Information
-
Patent Application
-
20040014057
-
Publication Number
20040014057
-
Date Filed
September 27, 200222 years ago
-
Date Published
January 22, 200420 years ago
-
CPC
-
US Classifications
-
International Classifications
- A61K048/00
- C12Q001/68
- C07H021/04
Abstract
Presented are methods and compositions for targeted chromosomal genomic alterations using modified single-stranded oligonucleotides of the invention have at least one modified nuclease-resistant terminal region comprising phosphorothioate linkages, LNA analogs or 2′-O-Me base analogs.
Description
FIELD OF THE INVENTION
[0001] The technical field of the invention is oligonucleotide-directed repair or alteration of genetic information using novel chemically modified oligonucleotides. Such genetic information is preferably from a eukaryotic organism, i.e. a plant, animal or fungus.
BACKGROUND OF THE INVENTION
[0002] A number of methods have been developed specifically to alter the sequence of an isolated DNA in addition to methods to alter directly the genomic information of various plants, fungi and animals, including humans (“gene therapy”). The latter methods generally include the use of viral or plasmid vectors carrying nucleic acid sequences encoding partial or complete portions of a particular protein which is expressed in a cell or tissue to effect the alteration. The expression of the particular protein then results in the desired phenotype. For example, retroviral vectors containing a transgenic DNA sequence allowing for the production of a normal CFTR protein when administered to defective cells are described in U.S. Pat. No. 5,240,846. Others have developed different “gene therapy vectors” which include, for example, portions of adenovirus (Ad) or adeno-associated virus (AAV), or other viruses. The virus portions used are often long terminal repeat sequences which are added to the ends of a transgene of choice along with other necessary control sequences which allow expression of the transgene. See U.S. Pat. Nos. 5,700,470 and 5,139,941. Similar methods have been developed for use in plants. See, for example, U.S. Pat. No. 4,459,355 which describes a method for transforming plants with a DNA vector and U.S. Pat. No. 5,188,642 which describes cloning or expression vectors containing a transgenic DNA sequence which when expressed in plants confers resistance to the herbicide glyphosate. The use of such transgene vectors in any eukaryotic organism adds one or more exogenous copies of a gene, which gene may be foreign to the host, in a usually random fashion at one or more integration sites of the organism's genome at some frequency. The gene which was originally present in the genome, which may be a normal allelic variant, mutated, defective, and/or functional, is retained in the genome of the host.
[0003] These methods of gene correction are problematic in that complications which can compromise the health of the recipient, or even lead to death, may result. One such problem is that insertion of exogenous nucleic acid at random location(s) in the genome can have deleterious effects. Another problem with such systems includes the addition of unnecessary and unwanted genetic material to the genome of the recipient, including, for example, viral or other vector remnants, control sequences required to allow production of the transgene protein, and reporter genes or resistance markers. Such remnants and added sequences may have presently unrecognized consequences, for example, involving genetic rearrangements of the recipient genomes. Other problems associated with these types of traditional gene therapy methods include autoimmune suppression of cells expressing an inserted gene due to the presence of foreign antigens. Concerns have also been raised with consumption, especially by humans, of plants containing exogenous genetic material.
[0004] More recently, simpler systems involving poly- or oligo-nucleotides have been described for use in the alteration of genomic DNA. These chimeric RNA-DNA oligonucleotides, requiring contiguous RNA and DNA bases in a double-stranded molecule folded by complementarity into a double hairpin conformation, have been shown to effect single basepair or frameshift alterations, for example, for mutation or repair of plant or animal genomes. See, for example, WO 99/07865 and U.S. Pat. No. 5,565,350. In the chimeric RNA-DNA oligonucleotide, an uninterrupted stretch of DNA bases within the molecule is required for sequence alteration of the targeted genome while the obligate RNA residues are involved in complex stability. Due to the length, backbone composition, and structural configuration of these chimeric RNA-DNA molecules, they are expensive to synthesize and difficult to purify. Moreover, if the RNA-containing strand of the chimeric RNA-DNA oligonucleotide is designed so as to direct gene conversion, a series of mutagenic reactions resulting in nonspecific base alteration can result. Such a result compromises the utility of such a molecule in methods designed to alter the genomes of plants and animals, including in human gene therapy applications.
[0005] Alternatively, other oligo- or poly-nucleotides have been used which require a triplex forming, usually polypurine or polypyrimidine, structural domain which binds to a DNA helical duplex through Hoogsteen interactions between the major groove of the DNA duplex and the oligonucleotide. Such oligonucleotides may have an additional DNA reactive moiety, such as psoralen, covalently linked to the oligonucleotide. These reactive moieties function as effective intercalation agents, stabilize the formation of a triplex and can be mutagenic. Such agents may be required in order to stabilize the triplex forming domain of the oligonucleotide with the DNA double helix if the Hoogsteen interactions from the oligonucleotide/target base composition are insufficient. See, e.g., U.S. Pat. No. 5,422,251. The utility of these oligonucleotides for directing gene conversion is compromised by a high frequency of nonspecific base changes.
[0006] In more recent work, the domain for altering a genome is linked or tethered to the triplex forming domain of the bi-functional oligonucleotide, adding an additional linking or tethering functional domain to the oligonucleotide. See, e.g., Culver et al., Nature Biotechnology 17: 989-93 (1999). Such chimeric or triplex forming molecules have distinct structural requirements for each of the different domains of the complete poly- or oligo-nucleotide in order to effect the desired genomic alteration in either episomal or chromosomal targets.
[0007] Other genes, e.g. CFTR, have been targeted by homologous recombination using duplex fragments having several hundred basepairs. See, e.g., Kunzelmann et al., Gene Ther. 3:859-867 (1996). Early experiments to mutagenize an antibiotic resistance indicator gene by homologous recombination used an unmodified DNA oligonucleotide with no functional domains other than a region of complementary sequence to the target See Campbell et al., New Biologist 1: 223-227 (1989). These experiments required large concentrations of the oligonucleotide, exhibited a very low frequency of episomal modification of a targeted exogenous plasmid gene not normally found in the cell and have not been reproduced. However, as shown in the examples herein, we have observed that an unmodified DNA oligonucleotide can convert a base at low frequency which is detectable using the assay systems described herein.
[0008] Artificial chromosomes can be useful for the screening purposed identified herein. These molecules are man-made linear or circular DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al., 1983). The essential elements are: (1) Autonomous Replication Sequences (ARS), (2) Centromeres, and (3) Telomeres.
[0009] Yeast artificial chromosomes (YACs) allow large genomic DNA to be modified and used for generating transgenic animals [Burke et al., Science 236:806; Peterson et al., Trends Genet. 13:61 (1997); Choi, et al., Nat. Genet, 4:117-223 (1993), Davies, et al., Biotechnology 11:911-914 (1993), Matsuura, et al., Hum. Mol. Genet., 5:451-459 (1996), Peterson et al., Proc. Natl. Acad. Sci., 93:6605-6609 (1996); and Schedl, et al., Cell, 86:71-82 (1996)]. Other vectors also have been developed for the cloning of large segments of mammalian DNA, including cosmids, and bacteriophage P1 [Sternberg et al., Proc. Natl. Acad. Sci. U.S.A., 87:103-107 (1990)]. YACs have certain advantages over these alternative large capacity cloning vectors [Burke et al., Science, 236:806-812 (1987)]. The maximum insert size is 35-30 kb for cosmids, and 100 kb for bacteriophage P1, both of which are much smaller than the maximal insert for a YAC.
[0010] An alternative to YACs are E. coli based cloning systems based on the E. coli fertility factor that have been developed to construct large genomic DNA insert libraries. They are bacterial artificial chromosomes (BACs) and P-1 derived artificial chromosomes (PACs) [Mejia et al., Genome Res. 7:179-186 (1997); Shizuya et al., Proc. Natl. Acad. Sci. 89:8794-8797 (1992); Ioannou et al., Nat. Genet., 6:84-89 (1994); Hosoda et al., Nucleic Acids Res. 18:3863 (1990)]. BACs are based on the E. coli fertility plasmid (F factor); and PACs are based on the bacteriophage P1. These vectors propagate at a very low copy number (1-2 per cell) enabling genomic inserts up to 300 kb in size to be stably maintained in recombination deficient hosts. Furthermore, the PACs and BACs are circular DNA molecules that are readily isolated from the host genomic background by classical alkaline lysis [Birnboim et al., Nucleic Acids Res. 7:1513-1523 (1979].
[0011] Oligonucleotides designed for use in the alteration of genetic information are significantly different from oligonucleotides designed for antisense approaches. For example, antisense oligonucleotides are perfectly complementary to and bind an mRNA strand in order to modify expression of a targeted mRNA and are used at high concentration. As a consequence, they are unable to produce a gene conversion event by either mutagenesis or repair of a defect in the chromosomal DNA of a host genome. Furthermore, the backbone chemical composition used in most oligonucleotides designed for use in antisense approaches renders them inactive as substrates for homologous pairing or mismatch repair enzymes and the high concentrations of oligonucleotide required for antisense applications can be toxic with some types of nucleotide modifications. In addition, antisense oligonucleotides must be complementary to the mRNA and therefore, may not be complementary to the other DNA strand or to genomic sequences that span the junction between intron sequence and exon sequence.
[0012] A need exists for simple, inexpensive oligonucleotides capable of producing targeted alteration of genetic material such as those described herein as well as methods to identify optimal oligonucleotides that accurately and efficiently alter target DNA.
SUMMARY OF THE INVENTION
[0013] Novel, modified single-stranded nucleic acid molecules that direct gene alteration in plants, fungi and animals are identified and the efficiency of alteration is analyzed both in vitro using a cell-free extract assay and in vivo using a yeast cell system. The alteration in an oligonucleotide of the invention may comprise an insertion, deletion, substitution, as well as any combination of these. Site specific alteration of DNA is not only useful for studying function of proteins in vivo, but it is also useful for creating animal models for human disease, and in gene therapy. As described herein, oligonucleotides of the invention target directed specific gene alterations in genomic double-stranded DNA cells. The target DNA can be normal, cellular chromosomal DNA, extrachromosomal DNA present in cells in different forms including, e.g., mammalian artificial chromosomes (MACs), PACs from P-1 vectors, yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PLACs), as well as episomal DNA, including episomal DNA from an exogenous source such as a plasmid or recombinant vector. Many of these artificial chromosome constructs containing human DNA can be obtained from a variety of sources, including, e.g., the Whitehead Institute, and are described, e.g., in Cohen et al., Nature 336:698-701 (1993) and Chumakov, et al., Nature 377:174-297 (1995). The target DNA may be transitionally silent or active. In a preferred embodiment, the target DNA to be altered is the non-transcribed strand of a genomic DNA duplex.
[0014] The low efficiency of gene alteration obtained using unmodified DNA oligonucleotides is believed to be largely the result of degradation by nucleases present in the reaction mixture or the target cell. Although different modifications are known to have different effects on the nuclease resistance of oligonucleotides or stability of duplexes formed by such oligonucleotides (see, e.g., Koshkin et al., J. Am. Chem. Soc., 120:13252-3), we have found that it is not possible to predict which of any particular known modification would be most useful for any given alteration event, including for the construction of gene conversion oligonucleotides, because of the interaction of different as yet unidentified proteins during the gene alteration event. Herein, a variety of nucleic acid analogs have been developed that increase the nuclease resistance of oligonucleotides that contain them, including, e.g., nucleotides containing phosphorothioate linkages or 2′-O-methyl analogs. We recently discovered that single-stranded DNA oligonucleotides modified to contain 2′-O-methyl RNA nucleotides or phosphorothioate linkages can enable specific alteration of genetic information at a higher level than either unmodified single-stranded DNA or a chimeric RNA/DNA molecule. See priority applications incorporated herein in their entirety; see also Gamper et al., Nucleic Acids Research 28: 4332-4339 (2000). We also found that additional nucleic acid analogs which increase the nuclease resistance of oligonucleotides that contain them, including, e.g., “locked nucleic acids” or “LNAs”, xylo-LNAs and L-ribo-LNAs; see, for example, Wengel & Nielsen, WO 99/14226; Wengel, WO 00/56748 and Wengel, WO 00/66604; also allow specific targeted alteration of genetic information.
[0015] The assay allows for determining the optimum length of the oligonucleotide, optimum sequence of the oligonucleotide, optimum position of the mismatched base or bases, optimum chemical modification or modifications, optimum strand targeted for identifying and selecting the most efficient oligonucleotide for a particular gene alteration event by comparing to a control oligonucleotide. Control oligonucleotides may include a chimeric RNA-DNA double hairpin oligonucleotide directing the same gene alteration event, an oligonucleotide that matches its target completely, an oligonucleotide in which all linkages are phosphorothiolated, an oligonucleotide fully substituted with 2′-O-methyl analogs or an RNA oligonucleotide. Such control oligonucleotides either fail to direct a targeted alteration or do so at a lower efficiency as compared to the oligonucleotides of the invention. The assay further allows for determining the optimum position of a gene alteration event within an oligonucleotide, optimum concentration of the selected oligonucleotide for maximum alteration efficiency by systematically testing a range of concentrations, as well as optimization of either the source of cell extract by testing different organisms or strains, or testing cells derived from different organisms or strains, or cell lines. Using a series of single-stranded oligonucleotides, comprising all RNA or DNA residues and various mixtures of the two, several new structures are identified as viable molecules in nucleotide conversion to direct or repair a genomic mutagenic event. When extracts from mammalian, plant and fungal cells are used and are analyzed using a genetic readout assay in bacteria, single-stranded oligonucleotides having one of several modifications are found to be more active than a control RNA-DNA double hairpin chimera structure when evaluated using an in vitro gene repair assay. Similar results are also observed in vivo using yeast, mammalian, rodent, monkey, human and embryonic cells, including stem cells. Molecules containing various lengths of modified bases were found to possess greater activity than unmodified single-stranded DNA molecules.
DETAILED DESCRIPTION OF THE INVENTION
[0016] The present invention provides oligonucleotides having chemically modified, nuclease resistant residues, preferably at or near the termini of the oligonucleotides, and methods for their identificaton and use in targeted alteration of genetic material, including gene mutation, targeted gene repair and gene knockout. The oligonucleotides are preferably used for mismatch repair or alteration by changing at least one nucleic acid base, or for frameshift repair or alteration by addition or deletion of at least one nucleic acid base. The oligonucleotides of the invention direct any such alteration, including gene correction, gene repair or gene mutation and can be used, for example, to introduce a polymorphism or haplotype or to eliminate (“knockout”) a particular protein activity.
[0017] The oligonucleotides of the invention are designed as substrates for homologous pairing and repair enzymes and as such have a unique backbone composition that differs from chimeric RNA-DNA double hairpin oligonucleotides, antsense oligonucleotides, and/or other poly- or oligo-nucleotides used for altering genomic DNA, such as triplex forming oligonucleotides. The single-stranded oligonucleotides described herein are inexpensive to synthesize and easy to purify. In side-by-side comparisons, an optimized single-stranded oligonucleotide comprising modified residues as described herein is significantly more efficient than a chimeric RNA-DNA double hairpin oligonucleotide in directing a base substitution or frameshift mutation in a cell-free extract assay.
[0018] We have discovered that single-stranded oligonucleotides having a DNA domain surrounding the targeted base, with the domain preferably central to the poly- or oligo-nucleotide, and having at least one modified end, preferably at the 3′ terminal region are able to alter a target genetic sequence and with an efficiency that is higher than chimeric RNA-DNA double hairpin oligonucleotides disclosed in U.S. Pat. No. 5,565,350. Oligonucleotides of the invention can efficiently be used to introduce targeted alterations in a genetic sequence of DNA in the presence of human, animal, plant, fungal (including yeast) proteins and in cultured cells of human liver, lung, colon, cervix, kidney, epethelium and cancer cells and in monkey, hamster, rat and mouse cells of different types, as well as embryonic stem cells. Cells for use in the invention include, e.g., fungi including S. cerevisiae, Ustillago maydis and Candida albicans, mammalian, mouse, hamster, rat, monkey, human and embryonic cells including stem cells. The DNA domain is preferably fully complementary to one strand of the gene target, except for the mismatch base or bases responsible for the gene alteration or conversion events. On either side of the preferably central DNA domain, the contiguous bases may be either RNA bases or, preferably, are primarily DNA bases. The central DNA domain is generally at least 8 nucleotides in length. The base(s) targeted for alteration in the most preferred embodiments are at least about 8, 9 or 10 bases from one end of the oligonucleotide.
[0019] According to certain embodiments, the termini of the oligonucleotides of the present invention comprise phosphorothioate modifications, LNA backbone modifications, or 2′-O-methyl base analogs, or any combination of these modifications. Oligonucleotides comprising 2′-O-methyl or LNA analogs are a mixed DNA/RNA polymer. These oligonucleotides are, however, single-stranded and are not designed to form a stable internal duplex structure within the oligonucleotide. The efficiency of gene alteration is surprisingly increased with oligonucleotides having internal complementary sequence comprising phosphorothioate modified bases as compared to 2′-O-methyl modifications. This result indicates that specific chemical interactions are involved between the converting oligonucleotide and the proteins involved in the conversion. The effect of other such chemical interactions to produce nuclease resistant termini using modifications other than LNA, phosphorothioate linkages, or 2′-O-methyl analog incorporation into an oligonucleotide can not yet be predicted because the proteins involved in the alteration process and their particular chemical interaction with the oligonucleotide substituents are not yet known and cannot be predicted.
[0020] In the examples, correcting oligonucleotides of defined sequence are provided for correction of genes mutated in human diseases. In the tables of these examples, the oligonucleotides of the invention are not limited to the particular sequences disclosed. The oligonucleotides of the invention include extensions of the appropriate sequence of the longer 120 base oligonucleotides which can be added base by base to the smallest disclosed oligonucleotides of 17 bases. Thus the oligonucleotides of the invention include for each correcting change, oligonucleotides of length 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 with further single-nucleotide additions up to the longest sequence disclosed. Moreover, the oligonucleotides of the invention do not require a symmetrical extension on either side of the central DNA domain. Similarly, the oligonucleotides of the invention as disclosed in the various tables for correction of human diseases contain phosphorothioate linkages, 2′-O-methyl analogs or LNAs or any combination of these modifications just as the assay oligonucleotides do.
[0021] The present invention, however, is not limited to oligonucleotides that contain any particular nuclease resistant modification. Oligonucleotides of the invention may be altered with any combination of additional LNAs, phosphorothioate linkages or 2′-O-methyl analogs to maximize conversion efficiency. For oligonucleotides of the invention that are longer than about 17 to about 25 bases in length, internal as well as terminal region segments of the backbone may be altered. Alternatively, simple fold-back structures at each end of a oligonucleotide or appended end groups may be used in addition to a modified backbone for conferring additional nuclease resistance.
[0022] The different oligonucleotides of the present invention preferably contain more than one of the aforementioned backbone modifications at each end. In some embodiments, the backbone modifications are adjacent to one another. However, the optimal number and placement of backbone modifications for any individual oligonucleotide will vary with the length of the oligonucleotide and the particular type of backbone modification(s) that are used. If constructs of identical sequence having phosphorothioate linkages are compared, 2, 3, 4, 5, or 6 phosphorothioate linkages at each end are preferred. If constructs of identical sequence having 2′-O-methyl base analogs are compared, 1, 2, 3 or 4 analogs are preferred. The optimal number and type of backbone modifications for any particular oligonucleotide useful for altering target DNA may be determined empirically by comparing the alteration efficiency of the oligonucleotide comprising any combination of the modifications to a control molecule of comparable sequence using any of the assays described herein. The optimal positon(s) for oligonucleotide modifications for a maximally efficient altering oligonucleotide can be determined by testing the various modifications as compared to control molecule of comparable sequence in one of the assays disclosed herein. In such assays, a control molecule includes, e.g., a completely 2′-O-methyl substituted molecule, a completely complementary oligonucleotide, or a chimeric RNA-DNA double hairpin.
[0023] Increasing the number of phosphorothioate linkages, LNAs or 2′-O-methyl bases beyond the preferred number generally decreases the gene repair activity of a 25 nucleotide long oligonucleotide. Based on analysis of the concentration of oligonucleotide present in the extract after different time periods of incubation, it is believed that the terminal modifications impart nuclease resistance to the oligonucleotide thereby allowing it to survive within the cellular environment. However, this may not be the only possible mechanism by which such modifications confer greater efficiency of conversion. For example, as disclosed herein, certain modifications to oligonucleotides confer a greater improvement to the efficiency of conversion than other modifications.
[0024] Efficiency of conversion is defined herein as the percentage of recovered substate molecules that have undergone a conversion event. Depending on the nature of the target genetic material, e.g. the genome of a cell, efficiency could be represented as the proportion of cells or clones containing an extrachromosomal element that exhibit a particular phenotype. Alternatively, representative samples of the target genetic material can be sequenced to determine the percentage that have acquired the desire change. The oligonucleotides of the invention in different embodiments can alter DNA one, two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold more than control oligonucleotides. Such control oligonucleotides are oligonucleotides with fully phosphorothiolated linkages, oligonucleotides that are fully substituted with 2′-O-methyl analogs, a perfectly matched oligonucleotide that is fully complementary to a target sequence or a chimeric DNA-RNA double hairpin oligonucleotide such as disclosed in U.S. Pat. No. 5,565,350.
[0025] In addition, for a given oligonucleotide length, additional modifications interfere with the ability of the oligonucleotide to act in concert with the cellular recombination or repair enzyme machinery which is necessary and required to mediate a targeted substitution, addition or deletion event in DNA. For example, fully phosphorothiolated or fully 2-O-methylated molecules are inefficient in targeted gene alteration.
[0026] The oligonucleotides of the invention as optimized for the purpose of targeted alteration of genetic material, including gene knockout or repair, are different in structure from antisense oligonucleotides that may possess a similar mixed chemical composition backbone. The oligonucleotides of the invention differ from such antisense oligonucleotides in chemical composition, structure, sequence, and in their ability to alter genomic DNA. Significantly, antisense oligonucleotides fail to direct targeted gene alteration. The oligonucleotides of the invention may target either the Watson or the Crick strand of DNA and can include any component of the genome including, for example, intron and exon sequences. The preferred embodiment of the invention is a modified oligonucleotide that binds to the non-transcribed strand of a genomic DNA duplex. In other words, the preferred oligonucleotides of the invention target the sense strand of the DNA, i.e. the oligonucleotides of the invention are complementary to the non-transcribed strand of the target duplex DNA. The sequence of the non-transcribed strand of a DNA duplex is found in the mRNA produced from that duplex, given that mRNA uses uracil-containing nucleotides in place of thymine-containing nucleotides.
[0027] Moreover, the initial observation that single-stranded oligonucleotides comprising these modifications and lacking any particular triplex forming domain have reproducibly enhanced gene repair activity in a variety of assay systems as compared to a chimeric RNA-DNA double-stranded hairpin control or single-stranded oligonucleotides comprising other backbone modifications was surprising. The single-stranded molecules of the invention totally lack the complementary RNA binding structure that stabilizes a normal chimeric double-stranded hairpin of the type disclosed in U.S. Pat. No. 5,565,350 yet is more effective in producing targeted base conversion as compared to such a chimeric RNA-DNA double-stranded hairpin. In addition, the molecules of the invention lack any particular triplex forming domain involved in Hoogsteen interactions with the DNA double helix and required by other known oligonucleotides in other oligonucleotide dependant gene conversion systems. Although the lack of these functional domains was expected to decrease the efficiency of an alteration in a sequence, just the opposite occurs: the efficiency of sequence alteration using the modified oligonucleotides of the invention is higher than the efficiency of sequence alteration using a chimeric RNA-DNA hairpin targeting the same sequence alteration. Moreover, the efficiency of sequence alteration or gene conversion directed by an unmodified oligonucleotide is many times lower as compared to a control chimeric RNA-DNA molecule or the modified oligonucleotides of the invention targeting the same sequence alteration. Similarly, molecules containing at least 3 2′-O-methyl base analogs are about four to five fold less efficient as compared to an oligonucleotide having the same number of phosphorothioate linkages.
[0028] The oligonucleotides of the present invention for alteration of a single base are about 17 to about 121 nucleotides in length, preferably about 17 to about 74 nucleotides in length. Most preferably, however, the oligonucleotides of the present invention are at least about 25 bases in length, unless there are self-dimerization structures within the oligonucleotide. If the oligonucleotide has such an unfavorable structure, lengths longer than 35 bases are preferred. Oligonucleotides with modified ends both shorter and longer than certain of the exemplified, modified oligonucleotides herein function as gene repair or gene knockout agents and are within the scope of the present invention.
[0029] Once an oligomer is chosen, it can be tested for its tendency to self-dimerize, since self-dimerization may result in reduced efficiency of alteration of genetic information. Checking for self-dimerization tendency can be accomplished manually or, more preferably, by using a software program. One such program is Oligo Analyzer 2.0, available through Integrated DNA Technologies (Coralville, Iowa 52241) (http://www.idtdna.com); this program is available for use on the world wide web at http://www.idtdna.com/program/oligoanalyzer/oligoanalyzer.asp. For each oligonucleotide sequence input into the program, Oligo Analyzer 2.0 reports possible self-dimerized duplex forms, which are usually only partially duplexed, along with the free energy change associated with such self-dimerization. Delta G-values that are negative and large in magnitude, indicating strong self-dimerization potential, are automatically flagged by the software as “bad”. Another software program that analyzes oligomers for pair dimer formation is Primer Select from DNASTAR, Inc., 1228 S. Park St, Madison, Wis. 53715, Phone: (608) 258-7420 (http://www.dnastar.com/products/PrimerSelect.html). If the sequence is subject to significant self-dimerization, the addition of further sequence flanking the “repair” nucleotide can improve gene correction frequency.
[0030] Generally, the oligonucleotides of the present invention are identical in sequence to one strand of the target DNA, which can be either strand of the target DNA, with the exception of one or more targeted bases positioned within the DNA domain of the oligonucleotide, and preferably toward the middle between the modified terminal regions. Preferably, the difference in sequence of the oligonucleotide as compared to the targeted genomic DNA is located at about the middle of the oligonucleotide sequence. In a preferred embodiment, the oligonucleotides of the invention are complementary to the non-transcribed strand of a duplex. In other words, the preferred oligonucleotides target the sense strand of the DNA, i.e. the oligonucleotides of the invention are preferably complementary to the strand of the target DNA the sequence of which is found in the mRNA.
[0031] The oligonucleotides of the invention can include more than a single base change. In an oligonucleotide that is about a 70-mer, with at least one modified residue incorporated on the ends, as disclosed herein, multiple bases can be simultaneously targeted for change. The target bases may be up to 27 nucleotides apart and may not be changed together in all resultant plasmids in all cases. There is a frequency distribution such that the closer the target bases are to each other in the central DNA domain within the oligonucleotides of the invention, the higher the frequency of change in a given cell. Target bases only two nucleotides apart are changed together in every case that has been analyzed. The farther apart the two target bases are, the less frequent the simultaneous change. Thus, oligonucleotides of the invention may be used to repair or alter multiple bases rather than just one single base. For example, in a 74-mer oligonucleotide having a central base targeted for change, a base change event up to about 27 nucleotides away can also be effected. The positions of the altering bases within the oligonucleotide can be optimized using any one of the assays described herein. Preferably, the altering bases are at least about 8 nucleotides from one end of the oligonucleotide.
[0032] The oligonucleotides of the present invention can be introduced into cells by any suitable means. According to certain preferred embodiments, the modified oligonucleotides may be used alone. Suitable means, however, include the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, microinjecton and other methods known in the art to facilitate cellular uptake. According to certain preferred embodiments of the present invention, the isolated cells are treated in culture according to the methods of the invention, to mutate or repair a target gene. Modified cells may then be reintroduced into the organism as, for example, in bone marrow having a targeted gene. Alternatively, modified cells may be used to regenerate the whole organism as, for example, in a plant having a desired targeted genomic change. In other instances, targeted genomic alteration, including repair or mutagenesis, may take place in vivo following direct administration of the modified, single-stranded oligonucleotides of the invention to a subject.
[0033] The single-stranded, modified oligonucleotides of the present invention have numerous applications as gene repair, gene modification, or gene knockout agents. Such oligonucleotides may be advantageously used, for example, to introduce or correct multiple point mutations. Each mutation leads to the addition, deletion or substitution of at least one base pair. The methods of the present invention offer distinct advantages over other methods of altering the genetic makeup of an organism, in that only the individually targeted bases are altered. No additional foreign DNA sequences are added to the genetic complement of the organism. Such agents may, for example, be used to develop plants or animals with improved traits by rationally changing the sequence of selected genes in cultured cells. Modified cells are then cloned into whole plants or animals having the altered gene. See, e.g., U.S. Pat. No. 6,046,380 and U.S. Pat. No. 5,905,185 incorporated herein by reference. Such plants or animals produced using the compositions of the invention lack additional undesirable selectable markers or other foreign DNA sequences. Targeted base pair substitution or frameshift mutations introduced by an oligonucleotide in the presence of a cell-free extract also provides a way to modify the sequence of extrachromosomal elements, including, for example, plasmids, cosmids and artificial chromosomes. The oligonucleotides of the invention also simplify the production of transgenic animals having particular modified or inactivated genes. Altered animal or plant model systems such as those produced using the methods and oligonucleotides of the invention are invaluable in determining the function of a gene and in evaluating drugs. The oligonucleotides and methods of the present invention may also be used for gene therapy to correct mutations causative of human diseases.
[0034] The purified oligonucleotide compositions may be formulated in accordance with routine procedures as a pharmaceutical composition adapted for bathing cells in culture, for microinjecton into cells in culture, and for intravenous administration to human beings or animals. Typically, compositions for cellular administration or for intravenous administration into animals, including humans, are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anaesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients will be supplied either separately or mixed together in unit dosage form, for example, as a dry, lyophilized powder or water-free concentrate. The composition may be stored in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent in activity units. Where the composition is administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade “water for injection” or saline. Where the composition is to be administered by injection, an ampule of sterile water for injection or saline may be provided so that the ingredients may be mixed prior to administration.
[0035] Pharmaceutical compositions of this invention comprise the compounds of the present invention and pharmaceutically acceptable salts thereof, with any pharmaceutically acceptable ingredient, excipient, carrier, adjuvant or vehicle.
[0036] The oligonucleotides of the invention are preferably administered to the subject in the form of an injectable composition. The composition is preferably administered parenterally, meaning intravenously, intraarterially, intrathecally, interstitially or intracavitarilly. Pharmaceutical compositions of this invention can be administered to mammals including humans in a manner similar to other diagnostic or therapeutic agents. The dosage to be administered, and the mode of administration will depend on a variety of factors including age, weight, sex, condition of the subject and genetic factors, and will ultimately be decided by medical personnel subsequent to experimental determinations of varying dosage as described herein. In general, dosage required for correction and therapeutic efficacy will range from about 0.001 to 50,000 μg/kg, preferably between 1 to 250 μg/kg of host cell or body mass, and most preferably at a concentration of between 30 and 60 micromolar.
[0037] For cell administration, direct injection into the nucleus, biolistic bombardment, electroporation, liposome transfer and calcium phosphate precipitation may be used. In yeast, lithium acetate or spheroplast transformation may also be used. In a preferred method, the administration is performed with a liposomal transfer compound, e.g., DOTAP (Boehringer-Mannheim) or an equivalent such as lipofectin. The amount of the oligonucleotide used is about 500 nanograms in 3 micrograms of DOTAP per 100,000 cells. For electroporation, between 20 and 2000 nanograms of oligonucleotide per million cells to be electroporated is an appropriate range of dosages which can be increased to improve efficiency of genetic alteration upon review of the appropriate sequence according to the methods described herein.
[0038] Another aspect of the invention is a kit comprising at least one oligonucleotide of the invention. The kit may comprise an addition reagent or article of manufacture. The additional reagent or article of manufacture may comprise a cell extract, a cell, or a plasmid, such as one of those disclosed in the Figures herein, for use in an assay of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0039]
FIG. 1. Flow diagram for the generation of modified single-stranded oligonucleotides. The upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (A) 2′-O-methyl RNA nucleotides or (B) phosphorothioate linkages. Fold changes in repair activity for correction of kans in the HUH7 cell-free extract are presented in parenthesis. HUH7 cells are described in Nakabayashi et al., Cancer Research 42: 3858-3863 (1982). Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene. The numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the molecule. Hence oligo 12S/25G contains an all phosphorothioate backbone, displayed as a dotted line. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G). FIG. 1(C) provides a schematic plasmid indicating the sequence of the kan chimeric double-stranded hairpin oligonucleotide (left) and the sequence the tet chimeric double-stranded hairpin oligonucleotide used in other experiments. FIG. 1(D) provides a flow chart of a kan experiment in which a chimeric double-stranded hairpin oligonucleotide is used.
[0040]
FIG. 2. Genetic readout system for correction of a point mutation in plasmid pKsm4021. A mutant kanamycin gene harbored in plasmid pKsm4021 is the target for correction by oligonucleotides. The mutant G is converted to a C by the action of the oligo. Corrected plasmids confer resistance to kanamycin in E.coli (DH10B) after electroporation leading to the genetic readout and colony counts.
[0041]
FIG. 3: Target plasmid and sequence correction of a frameshift mutation by chimeric and single-stranded oligonucleotides. (A) Plasmid pTsΔ208 contains a single base deletion mutation at position 208 rendering it unable to confer tet resistance. The target sequence presented below indicates the insertion of a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) DNA sequence confirming base insertion directed by Tet 3S/25G; the yellow highlight indicates the position of frameshift repair.
[0042]
FIG. 4. DNA sequences of representative kanr colonies. Confirmation of sequence alteration directed by the indicated molecule is presented along with a table outlining codon distribution. Note that 10S/25G and 12S/25G elicit both mixed and unfaithful gene repair. The number of clones sequenced is listed in parentheses next to the designation for the single-stranded oligonucleotide. A plus (+) symbol indicates the codon identified while a figure after the (+) symbol indicates the number of colonies with a particular sequence. TAC/TAG indicates a mixed peak. Representative DNA sequences are presented below the table with yellow highlighting altered residues.
[0043]
FIG. 5. Gene correction in HeLa cells. Representative oligonucleotides of the invention are co-transfected with the pCMVneo(−)FlAsH plasmid (shown in FIG. 9) into HeLa cells. Ligand is diffused into cells after co-transfection of plasmid and oligonucleotides. Green fluorescence indicates gene correction of the mutation in the antibiotic resistance gene. Correction of the mutation results in the expression of a fusion protein that carries a marker ligand binding site and when the fusion protein binds the ligand, a green fluorescence is emitted. The ligand is produced by Aurora Biosciences and can readily diffuse into cells enabling a measurement of corrected protein function; the protein must bind the ligand directly to induce fluorescence. Hence cells bearing the corrected plasmid gene appear green while “uncorrected” cells remain colorless.
[0044]
FIG. 6. Z-series imaging of corrected cells. Serial cross-sections of the HeLa cell represented in FIG. 5 are produced by Zeiss 510 LSM confocal microscope revealing that the fusion protein is contained within the cell.
[0045]
FIG. 7. Hygromycin-eGFP target plasmids. (A) Plasmid pAURHYG(ins)GFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter. The target sequence presented below indicates the deletion of an A and the substitution of a C for a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) Plasmid pAURHYG(rep)GFP contains a base substitution mutation introducing a G at nucleotide 137, at codon 46, of the Hygromycin B coding sequence (cds). The target sequence presented below the diagram indicates the amino acid conservative replacement of G with C, restoring gene function.
[0046]
FIG. 8. Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined.
[0047]
FIG. 9. pAURNeo(−)FlAsH plasmid. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the gene alteration event by fluorescence.
[0048]
FIG. 10. pYESHyg(x)eGFP plasmid. This plasmid is a construct similar to the pAURHyg(x)eGFP construct shown in FIG. 7, except the promoter is the inducible GAL1 promoter. This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose.
[0049] The following examples are provided by way of illustration only, and are not intended to limit the scope of the invention disclosed herein.
Assay Method for Base Alteration and Preferred Oligonucleotide Selection
[0050] In this example, single-stranded and double-hairpin oligonucleotides with chimeric backbones (see FIG. 1 for structures (A and B) and sequences (C and D) of assay oligonucleotides) are used to correct a point mutation in the kanamycin gene of pKsm4021 (FIG. 2) or the tetracycline gene of pTsΔ208 (FIG. 3). All kan oligonucleotides share the same 25 base sequence surrounding the target base identified for change, just as all tet oligonucleotides do. The sequence is given in FIG. 1C and FIG. 1D. Each plasmid contains a functional ampicillin gene. Kanamycin gene function is restored when a G at position 4021 is converted to a C (via a substitution mutation); tetracycline gene function is restored when a deletion at position 208 is replaced by a C (via frameshift mutation). A separate plasmid, pAURNeo(−)FlAsH (FIG. 9), bearing the kans gene is used in the cell culture experiments. This plasmid was constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferase (kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FlAsH ligand into the pAUR123 shuttle vector (Panvera Corp., Madison, Wis.). The resulting construct replicates in S. cerevisiae at low copy number, confers resistance to aureobasidinA and constitutively expresses either the Neo+/FlAsH fusion product (after alteration) or the truncated Neo−/FlAsH product (before alteration) from the ADH1 promoter. By extending the reading frame of this gene to code for a unique peptide sequence capable of binding a small ligand to form a fluorescent complex, restoration of expression by correction of the stop codon can be detected in real time using confocal microscopy. Additional constructs can be made to test additional gene alteration events.
[0051] We also construct three mammalian expression vectors, pHyg(rep)eGFP, pHyg(Δ)eGFP, pHyg(ins)eGFP, that contain a substitution mutation at nucleotide 137 of the hygromycin-B coding sequence. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. All point mutations create a nonsense termination codon at residue 46. We use pHygEGFP plasmid (Invitrogen, CA) DNA as a template to introduce the mutations into the hygromycin-eGFP fusion gene by a two step site-directed mutagenesis PCR protocol. First, we generate overlapping 5′ and a 3′ amplicons surrounding the mutation site by PCR for each of the point mutation sites. A 215 bp 5′ amplicon for the (rep), (Δ) or (ins) was generated by polymerization from oligonucleotide primer HygEGFPf (5′-AATACGACTCACTATAGG-3′) to primer Hygrepr (5′GACCTATCCACGCCCTCC-3′), HygΔr (5′-GACTATCCACGCCCTCC-3′), or Hyginsr (5′-GACATTATCCACGCCCTCC-3′), respectively. We generate a 300 bp 3′ amplicon for the (rep), (Δ) or (ins) by polymerization from oligonucleotide primers Hygrepf (5′-CTGGGATAGGTCCTGCGG-3′), HygΔf (5′-CGTGGATAGTCCTGCGG-3′), Hyginsf (5′-CGTGGATAATGTCCTGCGG-3′), respectively to primer HygEGFPr (5′-AAATCACGCCATGTAGTG-3′). We mix 20 ng of each of the resultant 5′ and 3′ overlapping amplicon mutation sets and use the mixture as a template to amplify a 523 bp fragment of the Hygromycin gene spanning the KpnI and RsrII restriction endonuclease sites. We use the Expand PCR system (Roche) to generate all amplicons with 25 cycles of denaturing at 94° C. for 10 seconds, annealing at 55° C. for 20 seconds and elongation at 68° C. for 1 minute. We digest 10 μg of vector pHygEGFP and 5 μg of the resulting fragments for each mutation with KpnI and RsrII (NEB) and gel purify the fragment for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ration using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm the mutation by Sanger dideoxy chain termination sequencing and purify the plasmid using a Qiagen maxiprep kit.
[0052] Oligonucleotide synthesis and cells. Chimeric oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) are synthesized using available phosphoramidites on controlled pore glass supports. After deprotecton and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al., Biochem. 39, 5808-5816 (2000) and the concentrations determined spectrophotometrically (33 or 40 μg/ml per A260 unit of single-stranded or hairpin oligomer). HUH7 cells are grown in DMEM, 10% FBS, 2 mM glutamine, 0.5% pen/strep. The E.coli strain, DH10B, is obtained from Life Technologies (Gaithersburg, Md.); DH10B cells contain a mutation in the RECA gene (recA).
[0053] Cell-free extracts. We prepare cell-free extracts from HUH7 cells or other mammalian cells, as follows. We employ this protocol with essentially any mammalian cell including, for example, H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C127I (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma). We harvest approximately 2×108 cells. We then wash the cells immediately in cold hypotonic buffer (20 mM HEPES, pH7.5; 5 mM KCl; 1.5 mM MgCl2; 1 mM DTT) with 250 mM sucrose. We then resuspend the cells in cold hypotonic buffer without sucrose and after 15 minutes we lyse the cells with 25 strokes of a Dounce homogenizer using a tight fitting pestle. We incubate the lysed cells for 60 minutes on ice and centrifuge the sample for 15 minutes at 12000×g. The cytoplasmic fraction is enriched with nuclear proteins due to the extended co-incubation of the fractions following cell breakage. We then immediately aliquote and freeze the supernatant at −80° C. We determine the protein concentration in the extract by the Bradford assay.
[0054] We also perform these experiments with cell-free extracts obtained from fungal cells, including, for example, S. cerevisiae (yeast), Ustilago maydis, and Candida albicans. For example, we grow yeast cells into log phase in 2L YPD medium for 3 days at 30° C. We then centrifuge the cultures at 5000×g, resuspend the pellets in a 10% sucrose, 50 mM Tris, 1 mM EDTA lysis solution and freeze them on dry ice. After thawing, we add KCl, spermidine and lyticase to final concentrations of 0.25 mM, 5 mM and 0.1 mg/ml, respectively. We incubate the suspension on ice for 60 minutes, add PMSF and Triton X100 to final concentrations of 0.1 mM and 0.1% and continue to incubate on ice for 20 minutes. We centrifuge the lysate at 3000×g for 10 minutes to remove larger debris. We then remove the supernatant and clarify it by centrifuging at 30000×g for 15 minutes. We then add glycerol to the clarified extract to a concentration of 10% (v/v) and freeze aliquots at −80° C. We determine the protein concentration of the extract by the Bradford assay.
[0055] Reaction mixtures of 50 μl are used, consisting of 10-30 μg protein of cell-free extract, which can be optionally substituted with purified proteins or enriched fractions, about 1.5 μg chimeric double-hairpin oligonucleotide or 0.55 μg single-stranded molecule (3S/25G or 6S/25G, see FIG. 1), and 1 μg of plasmid DNA (see FIGS. 2 and 3) in a reaction buffer of 20 mM Tris, pH 7.4, 15 mM MgCl2, 0.4 mM DTT, and 1.0 mM ATP. Reactions are initiated with extract and incubated at 30° C. for 45 min. The reaction is stopped by placing the tubes on ice and then immediately deproteinized by two phenol/chloroform (1:1) extractions. Samples are then ethanol precipitated. The nucleic acid is pelleted at 15,000 r.p.m. at 4° C. for 30 min., is washed with 70% ethanol, resuspended in 50 μl H2O, and is stored at −20° C. 5 μl of plasmid from the resuspension (˜100 ng) was transfected in 20 μl of DH10B cells by electroporation (400 V, 300 μF, 4 kΩ) in a Cell-Porator apparatus (Life Technologies). After electroporation, cells are transferred to a 14 ml Falcon snap-cap tube with 2 ml SOC and shaken at 37° C. for 1 h. Enhancement of final kan colony counts is achieved by then adding 3 ml SOC with 10 μg/ml kanamycin and the cell suspension is shaken for a further 2 h at 37° C. Cells are then spun down at 3750×g and the pellet is resuspended in 500 μl SOC. 200 μl is added undiluted to each of two kanamycin (50 μg/ml) agar plates and 200 μl of a 105 dilution is added to an ampicillin (100 μg/ml) plate. After overnight 37° C. incubation, bacterial colonies are counted using an Accucount 1000 (Biologics). Gene conversion effectiveness is measured as the ratio of the average of the kan colonies on both plates per amp colonies multiplied by 10−5 to correct for the amp dilution.
[0056] The following procedure can also be used. 5 μl of resuspended reaction mixtures (total volume 50 μl) are used to transform 20 μl aliquots of electro-competent ΔH10B bacteria using a Cell-Porator apparatus (Life Technologies). The mixtures are allowed to recover in 1 ml SOC at 37° C. for 1 hour at which time 50 μg/ml kanamycin or 12 μg/ml tetracycline is added for an additional 3 hours. Prior to plating, the bacteria are pelleted and resuspended in 200 μl of SOC. 100 μl aliquots are plated onto kan or tet agar plates and 100 μl of a 10−4 dilution of the cultures are concurrently plated on agar plates containing 100 μg/ml of ampicillin. Plating is performed in triplicate using sterile Pyrex beads. Colony counts are determined by an Accu-count 1000 plate reader (Biologics). Each plate contains 200-500 ampicillin resistant colonies or 0-500 tetracycline or kanamycin resistant colonies. Resistant colonies are selected for plasmid extraction and DNA sequencing using an ABI Prism kit on an ABI 310 capillary sequencer (PE Biosystems).
[0057] Chimeric single-stranded oligonucleotides. In FIG. 1 the upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (FIG. 1A) 2′-O-methyl RNA nucleotides or (FIG. 1B) phosphorothioate linkages. Fold changes in repair activity for correction of kans in the HUH7 cell-free extract are presented in parenthesis. Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene.
[0058] Molecules bearing 3, 6, 8, 10 and 12 phosphorothioate linkages in the terminal regions at each end of a backbone with a total of 24 linkages (25 bases) are tested in the kans system. Alternatively, molecules bearing 2, 4, 5, 7, 9 and 11 in the terminal regions at each end are tested. The results of one such experiment, presented in Table 1 and FIG. 1B, illustrate an enhancement of correction activity directed by some of these modified structures. In this illustrative example, the most efficient molecules contained 3 or 6 phosphorothioate linkages at each end of the 25-mer; the activities are approximately equal (molecules IX and X with results of 3.09 and 3.7 respectively). A reduction in alteration activity may be observed as the number of modified linkages in the molecule is further increased. Interestingly, a single-strand molecule containing 24 phosphorothioate linkages is minimally active suggesting that this backbone modification when used throughout the molecule supports only a low level of targeted gene repair or alteration. Such a non-altering, completely modified molecule can provide a baseline control for determining efficiency of correction for a specific oligonucleotide molecule of known sequence in defining the optimum oligonucleotide for a particular alteration event.
[0059] The efficiency of gene repair directed by phosphorothioate-modified, single-stranded molecules, in a length dependent fashion, led us to examine the length of the RNA modification used in the original chimera as it relates to correction. Construct III represents the “RNA-containing” strand of chimera I and, as shown in Table 1 and FIG. 2A, it promotes inefficient gene repair. But, as shown in the same figure, reducing the RNA residues on each end from 10 to 3 increases the frequency of repair. At equal levels of modification, however, 25-mers with 2′-O-methyl ribonucleotides were less effective gene repair agents than the same oligomers with phosphorothioate linkages. These results reinforce the fact that an RNA containing oligonucleotide is not as effective in promoting gene repair or alteration as a modified DNA oligonucleotide.
[0060] Repair of the kanamycin mutation requires a G→C exchange. To confirm that the specific desired correction alteration was obtained, colonies selected at random from multiple experiments are processed and the isolated plasmid DNA is sequenced. As seen in FIG. 4, colonies generated through the action of the single-stranded molecules 3S/25G (IX), 6S/25G (X) and 8S/25G (XI) respectively contained plasmid molecules harboring the targeted base correction. While a few colonies appeared on plates derived from reaction mixtures containing 25-mers with 10 or 12 thioate linkages on both ends, the sequences of the plasmid molecules from these colonies contain nonspecific base changes. In these illustrative examples, the second base of the codon is changed (see FIG. 3). These results show that modified single-strands can direct gene repair, but that efficiency and specificity are reduced when the 25-mers contain 10 or more phosphorothioate linkages at each end.
[0061] In FIG. 1, the numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the exemplified molecule although other molecules with 2, 4, 5, 7, 9 and 11 modifications at each end can also be tested. Hence oligo 12S/25G represents a 25-mer oligonucleotide which contains 12 phosphorothioate linkages on each side of the central G target mismatch base producing a fully phosphorothioate linked backbone, displayed as a dotted line. The dots are merely representative of a linkage in the figure and do not depict the actual number of linkages of the oligonucleotide. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G).
[0062] Correction of a mutant kanamycin gene in cultured mammalian cells. The experiments are performed using different mammalian cells, including, for example, 293 cells (transformed human primary kidney cells), HeLa cells (human cervical carcinoma), and H1299 (human epithelial carcinoma, non-small cell lung cancer). HeLa cells are grown at 37° C. and 5% CO2 in a humidified incubator to a density of 2×105 cells/ml in an 8 chamber slide (Lab-Tek). After replacing the regular DMEM with Optimem, the cells are co-transfected with 10 μg of plasmid pAURNeo(−)FlAsH and 5 μg of modified single-stranded oligonucleotide (3S/25G) that is previously complexed with 10 μg lipofectamine, according to the manufacturer's directions (Life Technologies). The cells are treated with the liposome-DNA-oligo mix for 6 hrs at 37° C. Treated cells are washed with PBS and fresh DMEM is added. After a 16-18 hr recovery period, the culture is assayed for gene repair. The same oligonucleotide used in the cell-free extract experiments is used to target transfected plasmid bearing the kans gene. Correction of the point mutation in this gene eliminates a stop codon and restores full expression. This expression can be detected by adding a small non-fluorescent ligand that bound to a C-C-R-E-C-C sequence in the genetically modified carboxy terminus of the kan protein, to produce a highly fluorescent complex (FlAsH system, Aurora Biosciences Corporation). Following a 60 min incubation at room temperature with the ligand (FlAsH-EDT2), cells expressing full length kan product acquire an intense green fluorescence detectable by fluorescence microscopy using a fluorescein filter set. Similar experiments are performed using the HygeGFP target as described in Example 2 with a variety of mammalian cells, including, for example, COS-1 and COS-7 cells (African green monkey), and CHO-K1 cells (Chinese hamster ovary). The experiments are also performed with PG12 cells (rat pheochromocytoma) and ES cells (human embryonic stem cells).
[0063] Summary of experimental results. Tables 1, 2 and 3 respectively provide data on the efficiency of gene repair directed by single-stranded oligonucleotides. Table 1 presents data using a cell-free extract from human liver cells (HUH7) to catalyze repair of the point mutation in plasmid pkansm4021 (see FIG. 1). Table 2 illustrates that the oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity. Table 3 illustrates data from the repair of a frameshift mutation (FIG. 3) in the tet gene contained in plasmid pTetΔ208. Table 4 illustrates data from repair of the pkansm4021 point mutation catalyzed by plant cell extracts prepared from canola and musa (banana). Colony numbers are presented as kanr or tet and fold increases (single strand versus double hairpin) are presented for kanr in Table 1.
[0064]
FIG. 5A is a confocal picture of HeLa cells expressing the corrected fusion protein from an episomal target. Gene repair is accomplished by the action of a modified single-stranded oligonucleotide containing 3 phosphorothioate linkages at each end (3S/25G). FIG. 5B represents a “Z-series” of HeLa cells bearing the corrected fusion gene. This series sections the cells from bottom to top and illustrates that the fluorescent signal is “inside the cells”.
[0065] Results. In summary, we have designed a novel class of single-stranded oligonucleotides with backbone modifications at the termini and demonstrate gene repair/conversion activity in mammalian and plant cell-free extracts. We confirm that the all DNA strand of the RNA-DNA double-stranded double hairpin chimera is the active component in the process of gene repair. In some cases, the relative frequency of repair by the novel oligonucleotides of the invention is elevated approximately 3-4-fold when compared to frequencies directed by chimeric RNA-DNA double hairpin oligonucleotides.
[0066] This strategy centers around the use of extracts from various sources to correct a mutation in a plasmid using a modified single-stranded or a chimeric RNA-DNA double hairpin oligonucleotide. A mutation is placed inside the coding region of a gene conferring antibiotic resistance in bacteria, here kanamycin or tetracycline. The appearance of resistance is measured by genetic readout in E.coli grown in the presence of the specified antibiotic. The importance of this system is that both phenotypic alteration and genetic inheritance can be measured. Plasmid pKsm4021 contains a mutation (T→G) at residue 4021 rendering it unable to confer antibiotic resistance in E.coli. This point mutation is targeted for repair by oligonucleotides designed to restore kanamycin resistance. To avoid concerns of plasmid contamination skewing the colony counts, the directed correction is from G→C rather than G→T (wild-type). After isolation, the plasmid is electroporated into the DH10B strain of E.coli, which contains inactive RecA protein. The number of kanamycin colonies is counted and normalized by ascertaining the number of ampicillin colonies, a process that controls for the influence of electroporation. The number of colonies generated from three to five independent reactions was averaged and is presented for each experiment. A fold increase number is recorded to aid in comparison.
[0067] The original RNA-DNA double hairpin chimera design, e.g., as disclosed in U.S. Pat. No. 5,565,350, consists of two hybridized regions of a single-stranded oligonucleotide folded into a double hairpin configuration. The double-stranded targeting region is made up of a 5 base pair DNA/DNA segment bracketed by 10 base pair RNA/DNA segments. The central base pair is mismatched to the corresponding base pair in the target gene. When a molecule of this design is used to correct the kans mutation, gene repair is observed (I in FIG. 1A). Chimera II (FIG. 1B) differs partly from chimera I in that only the DNA strand of the double hairpin is mismatched to the target sequence. When this chimera was used to correct the kans mutation, it was twice as active. In the same study, repair function could be further increased by making the targeting region of the chimera a continuous RNA/DNA hybrid.
[0068] Frame shift mutations are repaired. By using plasmid pTsΔ208, described in FIG. 1(C) and FIG. 3, the capacity of the modified single-stranded molecules that showed activity in correcting a point mutation, can be tested for repair of a frameshift. To determine efficiency of correction of the mutation, a chimeric oligonucleotide (Tet I), which is designed to insert a T residue at position 208, is used. A modified single-stranded oligonucleotide (Tet IX) directs the insertion of a T residue at this same site. FIG. 3 illustrates the plasmid and target bases designated for change in the experiments. When all reaction components are present (extract, plasmid, oligomer), tetracycline resistant colonies appear. The colony count increases with the amount of oligonucleotide used up to a point beyond which the count falls off (Table 3). No colonies above background are observed in the absence of either extract or oligonucleotide, nor when a modified single-stranded molecule bearing perfect complementarity is used. FIG. 3 represents the sequence surrounding the target site and shows that a T residue is inserted at the correct site. We have isolated plasmids from fifteen colonies obtained in three independent experiments and each analyzed sequence revealed the same precise nucleotide insertion. These data suggest that the single-stranded molecules used initially for point mutation correction can also repair nucleotide deletions.
[0069] Comparison of phosphorothioate oligonucleotides to 2′-O-methyl substituted oligonucleotides. From a comparison of molecules VII and XI, it is apparent that gene repair is more subject to inhibition by RNA residues than by phosphorothioate linkages. Thus, even though both of these oligonucleotides contain an equal number of modifications to impart nuclease resistance, XI (with 16 phosphorothioate linkages) has good gene repair activity while VII (with 16 2′-O-methyl RNA residues) is inactive. Hence, the original chimeric double hairpin oligonucleotide enabled correction directed, in large part, by the strand containing a large region of contiguous DNA residues.
[0070] Oligonucleotides can target multiple nucleotide alterations within the same template. The ability of individual single-stranded oligonucleotides to correct multiple mutations in a single target template is tested using the plasmid pKsm4021 and the following single-stranded oligonucleotides modified with 3 phosphorothioate linkages at each end (indicated as underlined nucleotides): Oligo1 is a 25-mer with the sequence TTCGATAAGCCTATGCTGACCCGTG corrects the original mutation present in the kanamycin resistance gene of pKsm4021 as well as directing another alteration 2 basepairs away in the target sequence (both indicated in boldface); Oligo2 is a 70-mer with the 5′-end sequence TTCGGCTACGACTGGGCACAACAGACAATTGGC with the remaining nucleotides being completely complementary to the kanamycin resistance gene and also ending in 3 phosphorothioate linkages at the 3′ end. Oligo2 directs correction of the mutation in pKsm4021 as well as directing another alteration 21 basepairs away in the target sequence (both indicated in boldface).
[0071] We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pKsM4021 plasmid. These include, for example, a second 25-mer that alters two nucleotides that are three nucleotides apart with the sequence 5′-TTGTGCCCAGTCGTATCCGAATAGC-3′; a 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-CATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAA TAGCCTCTCCACCCAAGCGGCCGGAGA-3′; and another 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-GCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAAT AGCCT-3′. The nucleotides in the oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same way as the other oligonucleotides of the invention.
[0072] We assay correction of the original mutation in pKsm4021 by monitoring kanamycin resistance (the second alterations which are directed by Oligo2 and Oligo3 are silent with respect to the kanamycin resistance phenotype). In addition, in experiments with Oligo2, we also monitor cleavage of the resulting plasmids using the restriction enzyme Tsp509I which cuts at a specific site present only when the second alteration has occurred (at ATT in Oligo2). We then sequence these clones to determine whether the additional, silent alteration has also been introduced. The results of an analysis are presented below:
1|
|
Oligo1 (25-mer)Oligo2 (70-mer)
|
|
Clones with both sites changed97
Clones with a single site changed02
Clones that were not changed41
|
[0073] Nuclease sensitivity of unmodified DNA oligonucleotide. Electrophoretic analysis of nucleic acid recovered from the cell-free extract reactions conducted here confirm that the unmodified single-stranded 25-mer did not survive incubation whereas greater than 90% of the terminally modified oligos did survive (as judged by photo-image analyses of agarose gels).
[0074] Plant extracts direct repair. The modified single-stranded constructs can be tested in plant cell extracts. We have observed gene alteration using extracts from multiple plant sources, including, for example, Arabidopsis, tobacco, banana, maize, soybean, canola, wheat, spinach as well as spinach chloroplast extract. We prepare the extracts by grinding plant tissue or cultured cells under liquid nitrogen with a mortar and pestle. We extract 3 ml of the ground plant tissue with 1.5 ml of extraction buffer (20 mM HEPES, pH7.5; 5 mM Kcl; 1.5 mM MgCl2; 10 mM DTT; 10% [v/v] glycerol; and 1% [w/v] PVP). We then homogenize the samples with 15 strokes of a Dounce homogenizer. Following homogenization, we incubate the samples on ice for 1 hour and centrifuge at 3000×g for 5 minutes to remove plant cell debris. We then determine the protein concentration in the supernatants (extracts) by Bradford assay. We dispense 100 μg (protein) aliquots of the extracts which we freeze in a dry ice-ethanol bath and store at −80° C.
[0075] We describe experiments using two sources here: a dicot (canola) and a monocot (banana, Musa acuminata cv. Rasthali). Each vector directs gene repair of the kanamycin mutation (Table 4); however, the level of correction is elevated 2-3 fold relative to the frequency observed with the chimeric oligonucleotide. These results are similar to those observed in the mammalian system wherein a significant improvement in gene repair occurred when modified single-stranded molecules were used.
[0076] Tables are attached hereto.
2TABLE I
|
|
Gene repair activity is directed by single-stranded oligonucleotides.
OligonucleotidePlasmidExtract (ug)kanr coloniesFold increase
|
IpKSm402110300
I↓20418 1.0 ×
II↓10537
II↓20748 1.78 ×
III↓103
III↓205 0.01 ×
IV↓10112
IV↓2096 0.22 ×
V↓10217
V↓20342 0.81 ×
VI↓106
VI↓20390.093 ×
VII↓100
VII↓200 0 ×
VIII↓103
VIII↓205 0.01 ×
IX↓10936
IX↓201295 3.09 ×
X↓101140
X↓201588 3.7 ×
XI↓10480
XI↓20681 1.6 ×
XII↓1018
XII↓20250.059 ×
XIII↓100
XIII↓2040.009 ×
—↓200
I↓—0
|
[0077] Plasmid pKsm4021 (1 μg), the indicated oligonucleotide (1.5 μg chimeric oligonucleotide or 0.55 μg single-stranded oligonucleotide; molar ratio of oligo to plasmid of 360 to 1) and either 10 or 20 μg of HUH7 cell-free extract were incubated 45 min at 37° C. Isolated plasmid DNA was electroporated into E. coli (strain DH10B) and the number of kanr colonies counted. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies generated from the same reaction and is the average of three experiments (standard deviation usually less than +/−15%). Fold increase is defined relative to 418 kanr colonies (second reaction) and in all reactions was calculated using the 20 μg sample.
3TABLE II
|
|
Modified single-stranded oligomers are not dependent on MSH2
or MSH3 for optimal gene repair activity.
A.OligonucleotidePlasmidExtractkanr colonies
|
TX (3S/25G)↓HUH7637
X (6S/25G)↓HUH7836
IX↓MEF2−/−781
X↓MEF2−/−676
IX↓MEF3−/−582
X↓MEF3−/−530
IX↓MEF+/+332
X↓MEF+/+497
—↓MEF2−/−10
—↓MEF3−/−5
—↓MEF+/+14
|
[0078] Chimeric oligonucleotide (1.5 μg) or modified single-stranded oligonucleotide (0.55 μg) was incubated with 1 μg of plasmid pKsm4021 and 20 μg of the indicated extracts. MEF represents mouse embryonic fibroblasts with either MSH2 (2−/−) or MSH3 (3−/−) deleted. MEF+/+ indicates wild-type mouse embryonic fibroblasts. The other reaction components were then added and processed through the bacterial readout system. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies.
4TABLE III
|
|
Framesh1ft mutation repair is directed by
single-stranded oligonucleotides
OligonucleotidePlasmidExtracttetr colonies
|
Tet IX (3S/25A; 0.5 μg)pTSΔ2O8 (1 μg)—0
—↓20 μg0
Tet IX (0.5 μg)↓↓48
Tet IX (1.5 μg)↓↓130
Tet IX (2.0 μg)↓↓68
Tet I (chimera; 1.5 μg)↓↓48
|
[0079] Each reaction mixture contained the indicated amounts of plasmid and oligonucleotide. The extract used for these experiments came from HUH7 cells. The data represent the number of tetracycline resistant colonies per 106 ampicillin resistant colonies generated from the same reaction and is the average of 3 independent experiments. Tet I is a chimeric oligonucleotide and Tet IX is a modified single-stranded oligonucleotide that are designed to insert a T residue at position 208 of pTsΔ208. These oligonucleotides are equivalent to structures I and IX in FIG. 2.
5TABLE IV
|
|
Plant cell-free extracts support gene repair by
single-stranded oligonucleotides
OligonucleotidePlasmidExtractkanr colonies
|
II (chimera)pKSm402l30 μgCanola337
IX (3S/25G)↓Canola763
X (6S/25G)↓Canola882
II↓Musa203
IX↓Musa343
X↓Musa746
—↓Canola0
—↓Musa0
IX↓—Canola0
X↓—Musa0
|
[0080] Canola or Musa cell-free extracts were tested for gene repair activity on the kanamycin-sensitive gene as previously described in (18). Chimeric oligonucleotide II (1.5 μg) and modified single-stranded oligonucleotides IX and X (0.55 μg) were used to correct pKSm402 1. Total number of kanr colonies are present per 107 ampicillin resistant colonies and represent an average of four independent experiments.
6TABLE V
|
|
Gene repair activity in cell-free extracts prepared from yeast
(Saccharomyces cerevisiae)
Cell-typePlasmidChimeric OligoSS Oligokanr/ampr × 106
|
Wild typepKansm40211 μg0.36
Wild type↓1 μg0.81
ΔRAD52↓1 μg10.72
ΔRAD52↓1 μg17.41
ΔPMS1↓1 μg2.02
ΔPMS1↓1 μg3.23
|
In this experiment, the kans gene in pKans4021 is corrected by either a chimeric double-hairpin oligonucleotide or a single-stranded oligonucleotide containing three thioate linkages at each end (3S/25G).
Yeast Cell Targeting Assay Method for Base Alteration and Preferred Oligonucleotide Selection
[0081] In this example, single-stranded oligonucleotides with modified backbones and double-hairpin oligonucleotides with chimeric, RNA-DNA backbones are used to measure gene repair using two episomal targets with a fusion between a hygromycin resistance gene and eGFP as a target for gene repair. These plasmids are pAURHYG(rep)GFP, which contains a point mutation in the hygromycin resistance gene (FIG. 7), pAURHYG(ins)GFP, which contains a single-base insertion in the hygromycin resistance gene (FIG. 7) and pAURHYG(Δ)GFP which has a single base deletion. We also use the plasmid containing a wild-type copy of the hygromycin-eGFP fusion gene, designated pAURHYG(wt)GFP, as a control. These plasmids also contain an aureobasidinA resistance gene. In pAURHYG(rep)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region. In pAURHYG(ins)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, at codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene.
[0082] We synthesize the set of three yeast expression constructs pAURHYG(rep)eGFP, pAURHYG(Δ)eGFP, pAURHYG(ins)eGFP, that contain a point mutation at nucleotide 137 of the hygromycin-B coding sequence as follows. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. We construct this set of plasmids by excising the respective expression cassettes by restriction digest from pHyg(x)EGFP and ligation into pAUR123 (Panvera, Calif.). We digest 10 μg pAUR123 vector DNA, as well as, 10 μg of each pHyg(x)EGFP construct with KpnI and SaII (NEB). We gel purify each of the DNA fragments and prepare them for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ration using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm by Sanger dideoxy chain termination sequencing and purify using a Qiagen maxiprep kit.
[0083] We use this system to assay the ability of five oligonucleotides (shown in FIG. 8) to support correction under a variety of conditions. The oligonucleotides which direct correction of the mutation in pAURHYG(rep)GFP can also direct correction of the mutation in pAURHYG(ins)GFP. Three of the four oligonucleotides (HygE3T/25, HygE3T/74 and HygGG/Rev) share the same 25-base sequence surrounding the base targeted for alteration. HygGG/Rev is an RNA-DNA chimeric double hairpin oligonucleotide of the type described in the prior art. One of these oligonucleotides, HygE3T/74, is a 74-base oligonucleotide with the 25-base sequence centrally positioned. The fourth oligonucleotide, designated HygE3T/74α, is the reverse complement of HygE3T/74. The fifth oligonucleotide, designated Kan70T, is a non-specific, control oligonucleotide which is not complementary to the target sequence. Alternatively, an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2-O-methylated modified oligonucleotide may be used as a control.
[0084] Oligonucleotide synthesis and cells. We synthesized and purified the chimeric, double-hairpin oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 1. Plasmids used for assay were maintained stably in yeast (Saccharomyces cerevisiae) strain LSY678 MATα at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30° C. We then add 30 ml of fresh YPD media to the overnight cultures and continue shaking at 30° C. until the OD600 was between 0.5 and 1.0 (3-5 hours). We then wash the cells by centrifuging at 4° C. at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water. We then centrifuge at 4° C. at 3000 rpm for 5 minutes and resuspend in 1 ml ice-cold 1M sorbitol and then finally centrifuge the cells at 4° C. at 5000 rpm for 5 minutes and resuspend the cells in 120 μl 1M sorbitol. To transform electrocompetent cells with plasmids or oligonucleotides, we mix 40 μl of cells with 5 μg of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes. We then transfer the mixture to a 0.2 cm electroporation cuvette and electroporate with a BIO-RAD Gene Pulser apparatus at 1.5 kV, 25 μF, 200 Ω for one five-second pulse. We then immediately resuspend the cells in 1 ml YPD supplemented with 1M sorbitol and incubate the cultures at 30° C. with shaking at 300 rpm for 6 hours. We then spread 200 μl of this culture on selective plates containing 300 μg/ml hygromycin and spread 200 μl of a 105 dilution of this culture on selective plates containing 500 ng/ml aureobasidinA and/or and incubate at 30° C. for 3 days to allow individual yeast colonies to grow. We then count the colonies on the plates and calculate the gene conversion efficiency by determining the number of hygromycin resistance colonies per 105 aureobasidinA resistant colonies.
[0085] Frameshift mutations are repaired in yeast cells. We test the ability of the oligonucleotides shown in FIG. 8 to correct a frameshift mutation in vivo using LSY678 yeast cells containing the plasmid pAURHYG(ins)GFP. These experiments, presented in Table 6, indicate that these oligonucleotides can support gene correction in yeast cells. These data reinforce the results described in Example 1 indicating that oligonucleotides comprising phosphorothioate linkages facilitate gene correction much more efficiently than control duplex, chimeric RNA-DNA oligonucleotides. This gene correction activity is also specific as transformation of cells with the control oligonucleotide Kan70T produced no hygromycin resistant colonies above background and thus Kan70T did not support gene correction in this system. In addition, we observe that the 74-base oligonucleotide (HygE3T/74) corrects the mutation in pAURHYG(ins)GFP approximately five-fold more efficiently than the 25-base oligonucleotide (HygE3T/25). We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)GFP. With this strain we observed that even without added oligonucleotides, there are too many hygromycin resistant colonies to count.
[0086] We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid. These include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGGTACGTCCTGCGGGTAAATAGCTGCGCCGATG GTTTCTAC-3′; a 74-mer that alters two basepairs that are 15 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAACAGCTGCGCCGATG GTTTCTAC-3′; and a 74-mer that alters two basepairs that are 27 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAATAGCTGCGCCGACG GTTTCTAC. The nucleotides in these oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same ways as the other oligonucleotides of the invention.
[0087] Oligonucleotides targeting the sense strand direct gene coffection more efficiently. We compare the ability of single-stranded oligonucleotides to target each of the two strands of the target sequence of both pAURHYG(ins)GFP and pAURHYG(rep)GFP. These experiments, presented in Tables 7 and 8, indicate that an oligonucleotide, HygE3T/74α, with sequence complementary to the sense strand (i.e. the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the non-transcribed strand which serves as the template for the synthesis of RNA. As indicated in Table 7, this effect was observed over a range of oligonucleotide concentrations from 0-3.6 μg, although we did observe some variability in the difference between the two oligonucleotides (indicated in Table 7 as a fold difference between HygE3T/74α and HygE3T/74). Furthermore, as shown in Table 8, we observe increased efficiency of correction by HygE3T/74α relative to HygE3T/74 regardless of whether the oligonucleotides were used to correct the base substitution mutation in pAURHYG(rep)GFP or the insertion mutation in pAURHYG(ins)GFP. The data presented in Table 8 further indicate that the single-stranded oligonucleotides correct a base substitution mutation more efficiently than an insertion mutation. However, this last effect was much less pronounced and the oligonucleotides of the invention are clearly able efficiently to correct both types of mutations in yeast cells. In addition, the role of transcription is investigated using plasmids with inducible promoters such as that described in FIG. 10.
[0088] Optimization of oligonucleotide concentration. To determine the optimal concentration of oligonucleotide for the purpose of gene alteration, we test the ability of increasing concentrations of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678. We chose this assay system because our previous experiments indicated that it supports the highest level of correction. However, this same approach could be used to determine the optimal concentration of any given oligonucleotide. We test the ability of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678 over a range of oligonucleotide concentrations from 0-10.0 μg. As shown in Table 9, we observe that the correction efficiency initially increases with increasing oligonucleotide concentration, but then declines at the highest concentration tested.
[0089] Tables are attached hereto.
7TABLE 6
|
|
Correction of an insertion mutation in pAURHYG(ins)GFP
by HygGG/Rev, HygE3T/25 and HygE3T/74
Colonies onColonies onCorrection
Oligonucleotide TestedHygromycinAureobasidin (/105)Efficiency
|
HygGG/Rev31570.02
HygE3T/25641470.44
HygE3T/742801741.61
Kan70T0——
|
[0090]
8
TABLE 7
|
|
|
An oligonucleotide targeting the sense strand
|
of the target sequence corrects more efficiently.
|
Colonies per hygromycin plate
|
Amount of Oligonucleotide (μg)
HygE3T/74
HygE3T/74α
|
|
0
0
0
|
0.6
24
128 (8.4x)*
|
1.2
69
140 (7.5x)*
|
2.4
62
167 (3.8x)*
|
3.6
29
367 (15x)*
|
|
*The numbers in parentheses represent the fold increase in efficiency for targeting the non-transcribed strand as compared to the other strand of a DNA duplex that encodes a protein.
|
[0091]
9
TABLE 8
|
|
|
Correction of a base substitution mutation
|
is more efficient than correction of a frame shift mutation.
|
Oligonucleotide
Plasmid tested (contained in LSY678)
|
Tested (5 μg)
pAURHYG(ins)GFP
pAURHYG(rep)GFP
|
|
HygE3T/74
72
277
|
HygE3T/74α
1464
2248
|
Kan70T
0
0
|
|
[0092]
10
TABLE 9
|
|
|
Optimization of oligonucleotide concentration
|
in electroporated yeast cells.
|
Colonies on
Colonies on
|
Amount (μg)
hygromycin
aureobasidin (/105)
Correction efficiency
|
|
0
0
67
0
|
1.0
5
64
0.08
|
2.5
47
30
1.57
|
5.0
199
33
6.08
|
7.5
383
39
9.79
|
10.0
191
33
5.79
|
|
Cultured Cell Manipulation
[0093] Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, Calif.). Lin−CD38− cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, Calif.). Cells used for microinjecton are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjecton. S Medium contains Iscoves' Modified Dulbecco's Medium without phenol red (IMDM) with 100 μg/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 μg/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM; Stem Cell Technologies), 40 μg/ml low-density lipoprotein (LDL; Sigma, St. Louis, Mo.), 50 mM HEPEs buffer and 50 μM 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, flt-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, N.J.). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing.
[0094] 35 mm dishes are coated overnight at 40° C. with 50 μg/ml Fibronectn (FN) fragment CH-296 (Retronectn; TaKaRa Biomedicals, Panvera, Madison, Wis.) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37° C. prior to microinjecton. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjecton. Pulled injection needles with a range of 0.22μ to 0.3μ outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37° C. and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are flourescently labeled allow determination of the amount of oligonucleotide delivered to the cells.
[0095] For in vitro erythropoiesis from Lin−CD38− cells, the procedure of Malik, 1998 can be used. Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks. Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny. CD34+ cells can convert a normal A (βA) to sickle T (βS) mutation in the β-globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene. Alternatively, stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.
[0096] Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporaton, biolistcs, calcium phophate precipitation, or any other method known in the art.
[0097] Notes on the Tables Presented Below:
[0098] Each of the following tables presents, for the specified human gene, a plurality of mutations that are known to confer a clinically-relevant phenotype and, for each mutation, the oligonucleotides that can be used to correct the respective mutation site-specifically in the human genome according to the present invention.
[0099] The left-most column identifies each mutation and the clinical phenotype that the mutation confers.
[0100] For most entries, the mutation is identified at both the nucleic acid and protein level. At the amino acid level, mutations are presented according to the following standard nomenclature. The centered number identifies the position of the mutated codon in the protein sequence; to the left of the number is the wild type residue and to the right of the number is the mutant codon. Codon numbering is according to the Human Gene Mutation Database, Cardiff, Wales, UK (http://archive.uwcm.ac.uk/search/mg/allgenes). Terminator codons are shown as “TERM”. At the nucleic acid level, the entire triplet of the wild type and mutated codons is shown.
[0101] The middle column presents, for each mutation, four oligonucleotides capable of repairing the mutation site-specifically in the human genome or in cloned human DNA including human DNA in artificial chromosomes, episomes, plasmids, or other types of vectors. The oligonucleotides of the invention, however, may include any of the oligonucleotides sharing portions of the sequence of the 121 base sequence. Thus, oligonucleotides of the invention for each of the depicted targets may be 18, 19, 20 up to about 121 nucleotides in length. Sequence may be added non-symmetrically.
[0102] All oligonucleotides are presented, per convention, in the 5′ to 3′ orientation. The nucleotide that effects the change in the genome is underlined and presented in bold.
[0103] The first of the four oligonucleotides for each mutation is a 121 nt oligonucleotide centered about the repair nucleotide. The second oligonucleotide, its reverse complement, targets the opposite strand of the DNA duplex for repair. The third oligonucleotide is the minimal 17 nt domain of the first oligonucleotide, also centered about the repair nucleotide. The fourth oligonucleotide is the reverse complement of the third, and thus represents the minimal 17 nt domain of the second.
[0104] The third column of each table presents the SEQ ID NO: of the respective repair oligonucleotide.
Adenosine Deaminase (ADA)
[0105] Adenosine deaminase (ADA, EC 3.5.4.4) catalyses the deamination of adenosine and 2′-deoxyadenosine to inosine or 2′-deoxyinosine respectively. ADA deficiency has been identified as the metabolic basis for 20-30% of cases with recessively inherited severe combined immunodeficiency (SCID). Affected infants are subject to recurrent chronic viral, fungal, protozoal, and bacterial infections and frequently present with persistent diarrhea, failure to thrive and candidiasis. In patients homozygous for ADA deficiency, 2′-deoxyadenosine accumulating during the rapid turnover of cells rich in DNA is converted back to dATP, either by adenosine kinase or deoxycytidine kinase. Many hypotheses have been advanced to explain the specific toxicity to the immune system in ADA deficiency. The apparently selective accumulation of dATP in thymocytes and peripheral blood B cells, with resultant inhibition of ribonucleotide reductase and DNA synthesis is probably the principal mechanism.
[0106] The structural gene for ADA is encoded as a single 32 kb locus containing 12 exons. Studies of the molecular defect in ADA-deficient patients have shown that mRNA is usually detectable in normal or supranormal amounts. Specific base substitution mutations have been detected in the majority of cases with the complete deficiency. A C-to-T base substitution mutation in exon 11 accounts for a high proportion of these, whilst a few patents are homozygous for large deletions encompassing exon I. A common point mutation resulting in a heat-labile ADA has been characterised in some patients with partial ADA deficiency, a disorder with an apparently increased prevalence in the Caribbean.
[0107] As yet no totally effective therapy for ADA deficiency has been reported, except in those few cases where bone marrow from an HLA/MLR compatible sibling donor was available.
[0108] Two therapeutic approaches have provided long-term benefit in specific instances. First, reconstitution using T cell depleted mismatched sibling marrow has been encouraging, particularly in early presenters completely deficient in ADA. Secondly, therapy with polyethylene glycol-modified adenosine deaminase (PEG-ADA) for more than 5 years has produced a sustained increase in lymphocyte numbers and mitogen responses together with evidence of in vivo B cell function. Success has generally been achieved in late presenters with residual ADA activity in mononuclear cells.
[0109] ADA deficiency has been chosen as the candidate disease for gene replacement therapy and the first human experiment commenced in 1990. The clinical consequences of overexpression of ADA activity—one of the potential hazards of gene implant—are known and take the form of an hereditary haemolytic anaemia associated with a tissue-specific increase in ADA activity. The genetic basis for the latter autosomal dominant disorder seemingly relates to markedly increased levels of structurally normal ADA mRNA.
11TABLE 10
|
|
ADA Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Adenosine deaminaseAGAGACCCACCGAGCGGCGGCGGAGGGAGCAGCGCCGGGG1
deficiencyCGCACGAGGGCACCATGGCCCAGACGCCCGCCTTCGACAAG
GLN3TERMCCCAAAGTGAGCGCGCGCGGGGGCTCCGGGGACGGGGGTC
CAG to TAG
GACCCCCGTCCCCGGAGCCCCCGCGCGCGCTCACTTTGGG2
CTTGTCGAAGGCGGGCGTCTGGGCCATGGTGCCCTCGTGCG
CCCCGGCGCTGCTCCCTCCGCCGCCGCTCGGTGGGTCTCT
|
CCATGGCCCAGACGCCC3
|
GGGCGTCTGGGCCATGG4
|
Adenosine deaminaseTATTTGTTCTCTCTCTCCCTTTCTCTCTCTCTTCCCCCTGCCC5
deficiencyCCTTGCAGGTRAGAACTGCATGTCCACCTAGACGGATCCATCA
HIS15ASPAGCCTGAAACCATCTTATACTATGGCAGGTAAGTCC
CAT to GAT
GGACTTACCTGCCATAGTATAAGATGGTTTCAGGCTTGATGGA6
TCCGTCTAGGTGGACATGCAGTTCTACCTGCAAGGGGGCAG
GGGGAAGAGAGAGAGAAAGGGAGAGAGAGAACAAATA
|
TAGAACTGCATGTCCAC7
|
GTGGACATGCAGTTCTA8
|
Adenosine deaminaseTCCCTTTCTCTCTCTCTTCCCCCTGCCCCCTTGCAGGTAGAA9
deficiencyCTGCATGTCCACCTAGACGGATCCATCAAGCCTGAAACCATC
GLY20ARGTTATACTATGGCAGGTAAGTCCATACAGAAGAGCCCT
GGA to AGA
AGGGCTCTTCTGTATGGACTTACCTGCCATAGTATAAGATGGT10
TTCAGGCTTGATGGATCCGTCTAGGTGGACATGCAGTTCTAC
CTGCAAGGGGGCAGGGGGAAGAGAGAGAGAAAGGGA
|
ACCTAGACGGATCCATC11
|
GATGGATCCGTCTAGGT12
|
Adenosine deaminaseCCTGGAGCTCCCAAGGGACTTGGGGAAGGTTGTTCCCAACC13
deficiencyCCTTTCTTCCCTTCCCAGGGGCTGCCGGGAGGCTATCAAAAG
GLY74CYSGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGG
GGC to GGC
CCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCTTTT14
GATAGCCTCCCGGCAGCCCCTGGGAAGGGAAGAAAGGGGTT
GGGAACAACCTTCCCCAAGTCCCTTGGGAGCTCCAGG
|
CTATCGCGGGCTGCCGG15
|
CCGGCAGCCCGCGATAG16
|
Adenosine DeaminaseGCTCCCAAGGGACTTGGGGAAGGTTGTTCCCAACCCCTTTCT17
DeficiencyTCCCTTCCCAGGGGCTGCCGGGAGGCTATCAAAAGGATCGC
ARG76TRPCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCGTGG
CGG to TGG
CCACGCCCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGAT18
CCTTTTGATAGCCTCCCGGCAGCCCCTGGGAAGGGAAGAAA
GGGGTTGGGAACAACCTTCCCCAAGTCCCTTGGGAGC
|
GGGGCTGCCGGGAGGCT19
|
AGCCTCCCGGCAGCCCC20
|
Adenosine DeaminaseTTGGGGAAGGTTGTTCCCAACCCCTTTCTTCCCTTCCCAGGG21
DeficiencyGCTGCCGGGAGGCTATCAAAAGGATCGCCTATGAGTTTGTAG
LYS80ARGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAGGT
AAA to AGA
ACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTACAA22
ACTCATAGGCGATCCTTTTGATAGCCTCCCGGCAGCCCCTGG
GAAGGGAAGAAAGGGGTTGGGAACAACCTTCCCCAA
|
GGCTATCAAAAGGATCG23
|
CGATCCTTTTGATAGCC24
|
Adenosine deaminaseGTTGTTCCCAACCCCTTTCTTCCCTTCCCAGGGGCTGCCGGG25
deficiencyAGGCTATCAAAAGGATCGCCTATGAGTTTGTAGAGATGAAGG
ALA83ASPCCAAAGAGGGCGTGGTGTATGTGGAGGTGCGGTACAG
GCC to GAC
CTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTC26
ATCTCTACAAACTCATAGGCGATCCTTTTGATAGCCTCCCGGC
AGCCCCTGGGAAGGGAAGAAAGGGGTTGGGAACAAC
|
AAGGATCGCCTATGAGT27
|
ACTCATAGGCGATCCTT28
|
Adenosine deaminaseAGGCTATCAAAAGGATCGCCTATGAGTTTGTAGAGATGAAGG29
deficiencyCCAAAGAGGGCGTGGTGTATGTGGAGGTGCGGTACAGTCCG
TYR97CYSCACCTGCTGGCCAACTCCAAAGTGGAGCCAATCCCCTG
TAT to TGT
CAGGGGATTGGCTCCACTTTGGAGTTGGCCAGCAGGTGCGG30
ACTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTT
CATCTCTACAAACTCATAGGCGATCCTTTTGATAGCCT
|
CGTGGTGTATGTGGAGG31
|
CCTCCACATACACCACG32
|
Adenosine deaminaseGGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCG33
deficiencyTGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGCC
ARG101GLNAACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTGA
CGG to CAG
TCAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCC34
AGCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCC
CTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCC
|
GGAGGTGCGGTACAGTC35
|
GACTGTACCGCACCTCC36
|
Adenosine deaminaseGGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCG37
deficiencyTGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGCC
ARG101LEUAACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTGA
CGG to CTG
TCAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCC38
AGCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCC
CTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCC
|
GGAGGTGCGGTACAGTC39
|
GACTGTACCGCACCTCC40
|
Adenosine deaminaseAGGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGC41
deficiencyGTGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGC
ARG101TRPCAACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTG
CGG to TGG
CAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCCA42
GCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCCC
TCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCT
|
TGGAGGTGCGGTACAGT43
|
ACTGTACCGCACCTCCA44
|
Adenosine deaminaseATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATG45
deficiencyTGGAGGTGCGGTACAGTCCGCACCTGCTGGCCAACTCCAAA
PRO104LEUGTGGAGCCAATCCCCTGGAACCAGGCTGAGTGAGTGAT
CCG to CTG
ATCACTCACTCAGCCTGGTTCCAGGGGATTGGCTCCACTTTG46
GAGTTGGCCAGCAGGTGCGGACTGTACCGCACCTCCACATA
CACCACGCCCTCTTTGGCCTTCATCTCTACAAACTCAT
|
GTACAGTCCGCACCTGC47
|
GCAGGTGCGGACTGTAC48
|
Adenosine deaminaseTTTGTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAG49
deficiencyGTGCGGTACAGTCCGCACCTGCTGGCCAACTCCAAAGTGGA
LEU106VALGCCAATCCCCTGGAACCAGGCTGAGTGAGTGATGGGCC
CTG to GTG
GGCCCATCACTCACTCAGCCTGGTTCCAGGGGATTGGCTCCA50
CTTTGGAGTTGGCCAGCAGGTGCGGACTGTACCGCACCTCC
ACATACACCACGCCCTCTTTGGCCTTCATCTCTACAAA
|
GTCCGCACCTGCTGGCC51
|
GGCCAGCAGGTGCGGAC52
|
Adenosine deaminaseTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAGGTG53
deficiencyCGGTACAGTCCGCACCTGCTGGCCAACTCCAAAGTGGAGCC
LEU107PROAATCCCCTGGAACCAGGCTGAGTGAGTGATGGGCCTGGA
CTG to CCG
TCCAGGCCCATCACTCACTCAGCCTGGTTCCAGGGGATTGGC54
TCCACTTTGGAGTTGGCCAGCAGGTGCGGACTGTACCGCAC
CTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTA
|
GCACCTGCTGGCCAACT55
|
AGTTGGCCAGCAGGTGC56
|
Adenosine deaminaseGCCTTCCTTTTGCCTCAGGCCCATCCCTACTCCTCTCCTCAC57
deficiencyACAGAGGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTG
PRO126GLNGGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGT
CCA to CAA
ACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCAC58
TAGGGCCACCACCTCGTCTGGGGTGAGGTCCCCTCTGTGTG
AGGAGAGGAGTAGGGATGGGCCTGAGGCAAAAGGAAGGC
|
CCTCACCCCAGACGAGG59
|
CCTCGTCTGGGGTGAGG60
|
Adenosine deaminaseTTTGCCTCAGGCCCATCCCTACTCCTCTCCTCACACAGAGGG61
deficiencyGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCAGGG
TAL129METCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC
GTG to ATG
GGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCC62
TGGCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCC
TCTGTGTGAGGAGAGGAGTAGGGATGGGCCTGAGGCAAA
|
CAGACGAGGTGGTGGCC63
|
GGCCACCACCTCGTCTG64
|
Adenosine deaminaseACAGAGGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTG65
deficiencyGGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCA
GLY140GLUAGGCCCGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAG
GGG to GAG
CTGGGCTGGTGGCGCATGCAGCACAGGATGGACCGGGCCTT66
GACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCA
CTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCCTCTGT
|
GCAGGAGGGGGAGCGAG67
|
CTCGCTCCCCCTCCTGC68
|
Adenosine deaminaseGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCAG69
deficiencyGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC
ARG142GLNGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTA
CGA to CAA
TACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCG70
GGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCT
GGCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCC
|
GGGGGAGCGAGACTTCG71
|
CGAAGTCTCGCTCCCCC72
|
Adenosine deaminaseGGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCA73
deficiencyGGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCC
ARG142TERMCGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGT
CGA to TGA
ACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCGG74
GCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTG
GCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCC
|
AGGGGGAGCGAGACTTC75
|
GAAGTCTCGCTCCCCCT76
|
Adenosine deaminaseTGGTGGCCCTAGTGGGCCAGGGCCTGCAGGAGGGGGAGCG77
deficiencyAGACTTCGGGGTCAAGGCCCGGTCCATCCTGTGCTGCATGC
ARG149GLNGCCACCAGCCCAGTGAGTAGGATCACCGCCCTGCCCAGGG
CGG to CAG
CCCTGGGCAGGGCGGTGATCCTACTCACTGGGCTGGTGGCG78
CATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTC
GCTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCA
|
CAAGGCCCGGTCCATCC79
|
GGATGGACCGGGCCTTG80
|
Adenosine deaminaseGTGGTGGCCCTAGTGGGCCAGGGCCTGCAGGAGGGGGAGC81
deficiencyGAGACTTCGGGGTCAAGGCCCGGTCCATCCTGTGCTGCATG
ARG149TRPCGCCACCAGCCCAGTGAGTAGGATCACCGCCCTGCCCAGG
CGG to TGG
CCTGGGCAGGGCGGTGATCCTACTCACTGGGCTGGTGGCGC82
ATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTCG
CTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCAC
|
TCAAGGCCCGGTCCATC83
|
GATGGACCGGGCCTTGA84
|
Adenosine deaminaseCTAGTGGGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCG85
deficiencyGGGTCAAGGCCCGGTCCATCCTGTGCTGCATGCGCCACCAG
LEU152METCCCAGTGAGTAGGATCACCGCCCTGCCCAGGGCCGCCCGT
CTG to ATG
ACGGGCGGCCCTGGGCAGGGCGGTGATCCTACTCACTGGG86
CTGGTGGCGCATGCAGCACAGGATGGACCGGGCCTTGACCC
CGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCACTAG
|
GGTCCATCCTGTGCTGC87
|
GCAGCACAGGATGGACC88
|
Adenosine deaminaseGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC89
deficiencyGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTAG
ARG156CYSGATCACCGCCCTGCCCAGGGCCGCCCGTCTCACCCTGGCC
CGC to TGC
GGCCAGGGTGAGACGGGCGGCCCTGGGCAGGGCGGTGATC90
CTACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACC
GGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCC
|
GCTGCATGCGCCACCAG91
|
CTGGTGGCGCATGCAGC92
|
Adenosine deaminaseGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCCG93
deficiencyGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTAGG
ARG156H1SATCACCGCCCTGCCCAGGGCCGCCCGTCTCACCCTGGCCC
CGC to CAC
GGGCCAGGGTGAGACGGGCGGCCCTGGGCAGGGCGGTGAT94
CCTACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGAC
CGGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGC
|
CTGCATGCGCCACCAGC95
|
GCTGGTGGCGCATGCAG96
|
Adenosine deaminaseCTGCCCACAGACTGGTCCCCCAAGGTGGTGGAGCTGTGTAA97
deficiencyGAAGTACCAGCAGCAGACCGTGGTAGCCATTGACCTGGCTG
VAL177METGAGATGAGACCATCCCAGGAAGCAGCCTCTTGCCTGGAC
GTG to ATG
GTCCAGGCAAGAGGCTGCTTCCTGGGATGGTCTCATCTCCAG98
CCAGGTCAATGGCTACCACGGTCTGCTGCTGGTACTTCTTAC
ACAGCTCCACCACCTTGGGGGACCAGTCTGTGGGCAG
|
AGCAGACCGTGGTAGCC99
|
GGCTACCACGGTCTGCT100
|
Adenosine deaminaseCAGACTGGTCCCCCAAGGTGGTGGAGCTGTGTAAGAAGTAC101
deficiencyCAGCAGCAGACCGTGGTAGCCATTGACCTGGCTGGAGATGA
ALA179ASPGACCATCCCAGGAAGCAGCCTCTTGCCTGGACATGTCCA
GCC to GAC
TGGACATGTCCAGGCAAGAGGCTGCTTCCTGGGATGGTCTCA102
TCTCCAGCCAGGTCAATGGCTACCACGGTCTGCTGCTGGTAC
TTCTTACACAGCTCCACCACCTTGGGGGACCAGTCTG
|
CGTGGTAGCCATTGACC103
|
GGTCAATGGCTACCACG104
|
Adenosine deaminaseCCATTGACCTGGCTGGAGATGAGACCATCCCAGGAAGCAGC105
deficiencyCTCTTGCCTGGACATGTCCAGGCCTACCAGGTGGGTCCTGT
GLN199PROGAGAAGGAATGGAGAGGCTGGCCCTGGGTGAGCTTGTCT
CAG to CCG
AGACAAGCTCACCCAGGGCCAGCCTCTCCATTCCTTCTCACA106
GGACCCACCTGGTAGGCCTGGACATGTCCAGGCAAGAGGCT
GCTTCCTGGGATGGTCTCATCTCCAGCCAGGTCAATGG
|
ACATGTCCAGGCCTACC107
|
GGTAGGCCTGGACATGT108
|
Adenosine deaminaseGCTAGGGCACCCATGACCTGGCTCTCCCCCTTCCAGGAGGC109
deficiencyTGTGAAGAGCGGCATTCACCGTACTGTCCACGCCGGGGAGG
ARG211CYSTGGGCTCGGCCGAAGTAGTAAAAGAGGTGAGGGCCTGGG
CGT to TGT
CCCAGGCCCTCACCTCTTTTACTACTTCGGCCGAGCCCACCT110
CCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGCC
TCCTGGAAGGGGGAGAGCCAGGTCATGGGTGCCCTAGC
|
GCATTCACCGTACTGTC111
|
GACAGTACGGTGAATGC112
|
Adenosine deaminaseCTAGGGCACCCATGACCTGGCTCTCCCCCTTCCAGGAGGCT113
deficiencyGTGAAGAGCGGCATTCACCGTACTGTCCACGCCGGGGAGGT
ARG211HISGGGCTCGGCCGAAGTAGTAAAAGAGGTGAGGGCCTGGGC
CGT to CAT
GCCCAGGCCCTCACCTCTTTTACTACTTCGGCCGAGCCCACC114
TCCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGC
CTCCTGGAAGGGGGAGAGCCAGGTCATGGGTGCCCTAG
|
CATTCACCGTACTGTGC115
|
GGACAGTACGGTGAATG116
|
Adenosine deaminaseATGACCTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGG117
deficiencyCATTCACCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCG
ALA215THRAAGTAGTAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGG
GCC to ACC
CCCCATGGCCAGCGCAGGCCCTCACCTCTTTTACTACTTCGG118
CCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGAATGCCG
CTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGTCAT
|
CTGTCCACGCCGGGGAG119
|
CTCCCCGGCGTGGACAG120
|
Adenosine deaminaseACCTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGGCAT121
deficiencyTCACCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCGAAG
GLY216ARGTAGTAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGGTCC
GGG to AGG
GGACCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTACTT122
CGGCCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGAATG
CCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGT
|
TCCACGCCGGGGAGGTG123
|
CACCTCCCCGGCGTGGA124
|
Adenosine deaminaseTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGGCATTCA125
deficiencyCCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCGAAGTAG
GLU217LYSTAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGGTCCCTC
GAG to AAG
GAGGGACCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTA126
CTTCGGCCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGA
ATGCCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCA
|
ACGCCGGGGAGGTGGGC127
|
GCCCACCTCCCCGGCGT128
|
Adenosine deaminaseCTGCCTCCTCCCATACTTGGCTCTATTCTGCTTCTCTACAGGC129
deficiencyTGTGGACATACTCAAGACAGAGCGGCTGGGACACGGCTACC
THR233ILEACACCCTGGAAGACCAGGCCCTTTATAACAGGCTGCG
ACA to ATA
CGCAGCCTGTTATAAAGGGCCTGGTCTTCCAGGGTGTGGTAG130
CCGTGTCCCAGCCGCTCTGTCTTGAGTATGTCCACAGCCTGT
AGAGAAGCAGAATAGAGCCAAGTATGGGAGGAGGCAG
|
ACTCAAGACAGAGCGGC131
|
GCCGCTCTGTCTTGAGT132
|
Adenosine deaminaseCAGAGCGGCTGGGACACGGCTACCACACCCTGGAAGACCAG133
deficiencyGCCCTTTATAACAGGCTGCGGCAGGAAAACATGCACTTCGAG
ARG253PROGTAAGCGGGCCAGGGAGTGGGGAGGAACCATCCCCGGC
CGG to CCG
GCCGGGGATGGTTCCTCCCCACTCCCTGGCCCGCTTACCTC134
GAAGTGCATGTTTTCCTGCCGCAGCCTGTTATAAAGGGCCTG
GTCTTCCAGGGTGTGGTAGCCGTGTCCCAGCCGCTCTG
|
CAGGCTGCGGCAGGAAA135
|
TTTCCTGCCGCAGCCTG136
|
Adenosine deaminaseGAGCGGCTGGGACACGGCTACCACACCCTGGAAGACCAGGC137
deficiencyCCTTTATAACAGGCTGCGGCAGGAAAACATGCACTTCGAGGT
GLN254TERMAAGCGGGCCAGGGAGTGGGGAGGAACCATCCCCGGCTG
CAG to TAG
CAGCCGGGGATGGTTCCTCCCCACTCCCTGGCCCGCTTACC138
TCGAAGTGCATGTTTTCCTGCCGCAGCCTGTTATAAAGGGCC
TGGTCTTCCAGGGTGTGGTAGCCGTGTCCCAGCCGCTC
|
GGCTGCGGCAGGAAAAC139
|
GTTTTCCTGCCGCAGCC140
|
Adenosine deaminaseCCACACACCTGCTCTTCCAGATCTGCCCCTGGTCCAGCTACC141
deficiencyTCACTGGTGCCTGGAAGCCGGACACGGAGCATGCAGTCATT
PRO274LEUCGGTGAGCTCTGTTCCCCTGGGCCTGTTCAATTTTGTT
CCG to CTG
AACAAAATTGAACAGGCCCAGGGGAACAGAGCTCACCGAATG142
ACTGCATGCTCCGTGTCCGGCTTCCAGGCACCAGTGAGGTA
GCTGGACCAGGGGCAGATCTGGAAGAGCAGGTGTGTGG
|
CTGGAAGCCGGACACGG143
|
CCGTGTCCGGCTTCCAG144
|
Adenosine deaminaseGGAGGCTGATTCTCTCCTCCTCCCTCTTCTGCAGGCTCAAAA145
deficiencyATGACCAGGCTAACTACTCGCTCAACACAGATGACCCGCTCA
SER291LEUTCTTCAAGTCCACCCTGGACACTGATTACCAGATGAC
TCG to TTG
GTCATCTGGTAATCAGTGTCCAGGGTGGACTTGAAGATGAGC146
GGGTCATCTGTGTTGAGCGAGTAGTTAGCCTGGTCATTTTTGA
GCCTGCAGAAGAGGGAGGAGGAGAGAATCAGCCTCC
|
TAACTACTCGCTCAACA147
|
TGTTGAGCGAGTAGTTA148
|
Adenosine deaminaseCCTCCCTCTTCTGCAGGCTCAAAAATGACCAGGCTAACTACT149
deficiencyCGCTCAACACAGATGACCCGCTCATCTTCAAGTCCACCCTGG
PRO297GLNACACTGATTACCAGATGACCAAACGGGACATGGGCTT
CCG to CAG
AAGCCCATGTCCCGTTTGGTCATCTGGTAATCAGTGTCCAGG150
GTGGACTTGAAGATGAGCGGGTCATCTGTGTTGAGCGAGTAG
TTAGCCTGGTCATTTTTGAGCCTGCAGAAGAGGGAGG
|
AGATGACCCGCTCATCT151
|
AGATGAGCGGGTCATCT152
|
Adenosine deaminaseAAAATGACCAGGCTAACTACTCGCTCAACACAGATGACCCGC153
deficiencyTCATCTTCAAGTCCACCCTGGACACTGATTACCAGATGACCAA
LEU304ARGACGGGACATGGGCTTTACTGAAGAGGAGTTTAAAAG
CTG to CGG
CTTTTAAACTCCTCTTCAGTAAAGCCCATGTCCCGTTTGGTCA154
TCTGGTAATCAGTGTCCAGGGTGGACTTGAAGATGAGCGGGT
CATCTGTGTTGAGCGAGTAGTTAGCCTGGTCATTTT
|
GTCCACCCTGGACACTG155
|
CAGTGTCCAGGGTGGAC156
|
Adenosine deaminaseGCCTTCTTTGTTCTCTGGTTCCATGTTGTCTGCCATTCTGGCC157
deficiencyTTTCCAGAACATCAATGCGGCCAAATCTAGTTTCCTCCCAGAA
ALA329TALGATGAAAAGAGGGAGCTTCTCGACCTGCTCTATAA
C-to-T at base 1081
TTATAGAGCAGGTCGAGAAGCTCCCTCTTTTCATCTTCTGGGA158
GGAAACTAGATTTGGCCGCATTGATGTTCTGGAAAGGCCAGA
ATGGCAGACAACATGGAACCAGAGAACAAAGAAGGC
|
CATCAATGCGGCCAAAT159
|
ATTTGGCCGCATTGATG160
|
P53 Mutations
[0110] The p53 gene codes for a protein that acts as a transcription factor and serves as a key regulator of the cell cycle. Mutation in this gene is probably the most significant genetic change characterizing the transformation of cells from normalcy to malignancy.
[0111] Inactivation of p53 by mutation disrupts the cell cycle which, in turn, sets the stage for tumor formation. Mutations in the p53 gene are among the most commonly diagnosed genetic disorders, occuring in as many as 50% of cancer patients. For some types of cancer, most notably of the breast, lung and colon, p53 mutations are the predominant genetic alternations found thus far. These mutations are associated with genomic instability and thus an increased susceptibility to cancer. Some p53 lesions result in malignancies that are resistant to the most widely used therapeutic regimens and therefore demand more aggressive treatment.
[0112] That p53 is associated with different malignant tumors is illustrated in the Li-Fraumeni autosomal dominant hereditary disorder characterized by familial multiple tumors due to mutation in the p53 gene. Affected individuals can develop one or more tumors, including: brain (12%); soft-tissue sarcoma (12%); breast cancer (25%); adrenal tumors (1%); bone cancer (osteosarcoma) (6%); cancer of the lung, prostate, pancreas, and colon as well as lymphoma and melanoma can also occur.
[0113] Certain of the most frequently mutated codons are codons 175, 248 and 273, however a variety of oligonucleotides are described below in the atttached table.
12TABLE 11
|
|
p53 Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
In 2 families withGACTGTACCACCATCCACTACAACTACATGTGTAACAGTTCCT161
Li-FraumeniGCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATC
syndrome, there was aACACTGGAAGACTCCAGGTCAGGAGCCACTTGCCACC
C-to-T mutation at the
first nucleotide ofGGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTGTGATGA162
codon 248 whichTGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAA
changed arginine toCTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTC
tryptophan.GCATGAACCGGAGGCCC163
|
GGGCCTCCGGTTCATGC164
|
In a family with theTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCAT165
Li-FraumeniCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCAC
syndrome, a G-to-ATTGCCACCCTGCACACTGGCCTGCTGTGCCCCAGCCTC
mutation at the first
nucleotide of codonGAGGCTGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGT166
258 resulting in theGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGAT
substitution of lysineGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACA
for glutamic acid.
TCACACTGGAAGACTCC167
|
GGAGTCTTCCAGTGTGA168
|
In a family with theGTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTA169
Li-FraumeniACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTC
syndrome, a G-to-TACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCA
mutation at
the first nucleotide of
codon 245 resulting in
the substitution of
cysteine for glycine.
|
A gly245-to-ser,TGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGA170
GGC-to-AGC,TGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACA
mutation was found inTGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAAC
a patient in whom
osteosarcoma wasGCATGGGCGGCATGAAC171
diagnosed at the age
of 18 years.GTTCATGCCGCCCATGC172
|
In a family with theTCCACTACAACTACATGTGTAACAGTTCCTGCATGGGCGGCA173
Li-FraumeniTGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGACT
syndrome, a germlineCCAGGTCAGGAGCCACTTGCCACCCTGCACACTGGCC
mutation at codon 252:
a T-to-C change at theGGCCAGTGTGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTC174
second positionTTCCAGTGTGATGATGGTGAGGATGGGCCTCCGGTTCATGCC
resulted in substitutionGCCCATGCAGGAACTGTTACACATGTAGTTGTAGTGGA
of proline for leucine.
|
GCCCATCCTCACCATCA175
|
TGATGGTGAGGATGGGC176
|
Researchers analyzedTACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCATG177
for mutations in p53GGCGGCATGAACCGGAGGCCCATCCTCACCATCATCACACT
hepatocellularGGAAGACTCCAGGTCAGGAGCCACTTGCCACCCTGCA
carcinomas from
patents in Qidong, anTGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTG178
area of high incidenceTGATGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATG
in China, in which bothCAGGAACTGTTACACATGTAGTTGTAGTGGATGGTGGTA
hepatitis B virus and
aflatoxin B1 are riskAACCGGAGGCCCATCCT179
factors. Eight of 16
tumors had a pointAGGATGGGCCTCCGGTT180
mutation at the third
base position of codon
249. The G-to-T
mutation at codon 249
led to a change from
arginine to serine
(AGG to AGT).
|
In cases ofCTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTCCACA181
hepatocellularCCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAA
carcinoma in southernGCAGTCACAGCACATGACGGAGGTTGTGAGGCGCTGCC
Africa, a G-to-T
substitution in codonGGCAGCGCCTCACAACCTCCGTCATGTGCTGTGACTGCTTGT182
157 resulting in aAGATGGCCATGGCGCGGACGCGGGTGCCGGGCGGGGGTGT
change from valine toGGAATCAACCCACAGCTGCACAGGGCAGGTCTTGGCCAG
phenylahanine.
GCACCCGCGTCCGCGCC183
|
GGCGCGGACGCGGGTGC184
|
In a family withTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTAA185
Li-Fraumeni in whichCAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCA
noncancerous skinCCATCATCACACTGGAAGACTCCAGGTCAGGAGCCAC
fibroblasts from
affected individualsGTGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGG186
showed an unusualATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACAC
radiation-resistantATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAA
phenotype, a point
mutation in codon 245CATGGGCGGCATGAACC187
of the P53 gene. A
change from GGC toGGTTCATGCCGCCCATG188
GAC predicted
substitution of aspartic
acid for glycine.
|
In 2 of 8 families withACTGTACCACCATCCACTACAACTACATGTGTAACAGTTCCTG189
Li-FraumeniCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATCA
syndrome, a mutationCACTGGAAGACTCCAGGTCAGGAGCCACTTGCCACCC
in codon 248: aGGGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTGTGAT190
CGG-to-CAG changeGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGG
resulting in substitutionAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGT
of glutamine forCATGAACCGGAGGCCCA191
arginine.TGGGCCTCCGGTTCATG192
|
In 9 members of anCCCTGACTTTCAACTCTGTCTCCTTCCTCTTCCTACAGTACTC193
extended family withCCCTGCCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTG
Li-FraumeniCCCTGTGCAGCTGTGGGTTGATTCCACACCCCCGCC
syndrome, a germline
mutation at codon 133GGCGGGGGTGTGGAATCAACCCACAGCTGCACAGGGCAGGT194
(ATG-to-ACG),CTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCAGGGGAGTA
resulted in theCTGTAGGAAGAGGAAGGAGACAGAGTTGAAAGTCAGGG
substitution of
threonine forCAACAAGATGTTTTGCC195
methionine (M133T),
and completelyGGCAAAACATCTTGTTG196
cosegregated with the
cancer syndrome.
|
In 1 pedigreeTCTTGCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGG197
consistent with theGACGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGA
Li-FraumeniGAGACCGGCGCACAGAGGAAGAGAATCTCCGCAAGA
syndrome, a germline
G-to-T transversion atTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCCCAG198
codon 272 (valine toGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCAGTA
leucine) was found.GATTACCACTACTCAGGATAGGAAAAGAGAAGCAAGA
|
GCTTTGAGGTGCGTGTT199
|
AACACGCACCTCAAAGC200
|
A ser241-to-pheTTATCTCCTAGGTTGGCTCTGACTGTACCACCATCCACTACAA201
mutation due to aCTACATGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAG
TCC-to-TTC changeGCCCATCCTCACCATCATCACACTGGAAGACTCCAG
was found in a patient
with hepatoblastomaCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGGGCCTCCG202
and multiple foci ofGTTCATGCCGCCCATGCAGGAACTGTTACACATGTAGTTGTA
osteosarcoma.GTGGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAA
|
TAACAGTTCCTGCATGG203
|
CCATGCAGGAACTGTTA204
|
An AAG-to-TAGCAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTC205
change of codon 120,TTGCATTCTGGGACAGCCAAGTCTGTGACTTGCACGGTCAGT
resulting in conversionTGCCCTGAGGGGCTGGCTTCCATGAGACTTCAATGCC
from lysine to a stop
codon, was found in aGGCATTGAAGTCTCATGGAAGCCAGCCCCTCAGGGCAACTG206
patient withACCGTGCAAGTCACAGACTTGGCTGTCCCAGAATGCAAGAAG
osteosarcoma andCCCAGACGGAAACCGTAGCTGCCCTGGTAGGTTTTCTG
adenocarcinoma of
the lung at age 18 andGGACAGCCAAGTCTGTG207
brain tumor (glioma) at
the age of 27.CACAGACTTGGCTGTCC208
|
A CGG-to-TGGGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTGTTTGT209
change at codon 282,GCCTGTCCTGGGAGAGACCGGCGCACAGAGGAAGAGAATCT
resulting in theCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCCCCAG
substitution of
tryptophan for arginine,CTGGGGGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGA210
was found in aTTCTCTTCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAA
patient who developedACACGCACCTCAAAGCTGTTCCGTCCCAGTAGATTACC
osteosarcoma at the
age of 10 years.GGAGAGACCGGCGCACA211
|
TGTGCGCCGGTCTCTCC212
|
In 5 of 6 anaplasticGCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGACG213
carcinomas of theGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGA
thyroid and in anCCGGCGCACAGAGGAAGAGAATCTCCGCAAGAAAGG
anaplastic carcinoma
thyroid cell line ARO, aCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTC214
CGT-to-CAT mutationCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCC
convertedAGTAGATTACCACTACTCAGGATAGGAAAAGAGAAGC
arginine-273 to
histidine.TGAGGTGCGTGTTTGTG215
|
CACAAACACGCACCTCA216
|
A germlineTCCTAGCACTGCCCAACAACACCAGCTCCTCTCCCCAGCCAA217
GGA-to-GTA mutationAGAAGAAACCACTGGATGGAGAATATTTCACCCWTCAGGTACT
resulting in a changeAAGTCTTGGGACCTCTTATCAAGTGGAAAGTTTCCA
of
glycine-325 to valineTGGAAACTTTCCACTTGATAAGAGGTCCCAAGACTTAGTACCT218
was found in a patientGAAGGGTGAAATATTCTCCATCCAGTGGTTTCTTCTTTGGCTG
who had non-HodgkinGGGAGAGGAGCTGGTGTTGTTGGGCAGTGCTAGGAA
lymphoma diagnosed
at age 17 and colonACTGGATGGAGAATATT219
carcinoma at age 26.
AATATTCTCCATCCAGT220
|
CGC-CCCAATGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAA221
Arg-72 to ProTGCCAGAGGCTGCTCCCCGCGTGGCCCCTGCACCAGCAGCT
association with LungCCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCC
cancer
GGCCAGGAGGGGGCTGGTGCAGGGGCCGCCGGTGTAGGAG222
CTGCTGGTGCAGGGGCCACGCGGGGAGCAGCCTCTGGCATT
CTGGGAGCTTCATCTGGACCTGGGTCTTCAGTGAACCATT
|
TGCTCCCCGCGTGGCCC223
|
GGGCCACGCGGGGAGCA224
|
CCG-CTGAAGCTCCCAGAATGCCAGAGGCTGCTCCCCGCGTGGCCCCT225
Pro-82 to LeuGCACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCC
Breast cancerCTCCTGGCCCCTGTCATCTTCTGTCCCTTCCCAGAAAAC
|
GTTTTCTGGGAAGGGACAGAAGATGACAGGGGCCAGGAGGG226
GGCTGGTGCAGGGGCCGCCGGTGTAGGAGCTGCTGGTGCA
GGGGCCACGCGGGGAGCAGCCTCTGGCATTCTGGGAGCTT
|
TCCTACACCGGCGGCCC227
|
GGGCCGCCGGTGTAGGA228
|
cCAA-TAATTCAACTCTGTCTCCTTCCTCTTCCTACAGTACTCCCCTGCCC229
Gln-136 to TermTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGC
Li-Fraumeni syndromeAGCTGTGGGTTGATTCCACACCCCCGCCCGGCACCC
|
GGGTGCCGGGCGGGGGTGTGGAATCAACCCACAGCTGCACA230
GGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCA
GGGGAGTACTGTAGGAAGAGGAAGGAGACAGAGTTGAA
|
TGTTTTGCCAACTGGCC231
|
GGCCAGTTGGCAAAACA232
|
TGC-TACTCCTCTTCCTACAGTACTCCCCTGCCCTCAACAAGATGTTTTG233
Cys-141 to TyrCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTC
Li-Fraumeni syndromeCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGC
|
GCCATGGCGCGGACGCGGGTGCCGGGCGGGGGTGTGGAAT234
CAACCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAA
AACATCTTGTTGAGGGCAGGGGAGTACTGTAGGAAGAGGA
|
CAAGACCTGCCCTGTGC235
|
GCACAGGGCAGGTCTTG236
|
aCCC-TCCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAG237
Pro-151 to SerCTGTGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCG
Li-Fraumeni syndromeCGCCATGGCCATCTACAAGCAGTCACAGCACATGACGG
|
CCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCGCGG238
ACGCGGGTGCCGGGCGGGGGTGTGGAATCAACCCACAGCT
GCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTT
|
ATTCCACACCCCCGCCC239
|
GGGCGGGGGTGTGGAAT240
|
CCG-CTGAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGT241
Pro-152 to LeuGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCC
AdrenocorticalATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGT
carcinoma
ACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCG242
CGGACGCGGGTGCCGGGCGGGGGTGTGGAATCAACCCACA
GCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCT
|
CACACCCCCGCCCGGCA243
|
TGCCGGGCGGGGGTGTG244
|
GGC-GTCTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTG245
Gly-154 to ValATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCC
GlioblastomaATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAG
|
CTCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCC246
ATGGCGCGGACGCGGGTGCCGGGCGGGGGTGTGGAATCAA
CCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAA
|
CCCGCCCGGCACCCGCG247
|
CGCGGGTGCCGGGCGGG248
|
CGC-CACCCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCAC249
Arg-175 to HisATGACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTG
Li-Fraumeni syndromeCTCAGATAGCGATGGTGAGCAGCTGGGGCTGGAGAGACG
|
CGTCTCTCCAGCCCCAGCTGCTCACCATCGCTATCTGAGCAG250
CGCTCATGGTGGGGGCAGCGCCTCACAACCTCCGTCATGTG
CTGTGACTGCTTGTAGATGGCCATGGCGCGGACGCGGG
|
TGTGAGGCGCTGCCCCC251
|
GGGGGCAGCGCCTCACA252
|
tGAG-AAGATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTG253
GTu-180 to LysAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGG
Li-Fraumeni syndromeTGAGCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGC
|
GCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTCACCAT254
CGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCCTCACA
ACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCAT
|
CCCACCATGAGCGCTGC255
|
GCAGCGCTCATGGTGGG256
|
gCGC-TGCGCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGG257
Arg-181 to CysCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTGA
Breast cancerGCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGCCCA
|
TGGGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTCA258
CCATCGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCCT
CACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGC
|
ACCATGAGCGCTGCTCA259
|
TGAGCAGCGCTCATGGT260
|
CGC-CACCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGGC261
Arg-81 to HisGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTGAG
Breast cancerCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGCCCAG
|
CTGGGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTC262
ACCATCGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCC
TCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGG
|
CCATGAGCGCTGCTCAG263
|
CTGAGCAGCGCTCATGG264
0
CAT-CGTCCAGGGTCCCCAGGCCTCTGATTCCTCACTGATTGCTCTTAG265
His-193 to ArgGTCTGGCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATT
Li-Fraumeni syndromeTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCG
|
CGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAATTTC266
CTTCCACTCGGATAAGATGCTGAGGAGGGGCCAGACCTAAGA
GCAATCAGTGAGGAATCAGAGGCCTGGGGACCCTGG
|
TCCTCAGCATCTTATCC267
|
GGATAAGATGCTGAGGA268
|
cCGA-TGACCCAGGCCTCTGATTCCTCACTGATTGCTCTTAGGTCTGGCC269
Arg-196 to TermCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTG
AdrenocorticalGAGTATTTGGATGACAGAAACACTTTTCGACATAGTG
carcinoma
CACTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACG270
CAAATTTCCTTCCACTCGGATAAGATGCTGAGGAGGGGCCAG
ACCTAAGAGCAATCAGTGAGGAATCAGAGGCCTGGG
|
ATCTTATCCGAGTGGAA271
|
TTCCACTCGGATAAGAT272
|
cAGA-TGAGCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGT273
Arg-209 to TermGTGGAGTATTTGGATGACAGAAACACTTTTCGACATAGTGTG
Li-Fraumeni syndromeGTGGTGCCCTATGAGCCGCCTGAGGTCTGGTTTGCAA
|
TTGCAAACCAGACCTCAGGCGGCTCATAGGGCACCACCACA274
CTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCA
AATTTCCTTCCACTCGGATAAGATGCTGAGGAGGGGC
|
TGGATGACAGAAACACT275
|
AGTGTTTCTGTCATCCA276
|
tCGA-TGACATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTG277
Arg-213 to TermGATGACAGAAACACTTTTCGACATAGTGTGGTGGTGCCCTAT
Li-Fraumeni syndromeGAGCCGCCTGAGGTCTGGTTTGCAACTGGGGTCTCTG
|
CAGAGACCCCAGTTGCAAACCAGACCTCAGGCGGCTCATAG278
GGCACCACCACACTATGTCGAAAAGTGTTTCTGTCATCCAAAT
ACTCCACACGCAAATTTCCTTCCACTCGGATAAGATG
|
ACACTTTTCGACATAGT279
|
ACTATGTCGAAAAGTGT280
|
gCCC-TCCGGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTC281
Pro-219 to SerGACATAGTGTGGTGGTGCCCTATGAGCCGCCTGAGGTCTGG
AdrenocorticalTTTGCAACTGGGGTCTCTGGGAGGAGGGGTTAAGGGT
carcinoma
ACCCTTAACCCCTCCTCCCAGAGACCCCAGTTGCAAACCAGA282
CCTCAGGCGGCTCATAGGGCACCACCACACTATGTCGAAAAG
TGTTTCTGTCATCCAAATACTCCACACGCAAATTTCC
|
TGGTGGTGCCCTATGAG283
|
CTCATAGGGCACCACCA284
|
TAT-TGTATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGACA285
Tyr-220 to CysTAGTGTGGTGGTGCCCTATGAGCCGCCTGAGGTCTGGTTTG
Li-Fraumeni syndromeCAACTGGGGTCTCTGGGAGGAGGGGTTAAGGGTGGTT
|
AACCACCCTTAACCCCTCCTCCCAGAGACCCCAGTTGCAAAC286
CAGACCTCAGGCGGCTCATAGGGCACCACCACACTATGTCG
AAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAAT
|
GGTGCCCTATGAGCCGC287
|
GCGGCTCATAGGGCACC288
|
cTCT-ACTCACAGGTCTCCCCAAGGCGCACTGGCCTCATCTTTGGGCCTG289
Ser-227 to ThrTGTTATCTCCTAGGTTGGCTCTGACTGTACCACCATCCACTAC
RhabdomyosarcomaAACTACATGTGTAACAGTTCCTGCATGGGCGGCATGA
|
TCATGCCGCCCATGCAGGAACTGTTACACATGTAGTTGTAGT290
GGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAACACAG
GCCCAAGATGAGGCCAGTGCGCCTTGGGGAGACCTGTG
|
AGGTTGGCTCTGACTGT291
|
ACAGTCAGAGCCAACCT292
|
cCAC-AACGCACTGGCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGC293
His-233 to AsnTCTGACTGTACCACCATCCACTACAACTACATGTGTAACAGTT
GliomaCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCA
|
TGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTG294
TTACACATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCA
ACCTAGGAGATAACACAGGCCCAAGATGAGGCCAGTGC
|
CCACCATCCACTACAAC295
|
GTTGTAGTGGATGGTGG296
|
cAAC-GACGCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGCTCTGAC297
Asn-235 to AspTGTACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCA
AdrenocorticalTGGGCGGCATGAACCGGAGGCCCATCCTCACCATCA
carcinoma
TGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAG298
GAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTCA
GAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGGC
|
TCCACTACAACTACATG299
|
CATGTAGTTGTAGTGGA300
|
AAC-AGCCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGCTCTGACT301
Asn-235 to SerGTACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCAT
RhabdomyosarcomaGGGCGGCATGAACCGGAGGCCCATCCTCACCATCAT
|
ATGATGGTGAGGATGGGCCTCCGGTTTCATGCCGCCCATGCA302
GGAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTC
AGAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGG
|
CCACTACAACTACATGT303
|
ACATGTAGTTGTAGTGG304
|
ATCc-ATGCATCCACTACAACTACATGTGTAACAGTTCCTGCATGGGCGG305
Ile-251 to MetCATGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGA
GliomaCTCCAGGTCAGGAGCCACTTGCCACCCTGCACACTGG
|
CCAGTGTGCAGGGTGGCAAGTGGCTCCTGACGTGGAGTCTT306
CCAGTGTGATGATGGTGAGGATGGGCCTCCGGTTCATGCCG
CCCATGCAGGAACTGTTACACATGTAGTTGTAGTGGATG
|
AGGCCCATCCTCACCAT307
|
ATGGTGAGGATGGGCCT308
|
ACA-ATAACATGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGG309
Thr-256 to IleCCCATCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGA
GlioblastomaGCCACTTGCCACCCTGCACACTGGCCTGCTGTGCCCCA
|
TGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGTGGCTCC310
TGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGGGCCT
CCGGTTCATGCCGCCCATGCAGGAACTGTTACACATGT
|
CATCATCACACTGGAAG311
|
CTTCCAGTGTGATGATG312
|
CTG-CAGTGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCC313
Leu-257 to GlnATCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGCC
Li-Fraumeni syndromeACTTGCCACCCTGCACACTGGCCTGCTGTGCCCCAGCC
|
GGCTGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGTGG314
CTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGG
GCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACA
|
CATCACACTGGAAGACT315
|
AGTCTTCCAGTGTGATG316
|
CTG-CCGGACCTGATTTCCTTACTGCCTCTTGCTTCTCTTTTCCTATCCT317
Leu-265 to ProGAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCG
Li-Fraumeni syndromeTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGA
|
TCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCAC318
CTCAAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGAT
AGGAAAAGAGAAGCAAGAGGCAGTAAGGAAATCAGGTC
|
TAATCTACTGGGACGGA319
|
TCCGTCCCAGTAGATTA320
|
gCGT-TGTTGCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGAC321
Arg-273 to CysGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGA
Li-Fraumeni syndromeGACCGGCGCACAGAGGAAGAGAATCTCCGCAAGAAAG
|
cmCTrGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCC322
CAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCA
GTAGATTACCACTACTCAOGATAGGAAAAGAGAAGCA
|
TTGAGGTGCGTGTTTGT323
|
ACAAACACGCACCTCAA324
|
TGT-TATCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGACGGAACA325
Cys-275 to TyrGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGG
Li-Fraumeni syndromeCGCACAGAGGAAGAGAATCTCCGCAAGAAAGGGGAGCC
|
GGCTCCCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGG326
TCTCTCCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTC
CGTCCCAGTAGATTACCACTACTCAGGATAGGAAAAG
|
GCGTGTTTGTGCCTGTC327
|
GACAGGCACAAACACGC328
|
CCT-CTTTCCTGAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGG329
Pro-278 to LeuTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAG
Breast cancerGAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGA
|
TCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTCCTCT330
GTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCACCTC
AAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGA
|
TGCCTGTCCTGGGAGAG331
|
CTCTCCCAGGACAGGCA332
|
AGA-AAAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTG333
Arg-280 to LysTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAGGAAGAG
GliomaAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCC
|
GGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCT334
TCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACG
CACCTCAAAGCTGTTCCGTCCCAGTAGATTACCACTAC
|
TCCTGGGAGAGACCGGC335
|
GCCGGTCTCTCCCAGGA336
|
GAA-GCAGGAACAGCTTTGAGGTGCGTGWTTGTGCCTGTCCTGGGAGA337
GTu-286 to AlaGACCGGCGCACAGAGGAAGAGAATCTCCGCAAGAATTAGGGGA
AdrenocorticalGCCTCACCACGAGCTGCCCCCAGGGAGCACTAAGCGAGG
carcinoma
CCTCGCTTAGTGCTCCCTGGGGGCAGCTCGTGGTGAGGCTC338
CCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCT
CCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCC
|
AGAGGAAGAGAATCTCC339
|
GGAGATTCTCTTCCTCT340
|
CGA-CCAAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTG341
Arg-306 to ProCCCCCAGGGAGCACTAAGCGAGGTAAGCAAGCAGGACAAGA
RhabdomyosarcomaAGCGGTGGAGGAGACCAAGGGTGCAGTTATGCCTCAGAT
|
ATCTGAGGCATAACTGCACCCTTGGTCTCCTCCACCGCTTCT342
TGTCCTGCTTGCTTACCTCGCTTAGTGCTCCCTGGGGGCAGC
TCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTT
|
CACTAAGCGAGGTAAGC343
|
GCTTACCTCGCTTAGTG344
|
gCGA-TGAGAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCT345
Arg-306 to TermGCCCCCAGGGAGCACTAAGCGAGGTAAGCAAGCAGGACAAG
Li-Fraumeni syndromeAAGCGGTGGAGGAGACCAAGGGTGCAGTTATGCCTCAGA
|
TCTGAGGCATAACTGCACCCTTGGTCTCCTCCACCGCTTCTT346
GTCCTGCTTGCTTACCTCGCTTAGTGCTCCCTGGGGGCAGCT
CGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTC
|
GCACTAAGCGAGGTAAG347
|
CTTACCTCGCTTAGTGC348
|
gCGC-TGCGGTACTGTGAATATACTTACTTCTCCCCCTCCTCTGTTGCTGC349
Arg-337 to CysAGATCCGTGGGCGTGAGCGCTTCGAGATGTTCCGAGAGCTG
OsteosarcomaAATGAGGCCTTGGAACTCAAGGATGCCCAGGCTGGGA
|
TCCCAGCCTGGGCATCCTTGAGTTCCAAGGCCTCATTCAGCT350
CTCGGAACATCTCGAAGCGCTCACGCCCACGGATCTGCAGC
AACAGAGGAGGGGGAGAAGTAAGTATATTCACAGTACC
|
GGCGTGAGCGCTTCGAG351
|
CTCGAAGCGCTCACGCC352
|
CTG-CCGCTCTCCCCCTCCTCTGTTGCTGCAGATCCGTGGGCGTGAGCGC353
Leu-344 to ProTTCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCAAG
Li-Fraumeni syndromeGATGCCCAGGCTGGGAAGGAGCCAGGGGGGAGCAGGGC
|
GCCCTGCTCCCCCCTGGCTCCTTCCCAGCCTGGGCATCCTT354
GAGTTCCAAGGCCTCATTCAGCTCTCGGAACATCTCGAAGCG
CTCACGCCCACGGATCTGCAGCAACAGAGGAGGGGGAG
|
CCGAGAGCTGAATGAGG355
|
CCTCATTCAGCTCTCGG356
|
Beta Globin
[0114] Hemoglobin, the major protein in the red blood cell, binds oxygen reversibly and is responsible for the cells' capacity to transport oxygen to the tissues. In adults, the major hemoglobin is hemoglobin A, a tetrameric protein consisting of two identical alpha globin chains and two beta globin chains. Disorders involving hemoglobin are among the most common genetic disorders worldwide, with approximately 5% of the world's population being carriers for clinically important hemoglobin mutations. Approximately 300,000 severely affected homozygotes or compound heterozygotes are born each year.
[0115] Mutation of the glutamic acid at position 7 in beta globin to valine causes sickle cell anemia, the clinical manifestations of which are well known. Mutations that cause absence of beta chain cause beta-zero-thalassemia. Reduced amounts of detectable beta globin causes beta-plus-thalassemia. For clinical purposes, beta-thalassemia is divided into thalassemia major (transfusion dependent), thalassemia intermedia (of intermediate severity), and thalassemia minor (asymptomatic). Patients with thalassemia major present in the first year of life with severe anemia; they are unable to maintain a hemoglobin level about 5 gm/dl.
[0116] The beta-thalassemias were among the first human genetic diseases to be examined by means of recombinant DNA analysis. Baysal et al., Hemoglobin 19(3-4):213-36 (1995) and others provide a compendium of mutations that result in beta-thalassemia.
[0117] Hemoglobin disorders were among the first to be considered for gene therapy. Transcriptional silencing of genes transferred into hematopoietic stem cells, however, poses one of the most significant challenges to its success. If the transferred gene is not completely silenced, a progressive decline in gene expression is often observed. Position effect variegation (PEV) and silencing mechanisms may act on a transferred globin gene residing in chromatin outside of the normal globin locus during the important terminal phases of erythroblast development when globin transcripts normally accumulate rapidly despite heterochromatization and shutdown of the rest of the genome. The attached table discloses the correcting oligonucleotide base sequences for the beta globin oligonucleotides of the invention.
13TABLE 12
|
|
Beta Globin Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Sickle Cell AnemiaTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCA357
GLU-7-VALTGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCC
GAG to GTGCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGA
|
TCACCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCA358
GTAACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGGT
GTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGA
|
GACTCCTGAGGAGAAGT359
|
ACTTCTCCTCAGGAGTC360
|
Thalassaemia BetaCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA361
MET-0-ARGACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGA
ATG to AGGAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT
|
ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC362
CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT
AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG
|
AGACACCATGGTGCACC363
|
GGTGCACCATGGTGTCT364
|
Thalassaemia BetaTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA365
MET-0-ILECCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAA
ATG to ATAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTG
|
CACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCT366
CCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGC
TAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATA
|
GACACCATGGTGCACCT367
|
AGGTGCACCATGGTGTC368
|
Thalassaemia BetaTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA369
MET-0-ILECCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAT
ATG to ATTGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTG
|
CACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCT370
CCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGC
TAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATA
|
GACACCATGGTGCACCT371
|
AGGTGCACCATGGTGTC372
|
Thalassaemia BetaCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA373
MET-0-LYSACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGA
ATG to AAGAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT
|
ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC374
CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT
AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG
|
AGACACCATGGTGCACC375
|
GGTGCACCATGGTGTCT376
|
Thalassaemia BetaCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA377
MET-0-THRACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGA
ATG to ACGAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT
|
ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC378
CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT
AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG
|
AGACACCATGGTGCACC379
|
GGTGCACCATGGTGTCT380
|
Thalassaemia BetaTCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGC381
MET-0-VALAACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAG
ATG to GTGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACG
|
CGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCC382
TCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCTAG
TGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAGA
|
CAGACACCATGGTGCAC383
|
GTGCACCATGGTGTCTG384
|
Thalassaemia BetaTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGT385
TRP-16-TermCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAA
TGG to TGAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTA
|
TAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTTC386
ATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACT
TCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGA
|
GCCCTGTGGGGCAAGGT387
|
ACCTTGCCCCACAGGGC388
|
Thalassaemia BetaCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAG389
TRP-16-TermTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGA
TGG to TAGAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTT
|
AACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTTCA390
TCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTT
CTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAG
|
TGCCCTGTGGGGCAAGG391
|
CCTTGCCCCACAGGGCA392
|
Thalassaemia BetaACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGC393
LYS-18-TermCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTG
AAG to TAGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAG
|
CTTGTAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAA394
CTTCATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCA
GACTTCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGT
|
TGTGGGGCAAGGTGAAC395
|
GTTCACCTTGCCCCACA396
|
Thalassaemia BetaCCATGGTGCACCTGACTCGTGAGGAGAAGTCTGCCGTTACT397
ASN-20-SERGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGA
AAC to AGCGGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGGTT
|
AACCTGTCTTGTAACCTTGATACCAACCTGCCCAGGGCCTCA398
CCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCAGTA
ACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGG
|
CAAGGTGAACGTGGATG399
|
CATCCACGTTCACCTTG400
|
Thalassaemia BetaACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGG401
GLU-23-ALAGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGG
GAA to GCAGCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGAC
|
GTCTCCTTAAACCTGTCTTGTAACCTTGATACCAACCTGCCC402
AGGGCCTCACCACCAACTTCATCCACGTTCACCTTGCCCCAC
AGGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGT
|
CGTGGATGAAGTTGGTG403
|
CACCAACTTCATCCACG404
|
Thalassaemia BetaCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTG405
GLU-23-termGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTG
GAA to TAAGGCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGA
|
TCTCCTTAAACCTGTCTTGTAACCTTGATACCAACCTGCCCA406
GGGCCTCACCACCAACTTCATCCACGTTCACCTTGCCCCACA
GGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGTG
|
ACGTGGATGAAGTTGGT407
|
ACCAACTTCATCCACGT408
|
Thalassaemia BetaGAGGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAA409
GLU-27-LYSCGTGGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTAT
GAG to AAGCAAGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACT
|
AGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGATAC410
CAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGTTCA
CTTTGCCCCACAGGGCATTGACAGCAGTCTTCTCCTC
|
TTGGTGGTGAGGCCCTG411
|
CAGGGCCTCACCACCAA412
|
Thalassaemia BetaGAGGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAA413
GLU-27-TermCGTGGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTAT
GAG to TAGCAAGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACT
|
AGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGATAC414
CAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGTTCA
CTTTGCCCCACAGGGCATTGACAGCAGTCTTCTCCTC
|
TTGGTGGTGAGGCCCTG415
|
CAGGGCCTCACCACCAA416
|
Thalassaemia BetaGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAACGT417
ALA-28-SERGGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAA
GCC to TCCGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACTGGG
|
CCCAGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGA418
TACCAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGT
TCACTTTGCCCCACAGGGCATTGACAGCAGTCTTCTC
|
GTGGTGAGGCCCTGGGC419
|
GCCCAGGGCCTCACCAC420
|
Thalassaemia BetaCTGTCAATGCCCTGTGGGGCAAAGTGAACGTGGATGCAGTT421
ARG-31-THRGGTGGTGAGGCCCTGGGCAGGTTGGTATGAAGGTTATAAGA
AGG to ACGGAGGCTCAAGGAGGCAAATGGAAACTGGGCATGTGTAGA
|
TCTACACATGCCCAGTTTCCATTTGCCTCCTTGAGCCTCTCTT422
ATAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTG
CATCCACGTTCACTTTGCCCCACAGGGCATTGACAG
|
CCTGGGCAGGTTGGTAT423
|
ATACCAACCTGCCCAGG424
|
Thalassaemia BetaTGGGTTTCTGATAGGCACTGACTCTCTGTCCCTTGGGCTGTT425
Leu-33-GLNTTCCTACCCTCAGATTACTGGTGGTCTACCCTTGGACCCAGA
CTG to CAGGGTTCTTTGAGTCCTTTGGGGATCTGTCCTCTCCTGA
|
TCAGGAGAGGAGAGATCCCCAAAGGACTCAAAGAACCTCTG426
GGTCCAAGGGTAGACCACCAGTAATCTGAGGGTAGGAAAAC
AGCCCAAGGGACAGAGAGTCAGTGCCTATCAGAAACCCA
|
CAGATTACTGGTGGTCT427
|
AGACCACCAGTAATCTG428
|
Thalassaemia BetaATAGGCACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCT429
TYR-36-TermCAGATTACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGA
TAC to TAAGTCCTTTGGGGATCTGTCCTCTCCTGATGCTGTTATG
|
CATAACAGCATCAGGAGAGGACAGATCCCCAAAGGACTCAAA430
GAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCTGAGGG
TAGGAAAACAGCCCAAGGGACAGAGAGTCAGTGCCTAT
|
GTGGTCTACCCTTGGAC431
|
GTCCAAGGGTAGACCAC432
|
Thalassaemia BetaACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGATT433
TRP-38-TermACTGGTGGTCTACCCGTTGGACCCAGAGGTTCTTTGAGTCCTT
TGG to TGATGGGGATCTGTCCTCTCCTGATGCTGTTATGGGCAAC
|
GTTGCCCATAACAGCATCAGGAGAGGACAGATCCCCAAAGG434
ACTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAGTAATC
TGAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGT
|
TACCCTTGGACCCAGAG435
|
CTCTGGGTCCAAGGGTA436
|
Thalassaemia BetaCACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGAT437
TRP-38-TermTACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTGAGTCCT
TGG to TAGTTGGGGATCTGTCCTCTCCTGATGCTGTTATGGGCAA
|
TTGCCCATAACAGCATCAGGAGAGGACAGATCCCCAAAGGA438
CTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCT
GAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGTG
|
CTACCCTTGGACCCAGA439
|
TCTGGGTCCAAGGGTAG440
|
Thalassaemia BetaACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGATTACTG441
GLN-40-TermGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGG
CAG-TAGGATCTGTCCTCTCCTGATGCTGTTATGGGCAACCCTA
|
TAGGGTTGCCCATAACAGCATCAGGAGAGGACAGATCCCCA442
AAGGACTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAG
TAATCTGAGGGTAGGAAAACAGCCCAAGGGAGAGAGAGT
|
CTTGGACCCAGAGGTTC443
|
GAACCTCTGGGTCCAAG444
|
Thalassaemia BetaTTGGGCTGTTTTCCTACCCTCAGATTACTGGTGGTCTACCCT445
GLU-44-TermTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCTCT
GAG to TAGCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTC
|
GAGCCTTCACCTTAGGGTTGCCCATAACAGCATCAGGAGAG446
GACAGATCCCCAAAGGACTCAAAGAACCTGTGGGTCCAAGG
GTAGACCACCAGTAATCTGAGGGTAGGAAAACAGCCCAA
|
GGTTCTTTGAGTCCTTT447
|
AAAGGACTCAAAGAACC448
|
Thalassaemia BetaTTCTTTGAGTCCTTTGGGGATCTGTCCTCTCCTGATGCTGTTA449
LYS-62-TermTGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAGGTGCTA
AAG to TAGGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACC
|
GGTTGTCCAGGTGAGCCAGGCCATCACTAAAGGCACCTAGC450
ACCTTCTTGCCATGAGCCTTCACCTTAGGGTTGCCCATAACA
GCATCAGGAGAGGACAGATCCCCAAAGGACTCAAAGAA
|
CTAAGGTGAAGGCTCAT451
|
ATGAGCCTTCACCTTAG452
|
Thalassaemia BetaTGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGA453
SER-73-ARGAGGTGCTAGGTGCCTTTAGTGATGGCCTGGCTCACCTGGAC
AGT to AGAAACCTCAAGGGCACTTTTTCTCAGCTGAGTGAGCTGCAC
|
GTGCAGCTCACTCAGCTGAGAAAAAGTGCCCTTGAGGTTGTC454
CAGGTGAGCCAGGCCATCACTAAAGGCACCTAGCACCTTCT
TGCCATGAGCCTTCACCTTAGGGTTGCCCATAACAGCA
|
GCCTTTAGTGATGGCCT455
|
AGGCCATCACTAAAGGC456
|
Haemolylic AnaemiaTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAGGTG457
GLY-75-VALCTAGGTGCCTTTTAGTGATGGCCTGGCTCACCTGGACAACCT
GGC to GTCCAAGGGCACTTTTTCTCAGCTGAGTGAGCTGCACTGTGA
|
TCACAGTGCAGCTCACTCAGCTGAGAAAAAGTGCCCTTGAG458
GTTGTCCAGGTGAGCCAGGCCATCACTAAAGGCACCTAGCA
CCTTCTTGCCATGAGCCTTCACCTTAGGGTTGCCCATAA
|
TAGTGATGGCCTGGCTC459
|
GAGCCAGGCCATCACTA460
|
Thalassaemia BetaGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGG461
GLU-91-TermCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGC
GAG to TAGACGTGGATCCTGAGAACTTCAGGGTGAGTCTATGGGACC
|
GGTCCCATAGACTCACCCTGAAGTTCTCAGGATCCACGTGCA462
GCTTGTCACAGTGCAGCTCACTCAGTGTGGCAAAGGTGCCC
TTGAGGTTGTCCAGGTGAGCCAGGCCATCACTAAAGGC
|
CACTGAGTGAGCTGCAC463
|
GTGCAGCTCACTCAGTG464
|
Thalassaemia BetaCTGGACAACCTCAAGGGCACTTTTTCTCAGCTGAGTGAGCTG465
VAL-99-METCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGGT
GTG to ATGGAGTCCAGGAGATGCTTCACTTTTCTCTTTTTACTTTC
|
GAAAGTAAAAAGAGAAAAGTGAAGCATCTCCTGGACTCACCC466
TGAAGTTCTCAGGATCCACGTGCAGCTTGTCACAGTGCAGCT
CACTCAGCTGAGAAAAAGTGCCCTTGAGGTTGTCCAG
|
AGCTGCACGTGGATCCT467
|
AGGATCCACGTGCAGCT468
|
Thalassaemia BetaCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACA469
LEU-111-PROGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACT
CTG-CCGTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTA
|
TAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCCAAAGTG470
ATGGGCCAGCACACAGACCAGCACGTTGCCCAGGAGCTGTG
GGAGGAAGATAAGAGGTATGAACATGATTAGCAAAAGGG
|
CAACGTGCTGGTCTGTG471
|
CACAGACCAGCACGTTG472
|
Thalassaemia BetaGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTG473
CYS-113-TermGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAA
TGT to TGAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAA
|
TTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCC474
AAAGTGATGGGCCAGCACACAGACCAGCACGTTGCCCAGGA
GCTGTGGGAGGAAGATAAGAGGTATGAACATGATTAGC
|
CTGGTCTGTGTGCTGGC475
|
GCCAGCACACAGACCAG476
|
Thalassaemia BetaTCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCA477
LEU-115-PROACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAAT
CTG to CCGTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGT
|
ACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCT478
TTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCC
CAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACATGA
|
CTGTGTGCTGGCCCATC479
|
GATGGGCCAGCACACAG480
|
Thalassaemia BetaTGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACG481
ALA-116-ASPTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
GCC to GACCCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGC
|
GCCACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAA482
TTCTTTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTT
GCCCAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACA
|
TGTGCTGGCCCATCACT483
|
AGTGATGGGCCAGCACA484
|
Thalassaemia BetaTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCT485
GLU-122-TermGGCCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGG
GAA to TAACTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCC
|
GGGCATTAGCCACACCAGCCACCACTTTCTGATAGGCAGCC486
TGCACTGGTGGGGTGAATTCTTTGCCAAAGTGATGGGCCAG
CACACAGACCAGCACGTTGCCCAGGAGCTGTGGGAGGAA
|
TTGGCAAAGAATTCACC487
|
GGTGAATTCTTTGCCAA488
|
Thalassaemia BetaGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAA489
GLN-128-PROGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGT
CAG to CCGGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTA
|
TAGTGATACTTGTGGGCCAGGGCATTAGCCACACCAGCCAC490
CACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTT
GCCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGC
|
ACCAGTGCAGGCTGCCT491
|
AGGCAGCCTGCACTGGT492
|
Thalassaemia BetaGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAA493
GLN-128-TermAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGT
CAG to TAGGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACT
|
AGTGATACTTGTGGGCCAGGGCATTAGCCACACCAGCCACC494
ACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTG
CCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCC
|
CACCAGTGCAGGCTGCC495
|
GGCAGCCTGCACTGGTG496
|
Thalassaemia BetaGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACCCCA497
GLN-132-LYSCCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGC
CAG to AAGTAATGCCCTGGCCCACAAGTATCACTAAGCTCGCTTTC
|
GAAAGCGAGCTTAGTGATACTTGTGGGCCAGGGCATTAGCC498
ACACCAGCCACCACTTTCTGATAGGCAGCCTGCACTGGTGG
GGTGAATTCTTTGCCAAAGTGATGGGCCAGCACACAGAC
|
CTGCCTATCAGAAAGTG499
|
CACTTTCTGATAGGCAG500
|
Retinoblastoma
[0118] Retinoblastoma (RB) is an embryonic neoplasm of retinal origin. It almost always presents in early childhood and is often bilateral. The risk of osteogenic sarcoma is increased 500-fold in bilateral retinoblastoma patients, the bone malignancy being at sites removed from those exposed to radiation treatment of the eye tumor.
[0119] The retinoblastoma susceptibility gene (pRB; pRb) plays a pivotal role in the regulation of the cell cycle. pRB restrains cell cycle progression by maintaining a checkpoint in late G1 that controls commitment of cells to enter S phase. The critical role that pRB plays in cell cycle regulation explains its status as archetypal tumor suppressor: loss of pRB function results in an inability to maintain control of the G1 checkpoint; unchecked progression through the cell cycle is, in turn, a hallmark of neoplasia.
[0120] Blanquet et al., Hum. Molec. Genet. 4: 383-388 (1995) performed a mutation survey of the RB1 gene in 232 patients with hereditary or nonhereditary retinoblastoma. They systematically explored all 27 exons and flanking sequences, as well as the promoter. All types of point mutations were represented and found to be unequally distributed along the RB1 gene sequence. In the population studied, exons 3, 8, 18, and 19 were preferentially altered. The attached table discloses the correcting oligonucleotide base sequences for the retinoblastoma oligonucleotides of the invention.
14TABLE 13
|
|
pRB Mutations and Genome-Correcting Oligos
Clinical PhenotypeSEQ ID
MutationCorrecting OligosNO:
|
RetinoblastomaAATATTTGATCTTTATTTTTTGTTCCCAGGGAGGTTATATTCAA501
Trp99TermAAGAAAAAGGAACTGTGGGGAATCTGTATCTTTATTGCAGCA
TGG-TAGGTTGACCTAGATGAGATGTCGTTCACTTTTACTGA
TCAGTAAAAGTGAACGACATCTCATCTAGGTCAACTGCTGCA502
ATAAAGATACAGATTCCCCACAGTTCCTTTTTCTTTTGAAIATA
ACCTCCCTGGGAACAAAAAATAAAGATCAAATATT
GGAACTGTGGGGAATCT503
AGATTCCCCACAGTTCC504
|
RetinoblastomaATTTACTTTTTTCTATTCTTTCCTTTGTAGTGTCCATAAATTCTT505
Glu137AspTAACTTACTAAAAGAAATTGATACCAGTACCAAAGTTGATAAT
GAA-GATGCTATGTCAAGACTGTTGAAGAAGTATGAIGTA
TACATCATACTTCTTCAACAGTCTTGACATAGCATTATCAACTT506
TGGTACTGGTATCAATTTCTTTTAGTAAGTTAAAGAATTTATGG
ACACTACAAAGGAAAGAATAGAAAAAAGTAAAT
CTAAAAGAAATTGATAC507
GTATCAATTTCTTTTAG508
|
RetinoblastomaTGATTTACTTTTTTTCTATTCTTTCCTTTGTAGTGTCCATAAATT509
Glu137TermCTTTAACTTACTAAAAGAAATTGATACCAGTACCAAAGTTGAT
GAA-TAAAATGCTATGTCAAGACTGTTGAAGAAGTATGATG
CATCATACTTCTTCAACAGTCTTGACATAGCATTATCAACTTT510
GGTACTGGTATCAATTTCTTTTAGTAAGTTAAAGAATTTATGG
ACACTACAAAGGAAAGAATAGAAAAAAGTAAATCA
TACTAAAAGAAATTGAT511
ATCAATTTCTTTTAGTA512
|
RetinoblastomaAAAATGTTAAAAAGTCATAATGTTTTTCTTTTCAGGACATGTGA513
Gln176TermACTTATATATTTGACACAACCCAGCAGTTCGTAAGTAGTTCAC
CAA-TAAAGAATGTTATTTTTCACTTAAAAAAAAAGATTTT
AAAATCTTTTTTTTTAAGTGAAAAATAACATTCTGTGAACTACT514
TACGAACTGCTGGGTTGTGTCAAATATATAAGTTCACATGTCC
TGAAAAGAAAAACATTATGACTTTTTAACATTTT
ATTTGACACAACCCAGC515
GCTGGGTTGTGTCAAAT516
|
RelinoblastomaTGATACATTTTTCCTGTTTTTTTTCTGCTTTCTATTTGTTTAATA517
lle185ThrGGATATCTACTGAAATAAATTCTGCATTGGTGCTAAAAGTTTC
ATA-ACATTGGATCACATTTTTATTAGCTAAAGGTAAGTT
AACTTACCTTTAGCTAATAAAAATGTGATCCAAGAAACTTTTA518
GCACCAATGCAGAATTTATTTCAGTAGATATCCTATTAAACAA
ATAGAAAGCAGAAAAAAAACAGGAAAAATGTATCA
TACTGAAATAAATTCTG519
CAGAATTTATTTCAGTA520
|
RetinoblastomaAAAGATCTGAATCTCTAACTTTCTTTAAAAATGTACATTTTTTT521
Gln207TermTTCAGGGGAAGTATTACAAATGGAAGATGATCTGGTGATTTC
CAA-TAAATTTCAGTTAATGCTATGTGTCCTTGACTATTTTA
TAAAATAGTCAAGGACACATAGCATTAACTGAAATGAAATCAC522
CAGATCATCTTCCATTTGTAATACTTCCCCTGAAAAAAAAAATG
TACATTTTTAAAGAAAGTTAGAGATTCAGATCTTT
AAGTATTACAAATGGAA523
TTCCATTTGTAATACTT524
|
RetinoblastomaGTTCTTATCTAATTTACCACTTTTACAGAAACAGCTGTTATACC525
Arg251TermCATTAATGGTTCACCTCGAACACCCAGGCGAGGTCAGAACA
CGA to TGAGGAGTGCACGGATAGCAAAACAACTAGAAAATGATA
TATCATTTTCTAGTTGTTTTGCTATCCGTGCACTCCTGTTCTG526
ACCTCGCCTGGGTGTTCGAGGTGAACCATTAATGGGTATAAC
AGCTGTTTCTGTAAAAGTGGTAAATTAGATAAGAAC
GTTCACCTCGAACACCC527
GGGTGTTCGAGGTGAAC528
|
RetinoblastomaTTTACCACTTTTACAGAAACAGCTGTTATACCCATTAATGGTT529
Arg255TermCACCTCGAACACCCAGGCGAGGTCAGAACAGGAGTGCACG
CGA to TGAGATAGCAAAACAACTAGAAAATGATACAAGAATTATTG
CAATAATTCTTGTATCATTTTCTAGTTGTTTTGCTATCCGTGCA530
CTCCTGTTCTGACCTCGCCTGGGTGTTCGAGGTGAACCATTA
ATGGGTATAACAGCTGTTTCTGTAAAAGTGGTAAA
CACCCAGGCGAGGTCAG531
CTGACCTCGCCTGGGTG532
|
RetinoblastomaATTAATGGTTCACCTCGAACACCCAGGCGAGGTCAGAACAG533
Gln266TermGAGTGCACGGATAGCAAAACAACTAGAAAATGATACAAGAAT
CAA to TAATATTGAAGTTCTCTGTAAAGAACATGAATGTAATATAG
CTATATTACATTCATGTTCTTTACAGAGAACTTCAATAATTCTT534
GTATCATTTTCTAGTTGTTTTGCTATCCGTGCACTCCTGTTCT
GACCTCGCCTGGGTGTTCGAGGTGAACCATTAAT
TAGCAAAACAACTAGAA535
TTCTAGTTGTTTTGCTA536
|
RetinoblastomaTGACATGTAAAGGATAATTGTCAGTGACTTTTTTCTTTCAAGG537
Arg320TermTTGAAAATCTTTCTAAACGATACGAAGAAATTTATCTTAAAAAT
CGA to TGAAAAGATCTAGATGCAAGATTATTTTTGGATCATG
CATGATCCAAAAATAATCTTGCATCTAGATCTTTATTTTTAAGA538
TAAATTTCTTCGTATCGTTTAGAAAGATTTTCAACCTTGAAAGA
AAAAAGTCACTGACAATTATCCTTTACATGTCA
TTTCTAAACGATACGAA539
TTCGTATCGTTTAGAAA540
|
RetinoblastomaACAAATTGTAAATTTTCAGTATGAAGACTTGACTTCACTTATTGTT541
Gln354TermATTTAGTTTTGAAACACAGAGAACACCACGAAAAAGTAACCTT
CAG to TAGGATGAAGAGGTGAATGTAATTCCTCCACACACTC
GAGTGTGTGGAGGAATTACATTCACCTCTTCATCAAGGTTAC542
TTTTTCGTGGTGTTCTCTGTGTTTCAAAACTAAATAACAATAA
GTGAAGTCATTCACATACTGAAAATTTACAATTTGT
TTGAAACACAGAGAACA543
TGTTCTCTGTGTTTCAA544
|
RetinoblastomaTTTTCAGTATGIGAATGACTTCACTTATTGTTATTTAGTTTTGA545
Arg358GlyAACACAGAGAACACCACGAAAAAGTAACCTTGATGAAGAGGT
CGA to GGAGAATGTAATTCCTCCACACACTCCAGTTAGGTATG
CATACCTAACTGGAGTGTGTGGAGGAATTACATTCACCTCTT546
CATCAAGGTTACTTTTTCGTGGTGTTCTCTGTGTTTCAAAACT
AAATAACAATAAGTGAAGTCATTCACATACTGAAAA
GAACACCACGAAAAAGT547
ACTTTTTCGTGGTGTTC548
|
RetinoblastomaTTTTCAGTATGTGAATGACTTCACTTATTGTTATTTATTTTTGA549
Arg358TermAACACAGAGAACACCACGAAAAAGTAACCTTGATGAAGAGGT
CGA to TGAGAATGTAATTCCTCCACACACTCCAGTTAGGTATG
CATACCTAACTGGAGTGTGTGGAGGAATTACATTCACCTCTT550
CATCAAGGTTACTTTTTCGTGGTGTTCTCTGTGTTTCAAAACT
AAATAACAATAAGTGAAGTCATTCACATACTGAAAA
GAACACCACGAAAAAGT551
ACTTTTTCGTGGTGTTC552
|
RetinoblastomaCTGTTATGAACACTATCCAACAATTAATGATGATTTTAAATTCA553
Ser397TermGCAAGIGATCAACCTTCAGAAAATCTGATTTCCTATTTTAACG
TCA to TAATAAGCCATATATGAAACATTATTTATTGTAATAT
ATATTACAATAAATAATGTTTCATATATGGCTTACGTTAAAATA554
GGAAATCAGATTTTCTGAAGGTTGATCACTTGCTGAATTTAAA
ATCATCATTAATTGTTGGATAGTGTTCATAACAG
TCAACCTTCAGAAAATC555
GATTTTCTGAAGGTTGA556
|
RetinoblastomaTTTCATAATTGTGATTTTCTAAAATAGCAGGCTCTTATTTTTCT557
Arg445TermTTTTGTTTGTTTGTAGCGATACAAACTTGGAGTTCGCTTGTAT
CGA to TGATACCGAGTAATGGAATCCATGCTTAAATCAGTAA
TTACTGATTTAAGCATGGATTCCATTACTCGGTAATACAAGCG558
AACTCCAAGTTTGTATCGCTACAAACAAACAAAAAGAAAAATA
AGAGCCTGCTATTTTAGAAAATCACAATTATGAAA
GTTTGTAGCGATACAAA559
TTTGTATCGCTACAAAC560
|
RetinoblastomaGCTCTTATTTTTCTTTTTGTTTGTTTGTAGCGATACAAACTTGG561
Arg455TermAGTTCGCTTGTATTACCGAGTAATGGAATCCATGCTTAAATCA
CGA to TGAGTAAGTAAAAACAATATAAAAAAATTTCAGCCG
CGGCTGAAATTTTTTTATATTGTTTTTAACTTACTGATTTAAGC562
ATGGATTCCATTACTCGGTAATACAAGCGAACTCCAAGTTTGT
ATCGCTACAAACAAACAAAAAGAAAAATAAGAGC
TGTATTACCGAGTAATG563
CATTACTCGGTAATACA564
|
RetinoblastomaATCGAAAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAA565
Arg552TermATGATAAAACATTTAGAACGATGTGAACATCGAATCATGGAAT
CGA to TGACCCTTGCATGGCTCTCAGTAAGTAGCTAAATAATTG
CAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGATTCCAT566
GATTCGATGTTCACATCGTTCTAAATGTTTTATCATTTCTCTTG
TCAAGTTGCCTTCTGCTTTGATAAAACTTTCGAT
ATTTAGAACGATGTGAA567
TTCACATCGTTCAAAT568
|
RetinoblastomaAAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAAATGATA569
Cys553TermAAACATTTAGAACGATGTGAACATCGAATCATGGAATCCCTTG
TGT to TGACATGGCTCTCAGTAAGTAGCTAAATAATTGAAGAA
TTCTTCAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGAT570
TCCATGATTCGATGTTCACATCGTTCTAAATGTTTTATCATTTC
TCTTGTCAAGTTGCCTTCTGCTTTGATAAAACTT
GAACGATGTGAACATCG571
CGATGTTCACATCGTTC572
|
RetinoblastomaAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAAATGATAA573
Glu554TermAACATTTAGAACGATGTGAACATCGAATCATGGAATCCCTTG
GAA to TAACATGGCTCTCAGTAAGTAGCTAAATAATTGAAGAAA
TTTCTTCAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGA574
TTCCATGATTCGATGTTCACATCGTTCTAAATGTTTTATCATTT
CTCTTGTCAAGTTGCCTTCTGCTTTGATAAAACT
AACGATGTGAACATCGA575
TCGATGTTCACATCGTT576
|
RetinoblastomaTACCTGGGAAAATTATGCTTACTAATGTGGTTTTAATTTCATC577
Ser567LeuATGTTTCATATAGGATTCACCTTTATTTGATCTTATTAAACAAT
TCA to TTACAAAGGACCGAGAAGGACCAACTGATCACCTTGA
TCAAGGTGATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAA578
TAAGATCAAATAAAGGTGAATCCTATATGAAACATGATGAAAT
TAAAACCACATTAGTAAGCATAATTTTCCCAGGTA
ATAGGATTCACCTTTAT579
ATAAAGGTGAATCCTAT580
|
RetinoblastomaAATGTGGTTTTAATTTCATCATGTTTFCATATAGGATTCACCTTT581
Gln575TermATTTGATCTTATTAAACAATCAAAGGACCGAGAAGGACCAACT
CAA to TAAGATCACCTTGAATCTGCTTGTCCTCTTAATCTTC
GAAGATTAAGAGGACAAGCAGATTCAAGGTGATCAGTTGGTC582
CTTCTCGGTCCTTTGATTGTTTAATAAGATCAAATAAAGGTGA
ATCCTATATGAAACATGATGAAATTAAAACCACATT
TTATTAAACAATCAAAG583
CTTTGATTGTTTAATAA584
|
RetinoblastomaATTTCATCATGTTTCATATAGGATTCACCTTTATTTGATCTTAT585
Arg579TermTAAACAATCAAAGGACCGAGAAGGACCAACTGATCACCTTGA
CGA to TGAATCTGCTTGTCCTCTTAATCTTCCTCTCCAGAATA
TATTCTGGAGAGGAAGATTAAGAGGACAAGCAGATTCAAGGT586
GATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAATAAGATC
AAATAAAGGTGAATCCTATATGAAACATGATGAAAT
CAAAGGACCGAGAAGGA587
TCCTTCTCGGTCCTTTG588
|
RetinoblastomaTCATCATGTTTCATATAGGATTCACCTTTATTTGATCTTATTAA589
Glu580TermACAATCAAAGGACCGAGAAGGACCAACTGATCACCTTGAATC
GAA to TAATGCTTGTCCTCTTAATCTTCCTCTCCAGAATAATC
GATTATTCTGGAGAGGAAGATTAAGAGGACAAGCAGATTCAA590
GGTGATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAATAAG
ATCAAATAAAGGTGAATCCTATATGAAACATGATGA
AGGACCGAGAAGGACCA591
TGGTCCTTCTCGGTCCT592
|
RetinoblastomaAGAAAAAAGGTTCAACTACGCGTGTAAATTCTACTGCAAATG593
Ser634TermCAGAGACACAAGCAACCTCAGCCTTCCAGACCCAGAAGCCA
TCA to TGATTGAAATCTACCTCTCTTTCACTGTTTTATAAAAAAGG
CCTTTTTTATAAAACAGTGAAAGAGAGGTAGATTTCAATGGCT594
TCTGGGTCTGGAAGGCTGAGGTTGCTTGTGTCTCTGCATTTG
CAGTAGAATTTACACGCGTAGTTGAACCTTTTTTCT
AGCAACCTCAGCCTTCC595
GGAAGGCTGAGGTTGCT596
|
RetinoblastomaAAAAAAGGTTCAACTACGCGTGTAAATTCTACTGCAAATGCA597
Ala635ProGAGACACAAGCAACCTCAGCCTTCCAGACCCAGAAGCCATT
GCC to CCCGAAATCTACCTCTCTTTCACTGTTTTATAAAAAAGGTT
AACCTTTTTTATAAAACAGTGAAAGAGAGGTAGATTTCAATGG598
CTTCTGGGTCTGGAAGGCTGAGGTTGCTTGTGTCTCTGCATT
TGCAGTAGAATTTACACGCGTAGTTGAACCTTTTTT
CAACCTCAGCCTTCCAG599
CTGGAAGGCTGAGGTTG600
|
RetinoblastomaACTACGCGTGTAAATTCTACTGCAAATGCAGAGACACAAGCA601
Gln639TermACCTCAGCCTTCCAGACCCAGAAGCCATTGAAATCTACCTCT
CAG to TAGCTTTCACTGTTTTATAAAAAAGGTTAGTAGATGATTA
TAATCATCTACTAACCTTTTTTATAAAACAGTGAAAGAGAGGT602
AGATTTCAATGGCTTCTGGGTCTGGAAGGCTGAGGTTGCTTG
TGTCTCTGCATTTGCAGTAGAATTTACACGCGTAGT
TCCAGACCCAGAAGCCA603
TGGCTTCTGGGTCTGGA604
|
RetinoblastomaTTGTAATTCAAAATGAACAGTAAAAATGACTAATTTTTCTTATT605
Leu657ProCCCACAGTGTATCGGCTAGCCTATCTCCGGCTAAATACACTT
CTA to CCATGTGAACGCCTTCTGTCTGAGCACCCAGAATTAGA
TCTAATTCTGGGTGCTCAGACAGAAGGCGTTCACAAAGTGTA606
TTTAGCCGGAGATAGGCTAGCCGATACACTGTGGGAATAAG
AAAAATTAGTCATTTTTACTGTTCATTTTGAATTACAA
GTATCGGCTAGCCTATC607
GATAGGCTAGCCGATAC608
|
RetinoblastomaAATGAACAGTAAAAATGACTAATTTTTCTTATTCCCACAGTGTA609
Arg661TrpTCGGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGCCT
CGG to TGGTCTGTCTGAGCACCCAGAATTAGAACATATCATCT
AGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGGCGTT610
CACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATACACTG
TGGGAATAAGAAAAATTAGTCATTTTTACTGTTCATT
CCTATCTCCGGCTAAAT611
ATTTAGCCGGAGATAGG612
|
RetinoblastomaAACAGTAAAAATGACTAATTTTTCTTATTCCCACAGTGTATCG613
Leu662ProGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGCCTTCT
CTA to CCAGTCTGAGCACCCAGAATTAGAACATATCATCTGGAC
GTCCAGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGG614
CGTTCACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATAC
ACTGTGGGAATAAGAAAAATTAGTCATTTTTACTGTT
TCTCCGGCTAAATACAC615
GTGTATTTAGCCGGAGA616
|
RetinoblastomaTATCGGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGC617
Glu675TermCTTCTGTCTGAGCACCCAGAATTAGAACATATCATCTGGACC
GAA to TAACTTTTCCAGCACACCCTGCAGAATGAGTATGAACTCA
TGAGTTCATACTCATTCTGCAGGGTGTGCTGGAAAAGGGTCC618
AGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGGCGTT
CACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATA
AGCACCCAGAATTAGAA619
TTCTAATTCTGGGTGCT620
|
RetinoblastomaTTTGTGAACGCCTTCTGTCTGAGCACCCAGAATTAGAACATA621
Gln685ProTCATCTGGACCCTTTTCCAGCACACCCTGCAGAATGAGTATG
CAG to CCGAACTCATGAGAGACAGGCATTTGGACCAAGTAAGAAA
TTTCTTACTTGGTCCAAATGCCTGTCTCTCATGAGTTCATACT622
CATTCTGCAGGGTGTGCTGGAAAAGGGTCCAGATGATATGTT
CTAATTCTGGGTGCTCAGACAGAAGGCGTTCACAAA
CCTTTTCCAGCACACCC623
GGGTGTGCTGGAAAAGG624
|
RetinoblastomaAAAACCATGTAATAAAATTCTGACTACTTTTACATCAATTTATT625
Cys706TyrTACTAGATTATGATGTGTTCCATGTATGGCATATGCAAAGTGA
TGT to TATAGAATATAGACCTTAAATTCAAAATCATTGTAAC
GTTACAATGATTTTGAATTTAAGGTCTATATTCTTCACTTTGCA626
TATGCCATACATGGAACACATCATAATCTAGTAAATAAATTGA
TGTAAAAGTAGTCAGAATTTTATTACATGGTTTT
TATGATGTGTTCCATGT627
ACATGGAACACATCATA628
|
RetinoblastomaTTCTGACTACTTTTACATCAATTTATTTACTAGATTATGATGTG629
Cys712ArgTTCCATGTATGGCATATGCAAAGTGAAGAATATAGACCTTAAA
TGC to CGCTTCAAAATCATTGTAACAGCATACAAGGATCTTC
GAAGATCCTTGTATGCTGTTACAATGATTTTGAATTTAAGGTC630
TATATTCTTCACTTTGCATATGCCATACATGGAACACATCATA
ATCTAGTAAATAAATTGATGTAAAAGTAGTCAGAA
ATGGCATATGCAAAGTG631
CACTTTGCATATGCCAT632
|
RetinoblastomaGTATGGCATATGCAAAGTGAAGAATATAGACCTTAAATTCAAA633
Tyr728TermATCATTGTAACAGCATACAAGGATCTTCCTCATGCTGTTCAG
TAC to TAAGAGGTAGGTAATTTTCCATAGTAAGTTTTTTTGATA
TATCAAAAAAACTTACTATGGAAAATTACCTACCTCCTGAACA634
GGATGAGGAAGATCCTTGTATGCTGTTACAATGATTTTGAATT
TAAGGTCTATATTCTTCACTTTGCATATGCCATAC
ACAGCATACAAGGATCT635
AGATGCTTGTATGCTGT636
|
RetinoblastomaTTTTTTTTTTTTTTTACTGTTGTTCCTCAGACATTCAAACGTGT637
Glu748TermTTTGATCAAAGAAGAGGAGTATGATTCTATTATAGTATTCTATA
GAG to TAGACTCGGTCTTCATGCAGAGACTGAAAACAAATA
TATTTGTTTTCAGTCTCTGCATGAAGACCGAGTTATAGAATAC638
TATAATAGAATCATACTCCTCTTCTTTGATCAAAACACGTTTGA
ATGTCTGAGGAAGAACAGTAAAAAAAAAAAAAAA
AAGAAGAGGAGTATGAT639
ATCATACTCCTCTTCTT640
|
RetinoblastomaGTTTTGATCAAAGAAGAGGAGTATGATTCTATTATAGTATTCT641
Gln762TermATAACTCGGTCTTCATGCAGAGACTGAAAACAAATATTTTGCA
CAG to TAGGTATGCTTCCACCAGGGTAGGTGAAAAGTATCCTT
AAGGATACTTTTGACCTACCCTGGTGGAAGCATACTGCAAAA642
TATTTGTTTTCAGTCTCTGCATGAAGACCGAGTTATAGAATAC
TATAATAGAATCATACTCCTCTTCTTTGATCAAAAC
TCTTCATGCAGAGACTG643
CAGTCTCTGCATGAAGA644
|
RetinoblastomaTAATCTACTTTTTTGTTTTTGCTCTAGCCCCCTACCTTGTCAC645
Arg787TermCAATACCTCACATTCCTCGAAGCCCTTACAAGTTTCCTAGTTC
CGA-TGAACCCTTACGGATTCCTGGAGGGAACATCTATATTT
AAATATAGATGTTCCCTCCAGGAATCCGTAAGGGTGAACTAG646
GAAACTTGTAAGGGGCTTCGAGGAATGTGAGGTATTGGTGACA
AGGTAGGGGGCTAGAGCAAAAACAAAAAAGTAGATTA
ACATTCCTCGAAGCCCT647
AGGGCTTCGAGGAATGT648
|
RetinoblastomaCCTTACGGATTCCTGGAGGGAACATCTATATTTCACCCCTGA649
Ser816TermAGAGTCCATATAAAATTTCAGAAGGTCTGCCAACACCAACAA
TCA to TGAAAATGACTCCAAGATCAAGGTGTGTGTTTTCTCTTTA
TAAAGAGAAAACACACACCTTGATCTTGGAGTCATTTTTGTTG650
GTGTTGGCAGACCTTCTGAAATTTTATATGGACTCTTCAGGG
GTGAAATATAGATGTTCCCTCCAGGAATCCGTAAGG
TAAAATTTCAGAAGGTC651
GACCTTCTGAAATTTTA652
|
BRCA1 and BRCA2
[0121] Breast cancer is the second major cause of cancer death in American women, with an estimated 44,190 lives lost (290 men and 43,900 women) in the US in 1997. While ovarian cancer accounts for fewer deaths than breast cancer, it still represents 4% of all female cancers. In 1994, two breast cancer susceptibility genes were identified: BRCA1 on chromosome 17 and BRCA2 on chromosome 13. When a woman carries a mutation in either BRCA1 or BRCA2, she is at increased risk of being diagnosed with breast or ovarian cancer at some point in her life.
[0122] Ford et al., Am. J. Hum. Genet 62: 676-689 (1998) assessed the contribution of BRCA1 and BRCA2 to inherited breast cancer by linkage and mutation analysis in 237 families, each with at least 4 cases of breast cancer. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16%, suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority (76%) of families with both male and female breast cancer were due to BRCA2. The largest proportion (67%) of families due to other genes were families with 4 or 5 cases of female breast cancer only.
[0123] More than 75% of the reported mutations in the BRCA1 gene result in truncated proteins. Couch et al., Hum. Mutat. 8: 8-18, 1996. (1996) reported a total of 254 BRCA1 mutations, 132 (52%) of which were unique. A total of 221 (87%) of all mutations or 107 (81%) of the unique mutations are small deletions, insertions, nonsense point mutations, splice variants, and regulatory mutations that result in truncation or absence of the BRCA1 protein. A total of 11 disease-associated missense mutations (5 unique) and 21 variants (19 unique) as yet unclassified as missense mutations or polymorphisms had been detected. Thirty-five independent benign polymorphisms had been described. The most common mutations were 185delAG and 5382insC, which accounted for 30 (11.7%) and 26 (10.1%), respectively, of all the mutations.
[0124] Most BRCA2 mutations are predicted to result in a truncated protein product. The smallest known cancer-associated deletion removes from the C terminus only 224 of the 3,418 residues constituting BRCA2, suggesting that these terminal amino acids are critical for BRCA2 function. Studies (Spain et al., Proc. Natl. Acad. Sci. 96:13920-13925 (1999)) suggest that such truncations eliminate or interfere with 2 nuclear localization signals that reside within the final 156 residues of BRCA2, suggesting that the vast majority of BRCA2 mutants are nonfunctional because they are not translocated into the nucleus.
[0125] The attached table discloses the correcting oligonucleotide base sequences for the BRACA1 and BRACA2 oligonucleotides of the invention.
15TABLE 14
|
|
BRCA1 Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Breast CancerCTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGGTAAAGTT653
Met-1-IleCATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTG
ATG to ATTAAGAAGTACAAAATGTCATTAATGCTATGCAGAAAATC
GATTTTCTGCATAGCATTAATGACATTTTGTACTTCTTCAACG
CGAAGAGCAGATAAATCCATTTCTTTCTGTTCCAATGAACTTT
ACCCAGAGCAGAGGGTGAAGGCCTCCTGAGCGCAG
AAAGAAATGGATTTATC655
GATAAATCCATTTCTTT656
|
Breast CancerCTGGGTAAAGTTCATTGGAACAGAAAGAAATGGATTTATCTG657
Val-11-AlaCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATGCTATGCA
GTA to GCAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGAT
ATCAACTCCAGACAGATGGGACACTCTAAGATTTTCTGCATA658
GCATTAATGACATTTTGTACTTCTTCAACGCGAAGAGCAGATA
AATCCATTTCTTTCTGTTCCAATGAACTTTACCCAG
TGAAGAAGTACAAAATG659
CATTTTGTACTTCTTCA660
|
Breast CancerATGGATTTATCTCTCTTCGCGTTGAAGAAGTACAAAATGTCA661
Ile-21-ValTTAATGCTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGG
ATC to GTCAGTTGATCAAGGAACCTGTCTCCACAAAGTGTGACC
GGTCACACTTTGTGGAGACAGGTTCCTTGATCAACTCCAGAC662
AGATGGGACACTCTAAGATTTTCTGCATAGCATTAATGACATT
TTGTACTTCTTCAACGCGAAGAGCAGATAAATCCAT
TGCAGAAAATCTTAGAG663
CTCTAAGATTTTCTGCA664
|
Breast CancerATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAA665
Leu-22-SerTGCTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTT
TTA to TCAGATCAAGGAACCTGTCTCCACAAAGTGTGACCACAT
ATGTGGTCACACTTTGTGGAGACAGGTTCCTTGATCAACTCC666
AGACAGATGGGACACTCTAAGATTTTCTGCATAGCATTAATG
ACATTTTGTACTTCTTCAACGCGAAGAGCAGATAAAT
GAAAATCTTAGAGTGTC667
GACACTCTAAGATTTTC668
|
Breast CancerAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGATCAAGG669
Cys-39-TyrAACCTGTCTCCACAAAGTGTGACCACATATTTTGCAAATTTTG
TGT to TATCATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTC
GAAGGCCCTTTCTTCTGGTTGAGAAGTTTCAGCATGCAAAAT670
TTGCAAAATATGTGGTCACACTTTGTGGAGACAGGTTCCTTG
ATCAACTCCAGACAGATGGGACACTCTAAGATTTTCT
CACAAAGTGTGACCACA671
TGTGGTCACACTTTGTG672
|
Breast CancerCACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGA673
Cys-61-GlyAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGATATAAC
TGT to GGTCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTC
GACTAAATCTCGTACTTTCTTGTAGGCTCCTTTTGGTTATATC674
ATTCTTACATAAAGGACACTGTGAAGGCCCTTTCTTCTGGTT
GAGAAGTTTCAGCATGCAAAATTTGCAAAATATGTG
CTTCACAGTGTCCTTTA675
TAAAGGACACTGTGAAG676
|
Breast CancerTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGG677
Leu-63-StopGCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGG
TTA to TAAAGCCTACAAGAAAGTACGAGATTTAGTCAACTTGT
ACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTTTGG678
TTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTTCTT
CTGGTTGAGAAGTTTCAGCATGCAAAATTTGCAAA
GTGTCCTTTATGTAAGA679
TCTTACATAAAGGACAC680
|
Breast CancerTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGG681
Cys-64-ArgCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGA
TGT to CGTGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTG
|
Breast CancerCAACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTTT682
Cys-64-GlyGGTTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTTC
TGT to GGTTTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGCA
GTCCTTTATGTAAGAAT683
ATTCTTACATAAAGGAC684
|
Breast CancerGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGGC685
Cys-64-TyrCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGAG
TGT to TATCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGA
TCAACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTT686
TGGTTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTT
CTTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGC
TCCTTTATGTAAGAATG687
CATTCTTACATAAAGGA688
|
Breast CancerCAGAAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGAT689
Gln-74-StopATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAA
CAA to TAACTTGTTGAAGAGCTATTGAAAATCATTTGTGCTTTTC
GAAAAGCACAAATGATTTTCAATAGCTCTTCAACAAGTTGACT690
AAATCTCGTACTTTCTTGTAGGCTCCTTTTGGTTATATCATTCT
TACATAAAGGACACTGTGAAGGCCCTTTCTTCTG
GGAGCCTACAAGAAAGT691
ACTTTCTTGTAGGCTCC692
|
Breast CancerAGCTATTGAAAATCATTTGTGCTTTTCAGCTTGACACAGGTTT693
Tyr-105-CysGGAGTATGCAAACAGCTATAATTTTGCAAAAAAGGAAAATAAC
TAT to TGTTCTCCTGAACATCTAAAAGATGAAGTTTCTATCAT
ATGATAGAAACTTCATCTTTTAGATGTTCAGGAGAGTTATTTT694
CCTTTTTTGCAAAATTATAGCTGTTTGCATACTCCAAACCTGT
GTCAAGCTGAAAAGCACAAATGATTTTCAATAGCT
AAACAGCTATAATTTTG695
CAAAATTATAGCTGTTT696
|
Breast CancerCTACAGAGTGAACCCGAAAATCCTTCCTTGCAGGAAACCAGT697
Asn-158-TyrCTCAGTGTCCAACTCTCTAACCTTGGAACTGTGAGAACTCTG
AAC to TACAGGACAAAGCAGCGGATACAACCTCAAAAGACGTCTG
CAGACGTCTTTTGAGGTTGTATCCGCTGCTTTGTCCTCAGAG698
TTCTCACAGTTCCAAGGTTAGAGAGTTGGACACTGAGACTGG
TTTCCTGCAAGGAAGGATTTTCGGGTTCACTCTGTAG
AACTCTCTAACCTTGGA699
TCCAAGGTTAGAGAGTT700
|
Breast CancerGAAACCAGTCTCAGTGTCCAACTCTCTAACCTTGGAACTGTG701
Gln-169-StopAGAACTCTGAGGACAAAGCAGCGGATACAACCTCAAAAGAC
CAG to TAGGTCTGTCTACATTGAATTGGGATCTGATTCTTCTGAAG
CTTCAGAAGAATCAGATCCCAATTCAATGTAGACAGACGTCTT702
TTGAGGTTGTATCCGCTGCTTTGTCCTCAGAGTTCTCACAGT
TCCAAGGTTAGAGAGTTGGACACTGAGACTGGTTTC
GGACAAAGCAGCGGATA703
TATCCGCTGCTTTGTCC704
|
Breast CancerCTCCCAGCACAGAAAAAAAGGTAGATCTGAATGCTGATCCCC705
Trp-353-StopTGTGTGAGAGAAAAGAATGGAATAAGCAGAAACTGCCATGCT
TGG to TAGCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGAT
ATCCAAGGAACATCTTCAGTATCTCTAGGATTCTCTGAGCAT706
GGCAGTTTCTGCTTATTCCATTCTTTTCTCTCACACAGGGGAT
CAGCATTCAGATCTACCTTTTTTTCTGTGCTGGGAG
AAAAGAATGGAATAAGC707
GCTTATTCCATTCTTTT708
|
Breast CancerATGCTCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGAT709
Ile-379-MetAACACTAAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTTCC
ATT to ATGAGAAGTGATGAACTGTTAGGTTCTGATGACTCACAT
ATGTGAGTCATCAGAACCTAACAGTTCATCACTTCTGGAAAAC710
CACTCATTAACTTTCTGAATGCTGCTATTTAGTGTTATCCAAG
GAACATCTTCAGTATCTCTAGGATTCTCTGAGCAT
AGCAGCATTCAGAAAGT711
ACTTTCTGAATGCTGCT712
|
Breast CancerGGGAGTCTGAATCAAATGCCAAAGTAGCTGATGTATTGGACG713
Glu-421-GlyTTCTAAATGAGGTAGATGAATATTCTGGTTCTTCAGAGAAAAT
GAA to GGAAGACTTACTGGCCAGTGATCCTCATGAGGCTTTAAT
ATTAAAGCCTCATGAGGATCACTGGCCAGTAAGTCTATTTTCT714
CTGAAGAACCAGAATATTCATCTACCTCATTTAGAACGTCCAA
TACATCAGCTACTTTGGCATTTGATTCAGACTCCC
GGTAGATGAATATTCTG715
CAGAATATTCATCTACC716
|
Breast CancerATATGTAAAAGTGAAAGAGTTCACTCCAAATCAGTAGAGAGTA717
Phe-461-LeuATATTGAAGACAAAATATTTGGGAAAACCTATCGGAAGAAGG
TTT to CTTCAAGCCTCCCCAACTTAAGCCATGTAACTGAAAATC
GATTTTCAGTTACATGGCTTAAGTTGGGGAGGCTTGCCTTCT718
TCCGATAGGTTTTCCCAAATATTTTGTCTTCAATATTACTCTCT
ACTGATTTGGAGTGAACTCTTTCACTTTTACATAT
ACAAAATATTTGGGAAA719
TTTCCCAAATATTTTGT720
|
Breast CancerGAAAGAGTTCACTCCAAATCAGTAGAGAGTAATATTGAAGAC721
Tyr-465-LeuAAAATATTTGGGAAAACCTATCGGAAGAAGGCAAGCCTCCCC
TAT to GATAACTTAAGCCATGTAACTGAAAATCTAATTATAGGAG
CTCCTATAATTAGATTTTCAGTTACATGGCTTAAGTTGGGGAG722
GCTTGCCTTCTTCCGATAGGTTTTCCCAAATATTTTGTCTTCA
ATATTACTCTCTACTGATTTGGAGTGAACTCTTTC
GGAAAACCTATCGGAAG723
CTTCCGATAGGTTTTCC724
|
Breast CancerACCTATCGGAAGAAGGCAAGCCTCCCCAACTTAAGCCATGTA725
Gly-484-StopACTGAAAATCTAATTATAGGAGCATTTGTTACTGAGCCACAGA
GGA to TGATAATACAAGAGCGTCCCCTCACAAATAAATTAAAGC
GCTTTAATTTATTTGTGAGGGGACGCTCTTGTATTATCTGTGG726
CTCAGTAACAAATGCTCCTATAATTAGATTTTCAGTTACATGG
CTTAAGTTGGGGAGGCTTGCCTTCTTCCGATAGGT
TAATTATAGGAGCATTT727
AAATGCTCCTATAATTA728
|
Breast CancerTTACTGAGCCACAGATAATACAAGAGCGTCCCCTCACAAATA729
Arg-507-IleAATTAAAGCGTAAAAGGAGACCTACATCAGGCCTTCATCCTG
AGA to ATAAGGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAA
TTTTGAACTGCCAAATCTGCTTTCTTGATAAAATCCTCAGGAT730
GAAGGCCTGATGTAGGTCTCCTTTTACGCTTTAATTTATTTGT
GAGGGGACGCTCTTGTATTATCTGTGGCTCAGTAA
TAAAAGGAGACCTACAT731
ATGTAGGTCTCCTTTTA732
|
Breast CancerCACAGATAATACAAGAGCGTCCCCTCACAAATAAATTAAAGC733
Ser-510-StopGTAAAAGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTA
TCA to TGATCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAQ
TCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATAAAAT734
CCTCAGGATGAAGGCCTGATGTAGGTCTCCTTTTACGCTTTA
ATTTATTTGTGAGGGGACGCTCTTGTATTATCTGTG
ACCTACATCAGGCCTTC735
GAAGGCCTGATGTAGGT736
|
Breast CancerAGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCAAG737
Gln-526-StopAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATC
CAA to TAAAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA
TCACTTGACCATTCTGCTCCGTTTGGTTAGTTCCCTGATTTAT738
CATTTCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATA
AAATCCTCAGGATGAAGGCCTGATGTAGGTCTCCT
TGGCAGTTCAAAAGACT739
AGTCTTTTGAACTGCCA740
|
Breast CancerAGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCAAG741
Gln-541-StopAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATC
CAG to TAGAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA
TCACTTGACCATTCTGCTCCGTTTGGTTAGTTCCCTGATTTAT742
CATTTCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATA
AAATCCTCAGGATGAAGGCCTGATGTAGGTCTCCT
AAACGGAGCAGAATGGT743
ACCATTCTGCTCCGTTT744
|
Breast CancerTAAATCAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA745
Gly-552-ValTGAATATTACTAATAGTGGTCATGAGAATAAAACAAAAGGTGA
GGT to GTTTTCTATTCAGAATGAGAAAAATCCTAACCCAATAGA
TCTATTGGGTTAGGATTTTTCTCATTCTGAATAGAATCACCTTT746
TGTTTTATTCTCATGACCACTATTAGTAATATTCATCACTTGAC
CATTCTGCTCCGTTTGGTTAGTTCCCTGATTTA
TAATAGTGGTCATGAGA747
TCTCATGACCACTATTA748
|
Breast CancerGGTCAAGTGATGAATATTACTAATAGTGGTCATGAGAATAAAA749
Gln-563-StopCAAAAGGTGATTCTATTCAGAATGAGAAAAATCCTAACCCAAT
CAT to TAGAGAATCACTCGAAAAAGAATCTGCTTTCAAAACGA
TCGTTTTGAAAGCAGATTCTTTTTCGAGTGATTCTATTGGGTT750
AGGATTTTTCTCATTCTGAATAGAATCACCTTTTGTTTTATTCT
CATGACCACTATTAGTAATATTCATCACTTGACC
ATTCTATTCAGAATGAG751
CTCATTCTGAATAGAAT752
|
Ovarian CancerATAAGCAGCAGTATAAGCAATATGGAACTCGAATTAAATATCC753
Lys-607-StopACAATTCAAAAGCACCTAAAAAGAATAGGCTGAGGAGGAAGT
AAA to TAACTTCTACCAGGCATATTCATGCGCTTGAACTAGTAG
CTACTAGTTCAAGCGCATGAATATGCCTGGTAGAAGACTTCC754
TCCTCAGCCTATTCTTTTTAGGTGCTTTTGAATTGTGGATATT
TAATTCGAGTTCCATATTGCTTATACTGCTGCTTAT
AAGCACCTAAAAAGAAT755
ATTCTTTTTAGGTGCTT756
|
Breast CancerATATTCATGCGCTTGAACTAGTAGTCAGTAGAAATCTAAGCCC757
Leu-639-StopACCTAATTGTACTGAATTGCAAATTGATAGTTGTTCTAGCAGT
TTG to TAGGAAGAGATAAAGAAAAAAAAGTACAACCAAATGCC
GGCATTTGGTTGTACTTTTTTTTCTTTATCTCTTCACTGCTAGA758
ACAACTATCAATTTGCAATTCAGTACAATTAGGTGGGCTTAGA
TTTCTACTGACTACTAGTTCAAGCGCATGAATAT
TACTGAATTGCAAATTG759
CAATTTGCAATTCAGTA760
|
Breast CancerGAACCTGCAACTGGAGCCAAGAAGAGTAACAAGCCAAATGAA761
Asp-693-AsnCAGACAAGTAAAAGACATGACAGCGATACTTTCCCAGAGCTG
GAC to AACAAGTTAACAAATGCACCTGGTTCTTTTACTAAGTGTT
AACACTTAGTAAAAGAACCAGGTGCATTTGTTAACTTCAGCTC762
TGGGAAAGTATCGCTGTCATGTCTTTTACTTGTCTGTTCATTT
GGCTTGTTACTCTTCTTGGCTCCAGTTGCAGGTTC
AAAGACATGACAGCGAT763
ATCGCTGTCATGTCTTT764
|
Ovarian CancerCTGAAGTTAACAAATGCACCTGGTTCTTTTACTAAGTGTTCAA765
Glu-720-StopATACCAGTGAACTTAAAGAATTTGTCAATCCTAGCCTTCCAAG
GAA to TAAAGAAGAAAAAGAAGAGAAACTAGAAACAGTTAAAG
CTTTAACTGTTTCTAGTTTCTCTTCTTTTTCTTCTCTTGGAAGG766
CTAGGATTGACAAATTCTTTAAGTTCACTGGTATTTGAACACT
TAGTAAAAGAACCAGGTGCATTTGTTAACTTCAG
AACTTAAAGAATTTGTC767
GACAAATTCTTTAAGTT768
|
Breast CancerCTAGAAACAGTTAAAGTGTCTAATAATGCTGAAGACCCCAAA769
Glu-755-StopGATCTCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGA
GAA to TAATCTGTAGAGAGTAGCAGTATTTCATTGGTACCTGGTA
TACCAGGTACCAATGAAATACTGCTACTCTCTACAGATCTTTC770
AGTTTGCAAAACCCTTTCTCCACTTAACATGAGATCTTTGGGG
TCTTCAGCATTATTAGACACTTTAACTGTTTCTAG
TAAGTGGAGAAAGGGTT771
AACCCTTTCTCCACTTA772
|
Breast CancerTCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTG773
Ser-770-StopTAGAGAGTAGCAGTATTTCATTGGTACCTGGTACTGATTATG
TCA to TAAGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCAC
GTGCTAACTTCCAGTAACGAGATACTTTCCTGAGTGCCATAA774
TCAGTACCAGGTACCAATGAAATACTGCTACTCTCTACAGAT
CTTTCAGTTTGCAAAACCCTTTCTCCACTTAACATGA
CAGTATTTCATTGGTAC775
GTACCAATGAAATACTG776
|
Breast CancerTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTGTAGAGA777
Val-772-AlaGTAGCAGTATTTCATTGGTACCTGGTACTGATTATGGCACTC
GTA to GCAAGGAAAGTATCTCGTTACTGGAAGTTAGCACTCTAGG
CCTAGAGTGCTAACTTCCAGTAACGAGATACTTTCCTGAGTG778
CCATAATCAGTACCAGGTACCAATGAAATACTGCTACTCTCTA
CAGATCTTTCAGTTTGCAAAACCCTTTCTCCACTTA
TTCATTGGTACCTGGTA779
TACCAGGTACCAATGAA780
|
Breast CancerACTGAAAGATCTGTAGAGAGTAGCAGTATTTCATTGGTACCT781
Gln-780-StopGGTACTGATTATGGCACTCAGGAAAGTATCTCGTTACTGGAA
CAG to TAGGTTAGCACTCTAGGGAAGGCAAAAACAGAACCAAATA
TATTTGGTTCTGTTTTTGCCTTCCCTAGAGTGCTAACTTCCAG782
TAACGAGATACTTTCCTGAGTGCCATAATCAGTACCAGGTAC
CAATGAAATACTGCTACTCTCTACAGATCTTTCAGT
ATGGCACTCAGGAAAGT783
ACTTTCCTGAGTGCCAT784
|
Breast CancerTATGGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCACT785
Glu-797-StopCTAGGGAAGGCAAAAACAGAACCAAATAAATGTGTGAGTCAG
GAA to TAATGTGCAGCATTTGAAAACCCCAAGGGACTAATTCATG
CATGAATTAGTCCCTTGGGGTTTTCAAATGCTGCACACTGAC786
TCACACATTTATTTGGTTCTGTTTTTGCCTTCCCTAGAGTGCT
AACTTCCAGTAACGAGATACTTTCCTGAGTGCCATA
CAAAAACAGAACCAAAT787
ATTTGGTTCTGTTTTTG788
|
Breast CancerAAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGGA789
Lys-820-GluCTAATTCATGGTTGTTCCAAAGATAATAGAAATGACACAGAAG
AAA to GAAGCTTTAAGTATCCATTGGGACATGAAGTTAACCACA
TGTGGTTAACTTCATGTCCCAATGGATACTTAAAGCCTTCTGT790
GTCATTTCTATTATCTTTGGAACAACCATGAATTAGTCCCTTG
GGGTTTTCAAATGCTGCACACTGACTCACACATTT
GTTGTTCCAAAGATAAT791
ATTATCTTTGGAACAAC792
|
Breast CancerCAGCATTTGAAAACCCCAAGGGACTAATTCATGGTTGTTCCA793
Thr-826-LysAAGATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGG
ACA to AAAGACATGAAGTTAACCACAGTCGGGAAACAAGCATAGA
TCTATGCTTGTTTCCCGACTGTGGTTAACTTCATGTCCCAATG794
GATACTTAAAGCCTTCTGTGTCATTTCTATTATCTTTGGAACA
ACCATGAATTAGTCCCTTGGGGTTTTCAAATGCTG
AAATGACACAGAAGGCT795
AGCCTTCTGGTCATTT796
|
Breast CancerGATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGGGA797
Arg-841-TrpCATGAAGTTAACCACAGTTGGGAAACAAGCATAGAAATGGAA
CGG to TGGGAAAGTGAACTTGATGCTCAGTATTTGCAGAATACAT798
ATGTATTCTGCAAATACTGAGCATCAAGTTCACTTTCTTCCAT
GGATACTTAAAGCCTTCTGTGTCATTTCTATTATC
ACCACAGTCGGGAAACA799
TGTTTCCCGACTGTGGT800
|
Breast CancerAACTTGATGCTCAGTATTTGCAGAATACATTCAAGGTTTCAAA801
Pro-871-LeuGCGCCAGTCATTTGCTCCGTTTTCAAATCCAGGAAATGCAGA
CCG to CTGAGAGGAATGTGCAACATTCTCTGCCCACTCTGGGTC
GACCCAGAGTGGGCAGAGAATGTTGCACATTCCTCTTCTGCA802
TTTCCTGGATTTGAAAACGGAGCAAATGACTGGCGCTTTGAA
ACCTTGAATGTATTCTGCAAATACTGAGCATCAAGTT
ATTTGCTCCGTTTTCAA803
TTGAAAACGGAGCAAAT804
|
Breast CancerTTTCAAATCCAGGAAATGCAGAAGAGGAATGTGCAACATTCT
Leu-892-SerCTGCCCACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCA
TTA to TCACTTTTGAATGTGAACAAAAGGAAGAAAATCAAGGAAA
TTTCCTTGATTTTCTTCCTTTTGTTCACATTCAAAAGTGACTTT806
TGGACTTTGTTTCTTTAAGGACCCAGAGTGGGCAGAGAATGT
TGCACATTCCTCTTCTGCATTTCCTGGATTTGAAA
TGGGTCCTTAAAGAAAC807
GTTTCTTTAAGGACCCA808
|
Breast CancerCACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCACTTTTG809
Glu-908-StopAATGTGAACAAAAGGAAGAAAATCAAGGAAAGAATGAGTCTA
GAA to TAAATATCAAGCCTGTACAGACAGTTAATATCACTGCAG
CTGCAGTGATATTAACTGTCTGTACAGGCTTGATATTAGACTC810
ATTCTTTCCTTGATTTTCTTCCTTTTGTTCACATTCAAAAGTGA
CTTTTGGACTTTGTTTCTTTAAGGACCCAGAGTG
AAAAGGAAGAAAATCAA811
TTGATTTTCTTCCTTTT812
|
Breast CancerATAATGCCAAATGTAGTATCAAAGGAGGCTCTAGGTTTTGTCT813
Gly-960-AspATCATCTCAGTTCAGAGGCAACGAAACTGGACTCATTACTCC
GGC to GACAAATAAACATGGACTTTTACAAAACCCATATCGTAT
ATACGATATGGGTTTTGTAAAAGTCCATGTTTATTTGGAGTAA814
TGAGTCCAGTTTCGTTGCCTCTGAACTGAGATGATAGACAAA
ACCTAGAGCCTCCTTTGATACTACATTTGGCATTAT
GTTCAGAGGCAACGAAA815
TTTCGTTGCCTCTGAAC816
|
Breast CancerATTTGTTAAAACTAAATGTAAGAAAAATCTGCTAGAGGAAAAC817
Met-1008-IleTTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAAAT
ATG to ATAGAGAACATTCCAAGTACAGTGAGCACAATTAGCCGT
ACGGCTAATTGTGCTCACTGTACTTGGAATGTTCTCATTTCCC818
ATTTCTCTTTCAGGTGACATTGAATGTTCCTCAAAGTTTTCCT
CTAGCAGATTTTTCTTACATTTAGTTTTAACAAAT
CATTCAATGTCACCTGA819
TCAGGTGACATTGAATG820
|
Breast CancerACTTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAA821
Thr-1025-IleATGAGAACATTCCAAGTACAGTGAGCACAATTAGCCGTAATA
ACA to ATAACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTCAAG
|
CTTGAGCTGGCTTCTTTAAAAACATTTTCTCTAATGTTATTACG822
GCTAATTGTGCTCACTGTACTTGGAATGTTCTCATTTCCCATT
TCTCTTTCAGGTGACATTGAATGTTCCTCAAAGT
TCCAAGTACAGTGAGCA823
TGCTCACTGTACTTGGA824
|
Breast CancerACATTCCAAGTACAGTGAGCACAATTAGCCGTAATAACATTAG825
Glu-1038-GlyAGAAAATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAA
GAA to GGAGTAGGTTCCAGTACTAATGAAGTGGGCTCCAGTAT
ATACTGGAGCCCACTTCATTAGTACTGGAACCTACTTCATTAA826
TATTGCTTGAGCTGGCTTCTTTAAAAACATTTTCTCTAATGTTA
TTACGGCTAATTGTGCTCACTGTACTTGGAATGT
TTTTAAAGAAGCCAGCT827
AGCTGGCTTCTTTAAAA828
|
Breast CancerCAAGTACAGTGAGCACAATTAGCCGTAATAACATTAGAGAAA829
Ser-1040-AsnATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAAGTAGG
AGC to AACTTCCAGTACTAATGAAGTGGGCTCCAGTATTAATGA
TCATTAATACTGGAGCCCACTTCATTAGTACTGGAACCTACTT830
CATTAATATTGCTTGAGCTGGCTTCTTTAAAAACATTTTCTCTA
ATGTTATTACGGCTAATTGTGCTCACTGTACTTG
AGAAGCCAGCTCAAGCA831
TGCTTGAGCTGGCTTCT832
|
Breast CancerGCCGTAATAACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTC833
Val-1047-AlaAAGCAATATTAATGAAGTAGGTTCCAGTACTAATGAAGTGGG
GTA to GCACTCCAGTATTAATGAAATAGGTTCCAGTGATGAAAA
TTTTCATCACTGGAACCTATTTCATTAATACTGGAGCCCACTT834
CATTAGTACTGGAACCTACTTCATTAATATTGCTTGAGCTGGC
TTCTTTAAAAACATTTTCTCTAATGTTATTACGGC
TAATGAAGTAGGTTCCA835
TGGAACCTACTTCATTA836
|
Breast CancerAAATAGGTTCCAGTGATGAAAACATTCAAGCAGAACTAGGTA837
Leu-1080-StopGAAACAGAGGGCCAAAATTGAATGCTATGCTTAGATTAGGGG
TTG to TAGTTTTGCAACCTGAGGTCTATAAACAAAGTCTTCCTGG
CCAGGAAGACTTTGTTTATAGACCTCAGGTTGCAAAACCCCT838
AATCTAAGCATAGCATTCAATTTTGGCCCTCTGTTTCTACCTA
GTTCTGCTTGAATGTTTTCATCACTGGAACCTATTT
GCCAAAATTGAATGCTA839
TAGCATTCAATTTTGGC840
|
Breast CancerAAAACATTCAAGCAGAACTAGGTAGAAACAGAGGGCCAAAAT841
Leu-1086-StopTGAATGCTATGCTTAGATTAGGGGTTTTGCAACCTGAGGTCT
TTA to TGAATAAACAAAGTCTTCCTGGAAGTAATTGTAAGCATCC
GGATGCTTACAATTACTTCCAGGAAGACTTTGTTTATAGACCT842
CAGGTTGCAAAACCCCTAATCTAAGCATAGCATTCAATTTTG
GCCCTCTGTTTCTACCTAGTTCTGCTTGAATGTTTT
GCTTAGATTAGGGGTTT843
AAACCCCTAATCTAAGC844
|
Breast CancerAGCAAGAATATGAAGAAGTAGTTCAGACTGTTAATACAGATTT845
Ser-1130-StopCTCTCCATATCTGATTTCAGATAACTTAGAACAGCCTATGGGA
TCA to TGAAGTAGTCATGCATCTCAGGTTTGTTCTGAGACACC
GGTGTCTCAGAACAAACCTGAGATGCATGACTACTTCCCATA846
GGCTGTTCTAAGTTATCTGAAATCAGATATGGAGAGAAATCT
GTATTAACAGTCTGAACTACTTCTTCATATTCTTGCT
TCTGATTTCAGATAACT847
AGTTATCTGAAATCAGA848
|
Breast CancerCTAGTTTTGCTGAAAATGACATTAAGGAAAGTTCTGCTGTTTT849
Lys-1183-ArgTAGCAAAAGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTA
AAA to AGAGCCCTTTCACCCATACACATTTGGCTCAGGGTTACCG
CGGTAACCCTGAGCCAAATGTGTATGGGTGAAAGGGCTAGG850
ACTCCTGCTAAGCTCTCCTTTCTGGACGCTTTTGCTAAAAACA
GCAGAACTTTCCTTAATGTCATTTTCAGCAAAACTAG
CGTCCAGAAAGGAGAGC851
GCTCTCCTTTCTGGACG852
|
Breast CancerAGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTT853
Gln-1200-StopCACCCATACACATTTGGCTCAGGGTTACCGAAGAGGGGCCA
CAG to TAGAGAAATTAGAGTCCTCAGAAGAGAACTTATCTAGTGAGG
CCTCACTAGATAAGTTCTCTTCTGAGGACTCTAATTTCTTGGC854
CCCTCTTCGGTAACCCTGAGCCAAATGTGTATGGGTGAAAGG
GCTAGGACTCCTGCTAAGCTCTCCTTTCTGGACGCT
ATTTGGCTCAGGGTTAC855
GTAACCCTGAGCCAAAT856
|
Breast CancerAAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTTCACCCATACA857
Arg-1203-StopCATTTGGCTCAGGGTTACC AGGGTTACCGAAGAGGGGCCA
CAG to TAGGCTGTGTTAGAACAGCATGGGAGCCAGCCTTCTAACA
TGTTAGAAGGCTGGCTCCCATGCTGTTCTAACACAGCTTCTA906
GTTCAGCCATTTCCTGCTGGAGCTTTATCAGGTTATGTTGCAT
GGTATCCCTCTGCTTCAAAAACGATAAATGGCACCA
TAAAGCTCCAGCAGGAA907
TTCCTGCTGGAGCTTTA908
|
Breast CancerAGCCAGCCTTCTAACAGCTACCCTTCCATCATAAGTGACTCT909
Arg-1443-GlyTCTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGCACATCA
CGA to GGAGAAAAAGGTGTGTATTGTTGGCCAAACACTGATATCT
Arg-1443-StopAGATATCAGTGTTTGGCCAACAATACACACCTTTTTCTGATGT910
CGA to TGAGCTTTGTTCTGGATTTCGCAGGTCCTCAAGGGCAGAAGAGTC
ACTTATGATGGAAGGGTAGCTGTTAGAAGGCTGGCT
AGGACCTGCGAAATCCA911
TGGATTTCGCAGGTCCT912
|
Breast CancerCAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTT913
Ser-1512-IleGTTGATGTGGAGGAGCAACAGCTGGAAGAGTCTGGGCCACA
AGT to ATTCGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATC
GATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAAATCGTGTG914
GCCCAGACTCTTCCAGCTGTTGCTCCTCCACATCAACAACCT
TAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCTG
AGGAGCAACAGCTGGAA915
TTCCAGCTGTTGCTCCT916
|
Breast CancerATCTTTCTAGGTCATCCCCTTCTAAATGCCCATCATTAGATGA917
Gln-1538-StopTAGGTGGTACATGCACAGTTGCTCTGGGAGTCTTCAGAATAG
CAG to TAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGT
ACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCT918
GAAGACTCCCAGAGCAACTGTGCATGTACCACCTATCATCAT
ATGATGGGCATTTAGAAGGGGATGACCTAGAAAGAT
CATGCACAGTTGCTCTG919
CAGAGCAACTGTGCATG920
|
Breast CancerCAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTT921
Glu-1541-StopGTTGATGTGGAGGAGCAACAGCTGGAAGAGTCTGGGCCACA
GAG to TAGCGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATC
GATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAAATCGTGTG922
GCCCAGACTCTTCCAGCTGTTGCTCCTCCACATCAACAACCT
TAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCTG
AGGAGCAACAGCTGGAA923
TTCCAGCTGTTGCTCCT924
|
Breast CancerAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTTGATGTG925
Thr-1561-IleGAGGAGCAACAGCTGGAAGAGTCTGGGCCACACGATTTGAC
ACC to ATCGGAAACATCTTACTTGCCAAGGCAAGATCTAGGTAATA
TATTACCTAGATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAA926
ATCGTGTGGCCCAGACTCTTCCAGCTGTTGCTCCTCCACATC
AACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTT
AGCTGGAAGAGTCTGGG927
CCCAGACTCTTCCAGCT928
|
Breast CancerTTTGTAATTCAACATTCATCGTTGTGTAAATTAAACTTCTCCCA929
Tyr-1563-StopTTCCTTTCAGAGGGGAACCCCTTACCTGGAATCTGGAATCAGC
TAC to TAGCTCTTCTCTGATGACCCTGAATCTGATCCTTCTGA
TCAGAAGGATCAGATTCAGGGTCATCAGAGAAGAGGCTGATT930
CCAGATTCCAGGTAAGGGGTTCCCTCTGAAAGGAATGGGAG
AAGTTTAATTTACACAACGATGAATGTTGAATTACAAA
AGAGGGAACCCCTTACC931
GGTAAGGGGTTCCCTCT932
|
Breast CancerCAACATTCATCGTTGTGTAAATTAAACTTCTCCCATTCCTTTC933
Leu-1564-ProAGAGGGAACCCCTTACCTGGAATCTGGAATCAGCCTCTTCTC
CTG to CCGTGATGACCCTGAATCTGATCCTTCTGAAGACAGAGC
GCTCTGTCTTCAGAAGGATCAGATTCAGGGTCATCAGAGAAG934
AGGCTGATTCCAGATTCCAGGTAAGGGGTTCCCTCTGAAAG
GAATGGGAGAAGTTTAATTTACACAACGATGAATGTTG
CCCTTACCTGGAATCTG935
CAGATTCCAGGTAAGGG936
|
Breast CancerGCCCCAGAGTCAGCTCGTGTTGGCAACATACCATCTTCAACC937
Gln-1604-StopTCTGCATTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCC
CAA to TAACAGAGTCCAGCTGCTGCTCATACTACTGATACTGCTG
CAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCTGGGCA938
GATTCTGCAACTTTCAATTGGGGAACTTTCAATGCAGAGGTT
GAAGATGGTATGTTGCCAACACGAGCTGACTCTGGGGC
AAGTTCCCCAATTGAAA939
TTTCAATTGGGGAACTT940
|
Breast CancerGAGTCAGCTCGTGTTGGCAACATACCATCTTCAACCTCTGCA941
Lys-1606-GluTTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCCCAGAGT
AAA to GAACCAGCTGCTGCTCATACTACTGATACTGCTGGGTATA
TATACCCAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCT942
GGGCAGATTCTGCAACTTTCAATTGGGGAACTTTCAATGCAG
AGGTTGAAGATGGTATGTTGCCAACACGAGCTGACTC
CCCAATTGAAAGTTGCA943
TGCAACTTTCAATTGGG944
|
Breast CancerCAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGATA945
Met-1628-ThrCTGCTGGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGAG
ATG to ACGAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAA
TTGTTGACCCTTTCTGTTGAAGCTGTCAATTCTGGCTTCTCCC946
TGCTCACACTTTCTTCCATTGCATTATACCCAGCAGTATCAGT
AGTATGAGCAGCAGCTGGACTCTGGGCAGATTCTG
TAATGCAATGGAAGAAA947
TTTCTTCCAee TtGCATTA948
|
Breast CancerGCAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGAT949
Met-1628-ValACTGCTGGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGA
ATG to GTGGAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACA
TGTTGACCCTTTCTGTTGAAGCTGTCAATTCTGGCTTCTCCCT950
GCTCACACTTTCTTCCATTGCATTATACCCAGCAGTATCAGTA
GTATGAGCAGCAGCTGGACTCTGGGCAGATTCTGC
ATAATGCAATGGAAGAA951
TTCTTCCATTGCATTAT952
|
Breast CancerCTCATACTACTGATACTGCTGGGTATAATGCAATGGAAGAAA953
Pro-1637-LeuGTGTGAGCAGGGAGAAGCCAGAATTGACAGCTTCAACAGAA
CCA to CTAAGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCT
AGGCCAGACACCACCATGGACATTCTTTTGTTGACCCTTTCT954
GTTGAAGCTGTCAATTCTGGCTTCTCCCTGCTCACACTTTCTT
CCATTGCATTATACCCAGCAGTATCAGTAGTATGAG
GGAGAAGCCAGAATTGA955
TCAATTCTGGCTTCTCC956
|
Breast CancerGAGCAGGGAGAAGCCAGAAtTGACAGCTTCAACAGAAAGGG957
Met-1652-IleTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTGACCCCAG
ATG to ATAAAGAATTTGTGAGTGTATCCATATGTATCTCCCTAATG
CATTAGGGAGATACATATGGATACACTCACAAATTCTTCTGG958
GGTCAGGCCAGACACCACCATGGACATTCTTTTGTTGACCCT
TTCTGTTGAAGCTGTCAATTCTGGCTTCTCCCTGCTC
ATGTCCATGGTGGTGTC959
GACACCACCATGGACAT960960
|
Breast CancerCACTTCCTGATTTTGTTTTCAACTTCTAATCCTTTGAGTGTTTT961
Glu-1694-StopTCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGACACTAA
GAG to TAGATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAG
CTACCCATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGT962
CCGTTCACACACAAACTCAGCATCTGCAGAATGAAAAACACT
CAAAGGATTAGAAGTTGAAAACAAAATCAGGAAGTG
CAGATGCTGAGTTTGTG963
CACAAACTCAGCATCTG964
|
Breast CancerGTGTTTTTTCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGA965
Gly-1706-GluCACTGAAATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAG
GGA to GAATTAGCTATTTCTGTAAGTATAATACTATTTCTCCCCT
AGGGGAGAAATAGTATTATACTTACAGAAATAGCTAACTACCC966
ATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGTCCGTTC
ACACACAAACTCAGCATCIGCAGAATGAAAAACAC
TTTTCTAGGAATTGCGG967
CCGCAATTCCTAGAAAA968
|
Breast CancerTTCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGACACTGA969
Ala-1708-GluAATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAGTTAGCT
GCG to GAGATTTCTGTAAGTATAATACTATTTCTCCCCTCCTCCC
GGGAGGAGGGGAGAAATAGTATTATACTTACAGAAATAGCTA970
ACTACCCATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTG
TCCGTTCACACACAAACTCAGCATCTGCAGAATGAA
AGGAATTGCGGGAGGAA971
TTCCTCCCGCAATTCCT972
|
Breast CancerCTGAGTTTGTGTGTGAACGGACACTGAAATATTTTCTAGGAAT973
Val-1713-AlaTGCGGGAGGAAAATGGGTAGTTAGCTATTTCTGTAAGTATAA
GTA to GCATACTATTTCTCCCCTCCTCCCTTTAACACCTCAGAA
TTCTGAGGTGTTAAAGGGAGGAGGGGAGAAATAGTATTATAC974
TTACAGAAATAGCTAACTACCCATTTTCCTCCCGCAATTCCTA
GAAAATATTTCAGTGTCCGTTCACACACAAACTCAG
AAAATGGGTAGTTAGCT975
AGCTAACTACCCATTTT976
|
Breast CancerAACGGACACTGAAATATTTTCTAGGAATTGCGGGAGGAAAAT977
Trp-1718-StopGGGTAGTTAGCTATTTCTGTAAGTATAATACTATTTCTCCCCT
TGG to TAGCCTCCCTTTAACACCTCAGAATTGCATTTTTACACC
GGTGTAAAAATGCAATTCTGAGGTGTTAAAGGGAGGAGGGG978
AGAAATAGTATTATACTTACAGAAATAGCTAACTACCCATTTTC
CTCCCGCAATTCCTAGAAAATATTTCAGTGTCCGTT
CTATTTCTGTAAGTATA979
TATACTTACAGAAATAG980
|
Breast CancerTTCTGCTGTATGTAACCTGTCTTTTCTATGATCTCTTTAGGGG981
Glu-1725-StopTGACCCAGTCTATTAAAGAAAGAAAAATGCTGAATGAGGTAA
GAA to TAAGTACTTGATGTTACAAACTAACCAGAGATATTCATT
AATGAATATCTCTGGTTAGTTTGTAACATCAAGTACTTACCTC982
ATTCAGCATTTTTCTTTCTTTAATAGACTGGGTCACCCCTAAA
GAGATCATAGAAAAGACAGGTTACATACAGCAGAA
CTATTAAAGAAAGAAAA983
TTTTCTTTCTTTAATAG984
|
Breast CancerTGTATGTAACCTGTCTTTTCTATGATCTCTTTAGGGGTGACCC985
Lys-1727-StopAGTCTATTAAAGAAAGAAAAATGCTGAATGAGGTAAGTACTTG
AAA to TAAATGTTACAAACTAACCAGAGATATTCATTCAGTCA
TGACTGAATGAATATCTCTGGTTAGTTTGTAACATCAAGTACT986
TACCTCATTCAGCATTTTTCTTTCTTTAATAGACTGGGTCACC
CCTAAAGAGATCATAGAAAAGACAGGTTACATACA
AAGAAAGAAAAATGCTG987
CAGCATTTTTCTTTCTT988
|
Breast CancerTCTTTCAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATG989
Pro-1749-ArgGAAGAAACCACCAAGGTCCAAAGCGAGCAAGAGAATCCCAG
CCA to CGAGACAGAAAGGTAAAGCTCCCTCCCTCAAGTTGACAAAA
TTTTGTCAACTTGAGGGAGGGAGCTTTACCTTTCTGTCCTGG990
GATTCTCTTGCTCGCTTTGGACCTTGGTGGTTTCTTCCATTGA
CCACATCTCCTCTGACTTCAAAATCATGCTGAAAGA
CCAAGGTCCAAAGCGAG991
CTCGCTTTGGACCTTGG992
|
Breast CancerCAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATGGAAGA993
Arg-1751-StopAACCACCAAGGTCCAAAGCGAGCAAGAGAATCCCAGGACAG
CGA to TGAAAAGGTAAAGCTCCCTCCCTCAAGTTGACAAAAATCTC
GAGATTTTGTCAACTTGAGGGAGGGAGCTTTACCTTTCTGT994
CCTGGGATTCTCTTGCTCGCTTTGGACCTTGGTGGTTTCTTC
CATTGACCACATCTCCTCTGACTTCAAAATCATGCTG
GTCCAAAGCGAGCAAGA995
TCTTGCTCGCTTTGGAC996
|
Breast CancerGTCAGAGGAGATGTGGTCAATGGAAGAAACCACCAAGGTCC997
Gln-1756-StopAAAGCGAGCAAGAGAATCCCAGGACAGAAAGGTAAAGCTCC
CAG to TAGCTCCCTCAAGTTGACAAAAATCICACCCCACCACTCTGT
ACAGAGTGGTGGGGTGAGATTTTTGTCAACTTGAGGGAGGG998
AGCTTTACCTTTCTGTCCTGGGATTCTCTTGCTCGCTTTGGA
CCTTGGTGGTTTCTTCCATTGACCACATCTCCTCTGAC
GAGAATCCCAGGACAGA999
TCTGTCCTGGGATTCTC1000
|
Breast CancerCTCTCTTCTTCCAGATCTTCAGGGGGCTAGAAATCTGTTGCT1001
Met-1775-ArgATGGGCCCTTCACCAACATGCCCACAGGTAAGAGCCTGGGA
ATG to AGGGAACCCCAGAGTTCCAGCACCAGCCTTTGTCTTACATA
TATGTAAGACAAAGGCTGGTGCTGGAACTCTGGGGTTCTCCC1002
AGGCTCTTACCTGTGGGCATGTTGGTGAAGGGCCCATAGCA
ACAGATTTCTAGCCCCCTGAAGATCTGGAAGAAGAGAG
CACCAACATGCCCACAG1003
CTGTGGGCATGTTGGTG1004
|
Breast CancerAGTATGCAGATTACTGCAGTGATTTTACATCTAAAATGTCCATT1005
Trp-1782-StopTTAGATCAACTGGAATGGATGGTACAGCTGTGTGGTGCTTCT
TGG to TGAGTGGTGAAGGAGCTTTCATCATTCACCCTTGGCACA
TGTGCCAAGGGTGAATGATGAAAGCTCCTTCACCACAGAAGC1006
ACCACACAGCTGTACCATCCATTCCAGTTGATCTAAAATGGA
CATTTAGATGTAAAATCACTGCAGTAATCTGCATACT
CTGGAATGGATGGTACA1007
TGTACCATCCATTCCAG1008
|
Breast CancerATTACTGCAGTGATTTTACATCTAAATGTCCATTTTAGATCAAC1009
Gln-1785-HisTGGAATGGATGGTACAGCTGTGTGGTGCTTCTGTGGTGAAG
CAG to CATGAGCTTTCATCATTCACCCTTGGCACAGTAAGTATT
AATACTTACTGTGCCAAGGGTGAATGATGAAAGCTCCTTCAC1010
CACAGAAGCACCACACAGCTGTACCATCCATTCCAGTTGATC
TAAAATGGACATTTAGATGTAAAATCACTGCAGTAAT
ATGGTACAGCTGTGTGG1011
CCACACAGCTGTACCAT1012
|
Breast CancerGTCCATTTTAGATCAACTGGAATGGATGGTACAGCTGTGTGG1013
Glu-1794-AspTGCTTCTGTGGTGAAGGAGCTTTCATCATTCACCCTTGGCAC
GAG to GATAGTAAGTATTGGGTGCCCTGTCAGAGAGGGAGGACAC
GTGTCCTCCCTCTCTGACAGGGCACCCAATACTTACTGTGCC1014
AAGGGTGAATGATGAAAGCTCCTTCACCACAGAAGCACCACA
CAGCTGTACCATCCATTCCAGTTGATCTAAAATGGAC
GTGAAGGAGCTTTCATC1015
GATGAAAGCTCCTTCAC1016
|
Breast CancerCTCTGCTTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGT1017
Arg-1835-StopGAGGCACCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGT
CGA to TGAAGCACTCTACCAGTGCCAGGAGCTGGACACCTACCTGA
TCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAGTGCTACA1018
CTGTCCAACACCCACTCTCGGGTCACCACAGGTGCCTCACA
CATCTGCCCAATTGCTGGAGACAGAGAACACAAGCAGAG
TGGTGACCCGAGAGTGG1019
CCACTCTCGGGTCACCA1020
|
Breast CancerTTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGTGAGGCA1021
Trp-1837-ArgCCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTAGCACT
TGG to CGGCTACCAGTGCCAGGAGCTGGACACCTACCTGATACCCC
GGGGTATCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAGT1022
GCTACACTGTCCAACACCCACTCTCGGGTCACCACAGGTGC
CTCACACATCTGCCCAATTGCTGGAGACAGAGAACACAA
CCCGAGAGTGGGTGTTG1023
CAACACCCACTCTCGGG1024
|
Breast CancerTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGTGAGGCAC1025
Trp-1837-StopCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTAGCACTC
TGG to TAGTACCAGTGCCAGGAGCTGGACACCTACCTGATACCCCA
TGGGGTATCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAG1026
TGCTACACTGTCCAACACCCACTCTCGGGTCACCACAGGTG
CCTCACACATCTGCCCAATTGCTGGAGACAGAGAACACA
CCGAGAGTGGGTGTTGG1027
CCAACACCCACTCTCGG1028
|
[0126]
16
TABLE 15
|
|
|
BRCA2 Mutations and Genome-Correcting Oligos
|
Clinical Phenotype &
SEQ ID
|
Mutation
Correcting Oligos
NO:
|
|
Breast cancer
GTTAAAACTAAGGTGGGATTTTTTTTTTAAATAGATTTAGGAC
1029
|
PHE32LEU
CAATAAGTCTTAATTGGTTTGAAGAACTTTCTTCAGAAGCTCC
|
TTT to CTT
ACCCTATAATTCTGAACCTGCAGAAGAATCTGAAC
|
|
GTTCAGATTCTTCTGCAGGTTCAGAATTATAGGGTGGAGCTT
1030
|
CTGAAGAAAGTTCTTCAAACCAATTAAGACTTATTGGTCCTAA
|
ATCTATTTAAAAAAAAAATCCCACCTTAGTTTTAAC
|
|
TTAATTGGTTTGAAGAA
1031
|
|
TTCTTCAAACCAATTAA
1032
|
|
Breast cancer
TAGATTTAGGACCAATAAGTCTTAATTGGTTTGAAGAACTTTC
1033
|
TYR42CYS
TTCAGAAGCTCCACCCTATAATTCTGAACCTGCAGAAGAATC
|
TAT to TGT
TGAACATAAAAACAACAATTACGAACCAAACCTATT
|
|
AATAGGTTTGGTTCGTAATTGTTGTTTTTATGTTCAGATTCTTC
1034
|
TGCAGGTTCAGAATTATAGGGTGGAGCTTCTGAAGAAGTTC
|
TTCAAACCAATTAAGACTTATTGGTCCTAAATCTA
|
|
TCCACCCTATAATTCTG
1035
|
|
CAGAATTATAGGGTGGA
1036
|
|
Breast cancer
AAGAACTTTCTTCAGAAGCTCCACCCTATAATTCTGAACCTGC
1037
|
LYS53ARG
AGAAGAATCTGAACATAAAAACAACAATTACGAACCAAACCTA
|
AAA to AGA
TTTAAAACTCCACAAAGGAAACCATCTTATAATCA
|
|
TGATTATAAGATGGTTTCCTTTGTGGAGTTTTAAATAGGTTTG
1038
|
GTTCGTAATTGTTGTTTTTATGTTCAGATTCTTCTGCAGGTTC
|
AGAATTATAGGGTGGAGCTTCTGAAGAAAGTTCTT
|
|
TGAACATAAAAACAACA
1039
|
|
TGTTGTTTTTATGTTCA
1040
|
|
Breast cancer
CTATTTAAAACTCCACAAAGGAAACCATCTTATAATCAGCTGG
1041
|
Phe81Leu
CTTCAACTCCAATAATATTCAAAGAGCAAGGGCTGACTCTGC
|
TTC to CTC
CGCTGTACCAATCTCCTGTAAAAGAATTAGATAAAT
|
|
ATTTATCTAATTCTTTTACAGGAGATTGGTACAGCGGCAGAGT
1042
|
CAGCCCTTGCTCTTTGAATATTATTGGAGTTGAAGCCAGCTG
|
ATTATAAGATGGTTTCCTTTGTGGAGTTTTAAATAG
|
|
CAATAATATTCAAAGAG
1043
|
|
CTCTTTGAATATTATTG
1044
|
|
Breast cancer
GTCAGACACCAAAACATATTTCTGAAAGTCTAGGAGCTGAGG
1045
|
TRP194TERM
TGGATCCTGATATGTCTTGGTCAAGTTCTTTAGCTACACCACC
|
TGG to TAG
CACCCTTAGTTCTACTGTGCTCATAGGTAATAATAG
|
|
CTATTATTACCTATGAGCACAGTAGAACTAAGGGTGGGTGGT
1046
|
GTAGCTAAAGAACTTGACCAAGACATATCAGGATCCACCTCA
|
GCTCCTAGACTTTCAGAAATATGTTTTGGTGTCTGAC
|
|
TATGTCTTGGTCAAGTT
1047
|
|
AACTTGACCAAGACATA
1048
|
|
Breast cancer
CTGAAAGTCTAGGAGCTGAGGTGGATCCTGATATGTCTTGGT
1049
|
PRO201ARG
CAAGTTCTTTAGCTACACCACCCACCCTTAGTTCTACTGTGCT
|
CCA to CGA
CATAGGTAATAATAGCAAATGTGTATTTACAAGAAA
|
|
TTTCTTGTAAATACACATTTGCTATTATTACCTATGAGCACAGT
1050
|
AGAACTAAGGGTGGGTGGTGTAGCTAAAGAACTTGACCAAGA
|
CATATCAGGATCCACCTCAGCTCCTAGACTTTCAC
|
|
AGCTACACCACCCACCC
1051
|
|
GGGTGGGTGGTGTAGCT
1052
|
|
Breast cancer
ACAATACACATAAATTTTTATCTTACAGTCAGAAATGAAGAAG
1053
|
Pro222Ser
CATCTGAAACTGTATTTCCTCATGATACTACTGCTGTAAGTAA
|
CCT to TCT
ATATGACATTGATTAGACTGTTGAAATTGCTAACA
|
|
TGTTAGCAATTTCAACAGTCTAATCAATGTCATATTTACTTACA
1054
|
GCAGTAGTATCATGAGGAAATACAGTTTCAGATGCTTCTTCAT
|
TTCTGACTGTAAGATAAAAATTTATGTGTATTGT
|
|
CTGTATTTCCTCATGAT
1055
|
|
ATCATGAGGAAATACAG
1056
|
|
Breast cancer
AATGGTCTCAACTAACCCTTTCAGGTCTAAATGGAGCCCAGA
1057
|
Leu-414-Term
TGGAGAAAATACCCCTATTGCATATTTCTTCATGTGACCAAAA
|
TTG to TAG
TATTTCAGAAAAAGACCTATTAGACACAGAGAACAA
|
|
TTGTTCTCTGTGTCTAATAGGTCTTTTTCTGAAATATTTTGGTC
1058
|
ACATGAAGAAATATGCAATAGGGGTATTTTCTCCATCTGGGC
|
TCCATTTAGACCTGAAAGGGTTAGTTGAGACCATT
|
|
ACCCCTATTGCATATTT
1059
|
|
AAATATGCAATAGGGGT
1060
|
|
Breast cancer, male
AGCCTCTGAAAGTGGACTGGAAATACATACTGTTTGCTCACA
1061
|
Cys554Trp
GAAGGAGGACTCCTTATGTCCAAATTTAATTGATAATGGAAG
|
TGT to TGG
CTGGCCAGCCACCACCACACAGAATTCTGTAGCTTTG
|
|
CAAAGCTACAGAATTCTGTGTGGTGGTGGCTGGCCAGCTTC
1062
|
CATTATCAATTAAATTTGGACATAAGGAGTCCTCCTTCTGTGA
|
GCAAACAGTATGTATTTCCAGTCCACTTTCAGAGGCT
|
|
TCCTTATGTCCAAATTT
1063
|
|
AAATTTGGACATAAGGA
1064
|
|
Breast cancer
AACTCTACCATGGTTTTATATGGAGACACAGGTGATAAACAA
1065
|
Lys944Term
GCMCCCAAGTGTCAATTAAAAAAGATTTGGTTTATGTTCTTG
|
AAA to TAA
CAGAGGAGAACAAAAATAGTGTAAAGCAGCATATAA
|
|
TTATATGCTGCTTTACACTATTTTTGTTCTCCTCTGCAAGAAC
1066
|
ATAAACCAAATCTTTTTTAATTGACACTTGGGTTGCTTGTTTAT
|
CACCTGTGTCTCCATATAAAACCATGGTAGAGTT
|
|
TGTCAATTAAAAAAGAT
1067
|
|
ATCTTTTTTAATTGACA
1068
|
|
Breast cancer, male
ATGACTACTGGCACTTTTGTTGAAGAAATTACTGAAAATTACA
1069
|
Glu1320Term
AGAGAAATACTGAAAATGAAGATAACAAATATACTGCTGCCAG
|
GAA to TAA
TAGAAATTCTCATAACTTAGAATTTGATGGCAGTG
|
|
CACTGCCATCAAATTCTAAGTTATGAGAATTTCTACTGGCAGC
1070
|
AGTATATTTGTTATCTTCATTTCAGTATTTCTCTTGTAATTTTC
|
AGTAATTTCTTCAACAAAAGTGCCAGTAGTCAT
|
|
CTGAAAATGAAGATAAC
1071
|
|
GTTATCTTCATTTTCAG
1072
|
|
Breast cancer
CATGAAACAATTAAAAAAGTGAAAGACATATTTACAGACAGTT
1073
|
Glu1876Term
TCAGTAAAGTAATTAAGGAAAACAACGAGAATAAATCAAAAAT
|
GAA to TAA
TTGCCAAACGAAAATTATGGCAGGTTGTTACGAGG
|
|
CCTCGTAACAACCTGCCATAATTTTCGTTTGGCAAATTTTTGA
1074
|
TTTATTCTCGTTGTTTTCCTTAATTACTTTACTGAAACTGTCTG
|
TAAATATGTCTTTCACTTTTTTAATTGTTTCATG
|
|
TAATTAAGGAAAACAAC
1075
|
|
GTTGTTTTCCTTAATTA
1076
|
|
Breast cancer
TGAAAGACATATTTACAGACAGTTTCAGTAAAGTAATTAAGGA
1077
|
Ser1882Term
AAACAACGAGAATAAATCAAAAATTTGCCAAACGAAAATTATG
|
TCA to TAA
GCAGGTTGTTACGAGGCATTGGATGATTCAGAGGA
|
|
TCCTCTGAATCATCCAATGCCTCGTAACAACCTGCCATAATTT
1078
|
TCGTTTGGCAAATTTTTGATTTATTCTCGTTGTTTTCCTTAATT
|
ACTTTACTGAAACTGTCTGTAAATATGTCTTTCA
|
|
GAATAAATCAAAAATTT
1079
|
|
AAATTTTTGATTTATTC
1080
|
|
Breast cancer
AACCAAAATATGTCTGGATTGGAGAAAGTTTCTAAAATATCAC
1081
|
Glu1953Term
CTTGTGATGTTAGTTTGGAAACTTCAGATATATGTAAATGTAG
|
GAA to TAA
TATAGGGAAGCTTCATAAGTCAGTCTCATCTGCAA
|
|
TTGCAGATGAGACTGACTTATGAAGCTTCCCTATACTACATTT
1082
|
ACATATATCTGAAGTTTCCAAACTAACATCACAAGGTGATATT
|
TTAGAAACTTTCTCCAATCCAGACATATTTTGGTT
|
|
TTAGTTTGGAAACTTCA
1083
|
|
TGAAGTTTCCAAACTAA
1084
|
|
Breast cancer
TTAGTTTGGAAACTTCAGATATATGTAAATGTAGTATAGGGAA
1085
|
Ser1970Term
GCTTCATAAGTCAGTCTCATCTGCAAATACTTGTGGGATTTTT
|
TCA to TAA
AGCACAGCAAGTGGAAAATCTGTCCAGGTATCAGA
|
|
TCTGATACCTGGACAGATTTTCCACTTGCTGTGCTAAAAATCC
1086
|
CACAAGTATTTGCAGATGAGACTGACTTATGAAGCTTCCCTAT
|
ACTACATTTACATATATCTGAAGTTTCCAAACTAA
|
|
GTCAGTCTCATCTGCAA
1087
|
|
TTGCAGATGAGACTGAC
1088
|
|
Breast cancer
AAGTCAGTCTCATCTGCAAATACTTGTGGGATTTTTAGCACAG
1089
|
Gln1987Term
CAAGTGGAAAATCTGTCCAGGTATCAGATGCTTCATTACAAAA
|
GAG to TAG
CGCAAGACAAGTGTTTTCTGAAATAGAAGATAGTA
|
|
TACTATCTTCTATTTCAGAAAACACTTGTCTTGCGTTTTGTAAT
1090
|
GAAGCATCTGATACCTGGACAGATTTTCCACTTGCTGTGCTA
|
AAAATCCCACAAGTATTTGCAGATGAGACTGACTT
|
|
AATCTGTCCAGGTATCA
1091
|
|
TGATACCTGGACAGATT
1092
|
|
Breast cancer
AAAATAAGATTAATGACAATGAGATTCATCAGTTTAACAAAAA
1093
|
Ala2466Val
CAACTCCAATCAAGCAGCAGCTGTAACTTTCACAAAGTGTGA
|
GCA to GTA
AGAAGAACCTTTAGGTATTGTATGACAATTTGTGTG
|
|
CACACAAATTGTCATACAATACCTAAAGGTTCTTCTTCACACT
1094
|
TTGTGAAAGTTACAGCTGCTGCTTGATTGGAGTTGTTTTTGTT
|
AAACTGATGAATCTCATTGTCATTAATCTTATTTT
|
|
TCAAGCAGCAGCTGTAA
1095
|
|
TTACAGCTGCTGCTTGA
1096
|
|
Breast cancer
AGGCAACGCGTCTTTCCACAGCCAGGCAGTCTGTATCTTGCA
1097
|
Arg2520Term
AAAACATCCACTCTGCCTCGAATCTCTCTGAAAGCAGCAGTA
|
CGA to TGA
GGAGGCCAAGTCCCCTCTGCGTGTCCTCATAAACAGG
|
|
CCTGTTTATGAGGACACGCAGAGGGGACTTGGCCTCCTACT
1098
|
GCTGCTTTCAGAGAGATTCGAGGCAGAGTGGATGTTTTTGCA
|
AGATACAGACTGCCTGGCTGTGGAAAGACGCGTTGCCT
|
|
CTCTGCCTCGAATCTCT
1099
|
|
AGAGATTCGAGGCAGAG
1100
|
|
Breast cancer
ATTTCATTGAGCGCAAATATATCTGAAACTTCTAGCAATAAAA
1101
|
Gln2714Term
CTAGTAGTGCAGATACCCAAAAAGTGGCCATTATTGAACTTA
|
CAA to TAA
CAGATGGGTGGTATGCTGTTAAGGCCCCAGTTAGATC
|
|
GATCTAACTGGGCCTTAACAGCATACCACCCATCTGTAAGTT
1102
|
CAATAATGGCCACTTTTTGGGTATCTGCACTACTAGTTTTATT
|
GCTAGAAGTTTCAGATATATTTGCGCTCAATGAAAT
|
|
CAGATACCCAAAAAGTG
1103
|
|
CACTTTTTGGGTATCTG
1104
|
|
Breast cancer
CAGAACTGGTGGGCTCTCCTGATGCCTGTACACCTCTTGAAG
1105
|
Leu2776Term
CCCCAGAATCTCTTATGTTAAAGGTAAATTAATTTGCACTCTT
|
TTA to TGA
GGTAAAAATCAGTCATTGATTCAGTTAAATTCTAGA
|
|
TCTAGAATTTAACTGAATCAATGACTGATTTTTACCAAGAGTG
1106
|
CAAATTAATTTACCTTTAACATAAGAGATTCTGGGGCTTCAAG
|
AGGTGTACAGGCATCAGGAGAGCCCACCAGTTCTG
|
|
TCTTATGTTAAAGATTT
1107
|
|
AAATCTTTAACATAAGA
1108
|
|
Breast cancer
CCTTTTGTTTTCTTAGAAAACACAACAAAACCATATTTACCATC
1109
|
Gln2893Term
ACGTGCACTAACAAGACAGCAAGTTCGTGCTTTGCAAGATGG
|
CAG to TAG
TGCAGAGCTTTATGAAGCAGTGAAGAATGCAGCAG
|
|
CTGCTGCATTCTTCACTGCTTCATAAAGCTCTGCACCATCTTG
1110
|
CAAAGCACGAACTTGCTGTCTTGTTAGTGCACGTGATGGTAA
|
ATATGGTETTGTTGTGTTTTCTAAGAAAACAAAAGG
|
|
TAACAAGACAGCAAGTT
1111
|
|
AACTTGCTGTCTTGTTA
1112
|
|
Breast cancer
AATCACAGGCAAATGTTGAATGATAAGAAACAAGCTCAGATC
1113
|
Ala2951Thr
CAGTTGGAAATTAGGAAGGCCATGGAATCTGCTGAACAAAAG
|
GCC to ACC
GAACAAGGTTTATCAAGGGATGTCACAACCGTGTGGA
|
|
TCCACACGGTTGTGACATCCCTTGATAAACCTTGTTCCTTTTG
1114
|
TTCAGCAGATTCCATGGCCTTCCTAATTTCCAACTGGATCTGA
|
GCTTGTTTCTTATCATTCAACATTVGCCTGTGATT
|
|
TTAGGAAGGCCATGGAA
1115
|
|
TTCCATGGCCTTCCTAA
1116
|
|
Breast cancer
ACAATTTACTGGCAATAAAGTTTTGGATAGACCTTAATGAGGA
1117
|
Met3118Thr
CATTATTAAGCCTCATATGTTAATTGCTGCAAGCAACCTCCAG
|
ATG to ACG
TGGCGACCAGAATCCAAATCAGGCCTTCTTACTTT
|
|
AAAGTAAGAAGGCCTGATTTGGATTCTGGTCGCCACTGGAG
1118
|
GTTGCTTGCAGCAATTAACATATGAGGCTTAATAATGTCCTCA
|
TTAAGGTCTATCCAAAACTTTATTGCCAGTAAATTGT
|
|
GCCTCATATGTTAATTG
1119
|
|
CAATTAACATATGAGGC
1120
|
|
Breast cancer
GACTGAAACGACGTTGTACTACATCTCTGATCAAAGAACAGG
1121
|
Thr3401Met
AGAGTTCCCAGGCCAGTACGGAAGAATGTGAGAAAAATAAGC
|
ACG to ATG
AGGACACAATTACAACTAAAAAATATATCTAAGCATT
|
|
AATGCTTAGATATATTTTTTAGTTGTAATTGTGTCCTGCTTATT
1122
|
TTTCTCACATTCTTCCGTACTGGCCTGGGAACTCTCCTGTTCT
|
TTGATCAGAGATGTAGTACAACGTCGTTTCAGTC
|
|
GGCCAGTACGGAAGAAT
1123
|
|
ATTCTTCCGTACTGGCC
1124
|
|
Breast cancer
AAAGAACAGGAGAGTTCCCAGGCCAGTACGGAAGAATGTGA
1125
|
lle3412Val
GAAAAATAAGCAGGACACAATTACAACTAAAAAATATATCTAA
|
ATT to GTT
GCATTTGCAAAGGCGACAATAAATTATTGACGCTTAA
|
|
TTAAGCGTCAATAATTTATTGTCGCCTTTTGCAAATGCTTAGAT
1126
|
ATATTTTTTAGTTGTAATTGTGTCCTGCTTATTTTTCTCACATT
|
CTTCCGTACTGGCCTGGGAACTCTCCTGTTCTTT
|
|
AGGACACAATTACAACT
1127
|
|
AGTTGTAATTGTGTCCT
1128
|
|
Cystic Fibrosis—CFTR
[0127] Cystic fibrosis is a lethal disease affecting approximately one in 2,500 live Caucasian births and is the most common autosomal recessive disease in Caucasians. Patents with this disease have reduced chloride ion permeability in the secretory and absorptive cells of organs with epithelial cell linings, including the airways, pancreas, intestine, sweat glands and male genital tract. This, in turn, reduces the transport of water across the epithelia. The lungs and the GI tract are the predominant organ systems affected in this disease and the pathology is characterized by blocking of the respiratory and GI tracts with viscous mucus. The chloride impermeability in affected tissues is due to mutations in a specific chloride channel, the cystic fibrosis transmembrane conductance regulator protein (CFTR), which prevents normal passage of chloride ions through the cell membrane (Welsh et al., Neuron, 8:821-829 (1992)). Damage to the lungs due to mucus blockage, frequent bacterial infections and inflammation is the primary cause of morbidity and mortality in CF patients and, although maintenance therapy has improved the quality of patients' lives, the median age at death is still only around 30 years. There is no effective treatment for the disease, and therapeutic research is focused on gene therapy using exogenous transgenes in viral vectors and/or activating the defective or other chloride channels in the cell membrane to normalize chloride permeability (Tizzano et al., J. Pediat., 120:337-349 (1992)). However, the death of a teenage patient treated with an adenovirus vector carrying an exogenous CFTR gene in clinical trials in the late 1990's has impacted this area of research.
[0128] The oligonucleotides of the invention for correction of the CFTR gene are attached as a table.
17TABLE 16
|
|
CFTR Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Cystic fibrosisAAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAA1129
Ala46AspTCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATTGGA
GCT to GATAAGGTATGTTCATGTACATTGTTTAGTTGAAGAGAG
|
CTCTCTTCAACTAAACAATGTACATGAACATACCTTTCCAATTT1130
TTCAGATAGATTGTCAGCAGAATCAACAGAAGGGATTTGGTA
TATGTCTGACAATTCCAGGCGCTGTCTGTATCCTT
|
TGATTCTGCTGACAATC1131
|
GATTGTCAGCAGAATCA1132
|
Cystic fibrosisAGCGCCTGGAATTGTCAGACATATACCAAATCCCTTCTGTTG1133
Ser50TyrATTCTGCTGACAATCTATCTGAAAAATTGGAAAGGTATGTTCA
TCT to TATTGTACATTGTTTAGTTGAAGAGAGAAATTCATATTA
|
TAATATGAATTTCTCTCTTCAACTAAACAATGTACATGAACATA1134
CCTTTCCAATTTTTCAGATAGATTGTCAGCAGAATCAACAGAA
GGGATTTGGTATATGTCTGACAATTCCAGGCGCT
|
CAATCTATCTGAAAAAT1135
|
ATTTTTCAGATAGATTG1136
|
Congenital absence ofAGGACAACTAAAATATTTGCACATGCAACTTATTGGTCCCACT1137
vas deferensTTTTATTCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAA
Glu56LysGAAAAATCCTAAACTCATTAATGCCCTTCGGCGAT
GAA-AAA
ATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTTCTTGAAGC1138
CAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGA
CCAATAAGTVGCATGTGCAAATATTTAGTTGTCCT
|
TTTGCAGAGAATGGGAT1139
|
ATCCCATTCTCTGCAAA1140
|
Cystic fibrosisAGGACAACTAAAATATTTGCACATGCAACTTATTGGTCCCACT1141
Trp57GlyTTTTTATTCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAA
TGG to GGGGAAAAATCCTAAACTCATTAATGCCCTTCGGCGAT
|
ATCGCCGAAGGGCATTAATGAGTTTTAGGATTTTTTCTTTGAAGC1142
CAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGA
CCAATAAGTTGCATGTGCAAATATTTTTAGTTGTCCT
|
TTTGCAGAGAATGGGAT1143
|
ATCCCATTCTCTGCAAA1144
|
Cystic fibrosisAACTAAAATATTTTGCACATGCAACTTATTGGTCCCACTTTTTAT1145
Trp57TermTCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAA
TGG to TGAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTT
|
AAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTTT1146
GAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGT
GGGACCAATAAGTTGCATGTGCAAATATTTTAGTT
|
AGAGAATGGGATAGAGA1147
|
TCTCTATCCCATTCTCT1148
|
Congenital absence ofACTAAAATATTTGCACATGCAACTTATTGGTCCCACTTTTTATT1149
vas deferensCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAA
Asp58AsnTCCTAAACTCATTAATGCCCTTCGGCGATGTTTTT
GAT to AAT
AAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTT1150
TGAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAG
TGGGACCAATAAGTTGCATGTGCAAATATTTTAGT
|
GAGAATGGGATAGAGAG1151
|
CTCTCTATCCCATTCTC1152
|
Cystic fibrosisATATTTGCACATGCAACTTATTGGTCCCACTTTTTATTCTTTTG1153
Gtu60TermCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAA
GAG to TAGACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGA
|
TCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGAT1154
TTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAA
TAAAAAGTGGGACCAATAAGTTGCATGTGCAAATAT
|
GGGATAGAGAGCTGGCT1155
|
AGCCAGCTCTCTATCCC1156
|
Cystic fibrosisGGTCCCACTTTTTATTCTTTTGCAGAGAATGGGATAGAGAGC1157
Pro67LeuTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGC
CCT to CTTGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTT
|
AAGATTCCATAGAACATAAATCTCCAGAAAAAACATCGCCGAA1158
GGGCATTAATGAGTTTAGGATTTTTCTTTGAAGCCAGCTCTCT
ATCCCATTCTCTGCAAAAGAATAAAAAGTGGGACC
|
GAAAAATCCTAAACTCA1159
|
TGAGTTTAGGAATTTTC1160
|
Cystic fibrosisTGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCT1161
Arg74TrpAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTA
CGG to TGGTGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGA
|
TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT1162
CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATT
TTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTGCA
|
ATGCCCTTCGGCGATGT1163
|
ACATCGCCGAAGGGCAT1164
|
Congenital absence ofGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAAC1165
vas deferensTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTTATGTT
ARG75GLNCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTC
CGA to CAA
GAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAA1166
ATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAG
GATTTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTC
|
CCTTCGGCGATGTTTTT1167
|
AAAAACATCGCCGAAGGTT68
|
Cystic fibrosisGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAAC1169
Arg75LeuTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTTATGTT
CGA to CTACTATGGAATCTTTTTATATTAGGGGTAAGGATCTC
|
GAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAA1170
ATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAG
GATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTC
|
CCTTCGGCGATGTTTTT1171
|
AAAAACATCGCCGAAGG1172
|
Cystic fibrosisAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAA1173
Arg75TermCTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGT
CGA to TGATCTATGGAATCTTTTTATATTTAGGGGTAAGGATCT
|
AGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAA1174
TCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTTAGG
ATTTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCT
|
CCCTTCGGCGATGTTTT1175
|
AAAACATCGCCGAAGGG1176
|
Cystic fibrosisATTAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTG1177
Gly85GluGAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGG
GGA to GAAATCTCATTTGTACATTCATATGTATCACATAACT
|
AGTTATGTGATACATAATGAATGTACAAATGAGATCCTTACCC1178
CTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAA
ACATCGCCGAAGGGCATTAATGAGTTTAGGATTTT
|
GTTCTATGGAATCTTTT1179
|
AAAAGATTCCATAGAAC1180
|
Cystic fibrosisAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTG1181
Gly85ValGAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGG
GGA to GTAATCTCATTTGTACATTCATTATGTATCACATAACT
|
AGTTATGTGATACATAATGAATGTACAAATGAGATCCTTTACCC1182
CTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAA
ACATCGCCGAAGGGCATTAATGAGTTTAGGATTTT
|
GTTCTATGGAATCTTTT1183
|
AAAAGATTCCATAGAAC1184
|
Cystic fibrosisAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTAT1185
Leu88SerGTTCTATGGAATCTTTTTTATATTTAGGGGTAAGGATCTCATTT
TTA to TCAGTACATTCATTATGTATCACATAACTATATGCATT
|
AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA1186
TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT
CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT
|
AATCTTTTTATATTTAG1187
|
CTAAATATAAAAAGATT1188
|
Cystic fibrosisCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGAT1189
Phe87LeuTTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTC
TTT to CTTATTTGTACATTCATTATGTATCACATAACTATATG
|
CATATAGTTATGTGATACATAATGAATGTACAAATGAGATCCT1190
TACCCCTAAATATAAAAAGATTCCATAGAACATAAATCTCCAG
AAAAAACATCGCCGAAGGGCATTAATGAGTTTAGG
|
ATGGAATCTTTTTATAT1191
|
ATATAAAAAGATTCCAT1192
|
Cystic fibrosisAACTCATTAATGCCCHCGGCGATGTTTTTTCTGGAGATTTAT1193
Leu88TermGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCATTT
TTA to TGAGTACATTCATTATGTATCACATAACTATATGCATT
|
AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA1194
TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT
CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT
|
AATCTTTTTATATTTAG1195
|
CTAAATATAAAAAGATT1196
|
Cystic fibrosisAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTAT1197
Leu88TermGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCATTT
TTA to TAAGTACATTCATTATGTATCACATAACTATATGCATT
|
AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA1198
TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAGAATCT
CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT
|
AATCTTTTTATATTTAG1199
|
CTAAATATAAAAAGATT1200
|
Cystic fibrosisAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGTTCTATG1201
Gly91ArgGAATCTTTTTATATTTAGGGGTAAGGATCTCATTTGTACATTC
GGG to AGGATTATGTATCACATAACTATATGCATTTTTGTGAT
|
ATCACAAAAATGCATATAGTTATGTGATACATAATGAATGTAC1202
AAATGAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAAC
ATAAATCTCCAGAAAAAACATCGCCGAAGGGCATT
|
TATATTTAGGGGTAAGG1203
|
CCTTACCCCTAAATATA1204
|
Cystic fibrosisAATAAATGAAATTTAATTTCTCTGGTTTTCCCCTTGTGTAGGAA1205
Gln98ArgGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCATA
CAG to CGGGCTTCCTATGACCCGGATAACAAGGAGGAACGCTC
|
GAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATT1206
CTTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTAC
AAAAGGGGAAAAACAGAGAAATTAAATTTCATTTATT
|
AGCAGTACAGCCTCTCT1207
|
AGAGAGGCTGTACTGCT1208
|
Cystic fibrosisAAATAAATGAAATTTAATTTCTCTGTTTTTCCCCTTTTGTAGGA1209
Gln98TermAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCAT
CAG-TAGAGCTTCCTATGACCCGGATAACAAGGAGGAACGCT
|
AGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTC1210
TTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACA
AAAGGGGAAAAACAGAGAAATTAAATTTCATTTATTT
|
AAGCAGTACAGCCTCTC1211
|
GAGAGGCTGTACTGCTT1212
|
Cystic fibrosisCCCTTTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTAC1213
Ser108PheTGGGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGG
TCC to TTCAACGCTCTATCGCGATTTATCTAGGCATAGGCTTATG
|
CATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCCTCC1214
TTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAG
AGAGGCTGTACTGCTTTGGTGACTTCCTACAAAAGGG
|
CATAGCTTCCTATGACC1215
|
GGTCATAGGAAGCTATG1216
|
Cystic fibrosisTTTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGG1217
Tyr109CysGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGAAC
TAT to TGTGCTCTATCGCGATTATCTAGGCATAGGCTTATGCCT
|
AGGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCC1218
TCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGT
AAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAAAA
|
AGCTTCCTATGACCCGG1219
|
CCGGGTCATAGGAAGCT1220
|
Cystic fibrosisTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGA1221
Asp110HisAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGAACGC
GAC to CACTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTC
|
GAAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTT1222
CCTCCYTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCA
GTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAA
|
CTTCCTATGACCCGGAT1223
|
ATCCGGGTCATAGGAAG1224
|
Congenital absence ofAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAA1225
vas deferensTCATAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTA
Pro111LeuTCGCGATTTATCTAGGCATAGGCTTATGCCTTCTTCT
CCG to CTG
AAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAG1226
CGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTT
CCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCT
|
CTATGACCCGGATAACA1227
|
TGTTATCCGGGTCATAG1228
|
Cystic fibrosisGTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGAC1229
Arg117CysCCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGC
CGC to TGCATAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGC
|
GCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCTA1230
GATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCAT
AGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTAC
|
AGGAGGAACGCTCTATC1231
|
GATAGAGCGTTCCTCCT1232
|
Cystic fibrosisTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACC1233
Arg117HisCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCA
CGC to CACTAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCT
|
AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT1234
AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCA
TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA
|
GGAGGAACGCTCTATCG1235
|
CGATAGAGCGTTCCTCC1236
|
Cystic fibrosisTACAGCCTCTCGTACTGGGAAGAATCATAGCTTCCTATGACC1237
Arg117LeuCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCA
CGC to CTCTAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCT
|
AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT1238
AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCA
TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA
|
GGAGGAACGCTCTATCG1239
|
CGATAGAGCGTTCCTCC1240
|
Cystic fibrosis TACAGCCTCTCTTTACTGGGAAGAATCATAGCTTCCTATGACC1241
Arg117ProCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCA
CGC to CCCTAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCT
|
AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT1242
AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCA
TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA
|
GGAGGAACGCTCTATCG1243
|
CGATAGAGCGTTCCTCC1244
|
Cystic fibrosisCTCTTACTGGGAAGAATCATAGCTTCCTATGACCCGGATAAC1245
Ala120ThrAAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTA
GCG-ACGTGCCTTCTCTTTATTGTGAGGACACTGCTCCTACACC
|
GGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGCATAAG1246
CCTATGCCTAGATAAATCGCGATAGAGCGTTCCTCCTTGTTA
TCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAG
|
GCTCTATCGCGATTTAT1247
|
ATAAATCGCGATAGAGC1248
|
Cystic fibrosisGGGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGA1249
Tyr122TermACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCT
TAT to TAACTTTATTGTGAGGACACTGCTCCTACACCCAGCCATT
|
AATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAA1250
GGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTTCCT
CCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCC
|
GCGATTTATCTAGGCAT1251
|
ATGCCTAGATAAATCGC1252
|
Cystic fibrosisTAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCG1253
Gly126AspCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAG
GGC-GACGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCA
|
TGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCAC1254
AATAAAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGAT
AGAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTA
|
AGGCA1255
|
GGCATAAGCCTATGCCT1256
|
Cystic fibrosisTCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGT1257
Hist139ArgGAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCA
CAC to CGCCATTGGAATGCAGATGAGAATAGCTATGTTTAGTTT
|
AAACTAAACATAGCTATTCTCATCTGCATTCCAATGTGATGAA1258
GGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCACAATA
AAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGA
|
GCTCCTACACCCAGCCA1259
|
TGGCTGGGTGTAGGAGC1260
|
Cystic fibrosisTTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAGGAC1261
Ala141AspACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGG
GCC to GACAATGCAGATGAGAATAGCTATGTTTAGTTTGATTTA
|
TAAATCAAACTAAACATAGCTATTCTCATCTGCATTCCAATGT1262
GATGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTC
ACAATAAAGAGAAGGCATAAGCCTATGCCTAGATAAA
|
ACACCCAGCCATTTTTG1263
|
CAAAAATGGCTGGGTGT1264
|
Cystic fibrosisGCCTTCTCTTTATTGTGAGGACACTGCTCCTACACCCAGCCA1265
lle148ThrTTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTAT
ATT to ACTGTTAGTTTGATTTATAAGAAGGTAATACTTCCTTG
|
CAAGGAAGTATTACCTTCTTATAAATCAAACTAAACATAGCTA1266
TTCTCATCTGCATTCCAATGTGATGAAGGCCAAAAATGGCTG
GGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGC
|
TCATCACATTGGAATGC1267
|
GCATTCCAATGTGATGA1268
|
Cystic fibrosisCTTCTCGTTATTGTGAGGACACTGCTCCTACACCCAGCCATTT1269
Gly149ArgTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTT
GGA to AGATAGTTTGATTATAAGAAGGTAATACTTCCTTGCA
|
TGCAAGGAAGTATTACCTTCTTATAAATCAAACTAAACATAGC1270
TATTCTCATCTGCATTCCAATGTGATGAAGGCCAAAAATGGCT
GGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAG
|
ATCACATTGGAATGCAG1271
|
CTGCATTCCAATGTGAT1272
|
Cystic fibrosisTTTATTGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGC1273
Gln1511TermCTTCATCACATTGGAATGCAGATGAGAATAGCTATGGTTAGTT
CAG to TAGTGATTTATAAGAAGGTAATACTTCCTTGCACAGGCC
|
GGCCTGTGCAAGGAAGTATTACCTTCTTATAAATCAAACTAAA1274
CATAGCTATTCTCATCTGCATTCCAATGTGATGAAGGCCAAAA
ATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAA
|
TTGGAATGCAGATGAGA1275
|
TCTCATCTGCATTCCAA1276
|
Cystic fibrosisAATATATTTGTATTTTGTTTGTTGAAATTATCTAACTTTCCATTT1277
Lys166GluTTCTTTTAGACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAA
AAG-GAGTAAGTATTGGACAACTTGTTAGTCTCCTTTCCA
|
TGGAAAGGAGACTAACAAGTTGTCCAATACTTATTTTATCTAG1278
AACACGGCTTGACAGCTTTAAAGTCTAAAAGAAAAATGGAAA
GTTAGATAATTTCAACAAACAAAATACAAATATATT
|
AGACTTTAAAGCTGTCA1279
|
TGACAGCTTTAAAGTCT1280
|
Cystic fibrosisTTATCTAACTTTCCATTTTTCTTTTAGACTTTAAAGCTGTCAAG1281
lle175ValCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTC
ATA-GTACTTTCCAACAACCTGAACAAATTTGATGAAGTAT
|
ATACTTCATCAAATTTGTTCAGGTTGTTGGAAAGGAGACTAAC1282
AAGTTGTCCAATACTTATTTTATCTAGAACACGGCTTGACAGC
TTTAAAGTCTAAAAGAAAAATGGAAAGTTAGATAA
|
TAGATAAAATAAGTATT1283
|
AATACTTATTTTATCTA1284
|
Cystic fibrosisTTTCCATTTTTCTTTTAGACTTTAAAGCTGTCAAGCCGTGTTCT1285
Gly178ArgAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAAC
GGA to AGAAACCTGAACAAATTTGATGAAGTATGTACCTATT
|
AATAGGTACATACTTCATCAAATTTGTTCAGGTTGTTGGAAAG1286
GAGACTAACAAGTTGTCCAATACTTATTTTATCTAGAACACGG
CTTGACAGCTTTAAAGTCTAAAAGAAAAATGGAAA
|
TAAGTATTGGACAACTT1287
|
AAGTTGTCCAATACTTA1288
|
Cystic fibrosisAAGATACAATGACACCTGTTTTTGCTGTGCTTTTATTTTCCAG1289
His199GlnGGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGCAA
CAT to CAGGTGGCACTCCTCATGGGGCTAATCTGGGAGTTGTTA
|
TAACAACTCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAA1290
AGGAGCGATCCACACGAAATGTGCCAATGCAAGTCCCTGGA
AAATAAAAGCACAGCAAAAACAGGTGTCATTGTATCTT
|
TTGGCACATTTCGTGTG1291
|
CACACGAAATGTGCCAA1292
|
Cystic fibrosisGGAAGATACAATGACACCTGTTTTTGCTGTGCTTTTATTTTCC1293
His199TyrAGGGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGC
CAT to TATAAGTGGCACTCCTCATGGGGCTAATCTGGGAGTTGT
|
ACAACTCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAAAG1294
GAGCGATCCACACGAAATGTGCCAATGCAAGTCCCTGGAAA
ATAAAAGCACAGCAAAAACAGGTGTCATTGTATCTTCC
|
CATTGGCACATTTCGTG1295
|
CACGAAATGTGCCAATG1296
|
Cystic fibrosisTGTTTTTGCTGTGCTTTATTTTCCAGGGACTTGCATTGGCAC1297
Pro205SerATTTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGG
CCT to TCTGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCT
|
AGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCATG1298
AGGAGTGCCACTTGCAAAGGAGCGATCCACACGAAATGTGC
CAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAAAACA
|
GGATCGCTCCTTTGCAA1299
|
TTGCAAAGGAGCGATCC1300
|
Cystic fibrosisTTTGCTGTGCTTTATTTTCCAGGGACTTGCATTGGCACATTT1301
Leu206TrpCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGGGGC
TTG to TGGTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGG
|
CCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCC1302
CATGAGGAGTGCCACTTGCAAAGGAGCGATCCACACGAAAT
GTGCCAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAA
|
CGCTCCTTTGCAAGTGG1303
|
CCACTTGCAAAGGAGCG1304
|
Cystic fibrosisTTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGGG1305
Gln220TermGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACT
CAG to TAGTGGTTTCCTGATAGTCCTTGCCCTTTTTCAGGCTGGGC
|
GCCCAGCCTGAAAAAGGGCAAGGACTATCAGGAAACCAAGT1306
CCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCC
CATGAGGAGTGCCACTTGCAAAGGAGCGATCCACACGAA
|
AGTTGTTACAGGCGTCT1307
|
AGACGCCTGTAACAACT1308
|
Cystic fibrosisCCTTTGCAAGTGGCACTCCTCATGGGGCTAATCTGGGAGTT1309
Cys225ArgGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGT
TGT-CGTCCTTGCCCTTTTTCAGGCTGGGCTAGGGAGAATGATGA
|
TCATCATTCTCCCTAGCCCAGCCTGAAAAAGGGCAAGGACTA1310
TCAGGAAACCAAGTCCACAGAAGGCAGACGCCTGTAACAAC
TCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAAAGG
|
CTGCCTTCTGTGGACTT1311
|
AAGTCCACAGAAGGCAG1312
|
Cystic fibrosisTGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGT1313
Val232AspGGACTTGGTTTCCTGATAGTCCTTGCCCTTTTTCAGGCTGGG
GTC to GACCTAGGGAGAATGATGATGAAGTACAGGTAGCAACCTAT
|
ATAGGTTGCTACCTGTACTTCATCATCATTCTCCCTAGCCCA 1314
GCCTGAAAAAGGGCAAGGACTATCAGGAAACCAAGTCCACA
GAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCA
|
CCTGATAGTCCTTGCCC1315
|
GGGCAAGGACTATCAGG1316
|
Cystic fibrosisGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGT1317
Gly239ArgCCTTGCCCTTTTTCAGGCTGGGCTAGGGAGAATGATGATGAA
GGG to AGGGTACAGGTAGCAACCTATTTTCATAACTTGAAAGTTT
|
AAACTTTCAAGTTATGAAAATAGGTTGCTACCTGTACTTCATC1318
ATCATTCTCCCTAGCCCAGCCTGAAAATTAGGGCAAGGACTATC
AGGAAACCAAGTCCACAGAAGGCAGACGCCTGTAAC
|
TTTCAGGCTGGGCTAGG1319
|
CCTAGCCCAGCCTGAAA1320
|
Cyclin-Dependent Kinase Inhibitor 2A—CDKN2A
[0129] The human CDKN2A gene was also designated MTS-1 for multiple tumor suppressor-1 and has been implicated in multiple cancers including, for example, malignant melanoma. Malignant melanoma is a cutaneous neoplasm of melanocytes. Melanomas generally have features of asymmetry, irregular border, variegated color, and diameter greater than 6 mm. The precise cause of melanoma is unknown, but sunlight and heredity are risk factors. Melanoma has been increasing during the past few decades.
[0130] The CDKN2A gene has been found to be homozygously deleted at high frequency in cell lines derived from tumors of lung, breast, brain, bone, skin, bladder, kidney, ovary, and lymphocyte. Melanoma cell lines carried at least one copy of CDKN2A in combination with a deleted allele. Melanoma cell lines that carried at least 1 copy of CDKN2A frequently showed nonsense, missense, or frameshift mutations in the gene. Thus, CDKN2A may rival p53 (see Example 5) in the universality of its involvement in tumorigenesis. The attached table discloses the correcting oligonucleotide base sequences for the CDKN2A oligonucleotides of the invention.
18TABLE 17
|
|
CDKN2A Mutations and Genome-Correcting Oligos
SEQ ID
Clinical Phenotype &Correcting OligosNO:
|
MelanomaGGGCGGCGGGGAGCAGCATGGAGCCGGCGGCGGGGAGCAG1321
Trp15Term
TGG-TAGCATGGAGCCTTCGGCTGACTGCTGGCCACGGCCGCGGCCC
|
GGGGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGG
|
CCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCCGACCCCG1322
|
GGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCCATGC
|
TGCTCCCCGCCGCCGGCTCCATGCTGCTCCCCGCCGCCC
|
GGCTGACTGGCTGGCCA1323
|
TGGCCAGCCAGTCAGCC1324
|
MelanomaCGGCGGGGAGCAGCATGGAGCCGGCGGCGGGGAGCAGCAT1325
Leu16Pro
CTG-CCGGGAGCCTTCGGCTGACTGGCTGGCCACGGCCGCGGCCCGG
|
GGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGG
|
C
|
GCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCGACC1326
|
CCGGGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCC
|
ATGCTGCTCCCCGCCGCCGGCTCCATGCTGCTCCCCGCCG
|
TGACTGGCTGGCCACGG1327
|
CCGTGGCCAGCCAGTCA1328
|
MelanomaCGGCGGCGGGGAGCAGCATGGAGCCTTCGGCTGACTGGCTG1329
Gly23Asp
CTG-CCGGCCACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGTGCGGG
|
CGCTGCTGGAGGCGGGGGCGCTGCCCAACGCACCGAATAG
|
CTATTCGGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGCGC1330
|
CCGCACCTCCTCTACCCGACCCCGGGCCGCGGCCGTGGCCA
|
GCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCGCCG
|
GGCCCGGGGTCGGGTAG1331
|
CTACCCGACCCCGGGCC1332
|
MelanomaCGGCGGGGAGCAGCATGGAGCCTTCGGCTGACTGGCTGGCC1333
Arg24Pro
CGG-CCGACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGTGCGGGCGC
|
TGCTGGAGGCGGGGGCGCTGCCCAACGCACCGAATAGTTA
|
TAACTATTCGGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGC1334
|
GCCCGCACCTCCTCTACCCGACCCCGGGCCGCGGCCGTGGC
|
CAGCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCG
|
CCGGGGTCGGGTAGAGG1335
|
CCTCTACCCGACCCCGG1336
|
MelanomaCGGCTGACTGGCTGGCCACGGCCGCGGCCCGGGGTCGGGT1337
Leu32Pro
CTG-CCGAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGCGCTGCCC
|
AACGCACCGAATAGTTACGGTCGGAGGCCGATCCAGGTGGG
|
CCCACCTGGATCGGCCTCCGACCGTAACTATTCGGTGCGTTG1338
|
GGCAGCGCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTAC
|
CCGACCCCGGGCCGCGGCCGTGGCCAGCCAGTCAGCCG
|
GGCGCTGCTGGAGGCGG1339
|
CCGCCTCCAGCAGCGCC1340
|
MelanomaGGCTGGCCACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGT1341
Gly35Ala
GGG-GCGGCGGGCGCTGCTGGAGGCGGGGGCGCTGCCCAACGCACCG
|
AATAGTTACGGTCGGAGGCCGATCCAGGTGGGTAGAGGGTC
|
GACCCTCTACCCACCTGGATCGGCCTCCGACCGTAACTATTC1342
|
GGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGCGCCCGCAC
|
CTCCTCTACCCGACCCCGGGCCGCGGCCGTGGCCAGCC
|
GGAGGCGGGGGCGCTGC1343
|
GCAGCGCCCCCGCCTCC1344
|
MelanomaGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGCGCTG1345
Tyr44Term
TACg-TAACCCAACGCACCGAATAGTTACGGTCGGAGGCCGATCCAGGTG
|
GGTAGAGGGTCTGCAGCGGGAGCAGGGGATGGCGGGCGA
|
TCGCCCGCCATCCCCTGCTCCCGCTGCAGACCCTCTACCCAC1346
|
CTGGATCGGCCTCCGACCGTAACTATTCGGTGCGTTGGGCAG
|
CGCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACC
|
AATAGTTACGGTCGGAG1346
|
CTCCGACCGTAACTATT1348
|
MelanomaTCTCCCATACCTGCCCCCACCCTGGCTCTGACCACTCTGCTC1349
Met53IIe
ATGa-ATCTCTCTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGG
|
AGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCA
|
TGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCTCCG1350
|
CCACGCGGGCGCTGCCCATCATCATGACCTGCCAGAGAGAG
|
CAGAGTGGTCAGAGCCAGGGTGGGGGCAGGTATGGGAGA
|
GTCATGATGATGGGCAG1351
|
CTGCCCATCATCATGAC1352
|
MelanomaCCCATACCTGCCCCCACCCTGGCTCTGACACTCTGCTCTCT1353
Met54IIe
ATGg-ATVCTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGGAGC
|
TGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCAGAC
|
GTCTGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCT1354
|
CCGCCACGCGGGCGCTGCCCATCATCATGACCTGCCAGAGA
|
GAGCAGAGTGGTCAGAGCCAGGGTGGGGGCAGGTATGGG
|
ATGATGATGGGCAGCGC1355
|
GCGCTGCCCATCATCAT1356
|
MelanomaGCCGGCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGC1357
Ser56IIe
AGC-ATCAGGTCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTG
|
CTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGC
|
GCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCA1358
|
GCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGACCTGCC
|
AGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGGCCGGC
|
GATGGGCAGCGCCCGAG1359
|
CTCGGGCGCTGCCCATC1360
|
MelanomaGGCCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGG1361
Ala57Val
GCC-GTCTCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTG
|
CTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCAC
|
GTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCA1362
|
GCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGACCT
|
GCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGGCC
|
GGGCAGCGCCCGAGTGG1363
|
CCACTCGGGCGCTGCCC1364
|
MelanomaCCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGGTC1365
Arg58Term
cCGA-TGAATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGCT
|
CCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTC
|
GAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAG1366
|
CAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGAC
|
CTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGG
|
GCAGCGCCCGAGTGGCG1367
|
CGCCACTCGGGCGCTGC1368
|
MelanomaCACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGGTCATGAT1369
Val59Gly
GTG-GGGGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGCTCCACG
|
GCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCAC
|
GTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTG1370
|
GAGCAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCA
|
TGACCTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTG
|
CGCCCGAGTGGCGGAGC1371
|
GCTCCGCCACTCGGGCG1372
|
MelanomaTCTGACCACTCTGCTCTCTCTGGCAGGTCATGATGATGGGCA1373
Leu62Pro
CTG-CCGGCGCCCGCGTGGCGGAGCTGCTGCTGCTCCACGGCGCGGA
|
GCCCAACTGCGCAGACCCTGCCACTCTCACCCGACCGGT
|
ACCGGTCGGGTGAGAGTGGCAGGGTCTGCGCAGTTGGGCTC1374
|
CGCGCCGTGGAGCAGCAGCAGCTCCGCCACGCGGGCGCTG
|
CCCATCATCATGACCTGCCAGAGAGAGCAGAGTGGTCAGA
|
GGCGGAGCTGCTGCTGC1375
|
GCAGCAGCAGCTCCGCC1376
|
MelanomaTCTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGGAG1377
Ala68Val
GCG-GTGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCAGACCC
|
TGCCACTCTCACCCGACCGGTGCATGATGCTGCCCGGGA
|
TCCCGGGCAGCATCATGCACCGGTCGGGTGAGAGTGGCAGG1378
|
GTCTGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCT
|
CCGCCACGCGGGCGCTGCCCATCATCATGACCTGCCAGA
|
CCACGGCGCGGAGCCCA1379
|
TGGGCTCCGCGCCGTGG1380
|
MelanomaCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGC1381
Asn71Lys
AACt-AAATCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTC
|
ACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTG
|
CAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGA1382
|
GAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAG
|
CAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATG
|
GAGCCCAACTGCGCCGA1383
|
TCGGCGCAGTTGGGCTC1384
|
MelanomaTCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTG1385
Asn71Ser
AAC-AGCCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCT
|
CACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCT
|
AGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAG1386
|
AGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCA
|
GCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGA
|
GGAGCCCAACTGCGCCG1387
|
CGGCGCAGTTGGGCTCC1388
|
MelanomaAGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCCGAC1389
Pro81Leu
CCC-CTCCCCGCCACTCTCACCCGACCCGTGCACGACGCTGCCCGGGA
|
GGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGCCGG
|
CCGGCCCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTC1390
|
CCGGGCAGCGTCGTGCACGGGTCGGGTGAGAGTGGCGGGG
|
TCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCT
|
CACCCGACCCGTGCACG1391
|
CGTGCACGGGTCGGGTG1392
|
MelanomaCTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCAC1393
Asp84Tyr
cGAC-TACTCTCACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCC
|
TGGACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGC
|
GCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCCAGG1394
|
AAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAGAGT
|
GGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAG
|
CCGTGCACGACGCTGCC1395
|
GGCAGCGTCGTGCACGG1396
|
MelanomaCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCT1397
Ala85Thr
cGCT-ACTCACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGG
|
ACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGG
|
CCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCC1398
|
AGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAG
|
AGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAG
|
TGCACGACGCTGCCCGG1399
|
CCGGGCAGCGTCGTGCA1400
|
MelanomaGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCGA1401
Arg87Pro
CGG-CCGCCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGCT
|
GGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGCG
|
CGCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAG1402
|
CGTGTCCAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTC
|
GGGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGC
|
CGCTGCCCGGGAGGGCT1403
|
AGCCCTCCCGGGCAGCG1404
|
MelanomaGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCG1405
Arg87Trp
cCGG-TGGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGC
|
TGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGC
|
GCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGC1406
|
GTGTCCAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCG
|
GGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCC
|
ACGCTGCCCGGGAGGGC1407
|
GCCCTCCCGGGCAGCGT1408
|
MelanomaCTCTCACCCGACCGGTGCATGATGCTGCCCGGGAGGGCTTC1409
Leu97Arg
CTG-CGGCTGGACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCT
|
GGACGTGCGCGATGCCTGGGGTCGTCTGCCCGTGGACTT
|
AAGTCCACGGGCAGACGACCCCAGGCATCGCGCACGTCCAG1410
|
CCGCGCCCCGGGCCGGTGCAGCACCACCAGCGTGTCCAGGA
|
AGCCCTCCCGGGCAGCATCATGCACCGGTCGGGTGAGAG
|
GGTGGTGCTGCACCGGG1411
|
CCCGGTGCAGCACCACC1412
|
MelanomaCCCGACCGGTGCATGATGCTGCCCGGGAGGGCTTCCTGGAC1413
Arg99Pro
CGG-CCGACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACG
|
TGCGCGATGCCTGGGGTCGTCTGCCCGTGGACTTGGCCGA
|
TCGGCCAAGTCCACGGGCAGACGACCCCAGGCATCGCGCAC1414
|
GTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGT
|
CCAGGAAGCCCTCCCGGGCAGCATCATGCACCGGTCGGG
|
GCTGCACCGGGCCGGGG1415
|
CCCCGGCCCGGTGCAGC1416
|
MelanomaCCGGTGCATGATGCTGCCCGGGAGGGCTTCCTGGACACGCT1417
Gly101Trp
cGGG-TGGGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGCGC
|
GATGCCTGGGGTCGTCTGCCCGTGGACTTGGCCGAGGAGC
|
GCTCCTCGGCCAAGTCCACGGGCAGACGACCCCAGGCATCG1418
|
CGCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAG
|
CGTGTCCAGGAAGCCCTCCCGGGCAGCATCATGCACCGG
|
ACCGGGCCGGGGCGCGG1419
|
CCGCGCCCCGGCCCGGT1420
|
MelanomaCGGGAGGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGC1421
Arg107Cys
gCGC-TGCCGGGGCGCGGCTGGACGTGCGCGATGCCTGGGGTCGTCTGC
|
CCGTGGACTTGGCCGAGGAGCGGGGCCACCGCGACGTTG
|
CAACGTCGCGGTGGCCCCGCTCCTCGGCCAAGTCCACGGGC1422
|
AGACGACCCCAGGCATCGCGCACGTCCAGCCGCGCCCCGGC
|
CCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTCCCG
|
TGGACGTGCGCGATGCC1423
|
GGCATCGCGCACGTCCA1424
|
MelanomaCACCGGGCCGGGGCGCGGCTGGACGTGCGCGATGCCTGGG1425
Ala118Thr
gGCT-ACTGCCGTCTGCCCGTGGACCTGGCTGAGGAGCTGGGCCATCGC
|
GATGTCGCACGGTACCTGCGCGCGGCTGCGGGGGGCACCA
|
TGGTGCCCCCCGCAGCCGCGCGCAGGTACCGTGCGACATCG1426
|
CGATGGCCCAGCTCCTCAGCCAGGTCCACGGGCAGACGGCC
|
CCAGGCATCGCGCACGTCCAGCCGCGCCCCGGCCCGGTG
|
TGGACCTGGCTGAGGAG1427
|
CTCCTCAGCCAGGTCCA1428
|
MelanomaTGCGCGATGCCTGGGGCCGTCTGCCCGTGGACCTGGCTGAG1429
Val126Asp
GTC-GACGAGCTGGGCCATCGCGATGTCGCACGGTACCTGCGCGCGGC
|
TGCGGGGGGCACCAGAGGCAGTAACCATGCCCGCATAGA
|
TCTATGCGGGCATGGTTACTGCCTCTGGTGCCCCCCGCAGCC1430
|
GCGCGCAGGTACCGTGCGACATCGCGATGGCCCAGCTCCTC
|
AGCCAGGTCCACGGGCAGACGGCCCCAGGCATCGCGCA
|
TCGCGATGTCGCACGGT1431
|
ACCGTGCGACATCGCGA1432
|
Adenomatous Polyposis of the Colon—APC
[0131] Adenomatous polyposis of the colon is characterized by adenomatous polyps of the colon and rectum; in extreme cases the bowel is carpeted with a myriad of polyps. This is a viciously premalignant disease with one or more polyps progressing through dysplasia to malignancy in untreated gene carriers with a median age at diagnosis of 40 years.
[0132] Mutations in the APC gene are an initiating event for both familial and sporadic colorectal tumorigenesis and many alleles of the APC gene have been identified. Carcinoma may arise at any age from late childhood through the seventh decade with presenting features including, for example, weight loss and inanition, bowel obstruction, or bloody diarrhea. Cases of new mutation still present in these ways but in areas with well organized registers most other gene carriers are detected. The attached table discloses the correcting oligonucleotide base sequences for the APC oligonucleotides of the invention.
19TABLE 18
|
|
APC Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting oligosNO:
|
Adenomatous polyposisGGATCTGTATCAAGCCGTTCTGGAGAGTGCAGTCCTGTTCCT1433
coliATGGGTTCATTTCCAAGAAGAGGGTTTGTAAATGGAAGCAGA
Arg121TermGAAAGTACTGGATATTTAGAAGAACTTGAGAAAGAGA
AGA-TGA
TCTCTTTCTCAAGTTCTTCTAAATATCCAGTACTTTCTCTGCTT1434
CCATTTACAAACCCTCTTCTTGGAAATGAACCCATAGGAACAG
GACTGCACTCTCCAGAACGGCTTGATACAGATCC
|
TTCCAAGAAGAGGGTTT1435
|
AAACCCTCTTCTTGGAA1436
|
Adenomatous polyposisAAAAAAAAAATAGGTCATTGCTTCTTGCTGATCTTGACAAAGAA1437
coilGAAAAGGAAAAAGACTGGTATTACGCTCAACTTCAGAATCTCA
Trp157TermCTAAAAGAATAGATAGTCTTCCTTTAACTGAAAA
TGG-TAG
TTTTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGAGATTCTG1438
AAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTCTTTGTCAA
GATCAGCAAGAAGCAATGACCTATTTTTTTTTT
|
AAAAGACTGGTATTACG1439
|
CGTAATACCAGTCTTTT1440
|
Adenomatous polyposisAAATAGGTCATTGCTTCTTGCTGATCTTGACAAAGAAGAAAAG1441
coliGAAAAAGACTGGTATTACGCTCAACTTCAGAATCTCACTAAAA
Tyr159TermGAATAGATAGTCTTCCTTTAACTGAAAATGTAAGT
TAG-TAG
ACTTACATTTTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGA1442
GATTCTGAAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTCT
TTGTCAAGATCAGCAAGAAGCAATGACCTATTT
|
TGGTATTACGCTCAACT1443
|
AGTTGAGCGTAATACCA1444
|
Adenomatous polyposisTTGCTTCTTGCTGATCTTGACAAAGAAGAAAAGGAAAAAGACT1445
coliGGTATTACGCTCAACTTCAGAATCTCACTAAAAGAATAGATAG
Gln163TermTCTTCCTTTAACTGAAAATGTAAGTAACTGGCAGT
CAG-TAG
ACTGCCAGTTACTTACATTTTCAGTTAAAGGAAGACTATCTATT1446
CTTTTAGTGAGATTCTGAAGTTGAGCGTAATACCAGTCTTTTTC
CTTTTCTTCTTTGTCAAGATCAGCAAGAAGCAA
|
CTCAACTTCAGAATCTC1447
|
GAGATTCTGAAGTTGAG 1448
|
Adenomatous polyposisCTTGACAAAGAAGAAAAGGAAAAAGACTGGTATTACGCTCAAC1449
coliTTCAGAATCTCACTAAAAGAATAGATAGTCTTCCTTTAACTGAA
Arg168TermAATGTAAGTAACTGGCAGTACAACTTATTTGAAA
AGA-TGA
TTTCAAATAAGTTGTACTGCCAGTTACTTACATTTTCAGTTAAA1450
GGAAGACTATCTATTCTTTTAGTGAGATTCTGAAGTTGAGCGT
AATACCAGTCTTTTTCCTTTTCTTCTTTGTCAAG
|
TCACTAAAAGAATAGAT1451
|
ATCTATTCTTTTAGTGA1452
|
Adenomatous polyposisAAGAAAAGGAAAAAGACTGGTATTACGCTCAACTTCAGAATCT1453
coliCACTAAAAGAATAGATAGTCTTCCTTTAACTGAAAATGTAAGTA
Ser171IleACTGGCAGTACAACTTATTTGAAACTTTAATAAC
AGT-ATT
GTTATTAAAGTTTCAAATAAGTTGTACTGCCAGTTACTTACATT1454
TTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGAGATTCTGAA
GTTGAGCGTAATACCAGTCTTTTTCCTTTTCTT
|
AATAGATAGTCTTCCTT1455
|
AAGGAAGACTATCTATT1456
|
Adenomatous polyposisGATTAACGTAAATACAAGATATTGATACTTTTTTATTATTTGTGG1457
coliTTTTAGTTTTCCTTACAAACAGATATGACCAGAAGGCAATTGG
Gln181TermAATATGAAGCAAGGCAAATCAGAGTTGCGATGG
CAA-TAA
CCATCGCAACTCTGATTTGCCTTGCTTCATATTCCAATTGCCT1458
TCTGGTCATATCTGTTTGTAAGGAAAACTAAAACCACAAATAAT
AAAAAAGTATCAATATCTTGTATTTACGTTAATC
|
TTTCCTTACAAACAGAT1459
|
ATCTGTTTGTAAGGAAA1460
|
Adenomatous polyposisCTTTTTTATTATTTGTGGTTTTAGTTTTCCTTACAAACAGATATG1461
coliACCAGAAGGCAATTGGAATATGAAGCAAGGCAAATCAGAGTT
Glu190TermGCGATGGAAGAACAACTAGGTACCTGCCAGGATA
GAA-TAA
TATCCTGGCAGGTACCTAGTTGTTCTTCCATCGCAACTCTGAT1462
TTGCCTTGCTTCATATTCCAATTGCCTTCTGGTCATATCTGTTT
GTAAGGAAAACTAAAACCACAAATAATAAAAAAG
|
GGCAATTGGAATATGAA1463
|
TTCATATTCCAATTGCC1464
|
Adenomatous polyposisCAATTGGAATATGAAGCAAGGCAAATCAGAGTTGCGATGGAA
coliGAACAACTAGGTACCTGCCAGGATATGGAAAAACGAGCACAG
Gln208TermGTAAGTTACTTGTTTCTAAGTGATAAAACAGCGAAGA
CAG-TAG
TCTTCGCTGTTTTATCACTTAGAAACAAGTAACTTACCTGTGCT1466
CGTTTTTCCATATCCTGGCAGGTACCTAGTTGTTCTTCCATCG
CAACTCTGATTTGCCTTGCTTCATATTCCAATTG
|
GTACCTGCCGCAGGTAC1467
|
CATATCCTGGCAGGTAC1468
|
Adenomatous polyposisGCAAGGCAAATCAGAGTTGCGATGGAAGAACAACTAGGTACC1469
coliTGCCAGGATATGGAAAAACGAGCACAGGTAAGTTACTTGTTTC
Arg213TermTAAGTGATAAAACAGCGAAGAGCTATTAGGAATAAA
CGA-TGA
TTTATTCCTAATAGCTCTTCGCTGTTTTATCACTTAGAAACAAG1470
TAACTTACCTGTGCTCGTTTTTCCATATCCTGGCAGGTACCTA
GTTGTTCTTCCATCGCAACTCTGATTTGCCTTGC
|
TGGAAAAACGAGCACAG1471
|
CTGTGCTCGTTTTTCCA1472
|
Adenomatous polyposisGTTTTATTTTAGCGAAGAATAGCCAGAATTCAGCAAATCGAAA1473
coliAGGACATACTTCGTATACGACAGCTTTTACAGTCCCAAGCAAC
Arg232TermAGAAGCAGAGGTTAGTAAATTGCCTTTCTTGTTTG
CGA-TGA
CAAACAAGAAAGGCAATTTACTAACCTCTGCTTCTGTTGCTTG1474
GGACTGTAAAAGCTGTCGTATACGAAGTATGTCCTTTTCGATT
TGCTGAATTCTGGCTATTCTTCGCTAAAATAAAAC
|
TTCGTATACGACAGCTT1475
|
AAGCTGTCGTATACGAA1476
|
Adenomatous polyposisTTATTTTAGCGAAGAATAGCCAGAATTCAGCAAATCGAAAAGG1477
coliACATACTTCGTATACGACAGCTTTTACAGTCCCAAGCAACAGA
Gln233TermAGCAGAGGTTAGTAAATTGCCTTTCTTGTTTGTGG
CAG-TAG
CCACAAACAAGAAAGGCAATTTACTAACCTCTGCTTCTGTTGC1478
TTGGGACTGTAAAAGCTGTCGTATACGAAGTATGTCCTTTTCG
ATTTGCTGAATTCTGGCTATTCTTCGCTAAAATAA
|
GTATACGACAGCTTTTA1479
|
TAAAAGCTGTCGTATAC1480
|
Adenomatous polyposisAGAAAGCCTACACCATTTTTGCATGTACTGATGTTAACTCCAT1481
coliCTTAACAGAGGTCATCTCCTCACAGAACAAGCATGAAACCGGCTCAC
Gln247TermATGATGCTGAGCGGCAGAATGAAGGTCAAGGAGTGG
CAG-TAG
CCACTCCTTGACCTTCATTCTGCCGCTCAGCATCATGTGAGC1482
CGGTTTCATGCTTGTTCTGAGATGACCTCTGTTAAGATGGAGT
TAACATCAGTACATGCAAAAATGGTGTAGGCTTTCT
|
GGTCATCTCAGAACAAG1483
|
CTTGTTCTGAGATGACC1484
|
Adenomatous polyposisCAGAACAAGCATGAAACCGGCTCACATGATGCTGAGCGGCAG1485
coliAATGAAGGTCAAGGAGTGGGAGAAATCAACATGGCAACTTCT
Gly267TermGGTAATGGTCAGGTAAATAAATTATTTTATCATATTT
GGA-TGA
AAATATGATAAAATAATTTATTTACCTGACCATTACCAGAAGTT1486
GCCATGTTGATTTCTCCCACTCCTTGACCTTCATTCTGCCGCT
CAGCATCATGTGAGCCGGTTTCATGCTTGTTCTG
|
AAGGAGTGGGAGAAATC1487
|
GATTTCTCCCACTCCTT1488
|
Adenomatous polyposisCTTCAAATAACAAAGCATTATGGTTTATGTTGATTTTATTTTTCA1489
coliGTGCCAGCTCCTGTTGAACATCAGATCTGTCCTGCTGTGTGT
Glu443TermGTTCTAATGAAACTTTCATTTGATGAAGAGCATA
GAA-TAA
TATGCTCTTCATCAAATGAAAGTTTCATTAGAACACACACAGCA1490
GGACAGATCTGATGTTCAACAGGAGCTGGCACTGAAAAATAA
AATCAACATAAACCATAATGCTTTGTTATTTGAAG
|
CTCCTGTTGAACATCAG1491
|
CTGATGTTCAACAGGAG1492
|
Adenomatous polyposisCAGTGCCAGCTCCTGTTGAACATCAGATCTGTCCTGCTGTGT1493
coliGTGTTCTAATGAAACTTTCATTTGATGAAGAGCATAGACATGC
SER457TERAATGAATGAACTAGGTAAGACAAAAATGTTTTTTAA
TCA-TAA
TTAAAAACATTTTTGTCTTACCTAGTTCATTCATTGCATGTCTA1494
TGCTCTTCATCAAATGAAAGTTTCATTAGAACACACACAGCAG
GACAGATCTGATGTTCAACAGGAGCTGGCACTG
|
GAAACTTTCATTTGATG1495
|
CATCAAATGAAAGTTTC1496
|
Adenomatous polyposisAGTTGTTTTATTTTAGATGATTGTCTTTTTCCTCTTGCCCTTTTT1497
coliAAATTAGGGGGACTACAGGCCATTGCAGAATTATTGCAAGTG
Gln473TermGACTGTGAAATGTACGGGCTTACTAATGACCACT
CAG-TAG
AGTGGTCATTAGTAAGCCCGTACATTTCACAGTCCACTTGCAA1498
TAATTCTGCAATGGCCTGTAGTCCCCCTAATTTAAAAAGGGCA
AGAGGAAAAAGACAATCATCTAAAATAAAACAACT
|
GGGGACTACAGGCCATT1499
|
AATGGCCTGTAGTCCCC1500
|
Adenomatous polyposisTTTTAAATTAGGGGGACTACAGGCCATTGCAGAATTATTGCAA1501
coliGTGGACTGTGAAATGTACGGGCTTACTAATGACCACTACAGTA
Tyr486TermTTACACTAAGACGATATGCTGGAATGGCTTTGACA
TAC-TAG
TGTCAAAGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAG1502
TGGTCATTAGTAAGCCCGTACATTTCACAGTCCACTTGCAATA
ATTCTGCAATGGCCTGTAGTCCCCCTAATTTAAAA
|
GAAATGTACGGGCTTAC1503
|
GTAAGCCCGTACATTTC1504
|
Adenomatous polyposisTTGCAAGTGGACTGTGAAATGTATGGGCTTACTAATGACCACT1505
coliACAGTATTACACTAAGACGATATGCTGGAATGGCTTTGACAAA
Arg499TermCTTGACTTTTGGAGATGTAGCCAACAAGGTATGTT
CGA-TGA
AACATACCTTGTTGGCTACATCTCCAAAAGTCAAGTTTGTCAA1506
AGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAGTGGTCA
TTAGTAAGCCCATACATTTCACAGTCCACTTGCAA
|
CACTAAGACGATATGCT1507
|
AGCATATCGTCTTAGTG1508
|
Adenomatous polyposisAGTGGACTGTGAAATGTATGGGCTTACTAATGACCACTACAGT1509
coliATTACACTAAGACGATATGCTGGAATGGCTTTGACAAACTTGA
Tyr500TermCTTTTGGAGATGTAGCCAACAAGGTATGTTTTTAT
TAT-TAG
ATAAAAACATACCTTGTTGGCTACATCTCCAAAAGTCAAGTTTG1510
TCAAAGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAGTG
GTCATTAGTAAGCCCATACATTTCACAGTCCACT
|
AGACGATATGCTGGAAT1511
|
ATTCCAGCATATCGTCT1512
|
Adenomatous polyposisGACAAATTCCAACTCTAATTAGATGACCCATATTCTGTTTCTTA1513
coliCTAGGAATCAACCCTCAAAAGCGTATTGAGTGCCTTATGGAAT
Lys586TermTTGTCAGCACATTGCACTGAGAATAAAGCTGATA
AAA-TAA
TATCAGCTTTATTCTCAGTGCAATGTGCTGACAAATTCCATAA1514
GGCACTCAATACGCTTTTGAGGGTTGATTCCTAGTAAGAAACA
GAATATGGGTCATCTAATTAGAGTTGGAATTTGTC
|
CAACCCTCAAAAGCGTA1515
|
TACGCTTTTGAGGGTTG1516
|
Adenomatous polyposisTAGATGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAA1517
coliAGCGTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTG
Leu592TermAGAATAAAGCTGATATATGTGCTGTAGATGGTGC
TTA-TGA
GCACCATCTACAGCACATATATCAGCTTTATTCTCAGTGCAAT1518
GTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGAGGGT
TGATTCCTAGTAAGAAACAGAATATGGGTCATCTA
|
GAGTGCCTTATGGAATT1519
|
AATTCCATAAGGCACTC1520
|
Adenomatous polyposisATGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAAAG1521
coliCGTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTGAG
Trp593TermAATAAAGCTGATATATGTGCTGTAGATGGTGCACT
TGG-TAG
AGTGCACCATCTACAGCACATATATCAGCTTTATTCTCAGTGC1522
AATGTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGAG
GGTTGATTCCTAGTAAGAAACAGAATATGGGTCAT
|
TGCCTTATGGAATTTGT1523
|
ACAAATTCCATAAGGCA1524
|
Adenomatous polyposisTGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAAAGC1525
coliGTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTGAGA
Trp593TermATAAAGCTGATATATGTGCTGTAGATGGTGCACTT
TGG-TGA
AAGTGCACCATCTACAGCACATATATCAGCTTTATTCTCAGTG1526
CAATGTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGA
GGGTTGATTCCTAGTAAGAAACAGAATATGGGTCA
|
GCCTTATGGAATTTGTC1527
|
GACAAATTCCATAAGGC1528
|
Adenomatous polyposisTAAAGCTGATATATGTGCTGTAGATGGTGCACTTGCATTTTTG1529
coliGTTGGCACTCTTACTTAICCGGAGCCAGACAAACACTTTAGCC
Tyr622TermATTATTGAAAGTGGAGGTGGGATATTACGGAATGTG
TAC-TAA
CACATTCCGTAATATCCCACCTCCACTTTCAATAATGGCTAAA1530
GTGTTTGTCTGGCTCCGGTAAGTAAGAGTGCCAACCAAAAAT
GCAAGTGCACCATCTACAGCACATATATCAGCTTTA
|
CTTACTTACCGGAGCCA1531
|
TGGCTCCGGTAAGTAAG1532
|
Adenomatous polyposisGATATATGTGCTGTAGATGGTGCACTTGCATTTTTGGTTGGCA1533
coliCTCTTACTTACCGGAGCCAGACAAACACTTTAGCCATTATTGA
Gln625TermAAGTGGAGGTGGGATATTACGGAATGTGTCCAGCT
CAG-TAG
AGCTGGACACATTCCGTAATATCCCACCTCCACTTTCAATAAT1534
GGCTAAAGTGTTTGTCTGGCTCCGGTAAGTAAGAGTGCCAAC
CAAAAATGCAAGTGCACCATCTACAGCACATATATC
|
ACCGGAGCCAGACAAAC1535
|
GTTTGTCTGGCTCCGGT1536
|
Adenomatous polyposisTAGATGGTGCACTTGCATTTTTGGTTGGCACTCTTACTTACCG1537
coliGAGCCAGACAAACACTTTAGCCATTATTGAAAGTGGAGGTGG
Leu629TermGATATTACGGAATGTGTCCAGCTTGATAGCTACAAA
TTA-TAA
TTTGTAGCTATCAAGCTGGACACATTCCGTAATATCCCACCTC1538
CACTTTCAATAATGGCTAAAGTGTTTGTCTGGCTCCGGTAAGT
AAGAGTGCCAACCAAAAATGCAAGTGCACCATCTA
|
AAACACTTTAGCCATTA1539
|
TAATGGCTAAAGTGTTT1540
|
Adenomatous polyposisGCCATTATTGAAAGTGGAGGTGGGATATTACGGAATGTGTCC1541
coliAGCTTGATAGCTACAAATGAGGACCACAGGTATATATAGAGTT
Glu650TermTTATATTACTTTTAAAGTACAGAATTCATACTCTCA
GAG-TAG
TGAGAGTATGAATTCTGTACTTTAAAAGTAATATAAAACTCTAT1542
ATATACCTGTGGTCCTCATTTGTAGCTATCAAGCTGGACACAT
TCCGTAATATCCCACCTCCACTTTCAATAATGGC
|
CTACAAATGAGGACCAC1543
|
GTGGTCCTCATTTGTAG1544
|
Adenomatous polyposisTGCATGTGGAACTTTGTGGAATCTCTCAGCAAGAAATCCTAAA1545
coliGACCAGGAAGCATTATGGGACATGGGGGCAGTTAGCATGCTC
Trp699TermAAGAACCTCATTCATTCAAAGCACAAAATGATTGCT
TGG-TGA
AGCAATCATTTTGTGCTTTGAATGAATGAGGTTCTTGAGCATG1546
CTAACTGCCCCCATGTCCCATAATGCTTCCTGGTCTTTAGGAT
TTCTTGCTGAGAGATTCCACAAAGTTCCACATGCA
|
GCATTATGGGACATGGG1547
|
CCCATGTCCCATAATGC1548
|
Adenomatous polyposisAAGACCAGGAAGCATTATGGGACATGGGGGCAGTTAGCATGC1549
coliTCAAGAACCTCATTCATTCAAAGCACAAAATGATTGCTATGGG
Ser713TermAAGTGCTGCAGCTTTAAGGAATCTCATGGCAAATAG
TCA-TGA
CTATTTGCCATGAGATTCCTTAAAGCTGCAGCACTTCCCATAG1550
CAATCATTTTGTGCTTTGAATGAATGAGGTTCTTGAGCATGCT
AACTGCCCCCCATGTCCCATAATGCTTCCTGGTCTT
|
CATTCATTCAAAGCACA1551
|
TGTGCTTTGAATGAATG1552
|
Adenomatous polyposisGGGGCAGTTAGCATGCTCAAGAACCTCATTCATTCAAAGCAC1553
coliAAAATGATTGCTATGGGAAGTGCTGCAGCTTTAAGGAATCTCA
Ser722GlyTGGCAAATAGGCCTGCGAAGTACAAGGATGCCAATA
AGT-GGT
TATTGGCATCCTTGTACTTCGCAGGCCTATTTGCCATGAGATT1554
CCTTAAAGCTGCAGCACTTCCCATAGCAATCATTTTGTGCTTT
GAATGAATGAGGTTCTTGAGCATGCTAACTGCCCC
|
CTATGGGAAGTGCTGCA1555
|
TGCAGCACTTCCCATAG1556
|
Adenomatous polyposisTCTCCTGGCTCAGCTTGCCATCTCTTCATGTTAGGAAACAAAA1557
coliAGCCCTAGAAGCAGAATTAGATGCTCAGCACTTATCAGAAACT
Leu764TermTTTGACAATATAGACAATTTAAGTCCCAAGGCATC
TTA-TAA
GATGCCTTGGGACTTAAATTGTCTATATTGTCAAAAGTTTCTGA1558
TAAGTGCTGAGCATCTAATTCTGCTTCTAGGGCTTTTTGTTTC
CTAACATGAAGAGATGGCAAGCTGAGCCAGGAGA
|
AGCAGAATTAGATGCTC1559
|
GAGCATCTAATTCTGCT1560
|
Adenomatous polyposisTTAGATGCTCAGCACTTATCAGAAACTTTTGACAATATAGACAA1561
coliTTTAAGTCCCAAGGCATCTCATCGTAGTAAGCAGAGACACAG
Ser784ThrCAAGTCTCTATGGTGATTATGTTTTTGACACCATC
TCT-ACT
GATGGTGTCAAAAACATAATCACCATAGAGACTTGCTGTGTCT1562
CTGCTTACTACGATGAGATGCCTTGGGACTTAAATTGTCTATA
TTGTCAAAAGTTTCTGATAAGTGCTGAGCATCTAA
|
CCAAGGCATCTCATCGT1563
|
ACGATGAGATGCCTTGG1564
|
Adenomatous potyposisCTCATCGTAGTAAGCAGAGACACAGCAAGTCTCTATGGTGATT1565
coliATGTTTTTGACACCAATCGACATGATGATAATAGGTCAGACAT
Arg805TermTTTAATACTGGCACATGACTGTCCTTTCACCATAT
CGA-TGA
ATATGGTGAAAGGACAGTCATGTGCCAGTATTAAAATGTCTGA1566
CCTATTATCATCATGTCGATTGGTGTCAAAAACATAATCACCAT
AGAGACTTGCTGTGTCTCTGCTTACTACGATGAG
|
ACACCAATCGACATGAT1567
|
ATCATGTCGATTGGTGT1568
|
Adenomatous polyposisGGTCTAGGCAACTACCATCCAGCAACAGAAAATCCAGGAACT1569
coliTCTTCAAAGCGAGGTTTGCAGATCTCCACCACTGCAGCCCAG
Gln879TermATTGCCAAAGTCATGGAAGAAGTGTCAGCCATTCATA
CAG-TAG
TATGAATGGCTGACACTTCTTCCATGACTTTGGCAATCTGGGC1570
TGCAGTGGTGGAGATCTGCAAACCTCGCTTTGAAGAAGTTCC
TGGATTTTCTGTTGCTGGATGGTAGTTGCCTAGACC
|
GAGGTTTGCAGATCTCC1571
|
GGAGATCTGCAAACCTC1572
|
Adenomatous polyposisTACATTGTGTGACAGATGAGAGAAATGCACTTAGAAGAAGCTC1573
coliTGCTGCCCATACACATTCAAACACTTACAATTTCACTAAGTCG
Ser932TermGAAAATTCAAATAGGACATGTTCTATGCCTTATGC
TCA-TAA
GCATAAGGCATAGAACATGTCCTATTTGAATTTTCCGACTTAG1514
TGAAATTGTAAGTGTTTGAATGTGTATGGGCAGCAGAGCTTCT
TCTAAGTGCATTTCTCTCATCTGTCACACAATGTA
|
TACACATTCAAACACTT1575
|
AAGTGTTTGAATGTGTA1576
|
Adenomatous potyposisTACATTGTGTGACAGATGAGAGAAATGCACTTAGAAGAAGCTC1577
coliTGCTGCCCATACACATTCAAACACTTACAATTTCACTAAGTCG
Ser932TermGAAAATTCAAATAGGACATGTTCTATGCCTTATGC
TCA-TGA
GCATAAGGCATAGAACATGTCCTATTTGAATTTTCCGACTTAG1578
TGAAATTGTAAGTGTTTGAATGTGTATGGGCAGCAGAGCTTCT
TCTAAGTGCATTTCTCTCATCTGTCACACAATGTA
|
TACACATTCAAACACTT1579
|
AAGTGTTTGAATGTGTA1580
|
Adenomatous polyposisGACAGATGAGAGAAATGCACTTAGAAGAAGCTCTGCTGCCCA1581
coliTACACATTCAAACACTTACAATTTCACTAAGTCGGAAAATTCAA
Tyr935TermATAGGACATGTTCTATGCCTTATGCCAAATTAGAA
TAC-TAG
TTCTAATTTGGCATAAGGCATAGAACATGTCCTATTTGAATTTT1582
CCGACTTAGTGAAATTGTAAGTGTTTGAATGTGTATGGGCAGC
AGAGCTTCTTCTAAGTGCATTTCTCTCATCTGTC
|
AACACTTACAATTTCAC1583
|
GTGAAATTGTAAGTGTT1584
|
Adenomatous polyposisGACAGATGAGAGAAATGCACTTAGAAGAAGCTCTGCTGCCCA1585
coliTACACATTCAAACACTTACAATTTCACTAAGTCGGAAAATTCAA
Tyr935TermATAGGACATGTTCTATGCCTTATGCCAAATTAGAA
TAC-TAA
TTCTAATTTGGCATAAGGCATAGAACATGTCCTATTTGAATTTT1586
CCGACTTAGTGAAATTGTAAGTGTTTGAATGTGTATGGGCAGC
AGAGCTTCTTCTAAGTGCATTTCTCTCATCTGTC
|
AACACTTACAATTTCAC1587
|
GTGAAATTGTAAGTGTT1588
|
Adenomatous polyposisACCCTCGATTGAATCCTATTCTGAAGATGATGAAAGTAAGTTTT1589
coliGCAGTTATGGTCAATACCCAGCCGACCTAGCCCATAAAATACA
Tyr1000TermTAGTGCAAATCATATGGATGATAATGATGGAGAA
TAC-TAA
TTCTCCATCATTATCATCCATATGATTTGCACTATGTATTTTAT1590
GGGCTAGGTCGGCTGGGTATTGACCATAACTGCAAAACTTAC
TTTCATCATCTTCAGAATAGGATTCAATCGAGGGT
|
GGTCAATACCCAGCCGA1591
|
TCGGCTGGGTATTGACC1592
|
Adenomatous polyposisTACCCAGCCGACCTAGCCCATAAAATACATAGTGCAAATCATA1593
coliTGGATGATAATGATGGAGAACTAGATACACCAATAAATTATAG
Glu1020TermTCTTAAATATTCAGATGAGCAGTTGAACTCTGGAA
GAA-TAA
TTCCAGAGTTCAACTGCTCATCTGAATATTTAAGACTATAATTT1594
ATTGGTGTATCTAGTTCTCCATCATTATCATCCATATGATTTGC-
ACTATGTATTTTATGGGCTAGGTCGGCTGGGTA
|
ATGATGGAGAACTAGAT1595
|
ATCTAGTTCTCCATCAT1596
|
Adenomatous polyposisATGAAACCCTCGATTGAATCCTATTCTGAAGATGATGAAAGTA1597
coliAGTTTTGCAGTTATGGTCAATACCCAGCCGACCTAGCCCATAA
Ser1032TermAATACATAGTGCAAATCATATGGATGATAATGATG
TCA-TAA
CATCATTATCATCCATATGATTTGCACTATGTATTTTATGGGCT1598
AGGTCGGCTGGGTATTGACCATAACTGCAAAACTTACTTTCAT
CATCTTCAGAATAGGATTCAATCGAGGGTTTCAT
|
GTTATGGTCAATACCCA1599
|
TGGGTATTGACCATAAC1600
|
Adenomatous polyposisTGAAGATGATGAAAGTAAGTTTTGCAGTTATGGTCAATACCCA1601
coliGCCGACCTAGCCCATAAAATACATAGTGCAAATCATATGGATG
Gln1041TermATAATGATGGAGAACTAGATACACCAATAAATTAT
CAA-TAA
ATAATTTATTGGTGTATCTAGTTCTCCATCATTATCATCCATAT1602
GATTTGCACTATGTATTTTATGGGCTAGGTCGGCTGGGTATTG
ACCATAACTGCAAAACTTACTTTCATCATCTTCA
|
GCCCATAAAATACATAG1603
|
CTATGTATTTTATGGGC1604
|
Adenomatous polyposisATAAATTATAGTCTTAAATATTCAGATGAGCAGTTGAACTCTGG1605
coliAAGGCAAAGTCCTTCACAGAATGAAAGATGGGCAAGACCCAA
Gln1045TermACACATAATAGAAGATGAAATAAAACAAAGTGAGC
CAG-TAG
GCTCACTTTGTTTTATTTCATCTTCTATTATGTGTTTGGGTCTT1606
GCCCATCTTTCATTCTGTGAAGGACTTTGCCTTCCAGAGTTCA
ACTGCTCATCTGAATATTTAAGACTATAATTTAT
|
GTCCTTCACAGAATGAA1607
|
TTCATTCTGTGAAGGAC1608
|
Adenomatous polyposisGAAAGATGGGCAAGACCCAAACACATAATAGAAGATGAAATAA1609
coliAACAAAGTGAGCAAAGACAATCAAGGAATCAAAGTACAACTTA
Gln1067TermTCCTGTTTATACTGAGAGCACTGATGATAAACACC
CAA-TAA
GGTGTTTATCATCAGTGCTCTCAGTATAAACAGGATAAGTTGT1610
ACTTTGATTCCTTGATTGTCTTTGCTCACTTTGTTTTATTTCATC
TTCTATTATGTGTTTGGGTCTTGCCCATCTTTC
|
AGCAAAGACAATCAAGG1611
|
CCTTGATTGTCTTTGCT1612
|
Adenomatous polyposisAATAGAAGATGAAATAAAACAAAGTGAGCAAAGACAATCAAGG1613
coliAATCAAAGTACAACTTATCCTGTTTATACTGAGAGCACTGATG
Tyr1075TermATAAACACCTCAAGTTCCAACCACATTTTGGACAG
TAT-TAG
CTGTCCAAAATGTGGTTGGAACTTGAGGTGTTTATCATCAGTG1614
CTCTCAGTATAAACAGGATAAGTTGTACTTTGATTCCTTGATTG
TCTTTGCTCACTTTGTTTTATTTCATCTTCTATT
|
ACAACTTATCCTGTTTA1615
|
TAAACAGGATAAGTTGT1616
|
Adenomatous polyposisTGATGATAAACACCTCAAGTTCCAACCACATTTTGGACAGCAG1617
coliGAATGTGTTTCTCCATACAGGTCACGGGGAGCCAATGGTTCA
Tyr1102TermGAAACAAATCGAGTGGGTTCTAATCATGGAATTAAT
TAC-TAG
ATTAATTCCATGATTAGAACCCACTCGATTTGTTTCTGAACCAT1618
TGGCTCCCCGTGACCTGTATGGAGAAACACATTCCTGCTGTC
CAAAATGTGGTTGGAACTTGAGGTGTTTATCATCA
|
TCTCCATACAGGTCACG1619
|
CGTGACCTGTATGGAGA1620
|
Adenomatous polyposisAACCACATTTTGGACAGCAGGAATGTGTTTCTCCATACAGGTC1621
coliACGGGGAGCCAATGGTTCAGAAACAAATCGAGTGGGTTCTAA
Ser1101TermTCATGGAATTAATCAAAATGTAAGCCAGTCTTTGTG
TCA-TGA
CACAAAGACTGGCTTACATTTTGATTAATTCCATGATTAGAACC1622
CACTCGATTTGTTTCTGAACCATTGGCTCCCCGTGACCTGTAT
GGAGAAACACATTCCTGCTGTCCAAAATGTGGTT
|
CAATGGTTCAGAAACAA1623
|
TTGTTTCTGAACCATTG1624
|
Adenomatous polyposisGGACAGCAGGAATGTGTTTCTCCATACAGGTCACGGGGAGCC1625
coliAATGGTTCAGAAACAAATCGAGTGGGTTCTAATCATGGAATTA
Arg1114TermATCAAAATGTAAGCCAGTCTTTGTGTCAAGAAGATG
CGA-TGA
CATCTTCTTGACACAAAGACTGGCTTACATTTTGATTAATTCCA1626
TGATTAGAACCCACTCGATTTGTTTCTGAACCATTGGCTCCCC
GTGACCTGTATGGAGAAACACATTCCTGCTGTCC
|
AAACAAATCGAGTGGGT1627
|
ACCCACTCGATTTGTTT1628
|
Adenomatous polyposisGGGTTCTAATCATGGAATTAATCAAAATGTAAGCCAGTCTTTG1629
coliTGTCAAGAAGATGACTATGAAGATGATAAGCCTACCAATTATA
Tyr1135TermGTGAACGTTACTCTGAAGAAGAACAGCATGAAGAA
TAT-TAG
TTCTTCATGCTGTTCTTCTTCAGAGTAACGTTCACTATAATTGG1630
TAGGCTTATCATCTTCATAGTCATCTTCTTGACACAAAGACTG
GCTTACATTTTGATTAATTCCATGATTAGAACCC
|
GATGACTATGAAGATGA1631
|
TCATCTTCATAGTCATC1632
|
Adenomatous polyposisGAAGATGACTATGAAGATGATAAGCCTACCAATTATAGTGAAC1633
coliGTTACTCTGAAGAAGAACAGCATGAAGAAGAAGAGAGACCAA
Gln1152TermCAAATTATAGCATAAAATATAATGAAGAGAAACGTC
CAG-TAG
GACGTTTCTCTTCATTATATTTTATGCTATAATTTGTTGGTCTCT1634
CTTCTTCTTCATGCTGTTCTTCTTCAGAGTAACGTTCACTATAA
TTGGTAGGCTTATCATCTTCATAGTCATCTTC
|
AAGAAGAACAGCATGAA1635
|
TTCATGCTGTTCTTCTT1636
|
Adenomatous polyposisGAAGAAGAGAGACCAACAAATTATAGCATAAAATATAATGAAG1637
coliAGAAACGTCATGTGGATCAGCCTATTGATTATAGTTTAAAATAT
Gln1175TermGCCACAGATATTCCTTCATCACAGAAACAGTCAT
CAG-TAG
ATGACTGTTTCTGTGATGAAGGAATATCTGTGGCATATTTTAAA1638
CTATAATCAATAGGCTGATCCACATGACGTTTCTCTTCATTATA
TTTTATGCTATAATTTGTTGGTCTCTCTTCTTC
|
ATGTGGATCAGCCTATT1639
|
AATAGGCTGATCCACAT1640
|
Adenomatous polyposisAAGAGAGACCAACAAATTATAGCATAAAATATAATGAAGAGAA1641
coliACGTCATGTGGATCAGCCTATTGATTATAGTTTAAAATATGCCA
Pro1176LeuCAGATATTCCTTCATCACAGAAACAGTCATTTTC
CCT-CTT
GAAAATGACTGTTTCTGTGATGAAGGAATATCTGTGGCATATT1642
TTAAACTATAATCAATAGGCTGATCCACATGACGTTTCTCTTCA
TTATATTTTATGCTATAATTTGTTGGTCTCTCTT
|
GGATCAGCCTATTGATT1643
|
AATCAATAGGCTGATCC1644
|
Adenomatous polyposisATAAAATATAATGAAGAGAAACGTCATGTGGATCAGCCTATTG1645
coliATTATAGTTTAAAATATGCCACAGATATTCCTTCATCACAGAAA
Ala1184ProCAGTCATTTTCATTCTCAAAGAGTTCATCTGGAC
GCC-CCC
GTCCAGATGAACTCTTTGAGAATGAAAATGACTGTTTCTGTGA1646
TGAAGGAATATCTGTGGCATATTTTAAACTATAATCAATAGGCT
GATCCACATGACGTTTCTCTTCATTATATTTTAT
|
TAAAATATGCCACAGAT1647
|
ATCTGTGGCATATTTTA1648
|
Adenomatous polyposisATCAGCCTATTGATTATAGTTTAAAATATGCCACAGATATTCCT1649
coliTCATCACAGAAACAGTCATTTTCATTCTCAAAGAGTTCATCTG
Ser1194TermGACAAAGCAGTAAAACCGAACATATGTCTTCAAG
TCA-TGA
CTTGAAGACATATGTTCGGTTTTACTGCTTTGTCCAGATGAAC1650
TCTTTGAGAATGAAAATGACTGTTTCTGTGATGAAGGAATATCT
GTGGCATATTTTAAACTATAATCAATAGGCTGAT
|
GAAACAGTCATTTTCAT1651
|
ATGAAAATGACTGTTTC1652
|
Adenomatous polyposisATTATAGTTTAAAATATGCCACAGATATTCCTTCATCACAGAAA1653
coliCAGTCATTTTCATTCTCAAAGAGTTCATCTGGACAAAGCAGTA
Ser1198TermAAACCGAACATATGTCTTCAAGCAGTGAGAATAC
TCA-TGA
GTATTCTCACTGCTTGAAGACATATGTTCGGTTTTACTGCTTTG1654
TCCAGATGAACTCTTTGAGAATGAAAATGACTGTTTCTGTGAT
GAAGGAATATCTGTGGCATATTTTAAACTATAAT
|
TTCATTCTCAAAGAGTT1655
|
AACTCTTTGAGAATGAA1656
|
Adenomatous polyposisACCGAACATATGTCTTCAAGCAGTGAGAATACGTCCACACCTT1657
coliCATCTAATGCCAAGAGGCAGAATCAGCTCCATCCAGTTCTGC
Gln1228TermACAGAGTAGAAGTGGTCAGCCTCAAAGGCTGCCACT
CAG-TAG
AGTGGCAGCCTTTGAGGCTGACCACTTCTACTCTGTGCAGAA1658
CTGGATGGAGCTGATTCTGCCTCTTGGCATTAGATGAAGGTG
TGGACGTATTCTCACTGCTTGAAGACATATGTTCGGT
|
CCAAGAGGCAGAATCAG1659
|
CTGATTCTGCCTCTTGG1660
|
Adenomatous polyposisCATATGTCTTCAAGCAGTGAGAATACGTCCACACCTTCATCTA1661
coliATGCCAAGAGGCAGAATCAGCTCCATCCAGTTCTGCACAGAG
Gln1230TermTAGAAGTGGTCAGCCTCAAAGGCTGCCACTTGCAAG
CAG-TAG
CTTGCAAGTGGCAGCCTTTGAGGCTGACCACTTCTACTCTGT1662
GCAGAACTGGATGGAGCTGATTCTGCCTCTTGGCATTAGATG
AAGGTGTGGACGTATTCTCACTGCTTGAAGACATATG
|
GGCAGAATCAGCTCCAT1663
|
ATGGAGCTGATTCTGCC1664
|
Adenomatous polyposisTCAGCTCCATCCAAGTTCTGCACAGAGTAGAAGTGGTCAGCC1665
coliTCAAAAGGCTGCCACTTGCAAAGTTTCTTCTATTAACCAAGAA
Cys1249TermACAATACAGACTTATTGTGTAGAAGATACTCCAATA
TGC-TGA
TATTGGAGTATCTTCTACACAATAAGTCTGTATTGTTTCTTGGT1666
TAATAGAAGAAACTTTGCAAGTGGCAGCCTTTTGAGGCTGACC
ACTTCTACTCTGTGCAGAACTTGGATGGAGCTGA
|
GCCACTTGCAAAGTTTC1667
|
GAAACTTTGCAAGTGGC1668
|
Adenomatous polyposisAGTTTCTTCTATTAACCAAGAAACAATACAGACTTATTGTGTAG1669
coliAAGATACTCCAATATGTTTTTCAAGATGTAGTTCATTATCATCT
Cys1270TermTTGTCATCAGCTGAAGATGAAATAGGATGTAAT
TGT-TGA
ATTACATCCTATTTCATCTTCAGCTGATGACAAAGATGATAATG1670
AACTACATCTTGAAAAACATATTGGAGTATCTTCTACACAATAA
GTCTGTATTGTTTCTTGGTTAATAGAAGAAACT
|
CCAATATGTTTTTCAAG1671
|
CTTGAAAAACATATTGG1672
|
Adenomatous polyposisAAGAAACAATACAGACTTATTGTGTAGAAGATACTCCAATATGT1673
coliTTTTCAAGATGTAGTTCATTATCATCTTTGTCATCAGCTGAAGA
Ser1276TermTGAAATAGGATGTAATCAGACGACACAGGAAGC
TCA-TGA
GCTTCCTGTGTCGTCTGATTACATCCTATTTCATCTTCAGCTG1674
ATGACAAAGATGATAATGAACTACATCTTGAAAAACATATTGGA
GTATCTTCTACACAATAAGTCTGTATTGTTTCTT
|
ATGTAGTTCATTATCAT1675
|
ATGATAATGAACTACAT1676
|
Adenomatous polyposisGATACTCCAATATGTTTTTCAAGATGTAGTTCATTATCATCTTT1677
coliGTCATCAGCTGAAGATGAAATAGGATGTAATCAGACGACACA
Glu1286TermGGAAGCAGATTCTGCTAATACCCTGCAAATAGCAG
GAA-TAA
CTGCTATTTGCAGGGTATTAGCAGAATCTGCTTCCTGTGTCGT1678
CTGATTACATCCTATTTCATCTTCAGCTGATGACAAAGATGATA
ATGAACTACATCTTGAAAAACATATTGGAGTATC
|
CTGAAGATGAAATAGGA1679
|
TCCTATTTCATCTTCAG1680
|
Adenomatous polyposisTGTAGTTCATTATCATCTTTGTCATCAGCTGAAGATGAAATAGG1681
coliATGTAATCAGACGACACAGGAAGCAGATTCTGCTAATACCCTG
Gln1294TermCAAATAGCAGAAATAAAAGAAAAGATTGGAACTA
CAG-TAG
TAGTTCCAATCTTTTCTTTTATTTCTGCTATTTGCAGGGTATTA1682
GCAGAATCTGCTTCCTGTGTCGTCTGATTACATCCTATTTCAT
CTTCAGCTGATGACAAAGATGATAATGAACTACA
|
AGACGACACAGGAAGCA1683
|
TGCTTCCTGTGTCGTCT1684
|
Predisposition to,TAGGATGTAATCAGACGACACAGGAAGCAGATTCTGCTAATAC1685
association with,CCTGCAAATAGCAGAAATAAAAGAAAAGATTGGAACTAGGTCA
colorectal cancerGCTGAAGATCCTGTGAGCGAAGTTCCAGCAGTGTC
Ile1307Lys
ATA-AAA
GACACTGCTGGAACTTCGCTCACAGGATCTTCAGCTGACCTA1686
GTTCCAATCTTTTCTTTTATTTCTGCTATTTGCAGGGTATTAGC
AGAATCTGCTTCCTGTGTCGTCTGATTACATCCTA
|
AGCAGAAATAAAAGAAA1687
|
TTTCTTTTATTTCTGCT1688
|
Adenomatous polyposisCCAAGAAACAATACAGACTTATTGTGTAGAAGATACTCCAATA 1689
coilTGTTTTTCAAGATGTAGTTCATTATCATCTTTGTCATCAGCTGA
Glu1309TermAGATGAAATAGGATGTAATCAGACGACACAGGAA
GAA-TAA
TTCCTGTGTCGTCTGATTACATCCTATTTCATCTTCAGCTGATG1690
ACAAAGATGATAATGAACTACATCTTGAAAAACATATTGGAGTA
TCTTCTACACAATAAGTCTGTATTGTTTCTTGG
|
AGATGTAGTTCATTATC1691
|
GATAATGAACTACATCT1692
|
Predisposition toGATTCTGCTAATACCCTGCAAATAGCAGAAATAAAAGAAAAGA1693
Colorectal CancerTTGGAACTAGGTCAGCTGAAGATCCTGTGAGCGAAGTTCCAG
Glu1317GlnCAGTGTCACAGCACCCTAGAACCAAATCCAGCAGAC
GAA-CAA
GTCTGCTGGATTTGGTTCTAGGGTGCTGTGACACTGCTGGAA1694
CTTCGCTCACAGGATCTTCAGCTGACCTAGTTCCAATCTTTTC
TTTTATTTCTGCTATTTGCAGGGTATTAGCAGAATC
|
GGTCAGCTGAAGATCCT1695
|
AGGATCTTCAGCTGACC1696
|
Adenomatous polyposisAAAGAAAAGATTGGAACTAGGTCAGCTGAAGATCCTGTGAGC1697
coliGAAGTTCCAGCAGTGTCACAGCACCCTAGAACCAAATCCAGC
Gln1328TermAGACTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCA
CAG-TAG
TGGCTGATTCTGAAGATAAACTAGAACCCTGCAGTCTGCTGG 1698
ATTTGGTTCTAGGGTGCTGTGACACTGCTGGAACTTCGCTCA
CAGGATCTTCAGCTGACCTAGTTCCAATCTTTTCTTT
|
CAGTGTCACAGCACCCT1699
|
AGGGTGCTGTGACACTG1700
|
Adenomatous polyposisGATCCTGTGAGCGAAGTTCCAGCAGTGTCACAGCACCCTAGA1701
coliACCAAATCCAGCAGACTGCAGGGTTCTAGTTTATCTTCAGAAT
Gln1338TermCAGCCAGGCACAAAGCTGTTGAATTTTCTTCAGGAG
CAG-TAG
CTCCTGAAGAAAATTCAACAGCTTTGTGCCTGGCTGATTCTGA1702
AGATAAACTAGAACCCTGCAGTCTGCTGGATTTGGTTCTAGG
GTGCTGTGACACTGCTGGAACTTCGCTCACAGGATC
|
GCAGACTGCAGGGTTCT1703
|
AGAACCCTGCAGTCTGC1704
|
Adenomatous polyposisAAGTTCCAGCAGTGTCACAGCACCCTAGAACCAAATCCAGCA1705
coliGACTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCAGGCACAA
Leu1342TermAGCTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTC
TTA-TAA
GAGGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTTGTGC1706
CTGGCTGATTCTGAAGATAAACTAGAACCCTGCAGTCTGCTG
GATTTGGTTCTAGGGTGCTGTGACACTGCTGGAACTT
|
TTCTAGTTTATCTTCAG1707
|
CTGAAGATAAACTAGAA1708
|
Adenomatous polyposisCAGCACCCTAGAACCAAATCCAGCAGACTGCAGGGTTCTAGT1709
coliTTATCTTCAGAATCAGCCAGGCACAAAGCTGTTGAATTTTCTT
Arg1348TrpCAGGAGCGAAATCTCCCTCCCGAAAGTGGTGCTCAG
AGG-TGG
CTGAGCACCACTTTCGGGAGGGAGATTTCGCTCCTGAAGAAA1710
ATTCAACAGCTTTGTGCCTGGCTGATTCTGAAGATAAACTAGA
ACCCTGCAGTCTGCTGGATTTGGTTCTAGGGTGCTG
|
AATCAGCCAGGCACAAA1711
|
TTTGTGCCTGGCTGATT1712
|
Adenomatous polyposisCTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCAGGCACAAAG1713
coliCTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTCCCGAAAGTG
Gly1357TermGTGCTCAGACACCCCAAAGTCCACCTGAACACTAT
GGA-TGA
ATAGTGTTCAGGTGGACTTTGGGGTGTCTGAGCACCACTTTC1714
GGGAGGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTTGT
GCCTGGCTGATTCTGAAGATAAACTAGAACCCTGCAG
|
TTTCTTCAGGAGCGAAA1715
|
TTTCGCTCCTGAAGAAA1716
|
Adenomatous polyposisCCAGGCACAAAGCTGTTGAATTTTCTTCAGGAGCGAAATCTCC1717
coliCTCCCGAAAGTGGTGCTCAGACACCCCAAAGTCCACCTGAAC
Gln1367TermACTATGTTCAGGAGACCCCACTCATGTTTAGCAGAT
CAG-TAG
ATCTGCTAAACATGAGTGGGGTCTCCTGAACATAGTGTTCAG1718
GTGGACTTTGGGGTGTCTGAGCACCACTTTCGGGAGGGAGAT
TTCGCTCCTGAAGAAAATTCAACAGCTTTGTGCCTGG
|
GTGGTGCTCAGACACCC1719
|
GGGTGTCTGAGCACCAC1720
|
Adenomatous polyposisAAAGCTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTCCAAAA1721
coliGTGGTGCTCAGACACCCAAAAGTCCACCTGAACACTATGTTC
Lys1370TermAGGAGACCCCACTCATGTTTAGCAGATGTACTTCTG
AAA-TAA
CAGAAGTACATCTGCTAAACATGAGTGGGGTCTCCTGAACATA1722
GTGTTCAGGTGGACTTTTGGGTGTCTGAGCACCACTTTTGGA
GGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTT
|
AGACACCCAAAAGTCCA1723
|
TGGACTTTTGGGTGTCT1724
|
Adenomatous polyposisCACCTGAACACTATGTTCAGGAGACCCCACTCATGTTTAGCA1725
coliGATGTACTTCTGTCAGTTCACTTGATAGTTTTGAGAGTCGTTC
Ser1392TermGATTGCCAGCTCCGTTCAGAGTGAACCATGCAGTGG
TCA-TAA
CCACTGCATGGTTCACTCTGAACGGAGCTGGCAATCGAACGA1726
CTCTCAAAACTATCAAGTGAACTGACAGAAGTACATCTGCTAA
ACATGAGTGGGGTCTCCTGAACATAGTGTTCAGGTG
|
TGTCAGTTCACTTGATA1727
|
TATCAAGTGAACTGACA1728
|
Adenomatous polyposisCACCTGAACACTATGTTCAGGAGACCCCACTCATGTTTAGCA1729
coliGATGTACTTCTGTCAGTTCACTTGATAGTTTTGAGAGTCGTTC
Ser1392TermGATTGCCAGCTCCGTTCAGAGTGAACCATGCAGTGG
TCA-TGA
CCACTGCATGGTTCACTCTGAACGGAGCTGGCAATCGAACGA1730
CTCTCAAAACTATCAAGTGAACTGACAGAAGTACATCTGCTAA
ACATGAGTGGGGTCTCCTGAACATAGTGTTCAGGTG
|
TGTCAGTTCACTTGATA1731
|
TATCAAGTGAACTGACA1732
|
Adenomatous polyposisGTTCAGGAGACCCCACTCATGTTTAGCAGATGTACTTCTGTCA1733
coliGTTCACTTGATAGTTTTGAGAGTCGTTCGATTGCCAGCTCCGT
Glu1397TermTCAGAGTGAACCATGCAGTGGAATGGTAGGTGGCA
GAG-TAG
TGCCACCTACCATTCCACTGCATGGTTCACTCTGAACGGAGC1734
TGGAATCGAACGACTCTCAAAACTATCAAGTGAACTGACAGA
AGTACATCTGCTAAACATGAGTGGGGTCTCCTGAAC
|
ATAGTTTTGAGAGTCGT1735
|
ACGACTCTCAAAACTAT1736
|
Adenomatous polyposisCAAACCATGCCACCAAGCAGAAGTAAAACACCTCCACCACCT1737
coliCCTCAAACAGCTCAAACCAAGCGAGAAGTACCTAAAAATAAAG
Lys1449TermCACCTACTGCTGAAAAGAGAGAGAGTGGACCTAAGC
AAG-TAG
GCTTAGGTCCACTCTCTCTCTTTTCAGCAGTAGGTGCTTTATT1738
TTTAGGTACTTCTCGCTTGGTTTGAGCTGTTTGAGGAGGTGGT
GGAGGTGTTTTACTTCTGCTTGGTGGCATGGTTTG
|
CTCAAACCAAGCGAGAA1739
|
TTCTCGCTTGGTTTGAG1740
|
Adenomatous polyposisACCATGCCACCAAGCAGAAGTAAAACACCTCCACCACCTCCT1741
coliCAAACAGCTCAAACCAAGCGAGAAGTACCTAAAAATAAAGCAC
Arg1450TermCTACTGCTGAAAAGAGAGAGAGTGGACCTAAGCAAG
CGA-TGA
CTTGCTTAGGTCCACTCTCTCTCTTTTCAGCAGTAGGTGCTTT1742
ATTTTTAGGTACTTCTCGCTTGGTTTGAGCTGTTTGAGGAGGT
GGTGGAGGTGTTTTACTTCTGCTTGGTGGCATGGT
|
AAACCAAGCGAGAAGTA1743
|
TACTTCTCGCTTGGTTT1744
|
Adenomatous polyposisCAGATGCTGATACTTTATTACATTTTGCCACGGAAAGTACTCC1145
coliAGATGGATTTTCTTGTTCATCCAGCCTGAGTGCTCTGAGCCTC
SeR1503TermGATGAGCCATTTATACAGAAAGATGTGGAATTAAG
TCA-TAA
CTTAATTCCACATCTTTCTGTATAAATGGCTCATCGAGGCTCA1746
GAGCACTCAGGCTGGATGAACAAGAAAATCCATCTGGAGTAC
TTTCCGTGGCAAAATGTAATAAAGTATCAGCATCTG
|
TTCTTGTTCATCCAGCC1747
|
GGCTGGATGAACAAGAA1748
|
Adenomatous polyposisCTGAGCCTCGATGAGCCATTTATACAGAAAGATGTGGAATTAA1749
coliGAATAATGCCTCCAGTTCAGGAAAATGACAATGGGAATGAAACI
Gln1529TermAGAATCAGAGCAGCCTAAAGAATCAAATGAAAACC
CAG-TAG
GGTTTTCATTTGATTCTTTAGGCTGCTCTGATTCTGTTTCATTC1750
CCATTGTCATTTTCCTGAACTGGAGGCATTATTCTTAATTCCAC
ATCTTTCTGTATAAATGGCTCATCGAGGCTCAG
|
CTCCAGTTCAGGAAAAT1751
|
ATTTTCCTGAACTGGAG1752
|
Adenomatous polyposisATGTGGAATTAAGAATAATGCCTCCAGTTCAGGAAAATGACAA1753
coliTGGGAATGAAACAGAATCAGAGCAGCCTAAAGAATCAAATGAA
Ser1539TermAACCAAGAGAAAGAGGCAGAAAAAACTATTGATTC
TCA-TAA
GAATCAATAGTTTTTTCTGCCTCTTTCTCTTGGTTTTCATTTGA1754
TTCTTTAGGCTGCTCTGATTCTGTTTCATTCCCATTGTCATTTT
CCTGAACTGGAGGCATTATTCTTAATTCCACAT
|
AACAGAATCAGAGCAGC1755
|
GCTGCTCTGATTCTGTT1756
|
Adenomatous polyposisAAAACCAAGAGAAAGAGGCAGAAAAAACTATTGATTCTGAAAA1757
coliGGACCTATTAGATGATTCAGATGATGATGATATTGAAATACTA
Ser1567TermGAAGAATGTATTATTTCTGCCATGCCAACAAAGTC
TCA-TGA
GACTTTGTTGGCATGGCAGAAATAATACATTCTTCTAGTATTTC1758
AATATCATCATCATCTGAATCATCTAATAGGTCCTTTTCAGAAT
CAATAGTTTTTTCTGCCTCTTTCTCTTGGTTTT
|
AGATGATTCAGATGATG1759
|
CATCATCTGAATCATCT1760
|
Adenomatous poiyposisAGAGAGTTTTCTCAGACAACAAAGATTCAAAGAAACAGAATTT1761
coliGAAAAATAATTCCAAGGACTTCAATGATAAGCTCCCAAATAAT
Asp1822ValGAAGATAGAGTCAGAGGAAGTTTTGCTTTTGATTC
GAC-GTC
GAATCAAAAGCAAAACTTCCTCTGACTCTATCTTCATTATTTGG1762
GAGCTTATCATTGAAGTCCTTGGAATTATTTTTCAAATTCTGTT
TCTTTGAATCTTTGTTGTCTGAGAAAACTCTCT
|
TTCCAAGGACTTCAATG1763
|
CATTGAAGTCCTTGGAA 1764
|
Adenomatous polyposisAAAACTGACAGCACAGAATCCAGTGGAACCCAAAGTCCTAAG1765
coliCGCCATTCTGGGTCTTACCTTGTGACATCTGTTTAAAAGAGAG
Leu2839PheGAAGAATGAAACTAAGAAAATTCTATGTTAATTACA
CTT-TTT
TGTAATTAACATAGAATTTTCTTAGTTTCATTCTTCCTCTCTTTT1766
AAACAGATGTCACAAGGTAAGACCCAGAATGGCGCTTAGGAC
TTTGGGTTCCACTGGATTCTGTGCTGTCAGTTTT
|
GGTCTTACCTTGTGACA1767
|
TGTCACAAGGTAAGACC1768
|
Parahemophilia—Factor V Deficiency
[0133] Deficiency in clotting Factor V is associated with a lifelong predisposition to thrombosis. The disease typically manifests itself with usually mild bleeding, although bleeding times and clotting times are consistently prolonged. Individuals that are heterozygous for a mutation in Factor V have lowered levels of factor V but probably never have abnormal bleeding. A large number of alleles with a range of presenting symptoms have been identified. The attached table discloses the correcting oligonucleotide base sequences for the Factor V oligonucleotides of the invention.
20TABLE 19
|
|
Factor V Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Factor V deficiencyTTGACTGAATGCTTATTTTGGCCTGTGTCTCTCCCTCTTTCTCA1768
Ala221ValGATATAACAGTTTGTGCCCATGACCACATCAGCTGGCATCTGC
GCC-GTCTGGGAATGAGCTCGGGGCCAGAATTATTCTCCAT
|
ATGGAGAATAATTCTGGCCCCGAGCTCATTCCCAGCAGATGC1769
CAGCTGATGTGGTCATGGGCACAAACTGTTATATCTGAGAAAG
AGGGAGAGACACAGGCCAAAATAAGCATTCAGTCAA
|
AGTTTGTGCCCATGACC1770
|
GGTCATGGGCACAAACT1771
|
ThrombosisTGTCCTAACTCAGCTGGGATGCAGGCTTACATTGACATTAAAA1712
Arg306GlyACTGCCCAAAGAAAACCAGGAATCTTAAGAAAATAACTCGTGA
AGG-GGGGCAGAGGCGGCACATGAAGAGGTGGGAATACTTCA
|
TGAAGTATTCCCACCTCTTCATGTGCCGCCTCTGCTCACGAGT1773
TATTTTCTTAAGATTCCTGGTTTTCTTTGGGCAGTTTTTAATGT
CAATGTAAGCCTGCATCCCAGCTGAGTTAGGACA
|
AGAAAACCAGGAATCTT1774
|
AAGATTCCTGGTTTTCT1775
|
ThrombosisGTCCTAACTCAGCTGGGATGCAGGCTTACATTGACATTAAAAA1776
Arg306ThrCTGCCCAAAGAAAACCAGGAATCTTAAGAAAATAACTCGTGAG
AGG-ACGCAGAGGCGGCACATGAAGAGGTGGGAATACTTCAT
|
ATGAAGTATTCCCACCTCTTCATGTGCCGCCTCTGCTCACGA1777
GTTATTTTCTTAAGATTCCTGGTTTTCTTTGGGCAGTTTTTAAT
GTCAATGTAAGCCTGCATCCCAGCTGAGTTAGGAC
|
GAAAACCAGGAATCTTA1778
|
TAAGATTCCTGGTTTTC1779
|
Increased RiskCCACAGAAAATGATGCCCAGTGCTTAACAAGACCATACTACAG1780
ThrombosisTGACGTGGACATCATGAGAGACATCGCCTCTGGGCTAATAGG
Arg485LysACTACTTCTAATCTGTAAGAGCAGATCCCTGGACAG
AGA-AAA
CTGTCCAGGGATCTGCTCTTACAGATTAGAAGTAGTCCTATTA1781
GCCCAGAGGCGATGTCTCTCATGATGTCCACGTCACTGTAGT
ATGGTCTTGTTAAGCACTGGGCATCATTTTCTGTGG
|
CATCATGAGAGACATCG1782
|
CGATGTCTCTCATGATG1783
|
Increased RiskACATCGCCTCTGGGCTAATAGGACTACTTCTAATCTGTAAGAG1784
ThrombosisCAGATCCCTGGACAGGCGAGGAATACAGGTATTTTGTCCTTG
Arg506GlnAAGTAACCTTTCAGAAATTCTGAGAATTTCTTCTGG
CGA-CAA
CCAGAAGAAATTCTCAGAATTTCTGAAAGGTTACTTCAAGGAC1785
AAAATACCTGTATTCCTCGCCTGTCCAGGGATCTGCTCTTACA
GATTAGAAGTAGTCCTATTAGCCCAGAGGCGATGT
|
GGACAGGCGAGGAATAC1786
|
GTATTCCTCGCCTGTCC1787
|
Factor V DeficiencyGACATCGCCTCTGGGCTAATAGGACTACTTCTAATCTGTAAGA1788
Arg506TermGCAGATCCCTGGACAGGCGAGGAATACAGGTATTTTGTCCTT
CGA-TGAGAAGTAACCTTTCAGAAATTCTGAGAATTTCTTCTG
|
CAGAAGAAATTCTCAGAATTTCTGAAAGGTTACTTCAAGGACA1789
AAATACCTGTATTCCTCGCCTGTCCAGGGATCTGCTCTTACAG
ATTAGAAGTAGTCCTATTAGCCCAGAGGCGATGTC
|
TGGACAGGCGAGGAATA1790
|
TATTCCTCGCCTGTCCA1791
|
ThrombosisAGTGATGCTGACTATGATTACCAGAACAGACTGGCTGCAGCA1792
Arg712TermTTAGGAATCAGGTCATTCCGAAACTCATCATTGAATCAGGAAG
CGA-TGAAAGAAGAGTTCAATCTTACTGCCCTAGCTCTGGAGA
|
TCTCCAGAGCTAGGGCAGTAAGATTGAACTCTTCTTCTTCCTG1793
ATTCAATGATGAGTTTCGGAATGACCTGATTCCTAATGCTGCA
GCCAGTCTGTTCTGGTAATCATAGTCAGCATCACT
|
GGTCATTCCGAAACTCA1794
|
TGAGTTTCGGAATGACC1795
|
ThrombosisTCAGTCAGACAAACCTTTCCCCAGCCCTCGGTCAGATGCCCA1796
His1299ArgTTTCTCCAGACCTCAGCCATACAACCCTTTCTCTAGACTTCAG
CAT-CGTCCAGACAAACCTCTCTCCAGAACTCAGTCAAACAAA
|
TTTGTTTGACTGAGTTCTGGAGAGAGGTTTGTCTGGCTGAAGT1797
CTAGAGAAAGGGTTGTATGGTCTGGAGAAATGGGCA
TCTGACCGAGGGCTGGGGAAAGGTTTGTCTGACTGA
|
CCTCAGCCATACAACCC1798
|
GGGTTGTATGGCTGAGG1799
|
Hemophilia—Factor VIII Deficiency
[0134] The attached table discloses the correcting oligonucleotide base sequences for the Factor VIII oligonucleotides of the invention.
21TABLE 20
|
|
Factor VIII Mutations and Genome-Correcting Oligos
ClinicaI Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Haemophilia AAGCTCTCCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTT1800
Tyr5CysTAGTGCCACCAGAAGATACTACCTGGGTGCAGTGGAACTGTC
TAC-TGCATGGGACTATATGCAAAGTGATCTCGGTGAGCTGCC
|
GGCAGCTCACCGAGATCACTTTGCATATAGTCCCATGACAGT1801
TCCACTGCACCCAGGTAGTATCTTCTGGTGGCACTAAAGCAG
AATCGCAAAAGGCACAGAAAGAAGCAGGTGGAGAGCT
|
CAGAAGATACTACCTGG1802
|
CCAGGTAGTATCTTCTG1803
|
Haemophilia ACCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTTTAGTGC1804
Leu7ArgCACCAGAAGATACTACCTGGGTGCAGTGGAACTGTCATGGGA
CTG-CGGCTATATGCAAAGTGATCTCGGTGAGCTGCCTGTGGA
|
TCCACAGGCAGCTCACCGAGATCACTTTGCATATAGTCCCAT1805
GACAGTTCCACTGCACCCAGGTAGTATCTTCTGGTGGCACTA
AAGCAGAATCGCAAAAGGCACAGAAAGAAGCAGGTGG
|
ATACTACCTGGGTGCAG1806
|
CTGCACCCAGGTAGTAT1807
|
Haemophilia AAGTCATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTT1808
Ser(−1)ArgTTGCGATTCTGCTTTAGTGCCACCAGAAGATACTACCTGGGT
AGTg-AGGGCAGTGGAACTGTCATGGGACTATATGCAAAGTGAT
|
ATCACTTTGCATATAGTCCCATGACAGTTCCACTGCACCCAG1809
GTAGTATCTTCTGGTGGCACTAAAGCAGAATCGCAAAAGGCA
CAGAAAGAAGCAGGTGGAGAGCTCTATTTGCATGACT
|
TGCTTTAGTGCCACCAG1810
|
CTGGTGGCACTAAAGCA1811
|
Haemophilia ACATTTGTAGCAAATAAGTCATGCAAATAGAGCTCTCCACCTGCT1812
Arg(−5)TermTCTTTCTGTGCCTTTTGCGATTCTGCTTTAGTGCCACCAGAAG
gCGA-TGAATACTACCTGGGTGCAGTGGAACTGTCATGGGACT
|
AGTCCCATGACAGTTCCACTGCACCCAGGTAGTATCTTCTGG1813
TGGCACTAAAGCAGAATCGCAAAAGGCACAGAAAGAAGCAGG
TGGAGAGCTCTATTTGCATGACTTATTGCTACAAATG
|
GCCTTTTGCGATTCTGC1814
|
GCAGAATCGCAAAAGGC1815
|
Haemophilia ATTCTGTGCCTTTTGCGATTCTGCTTTAGTGCCACCAGAAGATA1816
Glu11ValCTACCTGGGTGCAGTGGAACTGTCATGGGACTATATGCAAAG
GAA-GTATGATCTCGGTGAGCTGCCTGTGGACGCAAGGTAAAG
|
CTTTACCTTGCGTCCACAGGCAGCTCACCGAGATCACTTTGC1817
ATATAGTCCCATGACAGTTCCACTGCACCCAGGTAGTATCTTC
TGGTGGCACTAAAGCAGAATCGCAAAAGGCACAGAA
|
TGCAGTGGAACTGTCAT1818
|
ATGACAGTTCCACTGCA1819
|
Haemophilia ACTTTTGCGATTCTGCTTTAGTGCCACCAGAAGATACTACCTGG1820
Trp14GlyGTGCAGTGGAACTGTCATGGGACTATATGCAAAGTGATCTCG
aTGG-GGGGTGAGCTGCCTGTGGACGCAAGGTAAAGGCATGTCC
|
GGACATGCCTTTACCTTGCGTCCACAGGCAGCTCACCGAGAT1821
CACTTTGCATATAGTCCCATGACAGTTCCACTGCACCCAGGT
AGTATCTTCTGGTGGCACTAAAGCAGAATCGCAAAAG
|
AACTGTCATGGGACTAT1822
|
ATAGTCCCATGACAGTT1823
|
Haemophilia ATTCACGCAGATTTCCTCCTAGAGTGCCAAAATCTTTTCCATTC1824
Tyr46TermAACACCTCAGTCGTGTACAAAAAGACTCTGTTTGTAGAATTCA
TACa-TAACGGATCACCTTTTCAACATCGCTAAGCCAAGGCCA
|
TGGCCTTGGCTTAGCGATGTTGAAAAGGTGATCCGTGAATTC1825
TACAAACAGAGTCTTTTTGTACACGACTGAGGTGTTGAATGGA
AAAGATTTTGGCACTCTAGGAGGAAATCTGCGTGAA
|
GTCGTGTACAAAAAGAC1826
|
GTCTTTTTGTACACGAC1827
|
Haemophilia AATCTTTTCCATTCAACACCTCAGTCGTGTACAAAAAGACTCTG1828
Asp56GluTTTGTAGAATTCACGGATCACCTTTTCAACATCGCTAAGCCAA
GATc-GAAGGCCACCCTGGATGGGTAATGAAAACAATGTTGAA
|
TTCAACATTGTTTTCATTACCCATCCAGGGTGGCCTTGGCTTA1829
GCGATGTTGAAAAGGTGATCCGTGAATTCTACAAACAGAGTC
TTTTTGTACACGACTGAGGTGTTGAATGGAAAAGAT
|
TTCACGGATCACCTTTT1830
|
AAAAGGTGATCCGTGAA1831
|
Haemophilia ATTCTGGAGTACTATCCCCAAGTAACCTTTGGCGGACATCTCAT1832
Gly73ValTCTTACAGGTCTGCTAGGTCCTACCATCCAGGCTGAGGTTTA
GGT-GTTTGATACAGTGGTCATTACACTTAAGAACATGGCTTC
|
GAAGCCATGTTCTTAAGTGTAATGACCACTGTATCATAAACCT1833
CAGCCTGGATGGTAGGACCTAGCAGACCTGTAAGAATGAGAT
GTCCGCCAAAGGTTACTTGGGGATAGTACTCCAGAA
|
TCTGCTAGGTCCTACCA1834
|
TGGTAGGACCTAGCAGA1835
|
Haemophilia ACAAGTAACCTTTGGCGGACATCTCATTCTTACAGGTCTGCTAG1836
Glu79LysGTCCTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTAC
tGAG-AAGACTTAAGAACATGGCTTCCCATCCTGTCAGTCTTC
|
GAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGA1837
CCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCTAGCA
GACCTGTAAGAATGAGATGTCCGCCAAAGGTTACTTG
|
TCCAGGCTGAGGTTTAT1838
|
ATAAACCTCAGCCTGGA1839
|
Haemophilia ATAACCTTTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCC1840
Val80AspTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACACTT
GTT-GATAAGAACATGGCTTCCCATCCTGTCAGTCTTCATGC
|
GCATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTA1841
ATGACCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCT
AGCAGACCTGTAAGAATGAGATGTCCGCCAAAGGTTA
|
GGCTGAGGTTTATGATA1842
|
TATCATAAACCTCAGCC1843
|
Haemophilia ATTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCCTACCAT1844
Asp82ValCCAGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAAC
GAT-GTTATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGG
|
CCAACAGCATGAAGACTGACAGGATGGGAAGCCATGTTCTTA1845
AGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTA
GGACCTAGCAGACCTGTAAGAATGAGATGTCCGCCAA
|
GGTTTATGATACAGTGG1846
|
CCACTGTATCATAAACC1847
|
Haemophilia ATTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCCTACCAT1848
Asp82GlyCCAGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAAC
GAT-GGTATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGG
|
CCAACAGCATGAAGACTGACAGGATGGGAAGCCATGTTCTTA1849
AGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTA-
GGACCTAGCAGACCTGTAAGAATGAGATGTCCGCCAA
|
GGTTTATGATACAGTGG1850
|
CCACTGTATCATAAACC1851
|
Haemophilia AATCTCATTCTTACAGGTCTGCTAGGTCCTACCATCCAGGCTGA1852
Val85AspGGTTTATGATACAGTGGTCATTACACTTAAGAACATGGCTTCC
GTC-GACCATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTA
|
TAGGATACACCAACAGCATGAAGACTGACAGGATGGGAAGCC1853
ATGTTCTTAAGTGTAATGACCACTGTATCATAAACCTCAGCCT
GGATGGTAGGACCTAGCAGACCTGTAAGAATGAGAT
|
TACAGTGGTCATTACAC1854
|
GTGTAATGACCACTGTA1855
|
Haemophilia ACAGGTCTGCTAGGTCCTACCATCCAGGCTGAGGTTTATGATA1856
Lys89ThrCAGTGGTCATTACACTTAAGAACATGGCTTCCCATCCTGTCA
AAG-ACGGTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCTTC
|
GAAGCTTTCCAGTAGGATACACCAACAGCATGAAGACTGACA1857
GGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATCAT
AAACCTCAGCCTGGATGGTAGGACCTAGCAGACCTG
|
TACACTTAAGAACATGG1858
|
CCATGTTCTTAAGTGTA1859
|
Haemophilia ACTGCTAGGTCCTACCATCCAGGCTGAGGTTTATGATACAGTG1860
Met91ValGTCATTACACTTAAGAACATGGCTTCCCATCCTGTCAGTCTTC
cATG-GTGATGCTGTTGGTGTATCCTACTGGAAAGCTTCTGAGG
|
CCTCAGAAGCTTTCCAGTAGGATACACCAACAGCATGAAGAC1861
TGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTG
TATCATAAACCTCAGCCTGGATGGTAGGACCTAGCAG
|
TTAAGAACATGGCTTCC1862
|
GGAAGCCATGTTCTTAA1863
|
Haemophilia ACTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACACT1864
His94ArgTAAGAACATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGGT
CAT-CGTGTATCCTACTGGAAAGCTTCTGAGGGTGAGTAAAA
|
TTTTACTCACCCTCAGAAGCTTTCCAGTAGGATACACCAACAG1865
CATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAA
TGACCACTGTATCATAAACCTCAGCCTGGATGGTAG
|
GGCTTCCCATCCTGTCA1866
|
TGACAGGATGGGAAGCC1867
|
Haemophilia ACCTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACAC1868
His94TyrTTAAGAACATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGG
cCAT-TATTGTATCCTACTGGAAAGCTTCTGAGGGTGAGTAAA
|
TTTACTCACCCTCAGAAGCTTTCCAGTAGGATACACCAACAGC1869
ATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAAT
GACCACTGTATCATAAACCTCAGCCTGGATGGTAGG
|
TGGCTTCCCATCCTGTC1870
|
GACAGGATGGGAAGCCA1871
|
Haemophilia ACTGAGGTTTATGATACAGTGGTCATTACACTTAAGAACATGGC1872
Leu98ArgTTCCCATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTACTGG
CTT-CGTAAAGCTTCTGAGGGTGAGTAAAATACCCTCCTATT
|
AATAGGAGGGTATTTTACTCACCCTCAGAAGCTTTCCAGTAGG1873
ATACACCAACAGCATGAAGACTGACAGGATGGGAAGCCATGT
TCTTAAGTGTAATGACCACTGTATCATAAACCTCAG
|
TGTCAGTCTTCATGCTG1874
|
CAGCATGAAGACTGACA1875
|
Haemophilia AGATACAGTGGTCATTACACTTAAGAACATGGCTTCCCATCCTG1876
Gly102SerTCAGTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCTTCTGA
tGGT-AGTGGGTGAGTAAAATACCCTCCTATTGTCCTGTCATT
|
AATGACAGGACAATAGGAGGGTATTTTACTCACCCTCAGAAG1877
CTTTCCAGTAGGATACACCAACAGCATGAAGACTGACAGGAT
GGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATC
|
ATGCTGTTGGTGTATCC1878
|
GGATACACCAACAGCAT1879
|
Haemophilia ACTTTGAGTGTACAGTGGATATAGAAAGGACAATTTTATTTCTTC1880
Glu113AspCTGCTATAGGAGCTGAATATGATGATCAGACCAGTCAAAGGG
GAAt-GACAGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGC
|
GCTTCCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGA1881
CTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAATA
AAATTGTCCTTTCTATATCCACTGTACACTCAAAG
|
GGAGCTGAATATGATGA1882
|
TCATCATATTCAGCTCC1883
|
Haemophilia ATTGAGTGTACAGTGGATATAGAAAGGACAATTTTATTTCTTCCT1884
Tyr114CysGCTATAGGAGCTGAATATGATGATCAGACCAGTCAAAGGGAG
TAT-TGTAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCCA
|
TGGCTTCCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTT1885
GACTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAA
TAAATTGTCCTTTCTATATCCACTGTACACTCAA
|
AGCTGAATATGATGATC1886
|
GATCATCATATTCAGCT1887
|
Haemophilia AGTACAGTGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATA1888
Asp116GlyGGAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAA
GAT-GGTGATGATAAAGTCTTCCCTGGTGGAAGCCATACATA
|
TATGTATGGCTTCCACCAGGGAAGACTTTATCATCTTCTTTCT1889
CCCTTTGACTGGTCTGATCATCATATTCAGCTCCTATAGCAGG
AAGAAATAAAATTGTCCTTTCTATATCCACTGTAC
|
ATATGATGATCAGACCA1890
|
TGGTCTGATCATCATAT1891
|
Haemophilia AACAGTGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATAG1892
Gln117TermGAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAAG
tCAG-TAGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATG
|
CATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTTCTTT1893
CTCCCTTTGACTGGTCTGATCATCATATTCAGCTCCTATAGCA
GGAAGAAATAAAATTGTCCTTTCTATATCCACTGT
|
ATGATGATCAGACCAGT1894
|
ACTGGTCTGATCATCAT1895
|
Haemophilia ATGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATAGGAGC1896
Thr118IleTGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAAGATGA
ACC-ATCTAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTG
|
CAGACATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTT1897
CTTTCTCCCTTTGACTGGTCTGATCATCATATTCAGCTCCTAT
AGCAGGAAGAAATAAAATTGTCCTTTCTATATCCA
|
TGATCAGACCAGTCAAA1898
|
TTTGACTGGTCTGATCA1899
|
Haemophilia AAGGACAATTTTATTTCTTCCTGCTATAGGAGCTGAATATGATG1900
Glu122TermATCAGACCAGTCAAAGGGAGAAAGAAGATGATAAAGTCTTCC
gGAG-TAGCTGGTGGAAGCCATACATATGTCTGGCAGGTCCTGA
|
TCAGGACCTGCCAGACATATGTATGGCTTCCACCAGGGAAGA1901
CTTTATCATCTTCTTTCTCCCTTTGACTGGTCTGATCATCATAT
TCAGCTCCTATAGCAGGAAGAAATAAAATTGTCCT
|
GTCAAAGGGAGAAAGAA1902
|
TTCTTTCTCCCTTTGAC1903
|
Haemophilia ATTTCTTCCTGCTATAGGAGCTGAATATGATGATCAGACCAGTC1904
Asp126HisAAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCC
tGAT-CATATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTC
|
GACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCC1905
ACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGACTGGTC
TGATCATCATATTCAGCTCCTATAGCAGGAAGAAA
|
AAGAAGATGATAAAGTC1906
|
GACTTTATCATCTTCTT1907
|
Haemophilia AAGTCAAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGA1908
Gln139TermAGCCATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCA
gCAG-TAGATGGCCTCTGACCCACTGTGCCTTACCTACTCATATC
|
GATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGA1909
CCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCCAC
CAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGACT
|
ATGTCTGGCAGGTCCTG1910
|
CAGGACCTGCCAGACAT1911
|
Haemophilia AAAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCC1912
Val140AlaATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGG
GTC-GCCCCTCTGACCCACTGTGCCTTACCTACTCATATCTTTC
|
GAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATT1913
GGACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTT
CCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTT
|
CTGGCAGGTCCTGAAAG1914
|
CTTTCAGGACCTGCCAG1915
|
Haemophilia AAGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTG1916
Asn144LysGCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACT
AATg-AAAGTGCCTTACCTACTCATATCTTTCTCATGTGGACCTG
|
CAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGG1917
GTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGAC
ATATGTATGGCTTCCACCAGGGAAGACTTTATCATCT
|
AAAGAGAATGGTCCAAT1918
|
ATTGGACCATTCTCTTT1919
|
Haemophilia AGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCA1920
Gly145AspGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTG
GGT-GATCCTTACCTACTCATATCTTTCTCATGTGGACCTGGT
|
ACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGT1921
GGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAG
ACATATGTATGGCTTCCACCAGGGAAGACTTTATCAT
|
AGAGAATGGTCCAATGG1922
|
CCATTGGACCATTCTCT1923
|
Haemophilia AATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCA1924
Gly145ValGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTG
GGT-GTTCCTTACCTACTCATATCTTTCTCATGTGGACCTGGT
|
ACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGT1925
GGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAG
ACATATGTATGGCTTCCACCAGGGAAGACTTTATCAT
|
AGAGAATGGTCCAATGG1926
|
CCATTGGACCATTCTCT1927
|
Haemophilia AGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCAG1928
Pro146SerGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGC
tCCA-TCACTTACCTACTCATATCTTTCTCATGTGGACCTGGTAA
|
TTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACA1929
GTGGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCC
AGACATATGTATGGCTTCCACCAGGGAAGACTTTATC
|
AGAATGGTCCAATGGCC1930
|
GGCCATTGGACCATTCT1931
|
Haemophilia ACCATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAAT1932
Cys153TrpGGCCTCTGACCCACTGTGCCTTACCTACTCATATCTTTCTCAT
TGCc-TGGGTGGACCTGGTAAAAGACTTGAATTCAGGCCTCATT
|
AATGAGGCCTGAATTCAAGTCTTTTACCAGGTCCACATGAGAA1933
AGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGA
CCATTCTCTTTCAGGACCTGCCAGACATATGTATGG
|
CCACTGTGCCTTACCTA1934
|
TAGGTAAGGCACAGTGG1935
|
Haemophilia ATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGA1936
Tyr156TermCCCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCTG
TACt-TAAGTAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTA
|
TAGGGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGTC1937
CACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGA
GGCCATTGGACCATTCTCTTTCAGGACCTGCCAGACA
|
CTTACCTACTCATATCT1938
|
AGATATGAGTAGGTAAG1939
|
Haemophilia AGTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGAC1940
Ser157ProCCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCTGG
cTCA-CCATAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTAC
|
GTAGGGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGT1941
CCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAG
AGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGAC
|
TTACCTACTCATATCTT1942
|
AAGATATGAGTAGGTAA1943
|
Haemophilia AGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGC1944
Ser160ProCTTACCTACTCATATCTTTCTCATGTGGACCTGGTAAAAGACT
tTCT-CCTTGAATTCAGGCCTCATTGGAGCCCTACTAGTATGTA
|
TACATACTAGTAGGGCTCCAATGAGGCCTGAATTCAAGTCTTT1945
TACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAG
TGGGTCAGAGGCCATTGGACCATTCTCTTTCAGGAC
|
CATATCTTTCTCATGTG1946
|
CACATGAGAAAGATATG1947
|
Haemophilia AAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGCCTTACC1948
Val162MetTACTCATATCTTTCTCATGTGGACCTGGTAAAAGACTTGAATT
tGTG-ATGCAGGCCTCATTGGAGCCCTACTAGTATGTAGAGAAG
|
CTTCTCTACATACTAGTAGGGCTCCAATGAGGCCTGAATTCAA1949
GTCTTTTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAG
GCACAGTGGGTCAGAGGCCATTGGACCATTCTCTTT
|
TTTCTCATGTGGACCTG1950
|
CAGGTCCACATGAGAAA1951
|
Haemophilia ACAATGGCCTCTGACCCACTGTGCCTTACCTACTCATATCTTTC1952
Lys166ThrTCATGTGGACCTGGTAAAAGACTTGAATTCAGGCCTCATTGG
AAA-ACAAGCCCTACTAGTATGTAGAGAAGGTAAGTGTATGAA
|
TTCATACACTTACCTTCTCTACATACTAGTAGGGCTCCAATGA1953
GGCCTGAATTCAAGTCTTTTACCAGGTCCACATGAGAAAGATA
TGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTG
|
CCTGGTAAAAGACTTGA1954
|
TCAAGTCTTTTACCAGG1955
|
Haemophilia AACCCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCT1956
Ser170LeuGGTAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTACTAGT
TCA-TTAATGTAGAGAAGGTAAGTGTATGAAAGCGTAGGATTG
|
CAATCCTACGCTTTCATACACTTACCTTCTCTACATACTAGTAG1957
GGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGTCCAC
ATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGT
|
CTTGAATTCAGGCCTCA1958
|
TGAGGCCTGAATTCAAG1959
|
Haemophilia AAATGTTCTCACTTCTTTTTCAGGGAGTCTGGCCAAGGAAAAGA1960
Phe195ValCACAGACCTTGCACAAATTTATACTACTTTTTGCTGTATTTGAT
aTTT-GTTGAAGGTTAGTGAGTCTTAATCTGAATTTTGGATT
|
AATCCAAAATTCAGATTAAGACTCACTAACCTTCATCAAATACA1961
GCAAAAAGTAGTATAAATTTGTGCAAGGTCTGTGTCTTTTCCT
TGGCCAGACTCCCTGAAAAAGAAGTGAGAACATT
|
TGCACAAATTTATACTA1962
|
TAGTATAAATTTGTGCA1963
|
Haemophilia ACTTCTTTTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCT1964
Leu198HisTGCACAAATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAG
CTT-CATTGAGTCTTAATCTGAATTTTGGATTCCTGAAAGAA
|
TTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACTAACCTTC1965
ATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAAGGTCTGT
GTCTTTTCCTTGGCCAGACTCCCTGAAAAAGAAG
|
TATACTACTTTTTGCTG1966
|
CAGCAAAAAGTAGTATA1967
|
Haemophilia ATTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCTTGCACA1968
Ala200AspAATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAGTGAGTC
GCT-GATTTAATCTGAATTTTGGATTCCTGAAAGAAATCCTC
|
GAGGATTTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACT1969
AACCTTCATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAA
GGTCTGTGTCTTTTCCTTGGCCAGACTCCCTGAAA
|
ACTTTTTGCTGTATTTG1970
|
CAAATACAGCAAAAAGT1971
|
Haemophilia ATTTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCTTGCAC1972
Ala200ThrAAATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAGTGAGT
tGCT-ACTCTTAATCTGAATTTTGGATTCCTGAAAGAAATCCT
|
AGGATTTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACTA1973
ACCTTCATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAAG
GTCTGTGTCTTTTCCTTGGCCAGACTCCCTGAAAA
|
TACTTTTTGCTGTATTT1974
|
AAATACAGCAAAAAGTA1975
|
Haemophilia AAACTCCTTGATGCAGGATAGGGATGCTGCATCTGCTCGGGCC1976
Val234PheTGGCCTAAAATGCACACAGTCAATGGTTATGTAAACAGGTCTC
aGTC-TTCTGCCAGGTATGTACACACCTGCTCAACAATCCTCAG
|
CTGAGGATTGTTGAGCAGGTGTGTACATACCTGGCAGAGACC1977
TGTTTACATAACCATTGACTGTGTGCATTTTAGGCCAGGCCCG
AGCAGATGCAGCATCCCTATCCTGCATCAAGGAGTT
|
TGCACACAGTCAATGGT1978
|
ACCATTGACTGTGTGCA1979
|
Haemophilia AATTTCAGATTCTCTACTTCATAGCCATAGGTGTCTTATTCCTAC1980
Gly247GluTTTACAGGTCTGATTGGATGCCACAGGAAATCAGTCTATTGGC
GGA-GAAATGTGATTGGAATGGGCACCACTCCTGAAGTGCA
|
TGCACTTCAGGAGTGGTGCCCATTCCAATCACATGCCAATAG1981
ACTGATTTCCTGTGGCATCCAATCAGACCTGTAAAGTAGGAAT
AAGACACCTATGGCTATGAAGTAGAGAATCTGAAAT
|
TCTGATTGGATGCCACA1982
|
TGTGGCATCCAATCAGA1983
|
Haemophilia AATAGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCAC1984
Trp255CysAGGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACT
TGGc-TGTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACA
|
TGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGT1985
GCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGGCAT
CCAATCAGACCTGTAAAGTAGGAATAAGACACCTAT
|
GTCTATTGGCATGTGAT1986
|
ATCACATGCCAATAGAC1987
|
Haemophilia AATAGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCAC1988
Trp255TermAGGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACT
TGGc-TGACCTGAAGTGCACTCAATATTCCTCGAAGGTCACACA
|
TGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGT1989
GCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGGCAT
CCAATCAGACCTGTAAAGTAGGAATAAGACACCTAT
|
GTCTATTGGCATGTGAT1990
|
ATCACATGCCAATAGAC1991
|
Haemophilia AAGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCACAG1992
His256LeuGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCC
CAT-CTTTGAAGTGCACTCAATATTCCTCGAAGGTCACACATT
|
AATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTG1993
GTGCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGG
CATCCAATCAGACCTGTAAAGTAGGAATAAGACACCT
|
CTATTGGCATGTGATTG1994
|
CAATCACATGCCAATAG1995
|
Haemophilia ATATTCCTACTTTACAGGTCTGATTGGATGCCACAGGAAATCAG1996
Gly259ArgTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAAGTGC
tGGA-AGAACTCAATATTCCTCGAAGGTCACACATTTCTTGTGA
|
TCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTC1997
AGGAGTGGTGCCCATTCCAATCACATGCCAATAGACTGATTT
CCTGTGGCATCCAATCAGACCTGTAAAGTAGGAATA
|
ATGTGATTGGAATGGGC1998
|
GCCCATTCCAATCACAT1999
|
Haemophilia ATTGGATGCCACAGGAAATCAGTCTATTGGCATGTGATTGGAAT2000
Val266GlyGGGCACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCA
GTG-GGGCACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTT
|
AAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCT2001
TCGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCATTCCA
ATCACATGCCAATAGACTGATTTCCTGTGGCATCCAA
|
TCCTGAAGTGCACTCAA2002
|
TTGAGTGCACTTCAGGA2003
|
Haemophilia ACAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAAG2004
Glu272GlyTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGAA
GAA-GGACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAAC
|
GTTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTC2005
ACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAG
GAGTGGTGCCCATTCCAATCACATGCCAATAGACTG
|
ATTCCTCGAAGGTCACA2006
|
TGTGACCTTCGAGGAAT2007
|
Haemophilia ATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAA2008
Glu272LysGTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGA
cGAA-AAAACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAA
|
TTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCA2009
CAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAG
GAGTGGTGCCCATTCCAATCACATGCCAATAGACTGA
|
TATTCCTCGAAGGTCAC2010
|
GTGACCTTCGAGGAATA2011
|
Haemophilia AGGCATGTGATTGGAATGGGCACCACTCCTGAAGTGCACTCAA2012
Thr275IleTATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCATCGCCA
ACA-ATAGGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTAC
|
GTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGA2013
TGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATATTGAGT
GCACTTCAGGAGTGGTGCCCATTCCAATCACATGCC
|
AGGTCACACATTTCTTG2014
|
CAAGAAATGTGTGACCT2015
|
Haemophilia ATTGGAATGGGCACCACTCCTGAAGTGCACTCAATATTCCTCG2016
Val278AlaAAGGTCACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCT
GTG-GCGTGGAAATCTCGCCAATAACTTTCCTTACTGCTCAAAC
|
GTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCAAGGAC2017
GCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTTCGAGG
AATATTGAGTGCACTTCAGGAGTGGTGCCCATTCCAA
|
ATTTCTTGTGAGGAACC2018
|
GGTTCCTCACAAGAAAT2019
|
Haemophilia ATGGGCACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTC2020
Asn280IleACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAA
AAC-ATCTCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTT
|
AAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCA2021
AGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTT
CGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCA
|
TGTGAGGAACCATCGCC2022
|
GGCGATGGTTCCTCACA2023
|
Haemophilia AACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACAT2024
Arg282CysTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGC
tCGC-TGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGG
|
CCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGA2025
TTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGT
GACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGT
|
GGAACCATCGCCAGGCG2026
|
CGCCTGGCGATGGTTCC2027
|
Haemophilia ACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATT2028
Arg282HisTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCC
CGC-CACAATAACTTTCCTTACTGCTCAAACACTCTTGATGGA
|
TCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAG2029
ATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTG
TGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGG
|
GAACCATCGCCAGGCGT2030
|
ACGCCTGGCGATGGTTC2031
|
Haemophilia ACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATT2032
Arg282LeuTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCC
CGC-CTCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGA
|
TCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAG2033
ATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTG
TGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGG
|
GAACCATCGCCAGGCGT2034
|
ACGCCTGGCGATGGTTC2035
|
Haemophilia ACTGAAGTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGT2036
Ala284GluGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAAC
GCG-GAGTTTCCTTACTGCTCAAACACTCTTGATGGACCTTGG
|
CCAAGGTCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATT2037
GGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAG
AAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAG
|
TCGCCAGGCGTCCTTGG2038
|
CCAAGGACGCCTGGCGA2039
|
Haemophilia ACCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATTTCTTG2040
Ala284ProTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAA
gGCG-CCGCTTTCCTTACTGCTCAAACACTCTTGATGGACCTTG
|
CAAGGTCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTG2041
GCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAA
ATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGG
|
ATCGCCAGGCGTCCTTG2042
|
CAAGGACGCCTGGCGAT2043
|
Haemophilia ATATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCATCGCCA2044
Ser289LeuGGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTACTGCTCAA
TCG-TTGACACTCTTGATGGACCTTGGACAGTTTCTACTGTT
|
AACAGTAGAAACTGTCCAAGGTCCATCAAGAGTGTTTGAGCA2045
GTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGA
TGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATA
|
GGAAATCTCGCCAATAA2046
|
TTATTGGCGAGATTTCC2047
|
Haemophilia AGTCACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGG2048
Phe293SerAAATCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGAT
TTC-TCCGGACCTTGGACAGTTTCTACTGTTTTGTCATATCTC
|
GAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCATCAAG2049
AGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCAAG
GACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGAC
|
AATAACTTTCCTTACTG2050
|
CAGTAAGGAAAGTTATT2051
|
Haemophilia AACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATC2052
Thr295AlaTCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACC
tACT-GCTTTGGACAGTTTCTACTGTTTTGTCATATCTCTTCCC
|
GGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCA2053
TCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTC
CAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGT
|
CTTTCCTTACTGCTCAA2054
|
TTGAGCAGTAAGGAAAG2055
|
Haemophilia ACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCT2056
Thr295IleCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACCT
ACT-ATTTGGACAGTTTCTACTGTTTTGTCATATCTCTTCCCA
|
TGGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCC2057
ATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTT
CCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATG
|
TTTCCTTACTGCTCAAA2058
|
TTTGAGCAGTAAGGAAA2059
|
Haemophilia ATTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGC2060
Ala296ValCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACCTTGG
GCT-GTTACAGTTTCTACTGTTTTGTCATATCTCTTCCCACCA
|
TGGTGGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGG2061
TCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAG
ATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAA
|
CCTTACTGCTCAAACAC2062
|
GTGTTTGAGCAGTAAGG2063
|
Haemophilia ATCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGA2064
Leu308ProCCTTGGACAGTTTCTACTGTTTTGTCATATCTCTTCCCACCAA
CTG-CCGCATGGTAATATCTTGGATCTTTAAAATGAATATTA
|
TAATATTCATTTTAAAGATCCAAGATATTACCATGTTGGTGGGA2065
AGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCATCAA
GAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGA
|
GTTTCTACTGTTTTGTC2066
|
GACAAAACAGTAGAAAC2067
|
Haemophilia AACAGCCTAATATAGCAAGACACTCTGACATTGTTTGGTTTGTC2068
Glu321LysTGACTCCAGATGGCATGGAAGCTTATGTCAAAGTAGACAGCT
gGAA-AAAGTCCAGAGGAACCCCAACTACGAATGAAAAATAATG
|
CATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGACAGCTGTC2069
TACTTTGACATAAGCTTCCATGCCATCTGGAGTCAGACAAACC
AAACAATGTCAGAGTGTCTTGCTATATTAGGCTGT
|
ATGGCATGGAAGCTTAT2070
|
ATAAGCTTCCATGCCAT2071
|
Haemophilia AATATAGCAAGACACTCTGACATTGTTTGGTTTGTCTGACTCCA2072
Tyr323TermGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGTCCAGAG
TATg-TAAGAACCCCAACTACGAATGAAAAATAATGAAGAAGCG
|
CGCTTCTTCATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGA2073
CAGCTGTCTACTTTGACATAAGCTTCCATGCCATCTGGAGTCA
GACAAACCAAACAATGTCAGAGTGTCTTGCTATAT
|
GAAGCTTATGTCAAAGT2074
|
ACTTTGACATAAGCTTC2075
|
Haemophilia AAAGACACTCTGACATTGTTTGGTTTGTCTGACTCCAGATGGCA2076
Val326LeuTGGAAGCTTATGTCAAAGTAGACAGCTGTCCAGAGGAACCCC
aGTA-CTAAACTACGAATGAAAAATAATGAAGAAGCGGAAGACT
|
AGTCTTCCGCTTCTTCATTATTTTTCATTCGTAGTTGGGGTTC2077
CTCTGGACAGCTGTCTACTTTGACATAAGCTTCCATGCCATCT
GGAGTCAGACAAACCAAACAATGTCAGAGTGTCTT
|
ATGTCAAAGTAGACAGC2078
|
GCTGTCTACTTTGACAT2079
|
Haemophilia ATGACATTGTTTGGTTTGTCTGACTCCAGATGGCATGGAAGCTT2080
Cys329ArgATGTCAAAGTAGACAGCTGTCCAGAGGAACCCCAACTACGAA
cTGT-CGTTGAAAAATAATGAAGAAGCGGAAGACTATGATGATG
|
CATCATCATAGTCTTCCGCTTCTTCATTATTTTTCATTCGTAGT2081
TGGGGTTCCTCTGGACAGCTGTCTACTTTGACATAAGCTTCC
ATGCCATCTGGAGTCAGACAAACCAAACAATGTCA
|
TAGACAGCTGTCCAGAG2082
|
CTCTGGACAGCTGTCTA2083
|
Haemophilia AGACATTGTTTGGTTTGTCTGACTCCAGATGGCATGGAAGCTTA2084
Cys329TyrTGTCAAAGTAGACAGCTGTCCAGAGGAACCCCAACTACGAAT
TGT-TATGAAAAATAATGAAGAAGCGGAAGACTATGATGATGA
|
TCATCATCATAGTCTTCCGCTTCTTCATTATTTTTCATTCGTAG2085
TTGGGGTTCCTCTGGACAGCTGTCTACTTTGACATAAGCTTCC
ATGCCATCTGGAGTCAGACAAACCAAACAATGTC
AGACAGCTGTCCAGAGG2086
|
CCTCTGGACAGCTGTCT2087
|
Haemophilia AACTCCAGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGT2088
Arg336TermCCAGAGGAACCCCAACTACGAATGAAAAATAATGAAGAAGCG
aCGA-TGAGAAGACTATGATGATGATCTTACTGATTCTGAAATGG
|
CCATTTCAGAATCAGTAAGATCATCATCATAGTCTTCCGCTTC2089
TTCATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGACAGCTG
TCTACTTTGACATAAGCTTCCATGCCATCTGGAGT
|
CCCAACTACGAATGAAA2090
|
TTTCATTCGTAGTTGGG2091
|
Haemophilia AGATTCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTC2092
Arg372CysCTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAA
tCGC-TGCAACTTGGGTACATTACATTGCTGCTGAAGAGGAGG
|
CCTCCTCTTCAGCAGCAATGTCAATGTACCCAAGTTTTAGGATG2093
CTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGAGTT
GTCATCATCAAACCTGACCACATCCATTTCAGAATC
|
TCCAAATTCGCTCAGTT2094
|
AACTGAGCGAATTTGGA2095
|
Haemophilia AATTCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCC2096
Arg372HisTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAA
CGC-CACACTTGGGTACATTACATTGCTGCTGAAGAGGAGGA
|
TCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGAT2097
GCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGAGT
TGTCATCATCAAACCTGACCACATCCATTTCAGAAT
|
CCAAATTCGCTCAGTTG2098
|
CAACTGAGCGAATTTGG2099
|
Haemophilia ACTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTTC2100
Ser373LeuCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACT
TCA-TTATGGGTACATTACATTGCTGCTGAAGAGGAGGACTG
|
CAGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAG2101
GATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAG
AGTTGTCATCATCAAACCTGACCACATCCATTTCAG
|
AATTCGCTCAGTTGCCA2102
|
TGGCAACTGAGCGAATT2103
|
Haemophilia ATCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTT2104
Ser373ProCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAAC
cTCA-CCATTGGGTACATTACATTGCTGCTGAAGAGGAGGACT
|
AGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGG2105
ATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGA
GTTGTCATCATCAAACCTGACCACATCCATTTCAGA
|
AAATTCGCTCAGTTGCC2106
|
GGCAACTGAGCGAATTT2107
|
Haemophilia ACTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTTC2108
Ser373TermCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACT
TCA-TAATGGGTACATTACATTGCTGCTGAAGAGGAGGACTG
|
CAGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAG2109
GATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAG
AGTTGTCATCATCAAACCTGACCACATCCATTTCAG
|
ATTCGCTCAGTTGCCA2110
|
TGGCAACTGAGCGAATT2111
|
Haemophilia ACCTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTA2112
Ile386PheAAACTTGGGTACATTACATTGCTGCTGAAGAGGAGGACTGGG
cATT-TTTACTATGCTCCCTTAGTCCTCGCCCCCGATGACAGGT
|
ACCTGTCATCGGGGGCGAGGACTAAGGGAGCATAGTCCCAG2113
TCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGAT
GCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGG
|
TACATTACATTGCTGCT2114
|
AGCAGCAATGTAATGTA2115
|
Haemophilia ACTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAA2116
Ile386SerAACTTGGGTACATTACATTGCTGCTGAAGAGGAGGACTGGGA
ATT-AGTCTATGCTCCCTTAGTCCTCGCCCCCGATGACAGGTA
|
TACCTGTCATCGGGGGCGAGGACTAAGGGAGCATAGTCCCA2117
GTCCTCCTCTTCAGCAGCAIATGTAATGTACCCAAGTTTTAGGA
TGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAG
|
ACATTACATTGCTGCTG2118
|
CAGCAGCAATGTAATGT2119
|
Haemophilia AAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACTTGGGTACA2120
Glu390GlyTTACATTGCTGCTGAAGAGGAGGACTGGGACTATGCTCCCTT
GAG-GGGAGTCCTCGCCCCCGATGACAGGTAAGCACTTTTTGA
|
TCAAAAAGTGCTTACCTGTCATCGGGGGCGAGGACTAAGGGA2121
GCATAGTCCCAGTCCTCCTCTTCAGCAGCAATGTAATGTACC
CAAGTTTTAGGATGCTTCTTGGCAACTGAGCGAATTT
|
TGCTGAAGAGGAGGACT2122
|
AGTCCTCCTCTTCAGCA2123
|
Haemophilia ATCAGTTGCCAAGAAGCATCCTAAAACTTGGGTACATTACATTG2124
Trp393GlyCTGCTGAAGAGGAGGACTGGGACTATGCTCCCTTAGTCCTCG
cTGG-GGGCCCCCGATGACAGGTAAGCACTTTTTGACTATTGGT
|
ACCAATAGTCAAAAAGTGCTTACCTGTCATCGGGGGCGAGGA2125
CTAAGGGAGCATAGTCCCAGTCCTCCTCTTCAGCAGCAATGT
AATGTACCCAAGTTTTAGGATGCTTCTTGGCAACTGA
|
AGGAGGACTGGGACTAT2126
|
ATAGTCCCAGTCCTCCT2127
|
Haemophilia AGCCTACCTAGAATTTTTCTTCCCAACCTCTCATCTTTTTTTCTC2128
Lys408IleTTATACAGAAGTTATAAAAGTCAATATTTGAACAATGGCCCTC
AAA-ATAAGCGGATTGGTAGGAAGTACAAAAAAGTCCGATT
|
AATCGGACTTTTTTGTACTTCCTACCAATCCGCTGAGGGCCAT2129
TGTTCAAATATTGACTTTTATAACTTCTGTATAAGAGAAAAAAA
GATGAGAGGTTGGGAAGAAAAATTCTAGGTAGGC
|
AAGTTATAAAAGTCAAT2130
|
ATTGACTTTTATAACTT2131
|
Haemophilia ATTTTCTTCCCAACCTCTCATCTTTTTTTCTCTTATACAGAAGTT2132
Leu412PheATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTAG
TTGa-TTTGAAGTACAAAAAAGTCCGATTTATGGCATACACA
|
TGTGTATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATC2133
CGCTGAGGGCCATTGTTCAAATATTGACTTTTATAACTTCTGT
ATAAGAGAAAAAAAGATGAGAGGTTGGGAAGAAAA
|
CAATATTTGAACAATGG2134
|
CCATTGTTCAAATATTG2135
|
Haemophilia ATCATCTTTTTTTCTCTTATACAGAAGTTATAAAAGTCAATATTTG2136
Arg418TrpAACAATGGCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTC
gCGG-TGGCGATTTATGGCATACACAGATGAAACCTTTAAGA
|
TCTTAAAGGTTTCATCTGTGTATGCCATAAATCGGACTTTTTTG2137
TACTTCCTACCAATCCGCTGAGGGCCATTGTTCAAATATTGAC
TTTATAACTTCTGTATAAGAGAAAAAAAGATGA
|
GCCCTCAGCGGATTGGT2138
|
ACCAATCCGCTGAGGGC2139
|
Haemophilia ATTTTTCTCTTATACAGAAGTTATAAAAGTCAATATTTGAACAAT2140
Gly420ValGGCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTCCGATTT
GGT-GTTATGGCATACACAGATGAAACCTTTAAGACTCGTGA
|
TCACGAGTCTTAAAGGTTTCATCTGTGTATGCCATAAATCGGA2141
CTTTTTTGTACTTCCTACCAATCCGCTGAGGGCCATTGTTCAA
ATATTGGACTTTTATAACTTCTGTATAAGAGAAAAA
|
GCGGATTGGTAGGAAGT2142
|
ACTTCCTACCAATCCGC2143
|
Haemophilia AGAAGTTATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGAT2144
Lys425ArgTGGTAGGAAGTACAAAAAAGTCCGATTTATGGCATACACAGAT
AAA-AGAGAAACCTTTAAGACTCGTGAAGCTATTCAGCATGA
|
TCATGCTGAATAGCTTCACGAGTCTTAAAGGTTTCATCTGTGT2145
ATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATCCGCTG
AGGGCCATTGTTCAAATATTGACTTTTATAACTTC
|
GTACAAAAAAGTCCGAT2146
|
ATCGGACTTTTTTGTAC2147
|
Haemophilia ATATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTA2148
Arg427TermGGAAGTACAAAAAAGTCCGATTTATGGCATACACAGATGAAAC
cCGA-TGACTTTAAGACTCGTGAAGCTATTCAGCATGAATCAG
|
CTGATTCATGCTGAATAGCTTCACGAGTCTTAAAGGTTTCATC2149
TGTGTATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATC
CGCTGAGGGCCATTGTTCAAATATTGACTTTTATA
|
AAAAAGTCCGATTTATG2150
|
CATAAATCGGACTTTTT2151
|
Haemophilia ATATTTGAACAATGGCCCTCAGCGGATTGGTAGGAAGTACAAA2152
Tyr431AsnAAAGTCCGATTTATGGCATACACAGATGAAACCTTTAAGACTC
aTAC-AACGTGAAGCTATTCAGCATGAATCAGGAATCTTGGGAC
|
GTCCCAAGATTCCTGATTCATGCTGAATAGCTTCACGAGTCTT2153
AAAGGTTTCATCTGTGTATGCCATAAATCGGACTTTTTTGTAC
TTCCTACCAATCCGCTGAGGGCCATTGTTCAAATA
|
TTATGGCATACACAGAT2154
|
ATCTGTGTATGCCATAA2155
|
Haemophilia AGCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTCCGATTTA2156
Thr435IleTGGCATACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCA
ACC-ATCGCATGAATCAGGAATCTTGGGACCTTTACTTTATGG
|
CCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAATAG2157
CTTCACGAGTCTTAAAGGTTTCATCTGTGTATGCCATAAATCG
GACTTTTTTGTACTTCCTACCAATCCGCTGAGGGC
|
AGATGAAACCTTTAAGA2158
|
TCTTAAAGGTTTCATCT2159
|
Haemophilia AACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCAGCATGA2160
Pro451LeuATCAGGAATCTTGGGACCTTTACTTTATGGGGAAGTTGGAGA
CCT-CTTCACACTGTTGGTAAGTTGAAGAAAAGATTTAAGGTC
|
GACCTTAAATCTTTTCTTCAACTTACCAACAGTGTGTCTCCAA2161
CTTCCCCATCAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTG
AATAGCTTCACGAGTCTTAAAGGTTTCATCTGTGT
|
CTTGGGACCTTTACTTT2162
|
AAAGTAAAGGTCCCAAG2163
|
Haemophilia ATACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCAGCATG2164
Pro451ThrAATCAGGAATCTTGGGACCTTTACTTTATGGGGAAGTTGGAGA
aCCT-ACTCACACTGTTGGTAAGTTGAAGAAAAGATTTAAGGT
|
ACCTTAAATCTTTTCTTCAACTTACCAACAGTGTGTCTCCAACT2165
TCCCCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAA
TAGCTTCACGAGTCTTAAAGGTTTCATCTGTGTA
|
TCTTGGGACCTTTACTT2166
|
AAGTAAAGGTCCCAAGA2167
|
Haemophilia AACCTTTAAGACTCGTGAAGCTATTCAGCATGAATCAGGAATCT2168
Gly455ArgTGGGACCTTTACTTTATGGGGAAGTTGGAGACACACTGTTGG
tGGG-AGGTAAGTTGAAGAAAAGATTTAAGGTCAGGTAAGAAGA
|
TCTTCTTACCTGACCTTAAATCTTTTCTTCAACTTACCAACAGT2169
GTGTCTCCAACTTCCCCATAAAGTAAAGGTCCCAAGATTCCTG
ATTCATGCTGAATAGCTTCACGAGTCTTAAAGGT
|
TACTTTATGGGGAAGTT2170
|
AACTTCCCCATAAAGTA2171
|
Haemophilia ACCTTTAAGACTCGTGAAGCTATTCAGCATGAATCAGGAATCTT2172
Gly455GluGGGACCTTTACTTTATGGGGAAGTTGGAGACACACTGTTGGT
GGG-GAGAAGTTGAAGAAAAGATTTAAGGTCAGGTAAGAAGAA
|
TTCTTCTTACCTGACCTTAAATCTTTTCTTCAACTTACCAACAG2173
TGTGTCTCCAACTTCCCATAAAGTAAAGGTCCCAAGATTCCT
GATTCATGCTGAATAGCTTCACGAGTCTTAAAGG
|
ACTTTATGGGGAAGTTG2174
|
CAACTTCCCCATAAAGT2175
|
Haemophilia ACGTGAAGCTATTCAGCATGAATCAGGAATCTTGGGACCTTTAC2176
Asp459AsnTTTATGGGGAAGTTGGAGACACACTGTTGGTAAGTTGAAGAA
aGAC-AACAAGATTTAAGGTCAGGTAAGAAGAAAAAGTCTGGAG
|
CTCCAGACTTTTTCTTCTTACCTGACCTTAAATCTTTTCTTCAA2177
CTTACCAACAGTGTGTCTCCAACTTCCCCATAAAGTAAAGGTC
CCAAGATTCCTGATTCATGCTGAATAGCTTCACG
|
AAGTTGGAGACACACTG2178
|
CAGTGTGTCTCCAACTT2179
|
Haemophilia ATGTTGATCCTAGTCGTTTTAGGATTTGATCTTAGATCTCGCTTA2180
Phe465CysTACTTTCAGATTATATTTAAGAATCAAGCAAGCAGACCATATAA
TTT-TGTCATCTACCCTCACGGAATCACTGATGTCCGTCC
|
GGACGGACATCAGTGATTCCGTGAGGGTAGATGTTATATGGT2181
CTGCTTGCTTGATTCTTAAATATAATCTGAAAGTATAAGCGAG
ATCTAAGATCAAATCCTAAAACGACTAGGATCAACA
|
GATTATATTTAAGAATC2182
|
GATTCTTAAATATAATC2183
|
Haemophilia ATCGTTTTAGGATTTGATCTTAGATCTCGCTTATACTTTCAGATT2184
Ala469GlyATATTTAAGAATCAAGCAAGCAGACCATATAACATCTACCCTC
GCA-GGAACGGAATCACTGATGTCCGTCCTTTGTATTCAAG
|
CTTGAATACAAAGGACGGACATCAGTGATTCCGTGAGGGTAG2185
ATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATCTGAAA
GTATAAGCGAGATCTAAGATCAAATCCTAAAACGA
|
GAATCAAGCAAGCAGAC2186
|
GTCTGCTTGCTTGATTC2187
|
Haemophilia ATTAGGATTTGATCTTAGATCTCGCTTATACTTTCAGATTATATT2188
Arg471GlyTAAGAATCAAGCAAGCAGACCATATAACATCTACCCTCACGG
cAGA-GGAAATCACTGATGTCCGTCCTTTGTATTCAAGGAGAT
|
ATCTCCTTGAATACAAAGGACGGACATCAGTGATTCCGTGAG2189
GGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATC
TGAAAGTATAAGCGAGATCTAAGATCAAATCCTAA
|
AAGCAAGCAGACCATAT2190
|
ATATGGTCTGCTTGCTT2191
|
Haemophilia ATTGATCTTAGATCTCGCTTATACTTTCAGATTATATTTAAGAAT2192
Tyr473CysCAAGCAAGCAGACCATATAACATCTACCCTCACGGAATCACT
TAT-TGTGATGTCCGTCCTTTGTATTCAAGGAGATTACCAAA
|
TTTGGTAATCTCCTTGAATACAAAGGACGGACATCAGTGATTC2193
CGTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAA
TATAATCTGAAAGTATAAGCGAGATCTAAGATCAA
|
CAGACCATATAACATCT2194
|
AGATGTTATATGGTCTG2195
|
Haemophilia ATTTGATCTTAGATCTCGCTTATACTTTCAGATTATATTTAAGAA2196
Tyr473HisTCAAGCAAGCAGACCATATAACATCTACCCTCACGGAATCACT
aTAT-CATGATGTCCGTCCTTTGTATTCAAGGAGATTACCAA
|
TTGGTAATCTCCTTGAATACAAAGGACGGACATCAGTGATTCC2197
GTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAAT
ATAATCTGAAAGTATAAGCGAGATCTAAGATCAAA
|
GCAGACCATATAACATC2198
|
GATGTTATATGGTCTGC2199
|
Haemophilia ATTAGATCTCGCTTATACTTTCAGATTATATTTAAGAATCAAGCA2200
Ile475ThrAGCAGACCATATAACATCTACCCTCACGGAATCACTGATGTCC
ATC-ACCGTCCTTTGTATTCAAGGAGATTACCAAAAGGTAA
|
TTACCTTTTGGTAATCTCCTTGAATACAAAGGACGGACATCAG2201
TGATTCCGTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATT
CTTAAATATAATCTGAAAGTATAAGCGAGATCTAA
|
ATATAACATCTACCCTC2202
|
GAGGGTAGATGTTATAT2203
|
Haemophilia ATTATACTTTCAGATTATATTTAAGAATCAAGCAAGCAGACCATA2204
Gly419ArgTAACATCTACCCTCACGGAATCACTGATGTCCGTCCTTTGTAT
cGGA-AGATCAAGGAGATTACCAAAAGGTAAATATTCCCTCG
|
CGAGGGAATATTTACCTTTTGGTAATCTCCTTGAATACAAAGG2205
ACGGACATCAGTGATTCCGTGAGGGTAGATGTTATATGGTCT
GCTTGCTTGATTCTTAAATATAATCTGAAAGTATAA
|
ACCCTCACGGAATCACT2206
|
AGTGATTCCGTGAGGGT2207
|
Haemophilia ACCAATTCTGCCAGGAGAAATATTCAAATATAAATGGACAGTGA2208
Thr522SerCTGTAGAAGATGGGCCAACTAAATCAGATCCTCGGTGCCTGA
aACT-TCTCCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAG
|
CTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGC2209
ACCGAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGT
CCATTTATATTTGAATATTTCTCCTGGCAGAATTGG
|
ATGGGCCAACTAAATCA2210
|
TGATTTAGTTGGCCCAT2211
|
Haemophilia ACCAGGAGAAATATTCAAATATAAATGGACAGTGACTGTAGAAG2212
Asp525AsnATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATT
aGAT-AATACTCTAGTTTCGTTAATATGGAGAGAGATCTAGCTT
|
AAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCG2213
GGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTAC
AGTCACTGTCCATTTATATTTGAATATTTCTCCTGG
|
CTAAATCAGATCCTCGG2214
|
CCGAGGATCTGATTTAG2215
|
Haemophilia AGAAATATTCAAATATAAATGGACAGTGACTGTAGAAGATGGGC2216
Arg527TrpCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA
tCGG-TGGGTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGAC
|
GTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTA2217
ATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATC
TTCTACAGTCACTGTCCATTTATATTTGAATATTTC
|
CAGATCCTCGGTGCCTG2218
|
CAGGCACCGAGGATCTG2219
|
Haemophilia ATATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCA2220
Arg531CysGATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATA
cCGC-TGCTGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTC
|
GAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA2221
CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATT
TAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATA
|
GCCTGACCCGCTATTAC2222
|
GTAATAGCGGGTCAGGC2223
|
Haemophilia ATATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCA2224
Arg531GlyGATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATA
cCGC-GGCTGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTC
|
GAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA2225
CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATT
TAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATA
|
GCCTGACCCGCTATTAC2226
|
GTAATAGCGGGTCAGGC2227
|
Haemophilia AATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCAG2228
Arg531HisATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATAT
CGC-CACGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCT
|
AGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA2229
CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATT
TAGTTGGCCCATCTTCTACAGTCACTGTCCATTTAT
|
CCTGACCCGCTATTACT2230
|
AGTAATAGCGGGTCAGG2231
|
Haemophilia AACAGTGACTGTAGAAGATGGGCCAACTAAATCAGATCCTCGG2232
Ser534ProTGCCTGACCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAG
cTCT-CCTATCTAGCTTCAGGACTCATTGGCCCTCTCCTCATCT
|
AGATGAGGAGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCT2233
CCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACCGAG
GATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGT
|
GCTATTACTCTAGTTTC2234
|
GAAACTAGAGTAATAGC2235
|
Haemophilia AGTGACTGTAGAAGATGGGCCAACTAAATCAGATCCTCGGTGC2236
Ser535GlyCTGACCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAGATC
tAGT-GGTTAGCTTCAGGACTCATTGGCCCTCTCCTCATCTGCT
|
AGCAGATGAGGAGAGGGCCAATGAGTCCTGAAGCTAGATCTC2237
TCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACC
GAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCAC
|
ATTACTCTAGTTTCGTT2238
|
AACGAAACTAGAGTAAT2239
|
Haemophilia ATAGAAGATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCC2240
Val537AspGCTATTACTCTAGTTTCGTTAATATGGAGAGAGATCTAGCTTC
GTT-GATAGGACTCATTGGCCCTCTCCTCATCTGCTACAAAGA
|
TCTTTGTAGCAGATGAGGAGAGGGCCAATGAGTCCTGAAGCT2241
AGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCA
GGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTA
|
TAGTTTCGTTAATATGG2242
|
CCATATTAACGAAACTA2243
|
Haemophilia ACAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA2244
Arg541ThrGTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGG
AGA-ACACCCTCTCCTCATCTGCTACAAAGAATCTGTAGATCA
|
TGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAATG2245
AGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGT
AATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTG
|
TATGGAGAGAGATCTAG2246
|
CTAGATCTCTCTCCATA2247
|
Haemophilia ACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTTT2248
Asp542GlyCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCC
GAT-GGTTCTCCTCATCTGCTACAAAGAATCTGTAGATCAAAG
|
CTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCA2249
ATGAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAG
AGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAG
|
GGAGAGAGATCTAGCTT2250
|
AAGCTAGATCTCTCTCC2251
|
Haemophilia AACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTT2252
AspS42HisTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCC
aGAT-CATCTCTCCTCATCTGCTACAAAGAATCTGTAGATCAAA
|
TTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAAT2253
GAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAG
TAATAGCGGGTCAGGCACCGAGGATCTGATTTAGT
|
TGGAGAGAGATCTAGCT2254
|
AGCTAGATCTCTCTCCA2255
|
Haemophilia AACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTT2256
Asp542TyrTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCC
aGAT-TATCTCTCCTCATCTGCTACAAAGAATCTGTAGATCAAA
|
TTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAAT2257
GAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAG
TAATAGCGGGTCAGGCACCGAGGATCTGATTTAGT
|
TGGAGAGAGATCTAGCT2258
|
AGCTAGATCTCTCTCCA2259
|
Haemophilia AGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCT2260
Glu557TermCTCCTCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACC
aGAA-TAAAGGTGAGTTCTTGCCTTTCCAAGTGCTGGGTTTCAT
|
ATGAAACCCAGCACTTGGAAAGGCAAGAACTCACCTGGTTTC2261
CTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGC
CAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAAC
|
GCTACAAAGAATCTGTA2262
|
TACAGATTCTTTGTAGC2263
|
Haemophilia AATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCTCC2264
Ser558PheTCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGGT
TCT-TTTCAGTTCTTGCCTTTCCAAGTGCTGGGTTTCATTCTC
|
GAGAATGAAACCCAGCACTTGGAAAGGCAAGAACTCACCTGG2265
TTTCCTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAG
GGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATAT
|
CAAAGAATCTGTAGATC2266
|
GATCTACAGATTCTTTG2267
|
Haemophilia ATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCTCCTCA2268
Val559AlaTCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGGTGA
GTA-GCAGTTCTTGCCTTTCCAAGTGCTGGGTTTCATTCTCAGT
|
ACTGAGAATGAAACCCAGCACTTGGAAAGGCAAGAACTCACC2269
TGGTTTCCTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGA
GAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCA
|
AGAATCTGTAGATCAAA2270
|
TTTGATCTACAGATTCT2271
|
Hemophilia—Factor IX Deficiency
[0135] The attached table discloses the correcting oligonucleotide base sequences for the Factor IX oligonucleotides of the invention.
22TABLE 21
|
|
Factor IX Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Haemophilia BATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAA2272
Asn2AspTCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTT
tAAT-GATCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAA
|
TTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCT2273
TCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTT
GTTGGCGTTTTCATGATCAAGAAAAACTGAAAT
|
AGAGGTATAATTCAGGT2274
|
ACCTGAATTATACCTCT2275
|
Haemophilia BTTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAAT2276
Asn2lleCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTT
AAT-ATTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAA
|
TTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTC2277
TTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTT
TGTTGGCGTTTTCATGATCAAGAAAAACTGAAA
|
GAGGTATAATTCAGGTA2278
|
TACCTGAATTATACCTC2279
|
Haemophilia BATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAA2280
Asn2TyrTCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTT
tAAT-TATCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAA
|
TTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCT2281
TCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTT
GTTGGCGTTTTCATGATCAAGAAAAACTGAAAT
|
AGAGGTATAATTCAGGT2282
|
ACCTGAATTATACCTCT2283
|
Haemophilia BTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATC2284
Ser3ProGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCA
tTCA-CCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT
|
ACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAAC2285
TCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAA
TTTTGTTGGCGTTTTCATGATCAAGAAAAACTGA
|
GGTATAATTCAGGTAAA2286
|
TTTACCTGAATTATACC2287
|
Haemophilia BTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCC2288
Gly4AspAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGG
GGT-GATAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAG
|
CTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAAC2289
AAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCA
GAATTTTGTTGGCGTTTTCATGATCAAGAAAAA
|
TAATTCAGGTAAATTGG2290
|
CCAATTTACCTGAATTA2291
|
Haemophilia BGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGC2292
Gly4SerCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGG
aGGT-AGTGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTA
|
TACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACA2293
AACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCA
GAATTTTGTTGGCGTTTTCATGATCAAGAAAAAC
|
ATAATTCAGGTAAATTG2294
|
CAATTTACCTGAATTAT2295
|
Haemophilia BTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAA2296
Lys5GluAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAA
tAAA-GAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTT
|
AACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGA2297
ACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATT
CAGAATTTTGTTGGCGTTTTCATGATCAAGAAA
|
ATTCAGGTAAATTGGAA2298
|
TTCCAATTTACCTGAAT2299
|
Haemophilia BATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTA2300
Glu7AlaTAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAG
GAA-GCAAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGA
|
TCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTT2301
CCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTG
GCCGATTCAGAATTTTGTTGGCGTTTTCATGAT
|
TAAATTGGAAGAGTTTG2302
|
CAAACTCTTCCAATTTA2303
|
Haemophilia BGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGG2304
Glu7LysTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTG
gGAA-AAAAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAG
|
CTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTC2305
CCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGG
CCGATTCAGAATTTTGTTGGCGTTTTCATGATC
|
GTAAATTGGAAGAGTTT2306
|
AAACTCTTCCAATTTAC2307
|
Haemophilia BATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTA2308
Glu7ValTAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAG
GAA-GTAAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGA
|
TCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTT2309
CCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTG
GCCGATTCAGAATTTTGTTGGCGTTTTCATGAT
|
TAAATTGGAAGAGTTTG2310
|
CAAACTCTTCCAATTTA2311
|
Haemophilia BATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA2312
Glu8AlaTTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAG
GAG-GCGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGC
|
GCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAG2313
GTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCT
TTGGCCGATTCAGAATTTTGTTGGCGTTTTCAT
|
ATTGGAAGAGTTTGTTC2314
|
GAACAAACTCTTCCAAT2315
|
Haemophilia BATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA2316
Glu8GlyTTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAG
GAG-GGGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGC
|
GCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAG2317
GTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCT
TTGGCCGATTCAGAATTTTGTTGGCGTTTTCAT
|
ATTGGAAGAGTTTGTTC2318
|
GAACAAACTCTTCCAAT2319
|
Haemophilia BAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTC2320
Phe9CysAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGA
TTT-TGTATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACG
|
CGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTC2321
AAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATAC
CTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTT
|
GGAAGAGTTTGTTCAAG2322
|
CTTGAACAAACTCTTCC2323
|
Haemophilia BGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATT2324
Phe9lleCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAG
gTTT-ATTAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCAC
|
GTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCA2325
AGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACC
TCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTC
|
TGGAAGAGTTTGTTCAA2326
|
TTGAACAAACTCTTCCA2327
|
Haemophilia BTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTC2328
Arg(-1)SerTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTT
AGGt-AGCTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAA
|
TTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCC2329
AATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTT
GGCGTTTTCATGATCAAGAAAAACTGAAATGTAA
|
CCAAAGAGGTATAATTC2330
|
GAATTATACCTCTTTGG2331
|
Haemophilia BTTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATT2332
Arg(-1)ThrCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAG
AGG-ACGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGA
|
TCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCA2333
ATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTG
GCGTTTTCATGATCAAGAAAAACTGAAATGTAAA
|
GCCAAAGAGGTATAATT2334
|
AATTATACCTCTTTGGC2335
|
Haemophilia BCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAA2336
Lys(-2)AsnTTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGA
AAGa-AATGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATG
|
CATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAAT2337
TTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGG
CGTTTTCATGATCAAGAAAAACTGAAATGTAAAAG
|
CGGCCAAAGAGGTATAA2338
|
TTATACCTCTTTGGCCG2339
|
Haemophilia BAATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCC2340
Arg(-4)GlnAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAAT
CGG-CAGTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGA
|
TCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTG2341
AATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCA
TGATCAAGAAAAACTGAAATGTAAAAGAATAATT
|
TCTGAATCGGCCAAAGA2342
|
TCTTTGGCCGATTCAGA2343
|
Haemophilia BAATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCC2344
Arg (-4) LeuAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAAT
CGG-CTGTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGA
|
TCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTG2345
AATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCA
TGATCAAGAAAAACTGAAATGTAAAAGAATAATT
|
TCTGAATCGGCCAAAGA2346
|
TCTTTGGCCGATTCAGA2347
|
Haemophilia BGAATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGC2348
Arg(-4)TrpCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAA
tCGG-TGGTTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAG
|
CTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGA2349
ATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCAT
GATCAAGAAAAACTGAAATGTAAAAGAATAATTC
|
TTCTGAATCGGCCAAAG2350
|
CTTTGGCCGATTCAGAA2351
|
Haemophilia BGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTA2352
Gln11TermAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTAT
tCAA-TAAGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAG
|
CTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCT2353
CTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAAT
TATACCTCTTTGGCCGATTCAGAATTTTGTTGGC
|
AGTTTGTTCAAGGGAAC2354
|
GTTCCCTTGAACAAACT2355
|
Haemophilia BACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATT2356
Gly12AlaGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGA
GGG-GCGAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTT
|
AAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACA2357
TTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCT
GAATTATACCTCTTTGGCCGATTCAGAATTTTGT
|
TGTTCAAGGGAACCTTG2358
|
CAAGGTTCCCTTGAACA2359
|
Haemophilia BAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAAT2360
Gly12ArgTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGG
aGGG-AGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTT
|
AAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACAT2361
TCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTG
AATTATACCTCTTTGGCCGATTCAGAATTTTGTT
|
TTGTTCAAGGGAACCTT2362
|
AAGGTTCCCTTGAACAA2363
|
Haemophilia BACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATT2364
Gly12GluGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGA
GGG-GAGAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTT
|
AAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACA2365
TTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCT
GAATTATACCTCTTTGGCCGATTCAGAATTTTGT
|
TGTTCAAGGGAACCTTG2366
|
CAAGGTTCCCTTGAACA2367
|
Haemophilia BCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTC2368
Glu17GlnAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTT
aGAA-CAATTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAA
|
TTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACAC2369
TTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTC
TTCCAATTTACCTGAATTATACCTCTTTGGCCG
|
TTGAGAGAGAATGTATG2370
|
CATACATTCTCTCTCAA2371
|
Haemophilia BCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTC2372
Glu17LysAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTT
aGAA-AAATTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAA
|
TTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACAC2373
TTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTC
TTCCAATTTACCTGAATTATACCTCTTTGGCCG
|
TTGAGAGAGAATGTATG2374
|
CATACATTCTCTCTCAA2375
|
Haemophilia BCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAG2376
Cys18ArgGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTG
aTGT-CGTAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAA
|
TTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTA2377
CACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAA
ACTCTTCCAATTTACCTGAATTATACCTCTTTGG
|
AGAGAGAATGTATGGAA2378
|
TTCCATACATTCTCTCT2379
|
Haemophilia BCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGG2380
Cys18TyrGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAA
TGT-TATGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAAC
|
GTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACT2381
ACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAA
ACTCTTCCAATTTACCTGAATTATACCTCTTTG
|
GAGAGAATGTATGGAAG2382
|
CTTCCATACATTCTCTC2383
|
Haemophilia BGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCT2384
Glu20ValTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGC
GAA-GTAACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAG
|
CTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTC2385
AAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTT
GAACAAACTCTTCCAATTTACCTGAATTATACC
|
ATGTATGGAAGAAAAGT2386
|
ACTTTTCTTCCATACAT2387
|
Haemophilia BTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTG2388
Glu21LysAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCAC
aGAA-AAAGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTA
|
TACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCT2389
TCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCC
TTGAACAAACTCTTCCAATTTACCTGAATTATA
|
GTATGGAAGAAAAGTGT2390
|
ACACTTTTCTTCCATAC2391
|
Haemophilia BTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGA2392
Cys23ArgGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAA
gTGT-CGTGTTTTTGAAAACACTGAAAGAACAGTGAGTATTTCCA
|
TGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGT2393
GCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAG
GTTCCCTTGAACAAACTCTTCCAATTTACCTGA
|
AAGAAAAGTGTAGTTTT2394
|
AAAACTACACTTTTCTT2395
|
Haemophilia BCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAG2396
Cys23TyrAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGT
TGT-TATTTTTGAAAACACTGAAAGAACAGTGAGTATTTCCAC
|
GTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTC2397
GTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCA
AGGTTCCCTTGAACAAACTCTTCCAATTTACCTG
|
AGAAAAGTGTAGTTTTG2398
|
CAAAACTACACTTTTCT2399
|
Haemophilia BAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTAT2400
Phe25SerGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAA
TTT-TCTAACACTGAAAGAACAGTGAGTATTTCCACATAATA
|
TATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAAC2401
TTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTC
TCTCAAGGTTCCCTTGAACAAACTCTTCCAATT
|
GTGTAGTTTTGAAGAAG2402
|
CTTCTTCAAAACTACAC2403
|
Haemophilia BTTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATG2404
Glu26GlnGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAA
tGAA-CAAACACTGAAAGAACAGTGAGTATTTCCACATAATACC
|
GGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAA2405
ACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTC
TCTCTCAAGGTTCCCTTGAACAAACTCTTCCAA
|
GTAGTTTTGAAGAAGCA2406
|
TGCTTCTTCAAAACTAC2407
|
Haemophilia BAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAG2408
Glu27AlaAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACAC
GAA-GCATGAAAGAACAGTGAGTATTTCCACATAATACCCTTC
|
GAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTT2409
CAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATA
CATTCTCTCTCAAGGTTCCCTTGAACAAACTCTT
|
TTTTGAAGAAGCACGAG2410
|
CTCGTGCTTCTTCAAAA2411
|
Haemophilia BAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGA2412
Glu27AspAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACT
GAAg-GACGAAAGAACAGTGAGTATTTCCACATAATACCCTTCA
|
TGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTT2413
TCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCAT
ACATTCTCTCTCAAGGTTCCCTTGAACAAACTCT
|
TTTGAAGAAGCACGAGA2414
|
TCTCGTGCTTCTTCAAA2415
|
Haemophilia BGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAA2416
Glu27LysGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACA
aGAA-AAACTGAAAGAACAGTGAGTATTTCCACATAATACCCTT
|
AAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTC2417
AAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATAC
ATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTC
|
GTTTTGAAGAAGCACGA2418
|
TCGTGCTTCTTCAAAAC2419
|
Haemophilia BAAGAGTTTGTTCAAGGGAACTTGAGAGAGAATGTATGGAAG2420
Glu27ValAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACAC
GAA-GTATGAAAGAACAGTGAGTATTTCCACATAATACCCTTC
|
GAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTT2421
CAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATA
CATTCTCTCTCAAGGTTCCCTTGAACAAACTCTT
|
TTTTGAAGAAGCACGAG2422
|
CTCGTGCTTCTTCAAAAJ 2423
|
Haemophilia BTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT2424
Arg29GlnGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAG
CGA-CAAAACAGTGAGTATTTCCACATAATACCCTTCAGATGC
|
GCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAG2425
TGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCT
TCCATACATTCTCTCTCAAGGTTCCCTTGAACAA
|
AGAAGCACGAGAAGTTT2426
|
AAACTTCTCGTGCTTCT2427
|
Haemophilia BTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT2428
Arg29ProGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAG
CGA-CCAAACAGTGAGTATTTCCACATAATACCCTTCAGATGC
|
GCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAG2429
TGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCT
TCCATACATTCTCTCTCAAGGTTCCCTTGAACAA
|
AGAAGCACGAGAAGTTT2430
|
AAACTTCTCGTGCTTCT2431
|
Haemophilia BTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT2432
Arg29TermGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAG
aCGA-TGAAACAGTGAGTATTTCCACATAATACCCTTCAGATG
|
CATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGT2433
GTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTT
CCATACATTCTCTCTCAAGGTTCCCTTGAACAAA
|
AAGAAGCACGAGAAGTT2434
|
AACTTCTCGTGCTTCTT2435
|
Haemophilia BGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGT2436
Glu30LysAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAA
aGAA-AAACAGTGAGTATTTCCACATAATACCCTTCAGATGCAG
|
CTGCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTC2437
AGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTT
CTTCCATACATTCTCTCTCAAGGTTCCCTTGAAC
|
AAGCACGAGAAGTTTTT2438
|
AAAAACTTCTCGTGCTT2439
|
Haemophilia BGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGT2440
Glu30TermAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAA
aGAA-TAACAGTGAGTATTTCCACATAATACCCTTCAGATGCAG
|
CTGCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTC2441
AGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTT
CTTCCATACATTCTCTCTCAAGGTTCCCTTGAAC
|
AAGCACGAGAAGTTTTT2442
|
AAAAACTTCTCGTGCTT2443
|
Haemophilia BCCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAA2444
Glu33AspGCACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTATTT
GAAa-GACCCACATAATACCCTTCAGATGCAGAGCATAGAATA
|
TATTCTATGCTCTGCATCTGAAGGGTATTATGTGGAAATACTC2445
ACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAA
ACTACACTTTTCTTCCATACATTCTCTCTCAAGG
|
GTTTTTGAAAACACTGA2446
|
TCAGTGTTTTCAAAAAC2447
|
Haemophilia BAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAG2448
Glu33TermAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTAT
tGAA-TAATTCCACATAATACCCTTCAGATGCAGAGCATAGAA
|
TTCTATGCTCTGCATCTGAAGGGTATTATGTGGAAATACTCAC2449
TGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAAC
TACACTTTTCTTCCATACATTCTCTCTCAAGGTT
|
AAGTTTTTGAAAACACT2450
|
AGTGTTTTCAAAAACTT2451
|
Haemophilia BCAAAACACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTT2452
Trp42TermTATAGACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCAT
TGG-TAGTTTATCCTCTAGCTAATATATGAAACATATGAG
|
CTCATATGTTTCATATATTAGCTAGAGGATAAAATGAATTGCTT2453
ACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATAAAAG
AAGACAAATTAACGGTAATATCTAAAGTGTTTTG
|
TGAATTTTGGAAGCAGT2454
|
ACTGCTTCCAAAATTCA2455
|
Haemophilia BAAACACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTTTA2456
Lys43GluTAGACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCATTT
gAAG-GAGTATCCTCTAGCTAATATATGAAACATATGAGAA
|
TTCTCATATGTTTCATATATTAGCTAGAGGATAAAATGAATTGC2457
TTACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATAAAA
GAAGACAAATTAACGGTAATATCTAAAGTGTTT
|
AATTTTGGAAGCAGTAT2458
|
ATACTGCTTCCAAAATT2459
|
Haemophilia BCACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTTTATAG2460
Gln44TermACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCATTTTATC
gCAG-TAGCTCTAGCTAATATATGAAACATATGAGAATTA
|
TAATTCTCATATGTTTCATATATTAGCTAGAGGATAAAATGAAT2461
TGCTTACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATA
AAAGAAGACAAATTAACGGTAATATCTAAAGTG
|
TTTGGAAGCAGTATGTT2462
|
AACATACTGCTTCCAAA2463
|
Haemophilia BCCGGGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAAC2464
Asp49GlyCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTA
GAT-GGTAATGGCGGCAGTTGCAAGGATGACATTAATTCCTA
|
TAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATG2465
GATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAA
ATTGAATTGGCACGTAAACTGCTTAGAATGCCCGG
|
AGATGGAGATCAGTGTG2466
|
CACACTGATCTCCATCT2467
|
Haemophilia BGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATC2468
Gln50HisTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGG
CAGt-CACCGGCAGTTGCAAGGATGACATTAATTCCTATGAA
|
TTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAA2469
CATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTA
AGAAATTGAATTGGCACGTAAACTGCTTAGAATGC
|
GGAGATCAGTGTGAGTC2470
|
GACTCACACTGATCTCC2471
|
Haemophilia BGGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTA2472
Gln50ProTCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAAT
CAG-CCGGGCGGCAGTTGCAAGGATGACATTAATTCCTATGA
|
TCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAAC2473
ATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAA
GAAATTGAATTGGCACGTAAACTGCTTAGAATGCC
|
TGGAGATCAGTGTGAGT2474
|
ACTCACACTGATCTCCA2475
|
Haemophilia BGGGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCT2476
Gln50TermATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAA
tCAG-TAGTGGCGGCAGTTGCAAGGATGACATTAATTCCTATG
|
CATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACA2477
TGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAG
AAATTGAATTGGCACGTAAACTGCTTAGAATGCCC
|
ATGGAGATCAGTGTGAG2478
|
CTCACACTGATCTCCAT2479
|
Haemophilia BCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCT2480
Cys51ArgCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGG
gTGT-CGTCGGCAGTTGCAAGGATGACATTAATTCCTATGAAT
|
ATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAA2481
ACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTT
AAGAAATTGAATTGGCACGTAAACTGCTTAGAATG
|
GAGATCAGTGTGAGTCC2482
|
GGACTCACACTGATCTC2483
|
Haemophilia BCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCT2484
Cys51SerCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGG
gTGT-AGTCGGCAGTTGCAAGGATGACATTAATTCCTATGAAT
|
ATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAA2485
ACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTT
AAGAAATTGAATTGGCACGTAAACTGCTTAGAATG
|
GAGATCAGTGTGAGTCC2486
|
GGACTCACACTGATCTC2487
|
Haemophilia BTTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCTCA2488
Cys51TrpAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCG
TGTg-TGGGCAGTTGCAAGGATGACATTAATTCCTATGAATGT
|
ACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTT2489
AAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGG
TTAAGAAATTGAATTGGCACGTAAACTGCTTAGAA
|
GATCAGTGTGAGTCCAA2490
|
TTGGACTCACACTGATC2491
|
Haemophilia BTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCTCAA2492
Glu52TermAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGG
tGAG-TAGCAGTTGCAAGGATGACATTAATTCCTATGAATGTT
|
AACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATT2493
TAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAG
GTTAAGAAATTGAATTGGCACGTAAACTGCTTAGA
|
ATCAGTGTGAGTCCAAT2494
|
ATTGGACTCACACTGAT2495
|
Haemophilia BTTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAG2496
Pro55AlaATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCA
tCCA-GCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCT
|
AGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACT2497
GCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCT
TTGAGATAGGTTAAGAAATTGAATTGGCACGTAAA
|
AGTCCAATCCATGTTTA2498
|
TAAACATGGATTGGACT2499
|
Haemophilia BTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA2500
Pro55ArgTCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAA
CCA-CGAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTT
|
AAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC2501
TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATC
TTTGAGATAGGTTAAGAAATTGAATTGGCACGTAA
|
GTCCAATCCATGTTTAA2502
|
TTAAACATGGATTGGAC2503
|
Haemophilia BTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA2504
Pro55GlnTCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAA
CCA-CAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTT
|
AAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC2505
TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATC
TTTGAGATAGGTTAAGAAATTGAATTGGCACGTAA
|
GTCCAATCCATGTTTAA2506
|
TTAAACATGGATTGGAC2507
|
Haemophilia BTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA2508
Pro55LeuTCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAA
CCA-CTAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTT
|
AAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC2509
TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATC
TTTGAGATAGGTTAAGAAATTGAATTGGCACGTAA
|
GTCCAATCCATGTTTAA2510
|
TTAAACATGGATTGGAC2511
|
Haemophilia BTTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAG2512
Pro55SerATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCA
tCCA-TCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCT
|
AGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACT2513
GCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCT
TTGAGATAGGTTAAGAAATTGAATTGGCACGTAAA
|
AGTCCAATCCATGTTTA2514
|
TAAACATGGATTGGACT2515
|
Haemophilia BACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATC2516
Cys56ArgAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGG
aTGT-CGTATGACATTAATTCCTATGAATGTTGGTGTCCCTTTG
|
CAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCA2517
ACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC
ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGT
|
CCAATCCATGTTTAAAT2518
|
ATTTAAACATGGATTGG2519
|
Haemophilia BACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATC2520
Cys56SerAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGG
aTGT-AGTATGACATTAATTCCTATGAATGTTGGTGTCCCTTTG
|
CAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCA2521
ACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC
ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGT
|
CCAATCCATGTTTAAAT2522
|
ATTTAAACATGGATTGG2523
|
Haemophilia BCGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATCA2524
Cys56SerGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGA
TGT-TCTTGACATTAATTCCTATGAATGTTGGTGTCCCTTTGG
|
CCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGC2525
AACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC
ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACG
|
CAATCCATGTTTAAATG2526
|
CATTTAAACATGGATTG2527
|
Haemophilia BCGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATCA2528
Cys56TyrGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGA
TGT-TATTGACATTAATTCCTATGAATGTTGGTGTCCCTTTGG
|
CCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGC2529
AACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC
ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACG
|
CAATCCATGTTTAAATG2530
|
CATTTAAACATGGATTG2531
|
Haemophilia BATTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAG2532
Asn58LysTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTA
AATg-AAGATTCCTATGAATGTTGGTGTCCCTTGGATTTGAA
|
TTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCA2533
TCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACT
GATCTCCATCTTTGAGATAGGTTAAGAAATTGAAT
|
TGTTTAAATGGCGGCAG2534
|
CTGCCGCCATTTAAACA2535
|
Haemophilia BTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTC2536
Gly59AspCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAT
GGC-GACTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG
|
CCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGT2537
CATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACA
CTGATCTCCATCTTTGAGATAGGTTAAGAAATTGA
|
TTTAAATGGCGGCAGTT2538
|
AACTGCCGCCATTTAAA2539
|
Haemophilia BTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTC2540
Gly59ValCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAT
GGC-GTCTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG
|
CCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGT2541
CATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACA
CTGATCTCCATCTTTGAGATAGGTTAAGAAATTGA
|
TTTAAATGGCGGCAGTT2542
|
AACTGCCGCCATTTAAA2543
|
Haemophilia BTTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGT2544
Gly59SerCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAA
tGGC-AGCTTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAG
|
CTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTC2545
ATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACAC
TGATCTCCATCTTTGAGATAGGTTAAGAAATTGAA
|
GTTTAAATGGCGGCAGT2546
|
ACTGCCGCCATTTAAAC2547
|
Haemophilia BAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA2548
Gly60SerATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTC
cGGC-AGCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAA
|
TTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT2549
GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCA
CACTGATCTCCATCTTTGAGATAGGTTAAGAAATT
|
TAAATGGCGGCAGTTGC2550
|
GCAACTGCCGCCATTTA2551
|
Haemophilia BAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA2552
Gly60CysATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTC
cGGC-TGCCTATGAATGTTGGTGTCCCTTTGGATTGAAGGAA
|
TTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT2553
GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCA
CACTGATCTCCATCTTTGAGATAGGTTAAGAAATT
|
TAAATGGCGGCAGTTGC2554
|
GCAACTGCCGCCATTTA2555
|
Haemophilia BATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAA2556
Gly60AspTCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCC
GGC-GACTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAA
|
TTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAA2557
TGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTC
ACACTGATCTCCATCTTTGAGATAGGTTAAGAAAT
|
AAATGGCGGCAGTTGCA2558
|
TGCAACTGCCGCCATTT2559
|
Haemophilia BAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA2560
Gly60ArgATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTC
cGGC-CGCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAA
|
TTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT2561
GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCA
CACTGATCTCCATCTTTGAGATAGGTTAAGAAATT
|
TAAATGGCGGCAGTTGC2562
|
GCAACTGCCGCCATTTA2563
|
Haemophilia BTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATG2564
Cys62TyrTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAA
TGC-TACTGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTG
|
CAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGG2565
AATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATT
GGACTCACACTGATCTCCATCTTTGAGATAGGTTA
|
CGGCAGTTGCAAGGATG2566
|
CATCCTTGCAACTGCCG2567
|
Haemophilia BTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATG2568
Cys62SerTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAA
TGC-TCCTGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTG
|
CAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGG2569
AATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATT
GGACTCACACTGATCTCCATCTTTGAGATAGGTTA
|
CGGCAGTTGCAAGGATG2570
|
CATCCTTGCAACTGCCG2571
|
Haemophilia BAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGT2572
Cys62TermTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAAT
TGCa-TGAGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGT
|
ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG2573
GAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGAT
TGGACTCACACTGATCTCCATCTTTGAGATAGGTT
|
GGCAGTTGCAAGGATGA2574
|
TCATCCTTGCAACTGCC2575
|
Haemophilia BTCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAAT2576
Asp64GluGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGG
GATg-GAGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTA
|
TAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACAT2577
TCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAAC
ATGGATTGGACTCACACTGATCTCCATCTTTGAGA
|
TGCAAGGATGACATTAA2578
|
TTAATGTCATCCTTGCA2579
|
Haemophilia BATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAA2580
Asp64GlyTGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTG
GAT-GGTGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATT
|
AATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATT2581
CATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACA
TGGATTGGACTCACACTGATCTCCATCTTTGAGAT
|
TTGCAAGGATGACATTA2582
|
TAATGTCATCCTTGCAA2583
|
Haemophilia BTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAA2584
Asp64AsnATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTG
gGAT-AATGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAAT
|
ATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTC2585
ATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACAT
GGATTGGACTCACACTGATCTCCATCTTTGAGATA
|
GTTGCAAGGATGACATT2586
|
AATGTCATCCTTGCAAC2587
|
Haemophilia BAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCG2588
lle66SerGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCC
ATT-AGTCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAA
|
TTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACC2589
AACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATT
TAAACATGGATTGGACTCACACTGATCTCCATCTT
|
GGATGACATTAATTCCT2590
|
AGGAATTAATGTCATCC2591
|
Haemophilia BAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCG2592
lle66ThrGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCC
ATT-ACTCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAA
|
TTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACC2593
AACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATT
TAAACATGGATTGGACTCACACTGATCTCCATCTT
|
GGATGACATTAATTCCT2594
|
AGGAATTAATGTCATCC2595
|
Haemophilia BTGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAG2596
Asn67LysTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTT
AATt-AAAGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTAA
|
TTACTTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGAC2597
ACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCC
ATTTAAACATGGATTGGACTCACACTGATCTCCA
|
GACATTAATTCCTATGA2598
|
TCATAGGAATTAATGTC2599
|
Haemophilia BATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCA2600
Tyr69CysAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATT
TAT-TGTTGAAGGAAAGAACTGTGAATTAGGTAAGTAACTATT
|
AATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAATCCAAA2601
GGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTG
CCGCCATTTAAACATGGATTGGACTCACACTGAT
|
TAATTCCTATGAATGTT2602
|
AACATTCATAGGAATTA2603
|
Haemophilia BTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGA2604
Cys71TermCATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGA
TGTt-TGAAAGAACTGTGAATTAGGTAAGTAACTATTTTTTGAA
|
TTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAA2605
ATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTT
GCAACTGCCGCCATTTAAACATGGATTGGACTCA
|
TATGAATGTTGGTGTCC2606
|
GGACACCAACATTCATA2607
|
Haemophilia BGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG2608
Cys71SerACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG
TGT-TCTAAAGAACTGTGAATTAGGTAAGTAACTATTTTTTGA
|
TCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAA2609
TCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTG
CAACTGCCGCCATTTAAACATGGATTGGACTCAC
|
CTATGAATGTTGGTGTC2610
|
GACACCAACATTCATAG2611
|
Haemophilia BGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG2612
Cys71TyrACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG
TGT-TATAAAGAACTGTGAATTAGGTAAGTAACTATTTTTTGA
|
TCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAA2613
TCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTG
CAACTGCCGCCATTTAAACATGGATTGGACTCAC
|
CTATGAATGTTGGTGTC2614
|
GACACCAACATTCATAG2615
|
Haemophilia BTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGAT2616
Cys71SerGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAG
aTGT-AGTGAAAGAACTGTGAATTAGGTAAGTAACTATTTTTTG
|
CAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAAT2617
CCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGC
AACTGCCGCCATTTAAACATGGATTGGACTCACA
|
CCTATGAATGTTGGTGT2618
|
ACACCAACATTCATAGG2619
|
Haemophilia BGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGAC2620
Trp72ArgATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAA
tTGG-AGGAGAACTGTGAATTAGGTAAGTAACTATTTTTTGAAT
|
ATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCA2621
AATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCT
TGCAACTGCCGCCATTTAAACATGGATTGGACTC
|
ATGAATGTTGGTGTCCC2622
|
GGGACACCAACATTCAT2623
|
Haemophilia BGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACAT2624
Trp72TermTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAG
TGGt-TGAAACTGTGAATTAGGTAAGTAACTATTTTTTGAATAC
|
GTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTT2625
CAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATC
CTTGCAACTGCCGCCATTTAAACATGGATTGGAC
|
GAATGTTGGTGTCCCTT2626
|
AAGGGACACCAACATTC2627
|
Haemophilia BCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAA2628
Cys73TyrTTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAAC
TGT-TATTGTGAATTAGGTAAGTAACTATTTTTTGAATACTC
|
GAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCC2629
TTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCA
TCCTTGCAACTGCCGCCATTTAAACATGGATTGG
|
ATGTTGGTGTCCCTTTG2630
|
CAAAGGGACACCAACAT2631
|
Haemophilia BTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTA2632
Cys73ArgATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAA
gTGT-CGTCTGTGAATTAGGTAAGTAACTATTTTTTGAATACT
|
AGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCT2633
TCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCAT
CCTTGCAACTGCCGCCATTTAAACATGGATTGGA
|
AATGTTGGTGTCCCTTT2634
|
AAAGGGACACCAACATT2635
|
Haemophilia BCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAA2636
Cys73PheTTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAAC
TGT-TTTTGTGAATTAGGTAAGTAACTATTTTTTGAATACTC
|
GAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCC2637
TTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCA
TCCTTGCAACTGCCGCCATTTAAACATGGATTGG
|
ATGTTGGTGTCCCTTTG2638
|
CAAAGGGACACCAACAT2639
|
Haemophilia BCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAT2640
Cys73TermTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACT
TGTc-TGAGTGAATTAGGTAAGTAACTATTTTTTGAATACTCA
|
TGAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTC2641
CTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTC
ATCCTTGCAACTGCCGCCATTTAAACATGGATTG
|
TGTTGGTGTCCCTTTGG2642
|
CCAAAGGGACACCAACA2643
|
Haemophilia BGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGA2644
Gly76ValATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTA
GGA-GTAGGTAAGTAACTATTTTTTGAATACTCATGGTTCAA
|
TTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTCACA2645
GTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAA
TTAATGTCATCCTTGCAACTGCCGCCATTTAAAC
|
TCCCTTTGGATTTGAAG2646
|
CTTCAAATCCAAAGGGA2647
|
Haemophilia BTGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATG2648
Gly76ArgAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATT
tGGA-AGAAGGTAAGTAACTATTTTTTGAATACTCATGGTTCA
|
TGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTCACAG2649
TTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAAT
TAATGTCATCCTTGCAACTGCCGCCATTTAAACA
|
GTCCCTTTGGATTTGAA2650
|
TTCAAATCCAAAGGGAC2651
|
Haemophilia BTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG2652
Phe77CysTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGT
TTT-TGTAAGTAACTATTTTTTGAATACTCATGGTTCAAAGT
|
ACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC2653
ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG
GAATTAATGTCATCCTTGCAACTGCCGCCATTTA
|
CTTTGGATTTGAAGGAA2654
|
TTCCTTCAAATCCAAAG2655
|
Haemophilia BTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG2656
Phe77SerTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGT
TTT-TCTAAGTAACTATTTTTTGAATACTCATGGTTCAAAGT
|
ACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC2657
ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG
GAATTAATGTCATCCTTGCAACTGCCGCCATTTA
|
CTTTGGATTTGAAGGAA2658
|
TTCCTTCAAATCCAAAG2659
|
Haemophilia BTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG2660
Phe77TyrTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGT
TTT-TATAAGTAACTATTTTTTGAATACTCATGGTTCAAAGT
|
ACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC2661
ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG
GAATTAATGTCATCCTTGCAACTGCCGCCATTTA
|
CTTTGGATTTGAAGGAA2662
|
TTCCTTCAAATCCAAAG2663
|
Haemophiiia BAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTT2664
Glu78LysGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAA
tGAA-AAAGTAACTATTTTTTGAATACTCATGGTTCAAAGTTT
|
AAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAAT2665
TCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCAT
AGGAATTAATGTCATCCTTGCAACTGCCGCCATT
|
TTGGATTTGAAGGAAAG2666
|
CTTTCCTTCAAATCCAA2667
|
Haemophilia BGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGT2668
Gly79ValGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTA
GGA-GTAACTATTTTTTGAATACTCATGGTTCAAAGTTTCCCT
|
AGGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTAC2669
CTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACA
TTCATAGGAATTAATGTCATCCTTGCAACTGCCGC
|
ATTTGAAGGAAAGAACT2670
|
AGTTCTTTCCTTCAAAT2671
|
Haemophilia BGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGG2672
Gly79ArgTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGT
aGGA-AGAAACTATTTTTTGAATACTCATGGTTCAAAGTTTCCC
|
GGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACC2673
TAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACAT
TCATAGGAATTAATGTCATCCTTGCAACTGCCGCC
|
GATTTGAAGGAAAGAAC2674
|
GTTCTTTCCTTCAAATC2675
|
Haemophilia BGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGT2676
Gly79GluGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTA
GGA-GAAACTATTTTTTGAATACTCATGGTTCAAAGTTTCCCT
|
AGGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTAC2677
CTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACA
TTCATAGGAATTAATGTCATCCTTGCAACTGCCGC
|
ATTTGAAGGAAAGAACT2678
|
AGTTCTTTCCTTCAAAT2679
|
Haemophilia BTTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT2680
Cys88SerCTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGC
TGT-TCTAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGT
|
ACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC2681
TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA
GACAGTAACAGCATCATTTAACATGCATTTCTAA
|
TGTAACATGTAACATTA2682
|
TAATGTTACATGTTACA2683
|
Haemophilia BTTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT2684
Cys88PheCTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGC
TGT-TTTAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGT
|
ACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC2685
TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA
GACAGTAACAGCATCATTTAACATGCATTTCTAA
|
TGTAACATGTAACATTA2686
|
TAATGTTACATGTTACA2687
|
Haemophilia BTTTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCT2688
Cys88ArgTCTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAG
aTGT-CGTCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGG
|
CCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATCT2689
GCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA
GACAGTAACAGCATCATTTAACATGCATTTCTAAA
|
ATGTAACATGTAACATT2690
|
AATGTTACATGTTACAT2691
|
Haemophilia BTTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT2692
Cys88TyrCTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGC
TGT-TATAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGT
|
ACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC2693
TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA
GACAGTAACAGCATCATTTAACATGCATTTCTAA
|
TGTAACATGTAACATTA2694
|
TAATGTTACATGTTACA2695
|
Haemophilia BATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTA2696
lle90ThrGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTT
ATT-ACTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTC
|
GAGCAAACCACCTTGTTATCAGCACTATTTTTACAAAACTGCT2697
CGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAG
CAAAATAGACAGTAACAGCATCATTTAACATGCAT
|
ATGTAACATTAAGAATG2698
|
CATTCTTAATGTTACAT2699
|
Haemophilia BTGTTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGT2700
Asn92HisAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAA
gAAT-CATAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTA
|
TACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACAAAA2701
CTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAA
GAAGCAAAATAGACAGTAACAGCATCATTTAACA
|
ACATTAAGAATGGCAGA2702
|
TCTGCCATTCTTAATGT2703
|
Haemophilia BTTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAA2704
Asn92LysCATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAA
AATg-AAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACT
|
AGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACAA2705
AACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTA
AAAGAAGCAAAATAGACAGTAACAGCATCATTTAA
|
ATTAAGAATGGCAGATG2706
|
CATCTGCCATTCTTAAT2707
|
Haemophilia BAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACA2708
Gly93AspTGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATA
GGC-GACGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGA
|
TCAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTAC2709
AAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCT
AAAAGAAGCAAAATAGACAGTAACAGCATCATTT
|
TAAGAATGGCAGATGCG2710
|
CGCATCTGCCATTCTTA2711
|
Haemophilia BTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAAC2712
Gly93SerATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAAT
tGGC-AGCAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTG
|
CAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACA2713
AAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTA
AAAGAAGCAAAATAGACAGTAACAGCATCATTTA
|
TTAAGAATGGCAGATGC2714
|
GCATCTGCCATTCTTAA2715
|
Haemophilia BGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTA2716
Arg94SerACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGC
AGAt-AGTTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGA
|
TCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTT2717
TTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTAC
ATCTAAAAGAAGCAAAATAGACAGTAACAGCATC
|
AATGGCAGATGCGAGCA2718
|
TGCTCGCATCTGCCATT2719
|
Haemophilia BTGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAAC2720
Cys95TyrATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTG
TGC-TACATAACAAGGTGGTTTGCTCCTGTACTGAGGGATA
|
TATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTAT2721
TTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTT
ACATCTAAAAGAAGCAAAATAGACAGTAACAGCA
|
TGGCAGATGCGAGCAGT2722
|
ACTGCTCGCATCTGCCA2723
|
Haemophilia BGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACA2724
Cys95TrpTTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGA
TGCg-TGGTAACAAGGTGGTTTGCTCCTGTACTGAGGGATAT
|
ATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTA2725
TTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGT
TACATCTAAAAGAAGCAAAATAGACAGTAACAGC
|
GGCAGATGCGAGCAGTT2726
|
AACTGCTCGCATCTGCC2727
|
Haemophilia BGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACA2728
Cys95TermTTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGA
TGCg-TGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATAT
|
ATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTA2729
TTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGT
TACATCTAAAAGAAGCAAAATAGACAGTAACAGC
|
GGCAGATGCGAGCAGTT2730
|
AACTGCTCGCATCTGCC2731
|
Haemophilia BTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAG2732
Gln97ProAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACA
CAG-CCGAGGTGGTTTGCTCCTGTACTGAGGGATATCGACT
|
AGTCGATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCA2733
GCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTT
ACATGTTACATCTAAAAGAAGCAAAATAGACAGTA
|
ATGCGAGCAGTTTTGTA2734
|
TACAAAACTGCTCGCAT2735
|
Haemophilia BTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAA2736
Gln97GluGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAAC
gCAG-GAGAAGGTGGTTTGCTCCTGTACTGAGGGATATCGAC
|
GTCGATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAG2737
CACTATTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTA
CATGTTACATCTAAAAGAAGCAAAATAGACAGTAA
|
GATGCGAGCAGTTTTGT2738
|
ACAAAACTGCTCGCATC2739
|
Haemophilia BTCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAGAATGG2740
Cys99ArgCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTG
tTGT-CGTGTTTGCTCCTGTACTGAGGGATATCGACTTGCAG
|
CTGCAAGTCGATATCCCTCAGTACAGGAGCAAACCACCTTGT2741
TATCAGCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTT
AATGTTACATGTTACATCTAAAAGAAGCAAAATAGA
|
AGCAGTTTTGTAAAAAT2742
|
ATTTTTACAAAACTGCT2743
|
Haemophilia BCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAGAATGGC2744
Cys99TyrAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTG
TGT-TATGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGA
|
TCTGCAAGTCGATATCCCTCAGTACAGGAGCAAACCACCTTG2745
TTATCAGCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTT
AATGTTACATGTTACATCTAAAAGAAGCAAAATAG
|
GCAGTTTTGTAAAAATA2746
|
TATTTTTACAAAACTGC2747
|
Warfarin sensitivityTTTTTTGCTAAAACTAAAGAATTATTCTTTTACATTTCAGTTTTT2748
Ala(-10)ThrCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGA
cGCC-ACCGGTATAATTCAGGTAAATTGGAAGAGTTTGTTC
|
GAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCG2749
ATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAA
TGTAAAAGAATAATTCTTTAGTTTTAGCAAAAAA
|
ATGAAAACGCCAACAAA2750
|
TTTGTTGGCGTTTTCAT2751
|
Warfarin sensitivityTTTTTGCTAAAACTAAAGAATTATTCTTTTACATTTCAGTTTTTC2752
Ala(-10)ValTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAG
GCC-GTCGTATAATTCAGGTAAATTGGAAGAGTTTGTTCA
|
TGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCC2753
GATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGA
AATGTAAAAGAATAATTCTTTAGTTTTAGCAAAAA
|
TGAAAACGCCAACAAAA2754
|
TTTTGTTGGCGTTTTCA2755
|
Haemophilia BTGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCCTCA2756
Gly(-26)ValTCACCATCTGCCTTTTAGGATATCTACTCAGTGCTGAATGTAC
GGA-GTAAGGTTTGTTTCCTTTTTTAAAATACATTGAGTATGC
|
GCATACTCAATGTATTTTAAAAAAGGAAACAAACCTGTACATTC2757
AGCACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGCC
TGGTGATTCTGCCATGATCATGTTCACGCGCTGCA
|
CCTTTTAGGATATCTAC2758
|
GTAGATATCCTAAAAGG2759
|
Haemophilia BTTATGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCC2760
Leu(-27)TermTCATCACCATCTGCCTTTTAGGATATCTACTCAGTGCTGAATG
TTA-TAATACAGGTTTGTTTCCTTTTTTAAAATACATTGAGTA
|
TACTCAATGTATTTTAAAAAAGGAAACAAACCTGTACATTCAGC2761
ACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGCCTGG
TGATTCTGCCATGATCATGTTCACGCGCTGCATAA
|
CTGCCTTTTAGGATATC2762
|
GATATCCTAAAAGGCAG2763
|
Haemophilia BTAGCAAAGGTTATGCAGCGCGTGAACATGATCATGGCAGAAT2764
lle(-30)AsnCACCAGGCCTCATCACCATCTGCCTTTTAGGATATCTACTCAG
ATC-AACTGCTGAATGTACAGGTTTGTTTCCTTTTTTAAAATA
|
TATTTTAAAAAAGGAAACAAACCTGTACATTCAGCACTGAGTA2765
GATATCCTAAAAGGCAGATGGTGATGAGGCCTGGTGATTCTG
CCATGATCATGTTCACGCGCTGCATAACCTTTGCTA
|
CATCACCATCTGCCTTT2766
|
AAAGGCAGATGGTGATG2767
|
Haemophilia BACTAATCGACCTTACCACTTTCACAATCTGCTAGCAAAGGTTTA2768
lle(-40)PheTGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCCTCA
gATC-TTCTCACCATCTGCCTTTTAGGATATCTACTCAGTGCTG
|
CAGCACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGC2769
CTGGTGATTCTGCCATGATCATGTTCACGCGCTGCATAACCTT
TGCTAGCAGATTGTGAAAGTGGTAAGGTCGATTAGT
|
TGAACATGATCATGGCA2770
|
TGCCATGATCATGTTCA2771
|
Haemophilia BACTTTGGTACAACTAATCGACCTTACCACTTTCACAATCTGCT2772
Arg(-44)HisAGCAAAGGTTATGCAGCGCGTGAACATGATCATGGCAGAATC
CGC-CACACCAGGCCTCATCACCATCTGCCTTTTAGGATATCT
|
AGATATCCTAAAAGGCAGATGGTGATGAGGCCTGGTGATTCT2773
GCCATGATCATGTTCACGCGCTGCATAACCTTTGCTAGCAGA
TTGTGAAAGTGGTAAGGTCGATTAGTTGTACCAAAGT
|
TATGCAGCGCGTGAACA2774
|
TGTTCACGCGCTGCATA2775
|
Alpha Thalassemia—Hemoglobin Alpha Locus 1
[0136] The thalassemia syndromes are a heterogeneous group of inherited anemias characterized by defects in the synthesis of one or more globin chain subunits. For example, beta-thalassemia discussed in Example 6, is caused by a decrease in beta-chain production relative to alpha-chain production; the converse is the case for alpha-thalassemia. The attached table discloses the correcting oligonucleotide base sequences for the hemoglobin alpha locus 1 oligonucleotides of the invention.
23TABLE 22
|
|
HBA1 Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Thalassaemia alphaCCCTGGCGCGCTCGCGGCCCGGCACTCTTCIGGTCCCCACA2776
Met(−1)ValGACTCAGAGAGAACCCACCATGGTGCTGICTCCTGCCGACA
cATG-GTGAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGC
|
GCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTG2777
TCGGCAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGT
GGGGACCAGAAGAGTGCCGGGCCGCGAGCGCGCCAGGG
|
AACCCACCATGGTGCTG2778
|
CAGCACCATGGTGGGTT2779
|
Haemoglobin variantCACAGACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCC2780
Ala12AspGACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGC
GCC-GACGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTG
|
CACCTCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGC2781
GCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGG
CAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGTG
|
CGTCAAGGCCGCCTGGG2782
|
CCCAGGCGGCCTTGACG2783
|
Haemoglobin variantAGAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCA2784
Gly15AspACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGG
GGT-GATCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCT
|
AGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCC2785
AGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGG
TCTTGTCGGCAGGAGACAGCACCATGGTGGGTTCTCTCT
|
CGCCTGGGGTAAGGTCG2786
|
CGACCTTACCCCAGGCG2787
|
Haemoglobin variantCTGCCGACAAGACCMCGTCAAGGCCGCCTGGGGTAAGGTC2788
Tyr24CysGGCGCGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGA
TAT-TGTGGTGAGGCTCCCTCCCCTGCTCCGACCCGGGCTCCTCGCC
|
GGCGAGGAGCCCGGGTCGGAGCAGGGGAGGGAGCCTCACC2789
TCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGCGCCG
ACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGGCAG
|
TGGCGAGTATGGTGCGG2790
|
CCGCACCATACTCGCCA2791
|
Haemoglobin variantGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCAC2792
Glu27AspGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCT
GAGg-GATCCCTCCCCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGAC
C
|
GGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGGGGAG2793
GGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCCAG
CGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTC
|
GGTGCGGAGGCCCTGGA2794
|
TCCAGGGCCTCCGCACC27955
|
Haemoglobin variantGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGG2796
Asn68LysTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGA
AACg-AAGCATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG
|
CGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG2797
TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCAC
CTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTC
|
CTGACCAACGCCGTGGC2798
|
GCCACGGCGTTGGTCAG2799
|
Haemoglobin variantAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGACC2800
Asp74GlyAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCTGTC
GAC-GGCCGCCCTGAGCGACCTGCACGCGCACAAGCHCGGGTGGA
|
TCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGA2801
CAGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGG
TCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCT
|
GCACGTGGACGACATGC2802
|
GCATGTCGTCCACGTGC2803
|
Haemoglobin variantCAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGAC2804
Asp74HisCAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCTGT
gGAC-CACCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGG
|
CCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGAC2805
AGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGT
CAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTG
|
CGCACGTGGACGACATG2806
|
CATGTCGTCCACGTGCG2807
|
Haemoglobin variantCACGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGG2808
Asn78HisCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGC
cAAC-CACGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACT
|
AGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCG2809
CTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGC
CACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCGTG
|
ACATGCCCAACGCGCTG2810
|
CAGCGCGTTGGGCATGT2811
|
Haemoglobin variantACCAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCT2812
His87TyrGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGG
gCAC-TACACCCGGTCAACTTCAAGGTGAGCGGCGGGCCGGGAGCGA
|
TCGCTCCCGGCCCGCCGCTCACCTTGAAGTTGACCGGGTCC2813
ACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAG
CGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGHGGT
|
GCGACCTGCACGCGCAC2814
|
GTGCGCGTGCAGGTCGC2815
|
Haemogiobin variantGGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGA2816
Lys90AsnGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAAC
AAGc-AACTTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAG
|
CTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGT2817
TGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTC
AGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCC
|
GCGCACAAGCTTCGGGT2818
|
ACCCGAAGCTTGTGCGC2819
|
Haemoglobin variantTGGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTG2820
Lys90ThrAGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAA
AAG-ACGCTTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGA
|
TCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGTT2821
GACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCA
GGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCCA
|
CGCGCACAAGCTTCGGG2822
|
CCCGAAGCTTGTGCGCG2823
|
Haemoglobin variantACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGAC2824
Arg92GlnCTGCACGCGCACAAGAAGCTTCGGGTGGACCCGGTCAACTTCAA
CGG-CAGGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCG
|
CGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTT2825
GAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGT
CGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGT
|
CAAGCTTCGGGTGGACC2826
|
GGTCCACCCGAAGCTTG2827
|
Haemoglobin variantACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCAC2828
Asp94GlyGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAG
GAC-GGCCGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGG
|
CCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCT2829
CACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGT
GCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGT
|
TCGGGTGGACCCGGTCA2830
|
TGACCGGGTCCACCCGA2831
|
Haemoglobin variantACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG2832
Pro95ArgCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAGCGG
CCG-CGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGGCGC
|
GCGCCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCC 2833
GCTCACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCG
CGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGT
|
GGTGGACCCGGTCAACT2834
|
AGTTGACCGGGTCCACC2835
|
Haemoglobin variantCGGCGGCTGCGGGCCTGGGCCCTCGGCCCCACTGACCCTC2836
Ser102ArgTCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTG
AGCc-AGAGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCAC
|
GTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCC2837
AGGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAA
GAGGGTCAGTGGGGCCGAGGGCCCAGGCCCGCAGCCGCCG
|
CTCCTAAGCCACTGCCT2838
|
AGGCAGTGGCTTAGGAG2839
|
Haemoglobin variantTTCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTG2840
Glu116LysGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGC
cGAG-AAGCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGC
|
GCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCG2841
TGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCA
GGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAA
|
TCCCCGCCGAGTTCACC2842
|
GGTGAACTCGGCGGGGA2843
|
Haemoglobin variantTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTC2844
Ala120GluCCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAA
GCG-GAGGTTCCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAATA
|
TATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTG2845
TCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGA
GGTGGGCGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGA
|
CACCCCTGCGGTGCACG2846
|
CGTGCACCGCAGGGGTG2847
|
Thalassaemia alphaTGGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCAC2848
Leu129ProGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCTG
CTG-CCGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTGGCCAT
|
ATGGCCACCGAGGCTCCAGCHAACGGTATTTGGAGGTCAGC2849
ACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTG
CACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCA
|
CAAGTTCCTGGCTTCTG2850
|
CAGAAGCCAGGAACTTG2851
|
Haemoglobin variantTGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCG2852
Arg141LeuTGCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTGGCCA
CGT-CTTTGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCT
|
AGGAGGGGCTGGGGGGAGGCCCAAGGGGCMGMGCATGG2853
CCACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCACG
GTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCA
|
CMATACCGTTAAGCTG2854
|
CAGCTTAACGGTATTTG2855
|
Alpha-Thalassemia—Hemoglobin Alpha Locus 2
[0137] The attached table discloses the correcting oligonucleotide base sequences for the hemoglobin alpha locus 2 oligonucleotides of the invention.
24TABLE 23
|
|
HBA2 Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO
|
Thalassaemia alphaCCTGGCGCGCTCGCGGGCCGGCACTCTTCTGGTCCCCACAG2856
Met(-1)ThrACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAG
ATG-ACGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCA
|
TGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTT2857
GTCGGCAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCT
GTGGGGACCAGAAGAGTGCCGGCCCGCGAGCGCGCCAGG
|
ACCCACCATGGTGCTGT2858
|
ACAGCACCATGGTGGGT2859
|
Haemoglobin variantCACAGACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCC2860
Ala12AspGACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGC
GCC-GACGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTG
|
CACCTCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGC 2861
GCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGG
CAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGTG
|
CGTCAAGGCCGCCTGGG2862
|
CCCAGGCGGCCTTGACG2863
|
Haemoglobin variantAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCAAC2864
Lys16GluGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGGCG
tAAG-GAGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCTCC
|
GGAGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCG 2865
CCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTT
GGTCTTGTCGGCAGGAGACAGCACCATGGTGGGTTCTCT
|
CCTGGGGTAAGGTCGGC2866
|
GCCGACCTTACCCCAGG2867
|
Haemoglobin variantGGTGCTGTCTCCTGCCGACAAGACCAACGTCAAGGCCGCCT2868
His20GlnGGGGTAAGGTCGGCGCGCACGCTGGCGAGTATGGTGCGGA
CACg-CAAGGCCCTGGAGAGGTGAGGCTCCCTCCCCTGCTCCGACCCG
|
CGGGTCGGAGCAGGGGAGGGAGCCTCACCTCTCCAGGGCC2869
TCCGCACCATACTCGCCAGCGTGCGCGCCGACCTTACCCCA
GGCGGCCTTGACGTTGGTCTTGTCGGCAGGAGACAGCACC
|
GGCGCGCACGCTGGCGA2870
|
TCGCCAGCGTGCGCGCC2871
|
Haemoglobin variantGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCAC2872
Glu27AspGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCT
GAGg-GACCCCTCCCCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGAC
C
|
GGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGGGGAG2873
GGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCCAG
CGTGCGCGCCGACCTTACCCCAGGCGGCCHGACGHGGTC
|
GGTGCGGAGGCCCTGGA2874
|
TCCAGGGCCTCCGCACC2875
|
Thalassaemia alphaACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGG2876
Leu29ProCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCTCC
CTG-CCGCCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGACCCACAG
|
CTGTGGGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGG 2877
GGAGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCG
CCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGT
|
GGAGGCCCTGGAGAGGT2878
|
ACCTCTCCAGGGCCTCC2879
|
Haemoglobin variantGCTTCTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACCAAG2880
Asp47HisACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCA
cGAC-CACGGHAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGA
|
TCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGG2881
GCAGAGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAGGTCTT
GGTGGTGGGGAAGGACAGGAACATCCTGCGGGGAGAAGC
|
CGCACTTCGACCTGAGC2882
|
GCTCAGGTCGAAGTGCG2883
|
Haemoglobin variantCTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACCAAGACCT2884
Leu48ArgACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCAGGTTA
CTG-CGGAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGACCAA
|
TTGGTCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAAC2885
CTGGGCAGAGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAG
GTCTTGGTGGTGGGGAAGGACAGGAACATCCTGCGGGGAG
|
CTTCGACCTGAGCCACG2886
|
CGTGGCTCAGGTCGAAG2887
|
Haemoglobin variantCTGTCCTTCCCCACCACCAAGACCTACTTCCCGCACTTCGAC2888
Gln54GluCTGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAA
cCAG-GAGGGTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGG
|
CCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCACCHC 2889
TTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTCAGGTC
GAAGTGCGGGAAGTAGGTCTTGGTGGTGGGGAAGGACAG
|
GCTCTGCCCAGGTTAAG2890
|
CTTAACCTGGGCAGAGC2891
|
Haemoglobin variantCCAAGACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTG 2892
Gly59AspCCCAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCT
GGC-GACGACCAACGCCGTGGCGCACGTGGACGACATGCCCAACGC
|
GCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAG 2893
CGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGGGCAG
AGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAGGTCTTGG
|
GGGCCACGGCAAGAAGG2894
|
CCTTCTTGCCGTGGCCC2895
|
Haemoglobin variantGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGG2896
Asn68LysTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGA
AACg-AAGT CATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG
|
CGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG 2897
TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCAC
CTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTC
|
CTGACCAACGCCGTGGC2898
|
GCCACGGCGTTGGTCAG2899
|
Haemoglobin variantGAGCCACGGCTCTGCCCAGGTAAAGGGCCACGGCAAGAAGG2900
Asn68LysTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGA
AACg-AAACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG
|
CGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG2901
TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCAC
CTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTC
|
CTGACCAACGCCGTGGC2902
|
GCCACGGCGTTGGTCAG2903
|
Haemoglobin variantCGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGGCG2904
Asn78LysCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGA
AACg-AAACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACTTC
|
GAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGT2905
CGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGC
GCCACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCG
|
ATGCCCAACGCGCTGTC2906
|
GACAGCGCGTTGGGCAT2907
|
Haemoglobin variantCGCTGACCAACGCCGTGGCGCACGTGGACGACATGCCCAAC2908
Asp85ValGCGCTGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCG
GAC-GTCGGTGGACCCGGTCAACTTCAAGGTGAGCGGCGGGCCGGG
|
CCCGGCCCGCCGCTCACCTTGAAGTTGACCGGGTCCACCCG2909
AAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGT
TGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAGCG
|
CCTGAGCGACCTGCACG2910
|
CGTGCAGGTCGCTCAGG2911
|
Haemoglobin variantGGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGA2912
Lys90AsnGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAAC
AAGc-AATTTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAG
|
CTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGT2913
TGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTC
AGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCC
|
GCGCACAAGCTTCGGGT2914
|
ACCCGAAGCTTGTGCGC2915
|
Haemoglobin variantGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCA2916
Asp94HisCGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGA
gGAC-CACGCGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATG
|
CATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCTC2917
ACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTG
CAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTC.
|
TTCGGGTGGACCCGGTC2918
|
GACCGGGTCCACCCGAA2919
|
Haemoglobin variantACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG2920
Pro95LeuCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAGCGG
CCG-CTGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGGCGC
|
GCGCCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCC2921
GCTCACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCG
CGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGT
|
GGTGGACCCGGTCAACT2922
|
AGTTGACCGGGTCCACC2923
|
Haemoglobin variantTAGCGCAGGCGGCGGCTGCGGGCCTGGGCCGCACTGACCC2924
Ser102ArgTCTTCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCC
aAGC-CGCTGGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGC
|
GCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCAG2925
GGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAAGA
GGGTCAGTGCGGCCCAGGCCCGCAGCCGCCGCCTGCGCTA
|
AGCTCCTAAGCCACTGC2926
|
GCAGTGGCTTAGGAGCT2927
|
Haemoglobin H diseaseGGCGGCGGCTGCGGGCCTGGGCCGCACTGACCCTCTTCTCT2928
Cys104TyrGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGC
TGC-TACCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTC
|
GAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGG2929
CGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCA
GAGAAGAGGGTCAGTGCGGCCCAGGCCCGCAGCCGCCGCC
|
AAGCCACTGCCTGCTGG2930
|
CCAGCAGGCAGTGGCTT2931
|
Haemoglobin variantCCGCACTGACCCTCTTCTCTGCACAGCTCCTAAGCCACTGCC2932
Ala111ValTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTCACC
GCC-GTCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGCTTC
|
GAAGCCAGGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGT2933
GAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGG
CAGTGGCTTAGGAGCTGTGCAGAGAAGAGGGTCAGTGCGG
|
CCTGGCCGCCCACCTCC2934
|
GGAGGTGGGCGGCCAGG2935
|
Haemoglobin variantTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTC2936
Ala210GluCCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAA
GCG-GAGGTTCCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAATA
|
TATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTG2937
TCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGA
GGTGGGCGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGA
|
CACCCCTGCGGTGCACG2938
|
CGTGCACCGCAGGGGTG2939
|
Haemoglobin variantCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCG2940
His122GlnAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTG
CACq-CAGGCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAA
|
TTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAG2941
GAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGG
CGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTGG
|
GCGGTGCACGCCTCCCT2942
|
AGGGAGGCGTGCACCGC2943
|
Haemoglobin variantCACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGA2944
Ala123SerGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGG
cGCC-TCCCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAG
|
CTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCA2945
GGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCG
GCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTG
|
CGGTGCACGCCTCCCTG2946
|
CAGGGAGGCGTGCACCG2947
|
Thalassaemia alphaTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTCACC2948
Leu125ProCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGT
CTG-CCGGAGCACCGTGCTGACCTCCAAATACCGTTAAGCTGGAGC
|
GQTCCAGCTTAACGGTATTTGGAGGTCAGCACGGTGCTCACA2949
GAAGCCAGGAACHGTCCAGGGAGGCGTGCACCGCAGGGG
TGAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCA
|
CGCCTCCCTGGACAAGT2950
|
ACTTGTCCAGGGAGGCG2951
|
Haemoglobin variantGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTC2952
Ser131ProCCTGGACAAGTfCCTGGCTTCTGTGAGCACCGTGCTGACCTC
tTCT-CCTCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTTCCTC
|
GAGGAACGGCTACCGAGGCTCCAGCTTAACGGTATTTGGAG2953
GTCAGCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGA
GGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGC
|
TCCTGGCTTCTGTGAGC2954
|
GCTCACAGAAGCCAGGA2955
|
Haemoglobin variantGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCT2956
Leu136MetGGCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAGC
gCTG-ATGTGGAGCCTCGGTAGCCGTTCCTCCTGCCCGCTGGGCCT
|
AGGCCCAGCGGGCAGGAGGAACGGCTACCGAGGCTCCAGC2957
TTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAG
GAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTC
|
GCACCGTGCTGACCTCC2958
|
GGAGGTCAGCACGGTGC2959
|
Haemoglobin variantAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTG2960
Leu136ProGCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAGCT
CTG-CCGGGAGCCTCGGTAGCCGTTCCTCCTGCCCGCTGGGCCTC
|
GAGGCCCAGCGGGCAGGAGGAACGGCTACCGAGGCTCCAG2961
CTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCA
GGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACT
|
CACCGTGCTGACCTCCA2962
|
TGGAGGTCAGCACGGTG2963
|
Haemoglobin variantGTGCACGCCTCGCTGGACAAGTTCCTGGCTTCTGTGAGCACC2964
Arg141CysGTGCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCC
cCGT-TGTGTTCCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCC
|
GGAGGGCCCGTTGGGAGGCCCAGCGGGGAGGAGGAACGGC2965
TACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCACGGT
GCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCAC
|
CCAAATACCGTTAAGCT2966
|
AGCTTAACGGTATTTGG2967
|
Haemoglobin variantCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTG2968
Term142GlnCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTT
tTAA-CAACCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCC
|
GGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGGAAC2969
GGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCA
CGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTG
|
AATACCGTTAAGCTGGA2970
|
TCCAGCTTAACGGTATT2971
|
Haemoglobin variantCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTG2972
Term142LysCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTT
tTAA-AAACCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCC
|
GGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGGAAC2973
GGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCA
CGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTG
|
AATACCGTTAAGCTGGA2974
|
TCCAGCTTAACGGTATT2975
|
Haemoglobin variantCGCCTCCGTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCT2976
Term142TyrGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTTCC
TAAg-TATTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCCCC
|
GGGGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGG2977
AACGGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAG
CACGGTGCTCACAGAAGCCAGGAACHGTCCAGGGAGGCG
|
TACCGTTAAGCTGGAGC2978
|
GCTCCAGCTTAACGGTA2979
|
Human Mismatch Repair—MLH1
[0138] The human MLH1 gene is homologous to the bacterial mutL gene, which is involved in mismatch repair. Mutations in the MLH1 gene have been identified in many individuals with hereditary nonpolyposis colorectal cancer (HNPCC). Mutations in the MLH1 gene are also implicated in predisposition to a variety of cancers associated with, for example, Muir-Torre syndrome and Turcot syndrome. The attached table discloses the correcting oligonucleotide base sequences for the MLH1 oligonucleotides of the invention.
25TABLE 24
|
|
MLH1 Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Non-polyposisTTGGCTGAAGGCACTTCCGTTGAGCATCTAGACGTTTCCTTG2980
colorectal cancerGCTCTTCTGGCGCCAAAATGTCGTTCGTGGCAGGGGTTATTC
Met1ArgGGCGGCTGGACGAGACAGTGGTGAACCGCATCGCGGC
|
ATG-AGGGCCGCGATGCGGTTCACCACTGTCTCGTCCAGCCGCCGAAT2981
AACCCCTGCCACGAACGACATTTTGGCGCCAGAAGAGCCAA
GGAAACGTCTAGATGCTCAACGGAAGTGCCTTCAGCCAA
|
CGCCAAAATGTCGTTCG2982
|
CGAACGACATTTTGGCG2983
|
Non-polyposisTTGGCTGAAGGCACTTCCGTTGAGCATCTAGACGTTTCCTTG2984
colorectal cancerGCTCTTCTGGCGCCAAAATGTCGTTCGTGGCAGGGGTTATTC
Met1LysGGCGGCTGGACGAGACAGTGGTGAACCGCATCGCGGC
|
ATG-AAGGCCGCGATGCGGTTCACCACTGTCTCGTCCAGCCGCCGAAT2985
AACCCCTGCCACGAACGACATTTTGGCGCCAGAAGAGCCAA
GGAAACGTCTAGATGCTCAACGGAAGTGCCTTCAGCCAA
|
CGCCAAAATGTCGTTCG2986
|
CGAACGACATTTTGGCG2987
|
Non-polyposisTGGTGAACCGCATCGCGGCGGGGGAAGTTATCCAGCGGCCA2988
colorectal cancerGCTAATGCTATCAAAGAGATGATTGAGAACTGGTACGGAGGG
Met35ArgAGTCGAGCCGGGCTCACTTAAGGGCTACGACTTAACGG
|
ATG-AGGCCGTTAAGTCGTAGCCCTTAAGTGAGCCCGGCTCGACTCCCT2989
CCGTACCAGTTCTCAATCATCTCTTTGATAGCATTAGCTGGCC
GCTGGATAACTTCCCCCGCCGCGATGCGGTTCACCA
|
CAAAGAGATGATTGAGA2990
|
TCTCAATCATCTCTTTG2991
|
Non-polyposisTAGAGTAGTTGCAGACTGATAAATTATTTTCTGTTTGATTTGCC2992
colorectal cancerAGTTTAGATGCTAAAATCCACAAGTATTCAAGTGATTGTTAAAG
Ser44PheAGGGAGGCCTGAAGTTGATTCAGATCCAAGACAA
|
TCC-TTCTTGTCTTGGATCTGAATCAACTTGAGGCCTCCCTCTTTAACAA2993
TCACTTGAATACTTGTGGATTTTGCATCTTAAACTGGCAAATCA
AACAGAAAATAATTTATCAGTCTGCAACTACTCTA
|
TGCAAAATCCACAAGTA2994
|
TACTTGTGGATTTTGCA2995
|
Non-polyposisGCAAAATCCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGC2996
colorectal cancerCTGAAGTTGATTCAGATCCAAGACAATGGCACCGGGATCAGG
Gln62LysGTAAGTAAAACCTCAAAGTAGCAGGATGTTTGTGCGC
|
CAA-AAAGCGCACTAAACATCCTGCTACTTTGAGGTTTTACTTACCCTGAT2997
CCCGGTGCCATTGTCTTGGATCTGAATCAACTTCAGGCCTCC
CTCTTTAACAATCACTTGAATACTTGTGGATTTTGC
|
TTCAGATCCAAGACAAT2998
|
ATTGTCTTGGATCTGAA2999
|
Non-polyposisGCAAAATCCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGC3000
colorectal cancerCTGAAGTTGATTCAGATCCAAGACAATGGCACCGGGATCAGG
Gln62TermGTAAGTAAAACCTCAAAGTAGCAGGATGTTTGTGCGC
|
CAA-TAAGCGCACAAACATCCTGCTACTTTGAGGTTTTACTTACCCTGAT3001
CCCGGTGCCATTGTCTTGGATCTGAATCAACTTCAGGCCTCC
CTCTTTAACAATCACTTGAATACTTGTGGATTTTGC
|
TTCAGATCCAAGACAAT3002
|
ATTGTCTTGGATCTGAA3003
|
Non-polyposisCCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGT3004
colorectal cancerTGATTCAGATCCAAGACAATGGCACCGGGATCAGGGTAAGTA
Asn64SerAAACCTCAAAGTAGCAGGATGTTTGTGCGCTTCATGG
|
AAT-AGTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGTTTTACTTA3005
CCCTGATCCCGGTGCCATTCTCTTGGATCTGAATCAACTTCA
GGCCTCCCTCTTTAACAATCACTTGAATACTTGTGG
|
CCAAGACAATGGCACCG3006
|
CGGTGCCATTGTCTTGG3007
|
Non-polyposisATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTCAGA3008
colorectal cancerTCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAAACCTCAA
Gly67ArgAGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCA
|
GGG-AGGTGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT3009
TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATC
AACTTCAGGCCTCCGTCTTTAACAATCACTTGAAT
|
ATGGCACCGGGATCAGG3010
|
CCTGATCCCGGTGCCAT3011
|
Non-polyposisATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTCAGA3012
colorectal cancerTCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAACCTCAA
Gly67ArgAGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCA
|
GGG-CGGTGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT3013
TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATC
AACTTCAGGCCTCCCTCTTTAACAATCACTTGAAT
|
ATGGCACCGGGATCAGG3014
|
CCTGATCCCGGTGCCAT3015
|
Non-polyposisATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTTCAGA3016
colorectal cancerTCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAACCTCAA
Gly67TrpAGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCA
|
GGG-TGGTGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT3017
TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATC
AACTTCAGGCCTCCCTCTTTAACAATCACTTGAAT
|
ATGGCACCGGGATCAGG3018
|
CCTGATCCCGGTGCCAT3019
|
Non-polyposisGTAACATGATTATTTACTCATCTTTTGGTATCTAACAGAPAGA3020
colorectal cancerAGATCTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTG
Cys77ArgCAGTCCTTTGAGGATTTAGCCAGTATTTCTACCT
|
TGT-CGTAGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTTTACT3021
AGTAGTGAACCTTTCACATACAATATCCAGATCTTTCTTTGTT
AGATACCAAAAAGATGAGTAAATAATCATGTTAC
|
ATATTGTATGTGAAAGG3022
|
CCTTTCACATACAATAT3023
|
Non-polyposisTAACATGATTATTTACTCATCTTTTTGGTATCTAACAGAAGAA3024
colorectal cancerGATCTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTGC
Cys77TyrAGTCCTTTGAGGATTTAGCCAGTATTTCTACCTA
|
TGT-TATTAGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTTTAC3025
TAGTAGTGAACCTTTCACATACAATATCCAGATCTTCTTTCTGT
TAGATACCAAAAAGATGAGTAAATAATCATGTTA
|
TATTGTATGTGAAAGGT3026
|
ACCTTTCACATACAATA3027
|
Non-polyposisCTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTGCAGT3028
colorectal cancerCCTTTGAGGATTTAGCCAGTATTTCTACCTATGGCTTTCGAGG
Ser93GlyTGAGGTAAGCTAAAGATTCAAGAAATGTGTAAAAT
|
AGT-GGTATTTTACACATTTCTTGAATCTTTAGCTTACCTCACCTCGAAAG3029
CCATAGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTT
TACTAGTAGTGAACCTTTCACATACAATATCCAG
|
ATTTAGCCAGTATTTCT3030
|
AGAAATACTGGCTAAAT3031
|
Non-polyposisTTCACTACTAGTAAACTGCAGTCCTTTGAGGATTTAGCCAGTA3032
colorectal cancerTTTCTACCTATGGCTTTCGAGGTGAGGTAAGCTAAAGATTCAA
Arg100TermGAAATGTGTAAAATATCCTCCTGTGATGACATTGT
|
CGA-TGAACAATGTCATCACAGGAGGATATTTTACACATTTCTTGAATCTT 3033
TAGCTTACCTCACCTCGAAAGCCATAGGTAGAAATACTGGCTA
AATCCTCAAAGGACTGCAGTTTACTAGTAGTGAA
|
ATGGCTTTCGAGGTGAG3034
|
CTCACCTCGAAAGCCAT3035
|
Non-polyposisACCCAGCAGTGAGTTTTTCTTTCAGTCTATTTTCTTTTCTTCCT3036
colorectal cancerTAGGCTTTGGCCAGCATAAGCCATGTGGCTCATGTTACTATTA
Ile107ArgCAACGAAAACAGCTGATGGAAAGTGTGCATACAG
|
ATA-AGACTGTATGCACACTTTCCATCAGCTGTTTTCGTTGTAATAGTAA3037
CATGAGCCACATGGCTTATGCTGGCCAAAGCCTTAGGAAGAA
AAGAAAATAGACTGAAAGAAAAACTCACTGCTGGGT
|
GGCCAGCATAAGCCATG3038
|
CATGGCTTATGCTGGCC3039
|
Non-polyposisTTTCTTTTCTTCCTTAGGCTTTGGCCAGCATAAGCCATGTGGC3040
colorectal cancerTCATGTTACTATTACAACGAAAACAGCTGATGGAAAGTGTGCA
Thr117ArgTACAGGTATAGTGCTGACTTCTTTTACTCATATAT
|
ACG-AGGATATATGAGTAAAAGAAGTCAGCACTATACCTGTATGCACACT3041
TTCCATCAGCTGTTTTCGTTGTAATAGTAACATGAGCCACATG
GCTTATGCTGGCCAAAGCCTAAGGAAGAAAAGAAA
|
TATTACAACGATAAACAG3042
|
CTGTTTTCGTTGTAATA3043
|
Non-polyposisTTTCTTTTCTTCCTTAGGCTTTGGCCAGCATAAGCCATGTGGC3044
colorectal cancerTCATGTTACTATTACAACGAAAACAGCTGATGGAAAGTGTGCA
Thr117MetTACAGGTATAGTGCTGACTTCTTTTACTCATATAT
|
ACG-ATGATATATGAGTTAAAAGAAGTCAGCACTATACCTGTATGCACACT3045
TTCCATCAGCTGTTTTCGTTGTAATAGTAACATGAGCCACATG
GCTTATGCTGGCCAAAGCGTAAGGAAGAAAAGAAA
|
TATTACAACGAAAACAG3046
|
CTGTTTTCGTTGTAATA3047
|
Non-polyposisTCTATCTCTCTACTGGATATTAATTTGTTATATTTTCTCATTAGA3048
colorectal cancerGCAAGTTACTCAGATGGAAAACTGAAAGCCCCTCCTAAACCA
Gly133TermTGTGCTGGCAATCAAGGGACCCAGATCACGGTAA
|
GGA-TGATTACCGTGATCTGGGTCCCTTGATTGCCAGCACATGGTTTAG3049
GAGGGGCTTTCAGTTTTCCATCTGAGTAACTTGCTCTAATGAG
ATAAATATAACAAATTAATATCCAGTAGAGAGATAGA
|
ACTCAGATGGAAAACTG3050
|
CAGTTTTCCATCTGAGT3051
|
Non-polyposisTAGTGTGTGTTTTTGGCAACTCTTTTCTTACTCTTTTGTTTTTC3052
colorectal cancerTTTTCCAGGTATTCAGTACACAATGCAGGCATTAGTTTTCTCAG
Val185GlyTTAAAAAAGTAAGTTCTTGGTTTATGGGGGATGG
|
GTA-GGACCATCCCCCATAAACCAAGAAGTTACTTTTTTAACTGAGAAAC3053
TAATGCCTGCATTGTGTACTGAATACCTGGAAAAGAATAAACAA
AAGAGTAAGTAAAAGAGTTGCCAAAAACACACACTA
|
GTATTCAGTACACAATG3054
|
CATTGTGTACTGAATAC3055
|
Non-polyposisTTTCTTACTCTTTTGTTTTTCTTTTCCAGGTATTCAGTACACAAT3056
colorectal cancerGCAGGCATTAGTTTCTCAGTTAAAAAAGTAAGTTCTTGGTTTAT
Ser193ProGGGGGATGGTTTTGTTTTATGTAAAAGAAAAAA
|
TCA-CCATTTTTTCTTTTCATAAAACAAAACCATCCCCCATAAACCAAGAA3057
CTTACTTTTTTAACTGAGAAACTAATGCCTGCATTGTGTACTG
AATACCTGGAAAAGAAAAACAAAAGAGTAAGAAA
|
TTAGTTTCTCAGTTAAA3058
|
TTTAACTGAGAAACTAA3059
|
Non-polyposisTTTGTTTATCAGCTAGGAGAGACAGTAGCTGATGTTAGGACA3060
colorectal cancerCTACCCAATGCCTCAACCGTGGACAATATTCGCTCCATCTTTG
GAAATGCTGTTAGTCGGTATGTCGATAACCTATATA
|
TATATAGGTTATCGACATACCGACTAACAGCATTTCCAAAGAT3061
GGAGCGAATATTGTCCACGGTTGAGGCATTGGGTAGTGTCCT
AACATCAGCTACTGTCTCTCCTTGCTGATAAACAAA
|
CCTCAACCGTGGACAAT3062
|
ATTGTCCACGGTTGAGG3063
|
Non-polyposisCAAGGAGAGACAGTAGCTGATGTTAGGACACTACCCAATGCC3064
colorectal cancerTCAACCGTGGACAATATTCGCTCCATCTTTGGAAATGCTGTTA
Arg217CysGTCGGTATGTCGATAACCTATATAAAAAAAATCTTTT
|
CGC-TGCAAAAGATTTTTTTATATAGGTTATCGACATACCGACTAACAGCA3065
TTTCCAAAGATGGAGCGAATATTGTCCACGGTTGAGGCATTG
GGTAGTGTCCTAACATCAGCTACTGTCTCTCCTTG
|
ACAATATTCGCTCCATC3066
|
GATGGAGCGAATATTGT3067
|
Non-polyposisGAGACAGTAGCTGATGTTAGGACACTACCCAATGCCTCAACC3068
colorectal cancerGTGGACAATATTCGCTCCATCTTTGGAAATGCTGTTAGTCGGT
Ile219ValATGTCGATAACCTATATAAAAAAATCTTTTACATTT
|
ATC-GTCAAATGTAAAAGATTTTTTTATATAGGTTATCGACATACCGACTA3069
ACAGCATTTCCAAAGATGGAGCGAATATTGTCCACGGTTGAG
GCATTGGGTAGTGTCCTAACATCAGCTACTGTCTC
|
TTCGCTCCATCTTTGGA3070
|
TCCAAAGATGGAGCGAA3071
|
Non-polyposisCTAATAGAGAACTGATAGTAAATTGGATGTGAGGATAAAACCCT3072
colorectal cancerAGCCTTCAAAATGAATGGTTACATATCCAATGCAAACTACTCA
Gly244AspGTGAAGAAGTGCATCTTCTTACTCTTCATCAACCG
|
GGT-GATCGGTTGATGAAGAGTAAGAAGATGCACTTCTTCACTGAGTAG3073
TTTGCATTGGATATGTAACCATTCATTTTGAAGGCTAGGGTT
TATCCTCACATCCAATTTCTATCAGTTCTCTATTAG
|
AATGAATGGTTACATAT3074
|
ATATGTAACCATTCATT3075
|
Non-polyposisGATGTGAGGATAAAACCCTAGCCTTCAAPATGAATGGTTACAT3076
colorectal cancerATCCAATGCAAACTACTCAGTGAAGAAGTGCATCTCTTACTC
Ser252TermTTCATCAACCGTAAGTTAAAAAGAACCACATGGGA
|
TCA-TAATCCCATGTGGTTCTTTTTAACTTACGGTTGATGAAGAGTAAGA3077
AGATGCACTTCTTCACTGAGTAGTTTGCATTGGATATGTAACC
ATTCATTTTGAAGGCTAGGGTTTTATCCTCACATC
|
AAACTACTCAGTGAAGA3078
|
TCTTCACTGAGTAGTTT3079
|
Non-polyposisCACCCCTCAGGACAGTTTTGAACTGGTTGCTTTCTTTTTATTG3080
colorectal cancerTTTAGATCGTCTGGTAGAATCAACTTCCTTGAGAAAAGCCATA
Glu268GlyGAAACAGTGTATGCAGCCTATTTGCCCAAAAACAC
|
GAA-GGAGTGTTTTTGGGCAAATAGGCTGCATACACTGTTTCTATGGCTT3081
TTCTCAAGGAAGTTGATTCTACCAGACGATCTAAACAATAAAA
AGAAAGCAACCAGTTCAAAACTGTCCTGAGGGGTG
|
TCTGGTAGAATCAACTT3082
|
AAGTTGATTCTACCAGA3083
|
Non-polyposisCCCTCAGGACAGTTTTGAACTGGTTGCTTTCTTTTTATTGTTTA3084
colorectal cancerGATCGTCTGGTAGAATCAACTTCCTTGAGTAAAGCCATAGAAA
Ser269TermCAGTGTATGCAGCCTATTTGCCCAAAAACACACA
|
TCA-TGATGTGTGTTTTTGGGCAAATAGGCTGCATACACTGTTTCTATGG3085
CTTTTCTCAAGGAAGTTGATTCTACCAGACGATCTAAACAATA
AAAAGAAAGCAACCAGTTCAAAACTGTCCTGAGGG
|
GGTAGAATCAACTTCCT3086
|
AGGAAGTTGATTCTACC3087
|
Non-polyposisCTTTTTCTCCCCCTCCCACTATCTAAGGTAATTGTTCTCTCTTA3088
colorectal cancerTTTTCCTGACAGTTTAGAAATCAGTCCCCAGAATGTGGATGTT
Glu297TermAATGTGCACCCCACTAAAGCATGAAGTTCACTTCC
|
GAA-TAAGGAAGTGAACTTCATGCTTTGTGGGGTGCACATTAACATCCA3089
CATTCTGGGGACTGATTTCTAAACTGTCAGGAAAATAAGAGAG
AACAATTACCTTAGATAGTGGGAGGGGGAGAAAAAG
|
ACAGTTTAGAAATCAGT3090
|
ACTGATTTCTAAACTGT3091
|
Non-polyposisCTCCCACTATCTAAGGTAATTGTTCTCTCTTATTTTCCTGACAG3092
colorectal cancerTTTAGAAATCAGTCCCCAGAATGTGGATGTTAATGTGCACCCC
Gln301TermACAAAGCATGAAGTTCACTTCCTGCACGAGGAGA
|
CAG-TAGTCTCCTCGTGCAGGAAGTGAACTTCATGCTTTGTGGGGTGCA3093
CATTAACATCCACATTCTGGGGACTGATTTCTAAACTGTCAGG
AAAATAAGAGAGAACAATTACCTTAGATAGTGGGAG
|
TCAGTCCCCAGAATGTG3094
|
CACATTCTGGGGACTGA3095
|
Non-polyposisATGTGCACCCCACAAAGCATGAAGTTCACTTCGTGCACGAGG3096
colorectal cancerAGAGCATCCTGGAGCGGGTGCAGCAGCACATCGAGAGCAAG
Val326AlaCTCCTGGGCTCCAATTCCTCCAGGATGTACTTCACCCA
|
GTG-GCGTGGGTGAAGTACATCCTGGAGGAATTGGAGCCCAGGAGCTT3097
GCTCTCGATGTGCTGCTGCACCCGCTCCAGGATGCTCTCCT
CGTGCAGGAAGTGAACTTCATGCTTTGTGGGGTGCACAT
|
GGAGCGGGTGCAGCAGC3098
|
GCTGCTGCACCCGCTCC3099
|
Non-polyposisCCACAAAGCATGAAGTTCACTTCCTGCACGAGGAGAGCATCC3100
colorectal cancerTGGAGCGGGTGCAGCAGCACATCGAGAGCAAGCTCCTGGGC
His329ProTCCAATTCCTCCAGGATGTACTTCACCCAGGTCAGGGC
|
CAC-CCCGCCCTGACCTGGGTGAAGTACATCCTGGAGGAATTGGAGCC3101
CAGGAGCTTGCTCTCGATGTGCTGCTGCACCCGCTCCAGGA
TGCTCTCCTCGTGCAGGAAGTGAACTTCATGCTTTGTGG
|
GCAGCAGCACATCGAGA3102
|
TCTCGATGTGCTGCTGC3103
|
Non-polyposisCAAGTCTGACCTCGTCTTCTACTTCTGGAAGTAGTGATAAGGT3104
colorectal cancerCTATGCCCACCAGATGGTTCGTACAGATTCCCGGGAACAGAA
Val384AspGCTTGATGCATTTCTGCAGCCTCTGAGCAAACCCCT
|
GTT-GATAGGGGTTTGCTCAGAGGCTGCAGAAATGCATCAAGCTTCTGT3105
TCCCGGGAATCTGTACGAACCATCTGGTGGGCATAGACCTTA
TCACTACTTCCAGAAGTAGAAGACGAGGTCAGACTTG
|
CCAGATGGTTCGTACAG3106
|
CTGTACGAACCATCTGG3107
|
Non-polyposisAGTGGCAGGGCTAGGCAGCAAGATGAGGAGATGCTTGAACT3108
colorectal cancerCCCAGCCCCTGCTGAAGTGGCTGCCAAAAATCAGAGCTTGGA
Ala441ThrGGGGGATACAACAAAGGGGACTTCAGAAATGTCAGAGA
|
GCT-ACTTCTCTGACATTTCTGAAGTCCCCTTTGTTGTATCCCCCTCCAA 3109
GCTCTGATTTTTGGCAGCCACTTCAGCAGGGGCTGGGAGTTC
AAGCATCTCCTCATCTTGCTGCCTAGCCCTGCCACT
|
CTGAAGTGGCTGCCAAA3110
|
TTTGGCAGCCACTTCAG3111
|
Non-polyposisCTTCATTGCAGAAAGAGACATCGGGAAGATTCTGATGTGGAA3112
colorectal cancerATGGTGGAAGATGATTCCCGAAAGGAAATGACTGCAGCTTGT
Arg487TermACCCCCCGGAGAAGGATCATTAACCTCACTAGTGTTT
|
CGA-TGAAAACACTAGTGAGGTTAATGATCCTTCTCCGGGGGGTACAAG3113
CTGCAGTCATTTCCTTTCGGGAATCATCTTCCACCATTTCCAC
ATCAGAATCTTCCCGATGTCTCTTTCTGCAATGAAG
|
ATGATTCCCGTAAAGGAA3114
|
TTCCTTTCGGGAATCAT3115
|
Non-polyposisAGACATCGGGAAGATTCTGATGTGGAAATGGTGGAAGATGAT3116
colorectal cancerTCCCGAAAGGAAATGACTGCAGCTTGTACCCCCCGGAGAAG
Ala492ThrGATCATTAACCTCACTAGTGTTTTGAGTCTCCAGGAAG
|
GCA-ACACTTCCTGGAGACTCAAAACACTAGTGAGGTTAATGATCCTTCT3117
CCGGGGGGTACAAGCTGCAGTCATTTCCTTTCGGGAATCATC
TTCCACCATTTCCACATCAGAATCTTCCCGATGTCT
|
AAATGACTGCAGCTTGT3118
|
ACAAGCTGCAGTCATTT3119
|
Non-polyposisCCCGAAAGGAAATGACTGCAGCTTGTACCCCCCGGAGAAGG3120
colorectal cancerATCATTAACCTCACTAGTGTTTTGAGTCTCCAGGAAGAAATTA
Val506AlaATGAGCAGGGACATGAGGGTACGTAAACGCTGTGGCC
|
GTT-GCTGGCCACAGCGTTTACGTACCCTCATGTCCCTGCTCATTAATTT3121
CTTCCTGGAGACTCAAAACACTAGTGAGGTTAATGATCCTTCT
CCGGGGGGTACAAGCTGCAGTCATTTCCTTTCGGG
|
CACTAGTGTTTTGAGTC3122
|
GACTCAAAACACTAGTG3123
|
Non-polyposisGGGAGATGTTGCATAACCACTCCTTCGTGGGCTGTGTGTGAATC3124
colorectal cancerCTCAGTGGGCCTTGGCACAGCATCAAACCAAGTTATACCTTCT
Gln542LeuTTCAACACCACCAAGCTTAGGTAAATCAGCTGAGTGTG
|
CAG-CTGCACACTCAGCTGATTTACCTAAGCTTGGTGGTGTTGAGAAGG3125
TATAACTTGGTTTGATGCTGTGCCAAGGCCCACTGAGGATTC
ACACAGCCCACGTAGGAGTGGTTATGCTACATCTCCC
|
CTTGGCACAGCATCAAA3126
|
TTTGATGCTGTGCCAAG3127
|
Non-polyposisCCTTCGTGGGCTGTGTGAATCCTCAGTGGGCCTTGGCACAG3128
colorectal cancerCATCAAACCAAGTTATACCTTCTCAACACCACCAAGCTTAGGT
Leu549ProAAATCAGCTGAGTGTGTGAACAAGCAGAGCTACTACA
|
CTT-CCTTGTAGTAGCTCTGCTTGTTCACACACTCAGCTGATTTACCTAA3129
GCTTGGTGGTGTTGAGAAGGTATAACTTGGTTTGATGCTGTG
CCAAGGCCCACTGAGGATTCACACAGCCCACGAAGG
|
GTTATACCTTCTCAACA3130
|
TGTTGAGAAGGTATAAC3131
|
Non-polyposisTGGGCTGTGTGAATCCTCAGTGGGCCTTGGCACAGCATCAAA3132
colorectal cancerCCAAGTTATACCTTCTCAACACCACCAAGCTTAGGTAAATCAG
Asn551ThrCTGAGTGTGTGAACAAGCAGAGCTACTACAACAATG
|
AAC-ACCCATTGTTGTAGTAGCTCTGCTTGTTCACACACTCAGCTGATTT3133
ACCTAAGCTTGGTGGTGTTGAGAAGGTATAACTTGGTTTGATG
CTGTGCCAAGGCCCACTGAGGATTCACACAGCCCA
|
CCTTCTCAACACCACCA3134
|
TGGTGGTGTTGAGAAGG3135
|
Non-polyposisATGAATTCAGCTTTTCCTTAAAGTCACTTCATTTTTATTTTCAG3136
colorectal cancerTGAAGAACTGTTCTACCAGATACTCATTTATGATTTTGCCAATT
Gln562TermTTGGTGTTCTCAGGTTATCGGTAAGTTTAGATC
|
CAG-TAGGATCTAAACTTACCGATAACCTGAGAACACCAAAATTGGCAAA3137
ATCATAAATGAGTATCTGGTAGAACAGTTCTTCACTGAAAATA
AAAATGAAGTGACTTTAAGGAAAAGCTGAATTCAT
|
TGTTCTACCAGATACTC3138
|
GAGTATCTGGTAGAACA3139
|
Non-polyposisGCTTTTCCTTAAAGTCACTTCATTTTTATTTTCAGTGAAGAACT3140
colorectal cancerGTTCTACCAGATACTCATTTATGATTTTGCCAATTTTGGTGTTC
Ile565PheTCAGGTTATCGGTAAGTTTAGATCCTTTTCACT
|
ATT-TTTAGTGAAAAGGATCTAAACTTACCGATAACCTGAGAACACCAAA3141
ATTGGCAAAATCATAAATGAGTATCTGGTAGAACAGTTCTTCA
CTGAAAATAAAAATGAAGTGACTTTAAGGAAAAGC
|
AGATACTCATTTATGAT3142
|
ATCATAAATGAGTATCT3143
|
Non-polyposisTTTTCAGTGAAGAACTGTTCTACCAGATACTCATTTATGATTTT3144
colorectal cancerGCCAATTTTGGTGTTCTCAGGTTATCGGTAAGTTTAGATCCTT
Leu574ProTTCACTTCTGAAATTTCAACTGATCGTTTCTGAA
|
CTC-CCCTTCAGAAACGATCAGTTGAAATTTCAGAAGTGAAAAGGATCTA3145
AACTTACCGATAACCTGAGAACACCAAAATTGGCAAAATCATA
AATGAGTATCTGGTAGAACAGTTCTTCACTGAAAA
|
TGGTGTTCTCAGGTTAT3146
|
ATAACCTGAGAACACCA3147
|
Non-polyposisTGGATGCTCCGTTTAAAGCTTGCTCCTTCATGTTCTTGCTTCTT3148
colorectal cancerCCTAGGAGCCAGCACCGCTCTTTGACCTTGCCATGCTTGCCT
Leu582ValTAGATAGTCCAGAGAGTGGCTGGACAGAGGAAGATG
|
CTC-GTCCATCTTCCTCTGTCCAGCCACTCTCTGGACTATCTAAGGCAA3149
GCATGGCAAGGTCAAAGAGCGGTGCTGGCTCCTAGGAAGAA
GCAAGAACATGAAGGAGCAAGCTTTAACGGAGCATCCA
|
CAGCACCGCTCTTTGAC3150
|
GTCAAAGAGCGGTGCTG3151
|
Non-polyposisTGCTTGCCTTAGATAGTCCAGAGAGTGGCTGGACAGAGGAAG3152
colorectal cancerATGGTCCCAAAGAAGGACTTGCTGAATACATTGTTGAGTTTCT
Leu607HisGAAGAAGAAGGCTGAGATGCTTGCAGACTATTTCTC
|
CTT-CATGAGAAATAGTCTGCAAGCATCTCAGCCTTCTTCTTCAGAAACT3153
CAACAATGTATTCAGCAAGTCCTTCTTTGGGACCATCTTCCTC
TGTCCAGCCACTCTCTGGACTATCTAAGGCAAGCA
|
AGAAGGACTTGCTGAAT3154
|
ATTCAGCAAGTCCTTCT3155
|
Non-polyposisACAGAGGAAGATGGTCCCAAAGAAGGACTTGCTGAATACATT3156
colorectal cancerGTTGAGTTTCTGAAGAAGAAGGCTGAGATGCTTGCAGACTAT
Lys618TermTTCTCTTTGGAAATTGATGAGGTGTGACAGCCATTCT
|
AAG-TAGAGTATGGCTGTCACACCTCATCAATTTCCAAAGAGAAATAGTC3157
TGCAAGCATCTCAGCCTTCTTCTTCAGAAACTCAACAATGTAT
TCAGCAAGTCCTTCTTTGGGACCATCTTCCTCTGT
|
TGAAGAAGAAGGCTGAG3158
|
CTCAGCCTTCTTCTTCA3159
|
Non-polyposisCAGAGGAAGATGGTCCCAAAGAAGGACTTGCTGAATACATTG3160
colorectal cancerTTGAGTTTCTGAAGAAGAAGGCTGAGATGCTTGCAGACTATTT
Lys618ThrCTCTTTGGAAATTGATGAGGTGTGACAGCCATTCTT
|
AAG-ACGAAGAATGGCTGTCACACCTCATCAATTTCCAAAGAGAAATAGT3161
CTGCAAGCATCTCAGCCTTCTTCTTCAGAAACTCAACAATGTA
TTCAGCAAGTCCTTCTTTGGGACCATCTTCCTCTG
|
GAAGAAGAAGGCTGAGA3162
|
TCTCAGCCTTCTTCTTC3163
|
Non-polyposisTACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGAC3164
colorectal cancerTGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATCA
Arg659LeuAGCAGATACTAAGCATTTCGGTACATGCATGTGTGC
|
CGA-CTAGCACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCAC3165
TGACCTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCT
CCAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTA
|
CATTCTTCGACTAGCCA3166
|
TGGCTAGTCGAAGAATG3167
|
Non-polyposisTACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGAC3168
colorectal cancerTGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATCA
Arg659ProAGCAGATACTAAGCATTTCGGTACATGCATGTGTGC
|
CGA-CCAGCACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCAC3169
TGACGTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCT
CCTAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTA
|
CATTCTTCGACTAGCCA3170
|
TGGCTAGTCGAAGAATG3171
|
Non-polyposisTTACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGA3172
colorectal cancerCTGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATC
Arg659TermAAGCAGATACTAAGCATTTCGGTACATGCATGTGTG
|
CGA-TGACACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCACT3173
GACCTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCTC
CAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTAA
|
TCATTCTTCGACTAGCC3174
|
GGCTAGTCGAAGAATGA3175
|
Non-polyposisTTGGACCAGGTGAATTGGGACGAAGAAAAGGAATGTTTTGAA3176
colorectal cancerAGCCTCAGTAAAGAATGCGCTATGTTCTATTCCATCCGGAAG
Ala681ThrCAGTACATATCTGAGGAGTCGACCCTCTCAGGCCAGC
|
GCT-ACTGCTGGCCTGAGAGGGTCGACTCCTCAGATATGTACTGCTTCC3177
GGATGGAATAGAACATAGCGCATTCTTTACTGAGGCTTTCAAA
ACATTCCTTTTCTTCGTCCCAATTCACCTGGTCCAA
|
AAGAATGCGCTATGTTC3178
|
GAACATAGCGCATTCTT3179
|
Non-polyposisAGGCTTATGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGG3180
colorectal cancerCTCCATTCCPAACTCCTGGAAGTGGACTGTGGAACACATTGT
Trp712TermCTATAAAGCCTTGCGCTCACACATTCTGCCTCCTAA
|
TGG-TAGTTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATAGACAATG3181
TGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGAGCCAGGC
ACTTCACTCTGGAAAACACATTAGATGTCATAAGCCT
|
AAACTCCTGGAAGTGGA3182
|
TCCACTTCCAGGAGTTT3183
|
Non-polyposisATGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCAT3184
colorectal cancerTCCAAACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAA
Trp714TermGCCTTGCGCTCACACATTCTGCCTCCTAAACATTT
|
TGG-TAGAAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATAG3185
ACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGAG
CCAGGCACTTCACTCTGGAAAACACATTAGATGTCAT
|
CTGGAAGTGGACTGTGG3186
|
CCACAGTCCACTTCCAG3187
|
Non-polyposisTGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCATT3188
colorectal cancerCCAAACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAA
Trp714TermGCCTTGCGCTCACACATTCTGCCTCCTAAACATTTC
|
TGG-TGAGAAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATA3189
GACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGA
GCCAGGCACTTCACTCTGGAAkACACATTAGATGTCA
|
TGGAAGTGGACTGTGGA3190
|
TCCACAGTCCACTTCCA3191
|
Non-polyposisATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCATTCCAA3192
colorectal cancerACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAAGCCTT
Val716MetGCGCTCACACATTCTGCCTCCTAAACATTTCACAG
|
GTG-ATGCTGTGAAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTT3193
TATAGACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAAT
GGAGCCAGGCACTTCACTCTGGAAAACACATTAGAT
|
AGTGGACTGTGGAACAC3194
|
GTGTTCCACAGTCCACT3195
|
Non-polyposisGAGTGAAGTGCCTGGCTCCATTCCAAACTCCTGGAAGTGGAC3196
colorectal cancerTGTGGAACACATTGTCTATAAAGCCTTGCGCTCACACATTCTG
Tyr721TermCCTCCTAAACATTTCACAGAAGATGGAAATATCCTG
|
TAT-TAACAGGATATTTCCATCTTCTGTGAAATGTTTAGGAGGCAGAATG3197
TGTGAGCGCAAGGCTTTATAGACAATGTGTTCCACAGTCCAC
TTCCAGGAGTTTGGAATGGAGCCAGGCACTTCACTC
|
ATTGTCTATAAAGCCTT3198
|
AAGGCTTTATAGACAAT3199
|
Non-polyposisCTAAACATTTCACAGAAGATGGAAATATCCTGCAGCTTGCTAA3200
colorectal cancerCCTGCCTGATCTATACAAAGTCTTTGAGAGGTGTTAAATATGG
Lys751ArgTTATTTATGCACTGTGGGATGTGTTCTTCTTTCTC
|
AAA-AGAGAGTAAGAAGAACACATCCCACAGTGCATAAATAACCATATTT3201
AACACCTCTCAAAGACTTTGTATAGATCAGGCAGGTTAGCAAG
CTGCAGGATATTTCCATCTTCTGTGAAATGTTTAG
|
TCTATACAAAGTCTTTG3202
|
CAAAGACTTTGTATAGA3203
|
Non-polyposisACAGAAGATGGAAATATCCTGCAGCTTGCTAACCTGCCTGAT3204
colorectal cancer CTATACAAAGTCTTTGAGAGGTGTTAAATATGGTTATTTATGCA
Arg755TrpCTGTGGGATGTGTTCTTCTTTCTCTGTATTCCGAT
|
AGG-TGGATCGGAATACAGAGAAAGAAGAACACATCCCAGAGTGCATAA3205
ATAACCATATTTAACACCTCTCAAAGACTTTGTATAGATCAGG
CAGGTTAGCAAGCTGCAGGATATTTCCATCTTCTGT
|
TCTTTGAGAGGTGTTAA3206
|
TTAACACCTCTCAAAGA3207
|
Human Mismatch Repair—MSH2
[0139] The human MSH2 gene is homologous to the bacterial mutS gene, which is involved in mismatch repair. Mutations in the MSH2 gene have been identified in a variety of cancers, including, for example, ovarian tumors, colorectal cancer, endometrial cancer, uterine cancer. The attached table discloses the correcting oligonucleotide base sequences for the MSH2 oligonucleotides of the invention.
26TABLE 25
|
|
MSTT2 Mutations and Genome-Connecting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Non polyposisTTTTCCACAAAAGACATTTATCAGGACCTCAACCGGTTGTTGA3208
colorectal cancerAAGGCAAAAAGGGAGAGCAGATGAATAGTGCTGTATTGCCAG
Gln252TermAAATGGAGAATCAGGTACATGGATTATAAATGTGAA
|
CAG-TAGTTCACATTTATAATCCATGTACCTGATTCTCCATTTCTGGCAAT3209
ACAGCACTATTCATCTGCTCTCCCTTTTTGCCTTTCAACAACC
GGTTGAGGTCCTGATAAATGTCTTTTGTGGAAAA
|
AGGGAGAGCAGATGAAT3210
|
ATTCATCTGCTCTCCCT3211
|
Non polyposisTCATCACTGTCTGCGGTAATCAAGTTTTTAGAACTCTTATCAG3212
colorectal cancerATGATTCCAACTTTGGACAGTTTGAACTGACTACTTTTGACTT
Gln288TermCAGCCAGTATATGAAATTGGATATTGCAGCAGTCA
|
CAG-TAGTGACTGCTGCAATATCCAATTTCATATACTGGCTGAAGTCAAA3213
AGTAGTCAGTTCAAACTGTCCAAAGTTGGAATCATCTGATAAG
AGTTCTAAAAACTTGATTACCGCAGACAGTGATGA
|
ACTTTGGACAGTTTGAA3214
|
TTCAAACTGTCCAAAGT3215
|
Non polyposisAACTTTGGACAGTTTGAACTGACTACTTTTGACTTCAGCCAGT3216
colorectal cancerATATGAAATTGGATATTGCAGCAGTCAGAGCCCTTAACCTTTT
Ala305ThrTCAGGTAAAAAAAAAAAAAAAAAAAAAAAAAAAGG
|
GCA-ACACCTTTTTTTTTTTTTTTTTTTTTTTTTACCTGAAAAAGGTTAAG3217
GGCTCTGACTGCTGCAATATCCAATTTCATATACTGGCTGAAG
TCAAAAGTAGTCAGTTCAAACTGTCCAAAGTT
|
TGGATATTGCAGGAGTC3218
|
GACTGCTGCAATATCCA3219
|
Non polyposisAGCTTGCCATTCTTTCTATTTTATTTTTTGTTTACTAGGGTTCT3220
colorectal cancerGTTGAAGATACCACTGGCTCTCAGTCTCTGGCTGCCTTGCTG
Gly322AspAATAAGTGTAAAACCCCTCAAGGACAAAGACTTGT
|
GGC-GACACAAGTCTTTGTCCTTGAGGGGTTTTACACTTATTCAGCAAGG3221
CAGCCAGAGACTGAGAGCCAGTGGTATCTTCAACAGAACCCT
AGTAAACAAAAAATAAAATAGAAAGAATGGCAAGCT
|
TACCACTGGCTCTCAGT3222
|
ACTGAGAGCCAGTGGTA3223
|
Non polyposisTTGCCATTCTTTCTATTTTATTTTTTGTTTACTAGGGTTCTGTTG3224
colorectal cancerAAGATACCACTGGCTCTCAGTCTGTGGCTGGCTTGCTGAATA
Ser323CysAGTGTAAAACCCCTCAAGGACAAAGACTTGTTAA
|
TCT-TGTTTAACAAGTCTTTGTCCTTGAGGGGTTTTACACTTATTCAGCA3225
AGGCAGCCAGAGACTGAGAGCCAGTGGTATCTTCAACAGAAC
CCTAGTAAACAAAAAATAAAATAGAAAGAATGGCAA
|
CACTGGCTCTCAGTCTC3226
|
GAGACTGAGAGCCAGTG3227
|
Non polyposisGTGGAAGCTTTTGTAGAAGATGCAGAATGAGGCAGACTTTA3228
colorectal cancerCAAGAAGATTTACTTCGTCGATTCGCAGATCTTAACCGACTTG
Arg383TermCCAAGAAGTTTCAAAGACAAGCAGCAAACTTACAAG
|
CGA-TGACTTGTAAGTTTGCTGCTTGTCTTTGAAACTTCTTGGCAAGTCG 3229
GTTAAGATCTGGGAATCGACGAAGTAAATCTTCTTGTAAAGTC
TGCCTCAATTCTGCATCTTCTACAAAAGCTTCCAC
TACTTCGTCGATTCCCA3230
|
TGGGAATCGACGAAGTA3231
|
Non polyposisCAAGAAGATTTACTTCGTCGATTCCCAGATCTTAACCGACTTG3232
colorectal cancerCCAAGAAGTTTCAAAGACAAGCAGCAAACTTACAAGATTGTTA
Gln397TermCCGACTCTATCAGGGTATAAAATCAACTACCTAATG
|
CAA-TAACATTAGGTAGTTGATTTATACCCTGATAGAGTCGGTAACAATC3233
TTGTAAGTTTGCTGCTTGTCTTTGAAACTTCTTGGCAAGTCGG
TTAAGATCTGGGAATCGACGAAGTAAATCTTCTTG
|
TTCAAAGACAAGCAGCA3234
|
TGCTGCTTGTCTTTGAA3235
|
Non polyposisGATCTTAACCGACTTGCCAAGAAGTTTCAAAGACAAGCAGCA3236
colorectal cancerAACTTACAAGATTGTTACCGACTCTATCAGGGTATAAATCAAC
Arg406TermTACCTAATGTTATACAGGCTCTGGAAAAACATGAAG
|
CGA-TGACTTCATGTTTTTCCAGAGCCTGTATAACATTAGGTAGTTGATTT3237
ATACCCTGATAGAGTCGGTAACAATCTTGTAAGTTTGCTGCTT
GTCTTTGAAACTTCTTGGCAAGTCGGTTAAGATC
|
ATTGTTACCGACTCTAT3238
|
ATAGAGTCGGTAACAAT3239
|
Non polyposisGCAAACTTACAAGATTGTTACCGACTCTATCAGGGTATAAATC3240
colorectal cancerAACTACCTAATGTTATACAGGCTCTGGAAAATTACATGAAGGTAA
Gln419TermCAAGTGATTTTGTTTTTTTGTTTTCTTCAACTCA
|
CAG-TAGTGAGTTGAAGGAAAACAAAAAAACAAAATCACTTGTTACCTTC3241
ATGTTTTTCGAGAGCCTGTATAACATTAGGTAGTTGATTTATAC
CCTGATAGAGTCGGTAACAATCTTGTAAGTTTGC
|
ATGTTATACAGGCTCTG3242
|
CAGAGCCTGTATAACAT3243
|
Non polyposisTATTCTGTAAAATGAGATCTTTTTATTTGTTGTTTTACTACTTT3244
colorectal cancerCTTTTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTTGTGA
Gln429TermCTCCTCTTACTGATCTTCGTTCTGACTTCTCCA
|
GAG-TAGTGGAGAAGTCAGAACGAAGATCAGTAAGAGGAGTCACAAAAA3245
CTGCCAACAATAATTTCTGGTGTTTTCCTAAAAGAAAGTAGTA
AAACAAACAAATAAAAAGATCTCATTTTACAGAATA
|
GAAAACACCAGAAATTA3246
|
TAATTTTGGTGTTTTC3247
|
Non polyposisCTCCTCTTACTGATCTTCGTTCTGACTTCTCCAAGTTTCAGGA3248
colorectal cancerAATGATAGAAACAACTTTAGATATGGATCAGGTATGGAATATA
Leu458TermCTTTTTAATTTAAGCAGTAGTTATTTTTAAAAAGC
|
TTA-TGAGCTTTTTAAAAATAACTACTGCTTAAATTTAAAAGTATATTGCA3249
TACCTGATCCATATCTAAAGTTGTTTCTATCATTTCCTGAAACT
TGGAGAAGTCAGAACGAAGATCAGTAAGAGGAG
|
AACAACTTTAGATATGG3250
|
CCATATCTAAAGTTGTT3251
|
Non polyposisTTTCTTCTTGATTATCAAGGCTTGGACCCTGGCAAAGAGATTA3252
colorectal cancerAACTGGATTCCAGTGCACAGTTTGGATATTACTTCGTGTAAC
Gln518TermCTGTAAGGAAGAAAAAGTCCTTCGTAACAATAAAA
|
CAG-TAGTTTTATTGTTACGAAGGACTTTTTCTTCCTTACAGGTTACACGA3253
AAGTAATATCCAAACTGTGCACTGGAATCCAGTTTAATCTGTT
TGCCAGGGTCCAAGCCTTGATAATCAAGAAGAAA
|
CCAGTGCACAGTTTGGA3254
|
TCCAAACTGTGCACTGG3255
|
Non polyposisGCTTGGACCCTGGCAAACAGATTAAACTGGATTCCAGTGCAC3256
colorectal cancerAGTTTGGATATTACTTTCGTGTAACCTGTAAGGAAGAAAAAGT
Arg524ProCCTTCGTAACAATAAAAACTTTAGTACTGTAGATAT
|
CGT-CCTATATCTACAGTACTTAAAGTTTTTATTGTTACGAAGGACTTTTTC3257
TTCCTTACAGGTTACACGTAAAGTAATATCCAAACTGTGCACTG
GAATCCAGTTTAATCTGTTTGCCAGGGTCCAAGC
|
TTACTTTCGTGTAACCT3258
|
AGGTTACACGAAAGTAA3259
|
Non polyposisTTAATATTTTTAATAAAACTGTTATTTCGATTTGCAGCAAATTGA3260
colorectal cancerCTTCTTTAAATGAAGAGTATACCAAAAATAAAACAGAATATGAA
Glu562TalGAAGCCCAGGATGCCATTGTTAAAGAAATTGT
|
GAG-GTGACAATTTCTTTAACAATGGCATCCTGGGCTTCTTCATATTCTGT3261
TTTATTTTTGGTATACTCTTCATTTAAAGAAGTCAATTTGCTGC
AAATCGAAATAACAGTTTTATTAAAAATATTAA
|
AAATGAAGAGTATACCA3262
|
TGGTATACTCTTCATTT3263
|
GliomaAATGAAGAGTATACCAAAAATAAAACAGAATATGAAGAAGCCC3264
Glu580TermAGGATGCCATTGTAAAGAAATTGTCAATATTTGTTCAGGTAAA
GAA-TAACTTAATAGAACTAATAATGTTCTGAATGTCACCT
|
AGGTGACATTCAGAACATTATTAGTTCTATTAAGTTTACCTGAA3265
GAAATATTGACAATTTCTTTAAGAATGGCATCCTGGGCTTCTT
CATATTCTGTTTTATTTTTGGTATACTCTTCATT
|
TTGTTAAAGAAATTGTC3266
|
GACAATTTCTTTAACAA3267
|
Non polyposisTGTTTTTATTTTTATACAGGGTATGTAGAACCAATGCAGACACT3268
colorectal cancerCAATGATGTGTTAGCTCAGCTAGATGCTGTTGTCAGCTTTGCT
Gln601TermCACGTGTCAAATGGAGCACCTGTTCCATATGTAC
|
CAG-TAGGTACATATGGAACAGGTGCTCCATTTGACACGTGAGCAAAGC3269
TGACAACAGCATCTAGCTGAGCTAACACATCATTGAGTGTCTG
CATTGGTTCTACATAGCCTGTATAAAAATAAAAACA
|
TGTTAGCTCAGCTAGAT3270
|
ATCTAGCTGAGCTAACA3271
|
Non polyposisAGCTCAGCTAGATGCTGTTGTCAGCTTTGCTCACGTGTCAAAT3272
colorectal cancerGGAGCACCTGTTCCATATGTACGACCAGCCATTTTGGAGAAA
Tyr619TermGGACAAGGAAGAATTATATTAAAAGCATCCAGGCAT
|
TAT-TAGATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTCTCCA3273
AAATGGCTGGTCGTACATATGGAACAGGTGCTCCATTTGACA
CGTGAGCAAAGCTGACAACAGCATCTAGCTGAGCT
|
GTTCCATATGTACGACC3274
|
GGTCGTACATATGGAAC3275
|
Non polyposisCAGCTAGATGCTGTTGTCAGCTTTGCTCACGTGTCAAATGGA3276
colorectal cancerGCACCTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGA
Arg621TermCAAGGAAGAATTATATTAATAGCATCCAGGCATGCTT
|
CGA-TGAAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTC3277
TCCAAAATGGCTGGTCGTACATATGGAACAGGTGCTCCATTT
GACACGTGAGCAAAGCTGACAACAGCATCTAGCTG
|
CATATGTACGACCAGCC3278
|
GGCTGGTCGTACATATG3279
|
Non polyposisTAGATGCTGTTGTCAGCTTTGCTCAGGTGTCAAATGGAGCAC3280
colorectal cancerCTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGACAAG
Pro622LeuGAAGAATTATATTAAAAGCATCCAGGCATGCTTGTGT
|
CCA-CTAACACAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTC3281
CTTTCTCCAAAATGGCTGGTCGTACATATGGAACAGGTGCTC
CATTTGACACGTGAGCAAAGCTGACAACAGCATCTA
|
TGTACGACCAGCCATTT3282
|
AAATGGCTGGTCGTACA3283
|
Non polyposisCCTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGACAA3284
colorectal cancerGGAAGAATTATATTAAAAGCATCCAGGCATGCTTGTGTTGAAG
Ala636ProTTCAAGATGAAATTGCATTTATTCCTAATGACGTAT
|
GCA-CCAATACGTCATTAGGAATAAATGCAATTTCATCTTGAAGTTCAACA3285
CAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTT
CTCCAAAATGGCTGGTCGTACATATGGAACAGG
|
TATTAAAAGCATCCAGG3286
|
CCTGGATGCTTTTAATA3287
|
Non polyposisATGTACGACCAGCCATTTTGGAGAAAGGACAAGGAAGAATTA3288
colorectal cancerTATTAAAAGCATCCAGGCATGCTTGTGTTGAAGTTCAAGATGA
TTis639ArgAATTGCATTTATTCCTAATGACGTATACTTTGAAAA
|
CAT-CGTTTTTCAAAGTATACGTCATTAGGAATAAATGCAATTTCATCTTG3289
AACTTCAACACAAGCATGCCTGGATGCTTTTAATATAATTCTTC
CTTGTCCTTTCTCCAAAATGGCTGGTCGTACAT
|
ATCCAGGCATGCTTGTG3290
|
CACAAGCATGCCTGGAT3291
|
Non polyposisTATGTACGACCAGCCATTTTGGAGAAAGGACAAGGAAGAATT3292
colorectal cancerATATTAAAAGCATCCAGGCATGCTTGTGTTGAAGTTCAAGATG
TTis639TyrAAATTGCATTTATTCCTAATGACGTATACTTTGAAA
|
CAT-TATTTTCAAAGTATACGTCATTAGGAATAAATGCAATTTCATCTTGA 3293
ACTTCAACACAAGCATGCCTGGATGCTTTTAATATAATTCTTC
CTTGTCCTTTCTCCAAAATGGCTGGTCGTACATA
|
CATCCAGGCATGCTTGT3294
|
ACAAGCATGCCTGGATG3295
|
Non polyposisAAAGGACAAGGAAGAATTATATTAAAAGCATCCAGGCATGGTT3296
colorectal cancerGTGTTGAAGTTCAAGATGAAATTGCATTTATTCCTAATGACGT
Glu647LysATACTTTGAAAAAGATAAACAGATGTTCCACATCA
|
GAA-AAATGATGTGGAACATCTGThTATCTTTTTCAAAGTATACGTCATTA3297
GGAATAAATGCAATTTCATCTTGAACTTCAACACAAGCATGCC
TGGATGCTTTTAATATAATTCTTCCTTGTCCTTT
|
TTCAAGATGAAATTGCA3298
|
TGCAATTTCATCTTGAA3299
|
Non polyposisATCCAGGCATGCTTGTGTTGAAGTTCAAGATGAAATTGCATTT3300
colorectal cancerATTCCTAATGACGTATACTTTGAAAAAGATAAACAGATGTTCCA
Tyr656TermCATCATTACTGGTAAAAAACCTGGTTTTTGGGCT
|
TAC-TAGAGCCCAAAAACCAGGTTTTTTACCAGTAATGATGTGGAACATC3301
TGTTTATCTTTTTCAAAGTATACGTCATTAGGAATAAATGCAAT
TTCATCTTGAACTTCAACACAAGCATGCCTGGAT
|
GACGTATACTTTGTAAAA3302
|
TTTTCAAAGTATACGTC3303
|
Non polyposisGAAAGAAGTTTAAAATCTTGCTTTCTGATATAATTTGTTTTGTA3304
colorectal cancerGGCCCCAATATGGGAGGTTAATCAACATATATTCGACAAACT
Gly674AspGGGGTGATAGTACTCATGGCCCAAATTGGGTGTTT
|
GGT-GATAAACACCCAATTTGGGCCATGAGTAGTATCACCCCAGTTTGTC3305
GAATATATGTTGATTTACCTCCCATATTGGGGCCTACAAAACA
AATTATATCAGAAAGCAAGATTTTAAACTTCTTTTC
|
TATGGGAGGTAAATCAA3306
|
TTGATTTACCTCCCATA3307
|
Non polyposisTTGCTTTCTGATATAATTTGTTTTGTAGGCCCCAATATGGGAG3308
colorectal cancerGTAAATCAACATATATTCGACAAACTGGGGTGATAGTACTCAT
Arg680TermGGCCCAAATTGGGTGTTTTGTGCCATGTGAGTCAG
|
CGA-TGACTGACTCACATGGCACAAAACACCCAATTTGGGCCATGAGTA3309
CTATCACCCCAGTTTGTCGAATATATGTTGATTTACCTCCCAT
ATTGGGGCCTACAAAACAAATTATATCAGAAAGCAA
|
CATATATTCGACAAACT3310
|
AGTTTGTCGAATATATG3311
|
Non polyposisATGGGAGGTAAATCAACATATATTCGACAAAACTGGGGTGATA3312
colorectal cancerGTACTCATGGCCCAAATTGGGTGTTTTGTGCCATGTGAGTCA
Gly692ArgGCAGAAGTGTCCATTGTGGACTGCATCTTAGCCCGAG
|
GGG-CGGCTCGGGCTAAGATGCAGTCCACAATGGACACTTCTGCTGACT3313
CACATGGCACAAAACACCCAATTTGGGCCATGAGTACTATCA
CCCCAGTTTGTCGAATATATGTTGATTTACCTCCCAT
|
CCCAAATTGGGTGTTTT3314
|
AAAACACCCAATTTGGG3315
|
Non polyposisACATATATTCGACAAACTGGGGTGATAGTACTCATGGCCCAAA3316
colorectal cancerTTGGGTGTTTTGTGCCATGTGAGTCAGCAGAAGTGTCCATTG
Cys697ArgTGGACTGCATCTTAGCCCGAGTAGGGGCTGGTGACA
|
TGT-CGTTGTCACCAGCCCCTACTCGGGCTAAGATGCAGTCCACAATGG3317
ACACTTCTGCTGACTCACATGGCACAAAACACCCAATTTGGG
CCATGAGTACTATCACCCCAGTTTGTCGAATATATGT
|
TTGTGCCATGTGAGTCA3318
|
TGACTCACATGGCACAA3319
|
Non polyposisCATATATTCGACAAACTGGGGTGATAGTACTCATGGCCCAAAT3320
colorectal cancerTGGGTGTTTTGTGCCATGTGAGTCAGCAGAAGTGTCCATTGT
Cys697PheGGACTGCATCTTAGCCCGAGTAGGGGCTGGTGACAG
|
TGT-TTTCTGTCACCAGCCCCTACTCGGGCTAAGATGCAGTCCACAATG3321
GACACTTCTGCTGACTCACATGGCACAAAACACCCAATTTGG
GCCATGAGTACTATCACCCCAGTTTGTCGAATATATG
|
TGTGCCATGTGAGTCAG3322
|
CTGACTCACATGGCACA3323
|
Non polyposisGAGTCAGCAGAAGTGTCCATTGTGGACTGCATCTTAGCCCGA3324
colorectal cancerGTAGGGGCTGGTGACAGTCAATTGAAAGGAGTCTCCACGTTC
Gln718TermATGGCTGAAATGTTGGAAACTGCTTCTATCCTCAGGT
|
CAA-TAAACCTGAGGATAGAAGCAGTTTCCAACATTTCAGCCATGAACG3325
TGGAGACTCCTTTCAATTGACTGTCACCAGCCCCTACTCGGG
CTAAGATGCAGTCCACAATGGACACTTCTGCTGACTC
|
GTGACAGTCAATTGAAA3326
|
TTTCAATTGACTGTCAC3327
|
Non polyposisCCAATCAGATACCAACTGTTAATAATCTACATGTCACAGCACT3328
colorectal cancerCACCACTGAAGAGACCTTAACTATGCTTTATCAGGTGAAGAAA
Leu811TermGGTATGTACTATTGGAGTACTCTTAAATTCAGAACT
|
TTA-TGAAGTTCTGAATTTAGAGTACTCCAATAGTACATACCTTTCTTCAC3329
CTGATTAAAGCATAGTTAAGGTCTCTTCAGTGGTGAGTGCTGT
GACATGTAGATTATTAACAGTTGGTATCTGATTGG
|
AGAGACCTTAACTATGC3330
|
GCATAGTTAAGGTCTCT3331
|
Non polyposisTTCCCCAAATTTCTTATAGGTGTCTGTGATCAAAGTTTTGGGA3332
colorectal cancerTTCATGTTGCAGAGCTTGCTAATTTCCCTAAGCATGTAATAGA
Ala834ThrGTGTGCTAAACAGAAAGCCCTGGAACTTGAGGAGT
|
GCT-ACTACTCCTCAAGTTCCAGGGCTTTCTGTTTAGCACACTCTATTAC3333
ATGCTTAGGGAAATTAGCAAGCTCTGCAACATGAATCCCAAAA
CTTTGATCACAGACACCTATAAGAAATTTGGGGAA
|
CAGAGCTTGCTAATTTC3334
|
GAAATTAGCAAGCTCTG3335
|
Non polyposisATAGAGTGTGCTAAACAGAAAGCCCTGGAACTTGAGGAGTTT3336
colorectal cancerCAGTATATTGGAGAATCGCAAGGATATGATATCATGGAACCAG
Gln861TermCAGCAAAGAAGTGCTATCTGGAAAGAGAGGTTTGTC
|
CAA-TAAGACAAACCTCTCTTTCCAGATAGCACTTCTTTGCTGCTGGTTC3337
CATGATATCATATCCTTGCGATTCTCCAATATACTGAAACTCCT
CAAGTTCCAGGGCTTTCTGTTTAGCACACTCTAT
|
GAGAATCGCAAGGATAT3338
|
ATATCCTTGCGATTCTC3339
|
Non polyposisAGGAGTTCCTGTCCAAGGTGGAACAAATGCCCTTTACTGAAAT3340
colorectal cancerGTCAGAAGAAAACATCACAATAAAGTTAAAACAGCTAAAAGCT
Thr905ArgGAAGTAATAGCAAAGAATAATAGCTTTGTAAATGA
|
ACA-AGATCATTTACAAAGCTATTATTCTTTGCTATTACTTCAGCTTTTAG3341
CTGTTTTAACTTTATTGTGATGTTTTCTTCTGACATTTCAGTAA
AGGGCATTTGTTTCACCTTGGACAGGAACTCCT
|
AAACATCACAATAAAGT3342
|
ACTTTATTGTGATGTTT3343
|
Human Mismatch Repair—MSH6
[0140] The human MSH6 gene is homologous to the bacterial mutS gene, which is involved in mismatch repair. Mutations in the MSH6 gene have been identified in a variety of cancers, including particularly hereditary nonpolyposis colorectal cancer. The attached table discloses the correcting oligonucleotide base sequences for the MSH6 oligonucleotides of the invention.
27TABLE 26
|
|
MSH6 Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Non-polyposisGGAAATCAGTCCGTGTTCATGTACAGTTTTTTGATGACAGCCC3344
colorectal cancerAACAAGGGGCTGGGTTAGCAAAAGGCTTTTAAAGCCATATAC
Ser144lleAGGTAAGAGTCACTACTGCCATGTGTGTGTGTTTGT
AGC-ATC
ACAAACACACACACATGGCAGTAGTGACTCTTACCTGTATATG3345
GCTTTAAAAGCCTTTTGCTAACCCAGCCCCTTGTTGGGCTGT
CATCAAAAAACTGTACATGAACACGGACTGATTTCC
|
CTGGGTTAGCAAAAGGC3346
|
GCCTTTTGCTAACCCAG3347
|
Endometrial cancerCGTGAGCCTCTGCACCCGGCCCTTATTGTTTATAAATACATTT3348
Ser156TermCTTTCTAGGTTCAAAATCAAAGGAAGCCCAGAAGGGAGGTCA
TCA-TGATTTTTACAGTGCAAAGCCTGAAATACTGAGAGCAAT
|
ATTGCTCTCAGTATTTCAGGCTTTGCACTGTAAAAATGACCTC3349
CCTTCTGGGCTTCCTTTGATTTTGAACCTAGAAAGAAATGTAT
TTATAAACAATAAGGGCCGGGTGCAGAGGCTCACG
|
TTCAAAATCAAAGGAAG3350
|
CTTCCTTTGATTTTGAA3351
|
Early onset colorectalTTCCAAATTTTGATTTGTTTTTAAATACTCTTTCCTTGCCTGGC3352
cancerAGGTAGGCACAACTTACGTAACAGATAAGAGTGAAGAAGATA
Tyr214TermATGAAATTGAGAGTGAAGAGGAAGTACAGCCTAAG
TAC-TAG
CTTAGGCTGTACTTCCTCTTCACTCTCAATTTCATTATCTTCTT3353
CACTCTTATCTGTTACGTAAGTTGTGCCTACCTGCCAGGCAA
GGAAAGAGTATTTAAAAACAAATCAAAATTTGGAA
|
ACAACTTACGTAACAGA3354
|
TCTGTTACGTAAGTTGT3355
|
Endometrial cancerGAAGAGGAAGTACAGCCTAAGACACAAGGATCTAGGCGAAGT3356
Arg248TermAGCCGCCAAATXAATTAAACGAAGGGTCATATCAGATTCTGAG
CGA-TGAAGTGACATTGGTGGCTCTGATGTGGAATTTAAGCCAG
|
CTGGCTTAAATTCCACATCAGAGCCACCAATGTCACTCTCAGA3357
ATCTGATATGACCCTTCGTTTTTTTATTTGGCGGCTACTTCGC
CTAGATCCTTGTGTCTTAGGCTGTACTTCCTCTTC
|
TAAAAAAACGAAGGGGTC3358
|
GACCCTTCGTTTTTTTA3359
|
Colorectal cancerTTAAGCCAGACACTAAGGAGGAAGGAAGCAGTGATGAAATAA3360
Ser285lleGCAGTGGAGTGGGGGATAGTGAGAGTGAAGGCCTGAACAGC
AGT-ATTCCTGTCAAAGTTGCTCGAAAGCGGAAGAGAATGGTGAC
|
GTCACCATTCTCTTCCGCTTTCGAGCAACTTTGACAGGGCTG3361
TTCAGGCCTTCACTCTCACTATCCCCCACTCCACTGCTTATTT
CATCACTGCTTCCTTCCTCCTTAGTGTCTGGCTTAA
|
GGGGGATAGTGAGAGTG3362
|
CACTCTCACTATCCCCC3363
|
Colorectal cancerGAGGAAGATTCTTCTGGCCATACTCGTGCATATGGTGTGTGC3364
Gly566ArgTTTGTTGATACTTCACTGGGAAAGTTTTTCATAGGTCAGTTTTC
GGA-AGAAGATGATCGCCATTGTTCGAGATTTAGGACTCTAG
|
CTAGAGTCCTAAATCTCGAACJAATGGCGATCATCTGAAAACTG3365
ACCTATGAAAAACTTTCCCAGTGAAGTATCAACAAAGCACACA
CCATATGCACGAGTATGGCCAGAAGAATCTTCCTC
|
CTTCACTGGGAAAGTTT3366
|
AAACTTTCCCAGTGAAG3367
|
Non-polyposisGAATTGGCCCTCTCTGCTCTAGGTGGTTGTGTCTTCTACCTC3368
colorectal cancerAAAAAATGCCTTATTGATCAGGAGCTTTTATCAATGGCTAATTT
Gln698GluTGAAGAATATATTCCCTTGGATTCTGACACAGTCA
CAG-GAG
TGACTGTGTCAGAATCCAAGGGAATATATTCTTCAAAATTAGC3369
CATTGATAAAAGCTCCTGATCAATAAGGCATTTTTTGAGGTAG
AAGACACAACCACCTAGAGCAGAGAGGGCCAATTC
|
TTATTGATCAGGAGCTT3370
|
AAGCTCCTGATCAATAA3371
|
Endometrial cancerCCCTTGGATTCTGACACAGTCAGCACTACAAGATCTGGTGCT3372
Gln731TermATCTTCACCAAAGCCTATCAACGAATGGTGCTAGATGCAGTG
CAA-TAAACATTAAACAACTTGGAGATTTTTCTGAATGGAACAA
|
TTGTTCCATTCAGAAAAATCTCCAAGTTGTTTAATGTCACTGCA3373
TCTAGCACCATTCGTTGATAGGCTTTGGTGAAGATAGCACCA
GATCTTGTAGTGCTGACTGTGTCAGAATCCAAGGG
|
AAGCCTATCAACGAATG3374
|
CATTCGTTGATAGGCTT3375
|
Colorectal cancerGCCCCACTCTGTAACCATTATGCTATTAATGATCGTCTAGATG3376
Val800LeuCCATAGAAGACCTCATGGTTGTGCCTGACAAAATCTCCGAAG
GTT-CTTTTGTAGAGCTTCTAAAGAAGCTTCCAGATCTTGAGA
|
TCTCAAGATCTGGAAGCTTCTTTAGAAGCTCTACAACTTCGGA3377
GATTTTGTCAGGCACAACCATGAGGTCTTCTATGGCATCTAGA
CGATCATTAATAGCATAATGGTTACAGAGTGGGGC
|
ACCTCATGGTTGTGCCT3378
|
AGGCACAACCATGAGGT3379
|
Colorectal cancerGTAACCATTATGCTATTAATGATCGTCTAGATGGCATAGAAGA3380
Asp803GlyCCTCATGGTTGTGCCTGACAAAATCTCCGAAGTTGTAGAGCT
GAC-GGCTCTAAAGAAGCTTCCAGATCTTGAGAGGCTACTCAG
|
CTGAGTAGCCTCTCAAGATCTGGAAGCTTCTTTAGAAGCTCTA 3381
CAACTTCGGAGATTTTGTCAGGCACAACCATGAGGTCTTCTAT
GGCATCTAGACGATCATTAATAGCATAATGGTTAC
|
TGTGCGTGACAAAATCT3382
|
AGATTTTGTCAGGCACA3383
|
Non-polyposisCTCCCCTGAAGAGTCAGAACCACCCAGACAGCAGGGCTATAA3384
colorectal cancerTGTATGAAGAAACTACATACAGCAAGAAGAAGATTATTGATTT
Tyr850CysTCTTTCTGCTCTGGAAGGATTCAAAGTAATGTGTAA
TAC-TGC
TTACACATTACTTTGAATCCTTCCAGAGCAGAAAGAAATCAA3385
TAATCTTCTTCTTGCTGTATGTAGTTTCTTCATACATTATAGCC
CTGCTGTCTGGGTGGTTCTGACTCTTCAGGGGAG
|
AACTACATACAGCAAGA3386
|
TCTTGCTGTATGTAGTT3387
|
Colorectal cancerTATAGTCGAGGGGGTGATGGTCCTATGTGTCGCCCAGTAATT3388
Pro1087ThrCTGTTGCCGGAAGATACCCCCCCCTTCTTAGAGCTTAAAGGA
CCC-ACCTCACGCCATCCTTGCATTACGAAGACTTTTTTTGGAG
|
CTCCAAAAAAAGTCTTCGTAATGCAAGGATGGCGTGATCCTTT3389
AAGCTCTAAGAAGGGGGGGGTATCTTCCGGCAACAGAATTAC
TGGGCGACACATAGGACCATCACCCCCTCGACTATA
|
AAGATACCCCCCCCTTC3390
|
GAAGGGGGGGGTATCTT3391
|
Non-polyposisACTATAAAATGTCGTACATTATTTFCAACTCACTACCATTCATT3392
colorectal cancerAGTAGAAGATTATTCTCAAAATGTTGCTGTGCGCCTAGGACAT
Gln1258TermATGGTATGTGCAAATTGTTTTFTTCCACAAATTC
CAA-TAA
GAATTTGTGGAAAAAAACAATTTGCACATACCATATGTCCTAG3393
GCGCACAGCAACATTTTGAGAATAATCTTCTACTAATGAATGG
TAGTGAGTTGAAAATAATGTACGACATTTTATAGT
|
ATTATTCTCAAAATGTT3394
|
AACATTTTGAGAATAAT3395
|
Hyperlipidemia—APOE
[0141] Hyperlipidemia is the abnormal elevation of plasma cholesterol and/or triglyceride levels and it is one of the most common diseases. The human apolipoprotein E protein is involved in the transport of endogenous lipids and appears to be crucial for both the direct removal of cholesterol-rich LDL from plasma and conversion of IDL particles to LDL particles. Individuals who either lack apolipoprotein E or who are homozygous for particular alleles of apoE may have have a condition known as dysbetalipoproteinemia, which is characterized by elevated plasma cholesterol and triglyceride levels and an increased risk for atherosclerosis.
[0142] In a comprehensive review of apoE variants, de Knijff et al., Hum. Mutat. 4:178-194 (1994) found that 30 variants had been characterized, including the most common variant, apoE3. To that time, 14 apoE variants had been found to be associated with familial dysbetalipoproteinemia. The attached table discloses the correcting oligonucleotide base sequences for the APOE oligonucleotides of the invention.
28TABLE 27
|
|
APOE Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
ApolipoproteinTTGTTCCACACAGGATGCCAGGCCAAGGTGGAGCAAGCGGT3396
Glu13LysGGAGACAGAGCCGGAGCCCGAGCTGCGCCAGCAGACCGAG
cGAG-AAGTGGCAGAGCGGCCAGCGCTGGGAACTGGCACTGGGTCGCT
|
AGCGACCCAGTGCCAGTTCCCAGCGCTGGCCGCTCTGCCAC3397
TCGGTCTGCTGGCGCAGCTCGGGCTCCGGCTCTGTCTCCAC
CGCTTGCTCCACCHGGCCTGGCATCCTGTGTGGAACAA
|
CGGAGCCCGAGCTGCGC3398
|
GCGCAGCTCGGGCTCCG3399
|
Apolipoprotein ECAAGGTGGAGCAAGCGGTGGAGACAGAGCCGGAGCCCGAG3400
Trp20TermCTGCGCCAGCAGACCGAGTGGCAGAGCGGCCAGCGCTGGG
TGGc-TGAAACTGGCACTGGGTCGCTTFTGGGATTACCTGCGCTGGGTG
|
CACCCAGCGCAGGTAATCCCAAAAGCGACCCAGTGCCAGTT3401
CCCAGCGCTGGCCGCTCTGCCACTCGGTCTGCTGGCGCAGC
TCGGGCTCCGGCTCTGTCTCCACCGCTTGCTGCACCTTG
|
ACCGAGTGGCAGAGCGG3402
|
CCGCTCTGCCACTCGGT3403
|
Apolipoprotein ECAGAGCCGGAGCCCGAGCTGCGCCAGCAGACCGAGTGGCA3404
Leu28ProGAGCGGCCAGCGCTGGGAACTGGCACTGGGTCGCTTTTGGG
CTG-CCGATTACCTGCGCTGGGTGCAGACACTGTCTGAGCAGGTGCA
|
TGCACCTGCTCAGACAGTGTCTGCACCCAGCGCAGGTAATCC3405
CAAAAGCGACCCAGTGCCAGTTCCCAGCGCTGGCCGCTCTG
CCACTCGGTGTGCTGGCGCAGCTCGGGCTCCGGCTCTG
|
CTGGGAACTGGCACTGG3406
|
CCAGTGCCAGTTCCCAG3407
|
Apolipoprotein ECGGCTGTCCAAGGAGCTGCAGGCGGCGCAGGCCCGGCTGG3408
Cys112ArgGCGCGGACATGGAGGACGTGTGCGGCCGCCTGGTGCAGTA
gTGC-CGCCCGCGGCGAGGTGCAGGCCATGCTCGGCCAGAGCACCGAGG
|
CCTCGGTGCTCTGGCCGAGCATGGCCTGCACCTCGCCGCGG3409
TACTGCACCAGGCGGCCGCACACGTCCTCCATGTCCGCGCC
CAGCCGGGCCTGCGCCGCCTGCAGCTCCTTGGACAGCCG
|
AGGACGTGTGCGGCCGC3410
|
GCGGCCGCACACGTCCT3411
|
Apolipoprotein EACATGGAGGACGTGTGCGGCCGCCTGGTGCAGTACCGCGG3412
Gly127AspCGAGGTGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGT
GGC-GACCGGGTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCG
|
CGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCACCC3413
GCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCACCTCG
CCGCGGTACTGCACCAGGCGGCCGCACACGTCCTCCATGT
|
CATGCTCGGCCAGAGCA3414
|
TGCTCTGGCCGAGCATG3415
|
Apolipoprotein EGTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGA3416
Arg136CysGCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCG
gCGC-TGCCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGC
|
GCAGGTCATGGGCATCGCGGAGGAGCCGCTTACGCAGCTTG3417
CGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGC
TCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCAC
|
TGCGGGTGCGCCTCGCC3418
|
GGCGAGGCGCACCCGCA3419
|
Apolipoprotein ETGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGAG3420
Arg136HisCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCGC
CGC-CACAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGCA
|
TGCAGGTCATCGGCATCGCGGAGGAGCCGCTTACGCAGCTT3421
GCGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTG
CTCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCA
|
GCGGGTGCGCCTCGCCT3422
|
AGGCGAGGCGCACCCGC3423
|
Apolipoprotein EGTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGA3424
Arg136SerGCACCGAGGAGCTGCGGGTGCGCCTCGCCTCGCACCTGCG
gCGC-AGCCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGC
|
GCAGGTCATCGGCATCGCGGAGGAGCCGCTTACGCAGTTG3425
CGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGC
TCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCAC
|
TGCGGGTGCGCCTCGCC3426
|
GGCGAGGCGCACCCGCA3427
|
Apolipoprotein EGTGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGCGGG3428
Arg142CysTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTC
gCGC-TGCCTCCGCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGT
|
ACACTGCCAGGCGCTTCTGCAGGTCATCGGCATCGCGGAGG3429
AGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCA
CCCGCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCAC
|
CCCACCTGCGCAAGCTG3430
|
CAGCTTGCGCAGGTGGG3431
|
Apolipoprotein ETGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGCGGGT3432
Arg142LeuGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCC
CGC-CTCTCCGCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGTA
|
TACACTGCCAGGCGCTTCTGCAGGTCATCGGCATCGCGGAG3433
GAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGC
ACCCGCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCA
|
CCACCTGCGCAAGCTGC3434
|
GCAGCTTGCGCAGGTGG3435
|
Apolipoprotein EATGCTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCG3436
Arg145CysCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGAT
gCGT-TGTGCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCG
|
CGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGCA3437
TCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGG
CGAGGCGCACCCGCAGGTCCTCGGTGCTCTGGCCGAGCAT
|
GCAAGCTGCGTAAGCGG3438
|
CCGCTTACGCAGCTTGC3439
|
Apolipoprotein ETGCTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGC3440
Arg145ProCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATG
CGT-CCTCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGG
|
CCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGC3441
ATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAG
GCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAGCA
|
CAAGCTGCGTAAGCGGC3442
|
GCCGCTTACGCAGCTTG3443
|
Apolipoprotein ECTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGCCT3444
Lys146GlnCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCC
tAAG-CAGGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGG
|
CCCCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCG3445
GCATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGA
GGCGAGGCGCACCCGCAGCTCCTCGGTGCTGTGGCCGAG
|
AGCTGCGTAAGCGGCTC3446
|
GAGCCGCTTACGCAGCT3447
|
Apolipoprotein ECTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGCCT3448
Lys146GluCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCC
tAAG-GAGGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGG
|
CCCCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCG3449
GCATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGA
GGCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAG
|
AGCTGCGTAAGCGGCTC3450
|
GAGCCGCTTACGCAGCT3451
|
Apolipoprotein EGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGA3452
Arg158CysTGCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCG
gCGC-TGCGGGCCCGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCC
|
GGATGGCGCTGAGGCCGCGCTCGGCGCCCTCGCGGGCCCC3453
GGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGCAT
CGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGC
|
TGCAGAAGCGCCTGGCA3454
|
TGCCAGGCGCTTCTGCA3455
|
Apolipoprotein ECGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCCGCGAGC3456
Gln187GluGCCTGGGGCCCCTGGTGGAACAGGGCCGCGTGCGGGCCGC
aCAG-GAGCACTGTGGGCTCCCTGGCCGGCCAGCCGCTACAGGAGCGGG
|
CCCGCTCCTGTAGCGGCTGGCCGGCCAGGGAGCCCACAGT3457
GGCGGCCCGCACGCGGCCCTGTTCCACCAGGGGCCCCAGG
CGCTCGCGGATGGCGCTGAGGCCGCGCTCGGCGCCCTCGCG
|
TGGTGGAACAGGGCCGC3458
|
GCGGCCCTGTTCCACCA3459
|
Apolipoprotein ETGCGGGCCGCCACTGTGGGCTCCCTGGCCGGCCAGCCGCT3460
Trp210TermACAGGAGCGGGCCCAGGCCTGGGGCGAGCGGCTGCGCGC
TGG-TAGGCGGATGGAGGAGATGGGCAGCCGGACCCGCGACCGCCTGGA
|
TCCAGGCGGTCGCGGGTCCGGCTGCCCATCTCCTCCATCCG3461
CGCGCGCAGCCGCTCGCCCCAGGCCTGGGCCCGCTCCTGT
AGCGGCTGGCCGGCCAGGGAGCCCACAGTGGCGGCCCGCA
|
CCAGGCCTGGGGCGAGC3462
|
GCTCGCCCCAGGCCTGG3463
|
Apolipoprotein ECAGGCCTGGGGCGAGCGGCTGCGCGCGCGGATGGAGGAGA3464
Arg228CysTGGGCAGCCGGACCCGCGACCGCCTGGACGAGGTGAAGGA
cCGC-TGCGCAGGTGGCGGAGGTGCGCGCCAAGCTGGAGGAGCAGGCCC
|
GGGCCTGCTCCTCCAGCTTGGCGCGCACCTCCGCCACCTGC3465
TCCTTCACCTCGTCCAGGCGGTCGCGGGTCCGGCTGCCCAT
CTCCTCCATCCGCGCGCGCAGCCGCTCGCCCCAGGCCTG
|
CCCGCGACCGCCTGGAC3466
|
GTCCAGGCGGTCGCGGG3467
|
Apolipoprotein ECGGACCCGCGACCGCCTGGACGAGGTGAAGGAGCAGGTGG3468
Glu244LysCGGAGGTGCGCGCCAAGCTGGAGGAGCAGGCCCAGCAGAT
gGAG-AAGACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCT
|
AGCTCTTGAGGCGGGCCTGGAAGGCCTCGGCCTGGAGGCGT3469
ATCTGCTGGGCCTGCTCCTCCAGCTTGGCGCGCACCTCCGC
CACCTGCTCCTTCACCTCGTCCAGGCGGTCGCGGGTCCG
|
CCAAGCTGGAGGAGCAG3470
|
CTGCTCCTCCAGCTTGG3471
|
Familial Hypercholesterolemia—LDLR
[0143] Familial hypercholesterolemia is characterized by elevation of serum cholesterol bound to low density lipoprotein (LDL) and is, hence, one of the conditions producing a hyperlipoproteinemia phenotype. Familial hypercholesterolemia is an autosomal dominant disorder characterized by elevation of serum cholesterol bound to low density lipoprotein (LDL). Mutations in the LDL receptor (LDLR) gene cause this disorder. The attached table discloses the correcting oligonucleotide base sequences for the LDLR oligonucleotides of the invention.
29TABLE 28
|
|
LDLR Mutations and Genome-Correcting Oligos
Cilnical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
HypercholesterolaemiaGCGTTGAGAGACCCTTTCTCCTTTTCCTCTCTCTCAGTGGGC3472
Glu10TermGACAGATGCGAAAGAAACGAGTTCCAGTGCCAAGACGGGAA
cGAG-TAGATGCATCTCCTACAAGTGGGTCTGCGATGGCAGCGCTG
|
CAGCGCTGCCATCGCAGACCCACTTGTAGGAGATGCATTTCC3473
CGTCTTGGCACTGGAACTCGTTTCTTTCGCATCTGTCGCCCA
CTGAGAGAGAGGAAAAGGAGAAAGGGTCTCTCAACGC
|
AAAGAAACGAGTTCCAG3474
|
CTGGAACTCGTTTCTTT3475
|
HypercholesterolaemiaAGAGACCCTTTCTCCTTTTCCTCTCTCTCAGTGGGCGACAGA3476
Gln12TermTGCGAAAGAAACGAGTTCCAGTGCCAAGACGGGAAATGCATC
cCAG-TAGTCCTACAAGTGGGTCTGCGATGGCAGCGCTGAGTGCC
|
GGCACTCAGCGCTGCCATCGCAGACCCACTTGTAGGAGATG3477
CATTTCCCGTCTTGGCACTGGAAGTCGTTTCTTTCGCATCTGT
CGCCCACTGAGAGAGAGGAAAAGGAGAAAGGGTCTCT
|
ACGAGTTCCAGTGCCAA3478
|
TTGGCACTGGAACTCGT3479
|
HyperchoiesterolaemiaCCTTTCTCCTTTTCCTCTCTCTCAGTGGGCGACAGATGCGAA3480
Gln14TermAGAAACGAGTTCCAGTGCCAAGACGGGAAATGCATCTCCTAC
cCAA-TAAAAGTGGGTCTGCGATGGCAGCGCTGAGTGCCAGGATG
|
CATCCTGGCACTCAGCGCTGCCATCGCAGACCCACTTGTAG3481
GAGATGCATTTCCCGTCTTGGCACTGGAACT
CATCTGTCGCCCACTGAGAGAGAGGAAAAGGAGAAAGG
|
TCCAGTGCCAAGACGGG3482
|
CCCGTCTTGGCACTGGA3483
|
HypercholesterolaemiaGCGACAGATGCGAAAGAAACGAGTTCCAGTGCCAAGACGGG3484
Trp23TermAAATGCATCTCCTACAAGTGGGTCTGCGATGGCAGCGCTGAG
TGG-TAGTGCCAGGATGGCTCTGATGAGTCCCAGGAGACGTGCTG
|
CAGCACGTCTCCTGGGACTCATCAGAGCCATCCTGGCACTCA3485
GCGCTGCCATCGCAGACCCACTTGTAGGAGATGCATTTCCCG
TCTTGGCACTGGAACTCGTTTCTTTCGCATCTGTCGC
|
CTACAAGTGGGTCTGCG3486
|
CGCAGACCCACTTGTAG3487
|
HypercholesterolaemiaAACGAGTTCCAGTGCCAAGACGGGAAATGCATCTCCTACAAG3488
Ala29SerTGGGTCTGCGATGGCAGCGCTGAGTGCCAGGATGGCTCTGA
cGCT-TCTTGAGTCCCAGGAGACGTGCTGTGAGTCCCCTTTGGGCA
|
TGCCCAAAGGGGACTCACAGCACGTCTCCTGGGACTCATCA3489
GAGCCATCCTGGCACTCAGCGCTGCCATCGCAGACCCACTT
GTAGGAGATGCATTTCCCGTCTTGGCACTGGAACTCGTT
|
ATGGCAGCGCTGAGTGC3490
|
GCACTCAGCGCTGCCAT3491
|
HypercholesterolaemiaTCCAGTGCCAAGACGGGAAATGCATCTCCTACAAGTGGGTCT3492
Cys31TyrGCGATGGCAGCGCTGAGTGCCAGGATGGCTCTGATGAGTCC
TGC-TACCAGGAGACGTGCTGTGAGTCCCCTTTGGGCATGATATG
|
CATATCATGCCCAAAGGGGACTCACAGCACGTCTCCTGGGAC3493
TCATCAGAGCCATCCTGGCACTCAGCGCTGCCATCGCAGAC
CCACTTGTAGGAGATGCATTTCCCGTCTTGGCACTGGA
|
CGCTGAGTGCCAGGATG3494
|
CATCCTGGCACTCAGCG3495
|
HypercholesterolaemiaAATCCTGTCTCTTCTGTAGTGTCTGTCACCTGCAAATCCGGG3496
Arg57CysGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATTCCTCA
cCGT-TGTGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAACG
|
CGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAG3497
GAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCG
GATTTGCAGGTGACAGACACTACAGAAGAGACAGGATT
|
GTGGGGGCCGTGTCAAC3498
|
GTTGACACGGCCCCCAC3499
|
HypercholesterolaemiaTCTGTCACCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCG3500
Gln64TermTGTCAACCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCA
tCAG-TAGAGTGGACTGCGACAACGGCTCAGACGAGCAAGGCTGTC
|
GACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCACTTGGC3501
CATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGG
CCCCCACAGCTGAAGTCCCCGGATTTGCAGGTGACAGA
|
GCATTCCTCAGTTCTGG3502
|
CCAGAACTGAGGAATGC3503
|
HypercholesterolaemiaACCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAA3504
Trp66GlyCCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGG
cTGG-GGGACTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGT
|
ACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCA3505
CTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTG
ACACGGCCCCCACAGCTGAAGTCCCCGGATTTGCAGGT
|
CTCAGTTCTGGAGGTGC3506
|
GCACCTCCAGAACTGAG3507
|
HypercholesterolaemiaCCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAAC3508
Trp66TermCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGA
TGG-TAGCTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTG
|
CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCC3509
ACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTG
ACACGGCCCCCACAGCTGAAGTCCCCGGATTTGCAGG
|
TCAGTTCTGGAGGTGCG3510
|
CGCACCTCCAGAACTGA3511
|
HypercholesterolaemiaAAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTG3512
Cys68ArgCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGA
gTGC-CGCCAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCC
|
GGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGC3513
AGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAG
CGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATTT
|
TCTGGAGGTGCGATGGC3514
|
GCCATCGCACCTCCAGA3515
|
HypercholesterolaemiaATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCA3516
Cys68TrpTTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACA
TGCg-TGGACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCT
|
AGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTC3517
GCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCA
GCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGAT
|
TGGAGGTGCGATGGCCA3518
|
TGGCCATCGCACCTCCA3519
|
HypercholesterolaemiaAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGC3520
Cys68TyrATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGAC
TGC-TACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCC
|
GGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTC3521
GCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCA
GCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATT
|
CTGGAGGTGCGATGGCC3522
|
GGCCATCGCACCTCCAG3523
|
HypercholesterolaemiaTCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCAT3524
Asp69AsnTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACA
cGAT-AATACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTG
|
CAGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGT3525
CGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATG
CAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGA
|
GGAGGTGCGATGGCCAA3526
|
TTGGCCATCGCACCTCC3527
|
HypercholesterolaemiaCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATT3528
Asp69GlyCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAA
GAT-GGTCGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTGC
|
GCAGGGCCACACTTACGACAGCCTTGGTCGTCTGAGCCGTT3529
GTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAAT
GCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGG
|
GAGGTGCGATGGCCAAG3530
|
CTTGGCCATCGCACCTC3531
|
HypercholesterolaemiaTCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCAT3532
Asp69TyrTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACA
cGAT-TATACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTG
|
CAGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGT3533
CGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATG
CAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGA
|
GGAGGTGCGATGGCCAA3534
|
TTGGCCATCGCACCTCC3535
|
HypercholesterolaemiaGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATTCCTCA3536
Gln71GluGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAACGGCT
cCAA-GAACAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTGCCTTTG
|
CAAAGGCAGGGCCACACTTACGACAGCCTTGCTCGTCTGAG3537
CCGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGA
GGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTC
|
GCGATGGCCAAGTGGAC3538
|
GTCCACTTGGCCATCGC3539
|
HypercholesterolaemiaTGTGGGGGCCGTGTCAACCGCTGCATTCCTCAGTTCTGGAG3540
Cys74GlyGTGCGATGGCCAAGTGGACTGCGACAACGGCTCAGACGAGC
cTGC-GGCAAGGCTGTCGTAAGTGTGGCCCTGCCTTTGCTATTGAGC
|
GCTCAATAGCAAAGGCAGGGCCACACTTACGACAGCCTTGCT3541
CGTCTGAGCCGTTGTCGCAGTCCACTTGGCCATCGCACCTC
CAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACA
|
AAGTGGACTGCGACAAC3542
|
GTTGTCGCAGTCCACTT3543
|
HypercholesterolaemiaTCAACCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAG3544
Ser78TermTGGACTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAG
TCA-TGATGTGGCCCTGCGTTTGCTATTGAGCCTATCTGAGTCCT
|
AGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCACACTTA3545
CGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCACTTGG
CCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGA
|
CAACGGCTCAGACGAGC3546
|
GCTCGTCTGAGCCGTTG3547
|
HypercholesterolaemiaCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGA3548
Glu80LysCTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTG
cGAG-AAGGCCCTGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGA
|
TCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCA3549
CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCC
ACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCG
|
GCTCAGACGAGCAAGGC3550
|
GCCTTGCTCGTCTGAGC3551
|
HypercholesterolaemiaCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGA3552
GTu80TermCTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTG
cGAG-TAGGCCCTGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGA
|
TCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCA3553
CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCC
ACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCG
|
GCTCAGACGAGCAAGGC3554
|
GCCTTGCTCGTCTGAGC3555
|
HypercholesterolaemiaTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGC3556
Gln81TermGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCC
gCAA-TAATGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGAGTG
|
CACTCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGG3557
CCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAG
TCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCA
|
CAGACGAGCAAGGCTGT3558
|
ACAGCCTTGCTCGTCTG3559
|
HypercholesterolaemiaTGGGAGACTTCACACGGTGATGGTGGTCTCGGCCCATCCAT3560
Cys88ArgCCCTGCAGCCCCCAAGACGTGCTCCCAGGACGAGTTTCGCT
gTGC-CGCGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTCTGTG
|
CACAGACGAACTGCCGAGAGATGCAGTTCCCATCGTGGCAG3561
CGAAACTCGTCCTGGGAGCACGTCTTGGGGGCTGCAGGGAT
GGATGGGCCGAGACCACCATCACCGTGTGAAGTCTCCCA
|
CCAAGACGTGCTCCCAG3562
|
CTGGGAGCACGTCTTGG3563
|
HypercholesterolaemiaCACGGTGATGGTGGTCTCGGCCCATCCATCCCTGCAGCCCC3564
Glu92TermCAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGATGGGA
cGAG-TAGAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGG
|
CCCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTTC3565
CCATCGTGGCAGCGTAAACTCGTCCTGGGAGCACGTCTTGGG
GGCTGCAGGGATGGATGGGCCGAGACCACCATCACCGTG
|
CCCAGGACGAGTTFCGC3566
|
GCGAAACTCGTCCTGGG3567
|
HypercholesterolaemiaGGTGGTCTCGGCCCATCCATCCCTGCAGCCCCCAAGACGTG3568
Cys95ArgCTCCCAGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCT
cTGC-CGCCTCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGG
|
CCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGCCGAGAG3569
ATGCACTTCCCATCGTGGCAGCGAAACTCGTCCTGGGAGCA
CGTCTTGGGGGCTGCAGGGATGGATGGGCCGAGACCACC
|
AGTTTCGCTGCCACGAT3570
|
ATCGTGGCAGCGAAACT3571
|
HypercholesterolaemiaCTCGGCCCATCCATCCCTGCAGCCCCCAAGACGTGCTCCCA3572
Asp91TyrGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCTCTCGGC
cGAT-TATAGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACGGCT
|
AGCCGTCCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGC3573
CGAGAGATGCACTTCCCATCGTGGCAGCGAAACTCGTCCTG
GGAGCACGTCTTGGGGGCTGCAGGGATGGATGGGCCGAG
|
GCTGCCACGATGGGAAG3574
|
CTTCCCATCGTGGCAGC3575
|
HypercholesterolaemiaGGGTCGGGACACTGCCTGGCAGAGGCTGCGAGCATGGGGC3576
Trp(−12)ArgCCTGGGGCTGGAAATTGCGCTGGACCGTCGCCTTGCTCCTC
cTGG-AGGGCCGCGGCGGGGACTGCAGGTAAGGCTTGCTCCAGGCGCC
|
GGCGCCTGGAGCAAGCCTTACCTGCAGTCCCCGCCGCGGC3577
GAGGAGCAAGGCGACGGTCCAGCGCAATTCCAGCCCCAGG
GCCCCATGCTCGCAGCCTCTGCCAGGCAGTGTCCCGACCC
|
AATTGCGCTGGACCGTC3578
|
GACGGTCCAGCGCAATT3579
|
HypercholesterolaemiaCAGCAGGTCGTGATCCGGGTCGGGACACTGCCTGGCAGAGG3580
Trp(−18)TermCTGCGAGCATGGGGCCCTGGGGCTGGAAATTGCGCTGGACC
TGGg-TGAGTCGCCTTGCTCCTCGCCGCGGCGGGGACTGCAGGTAAG
|
CTTACCTGCAGTCCCCGCCGCGGCGAGGAGCAAGGCGACG3581
GTCCAGCGCAATTTCCAGCCCCAGGGCCCCATGCTCGCAGC
CTCTGCCAGGCAGTGTCCCGACCCGGATCACGACCTGCTG
|
GGGCCCTGGGGCTGGAA3582
|
TTCCAGCCCCAGGGCCC3583
|
HypercholesterolaemiaCAGCTAGGACACAGCAGGTCGTGATCCGGGTCGGGACACTG3584
Met(−21)LeuCCTGGCAGAGGCTGCGAGCATGGGGCCCTGGGGCTGG
cATG-TTGTTGCGCTGGACCGTCGCCTTGCTCCTCGCCGCGGCGGGGA
|
TCCCCGCCGCGGCGAGGAGCAAGGCGACGGTCCAGCGCAA3585
TTTCCAGCCCCAGGGCCCCATGCTCGCAGCCTCTGCCAGGC
AGTGTGCCGACCCGGATCACGACCTGCTGTGTCCTAGCTG
|
CTGCGAGCATGGGGCCC3586
|
GGGCCCCATGCTCGCAG3587
|
HypercholesterolaemiaCAGCTAGGACACAGCAGGTCGTGATCCGGGTCGGGACACTG3588
Met(−21 )ValCCTGGCAGAGGCTGCGAGCATGGGGCCCTGGGGCTGG
cATG-GTGTTGCGCTGGACCGTCGCCTTGCTCCTCGCCGCGGCGGGGA
|
TCCCCGCCGCGGCGAGGAGCAAGGCGACGGTCCAGCGCAA3589
TTTCCAGCCCCAGGGCCCCATGCTCGCAGCCTCTGCCAGGC
AGTGTCCCGACCCGGATCACGACCTGCTGTGTCCTAGCTG
|
CTGCGAGCATGGGGCCC3590
|
GGGCCCCATGCTCGCAG3591
|
HypercholesterolaemiaATCCCTGCAGCCCCCAAGACGTGCTCCCAGGACGAGTTTCG3592
lle101PheCTGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTCTGTGA
cATC-TTCCTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGCCT
|
AGGCCTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCA 3593
CAGACGAACTGCCGAGAGATGCACTTCCCATCGTGGCAGCG
AAACTCGTCCTGGGAGCACGTCTTGGGGGCTGCAGGGAT
|
GGAAGTGCATCTCTCGG3594
|
CCGAGAGATGCACTTCC3595
|
HypercholesterolaemiaGCCCCCAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGA3596
Gln104TermTGGGAAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCG
gCAG-TAGGGACTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGG
|
CCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCAGTCCCG3597
GTCTGAGTCACAGACGAACTGCCGAGAGATGCACTTCCCATC
GTGGCAGCGAAACTCGTCCTGGGAGCACGTCTTGGGGGC
|
TCTCTCGGCAGTTCGTC3598
|
GACGAACTGCCGAGAGA3599
|
HypercholesterolaemiaTTFCGCTGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTC3600
Cys113ArgTGTGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGC
cTGC-CGCCTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCC
|
GGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGC3601
CTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCACAGA
CGAACTGCCGAGAGATGCACTTCCCATCGTGGCAGCGAAA
|
ACCGGGACTGCTTGGAC3602
|
GTCCAAGCAGTCCCGGT3603
|
HypercholesterolaemiaAAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGGAC3604
Glu119LysTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCAC
cGAG-AAGCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCT
|
AGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTG3605
AGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCATTAGCAGTC
CCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTT
|
GCTCAGACGAGGCCTCC3606
|
GGAGGCCTCGTCTGAGC3607
|
HypercholesterolaemiaAAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGGAC3608
Glu119TermTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCAC
cGAG-TAGCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCT
|
AGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTG3609
AGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCAGTC
CCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTT
|
GCTCAGACGAGGCCTCC3610
|
GGAGGCCTCGTCTGAGC3611
|
HypercholesterolaemiaTCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACG3612
Cys122TermGCTCAGACGAGGCCTCCTGCCCGGTGCTCACCTGTGGTCCC
TGCc-TGAGCCAGCTFCCAGTGCAACAGCTCCACCTGCATCCCCCAG
|
CTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGG3613
GACCACAGGTGAGCACCGGGCAGGAGGCCTCGTCTGAGCC
GTCCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGCCGA
|
GCCTCCTGCCCGGTGCT3614
|
AGCACCGGGCAGGAGGC3615
|
HypercholesterolaemiaTGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGCCT3616
Cys127TrpCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCCAGTGC
TGTg-TGGAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGAC
|
GTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGC3617
ACTGGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGA
GGCCTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCA
|
CTCACCTGTGGTCCCGC3618
|
GCGGGACCACAGGTGAG3619
|
HypercholesterolaemiaTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCAC3620
Gln133TermCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCAT
cCAG-TAGCCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCG
|
CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT3621
GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGG
TGAGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCA
|
CCAGCTTCCAGTGCAAC3622
|
GTTGCACTGGAAGCTGG3623
|
HypercholesterolaemiaTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCACCTG3624
Cys134GlyTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATCC
gTGC-GGCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAG
|
CTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGG3625
ATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA
GGTGAGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAA
|
GCTTCCAGTGCAACAGC3626
|
GCTGTTGCACTGGAAGC3627
|
HypercholesterolaemiaGAGGCCTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTT3628
Cys139GlyCCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCT
cTGC-GGCGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGT
|
ACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAG3629
GCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAA
GCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGCCTC
|
GCTCCACCTGCATCCCC3630
|
GGGGATGCAGGTGGAGC3631
|
HypercholesterolaemiaAGGCCTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTC3632
Cys139TyrCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTG
TGC-TACCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTG
|
CACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCA3633
GGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGA
AGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGCCT
|
CTCCACCTGCATCCCCC3634
|
GGGGGATGCAGGTGGAG3635
|
HypercholesterolaemiaCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCAT3636
Cys146TermCCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAG
TGCg-TGAATGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTT
|
AAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTTC3637
GCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATG
CAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAG
|
TGGGCCTGCGACAACGA3638
|
TCGTTGTCGCAGGCCCA3639
|
HypercholesterolaemiaTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC3640
Asp147AsnCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGA
cGAC-AACTGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTT
|
AAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT3641
CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT
GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA
|
GGGCCTGCGACAACGAC3642
|
GTCGTTGTCGCAGGCCC3643
|
HypercholesterolaemiaTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC3644
Asp147HisCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGA
cGAC-CACTGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTT
|
AAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT3645
CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT
GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA
|
GGGCCTGCGACAACGAC3646
|
GTCGTTGTCGCAGGCCC3647
|
HypercholesterolaemiaTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC3648
Asp147TyrCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGA
cGAC-TACTGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTT
|
AAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT3649
CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT
GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA
|
GGGCCTGCGACAACGAC3650
|
GTCGTTGTCGCAGGCCC3651
|
HypercholesterolaemiaTTCCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGC3652
Cys152ArgCTGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGT
cTGC-CGCGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGG
|
CCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCAC3653
TCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGC
CCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAA
|
ACCCCGACTGCGAAGAT3654
|
ATCTTCGCAGTCGGGGT3655
|
HypercholesterolaemiaTTCCAGTGCAACAGCTCCACCTGCATGCCCCAGCTGTGGGC3656
Cys152GlyCTGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGT
cTGC-GGCGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGG
|
CCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCAC3657
TCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGC
CCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAA
|
ACCCCGACTGCGAAGAT3658
|
ATCTTCGCAGTCGGGGT3659
|
HypercholesterolaemiaCCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCT3660
Cys152TrpGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGG
TGCg-TGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGAC
|
GTCCCCTFGGAACACGTAAAAGACCCCTACAGCGCTGCGGCC3661
ACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAG
GCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGG
|
CCCGACTGCGAAGATGG3662
|
CCATCTTCGCAGTCGGG3663
|
HypercholesterolaemiaTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGA3664
Asp154AsnCAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGC
aGAT-AATAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTA
|
TACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCG3665
GCCACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCG
CAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCA
|
ACTGCGAAGATGGCTCG3666
|
CGAGCCATCTTCGCAGT3667
|
HypercholesterolaemiaGCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGACAACGAC3668
Ser156LeuCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGCAGCGCTG
TCG-HGTAGGGGTCTTFACGTGTTCCAAGGGGACAGTAGCCCCTG
|
CAGGGGCTACTGTCCCCTTGGAACACGTAAAGACCCCTACAG3669
CGCTGCGGCCACTCATCCGAGCCATCTTCGCAGTCGGGGTC
GTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGC
|
AGATGGCTCGGATGAGT3670
|
ACTCATCCGAGCCATCT3671
|
HypercholesterolaemiaTGTGGGCCTGCGACAACGACCCCGACTGCGAAGATGGCTCG3672
Cys163TyrGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAA
TGT-TATGGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTG
|
CAGTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTG3673
GAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCG
AGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACA
|
GCAGCGCTGTAGGGGTC3674
|
GACCCCTACAGCGCTGC3675
|
HypercholesterolaemiaCAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGC3676
Tyr167TermAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGC
TACg-TAGCCCTGCTCGGCCTTCGAGTTCCACTGCCTAAGTGGCGAG
|
CTCGCCACTTAGGCAGTGGAACTCGAAGGCCGAGCAGGGGC3677
TACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCG
GCCACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTG
|
GGTCTTTACGTGTTCCA3678
|
TGGAACACGTAAAGACC3679
|
HypercholesterolaemiaCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGCAGCGCTG3680
Gln170TermTAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGCCCCTGCTC
cCAA-TAAGGCCHCGAGTTCCACTGCCTAAGTGGCGAGTGCATCC
|
GGATGCACTCGCCACTTAGGCAGTGGAACTCGAAGGCCGAG3681
CAGGGGCTACTGTCCCCTTGGAACACGTAAAGACCCCTACAG
CGCTGCGGCCACTCATCCGAGCCATCTTCGCAGTCGGG
|
ACGTGTTCCAAGGGGAC3682
|
GTCCCCTTGGAACACGT3683
|
HypercholesterolaemiaCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTC3684
Cys176PheCAAGGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTG
TGC-TTCCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGA
|
TCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA3685
GTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTGGA
ACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCG
|
TAGCCCCTGCTCGGCCT3686
|
AGGCCGAGCAGGGGCTA3687
|
HypercholesterolaemiaCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTC3688
Cys176TyrCAAGGGGACAGTAGCCCCTGCTCGGCCTFCGAGTTCCACTG
TGC-TACCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGA
|
TCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA3689
GTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTGGA
ACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCG
|
TAGCCCCTGCTCGGCCT3690
|
AGGCCGAGCAGGGGCTA3691
|
HypercholesterolaemiaATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAG3692
Ser177LeuGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTGCCTA
TCG-TTGAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATGG
|
CCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAG3693
GCAGTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTT
GGAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCAT
|
CCCCTGCTCGGCCTTCG3694
|
CGAAGGCCGAGCAGGGG3695
|
HypercholesterolaemiaTACGTGTTCCAAGGGGACAGTAGCCCCTGCTCGGCCTTCGA3696
Glu187LysGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGC
cGAG-AAGGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACG
|
CGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGC3697
CAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTC
GAAGGCCGAGCAGGGGCTACTGTCCCCTTGGAACACGTA
|
TAAGTGGCGAGTGCATC3698
|
GATGCACTCGCCACTTA3699
|
HypercholesterolaemiaCAAGGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTG3700
His190TyrCCTPAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATG
cCAC-TACGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACT
|
AGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCAT3701
CACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAG
TGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTG
|
AGTGCATCCACTCCAGC3702
|
GCTGGAGTGGATGCACT3703
|
HypercholesterolaemiaCCTTCGAGTFCCACTGCCTAAGTGGCGAGTGCATCCACTCCA3704
Gly198AspGCTGGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCT
GGC-GACGACGAGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGG
|
CCCACCCTGGCCCCGCCCATACCGCAGTTTTCCTCGTCAGAT3705
TTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGA
GTGGATGCACTCGCCACTTAGGCAGTGGAACTCGAAGG
|
TGATGGTGGCCCCGACT3706
|
AGTCGGGGCCACCATCA3707
|
HypercholesterolaemiaGAGTTCCACTGCCTAAGTGGCGAGTGCATCCAGTCCAGCTG3708
Asp200AsnGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACG
cGAC-AACAGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGG
|
CCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTTCCTCG3709
TCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAG
CTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTC
|
GTGGCCCCGACTGCAAG3710
|
CTTGCAGTCGGGGCCAC3711
|
HypercholesterolaemiaAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGC3712
Asp200GlyGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAG
GAC-GGCGAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGG
|
CCCGCCCCCACCCTGGCCCCGCCCATACCGCAGJTFTCCTC3713
GTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCA
GCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACT
|
TGGCCCCGACTGCAAGG3714
|
CCTTGCAGTCGGGGCCA3715
|
HypercholesterolaemiaGAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTG3716
Asp200TyrGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACG
cGAC-TACAGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGG
|
CCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTFCCTCG3717
TCAGATTTGTCCTTGCAGTGGGGGCCACCATCACAGCGCCAG
CTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTC
|
GTGGCCCCGACTGCAAG3718
|
CTTGCAGTCGGGGCCAC3719
|
HypercholesterolaemiaCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCT3720
Cys201TermGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAA
TGCa-TGAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGT
|
ACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTT3721
CCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGC
GCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGG
|
CCCGACTGCAAGGACAA3722
|
TTGTCCTTGCAGTCGGG3723
|
HypercholesterolaemiaTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGC3724
Cys201TyrTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGA
TGC-TACAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCG
|
CGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTTC3725
CTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCG
CCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGA
|
CCCCGACTGCAAGGACA3726
|
TGTCCTTGCAGTCGGGG3727
|
HypercholesterolaemiaTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGA3728
Asp203AsnTGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACT
gGAC-AACGCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCGTA
|
TAGGACGCCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA3729
GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATC
ACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA
|
ACTGCAAGGACAAATCT3730
|
AGATTTGTCCTTGCAGT3731
|
HypercholesterolaemiaGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGAT3732
Asp203GlyGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTG
GAC-GGCCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTAT
|
ATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA3733
GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATC
ACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGC
|
CTGCAAGGACAAATCTG3734
|
CAGATTTGTCCTTGCAG3735
|
HypercholesterolaemiaGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGAT3736
Asp203ValGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTG
GAC-GTCCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTAT
|
ATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA3737
GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATC
ACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGC
|
CTGCAAGGACAAATCTG3738
|
CAGATTTGTCCTTGCAG3739
|
HypercholesterolaemiaAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGG3740
Ser205ProCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTGCGGTAT
aTCT-CCTGGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCT
|
AGGTGATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATA3741
CCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCA
CCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACT
|
AGGACAAATCTGACGAG3742
|
CTGGTCAGATTTGTCCT3743
|
HypercholesterolaemiaCGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCG3744
Asp206GluACTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGC
GACg-GAGGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCC
|
GGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCCG3745
CCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCG
GGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCG
|
AAATCTGACGAGGAAAA3746
|
TTTTCCTCGTCAGATTT3747
|
HypercholesterolaemiaGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA3748
Glu207GlnCTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGCG
cGAG-CAGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCT
|
AGGGACAGGTGATAGGACGCCCCGCCCCCACGCTGGCCCC3749
GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTC
GGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTC
|
AATCTGACGAGGAAAAC3750
|
GTTTTCCTCGTCAGATT3751
|
HypercholesterolaemiaGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA3752
Glu207LysCTGCAAGGACPAATCTGACGAGGAAAACTGCGGTATGGGCG
cGAG-AAGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCT
|
AGGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCC3753
GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTC
GGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTC
|
AATCTGACGAGGAAAAC3754
|
GTTTTCCTCGTCAGATT3755
|
HypercholesterolaemiaGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA3756
Glu207TermCTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGCG
cGAG-TAGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCT
|
AGGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCC3757
GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTC
GGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTC
|
AATCTGACGAGGAAAAC3758
|
GTTTTCCTCGTCAGATT3759
|
HypercholesterolaemiaTCTTGAGAAAATCAACACACTCTGTCCTGTTTTCCAGCTGTGG3760
Glu219LysCCACCTGTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACT
cGAA-AAAGCATCCATGGCAGCCGGCAGTGTGACCGGGAATATG
|
CATATTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTTC3761
CATCAGAGCACTGGAATTCGTCAGGGCGACAGGTGGCCACA
GCTGGAAAACAGGACAGAGTGTGTTGATTTTCTCAAGA
|
GCCCTGACGAATTCCAG3762
|
CTGGAATTCGTCAGGGC3763
|
HypercholesterolaemiaGAAAATCAACACACTCTGTCCTGTTYFCCAGGTGTGGCCACCT3764
Gln221TermGTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCC
cCAG-TAGATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCA
|
TGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATGC3765
AGTTTCCATCAGAGCACTGGAATTCGTCAGGGCGACAGGTGG
CCACAGCTGGAAAACAGGACAGAGTGTGTTGATTTTC
|
ACGAATTCCAGTGCTCT3766
|
AGAGCACTGGAATTCGT3767
|
HypercholesterolaemiaCCTGTTTTCCAGCTGTGGCCACCTGTCGCCCTGACGAATTCC3768
Cys227PheAGTGCTCTGATGGAAACTGCATCCATGGCAGCCGGCAGTGT
TGC-TTCGACCGGGAATATGACTGCAAGGACATGAGCGATGAAGT
|
ACTTCATCGCTCATGTCCTTGCAGTCATATTCCCGGTCACACT3769
GCCGGCTGCCATGGATGCAGTTTCCATCAGAGCACTGGAATT
CGTCAGGGCGACAGGTGGCCACAGCTGGAAAACAGG
|
TGGAAACTGCATCCATG3770
|
CATGGATGCAGTTTCCA3771
|
HypercholesterolaemiaTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCCA3772
Asp235GluTGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGACA
GACc-GAATGAGCGATGAAGTTGGTTAATGGTGAGCGCTGG
|
CCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCATGTC3773
CTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGAT
GCAGTTTCCATCAGAGCACTGGAATTCGTCAGGGCGA
|
CAGTGTGACCGGGAATA3774
|
TATTCCCGGTCACACTG3775
|
HypercholesterolaemiaGTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCC3776
Asp235GlyATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGAC
GAC-GGCATGAGCGATGAAGTTGGCTGCGTTAATGGTGAGCGCTG
|
CAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCATGTCC3777
TTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATG
CAGTTTCCATCAGAGCACTGGAATFCGTCAGGGCGAC
|
GCAGTGTGACCGGGAAT3778
|
ATTCCCGGTCACACTGC3779
|
HypercholesterolaemiaCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCCATGGC3780
Glu237LysAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGACATGAG
gGAA-AAACGATGAAGTTGGCTGCGTTAATGGTGAGCGCTGGCCAT
|
ATGGCCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCA3781
TGTCCTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCAT
GGATGCAGTTTCCATCAGAGCACTGGAATTCGTCAGG
|
GTGACCGGGAATATGAC3782
|
GTCATATTCCCGGTCAC3783
|
HypercholesterolaemiaTCCAGTGCTCTGATGGAAACTGCATCCATGGCAGCCGGCAGT3784
Cys240PheGTGACCGGGAATATGACTGCAAGGACATGAGCGATGAAGTTG
TGC-TTCGCTGCGTTAATGGTGAGCGCTGGCCATCTGGTTFTCC
|
GGAAAACCAGATGGCCAGCGCTCACCABAACGCAGCCAACT3785
TCATCGCTCATGTCCTTGCAGTCATATTCCCGGTCACACTGC
CGGCTGCCATGGATGCAGTTTCCATCAGAGCACTGGA
|
ATATGACTGCAAGGACA3786
|
TGTCCTTGCAGTCATAT3787
|
HypercholesterolaemiaAAACTGCATCCATGGCAGCCGGCAGTGTGACCGGGAATATG3788
Asp245GluACTGCAAGGACATGAGCGATGAAGTTGGCTGCGTTAATGGTG
GATg-GAAAGCGCTGGCCATCTGGTTTTCCATCCCCCATTCTCTGT
|
ACAGAGAATGGGGGATGGAAAACCAGATGGCCAGCGCTCAC3789
CATTAACGGAGCCAACTTCATCGCTCATGTCCTTGCAGTCATA
TTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTT
|
ATGAGCGATGAAGTTGG3790
|
CCAACTTCATCGCTCAT3791
|
HypercholesterolaemiaATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGAC3792
Cys249TyrATGAGCGATGAAGTTGGCTGCGTTAATGGTGAGCGCTGGCC
TGC-TACATCTGGTTTTCCATCCCCCATTCTCTGTGCCTTGCTGCT
|
AGCAGCAAGGCACAGAGAATGGGGGATGGAAAACCAGATGG3793
CCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCATGTC
CTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCAT
|
AGTTGGCTGCGTTAATG3794
|
CATTAACGCAGCCAACT3795
|
HypercholesterolaemiaAGGCTCAGACACACCTGACCTTCCTCCTTCCTCTCTCTGGCT3796
Glu256LysCTCACAGTGACACTCTGCGAGGGACCCAACAAGTTCAAGTGT
cGAG-AAGCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCA
|
TGCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACACT3797
TGAACTTGTTGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCA
GAGAGAGGAAGGAGGAAGGTCAGGTGTGTCTGAGCCT
|
CACTCTGCGAGGGACCC3798
|
GGGTGCCTCGCAGAGTG3799
|
HypercholesterolaemiaCCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGACCCAA3800
Ser265ArgCAAGTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAA
AGCg-AGAAGTCTGCAACATGGCTAGAGACTGCCGGGACTGGTCA
|
TGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTGTC3801
CAGGGTGATGCATTCGCCGCTGTGACACTTGAACTTGTFGGG
TCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGAGAGG
|
TGTCACAGCGGCGAATG3802
|
CATTCGCCGCTGTGACA3803
|
HypercholesterolaemiaTCTCTGGCTCTCACAGTGACACTCTGCGAGGGACCCAACAAG3804
Glu267LysTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTC
cGAA-AAATGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATG
|
CATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTT3805
TGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACTTGT
TGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGA
|
ACAGCGGCGAATGCATC3806
|
GATGCATTCGCCGCTGT3807
|
HypercholesterolaemiaTCTCTGGCTCTGACAGTGACACTCTGCGAGGGACCCAACAAG3808
Glu267TermTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTC
cGAA-TAATGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATG
|
CATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTT3809
TGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACTFGT
TGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGA
|
ACAGCGGCGAATGCATC3810
|
GATGCATTCGCCGCTGT3811
|
HypercholesterolaemiaACACTCTGCGAGGGACCCAACAAGTTCAAGTGTCACAGCGG3812
Lys273GluCGAATGCATCACCCTGGACAAAGTCTGCAACATGGCTAGAGA
cAAA-GAACTGCCGGGACTGGTCAGATGAACCCATCAAAGAGTGCG
|
CGCACTCTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTC3813
TAGCCATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGC
TGTGACACTTGAACTTGTTGGGTCCCTCGCAGAGTGT
|
CCCTGGACAAAGTCTGC3814
|
GCAGACTTTGTCCAGGG3815
|
HypercholesterolaemiaCGAGGGACCCAACAAGTTCAAGTGTCACAGCGGCGAATGCA3816
Cys275TermTCACCCTGGACAAAGTCTGCAACATGGCTAGAGACTGCCGG
TGCa-TGAGACTGGTCAGATGAACCCATCAAAGAGTGCGGTGAGTCT
|
AGACTCACCGCACTCTTTGATGGGTTCATCTGACCAGTCCCG3817
GCAGTCTCTAGCCATGTTGCAGACTTFGTCCAGGGTGATGCA
TTCGCCGCTGTGACACTTGAACTTGTTGGGTCCCTCG
|
AAAGTCTGCAACATGGC3818
|
GCCATGTTGCAGACTTT3819
|
HypercholesterolaemiaAGTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAG3820
Asp280GlyTCTGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATGAA
GAC-GGCCCCATCAAAGAGTGCGGTGAGTCTCGGTGCAGGCGGCT
|
AGCCGCCTGCACCGAGACTCACCGCACTCTTTGATGGGTTCA3821
TCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTG
TCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACT
|
GGCTAGAGACTGCCGGG3822
|
CCCGGCAGTCTCTAGCC3823
|
HypercholesterolaemiaTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCT3824
Cys281TyrGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCC
TGC-TACATCAAAGAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGC
|
GCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGATGGG3825
TTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGAC
TTTGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGA
|
TAGAGACTGCCGGGACT3826
|
AGTCCCGGCAGTCTCTA3827
|
HypercholesterolaemiaTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAAC3828
Asp283AsnATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAA
gGAC-AACGAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGT
|
ACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGA3829
TGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGC
AGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACA
|
ACTGCCGGGACTGGTCA3830
|
TGACCAGTCCCGGCAGT3831
|
HypercholesterolaemiaTCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAACAT3832
Asp283GluGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAAG
GACt-GAGAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTT
|
AAACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTT3833
GATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTT
GCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGA
|
TGCCGGGACTGGTCAGA3834
|
TCTGACCAGTCCCGGCA3835
|
HypercholesterolaemiaTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAAC3836
Asp283TyrATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAA
gGAC-TACGAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGT
|
ACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGA3837
TGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGC
AGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACA
|
ACTGCCGGGACTGGTCA3838
|
TGACCAGTCCCGGCAGT3839
|
HypercholesterolaemiaCAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAACATGG3840
Trp284TermCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCTAAAGAGT
TGGt-TGAGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTTGTG
|
CACTAAACTCTGCAAGCCGCCTGCACCGAGACTGACCGCACT3841
CTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCA
TGTTGCAGACTTFGTCCAGGGTGATGCATTCGCCGCTG
|
CGGGACTGGTCAGATGA3842
|
TCATCTGACCAGTCCCG3843
|
HypercholesterolaemiaGCGGCGAATGCATCACCCTGGACAAAGTCTGCAACATGGCTA3844
Ser285LeuGAGACTGCCGGGACTGGTCAGATGAACCCATCAAAGAGTGC
TCA-TTAGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTTGTGGG
|
CCCACAAACTCTGCAAGCCGCCTGCACCGAGACTCACCGCA3845
CTCTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGC
CATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGC
|
GGACTGGTCAGATGAAC3846
|
GTTCATCTGACCAGTCC3847
|
HypercholesterolaemiaCCCTGGACTAAAGTCTGCAACATGGCTAGAGACTGCCGGGAC3848
Lys290ArgTGGTCAGATGAACCCATCAAAGAGTGCGGTGAGTCTCGGTG
AAA-AGACAGGCGGCTTGCAGAGTTTGTGGGGAGCCAGGAAAGGGA
|
TCCCTTTCGTGGCTCCCCACAAACTCTGCAAGCCGCCTGCAC3849
CGAGACTCACCGCACTCTTTGATGGGTTCATCTGACCAGTCC
CGGCAGTCTCTAGCCATGTTGCAGACTTTGTCCAGGG
|
ACCCATCAAAGAGTGCG3850
|
CGCACTCTTTGATGGGT3851
|
HypercholesterolaemiaGGGTAGGGGCCCGAGAGTGACCAGTCTGCATCCCCTGGCCC3852
Cys297PheTGCGCAGGGACCAACGAATGCTTGGACAACAACGGCGGCTG
TGC-TTCTTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTG
|
CACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAG3853
CCGCCGTTGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGG
CCAGGGGATGCAGACTGGTCACTCTCGGGCCCCTACCC
|
CAACGAATGCTTGGACA3854
|
TGTCCAAGCATTCGTTG3855
|
HypercholesterolaemiaGGGTAGGGGCCCGAGAGTGACCAGTCTGCATCCCCTGGCCC3856
Cys297TyrTGCGCAGGGACCAACGAATGCTTGGACAACAACGGCGGCTG
TGC-TACTTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTG
|
CACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAG3857
CCGCCGTTGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGG
CCAGGGGATGCAGACTGGTCACTCTCGGGCCCCTACCC
|
CAACGAATGCTTGGACA3858
|
TGTCCAAGCATTCGTTG3859
|
HypercholesterolaemiaTGCATCCCCTGGCCCTGCGCAGGGACCAACGAATGCTTGGA3860
His306TyrCAACAACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGAT
cCAC-TACCGGCTACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGG
|
CCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGATC3861
TTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCC
AAGCATTCGTTGGTCCCTGCGCAGGGCCAGGGGATGCA
|
GCTGTTCCCACGTCTGC3862
|
GCAGACGTGGGAACAGC3863
|
HypercholesterolaemiaCCCTGGCCCTGCGCAGGGACCAACGAATGCTTGGACAACAA3864
Cys308GlyCGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTA
cTGC-GGCCGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCC
|
GGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTA3865
GCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGT
TGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGGCCAGGG
|
CCCACGTCTGCAATGAC3866
|
GTCATTGCAGACGTGGG3867
|
HypercholesterolaemiaCCTGGCCCTGCGCAGGGACCAACGAATGCTTGGACAACAAC3868
Cys308TyrGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTAC
TGC-TACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCA
|
TGGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTA3869
GCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTT
GTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGGCCAGG
|
CCACGTCTGCAATGACC3870
|
GGTCATTGCAGACGTGG3871
|
HypercholesterolaemiaACCAACGAATGCTTGGACAACAACGGCGGCTGTTCGCACGTC3872
Gly314SerTGCAATGACCTTAAGATCGGCTACGAGTGGCTGTGCCCCGAC
cGGC-AGCGGCTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTG
|
CACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCCGTCG3873
GGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGAC
GTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGTTGGT
|
TTAAGATCGGCTACGAG3874
|
CTCGTAGCCGATCTTAA3875
|
HypercholesterolaemiaCCAACGAATGCTTGGACAACAACGGCGGCTGTTCCCACGTCT3876
Gly314ValGCAATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGAC
GGC-GTCGGCTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGA
|
TCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCCGTC3877
GGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGA
CGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGTTGG
|
TAAGATCGGCTACGAGT3878
|
ACTCGTAGCCGATCTTA3879
|
HyperchoesterolaemiaCGAATGCTTGGACAACAACGGCGGCTGTTCCCACGTCTGCAA3880
Tyr315TermTGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTT
TACg-TAACCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTC
|
GAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCC3881
GTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCA
GACGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCG
|
ATCGGCTACGAGTGCCT3882
|
AGGCACTCGTAGCCGAT3883
|
HypercholesterolaemiaTGCTTGGACAACTAACGGCGGCTGTTCCCACGTCTGCAATGAC3884
Cys317GlyCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTTCCA
gTGC-GGCGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCGGG
|
CCCGGAAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGG3885
AAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTC
ATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCA
|
GCTACGAGTGCCTGTGC3886
|
GCACAGGCACTCGTAGC3887
|
HypercholesterolaemiaTGCTTGGACAACAACGGCGGCTGTTCCCACGTCTGCAATGAC3888
Cys317SerCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTTCCA
gTGC-AGCGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCGGG
|
CCCGGAAATCACCTFCGCATCTTCGCTGGGCCACCAGCTGG3889
AAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTC
ATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCA
|
GCTACGAGTGCCTGTGC3890
|
GCACAGGCACTCGTAGC3891
|
HypercholesterlaemiaACAACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCG 3892
Pro320ArgGCTACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCC
CCC-CGCCAGCGAAGATGCGAAGGTGATTTCCGGGTGGGACTGAG
|
CTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTGGGCC3893
ACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGAT
CTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGT
|
CCTGTGCCCCGACGGCT3894
|
AGCCGTCGGGGCACAGG3895
|
HypercholesterolaemiaAACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGC3896
Asp321AsnTACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCA
cGAC-AACGCGAAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCC
|
GGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTGGG3897
CCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCG
ATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTT
|
TGTGCCCCGACGGCTTC3898
|
GAAGCCGTCGGGGCACA3899
|
HypercholesterolaemiaCGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTA3900
Asp321GluCGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGC
GACg-GAGGAAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCCCT
|
AGGGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTG3901
GGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAG
CCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCG
|
TGCCCCGACGGCTTCCA3902
|
TGGAAGCCGTCGGGGCA3903
|
HypercholesterolaemiaGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTAC3904
Gly322SerGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGCG
cGGC-AGCAAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCCCTG
|
CAGGGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCT3905
GGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTA
GCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGGC
|
GCCCCGACGGCTTCCAG3906
|
CTGGAAGCCGTCGGGGC3907
|
HypercholesterolaemiaTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTGC3908
Gln324TermCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGCGAAGATG
cCAG-TAGCGAAGGTGATTTCCGGGTGGGACTGAGCCCTGGGCCCC
|
GGGGCCCAGGGCTCAGTCCCACCCGGAAATCACCTTCGCAT3909
CTTCGCTGGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCA
CTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACA
|
ACGGCTTCCAGCTGGTG3910
|
CACCAGCTGGAAGCCGT3911
|
HypercholesterolaemiaATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGC3912
Arg329ProTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCG
CGA-CCAGGTGGGACTGAGCCCTGGGCCCGCTCTGCGCTTCCTGAC
|
GTCAGGAAGCGCAGAGGGGGCCCAGGGCTCAGTCCCACCC3913
GGAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAG
CCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCAT
|
GGCCCAGCGAAGATGCG3914
|
CGCATCTTCGCTGGGCC3915
|
HypercholesterolaemiaAATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGG3916
Arg329TermCTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCC
gCGA-TGAGGGTGGGACTGAGCCCTGGGCCCCCTCTGCGCTTCCTGA
|
TCAGGAAGCGCAGAGGGGGCCCAGGGCTCAGTCCCACCCG3917
GAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCC
GTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATT
|
TGGCCCAGCGAAGATGC3918
|
GCATCTTCGCTGGGCCA3919
|
HypercholesterolaemiaTCTAGCCATTGGGGAAGAGCCTCCCCACCAAGCCTCTTTCTC3920
Glu336LysTCTCTTCCAGATATCGATGAGTGTCAGGATCCCGACACCTGC
tGAG-AAGAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACAAGT
|
ACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAG3921
GTGTCGGGATCCTGACACTCATCGATATCTGGAAGAGAGAGA
AAGAGGCTTGGTGGGGAGGCTCTTCCCCAATGGCTAGA
|
ATATCGATGAGTGTCAG3922
|
CTGACACTCATCGATAT3923
|
HypercholesterolaemiaCATTGGGGAAGAGCCTCCCCACCAAGCCTCTTTCTCTCTCTT3924
Gln338TermCCAGATATCGATGAGTGTCAGGATCCCGACACCTGCAGCCAG
tCAG-TAGCTCTGCGTGAACCTGGAGGGTGGCTACAAGTGCCAGT
|
ACTGGCACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGG3925
CTGCAGGTGTCGGGATCCTGACACTCATCGATATCTGGAAGA
GAGAGAAAGAGGCTTGGTGGGGAGGCTCTTCCCCAATG
|
ATGAGTGTCAGGATCCC3926
|
GGGATCCTGACACTCAT3927
|
HypercholesterolaemiaTCCCCACCAAGCCTCTTFCTCTCTCTTCCAGATATCGATGAGT3928
Cys343ArgGTCAGGATCCCGACACCTGCAGCCAGCTCTGCGTGAACCTG
cTGC-CGCGAGGGTGGCTACAAGTGCCAGTGTGAGGAAGGCTTCC
|
GGAAGCCTTCCTCACACTGGCACTTGTAGCCACCCTCCAGGT3929
TCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTGACACTCA
TCGATATCTGGAAGAGAGAGAAAGAGGCTTGGTGGGGA
|
CCGACACCTGCAGCCAG3930
|
CTGGCTGCAGGTGTCGG3931
|
HypercholesterolaemiaCAAGCCTCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGA3932
Gln345ArgTCCCGACACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTG
CAG-CGGGCTACAAGTGCCAGTGTGAGGAAGGCTTCCAGCTGGA
|
TCCAGCTGGAAGCCTTCCTCAGACTGGCACTTGTAGCCACCC3933
TCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTG
ACACTCATCGATATCTGGAAGAGAGAGAAAGAGGCTTG
|
CTGCAGCCAGCTCTGCG3934
|
CGCAGAGCTGGCTGCAG3935
|
HypercholesterolaemiaTCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGATCCCGA3936
Cys347TyrCACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACA
TGC-TACAGTGCCAGTGTGAGGAAGGCTTCCAGCTGGACCCCCA
|
TGGGGGTCCAGCTGGAAGCCTTCCTCACACTGGCACTTGTA3937
GCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGG
GATCCTGACAGTCATCGATATCTGGAAGAGAGAGAAAGA
|
CCAGCTCTGCGTGAACC3938
|
GGTTCACGCAGAGCTGG3939
|
HypercholesterolaemiaCTCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGATCCCG3940
Cys347ArgACACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTAC
cTGC-CGCAAGTGCCAGTGTGAGGAAGGCTTCCAGCTGGACCCCC
|
GGGGGTCCAGCTGGAAGCCTTCCTCACACTGGCACTTGTAG3941
CCACCCTCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGG
ATCCTGACACTCATCGATATCTGGXAGAGAGAGAAAGAG
|
GCCAGCTCTGCGTGAAC3942
|
GTTCACGCAGAGCTGGC3943
|
HypercholesterolaemiaCAGATATCGATGAGTGTCAGGATCCCGACACCTGCAGCCAGC3944
Gly352AspTCTGCGTGAACCTGGAGGGTGGCTACAAGTGCCAGTGTGAG
GGT-GATGAAGGCTTCCAGCTGGACCCCCACACGAAGGCCTGCAA
|
TTGCAGGCCTTCGTGTGGGGGTCCAGCTGGAAGCCTTCCTC3945
ACACTGGCACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTG
GCTGCAGGTGTCGGGATCCTGACACTCATCGATATCTG
|
CCTGGAGGGTGGCTACA3946
|
TGTAGCCACCCTCCAGG3947
|
HypercholesterolaemiaTCGATGAGTGTCAGGATCCCGACACCTGCAGCCAGCTCTGC3948
Tyr354CysGTGAACCTGGAGGGTGGCTACAAGTGCCAGTGTGAGGAAGG
TAC-TGCCTTCCAGCTGGACCCCCACACGAAGGCCTGCAAGGCTGT
|
ACAGCCTTGCAGGCCTTCGTGTGGGGGTCCAGCTGGAAGCC3949
TTCCTCACACTGGCACTTGTAGCCACCCTCCAGGTTCACGCA
GAGCTGGCTGCAGGTGTCGGGATCCTGACACTCATCGA
|
GGGTGGCTACAAGTGCC3950
|
GGCACTTGTAGCCACCC3951
|
HypercholesterolaemiaCAGGATCCCGACACCTGCAGCCAGGTCTGCGTGAACCTGGA3952
Cys358ArgGGGTGGCTACAAGTGCCAGTGTGAGGAAGGCTTCCAGCTGG
gTGT-CGTACCCCCACACGAAGGCCTGCAAGGCTGTGGGTGAGCACG
|
CGTGCTCACCCACAGCCTTGCAGGCCTTCGTGTGGGGGTCC3953
AGCTGGAAGCCTTCCTCACACTGGCACTTGTAGCCACCCTCC
AGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTG
|
AGTGCCAGTGTGAGGAA3954
|
TTCCTCACACTGGCACT3955
|
HypercholesterolaemiaTGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACAAGTG3956
Gln363TermCCAGTGTGAGGAAGGCTTCCAGCTGGACCCCCACACGAAGG
cCAG-TAGCCTGCAAGGCTGTGGGTGAGCACGGGAAGGCGGCGGGTG
|
CACCCGCCGCCTTCCCGTGCTCACCCACAGCCTTGCAGGCC3957
TTCGTGTGGCGGTCCAGCTGGAAGCCTTCCTCACACTGGCA
CTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGGCTGCA
|
AAGGCTTCCAGCTGGAC3958
|
GTCCAGCTGGAAGCCTT3959
|
UDP-Glucuronosyltransferase—UGT1
[0144] Mutations in the human UGT1 gene result in a range of disease syndromes, ranging from relatively common diseases such as Gilbert's syndrome, which effects up to 7% of the population, to rare disorders such as Crigler-Najjar syndrome. Symptoms of these diseases are the result of diminished bilirubin conjugation and typically present with jaundice or, when mild, as an incidental finding during routing laboratory analysis. Severe cases of Crigler-Najar syndrome are caused by an absence of UGT1 activity and the majority of these patents die in the neonatal period. The only known treatment is liver transplant. The attached table discloses the correcting oligonucleotide base sequences for the UGT1 oligonucleotides of the invention.
30TABLE 29
|
|
UGT1 Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Crigler-NajjarGCAGGAGCAAAGGCGCCATGGCTGTGGAGTCCCAGGGCGG3960
syndrome 2ACGCCCACTTGTCCTGGGCCTGCTGCTGTGTGTGCTGGGCC
Leu15ArgCAGTGGTGTCCCATGCTGGGAAGATACTGTTGATCCCAGT
CTG-CGG
ACTGGGATCAACAGTATCTTCCCAGCATGGGACACCACTGGGCGTCC3961
CCCAGCACACACAGCAGCAGGCCCAGGACAAGTGGGCGTCC
GCCCTGGGACTCCACAGCCATGGCGCCTTTGCTCCTGC
|
CCTGGGCCTGCTGCTGT3962
|
ACAGCAGCAGGCCCAGG33963
|
Crigler-NajjarGGGAAGATACTGTTGATCCCAGTGGATGGCAGCCACTGGCT3964
syndrome 1GAGCATGCTTGGGGCCATCCAGCAGCTGCAGCAGAGGGGAC
Gln49TermATGAAATAGTTGTCCTAGCACCTGACGCCTCGTTGTACA
CAG-TAG
TGTACAACGAGGCGTCAGGTGCTAGGACAACTATTTCATGTC3965
CCCTCTGCTGCAGCTGCTGGATGGCCCCAAGCATGCTCAGC
CAGTGGCTGCCATCCACTGGGATCAACAGTATGTTCCC
|
GGGCCATCCAGCAGCTG3966
|
CAGCTGCTGGATGGCCC3967
|
Crigler-NajjarCAGCAGAGGGGACATGAAATAGTTGTCCTAGCACCTGACGCC3968
syndrome 1TCGTTGTACATCAGAGACGGAGCATTTTACACCTTGAAGACGT
Gly71ArgACCCTGTGCCATTCCAAAGGGAGGATGTGAAAGAGT
GGA-AGA
ACTCTTTCACATCCTCCCTTTGGAATGGCACAGGGTACGTCTT3969
CAAGGTGTAAAATGCTCCGTCTCTGATGTACAACGAGGCGTC
AGGTGCTAGGACAACTATTTCATGTCCCCTCTGCTG
|
TCAGAGACGGAGCATTT3970
|
AAATGCTCCGTCTCTGA3971
|
Gilbert syndromeGGGTGAAGAACATGCTCATTGCCVTTTCACAGAACTTTCTGTG3972
Pro229GlnCGACGTGGTTTATTCCCCGTATGCAACCCTTGCCTCAGAATT
CCG-CAGCCTTCAGAGAGAGGTGACTGTCCAGGACCTATTGAG
|
CTCAATAGGTCCTGGACAGTCACCTCTCTCTGAAGGAATTCT3973
GAGGCAAGGGTTGCATACGGGGAATAAACCACGTCGCACAG
AAGTTCTGTGAAAAGGCAATGAGCATGTTCTTCACCC
|
TTATTCCCCGTATGCAA3974
|
TTGCATACGGGGAATAA3975
|
Crigler-NajjarTGTGAAGGATTACCCTAGGCCCATCATGCCCAATATGGTTTTT3976
syndrome 1GTTGGTGGTAATCAACTGCCTTCACCAAAATCCACTATCCCAG
Cys280TermGTGTGTATTGGAGTGGGACTTTTACATGCGTATATT
TGC-TGA
AATATACGCATGTAAAAGTCCCACTCCAATACACACCTGGGAT3977
AGTGGATTTTGGTGAAGGCAGTTGATTCCACCAACAAAAAC
ATATTGGGCATGATGGGCCTAGGGTAATCCTTCACA
|
ATCAAACTGCCTTCACCA3978
|
TGGTGAAGGCAGTTGAT3979
|
Crigler-NajjarATCAAAGAATATGAGAAAAAATTAACTGAAAATTTTTCTTCTGG3980
syndrome 1CTCTAGGAATTTGAAGCCTACATTAATGCTTCTGGAGAACATG
Ala292ValGAATTGTGGTTTTCTCTTTGGGATCAATGGTCTC
GCC-GTC
GAGACCATTGATCCCAAAGAGAAAACCACAATTCCATGTTCTC3981
CAGAAGCATTAATGTAGGCTTCAAATTCCTAGAGCCAGAAGAA
AAATTTTCAGTTAATTTTTTCTCATATTCTTTGAT
|
ATTTGAAGCCTACATTA3982
|
taatgtagGCTTCAAAT3983
|
Crigler-NajjarAGGAATTTGAAGCCTACATTAATGCTTCTGGAGAACATGGAAT3984
syndrome 1TGTGGTTTTCTCTTTGGGATCAATGGTCTCAGAAATTCCAGAG
Gly308GluAAGAAAGCTATGGCAATTGCTGATGCTTTGGGCAA
GGA-GAA
TTGCCCAAAGCATCAGCAATTGCCATAGCTTTCTTCTCTGGAA3985
TTTCTGAGACCATTGATCCCAAAGAGAAAACCACAATTCCATG
TTCTCCAGAAGCATTAATGTAGGCTTCAAATTCCT
|
CTCTTTGGGATCAATGG3986
|
CCATTGATCCCAAAGAG3987
|
Crigler-NajjarGTCTCAGAAATTCCAGAGAAGAAAGCTATGGCAATTGCTGAT3988
syndrome 1GCTTTGGGCAAAATCCCTCAGACAGTAAGAAGATTCTATACCA
Gln331TermTGGCCTCATATCTATTTTCACAGGAGCGCTAATCCC
CAG-TAG
GGGATTAGCGCTCCTGTGAAAATAGATATGAGGCCATGGTAT3989
AGAATCTTCTTACTGTCTGAGGGATTTTGCCCAAAGCATCAGC
AATTGCCATAGCTTTCTTCTCTGGAATTTCTGAGAC
|
AAATCCCTCAGACAGTA3990
|
TACTGTCTGAGGGATTT3991
|
Crigler-NajjarTCTAATCATATTATGTTCTTTCTTTACGTTCTGCTCTTTTTGCC3992
syndrome 1CCTCCCAGGTCCTGTGGCGGTACACTGGAACCCGACCATCG
Trp335TermAATCTTGCGAACAACACGATACTTGTTAAGTGGCTA
TGG-TGA
TAGCCACTTAACAAGTATCGTGTTGTTCGCAAGATTCGATGGT3993
CGGGTTCCAGTGTACCGCCACAGGACCTGGGAGGGGCAAAA
AGAGCAGAACGTAAAGAAAGAACATAATATGATTAGA
|
GTCCTGTGGCGGTACAC3994
|
GTGTACCGCCACAGGAC3995
|
Crigler-NajjarACACTGGAACCCGACCATCGAATCTTGCGAACAACACGATAC3996
syndrome 1TTGTTAAGTGGCTACCCCAAAACGATCTGCTTGGTATGTTGG
Gln357ArgGCGGATTGGATGTATAGGTCAAACCAGGGTCAAATTA
CAA-CGA
TAATTTGACCCTGGTTTGACCTATACATCCAATCCGCCCAACA3997
TACCAAGCAGATCGTTTTGGGGTAGCCACTTAACAAGTATCGT
GTTGTTCGCAAGATTCGATGGTCGGGTTCCAGTGT
|
GCTACCCCAAAACGATC3998
|
GATCGTTTTGGGGTAGC3999
|
Crigler-NajjarTACACTGGAACCCGACCATCGAATCTTGCGAACAACACGATA4000
syndrome 1CTTGTTAAGTGGCTACCCCAAAACGATCTGCTTGGTATGTTG
Gln357TermGGCGGATTGGATGTATAGGTCAAACCAGGGTCAAATT
CAA-TAA
AATTTGACCCTGGTTTGACCTATACATCCAATCCGCCCAACAT4001
ACCAAGCAGATCGTTTTGGGGTAGCCACTTAACAAGTATCGT
GTTGTTCGCAAGATTCGATGGTCGGGTTCCAGTGTA
|
GGCTACCCCAAAACGAT4002
|
ATCGTTTTGGGGTAGCC4003
|
Gilbert syndromeAACTCAGAGATGTAACTGCTGACATCCTCCCTATTTTGCATCT4004
Arg367GlyCAGGTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTT
CGT-GGTCCCATGGTGTTTATGAAAGCATATGCAATGGCGTTC
|
GAACGCCATTGCATATGCTTTCATAAACACCATGGGAACCAG4005
CATGGGTGATAAAGGCACGGGTCATCGGGTGACCTGAGATG
CAAAATAGGGAGGATGTCAGCAGTTACATCTCTGAGTT
|
CGATGACCCGTGCCTTT4006
|
AAAGGCACGGGTCATCG4007
|
Crigler-NajjarTCAGAGATGTAACTGCTGACATCCTCCCTATTTTGCATCTCAG4008
syndrome 1GTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTTCCC
Ala368ThrATGGTGTTTATGAAAGCATATGCAATGGCGTTCCCA
GCC-ACC
TGGGAACGCCATTGCATATGCTTTCATAAACACCATGGGAAC4009
CAGCATGGGTGATAAAGGCACGGGTCATCGGGTGACCTGAG
ATGCAAAATAGGGAGGATGTCAGCAGTTACATCTCTGA
|
TGACCCGTGCCTTTATC4010
|
GATAAAGGCACGGGTCA4011
|
Crigler-NajjarCCTCCCTATTTTTGCATCTCAGGTCACCCGATGACCCGTGCCT4012
syndrome 1TTATCACCCATGCTGGTTCCCATGGTGTTTATGAAAGCATATG
Ser375PheCAATGGCGTTCCCATGGTGATGATGCCCTTGTTTGG
TCC-TTC
CCAAACAAGGGCATCATCACCATGGGAACGCCATTGCATATG4013
CTTTCATAAACACCATGGGAACCAGCATGGGTGATAAAGGCA
CGGGTCATCGGGTGACCTGAGATGCAAAATAGGGAGG
|
TGCTGGTTCCCATGGTG4014
|
CACCATGGGAACCAGCA4015
|
Crigler-NajjarAGGTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTTC4016
syndrome 1CCATGGTGTTTATGAAAGCATATGCAATGGCGTTCCCATGGT
Ser381ArgGATGATGCCCTTGTTTGGTGATCAGATGGACAATGCA
AGC-AGG
TGCATTGTCCATCTGATCACCAAACAAGGGCATCATCACCAT4017
GGGAACGCCATTGCATATGCTTTCATAAACACCATGGGAACC
AGCATGGGTGATAAAGGCACGGGTCATCGGGTGACCT
|
TATGAAAGCATATGCAA4018
|
TTGCATATGCTTTCATA4019
|
Crigler-NajjarAGCATATGCAATGGCGTTCCCATGGTGATGATGCCCTTGTTT4020
syndrome 1GGTGATCAGATGGACAATGCAAAGCGCATGGAGACTAAGGG
Ala401ProAGCTGGAGTGACCCTGAATGTTCTGGAAATGACTTCTG
GCA-CCA
CAGAAGTCATTTCCAGAACATTCAGGGTCACTCCAGCTCCCT4021
TAGTCTCCATGCGCTTTGCATTGTCCATCTGATCACCAAACAA
GGGCATCATCACCATGGGAACGCCATTGCATATGCT
|
TGGACAATGCAAAGCGC4022
|
GCGCTTTGCATTGTCCA4023
|
Crigler-NajjarGGAGCTGGAGTGACCCTGAATGTTCTGGAAATGACTTCTGAA4024
syndrome 1GATTTAGAAAATGCTCTAAAAGCAGTCATCAATGACAAAAGGT
Lys428GluAAGAAAGAAGATACAGAAGAATACTTTGGTCATGGC
AAA-GAA
GCCATGACCAAAGTATTCTTCTGTATCTTCTTCTTTACCTTTTG4025
TCATTGATGACTGCTTTTAGAGCATTTTCTAAATGTTCAGAAGT
CATTTCCAGAACATTCAGGGTCACTCCAGCTCC
|
ATGCTCTAAAAGCAGTC4026
|
GACTGCTTTTAGAGCAT4027
|
Crigler-NajjarATGAGGCACAAGGGCGCGCCACACCTGCGCCCCGCAGCCC4028
syndrome 1ACGACCTCACCTGGTACCAGTACCATTCCTTGGACGTGATTG
Tyr486AspGTTTCCTCTTGGCCGTCGTGCTGACAGTGGCCTTCATCA
TAC-GAC
TGATGAAGGCCACTGTCAGCACGACGGCCAAGAGGAAACCA4029
ATCACGTCCAAGGAATGGTACTGGTACCAGGTGAGGTCGTG
GGCTGCGGGGCGCAGGTGTGGCGCGCCCTTGTGCCTCAT
|
GGTACCAGTACCATTCC4030
|
GGAATGGTACTGGTACC4031
|
Crigler-NajjarACAAGGGCGCGCCACACCTGCGCCCCGCAGCCCACGACCT4032
syndrome 1CACCTGGTACCAGTACCATTCCTTGGACGTGATTGGTTTCCT
Ser488PheCTTGGCCGTCGTGCTGACAGTGGCCTTCATCACCTTTAA
TCC-UC
TTAAAGGTGATGAAGGCCACTGTCAGCACGACGGCCAAGAG4033
GAAACCAATCACGTCCAAGGAATGGTACTGGTACCAGGTGAG
GTCGTGGGCTGCGGGGCGCAGGTGTGGCGCGCCCTTGT
|
GTACCATTCCTTGGACG4034
|
CGTCCAAGGAATGGTAC4035
|
Alzheimer's Disease—Amyloid Precursor Protein (APP)
[0145] Over the past few decades Alzheimer's disease (AD), once considered a rare disorder, has become recognized as a major public health problem. Although there is no agreement on the exact prevalence of Alzheimer's disease, in part due to difficulties of diagnosis, studies consistently point to an exponential rise in prevalence of this disease with age. After age 65, the percentage of affected people approximately doubles with every decade of life, regardless of definition. Among people age 85 or older, studies suggest that 25 to 35 percent have dementia, including Alzheimer's disease; one study reports that 47.2 percent of people over age 85 have Alzheimer's disease, exclusive of other dementias.
[0146] Alzheimer's disease progressively destroys memory, reason, judgment, language, and, eventually, the ability to carry out even the simplest tasks. Anatomic changes associated with Alzheimer's disease begin in the entorhinal cortex, proceed to the hippocampus, and then gradually spread to other regions, particularly the cerebral cortex. Chief among such anatomic changes are the presence of characteristic extracellular plaques and internal neurofibrillary tangles.
[0147] At least four genes have been identified to date that contribute to development of Alzheimer's disease: AD1 is caused by mutations in the amyloid precursor gene (APP); AD2 is associated with a particular allele of APOE (see Example 20); AD3 is caused by mutation in a gene encoding a 7-transmembrane domain protein, presenilin-1 (PSEN1), and AD4 is caused by mutation in a gene that encodes a similar 7-transmembrane domain protein, presenilin-2 (PSEN2). The attached table discloses
31TABLE 30
|
|
APP Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Alzheimer diseaseCTGCATACTTTAATTATGATGTAATACAGGTTCTGGGTTGACA4036
Glu665AspAATATCAAGACGGAGGAGATCTCTGAAGTGAAGATGGATGCA
GAG-GACGAATTCCGACATGACTCAGGATATGAAGTTCATCAT
|
ATGATGAACTTCATATCCTGAGTCATGTCGGAATTCTGCATCC4037
ATCTTCACTTCAGAGATCTCCTCCGTCTTGATATTTGTCAACC
CAGAACCTGTATTACATCATAATTAAAGTATGCAG
|
ACGGAGGAGATCTCTGA4038
|
TCAGAGATCTCCTCCGT4039
|
Alzheimer diseaseATTATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTT4040
Ala692GlyCAAGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGC
GCA-GGAAATCATTGGACTCATGGTGGGCGGTGTTGTCAT
|
ATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTTTG4041
TTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAAATT
AAGAAAAAGAATTTTAATTTCTAAATGCAATATAAT
|
GTTCTTTGCAGAAGATG4042
|
CATCTTCTGCAAAGAAC4043
|
Alzheimer diseaseTATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTTC4044
Glu693GlnAAGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCA
GAA-CAAATCATTGGACTCATGGTGGGCGGTGTTGTCATAG
|
CTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTT4045
TGTTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAAA
TTAAGAAAAAGAATTTTAATTTCTAAATGCAATATA
|
TCTTTGCAGAAGATGTG4046
|
CACATCTTCTGCAAAGA4047
|
Alzheimer diseaseATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTTCA4048
Glu693GlyAGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCAA
GAA-GGATCATTGGACTCATGGTGGGCGGTGTTGTCATAGC
|
GCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCT4049
TTGTTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAA
ATTAAGAAPAAGAATTTTAATTTCTAAATGCAATAT
|
CTTTGCAGAAGATGTGG4050
|
CCACATCTTCTGCAAAG4051
|
Alzheimer diseaseGAAGATGTGGGTTCAAACAAAGGTGCAATCATTGGACTCATG4052
Ala713ThrGTGGGCGGTGTTGTCATAGCGACAGTGATCGTCATCACCTTG
GCG-ACGGTGATGCTGAAGAAGAAACAGTACACATCCATTCATC
|
GATGAATGGATGTGTACTGTTTCTTCTTCAGCATCACCAAGGT4053
GATGACGATCACTGTCGCTATGACAACACCGCCCACCATGAG
TCCAATGATTGCACCTTTGTTTGAACCCACATCTT
|
TTGTCATAGCGACAGTG4054
|
CACTGTCGCTATGACAA4055
|
SchizophreniaAAGATGTGGGTTCAAACAAAGGTGCAATCATTGGACTCATGG4056
Ala713ValTGGGCGGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGG
GCG-GTGTGATGCTGAAGAAGAAACAGTACACATCCATTCATCA
|
TGATGAATGGATGTGTACTGTTTCTTCTTCAGCATCACCAAGG4057
TGATGACGATCACTGTCGCTATGACAACACCGCCCACCATGA
GTCCAATGATTGCACCTTTGTTTGAACCCACATCTT
|
TGTCATAGCGACAGTGA4058
|
TCACTGTCGCTATGACA4059
|
Alzheimer diseaseGTGGGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGC4060
Val715MetGGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGGTGATG
GTG-ATGCTGAAGAAGAAACAGTACACATCCATTCATCATGGTG
|
CACCATGATGAATGGATGTGTACTGTTTCTTCTTCAGCATCAC4061
CAAGGTGATGACGATCACTGTCGCTATGACAACACCGCCCAC
CATGAGTCCAATGATTGCACCTTTGTTTGAACCCAC
|
TAGCGACAGTGATCGTC4062
|
GACGATCACTGTCGCTA4063
|
Alzheimer diseaseGGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGT4064
lle716ValGTTGTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTG
ATC-GTCAAGAAGAAACAGTACACATCCATTCATCATGGTGTGG
|
CCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAGCAT4065
CACCAAGGTGATGACGATCACTGTCGCTATGACAACACCGCC
CACCATGAGTCCAATGATTGCACCTTTGTTTGAACC
|
CGACAGTGATCGTCATC4066
|
GATGACGATCACTGTCG4067
|
Alzheimer diseaseCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTTG4068
Val717GlyTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAGA
GTC-GGCAGAAACAGTACACATCCATTCATCATGGTGTGGTGGA
|
TCCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCA4069
GCATCACCAAGGTGATGACGATCACTGTCGCTATGACAACAC
CGCCCACCATGAGTCCAATGATTGCACCTTTGTTTG
|
AGTGATCGTCATCACCT4070
|
AGGTGATGACGATCACT4071
|
Aizheimer diseaseTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTT4072
Val17lleGTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAG
GTC-ATCAAGAAACAGTACACATCCATTCATCATGGTGTGGTGG
|
CCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAG4073
CATCACCAAGGTGATGACGATCACTGTCGCTATGACAACACC
GCCCACCATGAGTCCAATGATTGCACCTTTGTTTGA
|
CAGTGATCGTCATCACC4074
|
GGTGATGACGATCACTG4075
|
Alzheimer diseaseTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTT4076
Val717PheGTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAG
GTC-TTCAAGAAACAGTACACATCCATTCATCATGGTGTGGTGG
|
CCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAG4077
CATCACCAAGGTGATGACGATCACTGTCGCTATGACAACACC
GCCCACCATGAGTCCAATGATTGCACCTTTGTTTGA
|
CAGTGATCGTCATCACC4078
|
GGTGATGACGATCACTG4079
|
Alzheimer diseaseTTGGACTCATGGTGGGCGGTGTTGTCATAGCGACAGTGATCG4080
Leu723ProTCATCACCTTGGTGATGCTGAAGAAGAAACAGTACACATCCAT
CTG-CCGTCATCATGGTGTGGTGGAGGTAGGTAAACTTGACTG
|
CAGTCAAGTTTACCTACCTCCACCACACCATGATGAATGGAT4081
GTGTACTGTTTCTTCTTCAGCATCACCAAGGTGATGACGATCA
CTGTCGCTATGACAACACCGCCCACCATGAGTCCAA
|
GGTGATGCTGAAGAAGA4082
|
TCTTCTTCACCATCACC4083
|
Alzheimer's Disease—Presenilin-1 (PSEN1)
[0148] The attached table discloses the correcting oligonucleotide base sequences for the PSEN1 oligonucleotides of the invention.
32TABLE 31
|
|
PSEN1 Mutations and Genome-Correcting Oligos
Clinical Phenotype &SEQ ID
MutationCorrecting OligosNO:
|
Alzheimer diseaseCCCGGCAGGTGGTGGAGCAAGATGAGGAAGAAGATGAGGAG4084
Ala79ValCTGACATTGAAATATGGCGCCAAGCATGTGATCATGCTCTTTG
GCC-GTCTCCCTGTGACTCTCTGCATGGTGGTGGTCGTGGCTAC
|
GTAGCCACGACCACCACCATGCAGAGAGTCACAGGGACAAA4085
GAGCATGATCACATGCTTGGCGCCATATTTCAATGTCAGCTC
CTCATCTTCTTCCTCATCTTGCTCCACCACCTGCCGGG
|
ATATGGCGCCAAGCATG4086
|
CATGCTTGGCGCCATAT4087
|
Alzheimer diseaseGTGGTGGAGCAAGATGAGGAAGAAGATGAGGAGCTGACATT4088
Val82LeuGAAATATGGCGCCAAGCATGTGATCATGCTCTTTGTCCCTGT
tGTG-CTGGACTCTCTGCATGGTGGTGGTCGTGGCTACCATTAAGT
|
ACTTAAGGTAGCCACGACCACCACCATGCAGAGAGTCACAG4089
GGACAAAGAGCATGATCACATGCTTGGCGCCATATTTCAATG
TCAGCTCCTCATCTTCTTCCTCATCTTGCTCCACCAC
|
CCAAGCATGTGATCATG4090
|
CATGATCACATGCTTGG4091
|
Alzheimer diseaseAAATATGGCGCCAAGCATGTGATCATGCTCTTTGTCCCTGTG4092
Val96PheACTCTCTGCATGGTGGTGGTCGTGGCTACCATTAAGTCAGTC
gGTC-TTCAGCTTTTATACCCGGAAGGATGGGCAGCTGTACGTAT
|
ATACGTACAGCTGCCCATCCTTCCGGGTATAAAAGCTGACTG4093
ACTTAATGGTAGCCACGACCACCACCATGCAGAGAGTCACAG
GGACAAAGAGCATGATCACATGCTTGGCGCCATATTT
|
TGGTGGTGGTCGTGGCT4094
|
AGCCACGACCACCACCA4095
|
Alzheimer diseaseCTTTGTCCCTGTGACTCTCTGCATGGTGGTGGTCGTGGCTAC4096
Phe105LeuCATTAAGTCAGTCAGCTTTTATACCCGGAAGGATGGGCAGCT
TTTt-TTGGTACGTATGAGTTTTGTTTTATTATTCTCAAAGCCAG
|
CTGGCTTTGAGAATAATAAAACAAAACTCATACGTACAGCTGC4097
CCATCCTTCCGGGTATAAAAGCTGACTGACTTAATGGTAGCC
ACGACCACCACCATGCAGAGAGTCACAGGGACAAAG
|
GTCAGCTTTTATACCCG4098
|
CGCGTATAAAAGCTGAC4099
|
Alzheimer diseaseTGGTGATCTCCATTAACACTGACCTAGGGCTTTTGTGTTTGTT4100
Thr116AsnTTATTGTAGAATCTATACCCCATTCACAGAAGATACCGAGACT
ACC-AACGTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGC
|
GCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTCG4101
GTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACAAAC
ACAAAAGCCCTAGGTCAGTGTTAATGGAGATCACCA
|
AATCTATACCCCATTCA4102
|
TGAATGGGGTATAGATT4103
|
Alzheimer diseaseTGATCTCCATTAACACTGACCTAGGGCTTTTGTGTTTGTTTTAT4104
Pro117LeuTGTAGAATCTATACCCCATTCACAGAAGATACCGAGACTGTG
CCA-CTAGGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGC
|
GCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTC4105
TCGGTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACA
AACACAAAAGCCCTAGGTCAGTGTTAATGGAGATCA
|
CTATACCCCATTCACAG4106
|
CTGTGAATGGGGTATAG4107
|
Alzheimer diseaseTAACACTGACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCT4108
Glu120AspATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGAG
GAAg-GATCCCTGCACTCAATTCTGAATGCTGCCATCATGATC
|
GATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTG4109
GCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCT
ACAATAAAACAAACACAAAAGCCCTAGGTCAGTGTTA
|
TTCACAGAAGATACCGA4110
|
TCGGTATCTTCTGTGAA4111
|
Alzheimer diseaseTAACACTGACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCT4112
Glu120AspATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGAG
GAAg-GACCCCTGCACTCAATTCTGAATGCTGCCATCATGATC
|
GATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTG4113
GCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCT
ACAATAAAACAAACACAAAAGCCCTAGGTCAGTGTTA
|
TTCACAGAAGATACCGA4114
|
TCGGTATCTTCTGTGAA4115
|
Alzheimer diseaseATTAACACTGACCTAGGGCTTTTGTGTTTGTTTATTGTAGAAT4116
Glu120LysCTATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAG
aGAA-AAAAGCCCTGCACTCAATTCTGAATGCTGCCATCATGA
|
TCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGC4117
CCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCTACA
ATAAAACAAACACAAAAGCCCTAGGTCAGTGTTAAT
|
CATTCACAGAAGATACC4118
|
GGTATCTTCTGTGAATG4119
|
Alzheimer diseaseGACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCTATACCC14120
Glu123LysCATTCACAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGT
cGAG-AAGCACTCAATTCTGAATGCTGCCATCATGATCACTGTCA
|
TGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGG4121
CTCTCTGGCCCACAGTCTCGGTATCTTCTGTGAATGGGGTAT
AGATTCTACAATAAAACAAACACAAAAGCCCTAGGTC
|
AAGATACCGAGACTGTG4122
|
CACAGTCTCGGTATCTT4123
|
Alzheimer diseaseTATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGA4124
Asn13SAspGCCCTGCACTCAATTCTGAATGCTGCCATCATGATCAGTGTC
gAAT-GATATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTATA
|
TATACAGAACCACCAGGAGGATAGTCATGACAACAATGACAC4125
TGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCT
GGCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATA
|
CAATTCTGAATGCTGCC4126
|
GGCAGCATTCAGAATTG4127
|
Alzheimer diseaseAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCAA4128
Met139lleTTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGAC
ATGa-ATATATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTAT
|
ATAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATG4129
ACAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT
GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCT
|
GCCATCATGATCAGTGT4130
|
ACACTGATCATGATGGC4131
|
Alzheimer diseaseCAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCA4132
Met139LysATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGA
ATG-AAGCTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTA
|
TAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA4133
CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT
GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTG
|
TGCCATCATGATCAGTG4134
|
CACTGATCATGATGGCA4135
|
Alzheimer diseaseCAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCA4136
Met139ThrATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGA
ATG-ACGCTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTA
|
TAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA4137
CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT
GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTG
|
TGCCATCATGATCAGTG4138
|
CACTGATCATGATGGCA4139
|
Alzheimer diseaseACAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTC4140
Met139ValAATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATG
cATG-GTGACTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCT
|
AGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA4141
CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT
GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTGT
|
CTGCCATCATGATCAGT4142
|
ACTGATCATGATGGCAG4143
|
Alzheimer diseaseGAGACTGTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGCT4144
lle143PheGCCATCATGATCAGTGTCATTGTTGTCATGACTATCCTCCTGG
cATT-TTTTGGTTCTGTATAAATACAGGTGCTATAAGGTGAGCA
|
TGCTCACCTTATAGCACCTGTATTTATACAGAACCACCAGGAG4145
GATAGTCATGACAACAATGACACTGATCATGATGGCAGCATTC
AGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTC
|
TCAGTGTCATTGTTGTC4146
|
GACAACAATGACACTGA4147
|
Alzheimer diseaseAGACTGTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGCTG4148
lle143ThrCCATCATGATCAGTGTCATTGTTGTCATGACTATCCTCCTGGT
ATT-ACTGGTTCTGTATAAATACAGGTGCTATAAGGTGAGCAT
|
ATGCTCACCTTATAGCACCTGTATTTATACAGAACCACCAGGA4149
GGATAGTCATGACAACAATGACACTGATCATGATGGCAGCAT
TCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCT
|
CAGTGTCATTGTTGTCA4150
|
TGACAACAATGACACTG4151
|
Alzheimer diseaseCCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATGAT4152
Met146lleCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTAT
ATGa-ATAAAATACAGGTGCTATAAGGTGAGCATGAGACACAGA
|
TCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGA4153
ACCACCAGGAGGATAGTCATGACAACAATGACACTGATCATG
ATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGG
|
GTTGTCATGACTATCCT4154
|
AGGATAGTCATGACAAC4155
|
Alzheimer diseaseCCAGAGAGCCCTGCACTCAATTCTGAATGGTGCCATCATGAT4156
Met146lleCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTAT
ATGa-ATCAAATACAGGTGCTATAAGGTGAGCATGAGACACAGA
|
TCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGA4157
ACCACCAGGAGGATAGTCATGACAACAATGACACTGATCATG
ATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGG
|
GTTGTCATGACTATCCT4158
|
AGGATAGTCATGACAAC4159
|
Alzheimer diseaseGGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATG4160
Met146LeuATCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGT
cATG-UGATAAATACAGGTGCTATAAGGTGAGCATGAGACACA
|
TGTGTCTCATGCTCACCUATAGCACCTGTATTTATACAGAAC4161
CACCAGGAGGATAGTCATGACAACAATGACACTGATCATGAT
GGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCC
|
TTGTTGTCATGACTATC4162
|
GATAGTCATGACAACAA4163
|
Alzheimer diseaseGGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATG4164
Met146ValATCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGT
cATG-GTGATAAATACAGGTGCTATAAGGTGAGCATGAGACACA
|
TGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGAAC4165
CACCAGGAGGATAGTCATGACAACAATGACACTGATCATGAT
GGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCC
|
TTGTTGTCATGACTATC4166
|
GATAGTCATGACAACAA4167
|
Alzheimer diseaseAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATGATCA4168
Thr147lleGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTATAA
ACT-ATTATACAGGTGCTATAAGGTGAGCATGAGACACAGATC
|
GATCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACA4169
GAACCACCAGGAGGATAGTCATGACAACAATGACACTGATCA
TGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCT
|
TGTCATGACTATCCTCC4170
|
GGAGGATAGTCATGACA4171
|
Alzheimer diseaseCTTTTTAAGGGTTGTGGGACCTGTTAATTATATTGAAATGCTTT4172
His163ArgCTTTTCTAGGTCATCCATGCCTGGCTTATTATATCATCTCTATT
CAT-CGTGTTGCTGTTCTTTTTTTCATTCATTTACTTGGG
|
CCCAAGTAAATGAATGAAAAAAAGAACAGCAACAATAGAGATG4173
ATATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTT
CAATATAATTAACAGGTCCCACAACCCTTAAAAAG
|
GGTCATCCATGCCTGGC4174
|
GCCAGGCATGGATGACC4175
|
Alzheimer diseaseACTTTTTAAGGGTTGTGGGACCTGTTAATTATATTGAAATGCTT4176
His163TyrTCTTTTCTAGGTCATCCATGCCTGGCTTATTATATCATCTCTAT
cCAT-TATTGTTGCTGTTTCTTTTTTTCATTCATTTACTTGG
|
CCAAGTAAATGAATGAAAAAAAGAACAGCAACAATAGAGATGA4177
TATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTTC
AATATAATTAACAGGTCCCACAACCCTTAAAAAGT
|
AGGTCATCCATGCCTGG4178
|
CCAGGCATGGATGACCT4179
|
Alzheimer diseaseAGGGTTGTGGGACCTGTTAATTATATTGAAATGCTTTCTTTTCT4180
Trp165CysAGGTCATCCATGCCTGGCTTATTATATCATCTCTATTGTTGCT
TGGc-TGCGTTCTTTTTTTCATTCATTTACTTGGGGTAAGTT
|
AACTTACCCCAAGTAAATGAATGAAAAAAAGAACAGCAACAAT4181
AGAGATGATATAATAAGCCAGGCATGGATGACCTAGAAAAGA
AAGCATTTCAATATAATTAACAGGTCCCACAACCCT
|
CATGCCTGGCTTATTAT4182
|
ATAATAAGCCAGGCATG4183
|
Alzheimer diseaseACCTGTTAATTATATTGAAATGCTTTCTTTTCTAGGTCATCCAT4184
Ser169LeuGCCTGGCTTATTATATCATCTCTATTGTTGCTGTTCTTTTTTTC
TCA-TTAATTCATTTACTTGGGGTAAGTTGTGAAATTTTT
|
AAAAATTTCACAACTTACCCCAAGTAAATGAATGAAAAAAAGAA4185
CAGCAACAATAGAGATGATATAATAAGCCAGGCATGGATGAC
CTAGAAAAGAAAGCATTTCAATATAATTAACAGGT
|
TATTATATCATCTCTAT4186
|
ATAGAGATGATATAATA4187
|
Alzheimer diseaseTAATTATATTGAAATGCTTTCTTTTCTAGGTCATCCATGCCTGG4188
Leu171ProCTTATTATATCATCTCTATTGTTGCTGTTCTTTTTTTCATTCATT
CTA-CCATACTTGGGGTAAGTTGTGAAATTTTTGGTCTG
|
CAGACCAAAAATTTCACAACTTACCCCAAGTAAATGAATGAAA4189
AAAAGAACAGCAACAATAGAGATGATATAATAAGCCAGGCAT
GGATGACCTAGAAAAGAAAGCATTTCAATATAATTA
|
ATCATCTCTATTGTTGC4190
|
GCAACAATAGAGATGAT4191
|
Alzheimer diseaseTATTGAAATGCTTTCTTTTCTAGGTCATCCATGCCTGGCTTATT4192
Leu173TrpATATCATCTCTATTGTTGCTGTTCTTTTTTTCATTCATTTACTTG
TTG-TGGGGGTAAGTTGTGAAATTTTTGGTCTGTCTTTC
|
GAAAGACAGACCAAAAATTTCACAACTTACCCCAAGTAAATGA4193
ATGAAAAAAAGAACAGCAACAATAGAGATGATATAATAAGCCA
GGCATGGATGACCTAGAAAAGAAAGCATTCAATA
|
TCTATTGTTGCTGTTCT4194
|
AGAACAGCAACAATAGA4195
|
Alzheimer diseaseTATAACGTTGCTGTGGACTACATTACTGTTGCACTCCTGATCT4196
Gly209ArgGGAATTTTGGTGTGGTGGGAATGATTTCCATTCACTGGAAAG
gGGA-AGAGTCCACTTCGACTCCAGCAGGCATATCTCATTATGA
|
TCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTCC4197
AGTGAATGGAAATCATTCCCACCACACCAAAATTCCAGATCAG
GAGTGCAACAGTAATGTAGTCCACAGCAACGTTATA
|
GTGTGGTGGGAATGATT4198
|
AATCATTCCCACCACAC4199
|
Alzheimer diseaseATAACGTTGCTGTGGACTACATTACTGTTGCACTCCTGATCTG4200
Gly209ValGAATTTTGGTGTGGTGGGAATGATTTCCATTCACTGGAAAGGT
GGA-GTACCACTTCGACTCCAGCAGGCATATCTCATTATGAT
|
ATCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTC4201
CAGTGAATGGAAATCATTCCCACCACACCAAAATTCCAGATCA
GGAGTGCAACAGTAATGTAGTCCACAGCAACGTTAT
|
TGTGGTGGGAATGATTT4202
|
AAATCATTCCCACCACA4203
|
Alzheimer diseaseTGGACTACATTACTGTTGCACTCCTGATCTGGAATTTTGGTGT4204
lle213ThrGGTGGGAATGATTTCCATTCACTGGAAAGGTCCACTTCGACT
ATT-ACTCCAGCAGGCATATCTCATTATGATTAGTGCCCTCAT
|
ATGAGGGCACTAATCATAATGAGATATGCCTGCTGGAGTCGA4205
AGTGGACCTTTCCAGTGAATGGAAATCATTCCCACCACACCA
AAATTCCAGATCAGGAGTGCAACAGTAATGTAGTCCA
|
GATTTCCATTCACTGGA4206
|
TCCAGTGAATGGAAATC4207
|
Alzheimer diseaseCACTCCTGATCTGGAATTTTGGTGTGGTGGGAATGATTTCCAT4208
Leu219ProTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCAT
CTT-CCTTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAA
|
TTGATAAACACCAGGGCCATGAGGGCACTAATCATAATGAGA4209
TATGCCTGCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAA
ATCATTCCCACCACACCAAAATTCCAGATCAGGAGTG
|
AGGTCCACTTCGACTCC4210
|
GGAGTCGAAGTGGACCT4211
|
Alzheimer diseaseATTTCCATTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCA4212
Ala231ThrTATCTCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCA
tGCC-ACCAGTACCTCCCTGAATGGACTGCGTGGCTCATCTTGG
|
CCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGATAA4213
ACACCAGGGCCATGAGGGCACTAATCATAATGAGATATGCCT
GCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAAAT
|
TGATTAGTGCCCTCATG4214
|
CATGAGGGCACTAATCA4215
|
Alzheimer diseaseTTTCCATTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCAT4216
Ala231ValATCTCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAA
GCC-GTCGTACCTCCCTGAATGGACTGCGTGGCTCATCTTGGC
|
GCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGATA4217
AACACCAGGGCCATGAGGGCACTAATCATAATGAGATATGCC
TGCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAAA
|
GATTAGTGCCCTCATGG4218
|
CCATGAGGGCACTAATC4219
|
Alzheimer diseaseTTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCA4220
Met233ThrTTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTACCT
ATG-ACGCCCTGAATGGACTGCGTGGCTCATCTTGGCTGTGAT
|
ATCACAGCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTAC4221
TTGATAAACACCAGGGCCATGAGGGCACTAATCATAATGAGA
TATGCCTGCTGGAGTCGAAGTGGACCTTCCAGTGAA
|
TGCCCTCATGGCCCTGG4222
|
CCAGGGCCATGAGGGCA4223
|
Alzheimer diseaseGGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCATTATGA4224
Leu235ProTTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTACCTCCCTG
CTG-CCGAATGGACTGCGTGGCTCATCTTGGCTGTGATTTCAGT
|
ACTGAAATCACAGCCAAGATGAGCCACGCAGTCCATTCAGGG4225
AGGTACTTGATAAACACCAGGGCCATGAGGGCACTAATCATA
ATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTCC
|
CATGGCCCTGGTGTTTA4226
|
TAAACACCAGGGCCATG4227
|
Alzheimer diseaseTCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTA4228
Ala246GluCCTCCCTGAATGGACTGCGTGGCTCATCTTGGCTGTGATTTC
GCG-GAGAGTATATGGTAAAACCCAAGACTGATAATTTGTTTG
|
CAAACAAATTATCAGTCTTGGGTTTTACCATATACTGAAATCAC4229
AGCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGAT
AAACACCAGGGCCATGAGGGCACTAATCATAATGA
|
ATGGACTGCGTGGCTCA4230
|
TGAGCCACGCAGTCCAT4231
|
Alzheimer diseaseGTGCCCTCATGGCCCTGGTGTTTATCAAGTACCTCCCTGAAT4232
Leu250SerGGACTGCGTGGCTCATCTTGGCTGTGATTTCAGTATATGGTA
TTG-TCGAAACCCAAGACTGATAATTTGTTTGTCACAGGAATGC
|
GCATTCCTGTGACAAACAAATTATCAGTCTTGGGTTTTACCAT4233
ATACTGAAATCACAGCCAAGATGAGCCACGCAGTCCATTCAG
GGAGGTACTTGATAAACACCAGGGCCATGAGGGCAC
|
GCTCATCTTGGCTGTGA4234
|
TCACAGCCAAGATGAGC4235
|
Alzheimer diseaseAGTTTAGCCCATACATTTTATTAGATGTCTTTTATGTTTTTCTTT4236
Ala260ValTTCTAGATTTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCG
GCT-GTTTATGCTGGTTGAAACAGCTCAGGAGAGAAATGA
|
TCATTTCTCTCCTGAGCTGTTTCAACCAGCATACGAAGTGGAC4237
CTTTCGGACACAAAACAGCCACTAAATCTAGAAAAAGAAAAAC
ATAAAAGACATCTAATAAAATGTATGGGCTAAACT
|
TTTAGTGGCTGTTTTGT4238
|
ACAAAACAGCCACTAAA4239
|
Alzheimer diseaseCCCATACATTTTATTAGATGTCTTTTATGTTTTTCTTTTTCTAGA4240
Leu262PheTTTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTG
TTGt-TTCGTTGAAACAGCTCAGGAGAGAAATGAAACGCTT
0
AAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCATACGA4241
AGTGGACCTTTCGGACAe,uns b Cl ee AAAACAGCCACTAAATCTAGAAAAA
GAAAAACATAAAAGACATCTAATAAAATGTATGGG
0
GCTGTTTTe,uns b Gl ee TGTCCGAA4242
0
TTCGGACAe,uns b Cl ee AAAACAGC4243
0
Alzheimer diseaseCCATACATTTTATTAGATGTCTTTTATGTTTTCTTTTTCTAGAT4244
Cys263ArgTTAGTGGCTGTTTTGe,uns b Tl ee GTCCGAAAGGTCCACTTCGTATGCTG
gTGT-CGTGTTGAAACAGCTCAGGAGAGAAATGAAACGCTTT
0
AAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCATACG4245
AAGTGGACCTTTCGGACe,uns b Al ee CAAAACAGCCACTAAATCTAGAAA
AAGAAAAACATAAAAGACATCTAATAAAATGTATGG
0
CTGTTTTGTGe,uns b Tl ee CCGAAA4246
0
TTTCGGACe,uns b Al ee CAAAACAG4247
0
Alzheimer diseaseACATTTTATTAGATGTCTTTTATGTTTTTCTTTTTCTAGATTTAG4248
Pro264LeuTGGCTGTTTTGTGTCe,uns b Cl ee GAAAGGTCCACTTCGTATGCTGGTTG
CCG-CTGAAACAGCTCAGGAGAGAAATGAAACGCTTTTTCC
0
GGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCA4249
TACGAAGTGGACCTTTCe,uns b Gl ee GACACAAAACAGCCACTAAATCTA
GAAAAAGAAAAACATAAAAGACATCTAATAAAATGT
0
TTTGTGTCe,uns b Cl ee GAAAGGTC4250
0
GACCTTTCe,uns b Gl ee GACACAAA4251
0
Alzheimer diseaseGTCTTTTATGTTTTTCTTTTTCTAGATTTAGTGGCTGTTTTGTG4252
Arg269GlyTCCGAAAGGTCCACTTe,uns b Cl ee GTATGCTGGTTGAAACAGCTCAGGA
tCGT-GGTGAGAAATGAAACGCTTTTTCCAGCTCTCATTTACT
0
AGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCTGAGC4253
TGTTTCAACCAGCATACe,uns b Gl ee AAGTGGACCTTTCGGACACAAAAC
AGCCACTAAATCTAGAAAAAGAAAAACATAAAAGAC
0
GTCCACTTe,uns b Cl ee GTATGCTG4254
0
CAGCATACe,uns b Gl ee AAGTGGAC4255
0
Alzheimer diseaseTCTTTTATGTTTTTCTTTTTCTAGATTTAGTGGCTGTTTTGTGTC4256
Arg269HisCGAAAGGTCCACTTCe,uns b Gl ee TATGCTGGTTGAAACAGCTCAGGAGA
CGT-CATGAAATGAAACGCTTTTTCCAGCTCTCATTTACTC
0
GAGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCTGAG4257
CTGTTTCAACCAGCATAe,uns b Cl ee GAAGTGGACCTTTCGGACACAAAA
CAGCCACTAAATCTAGAAAAAGAAAAACATAAAAGA
0
TCCACTTCe,uns b Gl ee TATGCTGG4258
0
CCAGCATAe,uns b Cl ee GAAGTGGA4259
0
Alzheimer diseaseTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGG4260
Arg278ThrTTGAAACAGCTCAGGAGAe,uns b Gl ee AAATGAAACGCTTTTTCCAGCTCT
AGA-ACACATTTACTCCTGTAAGTATTTGAGAATGATATTGAA
0
TTCAATATCATTCTCAAATACTTACAGGAGTAAATGAGAGCTG4261
GAAAAAGCGTTTCATTTe,uns b Cl ee TCTCCTGAGCTGTTTCAACCAGCAT
ACGAAGTGGACCTTTCGGACACAAAACAGCCACTA
0
TCAGGAGAe,uns b Gl ee AAATGAAA4262
0
TTTCATTTe,uns b Cl ee TCTCCTGA4263
0
Alzheimer diseaseCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAAC4264
Glu280AlaAGCTCAGGAGAGAAATGe,uns b Al ee AACGCTTTTTCCAGCTCTCATTTAC
GAA-GCATCCTGTAAGTATTTGAGAATGATATTGAATTAGTA
0
TACTAATTCAATATCATTCTCAAATACTTACAGGAGTAAATGAG4265
AGCTGGAAAAAGCGTTe,uns b Tl ee CATTTCTCTCCTGAGCTGTTTCAACC
AGCATACGAAGTGGACCTTTCGGACACAAAACAG
0
GAGAAATGe,uns b Al ee AACGCTTT4266
0
AAAGCGTTe,uns b Tl ee CATTTCTC4267
0
Alzheimer diseaseCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAAC4268
Glu280GlyAGCTCAGGAGAGAAATGe,uns b Al ee AACGCTTTTTCCAGCTCTCATTTAC
GAA-GGATCCTGTAAGTATTTGAGAATGATATTGAATTAGTA
0
TACTAATTCAATATCATTCTCAAATACTTACAGGAGTAAATGAG4269
AGCTGGAAAAAGCGTTe,uns b Tl ee CATTTCTCTCCTGAGCTGTTTCAACC
AGCATACGAAGTGGACCTTTCGGACACAAAACAG
0
GAGAAATGe,uns b Al ee AACGCTTT4270
0
AAAGCGTTe,uns b Tl ee CATTTCTC4271
0
Alzheimer diseaseTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAACAGCTC4272
Leu282ArgAGGAGAGAAATGAAACGCe,uns b Tl ee TTTTCCAGCTCTCATTTACTCCTG
CTT-CGTTAAGTATTTGAGAATGATATTGAATTAGTAATCAGT
0
ACTGATTACTAATTCAATATCATTCTCAAATACTTACAGGAGTA4273
AATGAGAGCTGGAAAAe,uns b Al ee GCGTTTCATTTCTCTCCTGAGCTGTT
TCAACCAGCATACGAAGTGGACCTTTCGGACACA
0
TGAAACGCe,uns b Tl ee TTTTCCAG4274
0
CTGGAAAAe,uns b Al ee GCGTTTCA
0
Alzheimer diseaseAAGGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGAGAGAA4276
ATa285ValATGAAACGCTTTTTCCAGe,uns b Cl ee TCTCATTTACTCCTGTAAGTATTTG
GCT-GTTAGAATGATATTGAATTAGTAATCAGTGTAGAATTT
0
AAATTCTACACTGATTACTAATTCAATATCATTCTCAAATACTTA4277
CAGGAGTAAATGAGAe,uns b Gl ee CTGGAAAAAGCGTTTCATTTCTCTCCT
GAGCTGTTTCAACCAGCATACGAAGTGGACCTT
0
TTTTCCAGe,uns b Cl ee TCTCATTT4278
0
AAATGAGAe,uns b Gl ee CTGGAAAA4279
0
Alzheimer diseaseGGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGAGAGAAAT4280
Leu286ValGAAACGCTTTTTCCAGCTe,uns b Cl ee TCATTTACTCCTGTAAGTATTTGA
tCTC-GTCGAATGATATTGAATTAGTAATCAGTGTAGAATTTAT
0
ATAAATTCTACACTGATTACTAATTCAATATCATTCTCAAATACT4281
TACAGGAGTAAATGAe,uns b Gl ee AGCTGGAAAAAGCGTTTCATTTCTCTC
CTGAGCTGTTTCAACCAGCATACGAAGTGGACC
0
TTCCAGCTe,uns b Cl ee TCATTTAC4282
0
GTAAATGAe,uns b Gl ee AGCTGGAA4283
0
Alzheimer diseaseGTGACCAACTTTTTAATATTTGTAACCTTTCCTTTTTAGGGGGA4284
Gly384AlaGTAAAACTTGGATTGGe,uns b Gl ee AGATTTCATTTTCTACAGTGTTCTGG
GGA-GCATTGGTAAAGCCTCAGCAACAGCCAGTGGAGACTG
0
CAGTCTCCACTGGCTGTTGCTGAGGCTTTACCAACCAGAACA4285
CTGTAGAAAATGAAATCTe,uns b Cl ee CCAATCCAAGTTTTACTCCCCCTA
AAAAGGAAAGGTTACAAATATTAAAAAGTTGGTCAC
0
TGGATTGGe,uns b Gl ee AGATTTCA4286
0
TGAAATCTe,uns b Cl ee CCAATCCA4287
0
Alzheimer diseaseTTTGTAACCTTTCCTTTTTAGGGGGAGTAAAACTTGGATTGGG4288
Ser390lleAGATTTCATTTTCTACAe,uns b Gl ee TGTTCTGGTTGGTAAAGCCTCAGCA
AGT-ATTACAGCCAGTGGAGACTGGAACACAACCATAGCCTG
0
CAGGCTATGGTTGTGTTCCAGTCTCCACTGGCTGTTGCTGAG4289
GCTTTACCAACCAGAACAe,uns b Cl ee TGTAGAAAATGAAATCTCCCAATC
CAAGTTTTACTCCCCCTAAAAAGGAAAGGTTACAAA
0
TTTCTACAe,uns b Gl ee TGTTCTGG4290
0
CCAGAACAe,uns b Cl ee TGTAGAAA4291
0
Alzheimer diseaseAACCTTTCCTTTTTAGGGGGAGTAAAACTTGGATTGGGAGATT4292
Leu392ValTCATTTTCTACAGTGTTe,uns b Cl ee TGGTTGGTAAAGCCTCAGCAACAGC
tCTG-GTGCAGTGGAGACTGGAACACAACCATAGCCTGTTTCG
0
CGAAACAGGCTATGGTTGTGTTCCAGTCTCCACTGGCTGTTG4293
CTGAGGCTTTACCAACCAe,uns b Gl ee AACACTGTAGAAAATGAAATCTCC
CAATCCAAGTTTTACTCCCCCTAAAAAGGAAAGGTT
0
ACAGTGTTe,uns b Cl ee TGGTTGGT4294
0
ACCAACCAe,uns b Gl ee AACACTGT4295
0
Alzheimer diseaseATTTCATTTTCTACAGTGTTCTGGTTGGTAAAGCCTCAGCAAC4296
Asn405SerAGCCAGTGGAGACTGGAe,uns b Al ee CACAACCATAGCCTGTTTCGTAGC
AAC-AGCCATATTAATTGTAAGTATACACTAATAAGAATGTGT
0
ACACATTCTTATTAGTGTATACTTACAATTAATATGGCTACGAA4297
ACAGGCTATGGTTGTGe,uns b Tl ee TCCAGTCTCCACTGGCTGTTGCTGA
GGCTTTACCAACCAGAACACTGTAGAAAATGAAAT
0
AGACTGGAe,uns b Al ee CACAACCA4298
0
TGGTTGTGe,uns b Tl ee TCCAGTCT4299
0
Alzheimer diseaseTACAGTGTTCTGGTTGGTAAAGCCTCAGCAACAGCCAGTGGA4300
Ala409ThrGACTGGAACACAACCATAe,uns b Gl ee CCTGTTTCGTAGCCATATTAATTG
aGCC-ACCTAAGTATACACTAATAAGAATGTGTCAGAGCTCTTA
0
TAAGAGCTCTGACACATTCTTATTAGTGTATACTTACAATTAAT4301
ATGGCTACGAAACAGGe,uns b Cl ee TATGGTTGTGTTCCAGTCTCCACTG
GCTGTTGCTGAGGCTTTACCAACCAGAACACTGTA
0
CAACCATAe,uns b Gl ee CCTGTTTC4302
0
GAAACAGGe,uns b Cl ee TATGGTTG4303
0
Alzheimer diseaseGTGTTCTGGTTGGTAAAGCCTCAGCAACAGCCAGTGGAGACT4304
Cys410TyrGGAACACAACCATAGCCTe,uns b Gl ee TTTCGTAGCCATATTAATTGTAAG
TGT-TATTATACACTAATAAGAATGTGTCAGAGCTCTTAATGT
0
ACATTAAGAGCTCTGACACATTCTTATTAGTGTATACUACAAT4305
TAATATGGCTACGAAAe,uns b Cl ee AGGCTATGGTTGTGTTCCAGTCTCCA
CTGGCTGTTGCTGAGGCTTTACCAACCAGAACAC
0
CATAGCCTe,uns b Gl ee TTTCGTAG4306
0
CTACGAAAe,uns b Cl ee AGGCTATG4307
0
Alzheimer diseaseTGTGAATGTGTGTCTTTCCCATCTTCTCCACAGGGTTTGTGCC4308
Ala426ProTTACATTATTACTCCTTe,uns b Gl ee CCATTTTCAAGAAAGCATTGCCAGCT
tGCC-CCCCTTCCAATCTCCATCACCTTTGGGCTTGTTTTCT
0
AGAAAACAAGCCCAAAGGTGATGGAGATTGGAAGAGCTGGCA4309
ATGCTTTCTTGAAAATGGe,uns b Cl ee AAGGAGTAATAATGTAAGGCACAA
ACCCTGTGGAGAAGATGGGAAAGACACACATTCACA
0
TACTCCTTe,uns b Gl ee CCATTTTC4310
0
GAAAATGGe,uns b Cl ee AAGGAGTA4311
0
Alzheimer diseaseAGGGTTTGTGCCTTACATTATTACTCCTTGCCAVTTTCAAGAA4312
Pro436GlnAGCATTGCCAGCTCTTCe,uns b Cl ee AATCTCCATCACCTTTGGGCTTGTT
CCA-CAATTCTACTTTGCCACAGATTATCTTGTACAGCCTTT
0
AAAAGGCTGTACAAGATAATCTGTGGCAAAGTAGAAAACAAGC4313
CCAAAGGTGATGGAGATTe,uns b Gl ee GAAGAGCTGGCAATGCTTTCTTG
AAAATGGCAAGGAGTAATAATGTAAGGCACAAACCCT
0
AGCTCTTCe,uns b Cl ee AATCTCCA4314
0
TGGAGATTe,uns b Gl ee GAAGAGCT4315
0
Alzheimer diseaseCAGGGTTTGTGCCTTACATTATTACTCCTTGCCATTTTCAAGA4316
Pro436SerAAGCATTGCCAGCTCTTe,uns b Cl ee CAATCTCCATCACCTTTGGGCTTGT
tCCA-TCATTTCTACTTTGCCACAGATTATCTTGTACAGCCTT
0
AAGGCTGTACAAGATAATCTGTGGCAAAGTAGAAAACAAGCC4317
CAAAGGTGATGGAGATTGe,uns b Gl ee AAGAGCTGGCAATGCTTTCTTGA
AAATGGCAAGGAGTAATAATGTAAGGCACAAACCCTG
0
CAGCTCTTe,uns b Cl ee CAATCTCC4318
0
GGAGATTGe,uns b Gl ee AAGAGCTG4319tz,1/48
ps
Plant Cells
[0149] The oligonucleotides of the invention can also be used to repair or direct a mutagenic event in plants and animal cells. Although little information is available on plant mutations amongst natural cultivars, the oligonucleotides of the invention can be used to produce “knock out” mutations by modification of specific amino acid codons to produce stop codons (e.g., a CAA codon specifying Gln can be modified at a specific site to TAA; a MG codon specifying Lys can be modified to UAG at a specific site; and a CGA codon for Arg can be modified to a UGA codon at a specific site). Such base pair changes will terminate the reading frame and produce a defective truncated protein, shortened at the site of the stop codon. Alternatively, frameshift additions or deletions can be directed into the genome at a specific sequence to interrupt the reading frame and produce a garbled downstream protein. Such stop or frameshift mutations can be introduced to determine the effect of knocking out the protein in either plant or animal cells.
[0150] All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Claims
- 1. An oligonucleotide for targeted alteration(s) of genetic sequence, comprising a single-stranded oligonucleotide having a DNA domain, said DNA domain having at least one mismatch with respect to the genetic sequence to be altered, and further comprising chemical modifications within the oligonucleotide, said targeted alteration(s) occurring more frequently than alteration(s) of the genetic sequence by a double-stranded double hairpin chimeric oligonucleotide containing RNA and DNA nucleotides.
- 2. The oligonucleotide according to claim one that comprises at least one phosphorothioate linkage within the oligonucleotide.
- 3. The oligonucleotide according to claim one that comprises a 2′-O-methyl analog.
- 4. The oligonucleotide according to claim one that comprises a locked nucleotide analog.
- 5. The oligonucleotide according to claim one that comprises a combination of at least two modifications selected from the group of a phosphorothioate linkage, a 2′-O-methyl analog, a locked nucleotide analog and a ribonucleotide.
- 6. The oligonucleotide according to any one of claims 1 to 5 that comprises at least one unmodified ribonucleotide.
- 7. The oligonucleotide according to any one of claims 1 to 6, wherein the sequence of said oligonucleotide is selected from the group consisting of SEQ ID NOS: 1-4339.
- 8. A method of targeted alteration of genetic material, comprising combining the target genetic material with an oligonucleotide according to any one of claims 1 to 7 in the presence of purified proteins.
- 9. A method of targeted alteration of genetic material, comprising administering to a cell extract an oligonucleotide of any one of claims 1 to 7.
- 10. A method of targeted alteration of genetic material, comprising administering to a cell an oligonucleotide of any one of claims 1 to 7.
- 11. A method of targeted alteration of genetic sequence in a subject, comprising administering to the subject an oligonucleotide of any one of claims 1 to 7.
- 12. A method of targeted alteration of genetic sequence, comprising combining target genetic material with an oligonucleotide according to any one of claims 1 to 7, said target genetic material being a non-transcribed DNA strand of a duplex DNA.
- 13. The genetic material obtained by any one of the methods of claim 8, 9 or claim 10.
- 14. A cell comprising the genetic material of claim 13.
- 15. A non-human organism comprising the cell according to claim 14.
- 16. A pharmaceutical composition comprising the oligonucleotide according to any one of claims 1 to 7.
- 17. A method of targeted chromosomal genomic alteration, comprising administering the pharmaceutical composition of claim 16 to a subject.
- 18. A non-human organism produced by the method of claim 11 or claim 17.
- 19. A method of optimizing an oligonucleotide for targeted alteration of a genetic sequence, which comprises:
(a) comparing the efficiency of alteration of a targeted genetic sequence by an oligonucleotide of any one of claims 1 to 7 with the efficiency of alteration of the same targeted genetic sequence by a second oligonucleotide, said second oligonucleotide selected from the group of (1) an oligonucleotide that is fully complementary to the target and lacks the mismatch, (2) a fully modified phosphorothiolated oligonucleotide, (3) a fully modified 2′-O-methylated oligonucleotide and (4) a chimeric double-stranded double hairpin containing RNA and DNA nucleotides.
- 20. The method of claim 19 in which the alteration is produced in a cell extract.
- 21. The method of claim 20 in which the cell extract is selected from the group of a fungal cell extract, a plant cell extract, a rodent cell extract, a primate cell extract and a human cell extract.
- 22. The method of claim 19 in which the alteration is produced in a cell.
- 23. The method of claim 21 in which the cell is selected from the group of a fungal cell, a plant cell, a rodent cell, a primate cell and a human cell.
- 24. A kit comprising the oligonucleotide according to any one of claims 1 to 7 and a second oligonucleotide selected from the group of (1) an oligonucleotide that is fully complementary to the target and lacks the mismatch, (2) a fully modified phosphorothiolated oligonucleotide, (3) a fully modified 2-O-methylated oligonucleotide and (4) a chimeric double stranded double hairpin containing RNA and DNA nucleotides.
Provisional Applications (4)
|
Number |
Date |
Country |
|
60192176 |
Mar 2000 |
US |
|
60192179 |
Mar 2000 |
US |
|
60208538 |
Jun 2000 |
US |
|
60244989 |
Oct 2000 |
US |
Continuations (1)
|
Number |
Date |
Country |
Parent |
PCT/US01/09761 |
Mar 2001 |
US |
Child |
10261185 |
Sep 2002 |
US |