaCCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCT3660Cys152TrpGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGGTGCg-TGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACGTCCCCTFGGAACACGTAAAAGACCCCTACAGCGCTGCGGCC3661ACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGCCCGACTGCGAAGATGG3662CCATCTTCGCAGTCGGG3663HypercholesterolaemiaTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGA3664Asp154AsnCAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGCaGAT-AATAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTATACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCG3665GCCACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCAACTGCGAAGATGGCTCG3666CGAGCCATCTTCGCAGT3667HypercholesterolaemiaGCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGACAACGAC3668Ser156LeuCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGCAGCGCTGTCG-HGTAGGGGTCTTFACGTGTTCCAAGGGGACAGTAGCCCCTGCAGGGGCTACTGTCCCCTTGGAACACGTAAAGACCCCTACAG3669CGCTGCGGCCACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCAGATGGCTCGGATGAGT3670ACTCATCCGAGCCATCT3671HypercholesterolaemiaTGTGGGCCTGCGACAACGACCCCGACTGCGAAGATGGCTCG3672Cys163TyrGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAATGT-TATGGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTGCAGTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTG3673GAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCAGCGCTGTAGGGGTC3674GACCCCTACAGCGCTGC3675HypercholesterolaemiaCAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGC3676Tyr167TermAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGCTACg-TAGCCCTGCTCGGCCTTCGAGTTCCACTGCCTAAGTGGCGAGCTCGCCACTTAGGCAGTGGAACTCGAAGGCCGAGCAGGGGC3677TACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGGGTCTTTACGTGTTCCA3678TGGAACACGTAAAGACC3679HypercholesterolaemiaCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGCAGCGCTG3680Gln170TermTAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGCCCCTGCTCcCAA-TAAGGCCHCGAGTTCCACTGCCTAAGTGGCGAGTGCATCCGGATGCACTCGCCACTTAGGCAGTGGAACTCGAAGGCCGAG3681CAGGGGCTACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTTCGCAGTCGGGACGTGTTCCAAGGGGAC3682GTCCCCTTGGAACACGT3683HypercholesterolaemiaCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTC3684Cys176PheCAAGGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTGTGC-TTCCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA3685GTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCG TAGCCCCTGCTCGGCCT3686AGGCCGAGCAGGGGCTA3687HypercholesterolaemiaCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTC3688Cys176TyrCAAGGGGACAGTAGCCCCTGCTCGGCCTFCGAGTTCCACTGTGC-TACCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA3689GTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCGTAGCCCCTGCTCGGCCT3690AGGCCGAGCAGGGGCTA3691HypercholesterolaemiaATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAG3692Ser177LeuGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTGCCTATCG-TTGAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATGGCCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAG3693GCAGTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCAT CCCCTGCTCGGCCTTCG3694CGAAGGCCGAGCAGGGG3695HypercholesterolaemiaTACGTGTTCCAAGGGGACAGTAGCCCCTGCTCGGCCTTCGA3696Glu187LysGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCcGAG-AAGGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGC3697CAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTGGAACACGTATAAGTGGCGAGTGCATC3698GATGCACTCGCCACTTA3699HypercholesterolaemiaCAAGGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTG3700His190TyrCCTPAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATGcCAC-TACGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCAT3701CACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTGAGTGCATCCACTCCAGC3702GCTGGAGTGGATGCACT3703HypercholesterolaemiaCCTTCGAGTFCCACTGCCTAAGTGGCGAGTGCATCCACTCCA3704Gly198AspGCTGGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGGC-GACGACGAGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGGCCCACCCTGGCCCCGCCCATACCGCAGTTTTCCTCGTCAGAT3705TTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTCGAAGGTGATGGTGGCCCCGACT3706AGTCGGGGCCACCATCA3707HypercholesterolaemiaGAGTTCCACTGCCTAAGTGGCGAGTGCATCCAGTCCAGCTG3708Asp200AsnGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGcGAC-AACAGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGCCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTTCCTCG3709TCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTCGTGGCCCCGACTGCAAG3710CTTGCAGTCGGGGCCAC3711HypercholesterolaemiaAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGC3712Asp200GlyGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAC-GGCGAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGGCCCGCCCCCACCCTGGCCCCGCCCATACCGCAGJTFTCCTC3713GTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTTGGCCCCGACTGCAAGG3714CCTTGCAGTCGGGGCCA3715HypercholesterolaemiaGAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTG3716Asp200TyrGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGcGAC-TACAGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGCCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTFCCTCG3717TCAGATTTGTCCTTGCAGTGGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTCGTGGCCCCGACTGCAAG3718CTTGCAGTCGGGGCCAC3719HypercholesterolaemiaCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCT3720Cys201TermGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAATGCa-TGAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTT3721CCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGCCCGACTGCAAGGACAA3722TTGTCCTTGCAGTCGGG3723HypercholesterolaemiaTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGC3724Cys201TyrTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGATGC-TACAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGCGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTTC3725CTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGACCCCGACTGCAAGGACA3726TGTCCTTGCAGTCGGGG3727HypercholesterolaemiaTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGA3728Asp203AsnTGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTgGAC-AACGCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCGTATAGGACGCCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA3729GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA ACTGCAAGGACAAATCT3730AGATTTGTCCTTGCAGT3731HypercholesterolaemiaGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGAT3732Asp203GlyGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTGGAC-GGCCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTATATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA3733GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCCTGCAAGGACAAATCTG3734CAGATTTGTCCTTGCAG3735HypercholesterolaemiaGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGAT3736Asp203ValGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTGGAC-GTCCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTATATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA3737GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCCTGCAAGGACAAATCTG3738CAGATTTGTCCTTGCAG3739HypercholesterolaemiaAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGG3740Ser205ProCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATaTCT-CCTGGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATA3741CCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTAGGACAAATCTGACGAG3742CTGGTCAGATTTGTCCT3743HypercholesterolaemiaCGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCG3744Asp206GluACTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGCGACg-GAGGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCGGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCCG3745CCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCGAAATCTGACGAGGAAAA3746TTTTCCTCGTCAGATTT3747HypercholesterolaemiaGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA3748Glu207GlnCTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGCGcGAG-CAGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCTAGGGACAGGTGATAGGACGCCCCGCCCCCACGCTGGCCCC3749GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCAATCTGACGAGGAAAAC3750GTTTTCCTCGTCAGATT3751HypercholesterolaemiaGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA3752Glu207LysCTGCAAGGACPAATCTGACGAGGAAAACTGCGGTATGGGCGcGAG-AAGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCTAGGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCC3753GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCAATCTGACGAGGAAAAC3754GTTTTCCTCGTCAGATT3755HypercholesterolaemiaGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA3756Glu207TermCTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGCGcGAG-TAGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCTAGGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCC3757GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTC AATCTGACGAGGAAAAC3758GTTTTCCTCGTCAGATT3759HypercholesterolaemiaTCTTGAGAAAATCAACACACTCTGTCCTGTTTTCCAGCTGTGG3760Glu219LysCCACCTGTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTcGAA-AAAGCATCCATGGCAGCCGGCAGTGTGACCGGGAATATGCATATTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTTC3761CATCAGAGCACTGGAATTCGTCAGGGCGACAGGTGGCCACAGCTGGAAAACAGGACAGAGTGTGTTGATTTTCTCAAGAGCCCTGACGAATTCCAG3762CTGGAATTCGTCAGGGC3763HypercholesterolaemiaGAAAATCAACACACTCTGTCCTGTTYFCCAGGTGTGGCCACCT3764Gln221TermGTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCCcCAG-TAGATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCATGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATGC3765AGTTTCCATCAGAGCACTGGAATTCGTCAGGGCGACAGGTGGCCACAGCTGGAAAACAGGACAGAGTGTGTTGATTTTCACGAATTCCAGTGCTCT3766AGAGCACTGGAATTCGT3767HypercholesterolaemiaCCTGTTTTCCAGCTGTGGCCACCTGTCGCCCTGACGAATTCC3768Cys227PheAGTGCTCTGATGGAAACTGCATCCATGGCAGCCGGCAGTGTTGC-TTCGACCGGGAATATGACTGCAAGGACATGAGCGATGAAGTACTTCATCGCTCATGTCCTTGCAGTCATATTCCCGGTCACACT3769GCCGGCTGCCATGGATGCAGTTTCCATCAGAGCACTGGAATTCGTCAGGGCGACAGGTGGCCACAGCTGGAAAACAGGTGGAAACTGCATCCATG3770CATGGATGCAGTTTCCA3771HypercholesterolaemiaTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCCA3772Asp235GluTGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGACAGACc-GAATGAGCGATGAAGTTGGTTAATGGTGAGCGCTGGCCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCATGTC3773CTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTTCCATCAGAGCACTGGAATTCGTCAGGGCGACAGTGTGACCGGGAATA3774TATTCCCGGTCACACTG3775HypercholesterolaemiaGTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCC3776Asp235GlyATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGACGAC-GGCATGAGCGATGAAGTTGGCTGCGTTAATGGTGAGCGCTGCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCATGTCC3777TTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTTCCATCAGAGCACTGGAATFCGTCAGGGCGACGCAGTGTGACCGGGAAT3778ATTCCCGGTCACACTGC3779HypercholesterolaemiaCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCCATGGC3780Glu237LysAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGACATGAGgGAA-AAACGATGAAGTTGGCTGCGTTAATGGTGAGCGCTGGCCATATGGCCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCA3781TGTCCTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTTCCATCAGAGCACTGGAATTCGTCAGGGTGACCGGGAATATGAC3782GTCATATTCCCGGTCAC3783HypercholesterolaemiaTCCAGTGCTCTGATGGAAACTGCATCCATGGCAGCCGGCAGT3784Cys240PheGTGACCGGGAATATGACTGCAAGGACATGAGCGATGAAGTTGTGC-TTCGCTGCGTTAATGGTGAGCGCTGGCCATCTGGTTFTCCGGAAAACCAGATGGCCAGCGCTCACCABAACGCAGCCAACT3785TCATCGCTCATGTCCTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTTCCATCAGAGCACTGGAATATGACTGCAAGGACA3786TGTCCTTGCAGTCATAT3787HypercholesterolaemiaAAACTGCATCCATGGCAGCCGGCAGTGTGACCGGGAATATG3788Asp245GluACTGCAAGGACATGAGCGATGAAGTTGGCTGCGTTAATGGTGGATg-GAAAGCGCTGGCCATCTGGTTTTCCATCCCCCATTCTCTGTACAGAGAATGGGGGATGGAAAACCAGATGGCCAGCGCTCAC3789CATTAACGGAGCCAACTTCATCGCTCATGTCCTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTTATGAGCGATGAAGTTGG3790CCAACTTCATCGCTCAT3791HypercholesterolaemiaATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGAC3792Cys249TyrATGAGCGATGAAGTTGGCTGCGTTAATGGTGAGCGCTGGCCTGC-TACATCTGGTTTTCCATCCCCCATTCTCTGTGCCTTGCTGCTAGCAGCAAGGCACAGAGAATGGGGGATGGAAAACCAGATGG3793CCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCATGTCCTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATAGTTGGCTGCGTTAATG3794CATTAACGCAGCCAACT3795HypercholesterolaemiaAGGCTCAGACACACCTGACCTTCCTCCTTCCTCTCTCTGGCT3796Glu256LysCTCACAGTGACACTCTGCGAGGGACCCAACAAGTTCAAGTGTcGAG-AAGCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCATGCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACACT3797TGAACTTGTTGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGAGAGGAAGGAGGAAGGTCAGGTGTGTCTGAGCCTCACTCTGCGAGGGACCC3798GGGTGCCTCGCAGAGTG3799HypercholesterolaemiaCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGACCCAA3800Ser265ArgCAAGTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGCg-AGAAGTCTGCAACATGGCTAGAGACTGCCGGGACTGGTCATGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTGTC3801CAGGGTGATGCATTCGCCGCTGTGACACTTGAACTTGTFGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGAGAGGTGTCACAGCGGCGAATG3802CATTCGCCGCTGTGACA3803HypercholesterolaemiaTCTCTGGCTCTCACAGTGACACTCTGCGAGGGACCCAACAAG3804Glu267LysTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCcGAA-AAATGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATGCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTT3805TGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACTTGTTGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGAACAGCGGCGAATGCATC3806GATGCATTCGCCGCTGT3807HypercholesterolaemiaTCTCTGGCTCTGACAGTGACACTCTGCGAGGGACCCAACAAG3808Glu267TermTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCcGAA-TAATGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATGCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTT3809TGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACTFGTTGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGAACAGCGGCGAATGCATC3810GATGCATTCGCCGCTGT3811HypercholesterolaemiaACACTCTGCGAGGGACCCAACAAGTTCAAGTGTCACAGCGG3812Lys273GluCGAATGCATCACCCTGGACAAAGTCTGCAACATGGCTAGAGAcAAA-GAACTGCCGGGACTGGTCAGATGAACCCATCAAAGAGTGCGCGCACTCTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTC3813TAGCCATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACTTGTTGGGTCCCTCGCAGAGTGTCCCTGGACAAAGTCTGC3814GCAGACTTTGTCCAGGG3815HypercholesterolaemiaCGAGGGACCCAACAAGTTCAAGTGTCACAGCGGCGAATGCA3816Cys275TermTCACCCTGGACAAAGTCTGCAACATGGCTAGAGACTGCCGGTGCa-TGAGACTGGTCAGATGAACCCATCAAAGAGTGCGGTGAGTCTAGACTCACCGCACTCTTTGATGGGTTCATCTGACCAGTCCCG3817GCAGTCTCTAGCCATGTTGCAGACTTFGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACTTGTTGGGTCCCTCGAAAGTCTGCAACATGGC3818GCCATGTTGCAGACTTT3819HypercholesterolaemiaAGTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAG3820Asp280GlyTCTGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATGAAGAC-GGCCCCATCAAAGAGTGCGGTGAGTCTCGGTGCAGGCGGCTAGCCGCCTGCACCGAGACTCACCGCACTCTTTGATGGGTTCA3821TCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACTGGCTAGAGACTGCCGGG3822CCCGGCAGTCTCTAGCC3823HypercholesterolaemiaTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCT3824Cys281TyrGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCTGC-TACATCAAAGAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGATGGG3825TTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGATAGAGACTGCCGGGACT3826AGTCCCGGCAGTCTCTA3827HypercholesterolaemiaTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAAC3828Asp283AsnATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAAgGAC-AACGAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGA3829TGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACAACTGCCGGGACTGGTCA3830TGACCAGTCCCGGCAGT3831HypercholesterolaemiaTCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAACAT3832Asp283GluGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAAGGACt-GAGAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTTAAACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTT3833GATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGATGCCGGGACTGGTCAGA3834TCTGACCAGTCCCGGCA3835HypercholesterolaemiaTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAAC3836Asp283TyrATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAAgGAC-TACGAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGA3837TGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACAACTGCCGGGACTGGTCA3838TGACCAGTCCCGGCAGT3839HypercholesterolaemiaCAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAACATGG3840Trp284TermCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCTAAAGAGTTGGt-TGAGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTTGTGCACTAAACTCTGCAAGCCGCCTGCACCGAGACTGACCGCACT3841CTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTFGTCCAGGGTGATGCATTCGCCGCTGCGGGACTGGTCAGATGA3842TCATCTGACCAGTCCCG3843HypercholesterolaemiaGCGGCGAATGCATCACCCTGGACAAAGTCTGCAACATGGCTA3844Ser285LeuGAGACTGCCGGGACTGGTCAGATGAACCCATCAAAGAGTGCTCA-TTAGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTTGTGGGCCCACAAACTCTGCAAGCCGCCTGCACCGAGACTCACCGCA3845CTCTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGCGGACTGGTCAGATGAAC3846GTTCATCTGACCAGTCC3847HypercholesterolaemiaCCCTGGACTAAAGTCTGCAACATGGCTAGAGACTGCCGGGAC3848Lys290ArgTGGTCAGATGAACCCATCAAAGAGTGCGGTGAGTCTCGGTGAAA-AGACAGGCGGCTTGCAGAGTTTGTGGGGAGCCAGGAAAGGGATCCCTTTCGTGGCTCCCCACAAACTCTGCAAGCCGCCTGCAC3849CGAGACTCACCGCACTCTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTGTCCAGGGACCCATCAAAGAGTGCG3850CGCACTCTTTGATGGGT3851HypercholesterolaemiaGGGTAGGGGCCCGAGAGTGACCAGTCTGCATCCCCTGGCCC3852Cys297PheTGCGCAGGGACCAACGAATGCTTGGACAACAACGGCGGCTGTGC-TTCTTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAG3853CCGCCGTTGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGGCCAGGGGATGCAGACTGGTCACTCTCGGGCCCCTACCCCAACGAATGCTTGGACA3854TGTCCAAGCATTCGTTG3855HypercholesterolaemiaGGGTAGGGGCCCGAGAGTGACCAGTCTGCATCCCCTGGCCC3856Cys297TyrTGCGCAGGGACCAACGAATGCTTGGACAACAACGGCGGCTGTGC-TACTTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAG3857CCGCCGTTGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGGCCAGGGGATGCAGACTGGTCACTCTCGGGCCCCTACCCCAACGAATGCTTGGACA3858TGTCCAAGCATTCGTTG3859HypercholesterolaemiaTGCATCCCCTGGCCCTGCGCAGGGACCAACGAATGCTTGGA3860His306TyrCAACAACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATcCAC-TACCGGCTACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGCCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGATC3861TTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGGCCAGGGGATGCAGCTGTTCCCACGTCTGC3862GCAGACGTGGGAACAGC3863HypercholesterolaemiaCCCTGGCCCTGCGCAGGGACCAACGAATGCTTGGACAACAA3864Cys308GlyCGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTAcTGC-GGCCGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCGGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTA3865GCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGGCCAGGG CCCACGTCTGCAATGAC3866GTCATTGCAGACGTGGG3867HypercholesterolaemiaCCTGGCCCTGCGCAGGGACCAACGAATGCTTGGACAACAAC3868Cys308TyrGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTACTGC-TACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCATGGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTA3869GCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGGCCAGGCCACGTCTGCAATGACC3870GGTCATTGCAGACGTGG3871HypercholesterolaemiaACCAACGAATGCTTGGACAACAACGGCGGCTGTTCGCACGTC3872Gly314SerTGCAATGACCTTAAGATCGGCTACGAGTGGCTGTGCCCCGACcGGC-AGCGGCTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCCGTCG3873GGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGTTGGTTTAAGATCGGCTACGAG3874CTCGTAGCCGATCTTAA3875HypercholesterolaemiaCCAACGAATGCTTGGACAACAACGGCGGCTGTTCCCACGTCT3876Gly314ValGCAATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGC-GTCGGCTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCCGTC3877GGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGTTGGTAAGATCGGCTACGAGT3878ACTCGTAGCCGATCTTA3879HyperchoesterolaemiaCGAATGCTTGGACAACAACGGCGGCTGTTCCCACGTCTGCAA3880Tyr315TermTGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTTTACg-TAACCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCGAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCC3881GTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGATCGGCTACGAGTGCCT3882AGGCACTCGTAGCCGAT3883HypercholesterolaemiaTGCTTGGACAACTAACGGCGGCTGTTCCCACGTCTGCAATGAC3884Cys317GlyCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTTCCAgTGC-GGCGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCGGGCCCGGAAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGG3885AAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCAGCTACGAGTGCCTGTGC3886GCACAGGCACTCGTAGC3887HypercholesterolaemiaTGCTTGGACAACAACGGCGGCTGTTCCCACGTCTGCAATGAC3888Cys317SerCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTTCCAgTGC-AGCGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCGGGCCCGGAAATCACCTFCGCATCTTCGCTGGGCCACCAGCTGG3889AAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCAGCTACGAGTGCCTGTGC3890GCACAGGCACTCGTAGC3891HypercholesterlaemiaACAACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCG 3892Pro320ArgGCTACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCCC-CGCCAGCGAAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTGGGCC3893ACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTCCTGTGCCCCGACGGCT3894AGCCGTCGGGGCACAGG3895HypercholesterolaemiaAACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGC3896Asp321AsnTACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAcGAC-AACGCGAAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCCGGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTGGG3897CCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTTGTGCCCCGACGGCTTC3898GAAGCCGTCGGGGCACA3899HypercholesterolaemiaCGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTA3900Asp321GluCGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGCGACg-GAGGAAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCCCTAGGGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTG3901GGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTGCCCCGACGGCTTCCA3902TGGAAGCCGTCGGGGCA3903HypercholesterolaemiaGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTAC3904Gly322SerGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGCGcGGC-AGCAAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCCCTGCAGGGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCT3905GGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGGCGCCCCGACGGCTTCCAG3906CTGGAAGCCGTCGGGGC3907HypercholesterolaemiaTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTGC3908Gln324TermCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGCGAAGATGcCAG-TAGCGAAGGTGATTTCCGGGTGGGACTGAGCCCTGGGCCCCGGGGCCCAGGGCTCAGTCCCACCCGGAAATCACCTTCGCAT3909CTTCGCTGGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAACGGCTTCCAGCTGGTG3910CACCAGCTGGAAGCCGT3911HypercholesterolaemiaATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGC3912Arg329ProTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCGCGA-CCAGGTGGGACTGAGCCCTGGGCCCGCTCTGCGCTTCCTGACGTCAGGAAGCGCAGAGGGGGCCCAGGGCTCAGTCCCACCC3913GGAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATGGCCCAGCGAAGATGCG3914CGCATCTTCGCTGGGCC3915HypercholesterolaemiaAATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGG3916Arg329TermCTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCgCGA-TGAGGGTGGGACTGAGCCCTGGGCCCCCTCTGCGCTTCCTGATCAGGAAGCGCAGAGGGGGCCCAGGGCTCAGTCCCACCCG3917GAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTTGGCCCAGCGAAGATGC3918GCATCTTCGCTGGGCCA3919HypercholesterolaemiaTCTAGCCATTGGGGAAGAGCCTCCCCACCAAGCCTCTTTCTC3920Glu336LysTCTCTTCCAGATATCGATGAGTGTCAGGATCCCGACACCTGCtGAG-AAGAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACAAGTACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAG3921GTGTCGGGATCCTGACACTCATCGATATCTGGAAGAGAGAGAAAGAGGCTTGGTGGGGAGGCTCTTCCCCAATGGCTAGAATATCGATGAGTGTCAG3922CTGACACTCATCGATAT3923HypercholesterolaemiaCATTGGGGAAGAGCCTCCCCACCAAGCCTCTTTCTCTCTCTT3924Gln338TermCCAGATATCGATGAGTGTCAGGATCCCGACACCTGCAGCCAGtCAG-TAGCTCTGCGTGAACCTGGAGGGTGGCTACAAGTGCCAGTACTGGCACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGG3925CTGCAGGTGTCGGGATCCTGACACTCATCGATATCTGGAAGAGAGAGAAAGAGGCTTGGTGGGGAGGCTCTTCCCCAATGATGAGTGTCAGGATCCC3926GGGATCCTGACACTCAT3927HypercholesterolaemiaTCCCCACCAAGCCTCTTFCTCTCTCTTCCAGATATCGATGAGT3928Cys343ArgGTCAGGATCCCGACACCTGCAGCCAGCTCTGCGTGAACCTGcTGC-CGCGAGGGTGGCTACAAGTGCCAGTGTGAGGAAGGCTTCCGGAAGCCTTCCTCACACTGGCACTTGTAGCCACCCTCCAGGT3929TCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTGACACTCATCGATATCTGGAAGAGAGAGAAAGAGGCTTGGTGGGGACCGACACCTGCAGCCAG3930CTGGCTGCAGGTGTCGG3931HypercholesterolaemiaCAAGCCTCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGA3932Gln345ArgTCCCGACACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTGCAG-CGGGCTACAAGTGCCAGTGTGAGGAAGGCTTCCAGCTGGATCCAGCTGGAAGCCTTCCTCAGACTGGCACTTGTAGCCACCC3933TCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTGACACTCATCGATATCTGGAAGAGAGAGAAAGAGGCTTGCTGCAGCCAGCTCTGCG3934CGCAGAGCTGGCTGCAG3935HypercholesterolaemiaTCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGATCCCGA3936Cys347TyrCACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACATGC-TACAGTGCCAGTGTGAGGAAGGCTTCCAGCTGGACCCCCATGGGGGTCCAGCTGGAAGCCTTCCTCACACTGGCACTTGTA3937GCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTGACAGTCATCGATATCTGGAAGAGAGAGAAAGACCAGCTCTGCGTGAACC3938GGTTCACGCAGAGCTGG3939HypercholesterolaemiaCTCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGATCCCG3940Cys347ArgACACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACcTGC-CGCAAGTGCCAGTGTGAGGAAGGCTTCCAGCTGGACCCCCGGGGGTCCAGCTGGAAGCCTTCCTCACACTGGCACTTGTAG3941CCACCCTCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTGACACTCATCGATATCTGGXAGAGAGAGAAAGAGGCCAGCTCTGCGTGAAC3942GTTCACGCAGAGCTGGC3943HypercholesterolaemiaCAGATATCGATGAGTGTCAGGATCCCGACACCTGCAGCCAGC3944Gly352AspTCTGCGTGAACCTGGAGGGTGGCTACAAGTGCCAGTGTGAGGGT-GATGAAGGCTTCCAGCTGGACCCCCACACGAAGGCCTGCAATTGCAGGCCTTCGTGTGGGGGTCCAGCTGGAAGCCTTCCTC3945ACACTGGCACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTGACACTCATCGATATCTGCCTGGAGGGTGGCTACA3946TGTAGCCACCCTCCAGG3947HypercholesterolaemiaTCGATGAGTGTCAGGATCCCGACACCTGCAGCCAGCTCTGC3948Tyr354CysGTGAACCTGGAGGGTGGCTACAAGTGCCAGTGTGAGGAAGGTAC-TGCCTTCCAGCTGGACCCCCACACGAAGGCCTGCAAGGCTGTACAGCCTTGCAGGCCTTCGTGTGGGGGTCCAGCTGGAAGCC3949TTCCTCACACTGGCACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTGACACTCATCGAGGGTGGCTACAAGTGCC3950GGCACTTGTAGCCACCC3951HypercholesterolaemiaCAGGATCCCGACACCTGCAGCCAGGTCTGCGTGAACCTGGA3952Cys358ArgGGGTGGCTACAAGTGCCAGTGTGAGGAAGGCTTCCAGCTGGgTGT-CGTACCCCCACACGAAGGCCTGCAAGGCTGTGGGTGAGCACGCGTGCTCACCCACAGCCTTGCAGGCCTTCGTGTGGGGGTCC3953AGCTGGAAGCCTTCCTCACACTGGCACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTGAGTGCCAGTGTGAGGAA3954TTCCTCACACTGGCACT3955HypercholesterolaemiaTGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACAAGTG3956Gln363TermCCAGTGTGAGGAAGGCTTCCAGCTGGACCCCCACACGAAGGcCAG-TAGCCTGCAAGGCTGTGGGTGAGCACGGGAAGGCGGCGGGTGCACCCGCCGCCTTCCCGTGCTCACCCACAGCCTTGCAGGCC3957TTCGTGTGGCGGTCCAGCTGGAAGCCTTCCTCACACTGGCACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAAAGGCTTCCAGCTGGAC3958GTCCAGCTGGAAGCCTT3959



EXAMPLE 22


UDP-Glucuronosyltransferase—UGT1

[0144] Mutations in the human UGT1 gene result in a range of disease syndromes, ranging from relatively common diseases such as Gilbert's syndrome, which effects up to 7% of the population, to rare disorders such as Crigler-Najjar syndrome. Symptoms of these diseases are the result of diminished bilirubin conjugation and typically present with jaundice or, when mild, as an incidental finding during routing laboratory analysis. Severe cases of Crigler-Najar syndrome are caused by an absence of UGT1 activity and the majority of these patents die in the neonatal period. The only known treatment is liver transplant. The attached table discloses the correcting oligonucleotide base sequences for the UGT1 oligonucleotides of the invention.
30TABLE 29UGT1 Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Crigler-NajjarGCAGGAGCAAAGGCGCCATGGCTGTGGAGTCCCAGGGCGG3960syndrome 2ACGCCCACTTGTCCTGGGCCTGCTGCTGTGTGTGCTGGGCCLeu15ArgCAGTGGTGTCCCATGCTGGGAAGATACTGTTGATCCCAGTCTG-CGGACTGGGATCAACAGTATCTTCCCAGCATGGGACACCACTGGGCGTCC3961CCCAGCACACACAGCAGCAGGCCCAGGACAAGTGGGCGTCCGCCCTGGGACTCCACAGCCATGGCGCCTTTGCTCCTGCCCTGGGCCTGCTGCTGT3962ACAGCAGCAGGCCCAGG33963Crigler-NajjarGGGAAGATACTGTTGATCCCAGTGGATGGCAGCCACTGGCT3964syndrome 1GAGCATGCTTGGGGCCATCCAGCAGCTGCAGCAGAGGGGACGln49TermATGAAATAGTTGTCCTAGCACCTGACGCCTCGTTGTACACAG-TAGTGTACAACGAGGCGTCAGGTGCTAGGACAACTATTTCATGTC3965CCCTCTGCTGCAGCTGCTGGATGGCCCCAAGCATGCTCAGCCAGTGGCTGCCATCCACTGGGATCAACAGTATGTTCCCGGGCCATCCAGCAGCTG3966CAGCTGCTGGATGGCCC3967Crigler-NajjarCAGCAGAGGGGACATGAAATAGTTGTCCTAGCACCTGACGCC3968syndrome 1TCGTTGTACATCAGAGACGGAGCATTTTACACCTTGAAGACGTGly71ArgACCCTGTGCCATTCCAAAGGGAGGATGTGAAAGAGTGGA-AGAACTCTTTCACATCCTCCCTTTGGAATGGCACAGGGTACGTCTT3969CAAGGTGTAAAATGCTCCGTCTCTGATGTACAACGAGGCGTCAGGTGCTAGGACAACTATTTCATGTCCCCTCTGCTGTCAGAGACGGAGCATTT3970AAATGCTCCGTCTCTGA3971Gilbert syndromeGGGTGAAGAACATGCTCATTGCCVTTTCACAGAACTTTCTGTG3972Pro229GlnCGACGTGGTTTATTCCCCGTATGCAACCCTTGCCTCAGAATTCCG-CAGCCTTCAGAGAGAGGTGACTGTCCAGGACCTATTGAGCTCAATAGGTCCTGGACAGTCACCTCTCTCTGAAGGAATTCT3973GAGGCAAGGGTTGCATACGGGGAATAAACCACGTCGCACAGAAGTTCTGTGAAAAGGCAATGAGCATGTTCTTCACCCTTATTCCCCGTATGCAA3974TTGCATACGGGGAATAA3975Crigler-NajjarTGTGAAGGATTACCCTAGGCCCATCATGCCCAATATGGTTTTT3976syndrome 1GTTGGTGGTAATCAACTGCCTTCACCAAAATCCACTATCCCAGCys280TermGTGTGTATTGGAGTGGGACTTTTACATGCGTATATTTGC-TGAAATATACGCATGTAAAAGTCCCACTCCAATACACACCTGGGAT3977AGTGGATTTTGGTGAAGGCAGTTGATTCCACCAACAAAAACATATTGGGCATGATGGGCCTAGGGTAATCCTTCACAATCAAACTGCCTTCACCA3978TGGTGAAGGCAGTTGAT3979Crigler-NajjarATCAAAGAATATGAGAAAAAATTAACTGAAAATTTTTCTTCTGG3980syndrome 1CTCTAGGAATTTGAAGCCTACATTAATGCTTCTGGAGAACATGAla292ValGAATTGTGGTTTTCTCTTTGGGATCAATGGTCTCGCC-GTCGAGACCATTGATCCCAAAGAGAAAACCACAATTCCATGTTCTC3981CAGAAGCATTAATGTAGGCTTCAAATTCCTAGAGCCAGAAGAAAAATTTTCAGTTAATTTTTTCTCATATTCTTTGATATTTGAAGCCTACATTA3982taatgtagGCTTCAAAT3983Crigler-NajjarAGGAATTTGAAGCCTACATTAATGCTTCTGGAGAACATGGAAT3984syndrome 1TGTGGTTTTCTCTTTGGGATCAATGGTCTCAGAAATTCCAGAGGly308GluAAGAAAGCTATGGCAATTGCTGATGCTTTGGGCAAGGA-GAATTGCCCAAAGCATCAGCAATTGCCATAGCTTTCTTCTCTGGAA3985TTTCTGAGACCATTGATCCCAAAGAGAAAACCACAATTCCATGTTCTCCAGAAGCATTAATGTAGGCTTCAAATTCCTCTCTTTGGGATCAATGG3986CCATTGATCCCAAAGAG3987Crigler-NajjarGTCTCAGAAATTCCAGAGAAGAAAGCTATGGCAATTGCTGAT3988syndrome 1GCTTTGGGCAAAATCCCTCAGACAGTAAGAAGATTCTATACCAGln331TermTGGCCTCATATCTATTTTCACAGGAGCGCTAATCCCCAG-TAGGGGATTAGCGCTCCTGTGAAAATAGATATGAGGCCATGGTAT3989AGAATCTTCTTACTGTCTGAGGGATTTTGCCCAAAGCATCAGCAATTGCCATAGCTTTCTTCTCTGGAATTTCTGAGACAAATCCCTCAGACAGTA3990TACTGTCTGAGGGATTT3991Crigler-NajjarTCTAATCATATTATGTTCTTTCTTTACGTTCTGCTCTTTTTGCC3992syndrome 1CCTCCCAGGTCCTGTGGCGGTACACTGGAACCCGACCATCGTrp335TermAATCTTGCGAACAACACGATACTTGTTAAGTGGCTATGG-TGATAGCCACTTAACAAGTATCGTGTTGTTCGCAAGATTCGATGGT3993CGGGTTCCAGTGTACCGCCACAGGACCTGGGAGGGGCAAAAAGAGCAGAACGTAAAGAAAGAACATAATATGATTAGAGTCCTGTGGCGGTACAC3994GTGTACCGCCACAGGAC3995Crigler-NajjarACACTGGAACCCGACCATCGAATCTTGCGAACAACACGATAC3996syndrome 1TTGTTAAGTGGCTACCCCAAAACGATCTGCTTGGTATGTTGGGln357ArgGCGGATTGGATGTATAGGTCAAACCAGGGTCAAATTACAA-CGATAATTTGACCCTGGTTTGACCTATACATCCAATCCGCCCAACA3997TACCAAGCAGATCGTTTTGGGGTAGCCACTTAACAAGTATCGTGTTGTTCGCAAGATTCGATGGTCGGGTTCCAGTGTGCTACCCCAAAACGATC3998GATCGTTTTGGGGTAGC3999Crigler-NajjarTACACTGGAACCCGACCATCGAATCTTGCGAACAACACGATA4000syndrome 1CTTGTTAAGTGGCTACCCCAAAACGATCTGCTTGGTATGTTGGln357TermGGCGGATTGGATGTATAGGTCAAACCAGGGTCAAATTCAA-TAAAATTTGACCCTGGTTTGACCTATACATCCAATCCGCCCAACAT4001ACCAAGCAGATCGTTTTGGGGTAGCCACTTAACAAGTATCGTGTTGTTCGCAAGATTCGATGGTCGGGTTCCAGTGTAGGCTACCCCAAAACGAT4002ATCGTTTTGGGGTAGCC4003Gilbert syndromeAACTCAGAGATGTAACTGCTGACATCCTCCCTATTTTGCATCT4004Arg367GlyCAGGTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTTCGT-GGTCCCATGGTGTTTATGAAAGCATATGCAATGGCGTTCGAACGCCATTGCATATGCTTTCATAAACACCATGGGAACCAG4005CATGGGTGATAAAGGCACGGGTCATCGGGTGACCTGAGATGCAAAATAGGGAGGATGTCAGCAGTTACATCTCTGAGTTCGATGACCCGTGCCTTT4006AAAGGCACGGGTCATCG4007Crigler-NajjarTCAGAGATGTAACTGCTGACATCCTCCCTATTTTGCATCTCAG4008syndrome 1GTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTTCCCAla368ThrATGGTGTTTATGAAAGCATATGCAATGGCGTTCCCAGCC-ACCTGGGAACGCCATTGCATATGCTTTCATAAACACCATGGGAAC4009CAGCATGGGTGATAAAGGCACGGGTCATCGGGTGACCTGAGATGCAAAATAGGGAGGATGTCAGCAGTTACATCTCTGATGACCCGTGCCTTTATC4010GATAAAGGCACGGGTCA4011Crigler-NajjarCCTCCCTATTTTTGCATCTCAGGTCACCCGATGACCCGTGCCT4012syndrome 1TTATCACCCATGCTGGTTCCCATGGTGTTTATGAAAGCATATGSer375PheCAATGGCGTTCCCATGGTGATGATGCCCTTGTTTGGTCC-TTCCCAAACAAGGGCATCATCACCATGGGAACGCCATTGCATATG4013CTTTCATAAACACCATGGGAACCAGCATGGGTGATAAAGGCACGGGTCATCGGGTGACCTGAGATGCAAAATAGGGAGGTGCTGGTTCCCATGGTG4014CACCATGGGAACCAGCA4015Crigler-NajjarAGGTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTTC4016syndrome 1CCATGGTGTTTATGAAAGCATATGCAATGGCGTTCCCATGGTSer381ArgGATGATGCCCTTGTTTGGTGATCAGATGGACAATGCAAGC-AGGTGCATTGTCCATCTGATCACCAAACAAGGGCATCATCACCAT4017GGGAACGCCATTGCATATGCTTTCATAAACACCATGGGAACCAGCATGGGTGATAAAGGCACGGGTCATCGGGTGACCTTATGAAAGCATATGCAA4018TTGCATATGCTTTCATA4019Crigler-NajjarAGCATATGCAATGGCGTTCCCATGGTGATGATGCCCTTGTTT4020syndrome 1GGTGATCAGATGGACAATGCAAAGCGCATGGAGACTAAGGGAla401ProAGCTGGAGTGACCCTGAATGTTCTGGAAATGACTTCTGGCA-CCACAGAAGTCATTTCCAGAACATTCAGGGTCACTCCAGCTCCCT4021TAGTCTCCATGCGCTTTGCATTGTCCATCTGATCACCAAACAAGGGCATCATCACCATGGGAACGCCATTGCATATGCTTGGACAATGCAAAGCGC4022GCGCTTTGCATTGTCCA4023Crigler-NajjarGGAGCTGGAGTGACCCTGAATGTTCTGGAAATGACTTCTGAA4024syndrome 1GATTTAGAAAATGCTCTAAAAGCAGTCATCAATGACAAAAGGTLys428GluAAGAAAGAAGATACAGAAGAATACTTTGGTCATGGCAAA-GAAGCCATGACCAAAGTATTCTTCTGTATCTTCTTCTTTACCTTTTG4025TCATTGATGACTGCTTTTAGAGCATTTTCTAAATGTTCAGAAGTCATTTCCAGAACATTCAGGGTCACTCCAGCTCCATGCTCTAAAAGCAGTC4026GACTGCTTTTAGAGCAT4027Crigler-NajjarATGAGGCACAAGGGCGCGCCACACCTGCGCCCCGCAGCCC4028syndrome 1ACGACCTCACCTGGTACCAGTACCATTCCTTGGACGTGATTGTyr486AspGTTTCCTCTTGGCCGTCGTGCTGACAGTGGCCTTCATCATAC-GACTGATGAAGGCCACTGTCAGCACGACGGCCAAGAGGAAACCA4029ATCACGTCCAAGGAATGGTACTGGTACCAGGTGAGGTCGTGGGCTGCGGGGCGCAGGTGTGGCGCGCCCTTGTGCCTCATGGTACCAGTACCATTCC4030GGAATGGTACTGGTACC4031Crigler-NajjarACAAGGGCGCGCCACACCTGCGCCCCGCAGCCCACGACCT4032syndrome 1CACCTGGTACCAGTACCATTCCTTGGACGTGATTGGTTTCCTSer488PheCTTGGCCGTCGTGCTGACAGTGGCCTTCATCACCTTTAATCC-UCTTAAAGGTGATGAAGGCCACTGTCAGCACGACGGCCAAGAG4033GAAACCAATCACGTCCAAGGAATGGTACTGGTACCAGGTGAGGTCGTGGGCTGCGGGGCGCAGGTGTGGCGCGCCCTTGTGTACCATTCCTTGGACG4034CGTCCAAGGAATGGTAC4035



EXAMPLE 23


Alzheimer's Disease—Amyloid Precursor Protein (APP)

[0145] Over the past few decades Alzheimer's disease (AD), once considered a rare disorder, has become recognized as a major public health problem. Although there is no agreement on the exact prevalence of Alzheimer's disease, in part due to difficulties of diagnosis, studies consistently point to an exponential rise in prevalence of this disease with age. After age 65, the percentage of affected people approximately doubles with every decade of life, regardless of definition. Among people age 85 or older, studies suggest that 25 to 35 percent have dementia, including Alzheimer's disease; one study reports that 47.2 percent of people over age 85 have Alzheimer's disease, exclusive of other dementias.


[0146] Alzheimer's disease progressively destroys memory, reason, judgment, language, and, eventually, the ability to carry out even the simplest tasks. Anatomic changes associated with Alzheimer's disease begin in the entorhinal cortex, proceed to the hippocampus, and then gradually spread to other regions, particularly the cerebral cortex. Chief among such anatomic changes are the presence of characteristic extracellular plaques and internal neurofibrillary tangles.


[0147] At least four genes have been identified to date that contribute to development of Alzheimer's disease: AD1 is caused by mutations in the amyloid precursor gene (APP); AD2 is associated with a particular allele of APOE (see Example 20); AD3 is caused by mutation in a gene encoding a 7-transmembrane domain protein, presenilin-1 (PSEN1), and AD4 is caused by mutation in a gene that encodes a similar 7-transmembrane domain protein, presenilin-2 (PSEN2). The attached table discloses
31TABLE 30APP Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Alzheimer diseaseCTGCATACTTTAATTATGATGTAATACAGGTTCTGGGTTGACA4036Glu665AspAATATCAAGACGGAGGAGATCTCTGAAGTGAAGATGGATGCAGAG-GACGAATTCCGACATGACTCAGGATATGAAGTTCATCATATGATGAACTTCATATCCTGAGTCATGTCGGAATTCTGCATCC4037ATCTTCACTTCAGAGATCTCCTCCGTCTTGATATTTGTCAACCCAGAACCTGTATTACATCATAATTAAAGTATGCAGACGGAGGAGATCTCTGA4038TCAGAGATCTCCTCCGT4039Alzheimer diseaseATTATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTT4040Ala692GlyCAAGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCGCA-GGAAATCATTGGACTCATGGTGGGCGGTGTTGTCATATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTTTG4041TTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAAATTAAGAAAAAGAATTTTAATTTCTAAATGCAATATAATGTTCTTTGCAGAAGATG4042CATCTTCTGCAAAGAAC4043Alzheimer diseaseTATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTTC4044Glu693GlnAAGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCAGAA-CAAATCATTGGACTCATGGTGGGCGGTGTTGTCATAGCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTT4045TGTTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAAATTAAGAAAAAGAATTTTAATTTCTAAATGCAATATATCTTTGCAGAAGATGTG4046CACATCTTCTGCAAAGA4047Alzheimer diseaseATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTTCA4048Glu693GlyAGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCAAGAA-GGATCATTGGACTCATGGTGGGCGGTGTTGTCATAGCGCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCT4049TTGTTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAAATTAAGAAPAAGAATTTTAATTTCTAAATGCAATATCTTTGCAGAAGATGTGG4050CCACATCTTCTGCAAAG4051Alzheimer diseaseGAAGATGTGGGTTCAAACAAAGGTGCAATCATTGGACTCATG4052Ala713ThrGTGGGCGGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGGCG-ACGGTGATGCTGAAGAAGAAACAGTACACATCCATTCATCGATGAATGGATGTGTACTGTTTCTTCTTCAGCATCACCAAGGT4053GATGACGATCACTGTCGCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTTTGTTTGAACCCACATCTTTTGTCATAGCGACAGTG4054CACTGTCGCTATGACAA4055SchizophreniaAAGATGTGGGTTCAAACAAAGGTGCAATCATTGGACTCATGG4056Ala713ValTGGGCGGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGGGCG-GTGTGATGCTGAAGAAGAAACAGTACACATCCATTCATCATGATGAATGGATGTGTACTGTTTCTTCTTCAGCATCACCAAGG4057TGATGACGATCACTGTCGCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTTTGTTTGAACCCACATCTTTGTCATAGCGACAGTGA4058TCACTGTCGCTATGACA4059Alzheimer diseaseGTGGGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGC4060Val715MetGGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGGTGATGGTG-ATGCTGAAGAAGAAACAGTACACATCCATTCATCATGGTGCACCATGATGAATGGATGTGTACTGTTTCTTCTTCAGCATCAC4061CAAGGTGATGACGATCACTGTCGCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTTTGTTTGAACCCACTAGCGACAGTGATCGTC4062GACGATCACTGTCGCTA4063Alzheimer diseaseGGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGT4064lle716ValGTTGTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGATC-GTCAAGAAGAAACAGTACACATCCATTCATCATGGTGTGGCCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAGCAT4065CACCAAGGTGATGACGATCACTGTCGCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTTTGTTTGAACCCGACAGTGATCGTCATC4066GATGACGATCACTGTCG4067Alzheimer diseaseCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTTG4068Val717GlyTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAGAGTC-GGCAGAAACAGTACACATCCATTCATCATGGTGTGGTGGATCCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCA4069GCATCACCAAGGTGATGACGATCACTGTCGCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTTTGTTTGAGTGATCGTCATCACCT4070AGGTGATGACGATCACT4071Aizheimer diseaseTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTT4072Val17lleGTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAGGTC-ATCAAGAAACAGTACACATCCATTCATCATGGTGTGGTGGCCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAG4073CATCACCAAGGTGATGACGATCACTGTCGCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTTTGTTTGACAGTGATCGTCATCACC4074GGTGATGACGATCACTG4075Alzheimer diseaseTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTT4076Val717PheGTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAGGTC-TTCAAGAAACAGTACACATCCATTCATCATGGTGTGGTGGCCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAG4077CATCACCAAGGTGATGACGATCACTGTCGCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTTTGTTTGACAGTGATCGTCATCACC4078GGTGATGACGATCACTG4079Alzheimer diseaseTTGGACTCATGGTGGGCGGTGTTGTCATAGCGACAGTGATCG4080Leu723ProTCATCACCTTGGTGATGCTGAAGAAGAAACAGTACACATCCATCTG-CCGTCATCATGGTGTGGTGGAGGTAGGTAAACTTGACTGCAGTCAAGTTTACCTACCTCCACCACACCATGATGAATGGAT4081GTGTACTGTTTCTTCTTCAGCATCACCAAGGTGATGACGATCACTGTCGCTATGACAACACCGCCCACCATGAGTCCAAGGTGATGCTGAAGAAGA4082TCTTCTTCACCATCACC4083



EXAMPLE 24


Alzheimer's Disease—Presenilin-1 (PSEN1)

[0148] The attached table discloses the correcting oligonucleotide base sequences for the PSEN1 oligonucleotides of the invention.
32TABLE 31PSEN1 Mutations and Genome-Correcting OligosClinical Phenotype &SEQ IDMutationCorrecting OligosNO:Alzheimer diseaseCCCGGCAGGTGGTGGAGCAAGATGAGGAAGAAGATGAGGAG4084Ala79ValCTGACATTGAAATATGGCGCCAAGCATGTGATCATGCTCTTTGGCC-GTCTCCCTGTGACTCTCTGCATGGTGGTGGTCGTGGCTACGTAGCCACGACCACCACCATGCAGAGAGTCACAGGGACAAA4085GAGCATGATCACATGCTTGGCGCCATATTTCAATGTCAGCTCCTCATCTTCTTCCTCATCTTGCTCCACCACCTGCCGGGATATGGCGCCAAGCATG4086CATGCTTGGCGCCATAT4087Alzheimer diseaseGTGGTGGAGCAAGATGAGGAAGAAGATGAGGAGCTGACATT4088Val82LeuGAAATATGGCGCCAAGCATGTGATCATGCTCTTTGTCCCTGTtGTG-CTGGACTCTCTGCATGGTGGTGGTCGTGGCTACCATTAAGTACTTAAGGTAGCCACGACCACCACCATGCAGAGAGTCACAG4089GGACAAAGAGCATGATCACATGCTTGGCGCCATATTTCAATGTCAGCTCCTCATCTTCTTCCTCATCTTGCTCCACCACCCAAGCATGTGATCATG4090CATGATCACATGCTTGG4091Alzheimer diseaseAAATATGGCGCCAAGCATGTGATCATGCTCTTTGTCCCTGTG4092Val96PheACTCTCTGCATGGTGGTGGTCGTGGCTACCATTAAGTCAGTCgGTC-TTCAGCTTTTATACCCGGAAGGATGGGCAGCTGTACGTATATACGTACAGCTGCCCATCCTTCCGGGTATAAAAGCTGACTG4093ACTTAATGGTAGCCACGACCACCACCATGCAGAGAGTCACAGGGACAAAGAGCATGATCACATGCTTGGCGCCATATTTTGGTGGTGGTCGTGGCT4094AGCCACGACCACCACCA4095Alzheimer diseaseCTTTGTCCCTGTGACTCTCTGCATGGTGGTGGTCGTGGCTAC4096Phe105LeuCATTAAGTCAGTCAGCTTTTATACCCGGAAGGATGGGCAGCTTTTt-TTGGTACGTATGAGTTTTGTTTTATTATTCTCAAAGCCAGCTGGCTTTGAGAATAATAAAACAAAACTCATACGTACAGCTGC4097CCATCCTTCCGGGTATAAAAGCTGACTGACTTAATGGTAGCCACGACCACCACCATGCAGAGAGTCACAGGGACAAAGGTCAGCTTTTATACCCG4098CGCGTATAAAAGCTGAC4099Alzheimer diseaseTGGTGATCTCCATTAACACTGACCTAGGGCTTTTGTGTTTGTT4100Thr116AsnTTATTGTAGAATCTATACCCCATTCACAGAAGATACCGAGACTACC-AACGTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGCGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTCG4101GTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACAAACACAAAAGCCCTAGGTCAGTGTTAATGGAGATCACCAAATCTATACCCCATTCA4102TGAATGGGGTATAGATT4103Alzheimer diseaseTGATCTCCATTAACACTGACCTAGGGCTTTTGTGTTTGTTTTAT4104Pro117LeuTGTAGAATCTATACCCCATTCACAGAAGATACCGAGACTGTGCCA-CTAGGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGCGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTC4105TCGGTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACAAACACAAAAGCCCTAGGTCAGTGTTAATGGAGATCACTATACCCCATTCACAG4106CTGTGAATGGGGTATAG4107Alzheimer diseaseTAACACTGACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCT4108Glu120AspATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGAGGAAg-GATCCCTGCACTCAATTCTGAATGCTGCCATCATGATCGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTG4109GCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACAAACACAAAAGCCCTAGGTCAGTGTTATTCACAGAAGATACCGA4110TCGGTATCTTCTGTGAA4111Alzheimer diseaseTAACACTGACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCT4112Glu120AspATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGAGGAAg-GACCCCTGCACTCAATTCTGAATGCTGCCATCATGATCGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTG4113GCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACAAACACAAAAGCCCTAGGTCAGTGTTATTCACAGAAGATACCGA4114TCGGTATCTTCTGTGAA4115Alzheimer diseaseATTAACACTGACCTAGGGCTTTTGTGTTTGTTTATTGTAGAAT4116Glu120LysCTATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGaGAA-AAAAGCCCTGCACTCAATTCTGAATGCTGCCATCATGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGC4117CCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACAAACACAAAAGCCCTAGGTCAGTGTTAATCATTCACAGAAGATACC4118GGTATCTTCTGTGAATG4119Alzheimer diseaseGACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCTATACCC14120Glu123LysCATTCACAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGTcGAG-AAGCACTCAATTCTGAATGCTGCCATCATGATCACTGTCATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGG4121CTCTCTGGCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACAAACACAAAAGCCCTAGGTCAAGATACCGAGACTGTG4122CACAGTCTCGGTATCTT4123Alzheimer diseaseTATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGA4124Asn13SAspGCCCTGCACTCAATTCTGAATGCTGCCATCATGATCAGTGTCgAAT-GATATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTATATATACAGAACCACCAGGAGGATAGTCATGACAACAATGACAC4125TGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATACAATTCTGAATGCTGCC4126GGCAGCATTCAGAATTG4127Alzheimer diseaseAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCAA4128Met139lleTTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGACATGa-ATATATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTATATAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATG4129ACAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTGCCATCATGATCAGTGT4130ACACTGATCATGATGGC4131Alzheimer diseaseCAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCA4132Met139LysATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGAATG-AAGCTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTATAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA4133CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTGTGCCATCATGATCAGTG4134CACTGATCATGATGGCA4135Alzheimer diseaseCAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCA4136Met139ThrATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGAATG-ACGCTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTATAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA4137CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTGTGCCATCATGATCAGTG4138CACTGATCATGATGGCA4139Alzheimer diseaseACAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTC4140Met139ValAATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGcATG-GTGACTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA4141CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTGTCTGCCATCATGATCAGT4142ACTGATCATGATGGCAG4143Alzheimer diseaseGAGACTGTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGCT4144lle143PheGCCATCATGATCAGTGTCATTGTTGTCATGACTATCCTCCTGGcATT-TTTTGGTTCTGTATAAATACAGGTGCTATAAGGTGAGCATGCTCACCTTATAGCACCTGTATTTATACAGAACCACCAGGAG4145GATAGTCATGACAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTCTCAGTGTCATTGTTGTC4146GACAACAATGACACTGA4147Alzheimer diseaseAGACTGTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGCTG4148lle143ThrCCATCATGATCAGTGTCATTGTTGTCATGACTATCCTCCTGGTATT-ACTGGTTCTGTATAAATACAGGTGCTATAAGGTGAGCATATGCTCACCTTATAGCACCTGTATTTATACAGAACCACCAGGA4149GGATAGTCATGACAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTCAGTGTCATTGTTGTCA4150TGACAACAATGACACTG4151Alzheimer diseaseCCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATGAT4152Met146lleCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTATATGa-ATAAAATACAGGTGCTATAAGGTGAGCATGAGACACAGATCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGA4153ACCACCAGGAGGATAGTCATGACAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGGTTGTCATGACTATCCT4154AGGATAGTCATGACAAC4155Alzheimer diseaseCCAGAGAGCCCTGCACTCAATTCTGAATGGTGCCATCATGAT4156Met146lleCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTATATGa-ATCAAATACAGGTGCTATAAGGTGAGCATGAGACACAGATCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGA4157ACCACCAGGAGGATAGTCATGACAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGGTTGTCATGACTATCCT4158AGGATAGTCATGACAAC4159Alzheimer diseaseGGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATG4160Met146LeuATCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTcATG-UGATAAATACAGGTGCTATAAGGTGAGCATGAGACACATGTGTCTCATGCTCACCUATAGCACCTGTATTTATACAGAAC4161CACCAGGAGGATAGTCATGACAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCTTGTTGTCATGACTATC4162GATAGTCATGACAACAA4163Alzheimer diseaseGGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATG4164Met146ValATCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTcATG-GTGATAAATACAGGTGCTATAAGGTGAGCATGAGACACATGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGAAC4165CACCAGGAGGATAGTCATGACAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCTTGTTGTCATGACTATC4166GATAGTCATGACAACAA4167Alzheimer diseaseAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATGATCA4168Thr147lleGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTATAAACT-ATTATACAGGTGCTATAAGGTGAGCATGAGACACAGATCGATCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACA4169GAACCACCAGGAGGATAGTCATGACAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTTGTCATGACTATCCTCC4170GGAGGATAGTCATGACA4171Alzheimer diseaseCTTTTTAAGGGTTGTGGGACCTGTTAATTATATTGAAATGCTTT4172His163ArgCTTTTCTAGGTCATCCATGCCTGGCTTATTATATCATCTCTATTCAT-CGTGTTGCTGTTCTTTTTTTCATTCATTTACTTGGGCCCAAGTAAATGAATGAAAAAAAGAACAGCAACAATAGAGATG4173ATATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTTCAATATAATTAACAGGTCCCACAACCCTTAAAAAGGGTCATCCATGCCTGGC4174GCCAGGCATGGATGACC4175Alzheimer diseaseACTTTTTAAGGGTTGTGGGACCTGTTAATTATATTGAAATGCTT4176His163TyrTCTTTTCTAGGTCATCCATGCCTGGCTTATTATATCATCTCTATcCAT-TATTGTTGCTGTTTCTTTTTTTCATTCATTTACTTGGCCAAGTAAATGAATGAAAAAAAGAACAGCAACAATAGAGATGA4177TATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTTCAATATAATTAACAGGTCCCACAACCCTTAAAAAGTAGGTCATCCATGCCTGG4178CCAGGCATGGATGACCT4179Alzheimer diseaseAGGGTTGTGGGACCTGTTAATTATATTGAAATGCTTTCTTTTCT4180Trp165CysAGGTCATCCATGCCTGGCTTATTATATCATCTCTATTGTTGCTTGGc-TGCGTTCTTTTTTTCATTCATTTACTTGGGGTAAGTTAACTTACCCCAAGTAAATGAATGAAAAAAAGAACAGCAACAAT4181AGAGATGATATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTTCAATATAATTAACAGGTCCCACAACCCTCATGCCTGGCTTATTAT4182ATAATAAGCCAGGCATG4183Alzheimer diseaseACCTGTTAATTATATTGAAATGCTTTCTTTTCTAGGTCATCCAT4184Ser169LeuGCCTGGCTTATTATATCATCTCTATTGTTGCTGTTCTTTTTTTCTCA-TTAATTCATTTACTTGGGGTAAGTTGTGAAATTTTTAAAAATTTCACAACTTACCCCAAGTAAATGAATGAAAAAAAGAA4185CAGCAACAATAGAGATGATATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTTCAATATAATTAACAGGTTATTATATCATCTCTAT4186ATAGAGATGATATAATA4187Alzheimer diseaseTAATTATATTGAAATGCTTTCTTTTCTAGGTCATCCATGCCTGG4188Leu171ProCTTATTATATCATCTCTATTGTTGCTGTTCTTTTTTTCATTCATTCTA-CCATACTTGGGGTAAGTTGTGAAATTTTTGGTCTGCAGACCAAAAATTTCACAACTTACCCCAAGTAAATGAATGAAA4189AAAAGAACAGCAACAATAGAGATGATATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTTCAATATAATTAATCATCTCTATTGTTGC4190GCAACAATAGAGATGAT4191Alzheimer diseaseTATTGAAATGCTTTCTTTTCTAGGTCATCCATGCCTGGCTTATT4192Leu173TrpATATCATCTCTATTGTTGCTGTTCTTTTTTTCATTCATTTACTTGTTG-TGGGGGTAAGTTGTGAAATTTTTGGTCTGTCTTTCGAAAGACAGACCAAAAATTTCACAACTTACCCCAAGTAAATGA4193ATGAAAAAAAGAACAGCAACAATAGAGATGATATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTCAATATCTATTGTTGCTGTTCT4194AGAACAGCAACAATAGA4195Alzheimer diseaseTATAACGTTGCTGTGGACTACATTACTGTTGCACTCCTGATCT4196Gly209ArgGGAATTTTGGTGTGGTGGGAATGATTTCCATTCACTGGAAAGgGGA-AGAGTCCACTTCGACTCCAGCAGGCATATCTCATTATGATCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTCC4197AGTGAATGGAAATCATTCCCACCACACCAAAATTCCAGATCAGGAGTGCAACAGTAATGTAGTCCACAGCAACGTTATAGTGTGGTGGGAATGATT4198AATCATTCCCACCACAC4199Alzheimer diseaseATAACGTTGCTGTGGACTACATTACTGTTGCACTCCTGATCTG4200Gly209ValGAATTTTGGTGTGGTGGGAATGATTTCCATTCACTGGAAAGGTGGA-GTACCACTTCGACTCCAGCAGGCATATCTCATTATGATATCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTC4201CAGTGAATGGAAATCATTCCCACCACACCAAAATTCCAGATCAGGAGTGCAACAGTAATGTAGTCCACAGCAACGTTATTGTGGTGGGAATGATTT4202AAATCATTCCCACCACA4203Alzheimer diseaseTGGACTACATTACTGTTGCACTCCTGATCTGGAATTTTGGTGT4204lle213ThrGGTGGGAATGATTTCCATTCACTGGAAAGGTCCACTTCGACTATT-ACTCCAGCAGGCATATCTCATTATGATTAGTGCCCTCATATGAGGGCACTAATCATAATGAGATATGCCTGCTGGAGTCGA4205AGTGGACCTTTCCAGTGAATGGAAATCATTCCCACCACACCAAAATTCCAGATCAGGAGTGCAACAGTAATGTAGTCCAGATTTCCATTCACTGGA4206TCCAGTGAATGGAAATC4207Alzheimer diseaseCACTCCTGATCTGGAATTTTGGTGTGGTGGGAATGATTTCCAT4208Leu219ProTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCATCTT-CCTTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAATTGATAAACACCAGGGCCATGAGGGCACTAATCATAATGAGA4209TATGCCTGCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAAATCATTCCCACCACACCAAAATTCCAGATCAGGAGTGAGGTCCACTTCGACTCC4210GGAGTCGAAGTGGACCT4211Alzheimer diseaseATTTCCATTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCA4212Ala231ThrTATCTCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAtGCC-ACCAGTACCTCCCTGAATGGACTGCGTGGCTCATCTTGGCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGATAA4213ACACCAGGGCCATGAGGGCACTAATCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAAATTGATTAGTGCCCTCATG4214CATGAGGGCACTAATCA4215Alzheimer diseaseTTTCCATTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCAT4216Ala231ValATCTCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAAGCC-GTCGTACCTCCCTGAATGGACTGCGTGGCTCATCTTGGCGCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGATA4217AACACCAGGGCCATGAGGGCACTAATCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAAAGATTAGTGCCCTCATGG4218CCATGAGGGCACTAATC4219Alzheimer diseaseTTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCA4220Met233ThrTTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTACCTATG-ACGCCCTGAATGGACTGCGTGGCTCATCTTGGCTGTGATATCACAGCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTAC4221TTGATAAACACCAGGGCCATGAGGGCACTAATCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTCCAGTGAATGCCCTCATGGCCCTGG4222CCAGGGCCATGAGGGCA4223Alzheimer diseaseGGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCATTATGA4224Leu235ProTTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTACCTCCCTGCTG-CCGAATGGACTGCGTGGCTCATCTTGGCTGTGATTTCAGTACTGAAATCACAGCCAAGATGAGCCACGCAGTCCATTCAGGG4225AGGTACTTGATAAACACCAGGGCCATGAGGGCACTAATCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTCCCATGGCCCTGGTGTTTA4226TAAACACCAGGGCCATG4227Alzheimer diseaseTCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTA4228Ala246GluCCTCCCTGAATGGACTGCGTGGCTCATCTTGGCTGTGATTTCGCG-GAGAGTATATGGTAAAACCCAAGACTGATAATTTGTTTGCAAACAAATTATCAGTCTTGGGTTTTACCATATACTGAAATCAC4229AGCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGATAAACACCAGGGCCATGAGGGCACTAATCATAATGAATGGACTGCGTGGCTCA4230TGAGCCACGCAGTCCAT4231Alzheimer diseaseGTGCCCTCATGGCCCTGGTGTTTATCAAGTACCTCCCTGAAT4232Leu250SerGGACTGCGTGGCTCATCTTGGCTGTGATTTCAGTATATGGTATTG-TCGAAACCCAAGACTGATAATTTGTTTGTCACAGGAATGCGCATTCCTGTGACAAACAAATTATCAGTCTTGGGTTTTACCAT4233ATACTGAAATCACAGCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGATAAACACCAGGGCCATGAGGGCACGCTCATCTTGGCTGTGA4234TCACAGCCAAGATGAGC4235Alzheimer diseaseAGTTTAGCCCATACATTTTATTAGATGTCTTTTATGTTTTTCTTT4236Ala260ValTTCTAGATTTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCGGCT-GTTTATGCTGGTTGAAACAGCTCAGGAGAGAAATGATCATTTCTCTCCTGAGCTGTTTCAACCAGCATACGAAGTGGAC4237CTTTCGGACACAAAACAGCCACTAAATCTAGAAAAAGAAAAACATAAAAGACATCTAATAAAATGTATGGGCTAAACTTTTAGTGGCTGTTTTGT4238ACAAAACAGCCACTAAA4239Alzheimer diseaseCCCATACATTTTATTAGATGTCTTTTATGTTTTTCTTTTTCTAGA4240Leu262PheTTTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGTTGt-TTCGTTGAAACAGCTCAGGAGAGAAATGAAACGCTT0 AAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCATACGA4241AGTGGACCTTTCGGACAe,uns b Cl ee AAAACAGCCACTAAATCTAGAAAAAGAAAAACATAAAAGACATCTAATAAAATGTATGGG0 GCTGTTTTe,uns b Gl ee TGTCCGAA42420 TTCGGACAe,uns b Cl ee AAAACAGC42430 Alzheimer diseaseCCATACATTTTATTAGATGTCTTTTATGTTTTCTTTTTCTAGAT4244Cys263ArgTTAGTGGCTGTTTTGe,uns b Tl ee GTCCGAAAGGTCCACTTCGTATGCTGgTGT-CGTGTTGAAACAGCTCAGGAGAGAAATGAAACGCTTT0 AAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCATACG4245AAGTGGACCTTTCGGACe,uns b Al ee CAAAACAGCCACTAAATCTAGAAAAAGAAAAACATAAAAGACATCTAATAAAATGTATGG0 CTGTTTTGTGe,uns b Tl ee CCGAAA42460 TTTCGGACe,uns b Al ee CAAAACAG42470 Alzheimer diseaseACATTTTATTAGATGTCTTTTATGTTTTTCTTTTTCTAGATTTAG4248Pro264LeuTGGCTGTTTTGTGTCe,uns b Cl ee GAAAGGTCCACTTCGTATGCTGGTTGCCG-CTGAAACAGCTCAGGAGAGAAATGAAACGCTTTTTCC0 GGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCA4249TACGAAGTGGACCTTTCe,uns b Gl ee GACACAAAACAGCCACTAAATCTAGAAAAAGAAAAACATAAAAGACATCTAATAAAATGT0 TTTGTGTCe,uns b Cl ee GAAAGGTC42500 GACCTTTCe,uns b Gl ee GACACAAA42510 Alzheimer diseaseGTCTTTTATGTTTTTCTTTTTCTAGATTTAGTGGCTGTTTTGTG4252Arg269GlyTCCGAAAGGTCCACTTe,uns b Cl ee GTATGCTGGTTGAAACAGCTCAGGAtCGT-GGTGAGAAATGAAACGCTTTTTCCAGCTCTCATTTACT0 AGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCTGAGC4253TGTTTCAACCAGCATACe,uns b Gl ee AAGTGGACCTTTCGGACACAAAACAGCCACTAAATCTAGAAAAAGAAAAACATAAAAGAC0 GTCCACTTe,uns b Cl ee GTATGCTG42540 CAGCATACe,uns b Gl ee AAGTGGAC42550 Alzheimer diseaseTCTTTTATGTTTTTCTTTTTCTAGATTTAGTGGCTGTTTTGTGTC4256Arg269HisCGAAAGGTCCACTTCe,uns b Gl ee TATGCTGGTTGAAACAGCTCAGGAGACGT-CATGAAATGAAACGCTTTTTCCAGCTCTCATTTACTC0 GAGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCTGAG4257CTGTTTCAACCAGCATAe,uns b Cl ee GAAGTGGACCTTTCGGACACAAAACAGCCACTAAATCTAGAAAAAGAAAAACATAAAAGA0 TCCACTTCe,uns b Gl ee TATGCTGG42580 CCAGCATAe,uns b Cl ee GAAGTGGA42590 Alzheimer diseaseTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGG4260Arg278ThrTTGAAACAGCTCAGGAGAe,uns b Gl ee AAATGAAACGCTTTTTCCAGCTCTAGA-ACACATTTACTCCTGTAAGTATTTGAGAATGATATTGAA0 TTCAATATCATTCTCAAATACTTACAGGAGTAAATGAGAGCTG4261GAAAAAGCGTTTCATTTe,uns b Cl ee TCTCCTGAGCTGTTTCAACCAGCATACGAAGTGGACCTTTCGGACACAAAACAGCCACTA0 TCAGGAGAe,uns b Gl ee AAATGAAA42620 TTTCATTTe,uns b Cl ee TCTCCTGA42630 Alzheimer diseaseCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAAC4264Glu280AlaAGCTCAGGAGAGAAATGe,uns b Al ee AACGCTTTTTCCAGCTCTCATTTACGAA-GCATCCTGTAAGTATTTGAGAATGATATTGAATTAGTA0 TACTAATTCAATATCATTCTCAAATACTTACAGGAGTAAATGAG4265AGCTGGAAAAAGCGTTe,uns b Tl ee CATTTCTCTCCTGAGCTGTTTCAACCAGCATACGAAGTGGACCTTTCGGACACAAAACAG0 GAGAAATGe,uns b Al ee AACGCTTT42660 AAAGCGTTe,uns b Tl ee CATTTCTC42670 Alzheimer diseaseCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAAC4268Glu280GlyAGCTCAGGAGAGAAATGe,uns b Al ee AACGCTTTTTCCAGCTCTCATTTACGAA-GGATCCTGTAAGTATTTGAGAATGATATTGAATTAGTA0 TACTAATTCAATATCATTCTCAAATACTTACAGGAGTAAATGAG4269AGCTGGAAAAAGCGTTe,uns b Tl ee CATTTCTCTCCTGAGCTGTTTCAACCAGCATACGAAGTGGACCTTTCGGACACAAAACAG0 GAGAAATGe,uns b Al ee AACGCTTT42700 AAAGCGTTe,uns b Tl ee CATTTCTC42710 Alzheimer diseaseTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAACAGCTC4272Leu282ArgAGGAGAGAAATGAAACGCe,uns b Tl ee TTTTCCAGCTCTCATTTACTCCTGCTT-CGTTAAGTATTTGAGAATGATATTGAATTAGTAATCAGT0 ACTGATTACTAATTCAATATCATTCTCAAATACTTACAGGAGTA4273AATGAGAGCTGGAAAAe,uns b Al ee GCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCATACGAAGTGGACCTTTCGGACACA0 TGAAACGCe,uns b Tl ee TTTTCCAG42740 CTGGAAAAe,uns b Al ee GCGTTTCA0 Alzheimer diseaseAAGGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGAGAGAA4276ATa285ValATGAAACGCTTTTTCCAGe,uns b Cl ee TCTCATTTACTCCTGTAAGTATTTGGCT-GTTAGAATGATATTGAATTAGTAATCAGTGTAGAATTT0 AAATTCTACACTGATTACTAATTCAATATCATTCTCAAATACTTA4277CAGGAGTAAATGAGAe,uns b Gl ee CTGGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCATACGAAGTGGACCTT0 TTTTCCAGe,uns b Cl ee TCTCATTT42780 AAATGAGAe,uns b Gl ee CTGGAAAA42790 Alzheimer diseaseGGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGAGAGAAAT4280Leu286ValGAAACGCTTTTTCCAGCTe,uns b Cl ee TCATTTACTCCTGTAAGTATTTGAtCTC-GTCGAATGATATTGAATTAGTAATCAGTGTAGAATTTAT0 ATAAATTCTACACTGATTACTAATTCAATATCATTCTCAAATACT4281TACAGGAGTAAATGAe,uns b Gl ee AGCTGGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCATACGAAGTGGACC0 TTCCAGCTe,uns b Cl ee TCATTTAC42820 GTAAATGAe,uns b Gl ee AGCTGGAA42830 Alzheimer diseaseGTGACCAACTTTTTAATATTTGTAACCTTTCCTTTTTAGGGGGA4284Gly384AlaGTAAAACTTGGATTGGe,uns b Gl ee AGATTTCATTTTCTACAGTGTTCTGGGGA-GCATTGGTAAAGCCTCAGCAACAGCCAGTGGAGACTG0 CAGTCTCCACTGGCTGTTGCTGAGGCTTTACCAACCAGAACA4285CTGTAGAAAATGAAATCTe,uns b Cl ee CCAATCCAAGTTTTACTCCCCCTAAAAAGGAAAGGTTACAAATATTAAAAAGTTGGTCAC0 TGGATTGGe,uns b Gl ee AGATTTCA42860 TGAAATCTe,uns b Cl ee CCAATCCA42870 Alzheimer diseaseTTTGTAACCTTTCCTTTTTAGGGGGAGTAAAACTTGGATTGGG4288Ser390lleAGATTTCATTTTCTACAe,uns b Gl ee TGTTCTGGTTGGTAAAGCCTCAGCAAGT-ATTACAGCCAGTGGAGACTGGAACACAACCATAGCCTG0 CAGGCTATGGTTGTGTTCCAGTCTCCACTGGCTGTTGCTGAG4289GCTTTACCAACCAGAACAe,uns b Cl ee TGTAGAAAATGAAATCTCCCAATCCAAGTTTTACTCCCCCTAAAAAGGAAAGGTTACAAA0 TTTCTACAe,uns b Gl ee TGTTCTGG42900 CCAGAACAe,uns b Cl ee TGTAGAAA42910 Alzheimer diseaseAACCTTTCCTTTTTAGGGGGAGTAAAACTTGGATTGGGAGATT4292Leu392ValTCATTTTCTACAGTGTTe,uns b Cl ee TGGTTGGTAAAGCCTCAGCAACAGCtCTG-GTGCAGTGGAGACTGGAACACAACCATAGCCTGTTTCG0 CGAAACAGGCTATGGTTGTGTTCCAGTCTCCACTGGCTGTTG4293CTGAGGCTTTACCAACCAe,uns b Gl ee AACACTGTAGAAAATGAAATCTCCCAATCCAAGTTTTACTCCCCCTAAAAAGGAAAGGTT0 ACAGTGTTe,uns b Cl ee TGGTTGGT42940 ACCAACCAe,uns b Gl ee AACACTGT42950 Alzheimer diseaseATTTCATTTTCTACAGTGTTCTGGTTGGTAAAGCCTCAGCAAC4296Asn405SerAGCCAGTGGAGACTGGAe,uns b Al ee CACAACCATAGCCTGTTTCGTAGCAAC-AGCCATATTAATTGTAAGTATACACTAATAAGAATGTGT0 ACACATTCTTATTAGTGTATACTTACAATTAATATGGCTACGAA4297ACAGGCTATGGTTGTGe,uns b Tl ee TCCAGTCTCCACTGGCTGTTGCTGAGGCTTTACCAACCAGAACACTGTAGAAAATGAAAT0 AGACTGGAe,uns b Al ee CACAACCA42980 TGGTTGTGe,uns b Tl ee TCCAGTCT42990 Alzheimer diseaseTACAGTGTTCTGGTTGGTAAAGCCTCAGCAACAGCCAGTGGA4300Ala409ThrGACTGGAACACAACCATAe,uns b Gl ee CCTGTTTCGTAGCCATATTAATTGaGCC-ACCTAAGTATACACTAATAAGAATGTGTCAGAGCTCTTA0 TAAGAGCTCTGACACATTCTTATTAGTGTATACTTACAATTAAT4301ATGGCTACGAAACAGGe,uns b Cl ee TATGGTTGTGTTCCAGTCTCCACTGGCTGTTGCTGAGGCTTTACCAACCAGAACACTGTA0 CAACCATAe,uns b Gl ee CCTGTTTC43020 GAAACAGGe,uns b Cl ee TATGGTTG43030 Alzheimer diseaseGTGTTCTGGTTGGTAAAGCCTCAGCAACAGCCAGTGGAGACT4304Cys410TyrGGAACACAACCATAGCCTe,uns b Gl ee TTTCGTAGCCATATTAATTGTAAGTGT-TATTATACACTAATAAGAATGTGTCAGAGCTCTTAATGT0 ACATTAAGAGCTCTGACACATTCTTATTAGTGTATACUACAAT4305TAATATGGCTACGAAAe,uns b Cl ee AGGCTATGGTTGTGTTCCAGTCTCCACTGGCTGTTGCTGAGGCTTTACCAACCAGAACAC0 CATAGCCTe,uns b Gl ee TTTCGTAG43060 CTACGAAAe,uns b Cl ee AGGCTATG43070 Alzheimer diseaseTGTGAATGTGTGTCTTTCCCATCTTCTCCACAGGGTTTGTGCC4308Ala426ProTTACATTATTACTCCTTe,uns b Gl ee CCATTTTCAAGAAAGCATTGCCAGCTtGCC-CCCCTTCCAATCTCCATCACCTTTGGGCTTGTTTTCT0 AGAAAACAAGCCCAAAGGTGATGGAGATTGGAAGAGCTGGCA4309ATGCTTTCTTGAAAATGGe,uns b Cl ee AAGGAGTAATAATGTAAGGCACAAACCCTGTGGAGAAGATGGGAAAGACACACATTCACA0 TACTCCTTe,uns b Gl ee CCATTTTC43100 GAAAATGGe,uns b Cl ee AAGGAGTA43110 Alzheimer diseaseAGGGTTTGTGCCTTACATTATTACTCCTTGCCAVTTTCAAGAA4312Pro436GlnAGCATTGCCAGCTCTTCe,uns b Cl ee AATCTCCATCACCTTTGGGCTTGTTCCA-CAATTCTACTTTGCCACAGATTATCTTGTACAGCCTTT0 AAAAGGCTGTACAAGATAATCTGTGGCAAAGTAGAAAACAAGC4313CCAAAGGTGATGGAGATTe,uns b Gl ee GAAGAGCTGGCAATGCTTTCTTGAAAATGGCAAGGAGTAATAATGTAAGGCACAAACCCT0 AGCTCTTCe,uns b Cl ee AATCTCCA43140 TGGAGATTe,uns b Gl ee GAAGAGCT43150 Alzheimer diseaseCAGGGTTTGTGCCTTACATTATTACTCCTTGCCATTTTCAAGA4316Pro436SerAAGCATTGCCAGCTCTTe,uns b Cl ee CAATCTCCATCACCTTTGGGCTTGTtCCA-TCATTTCTACTTTGCCACAGATTATCTTGTACAGCCTT0 AAGGCTGTACAAGATAATCTGTGGCAAAGTAGAAAACAAGCC4317CAAAGGTGATGGAGATTGe,uns b Gl ee AAGAGCTGGCAATGCTTTCTTGAAAATGGCAAGGAGTAATAATGTAAGGCACAAACCCTG0 CAGCTCTTe,uns b Cl ee CAATCTCC43180 GGAGATTGe,uns b Gl ee AAGAGCTG4319tz,1/48 ps



EXAMPLE 26


Plant Cells

[0149] The oligonucleotides of the invention can also be used to repair or direct a mutagenic event in plants and animal cells. Although little information is available on plant mutations amongst natural cultivars, the oligonucleotides of the invention can be used to produce “knock out” mutations by modification of specific amino acid codons to produce stop codons (e.g., a CAA codon specifying Gln can be modified at a specific site to TAA; a MG codon specifying Lys can be modified to UAG at a specific site; and a CGA codon for Arg can be modified to a UGA codon at a specific site). Such base pair changes will terminate the reading frame and produce a defective truncated protein, shortened at the site of the stop codon. Alternatively, frameshift additions or deletions can be directed into the genome at a specific sequence to interrupt the reading frame and produce a garbled downstream protein. Such stop or frameshift mutations can be introduced to determine the effect of knocking out the protein in either plant or animal cells.


[0150] All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.


Claims
  • 1. An oligonucleotide for targeted alteration(s) of genetic sequence, comprising a single-stranded oligonucleotide having a DNA domain, said DNA domain having at least one mismatch with respect to the genetic sequence to be altered, and further comprising chemical modifications within the oligonucleotide, said targeted alteration(s) occurring more frequently than alteration(s) of the genetic sequence by a double-stranded double hairpin chimeric oligonucleotide containing RNA and DNA nucleotides.
  • 2. The oligonucleotide according to claim one that comprises at least one phosphorothioate linkage within the oligonucleotide.
  • 3. The oligonucleotide according to claim one that comprises a 2′-O-methyl analog.
  • 4. The oligonucleotide according to claim one that comprises a locked nucleotide analog.
  • 5. The oligonucleotide according to claim one that comprises a combination of at least two modifications selected from the group of a phosphorothioate linkage, a 2′-O-methyl analog, a locked nucleotide analog and a ribonucleotide.
  • 6. The oligonucleotide according to any one of claims 1 to 5 that comprises at least one unmodified ribonucleotide.
  • 7. The oligonucleotide according to any one of claims 1 to 6, wherein the sequence of said oligonucleotide is selected from the group consisting of SEQ ID NOS: 1-4339.
  • 8. A method of targeted alteration of genetic material, comprising combining the target genetic material with an oligonucleotide according to any one of claims 1 to 7 in the presence of purified proteins.
  • 9. A method of targeted alteration of genetic material, comprising administering to a cell extract an oligonucleotide of any one of claims 1 to 7.
  • 10. A method of targeted alteration of genetic material, comprising administering to a cell an oligonucleotide of any one of claims 1 to 7.
  • 11. A method of targeted alteration of genetic sequence in a subject, comprising administering to the subject an oligonucleotide of any one of claims 1 to 7.
  • 12. A method of targeted alteration of genetic sequence, comprising combining target genetic material with an oligonucleotide according to any one of claims 1 to 7, said target genetic material being a non-transcribed DNA strand of a duplex DNA.
  • 13. The genetic material obtained by any one of the methods of claim 8, 9 or claim 10.
  • 14. A cell comprising the genetic material of claim 13.
  • 15. A non-human organism comprising the cell according to claim 14.
  • 16. A pharmaceutical composition comprising the oligonucleotide according to any one of claims 1 to 7.
  • 17. A method of targeted chromosomal genomic alteration, comprising administering the pharmaceutical composition of claim 16 to a subject.
  • 18. A non-human organism produced by the method of claim 11 or claim 17.
  • 19. A method of optimizing an oligonucleotide for targeted alteration of a genetic sequence, which comprises: (a) comparing the efficiency of alteration of a targeted genetic sequence by an oligonucleotide of any one of claims 1 to 7 with the efficiency of alteration of the same targeted genetic sequence by a second oligonucleotide, said second oligonucleotide selected from the group of (1) an oligonucleotide that is fully complementary to the target and lacks the mismatch, (2) a fully modified phosphorothiolated oligonucleotide, (3) a fully modified 2′-O-methylated oligonucleotide and (4) a chimeric double-stranded double hairpin containing RNA and DNA nucleotides.
  • 20. The method of claim 19 in which the alteration is produced in a cell extract.
  • 21. The method of claim 20 in which the cell extract is selected from the group of a fungal cell extract, a plant cell extract, a rodent cell extract, a primate cell extract and a human cell extract.
  • 22. The method of claim 19 in which the alteration is produced in a cell.
  • 23. The method of claim 21 in which the cell is selected from the group of a fungal cell, a plant cell, a rodent cell, a primate cell and a human cell.
  • 24. A kit comprising the oligonucleotide according to any one of claims 1 to 7 and a second oligonucleotide selected from the group of (1) an oligonucleotide that is fully complementary to the target and lacks the mismatch, (2) a fully modified phosphorothiolated oligonucleotide, (3) a fully modified 2-O-methylated oligonucleotide and (4) a chimeric double stranded double hairpin containing RNA and DNA nucleotides.
Provisional Applications (4)
Number Date Country
60192176 Mar 2000 US
60192179 Mar 2000 US
60208538 Jun 2000 US
60244989 Oct 2000 US
Continuations (1)
Number Date Country
Parent PCT/US01/09761 Mar 2001 US
Child 10261185 Sep 2002 US