Targeted chromosomal genomic alterations with modified single stranded oligonucleotides

Abstract
Presented are methods and compositions for targeted chromosomal genomic alterations using modified single-stranded oligonucleotides. The oligonucleotides of the invention have at least one modified nuclease-resistant terminal region comprising phosphorothioate linkages, LNA analogs or 2′-O-Me base analogs.
Description
INCORPORATION-BY-REFERENCE OF MATERIALS FILED ON COMPACT DISC

The present application includes a Sequence Listing filed on a single compact disc (CD-R), filed in duplicate. The Sequence Listing is presented in a single file on each CD-R and is named SequenceListingNapro4. The Sequence Listing was last modified Jul. 23, 2001 at 3:55 PM and comprises 930,816 bytes.


FIELD OF THE INVENTION

The technical field of the invention is oligonucleotide-directed repair or alteration of genetic information using novel chemicaliy modified oligonucleotides. Such genetic information is preferably from a eukaryotic organism, i.e. a plant, animal or fungus.


BACKGROUND OF THE INVENTION

A number of methods have been developed specifically to alter the sequence of an isolated DNA in addition to methods to alter directly the genomic information of various plants, fungi and animals, including humans (“gene therapy”). The latter methods generally include the use of viral or plasmid vectors carrying nucleic acid sequences encoding partial or complete portions of a particular protein which is expressed in a cell or issue to effect the alteration. The expression of the particular protein then results in the desired phenotype. For example, retroviral vectors containing a transgenic DNA sequence allowing for the production of a normal CFTR protein when administered to defective cells are described in U.S. Pat. No. 5,240,846. Others have developed different “gene therapy vectors” which include, for example, portions of adenovirus (Ad) or adeno-associated virus (AAV), or other viruses. The virus portions used are often long terminal repeat sequences which are added to the ends of a transgene of choice along with other necessary control sequences which allow expression of the transgene. See U.S. Pat. Nos. 5,700,470 and 5,139,941. Similar methods have been developed for use in plants. See, for example, U.S. Pat. No. 4,459,355 which describes a method for transforming plants with a DNA vector and U.S. Pat. No. 5,188,642 which describes cloning or expression vectors containing a transgenic DNA sequence which when expressed in plants confers resistance to the herbicide glyphosate. The use of such transgene vectors in any eukaryotic organism adds one or more exogenous copies of a gene, which gene may be foreign to the host, in a usually random fashion at one or more integration sites of the organism's genome at some frequency. The gene which was originally present in the genome, which may be a normal allelic variant, mutated, defective, and/or functional, is retained in the genome of the host.


These methods of gene correction are problematic in that complications which can compromise the health of the recipient, or even lead to death, may result. One such problem is that insertion of exogenous nucleic acid at random location(s) in the genome can have deleterious effects. Another problem with such systems includes the addition of unnecessary and unwanted genetic material to the genome of the recipient, including, for example, viral or other vector remnants, control sequences required to allow production of the transgene protein, and reporter genes or resistance markers. Such remnants and added sequences may have presently unrecognized consequences, for example, involving genetic rearrangements of the recipient genomes. Other problems associated with these types of traditional gene therapy methods include autoimmune suppression of cells expressing an inserted gene due to the presence of foreign antigens. Concerns have also been raised with consumption, especially by humans, of plants containing exogenous genetic material.


More recently, simpler systems involving poly- or oligo-nucleotides have been described for use in the alteration of genomic DNA. These chimeric RNA-DNA oligonucleotides, requiring contiguous RNA and DNA bases in a double-stranded molecule folded by complementarity into a double hairpin conformation, have been shown to effect single basepair or frameshift alterations, for example, for mutation or repair of plant or animal genomes. See, for example, WO 99/07865 and U.S. Pat. No. 5,565,350. In the chimeric RNA-DNA oligonucleotide, an uninterrupted stretch of DNA bases within the molecule is required for sequence alteration of the targeted genome while the obligate RNA residues are involved in complex stability. Due to the length, backbone composition, and structural configuration of these chimeric RNA-DNA molecules, they are expensive to synthesize and difficult to purify. Moreover, if the RNA-containing strand of the chimeric RNA-DNA oligonucleotide is designed so as to direct gene conversion, a series of mutagenic reactions resulting in nonspecific base alteration can result. Such a result compromises the utility of such a molecule in methods designed to alter the genomes of plants and animals, including in human gene therapy applications.


Alternatively, other oligo- or poly-nucleotides have been used which require a triplex forming, usually polypurine or polypyrimidine, structural domain which binds to a DNA helical duplex through Hoogsteen interactions between the major groove of the DNA duplex and the oligonucleotide. Such oligonucleotides may have an additional DNA reactive moiety, such as psoralen, covalently linked to the oligonucleotide. These reactive moieties function as effective intercalation agents, stabilize the formation of a triplex and can be mutagenic. Such agents may be required in order to stabilize the triplex forming domain of the oligonucleotide with the DNA double helix if the Hoogsteen interactions from the oligonucleotide/target base composition are insufficient. See, e.g., U.S. Pat. No. 5,422,251. The utility of these oligonucleotides for directing gene conversion is compromised by a high frequency of nonspecific base changes.


In more recent work, the domain for altering a genome is linked or tethered to the triplex forming domain of the bi-functional oligonucleotide, adding an additional linking or tethering functional domain to the oligonucleotide. See, e.g., Culver et al., Nature Biotechnology 17: 989-93 (1999). Such chimeric or triplex forming molecules have distinct structural requirements for each of the different domains of the complete poly- or oligo-nucleotide in order to effect the desired genomic alteration in either episomal or chromosomal targets.


Other genes, e.g. CFTR, have been targeted by homologous recombination using duplex fragments having several hundred basepairs. See, e.g., Kunzelmann et al., Gene Ther. 3:859-867 (1996). Early experiments to mutagenize an antibiotic resistance indicator gene by homologous recombination used an unmodified DNA oligonucleotide with no functional domains other than a region of complementary sequence to the target. See Campbell et al., New Biologist 1: 223-227 (1989). These experiments required large concentrations of the oligonucleotide, exhibited a very low frequency of episomal modification of a targeted exogenous plasmid gene not normally found in the cell and have not been reproduced. However, as shown in the examples herein, we have observed that an unmodified DNA oligonucleotide can convert a base at low frequency which is detectable using the assay systems described herein.


Artificial chromosomes can be useful for the screening purposed identified herein. These molecules are man-made linear or circular DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al., 1983). The essential elements are: (1) Autonomous Replication Sequences (ARS), (2) Centromeres, and (3) Telomeres.


Yeast artificial chromosomes (YACs) allow large genomic DNA to be modified and used for generating transgenic animals [Burke et al., Science 236:806; Peterson et al., Trends Genet. 13:61 (1997); Choi, et al., Nat Genet., 4:117-223 (1993), Davies, et al., Biotechnology 11:911-914 (1993), Matsuura, et al., Hum. Mol. Genet., 5:451-459 (1996), Peterson et al., Proc. Natl. Acad. Sci., 93:6605-6609 (1996); and Schedl, et al., Cell, 86:71-82 (1996)]. Other vectors also have been developed for the cloning of large segments of mammalian DNA, including cosmids, and bacteriophage P1 [Sternberg et al., Proc. Natl. Acad. Sci. U.S.A., 87:103-107 (1990)]. YACs have certain advantages over these alternative large capacity cloning vectors [Burke et al., Science, 236:806-812 (1987)]. The maximum insert size is 35-30 kb for cosmids, and 100 kb for bacteriophage P1, both of which are much smaller than the maximal insert for a YAC.


An alternative to YACs are E. coli based cloning systems based on the E. coli fertility factor that have been developed to construct large genomic DNA insert libraries. They are bacterial artificial chromosomes (BACs) and P-1 derived artificial chromosomes (PACs) [Mejia et al., Genome Res. 7:179-186 (1997); Shizuya et al., Proc. Natl. Acad. Sci. 89:8794-8797 (1992); Ioannou et al., Nat Genet., 6:84-89 (1994); Hosoda et al., Nucleic Acids Res. 18:3863 (1990)]. BACs are based on the E. coli fertility plasmid (F factor); and PACs are based on the bacteriophage P1. These vectors propagate at a very low copy number (1-2 per cell) enabling genomic inserts up to 300 kb in size to be stably maintained in recombination deficient hosts. Furthermore, the PACs and BACs are circular DNA molecules that are readily isolated from the host genomic background by classical alkaline lysis [Birnboim et al., Nucleic Acids Res. 7:1513-1523 (1979].


Oligonucleotides designed for use in the alteration of genetic information are significantly different from oligonucleotides designed for antisense approaches. For example, antisense oligonucleotides are perfectly complementary to and bind an mRNA strand in order to modify expression of a targeted mRNA and are used at high concentration. As a consequence, they are unable to produce a gene conversion event by either mutagenesis or repair of a defect in the chromosomal DNA of a host genome. Furthermore, the backbone chemical composition used in most oligonucleotides designed for use in antisense approaches renders them inactive as substrates for homologous pairing or mismatch repair enzymes and the high concentrations of oligonucleotide required for antisense applications can be toxic with some types of nucleotide modifications. In addition, antisense oligonucleotides must be complementary to the mRNA and therefore, may not be complementary to the other DNA strand or to genomic sequences that span the junction between intron sequence and exon sequence.


A need exists for simple, inexpensive oligonucleotides capable of producing targeted alteration of genetic material such as those described herein as well as methods to identify optimal oligonucleotides that accurately and efficiently alter target DNA.


SUMMARY OF THE INVENTION

Novel, modified single-stranded nucleic acid molecules that direct gene alteration in plants, fungi and animals are identified and the efficiency of alteration is analyzed both in vitro using a cell-free extract assay and in vivo using a yeast cell system. The alteration in an oligonucleotide of the invention may comprise an insertion, deletion, substitution, as well as any combination of these. Site specific alteration of DNA is not only useful for studying function of proteins in vivo, but it is also useful for creating animal models for human disease, and in gene therapy. As described herein, oligonucleotides of the invention target directed specific gene alterations in genomic double-stranded DNA cells. The target DNA can be normal, cellular chromosomal DNA, extrachromosomal DNA present in cells in different forms including, e.g., mammalian artificial chromosomes (MACs), PACs from P-1 vectors, yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PLACs), as well as episomal DNA, including episomal DNA from an exogenous source such as a plasmid or recombinant vector. Many of these artificial chromosome constructs containing human DNA can be obtained from a variety of sources, including, e.g., the Whitehead Institute, and are described, e.g., in Cohen et al., Nature 336:698-701 (1993) and Chumakov, et al., Nature 377:174-297 (1995). The target DNA may be transcriptionally silent or active. In a preferred embodiment, the target DNA to be altered is the non-transcribed strand of a genomic DNA duplex.


The low efficiency of gene alteration obtained using unmodified DNA oligonucleotides is believed to be largely the result of degradation by nucleases present in the reaction mixture or the target cell. Although different modifications are known to have different effects on the nuclease resistance of oligonucleotides or stability of duplexes formed by such oligonucleotides (see, e.g., Koshkin et al., J. Am. Chem. Soc., 120:13252-3), we have found that it is not possible to predict which of any particular known modification would be most useful for any given alteration event, including for the construction of gene conversion oligonucleotides, because of the interaction of different as yet unidentified proteins during the gene alteration event. Herein, a variety of nucleic acid analogs have been developed that increase the nuclease resistance of oligonucleotides that contain them, including, e.g., nucleotides containing phosphorothioate linkages or 2′-O-methyl analogs. We recently discovered that single-stranded DNA oligonucleotides modified to contain 2′-O-methyl RNA nucleotides or phosphorothioate linkages can enable specific alteration of genetic information at a higher level than either unmodified single-stranded DNA or a chimeric RNA/DNA molecule. See priority applications incorporated herein in their entirety; see also Gamper et al., Nucleic Acids Research 28: 4332-4339 (2000). We also found that additional nucleic acid analogs which increase the nuclease resistance of oligonucleotides that contain them, including, e.g., “locked nucleic acids” or “LNAs”, xylo-LNAs and L-ribo-LNAs; see, for example, Wengel & Nielsen, WO 99/14226; Wengel, WO 00/56748 and Wengel, WO 00/66604; also allow specific targeted alteration of genetic information.


The assay allows for determining the optimum length of the oligonucleotide, optimum sequence of the oligonucleotide, optimum position of the mismatched base or bases, optimum chemical modification or modifications, optimum strand targeted for identifying and selecting the most efficient oligonucleotide for a particular gene alteration event by comparing to a control oligonucleotide. Control oligonucleotides may include a chimeric RNA-DNA double hairpin oligonucleotide directing the same gene alteration event, an oligonucleotide that matches its target completely, an oligonucleotide in which all linkages are phosphorothiolated, an oligonucleotide fully substituted with 2′-O-methyl analogs or an RNA oligonucleotide. Such control oligonucleotides either fail to direct a targeted alteration or do so at a lower efficiency as compared to the oligonucleotides of the invention. The assay further allows for determining the optimum position of a gene alteration event within an oligonucleotide, optimum concentration of the selected oligonucleotide for maximum alteration efficiency by systematically testing a range of concentrations, as well as optimization of either the source of cell extract by testing different organisms or strains, or testing cells derived from different organisms or strains, or cell lines. Using a series of single-stranded oligonucleotides, comprising all RNA or DNA residues and various mixtures of the two, several new structures are identified as viable molecules in nucleotide conversion to direct or repair a genomic mutagenic event. When extracts from mammalian, plant and fungal cells are used and are analyzed using a genetic readout assay in bacteria, single-stranded oligonucleotides having one of several modifications are found to be more active than a control RNA-DNA double hairpin chimera structure when evaluated using an in vitro gene repair assay. Similar results are also observed in vivo using yeast, mammalian, rodent, monkey, human and embryonic cells, including stem cells. Molecules containing various lengths of modified bases were found to possess greater activity than unmodified single-stranded DNA molecules.


DETAILED DESCRIPTION OF THE INVENTION

The present invention provides oligonucleotides having chemically modified, nuclease resistant residues, preferably at or near the termini of the oligonucleotides, and methods for their identification and use in targeted alteration of genetic material, including gene mutation, targeted gene repair and gene knockout. The oligonucleotides are preferably used for mismatch repair or alteration by changing at least one nucleic acid base, or for frameshift repair or alteration by addition or deletion of at least one nucleic acid base. The oligonucleotides of the invention direct any such alteration, including gene correction, gene repair or gene mutation and can be used, for example, to introduce a polymorphism or haplotype or to eliminate (“knockout”) a particular protein activity.


The oligonucleotides of the invention are designed as substrates for homologous pairing and repair enzymes and as such have a unique backbone composition that differs from chimeric RNA-DNA double hairpin oligonucleotides, antisense oligonucleotides, and/or other poly- or oligo-nucleotides used for altering genomic DNA, such as triplex forming oligonucleotides. The single-stranded oligo-nucleotides described herein are inexpensive to synthesize and easy to purify. In side-by-side comparisons, an optimized single-stranded oligonucleotide comprising modified residues as described herein is significantly more efficient than a chimeric RNA-DNA double hairpin oligonucleotide in directing a base substitution or frameshift mutation in a cell-free extract assay.


We have discovered that single-stranded oligonucleotides having a DNA domain surrounding the targeted base, with the domain preferably central to the poly- or oligo-nucleotide, and having at least one modified end, preferably at the 3′ terminal region are able to alter a target genetic sequence and with an efficiency that is higher than chimeric RNA-DNA double hairpin oligonucleotides disclosed in U.S. Pat. No. 5,565,350. Oligonucleotides of the invention can efficiently be used to introduce targeted alterations in a genetic sequence of DNA in the presence of human, animal, plant, fungal (including yeast) proteins and in cultured cells of human liver, lung, colon, cervix, kidney, epethelium and cancer cells and in monkey, hamster, rat and mouse cells of different types, as well as embryonic stem cells. Cells for use in the invention include, e.g., fungi including S. cerevisiae, Ustillago maydis and Candida albicans, mammalian, mouse, hamster, rat, monkey, human and embryonic cells including stem cells. The DNA domain is preferably fully complementary to one strand of the gene target, except for the mismatch base or bases responsible for the gene alteration or conversion events. On either side of the preferably central DNA domain, the contiguous bases may be either RNA bases or, preferably, are primarily DNA bases. The central DNA domain is generally at least 8 nucleotides in length. The base(s) targeted for alteration in the most preferred embodiments are at least about 8, 9 or 10 bases from one end of the oligonucleotide.


According to certain embodiments, the termini of the oligonucleotides of the present invention comprise phosphorothioate modifications, LNA backbone modifications, or 2′-O-methyl base analogs, or any combination of these modifications. Oligonucleotides comprising 2′-O-methyl or LNA analogs are a mixed DNA/RNA polymer. These oligonucleotides are, however, single-stranded and are not designed to form a stable internal duplex structure within the oligonucleotide. The efficiency of gene alteration is surprisingly increased with oligonucleotides having internal complementary sequence comprising phosphorothioate modified bases as compared to 2′-O-methyl modifications. This result indicates that specific chemical interactions are involved between the converting oligonucleotide and the proteins involved in the conversion. The effect of other such chemical interactions to produce nuclease resistant termini using modifications other than LNA, phosphorothioate linkages, or 2′-O-methyl analog incorporation into an oligonucleotide can not yet be predicted because the proteins involved in the alteration process and their particular chemical interaction with the oligonucleotide substituents are not yet known and cannot be predicted.


In the examples, correcting oligonucleotides of defined sequence are provided for correction of genes mutated in human diseases. In the tables of these examples, the oligonucleotides of the invention are not limited to the particular sequences disclosed. The oligonucleotides of the invention include extensions of the appropriate sequence of the longer 120 base oligonucleotides which can be added base by base to the smallest disclosed oligonucleotides of 17 bases. Thus the oligonucleotides of the invention include for each correcting change, oligonucleotides of length 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 with further single-nucleotide additions up to the longest sequence disclosed. Moreover, the oligonucleotides of the invention do not require a symmetrical extension on either side of the central DNA domain. Similarly, the oligonucleotides of the invention as disclosed in the various tables for correction of human diseases contain phosphorothioate linkages, 2′-O-methyl analogs or LNAs or any combination of these modifications just as the assay oligonucleotides do.


The present invention, however, is not limited to oligonucleotides that contain any particular nuclease resistant modification. Oligonucleotides of the invention may be altered with any combination of additional LNAs, phosphorothioate linkages or 2′-O-methyl analogs to maximize conversion efficiency. For oligonucleotides of the invention that are longer than about 17 to about 25 bases in length, internal as well as terminal region segments of the backbone may be altered. Alternatively, simple fold-back structures at each end of a oligonucleotide or appended end groups may be used in addition to a modified backbone for conferring additional nuclease resistance.


The different oligonucleotides of the present invention preferably contain more than one of the aforementioned backbone modifications at each end. In some embodiments, the backbone modifications are adjacent to one another. However, the optimal number and placement of backbone modifications for any individual oligonucleotide will vary with the length of the oligonucleotide and the particular type of backbone modification(s) that are used. If constructs of identical sequence having phosphorothioate linkages are compared, 2, 3, 4, 5, or 6 phosphorothioate linkages at each end are preferred. If constructs of identical sequence having 2′-O-methyl base analogs are compared, 1, 2, 3 or 4 analogs are preferred. The optimal number and type of backbone modifications for any particular oligo-nucleotide useful for altering target DNA may be determined empirically by comparing the alteration efficiency of the oligonucleotide comprising any combination of the modifications to a control molecule of comparable sequence using any of the assays described herein. The optimal position(s) for oligonucleotide modifications for a maximally efficient altering oligonucleotide can be determined by testing the various modifications as compared to control molecule of comparable sequence in one of the assays disclosed herein. In such assays, a control molecule includes, e.g., a completely 2′-O-methyl substituted molecule, a completely complementary oligonucleotide, or a chimeric RNA-DNA double hairpin.


Increasing the number of phosphorothioate linkages, LNAs or 2′-O-methyl bases beyond the preferred number generally decreases the gene repair activity of a 25 nucleotide long oligonucleotide. Based on analysis of the concentration of oligonucleotide present in the extract after different time periods of incubation, it is believed that the terminal modifications impart nuclease resistance to the oligonucleotide thereby allowing it to survive within the cellular environment However, this may not be the only possible mechanism by which such modifications confer greater efficiency of conversion. For example, as disclosed herein, certain modifications to oligonucleotides confer a greater improvement to the efficiency of conversion than other modifications.


Efficiency of conversion is defined herein as the percentage of recovered substate molecules that have undergone a conversion event Depending on the nature of the target genetic material, e.g. the genome of a cell, efficiency could be represented as the proportion of cells or clones containing an extrachromosomal element that exhibit a particular phenotype. Alternatively, representative samples of the target genetic material can be sequenced to determine the percentage that have acquired the desire change. The oligonucleotides of the invention in different embodiments can alter DNA one, two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold more than control oligonucleotides. Such control oligonucleotides are oligonucleotides with fully phosphorothiolated linkages, oligonucleotides that are fully substituted with 2′-O-methyl analogs, a perfectly matched oligonucleotide that is fully complementary to a target sequence or a chimeric DNA-RNA double hairpin oligonucleotide such as disclosed in U.S. Pat. No. 5,565,350.


In addition, for a given oligonucleotide length, additional modifications interfere with the ability of the oligonucleotide to act in concert with the cellular recombination or repair enzyme machinery which is necessary and required to mediate a targeted substitution, addition or deletion event in DNA. For example, fully phosphorothiolated or fully 2-O-methylated molecules are inefficient in targeted gene alteration.


The oligonucleotides of the invention as optimized for the purpose of targeted alteration of genetic material, including gene knockout or repair, are different in structure from antisense oligonucleotides that may possess a similar mixed chemical composition backbone. The oligonucleotides of the invention differ from such antisense oligonucleotides in chemical composition, structure, sequence, and in their ability to alter genomic DNA. Significantly, antisense oligonucleotides fail to direct targeted gene alteration. The oligonucleotides of the invention may target either the Watson or the Crick strand of DNA and can include any component of the genome including, for example, intron and exon sequences. The preferred embodiment of the invention is a modified oligonucleotide that binds to the non-transcribed strand of a genomic DNA duplex. In other words, the preferred oligonucleotides of the invention target the sense strand of the DNA, i.e. the oligonucleotides of the invention are complementary to the non-transcribed strand of the target duplex DNA. The sequence of the non-transcribed strand of a DNA duplex is found in the mRNA produced from that duplex, given that mRNA uses uracil-containing nucleotides in place of thymine-containing nucleotides.


Moreover, the initial observation that single-stranded oligonucleotides comprising these modifications and lacking any particular triplex forming domain have reproducibly enhanced gene repair activity in a variety of assay systems as compared to a chimeric RNA-DNA double-stranded hairpin control or single-stranded oligonucleotides comprising other backbone modifications was surprising. The single-stranded molecules of the invention totally lack the complementary RNA binding structure that stabilizes a normal chimeric double-stranded hairpin of the type disclosed in U.S. Pat. No. 5,565,350 yet is more effective in producing targeted base conversion as compared to such a chimeric RNA-DNA double-stranded hairpin. In addition, the molecules of the invention lack any particular triplex forming domain involved in Hoogsteen interactions with the DNA double helix and required by other known oligonucleotides in other oligonucleotide dependant gene conversion systems. Although the lack of these functional domains was expected to decrease the efficiency of an alteration in a sequence, just the opposite occurs: the efficiency of sequence alteration using the modified oligonucleotides of the invention is higher than the efficiency of sequence alteration using a chimeric RNA-DNA hairpin targeting the same sequence alteration. Moreover, the efficiency of sequence alteration or gene conversion directed by an unmodified oligonucleotide is many times lower as compared to a control chimeric RNA-DNA molecule or the modified oligonucleotides of the invention targeting the same sequence alteration. Similarly, molecules containing at least 3 2′-O-methyl base analogs are about four to five fold less efficient as compared to an oligonucleotide having the same number of phosphorothioate linkages.


The oligonucleotides of the present invention for alteration of a single base are about 17 to about 121 nucleotides in length, preferably about 17 to about 74 nucleotides in length. Most preferably, however, the oligonucleotides of the present invention are at least about 25 bases in length, unless there are self-dimerization structures within the oligonucleotide. If the oligonucleotide has such an unfavorable structure, lengths longer than 35 bases are preferred. Oligonucleotides with modified ends both shorter and longer than certain of the exemplified, modified oligonucleotides herein function as gene repair or gene knockout agents and are within the scope of the present invention.


Once an oligomer is chosen, it can be tested for its tendency to self-dimerize, since self-dimerization may result in reduced efficiency of alteration of genetic information. Checking for self-dimerizaton tendency can be accomplished manually or, more preferably, by using a software program. One such program is Oligo Analyzer 2.0, available through Integrated DNA Technologies (Coralville, Iowa 52241); this program is available for use on the world wide web at

    • the Integrated DNA Technologies web site.


      For each oligonucleotide sequence input into the program, Oligo Analyzer 2.0 reports possible self-dimerized duplex forms, which are usually only partially duplexed, along with the free energy change associated with such self-dimerization. Delta G-values that are negative and large in magnitude, indicating strong self-dimerization potential, are automatically flagged by the software as “bad”. Another software program that analyzes oligomers for pair dimer formation is Primer Select from DNASTAR, Inc., 1228 S. Park St., Madison, Wis. 53715, Phone: (608) 258-7420.


      If the sequence is subject to significant self-dimerization, the addition of further sequence flanking the “repair” nucleotide can improve gene correction frequency.


Generally, the oligonucleotides of the present invention are identical in sequence to one strand of the target DNA, which can be either strand of the target DNA, with the exception of one or more targeted bases positioned within the DNA domain of the oligonucleotide, and preferably toward the middle between the modified terminal regions. Preferably, the difference in sequence of the oligonucleotide as compared to the targeted genomic DNA is located at about the middle of the oligonucleotide sequence. In a preferred embodiment, the oligonucleotides of the invention are complementary to the non-transcribed strand of a duplex. In other words, the preferred oligonucleotides target the sense strand of the DNA, i.e. the oligonucleotides of the invention are preferably complementary to the strand of the target DNA the sequence of which is found in the mRNA.


The oligonucleotides of the invention can include more than a single base change. In an oligonucleotide that is about a 70-mer, with at least one modified residue incorporated on the ends, as disclosed herein, multiple bases can be simultaneously targeted for change. The target bases may be up to 27 nucleotides apart and may not be changed together in all resultant plasmids in all cases. There is a frequency distribution such that the closer the target bases are to each other in the central DNA domain within the oligonucleotides of the invention, the higher the frequency of change in a given cell. Target bases only two nucleotides apart are changed together in every case that has been analyzed. The farther apart the two target bases are, the less frequent the simultaneous change. Thus, oligonucleotides of the invention may be used to repair or alter multiple bases rather than just one single base. For example, in a 74-mer oligonucleotide having a central base targeted for change, a base change event up to about 27 nucleotides away can also be effected. The positions of the altering bases within the oligonucleotide can be optimized using any one of the assays described herein. Preferably, the altering bases are at least about 8 nucleotides from one end of the oligonucleotide.


The oligonucleotides of the present invention can be introduced into cells by any suitable means. According to certain preferred embodiments, the modified oligonucleotides may be used alone. Suitable means, however, include the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, microinjection and other methods known in the art to facilitate cellular uptake. According to certain preferred embodiments of the present invention, the isolated cells are treated in culture according to the methods of the invention, to mutate or repair a target gene. Modified cells may then be reintroduced into the organism as, for example, in bone marrow having a targeted gene. Alternatively, modified cells may be used to regenerate the whole organism as, for example, in a plant having a desired targeted genomic change. In other instances, targeted genomic alteration, including repair or mutagenesis, may take place in vivo following direct administration of the modified, single-stranded oligonucleotides of the invention to a subject.


The single-stranded, modified oligonucleotides of the present invention have numerous applications as gene repair, gene modification, or gene knockout agents. Such oligonucleotides may be advantageously used, for example, to introduce or correct multiple point mutations. Each mutation leads to the addition, deletion or substitution of at least one base pair. The methods of the present invention offer distinct advantages over other methods of altering the genetic makeup of an organism, in that only the individually targeted bases are altered. No additional foreign DNA sequences are added to the genetic complement of the organism. Such agents may, for example, be used to develop plants or animals with improved traits by rationally changing the sequence of selected genes in cultured cells. Modified cells are then cloned into whole plants or animals having the altered gene. See, e.g., U.S. Pat. Nos. 6,046,380 and 5,905,185 incorporated hererin by reference. Such plants or animals produced using the compositions of the invention lack additional undesirable selectable markers or other foreign DNA sequences. Targeted base pair substitution or frameshift mutations introduced by an oligo-nucleotide in the presence of a cell-free extract also provides a way to modify the sequence of extrachromosomal elements, including, for example, plasmids, cosmids and artificial chromosomes. The oligonucleotides of the invention also simplify the production of transgenic animals having particular modified or inactivated genes. Altered animal or plant model systems such as those produced using the methods and oligonucleotides of the invention are invaluable in determining the function of a gene and in evaluating drugs. The oligonucleotides and methods of the present invention may also be used for gene therapy to correct mutations causative of human diseases.


The purified oligonucleotide compositions may be formulated in accordance with routine procedures as a pharmaceutical composition adapted for bathing cells in culture, for microinjection into cells in culture, and for intravenous administration to human beings or animals. Typically, compositions for cellular administration or for intravenous administration into animals, including humans, are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anaesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients will be supplied either separately or mixed together in unit dosage form, for example, as a dry, lyophilized powder or water-free concentrate. The composition may be stored in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent in activity units. Where the composition is administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade “water for injection” or saline. Where the composition is to be administered by injection, an ampule of sterile water for injection or saline may be provided so that the ingredients may be mixed prior to administration.


Pharmaceutical compositions of this invention comprise the compounds of the present invention and pharmaceutically acceptable salts thereof, with any pharmaceutically acceptable ingredient, excipient, carrier, adjuvant or vehicle.


The oliqonucleotides of the invention are preferably administered to the subject in the form of an injectable composition. The composition is preferably administered parenterally, meaning intravenously, intraarterially, intrathecally, interstitially or intracavitarilly. Pharmaceutical compositions of this invention can be administered to mammals including humans in a manner similar to other diagnostic or therapeutic agents. The dosage to be administered, and the mode of administration will depend on a variety of factors including age, weight, sex, condition of the subject and genetic factors, and will ultimately be decided by medical personnel subsequent to experimental determinations of varying dosage as described herein. In general, dosage required for correction and therapeutic efficacy will range from about 0.001 to 50,000 μg/kg, preferably between 1 to 250 μg/kg of host cell or body mass, and most preferably at a concentration of between 30 and 60 micromolar.


For cell administration, direct injection into the nucleus, biolistic bombardment, electroporation, liposome transfer and calcium phosphate precipitation may be used. In yeast, lithium acetate or spheroplast transformation may also be used. In a preferred method, the administration is performed with a liposomal transfer compound, e.g., DOTAP (Boehringer-Mannheim) or an equivalent such as lipofectin. The amount of the oligonucleotide used is about 500 nanograms in 3 micrograms of DOTAP per 100,000 cells. For electroporation, between 20 and 2000 nanograms of oligonucleotide per million cells to be electroporated is an appropriate range of dosages which can be increased to improve efficiency of genetic alteration upon review of the appropriate sequence according to the methods described herein.


Another aspect of the invention is a kit comprising at least one oligonucleotide of the invention. The kit may comprise an addition reagent or article of manufacture. The additional reagent or article of manufacture may comprise a cell extract, a cell, or a plasmid, such as one of those disclosed in the Figures herein, for use in an assay of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. Flow diagram for the generation of modified single-stranded oligonucleotides. The upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (A) 2′-O-methyl RNA nucleotides or (B) phosphorothioate linkages. Fold changes in repair activity for correction of kans in the HUH7 cell-free extract are presented in parenthesis. HUH7 cells are described in Nakabayashi et al., Cancer Research 42: 3858-3863 (1982). Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene. The numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the molecule. Hence oligo 12S/25G contains an all phosphorothioate backbone, displayed as a dotted line. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G). FIG. 1(C) provides a schematic plasmid indicating the sequence of the kan chimeric double-stranded hairpin oligonucleotide (left; SEQ ID NO: 4341) and the sequence the tet chimeric double-stranded hairpin oligonucleotide used in other experiments (SEQ ID NO: 4342). FIG. 1(D) provides a flow chart of a kan experiment in which a chimeric double-stranded hairpin oligonucleotide (SEQ ID NO: 4341) is used. In FIG. 1(D), the Kan mutant sequence corresponds to SEQ ID NO: 4343 and SEQ ID NO: 4344; the Kan converted sequence corresponds to SEQ ID NO: 4345 and SEQ ID NO: 4346; the mutant sequence in the sequence trace corresponds to SEQ ID NO: 4347 and the converted sequences in the sequence trace corresponds to SEQ ID NO: 4348.


FIG. 2. Genetic readout system for correction of a point mutation in plasmid pKsm4021. A mutant kanamycin gene harbored in plasmid pKsm4021 is the target for correction by oligonucleotides. The mutant G is converted to a C by the action of the oligo. Corrected plasmids confer resistance to kanamycin in E. coli (DH10B) after electroporation leading to the genetic readout and colony counts. The wild type sequence corresponds to SEQ ID NO: 4349.


FIG. 3: Target plasmid and sequence correction of a frameshift mutation by chimeric and single-stranded oligonucleotides. (A) Plasmid pTsΔ208 contains a single base deletion mutation at position 208 rendering it unable to confer tet resistance. The target sequence presented below indicates the insertion of a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) DNA sequence confirming base insertion directed by Tet 3S/25G; the yellow highlight indicates the position of frameshift repair. The wild type sequence corresponds to SEQ ID NO: 4350, the mutant sequence corresponds to SEQ ID NO: 4351 and the converted sequence corresponds to SEQ ID NO: 4352. The control sequence in the sequence trace corresponds to SEQ ID NO: 4353 and the 3S/25A sequence in the sequence trace corresponds to SEQ ID NO: 4354.


FIG. 4. DNA sequences of representative kanr colonies. Confirmation of sequence alteration directed by the indicated molecule is presented along with a table outlining codon distribution. Note that 10S/25G and 12S/25G elicit both mixed and unfaithful gene repair. The number of clones sequenced is listed in parentheses next to the designation for the single-stranded oligonucleotide. A plus (+) symbol indicates the codon identified while a figure after the (+) symbol indicates the number of colonies with a particular sequence. TAC/TAG indicates a mixed peak. Representative DNA sequences are presented below the table with yellow highlighting altered residues. The sequences in the sequence traces have been assigned numbers as follows: 3S/25G, 6S/25G and 8S/25G correspond to SEQ ID NO: 4355, 10S/25G correspond to SEQ ID NO: 4356, 25S/25G on the lower left corresponds to SEQ ID NO: 4357 and 25S/25G on the lower right corresponds to SEQ ID NO: 4358.


FIG. 5. Gene correction in HeLa cells. Representative oligonucleotides of the invention are co-transfected with the pCMVneo()FIAsH plasmid (shown in FIG. 9) into HeLa cells. Ligand is diffused into cells after co-transfection of plasmid and oligonucleotides. Green fluorescence indicates gene correction of the mutation in the antibiotic resistance gene. Correction of the mutation results in the expression of a fusion protein that carries a marker ligand binding site and when the fusion protein binds the ligand, a green fluorescence is emitted. The ligand is produced by Aurora Biosciences and can readily diffuse into cells enabling a measurement of corrected protein function; the protein must bind the ligand directly to induce fluorescence. Hence cells bearing the corrected plasmid gene appear green while “uncorrected” cells remain colorless.


FIG. 6. Z-series imaging of corrected cells. Serial cross-sections of the HeLa cell represented in FIG. 5 are produced by Zeiss 510 LSM confocal microscope revealing that the fusion protein is contained within the cell.


FIG. 7. Hygromycin-eGFP target plasmids. (A) Plasmid pAURHYG(ins)GFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter. The target sequence presented below indicates the deletion of an A and the substitution of a C for a T directed by the oligonucleotides to re-establish the resistant phenotype. In FIG. 7A, the sequence of the normal allele corresponds to SEQ ID NO: 4359, the sequence of the target/existing mutation corresponds to SEQ ID NO: 4360 and the sequence of the desired alteration corresponds to SEQ ID NO: 4361. (B) Plasmid pAURHYG(rep)GFP contains a base substitution mutation introducing a G at nucleotide 137, at codon 46, of the Hygromycin B coding sequence (cds). The target sequence presented below the diagram indicates the amino acid conservative replacement of G with C, restoring gene function. In FIG. 7B, the sequence of the normal allele corresponds to SEQ ID NO: 4359, the sequence of the target/existing mutation corresponds to SEQ ID NO: 4362 and the sequence of the desired alteration corresponds to SEQ ID NO: 4361.


FIG. 8. Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined. In FIG. 8, the sequence of HygEb 3T/25 corresponds to SEQ ID NO: 4363, the sequence of HygE3T/74 corresponds to SEQ ID NO: 4364, the sequence of HygE3T/74a corresponds to SEQ ID NO: 4365, the sequence of HygGG/Rev corresponds to SEQ ID NO: 4366 and the sequence of Kan70T corresponds to SEQ ID NO: 4367.


FIG. 9. pAURNeo(−)FIAsH plasmid. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the gene alteration event by fluorescence. In FIG. 9, the sequence of the Neo/kan target mutant corresponds to SEQ ID NO: 4343 and SEQ ID NO: 4344, the converted sequence corresponds to SEQ ID NO: 4345 and SEQ ID NO: 4346 and the FIAsH peptide sequence corresponds to SEQ ID NO: 4368.


FIG. 10. pYESHyg(x)eGFP plasmid. This plasmid is a construct similar to the pAURHyg(x)eGFP construct shown in FIG. 7, except the promoter is the inducible GAL1 promoter. This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose.





The following examples are provided by way of illustration only, and are not intended to limit the scope of the invention disclosed herein.


EXAMPLE 1
Assay Method for Base Alteration and Preferred Oligonucleotide Selection

In this example, single-stranded and double-hairpin oligonucleotides with chimeric backbones (see FIG. 1 for structures (A and B) and sequences (C and D) of assay oligonucleotides) are used to correct a point mutation in the kanamycin gene of pKsm4021 (FIG. 2) or the tetracycline gene of pTsΔ208 (FIG. 3). All kan oligonucleotides share the same 25 base sequence surrounding the target base identified for change, just as all tet oligonucleotides do. The sequence is given in FIGS. 1C and 1D. Each plasmid contains a functional ampicillin gene. Kanamycin gene function is restored when a G at position 4021 is converted to a C (via a substitution mutation); tetracycline gene function is restored when a deletion at position 208 is replaced by a C (via frameshift mutation). A separate plasmid, pAURNeo(−)FIAsH (FIG. 9), bearing the kans gene is used in the cell culture experiments. This plasmid was constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferase (kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FIAsH ligand into the pAUR123 shuttle vector (Panvera Corp., Madison, Wis.). The resulting construct replicates in S. cerevisiae at low copy number, confers resistance to aureobasidinA and constitutively expresses either the Neo+/FIAsH fusion product (after alteration) or the truncated Neo-/FIAsH product (before alteration) from the ADH1 promoter. By extending the reading frame of this gene to code for a unique peptide sequence capable of binding a small ligand to form a fluorescent complex, restoration of expression by correction of the stop codon can be detected in real time using confocal microscopy. Additional constructs can be made to test additional gene alteration events.


We also construct three mammalian expression vectors, pHyg(rep)eGFP, pHyg(Δ)eGFP, pHyg(ins)eGFP, that contain a substitution mutation at nucleotide 137 of the hygromycin-B coding sequence. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. All point mutations create a nonsense termination codon at residue 46. We use pHygEGFP plasmid (Invitrogen, Calif.) DNA as a template to introduce the mutations into the hygromycin-eGFP fusion gene by a two step site-directed mutagenesis PCR protocol. First, we generate overlapping 5′ and a 3′ amplicons surrounding the mutation site by PCR for each of the point mutation sites. A 215 bp 5′ amplicon for the (rep), (Δ) or (ins) was generated by polymerization from oligonucleotide primer HygEGFPf (5′-AATACGACTCACTATAGG-3′; SEQ ID NO: 4369) to primer Hygrepr (5′GACCTATCCACGCCCTCC-3′; SEQ ID NO: 4370), HygΔr (5′-GACTATCCACGCCCTCC-3′; SEQ ID NO: 4371), or Hyginsr (5′-GACATTATCCACGCCCTCC-3′; SEQ ID NO: 4372), respectively. We generate a 300 bp 3′ amplicon for the (rep), (Δ) or (ins) by polymerization from oligonucleotide primers Hygrepf (5′-CTGGGATAGGTCCTGCGG-3′; SEQ ID NO: 4373), HygΔf (5′-CGTGGATAGTCCTGCGG-3′; SEQ ID NO: 4374), Hyginsf (5′-CGTGGATMTGTCCTGCGG-3′; SEQ ID NO: 4375), respectively to primer HygEGFPr (5′-AAATCACGCCATGTAGTG-3′; SEQ ID NO: 4376). We mix 20 ng of each of the resultant 5′ and 3′ overlapping amplicon mutation sets and use the mixture as a template to amplify a 523 bp fragment of the Hygromycin gene spanning the Kpnl and Rsrll restriction endonuclease sites. We use the Expand PCR system (Roche) to generate all amplicons with 25 cycles of denaturing at 94° C. for 10 seconds, annealing at 55° C. for 20 seconds and elongation at 68° C. for 1 minute. We digest 10 μg of vector pHygEGFP and 5 μg of the resulting fragments for each mutation with Kpnl and Rsrll (NEB) and gel purify the fragment for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ration using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm the mutation by Sanger dideoxy chain termination sequencing and purify the plasmid using a Qiagen maxiprep kit.


Oligonucleotide synthesis and cells. Chimeric oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) are synthesized using available phosphoramidites on controlled pore glass supports. After deprotection and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al., Biochem. 39, 5808-5816 (2000) and the concentrations determined spectrophotometrically (33 or 40 μg/ml per A260 unit of single-stranded or hairpin oligomer). HUH7 cells are grown in DMEM, 10% FBS, 2 mM glutamine, 0.5% pen/strep. The E. coli strain, DH10B, is obtained from Life Technologies (Gaithersburg, Md.); DH10B cells contain a mutation in the RECA gene (recA).


Cell-free extracts. We prepare cell-free extracts from HUH7 cells or other mammalian cells, as follows. We employ this protocol with essentially any mammalian cell including, for example, H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C127I (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma). We harvest approximately 2×108 cells. We then wash the cells immediately in cold hypotonic buffer (20 mM HEPES, pH7.5; 5 mM KCl; 1.5 mM MgCl2; 1 mM DTT) with 250 mM sucrose. We then resuspend the cells in cold hypotonic buffer without sucrose and after 15 minutes we lyse the cells with 25 strokes of a Dounce homogenizer using a tight fitting pestle. We incubate the lysed cells for 60 minutes on ice and centrifuge the sample for 15 minutes at 12000×g. The cytoplasmic fraction is enriched with nuclear proteins due to the extended co-incubation of the fractions following cell breakage. We then immediately aliquote and freeze the supernatant at −80° C. We determine the protein concentration in the extract by the Bradford assay.


We also perform these experiments with cell-free extracts obtained from fungal cells, including, for example, S. cerevisiae (yeast), Ustilago maydis, and Candida albicans. For example, we grow yeast cells into log phase in 2L YPD medium for 3 days at 30° C. We then centrifuge the cultures at 5000×g, resuspend the pellets in a 10% sucrose, 50 mM Tris, 1 mM EDTA lysis solution and freeze them on dry ice. After thawing, we add KCl, spermidine and lyticase to final concentrations of 0.25 mM, 5 mM and 0.1 mg/ml, respectively. We incubate the suspension on ice for 60 minutes, add PMSF and Triton X100 to final concentrations of 0.1 mM and 0.1% and continue to incubate on ice for 20 minutes. We centrifuge the lysate at 3000×g for 10 minutes to remove larger debris. We then remove the supernatant and clarify it by centrifuging at 30000×g for 15 minutes. We then add glycerol to the clarified extract to a concentration of 10% (v/v) and freeze aliquots at −80° C. We determine the protein concentration of the extract by the Bradford assay.


Reaction mixtures of 50 μl are used, consisting of 10-30 μg protein of cell-free extract, which can be optionally substituted with purified proteins or enriched fractions, about 1.5 μg chimeric double-hairpin oligonucleotide or 0.55 μg single-stranded molecule (3S/25G or 6S/25G, see FIG. 1), and 1 μg of plasmid DNA (see FIGS. 2 and 3) in a reaction buffer of 20 mM Tris, pH 7.4, 15 mM MgCl2, 0.4 mM DTT, and 1.0 mM ATP. Reactions are initiated with extract and incubated at 30° C. for 45 min. The reaction is stopped by placing the tubes on ice and then immediately deproteinized by two phenol/chloroform (1:1) extractions. Samples are then ethanol precipitated. The nucleic acid is pelleted at 15,000 r.p.m. at 4° C. for 30 min., is washed with 70% ethanol, resuspended in 50 μl H2O, and is stored at −20° C. 5 μl of plasmid from the resuspension (˜100 ng) was transfected in 20 μl of DH10B cells by electroporation (400 V, 300 μF, 4 kΩ) in a Cell-Porator apparatus (Life Technologies). After electroporation, cells are transferred to a 14 ml Falcon snap-cap tube with 2 ml SOC and shaken at 37° C. for 1 h. Enhancement of final kan colony counts is achieved by then adding 3 ml SOC with 10 μg/ml kanamycin and the cell suspension is shaken for a further 2 h at 37° C. Cells are then spun down at 3750×g and the pellet is resuspended in 500 μl, SOC. 200 μl is added undiluted to each of two kanamycin (50 μg/ml) agar plates and 200 μl of a 105 dilution is added to an ampicillin (100 μg/ml) plate. After overnight 37° C. incubation, bacterial colonies are counted using an Accucount 1000 (Biologics). Gene conversion effectiveness is measured as the ratio of the average of the kan colonies on both plates per amp colonies multiplied by 10−5 to correct for the amp dilution.


The following procedure can also be used. 5 μl of resuspended reaction mixtures (total volume 50 μl) are used to transform 20 μl aliquots of electro-competent ΔH10B bacteria using a Cell-Porator apparatus (Life Technologies). The mixtures are allowed to recover in 1 ml SOC at 37° C. for 1 hour at which time 50 μg/ml kanamycin or 12 μg/ml tetracycline is added for an additional 3 hours. Prior to plating, the bacteria are pelleted and resuspended in 200 μl of SOC. 100 μl aliquots are plated onto kan or tet agar plates and 100 μl of a 10−4 dilution of the cultures are concurrently plated on agar plates containing 100 μg/ml of ampicillin. Plating is performed in triplicate using sterile Pyrex beads. Colony counts are determined by an Accu-count 1000 plate reader (Biologics). Each plate contains 200-500 ampicillin resistant colonies or 0-500 tetracycline or kanamycin resistant colonies. Resistant colonies are selected for plasmid extraction and DNA sequencing using an ABI Prism kit on an ABI 310 capillary sequencer (PE Biosystems).


Chimeric single-stranded oligonucleotides. In FIG. 1 the upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (FIG. 1A) 2′-O-methyl RNA nucleotides or (FIG. 1 B) phosphorothioate linkages. Fold changes in repair activity for correction of kans in the HUH7 cell-free extract are presented in parenthesis. Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene.


Molecules bearing 3, 6, 8, 10 and 12 phosphorothioate linkages in the terminal regions at each end of a backbone with a total of 24 linkages (25 bases) are tested in the kans system. Alternatively, molecules bearing 2, 4, 5, 7, 9 and 11 in the terminal regions at each end are tested. The results of one such experiment, presented in Table 1 and FIG. 1B, illustrate an enhancement of correction activity directed by some of these modified structures. In this illustrative example, the most efficient molecules contained 3 or 6 phosphorothioate linkages at each end of the 25-mer; the activities are approximately equal (molecules IX and X with results of 3.09 and 3.7 respectively). A reduction in alteration activity may be observed as the number of modified linkages in the molecule is further increased. Interestingly, a single-strand molecule containing 24 phosphorothioate linkages is minimally active suggesting that this backbone modification when used throughout the molecule supports only a low level of targeted gene repair or alteration. Such a non-altering, completely modified molecule can provide a baseline control for determining efficiency of correction for a specific oligonucleotide molecule of known sequence in defining the optimum oligonucleotide for a particular alteration event.


The efficiency of gene repair directed by phosphorothioate-modified, single-stranded molecules, in a length dependent fashion, led us to examine the length of the RNA modification used in the original chimera as it relates to correction. Construct III represents the “RNA-containing” strand of chimera I and, as shown in Table 1 and FIG. 2A, it promotes inefficient gene repair. But, as shown in the same figure, reducing the RNA residues on each end from 10 to 3 increases the frequency of repair. At equal levels of modification, however, 25-mers with 2′-O-methyl ribonucleotides were less effective gene repair agents than the same oligomers with phosphorothioate linkages. These results reinforce the fact that an RNA containing oligonucleotide is not as effective in promoting gene repair or alteration as a modified DNA oligonucleotide.


Repair of the kanamycin mutation requires a G→C exchange. To confirm that the specific desired correction alteration was obtained, colonies selected at random from multiple experiments are processed and the isolated plasmid DNA is sequenced. As seen in FIG. 4, colonies generated through the action of the single-stranded molecules 3S/25G (IX), 6S/25G (X) and 8S/25G (XI) respectively contained plasmid molecules harboring the targeted base correction. While a few colonies appeared on plates derived from reaction mixtures containing 25-mers with 10 or 12 thioate linkages on both ends, the sequences of the plasmid molecules from these colonies contain nonspecific base changes. In these illustrative examples, the second base of the codon is changed (see FIG. 3). These results show that modified single-strands can direct gene repair, but that efficiency and specificity are reduced when the 25-mers contain 10 or more phosphorothioate linkages at each end.


In FIG. 1, the numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the examplified molecule although other molecules with 2, 4, 5, 7, 9 and 11 modifications at each end can also be tested. Hence oligo 12S/25G represents a 25-mer oligonucleotide which contains 12 phosphorothioate linkages on each side of the central G target mismatch base producing a fully phosphorothioate linked backbone, displayed as a dotted line. The dots are merely representative of a linkage in the figure and do not depict the actual number of linkages of the oligonucleotide. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G).


Correction of a mutant kanamycin gene in cultured mammalian cells. The experiments are performed using different mammalian cells, including, for example, 293 cells (transformed human primary kidney cells), HeLa cells (human cervical carcinoma), and H1299 (human epithelial carcinoma, non-small cell lung cancer). HeLa cells are grown at 37° C. and 5% CO2 in a humidified incubator to a density of 2×105 cells/ml in an 8 chamber slide (Lab-Tek). After replacing the regular DMEM with Optimem, the cells are co-transfected with 10 μg of plasmid pAURNeo(−)FIAsH and 5 μg of modified single-stranded oligonucleotide (3S/25G) that is previously complexed with 10 μg lipofectamine, according to the manufacturer's directions (Life Technologies). The cells are treated with the liposome-DNA-oligo mix for 6 hrs at 37° C. Treated cells are washed with PBS and fresh DMEM is added. After a 16-18 hr recovery period, the culture is assayed for gene repair. The same oligonucleotide used in the cell-free extract experiments is used to target transfected plasmid bearing the kans gene. Correction of the point mutation in this gene eliminates a stop codon and restores full expression. This expression can be detected by adding a small non-fluorescent ligand that bound to a C-C-R-E-C-C (SEQ ID NO: 4385) sequence in the genetically modified carboxy terminus of the kan protein, to produce a highly fluorescent complex (FIAsH system, Aurora Biosciences Corporation). Following a 60 min incubation at room temperature with the ligand (FIAsH-EDT2),cells expressing full length kan product acquire an intense green fluorescence detectable by fluorescence microscopy using a fluorescein filter set. Similar experiments are performed using the HygeGFP target as described in Example 2 with a variety of mammalian cells, including, for example, COS-1 and COS-7 cells (African green monkey), and CHO-K1 cells (Chinese hamster ovary). The experiments are also performed with PG12 cells (rat pheochromocytoma) and ES cells (human embryonic stem cells).


Summary of experimental results. Tables 1, 2 and 3 respectively provide data on the efficiency of gene repair directed by single-stranded oligonucleotides. Table 1 presents data using a cell-free extract from human liver cells (HUH7) to catalyze repair of the point mutation in plasmid pkansm4021 (see FIG. 1). Table 2 illustrates that the oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity. Table 3 illustrates data from the repair of a frameshift mutation (FIG. 3) in the tet gene contained in plasmid pTetΔ208. Table 4 illustrates data from repair of the pkansm4021 point mutation catalyzed by plant cell extracts prepared from canola and musa (banana). Colony numbers are presented as kanr or tetr and fold increases (single strand versus double hairpin) are presented for kanr in Table 1.



FIG. 5A is a confocal picture of HeLa cells expressing the corrected fusion protein from an episomal target. Gene repair is accomplished by the action of a modified single-stranded oligonucleotide containing 3 phosphorothioate linkages at each end (3S/25G). FIG. 5B represents a “Z-series” of HeLa cells bearing the corrected fusion gene. This series sections the cells from bottom to top and illustrates that the fluorescent signal is “inside the cells”.


Results. In summary, we have designed a novel class of single-stranded oligonucleotides with backbone modifications at the termini and demonstrate gene repair/conversion activity in mammalian and plant cell-free extracts. We confirm that the all DNA strand of the RNA-DNA double-stranded double hairpin chimera is the active component in the process of gene repair. In some cases, the relative frequency of repair by the novel oligonucleotides of the invention is elevated approximately 3-4-fold when compared to frequencies directed by chimeric RNA-DNA double hairpin oligonucleotides.


This strategy centers around the use of extracts from various sources to correct a mutation in a plasmid using a modified single-stranded or a chimeric RNA-DNA double hairpin oligonucleotide. A mutation is placed inside the coding region of a gene conferring antibiotic resistance in bacteria, here kanamycin or tetracycline. The appearance of resistance is measured by genetic readout in E. coli grown in the presence of the specified antibiotic. The importance of this system is that both phenotypic alteration and genetic inheritance can be measured. Plasmid pKsm4021 contains a mutation (T→G) at residue 4021 rendering it unable to confer antibiotic resistance in E. coli. This point mutation is targeted for repair by oligonucleotides designed to restore kanamycin resistance. To avoid concerns of plasmid contamination skewing the colony counts, the directed correction is from G→C rather than G→T (wild-type). After isolation, the plasmid is electroporated into the DH10B strain of E. coli, which contains inactive RecA protein. The number of kanamycin colonies is counted and normalized by ascertaining the number of ampicillin colonies, a process that controls for the influence of electroporation. The number of colonies generated from three to five independent reactions was averaged and is presented for each experiment. A fold increase number is recorded to aid in comparison.


The original RNA-DNA double hairpin chimera design, e.g., as disclosed in U.S. Pat. No. 5,565,350, consists of two hybridized regions of a single-stranded oligonucleotide folded into a double hairpin configuration. The double-stranded targeting region is made up of a 5 base pair DNA/DNA segment bracketed by 10 base pair RNA/DNA segments. The central base pair is mismatched to the corresponding base pair in the target gene. When a molecule of this design is used to correct the kans mutation, gene repair is observed (I in FIG. 1A). Chimera II (FIG. 1B) differs partly from chimera I in that only the DNA strand of the double hairpin is mismatched to the target sequence. When this chimera was used to correct the kans mutation, it was twice as active. In the same study, repair function could be further increased by making the targeting region of the chimera a continuous RNA/DNA hybrid.


Frame shift mutations are repaired. By using plasmid pTsΔ208, described in FIG. 1(C) and FIG. 3, the capacity of the modified single-stranded molecules that showed activity in correcting a point mutation, can be tested for repair of a frameshift. To determine efficiency of correction of the mutation, a chimeric oligonucleotide (Tet I), which is designed to insert a T residue at position 208, is used. A modified single-stranded oligonucleotide (Tet IX) directs the insertion of a T residue at this same site. FIG. 3 illustrates the plasmid and target bases designated for change in the experiments. When all reaction components are present (extract, plasmid, oligomer), tetracycline resistant colonies appear. The colony count increases with the amount of oligonucleotide used up to a point beyond which the count falls off (Table 3). No colonies above background are observed in the absence of either extract or oligonucleotide, nor when a modified single-stranded molecule bearing perfect complementarity is used. FIG. 3 represents the sequence surrounding the target site and shows that a T residue is inserted at the correct site. We have isolated plasmids from fifteen colonies obtained in three independent experiments and each analyzed sequence revealed the same precise nucleotide insertion. These data suggest that the single-stranded molecules used initially for point mutation correction can also repair nucleotide deletions.


Comparison of phosphorothioate oligonucleotides to 2′-O-methyl substituted oligonucleotides. From a comparison of molecules VII and XI, it is apparent that gene repair is more subject to inhibition by RNA residues than by phosphorothioate linkages. Thus, even though both of these oligonucleotides contain an equal number of modifications to impart nuclease resistance, XI (with 16 phosphorothioate linkages) has good gene repair activity while VII (with 16 2′-O-methyl RNA residues) is inactive. Hence, the original chimeric double hairpin oligonucleotide enabled correction directed, in large part, by the strand containing a large region of contiguous DNA residues.


Oligonucleotides can target multiple nucleotide alterations within the same template. The ability of individual single-stranded oligonucleotides to correct multiple mutations in a single target template is tested using the plasmid pKsm4021 and the following single-stranded oligonucleotides modified with 3 phosphorothioate linkages at each end (indicated as underlined nucleotides): Oligo1 is a 25-mer with the sequence TTCGATAAGCCTATGCTGACCCGTG (SEQ ID NO: 4377) corrects the original mutation present in the kanamycin resistance gene of pKsm4021 as well as directing another alteration 2 basepairs away in the target sequence (both indicated in boldface); Oligo2 is a 70-mer with the 5′-end sequence TTCGGCTACGACTGGGCACAACAGACAATTGGC (SEQ ID NO: 4378) with the remaining nucleotides being completely complementary to the kanamycin resistance gene and also ending in 3 phosphorothioate linkages at the 3′ end. Oligo2 directs correction of the mutation in pKsm4021 as well as directing another alteration 21 basepairs away in the target sequence (both indicated in boldface).


We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pKsM4021 plasmid. These include, for example, a second 25-mer that alters two nucleotides that are three nucleotides apart with the sequence 5′-TTGTGCCCAGTCGTATCCGAATAGC-3′ (SEQ ID NO: 4379); a 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-CATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGA-3′ (SEQ ID NO: 4380); and another 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-GCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAATAGCCT-3′ (SEQ ID NO: 4381). The nucleotides in the oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same way as the other oligonucleotides of the invention.


We assay correction of the original mutation in pKsm4021 by monitoring kanamycin resistance (the second alterations which are directed by Oligo2 and Oligo3 are silent with respect to the kanamycin resistance phenotype). In addition, in experiments with Oligo2, we also monitor cleavage of the resulting plasmids using the restriction enzyme Tsp509I which cuts at a specific site present only when the second alteration has occurred (at ATT in Oligo2). We then sequence these clones to determine whether the additional, silent alteration has also been introduced. The results of an analysis are presented below:
















Oligo1 (25-mer)
Oligo2 (70-mer)


















Clones with both sites changed
9
7


Clones with a single site changed
0
2


Clones that were not changed
4
1









Nuclease sensitivity of unmodified DNA oligonucleotide. Electrophoretic analysis of nucleic acid recovered from the cell-free extract reactions conducted here confirm that the unmodified single-stranded 25-mer did not survive incubation whereas greater than 90% of the terminally modified oligos did survive (as judged by photo-image analyses of agarose gels).


Plant extracts direct repair. The modified single-stranded constructs can be tested in plant cell extracts. We have observed gene alteration using extracts from multiple plant sources, including, for example, Arabidopsis, tobacco, banana, maize, soybean, canola, wheat, spinach as well as spinach chloroplast extract We prepare the extracts by grinding plant tissue or cultured cells under liquid nitrogen with a mortar and pestle. We extract 3 ml of the ground plant tissue with 1.5 ml of extraction buffer (20 mM HEPES, pH7.5; 5 mM Kcl; 1.5 mM MgCl2; 10 mM DTT; 10% [v/v] glycerol; and 1% [w/v] PVP). We then homogenize the samples with 15 strokes of a Dounce homogenizer. Following homogenization, we incubate the samples on ice for 1 hour and centrifuge at 3000×g for 5 minutes to remove plant cell debris. We then determine the protein concentration in the supernatants (extracts) by Bradford assay. We dispense 100 μg (protein) aliquots of the extracts which we freeze in a dry ice-ethanol bath and store at −80° C.


We describe experiments using two sources here: a dicot (canola) and a monocot (banana, Musa acuminata cv. Rasthali). Each vector directs gene repair of the kanamycin mutation (Table 4); however, the level of correction is elevated 2-3 fold relative to the frequency observed with the chimeric oligonucleotide. These results are similar to those observed in the mammalian system wherein a significant improvement in gene repair occurred when modified single-stranded molecules were used.


Tables are attached hereto.









TABLE I







Gene repair activity is directed by single-stranded oligonucleotides.











Oligonucleotide
Plasmid
Extract (ug)
kanr colonies
Fold increase














I
pKSm4021
10
300



I

20
418
1.0 ×


II

10
537



II

20
748
1.78 ×


III

10
3



III

20
5
0.01 ×


IV

10
112



IV

20
96
0.22 ×


V

10
217



V

20
342
0.81 ×


VI

10
6



VI

20
39
0.093 ×


VII

10
0



VII

20
0
0 ×


VIII

10
3



VIII

20
5
0.01 ×


IX

10
936



IX

20
1295
3.09 ×


X

10
1140



X

20
1588
3.7 ×


XI

10
480



XI

20
681
1.6 ×


XII

10
18



XII

20
25
0.059 ×


XIII

10
0



XIII

20
4
0.009 ×




20
0


I


0










Plasmid pKsm4021 (1 μg), the indicated oligonucleotide (1.5 μg chimeric oligonucleotide or 0.55 μg single-stranded oligonucleotide; molar ratio of oligo to plasmid of 360 to 1) and either 10 or 20 μg of HUH7 cell-free extract were incubated 45 min at 37° C. Isolated plasmid DNA was electroporated into E. coli (strain DH10B) and the number of kanr colonies counted. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies generated from the same reaction and is the average of three experiments (standard deviation usually less than +/−15%). Fold increase is defined relative to 418 kanr colonies (second reaction) and in all reactions was calculated using the 20 μg sample.









TABLE II







Modified single-stranded oligomers are not dependent


on MSH2 or MSH3 for optimal gene repair activity.











A.
Oligonucleotide
Plasmid
Extract
kanr colonies















IX (3S/25G)

HUH7
637



X (6S/25G)

HUH7
836



IX

MEF2−/−
781



X

MEF2−/−
676



IX

MEF3−/−
582



X

MEF3−/−
530



IX

MEF+/+
332



X

MEF+/+
497





MEF2−/−
10





MEF3−/−
5





MEF+/+
14











Chimeric oligonucleotide (1.5 μg) or modified single-stranded oligonucleotide (0.55 μg) was incubated with 1 μg of plasmid pKsm4021 and 20 μg of the indicated extracts. MEF represents mouse embryonic fibroblasts with either MSH2 (2−/−) or MSH3 (3−/−) deleted. MEF+/+ indicates wild-type mouse embryonic fibroblasts. The other reaction components were then added and processed through the bacterial readout system. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies.









TABLE III







Frameshift mutation repair is directed by


single-stranded oligonucleotides










Oligonucleotide
Plasmid
Extract
tetr colonies













Tet IX (3S/25A; 0.5 μg)
pTSΔ208 (1 μg)

0




20 μg
0


Tet IX (0.5 μg)


48


Tet IX (1.5 μg)


130


Tet IX (2.0 μg)


68


Tet I (chimera; 1.5 μg)


48










Each reaction mixture contained the indicated amounts of plasmid and oligonucleotide. The extract used for these experiments came from HUH7 cells. The data represent the number of tetracycline resistant colonies per 106 ampicillin resistant colonies generated from the same reaction and is the average of 3 independent experiments. Tet I is a chimeric oligonucleotide and Tet IX is a modified single-stranded oligonucleotide that are designed to insert a T residue at position 208 of pTsΔ208. These oligonucleotides are equivalent to structures I and IX in FIG. 2.









TABLE IV







Plant cell-free extracts support gene repair by


single-stranded oligonucleotides










Oligonucleotide
Plasmid
Extract
kanr colonies














II (chimera)
pKSm4021
30 μg
Canola
337


IX (3S/25G)


Canola
763


X (6S/25G)


Canola
882


II


Musa
203


IX


Musa
343


X


Musa
746





Canola
0





Musa
0


IX


Canola
0


X


Musa
0










Canola or Musa cell-free extracts were tested for gene repair activity on the kanamycin-sensitive gene as previously described in (18). Chimeric oligonucleotide II (1.5 μg) and modified single-stranded oligonucleotides IX and X (0.55 μg) were used to correct pKsm4021. Total number of kanr colonies are present per 107 ampicillin resistant colonies and represent an average of four independent experiments.









TABLE V







Gene repair activity in cell-free extracts prepared


from yeast (Saccharomyces cerevisiae)











Cell-type
Plasmid
Chimeric Oligo
SS Oligo
kanr/ampr × 106














Wild type
pKanSm4021
1 μg

0.36


Wild type


1 μg
0.81


ΔRAD52

1 μg

10.72


ΔRAD52


1 μg
17.41


ΔPMS1

1 μg

2.02


ΔPMS1


1 μg
3.23





In this experiment, the kanr gene in pKanS4021 is corrected by either a chimeric double-hairpin oligonucleotide or a single-stranded oligonucleotide containing three thioate linkages at each end (3S/25G).






EXAMPLE 2
Yeast Cell Targeting Assay Method for Base Alteration and Preferred Oligonucleotide Selection

In this example, single-stranded oligonucleotides with modified backbones and double-hairpin oligonucleotides with chimeric, RNA-DNA backbones are used to measure gene repair using two episomal targets with a fusion between a hygromycin resistance gene and eGFP as a target for gene repair. These plasmids are pAURHYG(rep)GFP, which contains a point mutation in the hygromycin resistance gene (FIG. 7), pAURHYG(ins)GFP, which contains a single-base insertion in the hygromycin resistance gene (FIG. 7) and pAURHYG(Δ)GFP which has a single base deletion. We also use the plasmid containing a wild-type copy of the hygromycin-eGFP fusion gene, designated pAURHYG(wt)GFP, as a control. These plasmids also contain an aureobasidinA resistance gene. In pAURHYG(rep)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region. In pAURHYG(ins)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, at codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene.


We synthesize the set of three yeast expression constructs pAURHYG(rep)eGFP, pAURHYG(Δ)eGFP, pAURHYG(ins)eGFP, that contain a point mutation at nucleotide 137 of the hygromycin-B coding sequence as follows. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. We construct this set of plasmids by excising the respective expression cassettes by restriction digest from pHyg(x)EGFP and ligation into pAUR123 (Panvera, Calif.). We digest 10 μg pAUR123 vector DNA, as well as, 10 μg of each pHyg(x)EGFP construct with Kpnl and Sall (NEB). We gel purify each of the DNA fragments and prepare them for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ration using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm by Sanger dideoxy chain termination sequencing and purify using a Qiagen maxiprep kit.


We use this system to assay the ability of five oligonucleotides (shown in FIG. 8) to support correction under a variety of conditions. The oligonucleotides which direct correction of the mutation in pAURHYG(rep)GFP can also direct correction of the mutation in pAURHYG(ins)GFP. Three of the four oligonucleotides (HygE3T/25, HygE3T/74 and HygGG/Rev) share the same 25-base sequence surrounding the base targeted for alteration. HygGG/Rev is an RNA-DNA chimeric double hairpin oligonucleotide of the type described in the prior art. One of these oligonucleotides, HygE3T/74, is a 74-base oligonucleotide with the 25-base sequence centrally positioned. The fourth oligonucleotide, designated HygE3T/74α, is the reverse complement of HygE3T/74. The fifth oligonucleotide, designated Kan70T, is a non-specific, control oligonucleotide which is not complementary to the target sequence. Alternatively, an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2-O-methylated modified oligonucleotide may be used as a control.


Oligonucleotide synthesis and cells. We synthesized and purified the chimeric, double-hairpin oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 1. Plasmids used for assay were maintained stably in yeast (Saccharomyces cerevisiae) strain LSY678 MAT α at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30° C. We then add 30 ml of fresh YPD media to the overnight cultures and continue shaking at 30° C. until the OD600 was between 0.5 and 1.0 (3-5 hours) then wash the cells by centrifuging at 4° C. at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water. We then centrifuge at 4° C. at 3000 rpm for 5 minutes and resuspend in 1 ml ice-cold 1M sorbitol and then finally centrifuge the cells at 4° C. at 5000 rpm for 5 minutes and resuspend the cells in 120 μl 1M sorbitol. To transform electrocompetent cells with plasmids or oligonucleotides, we mix 40 μl of cells with 5 μg of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes. We then transfer the mixture to a 0.2 cm electroporation cuvette and electroporate with a BIO-RAD Gene Pulser apparatus at 1.5 kV, 25 μF, 200Ω for one five-second pulse. We then immediately resuspend the cells in 1 ml YPD supplemented with 1M sorbitol and incubate the cultures at 30° C. with shaking at 300 rpm for 6 hours. We then spread 200 μl of this culture on selective plates containing 300 μg/ml hygromycin and spread 200 μl of a 105 dilution of this culture on selective plates containing 500 ng/ml aureobasidinA and/or and incubate at 30° C. for 3 days to allow individual yeast colonies to grow. We then count the colonies on the plates and calculate the gene conversion efficiency by determining the number of hygromycin resistance colonies per 105 aureobasidinA resistant colonies.


Frameshift mutations are repaired in yeast cells. We test the ability of the oligonucleotides shown in FIG. 8 to correct a frameshift mutation in vivo using LSY678 yeast cells containing the plasmid pAURHYG(ins)GFP. These experiments, presented in Table 6, indicate that these oligonucleotides can support gene correction in yeast cells. These data reinforce the results described in Example 1 indicating that oligonucleotides comprising phosphorothioate linkages facilitate gene correction much more efficiently than control duplex, chimeric RNA-DNA oligonucleotides. This gene correction activity is also specific as transformation of cells with the control oligonucleotide Kan70T produced no hygromycin resistant colonies above background and thus Kan70T did not support gene correction in this system. In addition, we observe that the 74-base oligonucleotide (HygE3T/74) corrects the mutation in pAURHYG(ins)GFP approximately five-fold more efficiently than the 25-base oligonucleotide (HygE3T/25). We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)GFP. With this strain we observed that even without added oligonucleotides, there are too many hygromycin resistant colonies to count.


We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid. These include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGGTACGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTAC-3′ (SEQ ID NO: 4382); a 74-mer that alters two basepairs that are 15 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAACAGCTGCGCCGATGGTTTCTAC-3′ (SEQ ID NO: 4383); and a 74-mer that alters two basepairs that are 27 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAATAGCTGCGCCGACGGTTTCTAC (SEQ ID NO: 4384). The nucleotides in these oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same ways as the other oligonucleotides of the invention.


Oligonucleotides targeting the sense strand direct gene correction more efficiently. We compare the ability of single-stranded oligonucleotides to target each of the two strands of the target sequence of both pAURHYG(ins)GFP and pAURHYG(rep)GFP. These experiments, presented in Tables 7 and 8, indicate that an oligonucleotide, HygE3T/74α, with sequence complementary to the sense strand (i.e. the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the non-transcribed strand which serves as the template for the synthesis of RNA. As indicated in Table 7, this effect was observed over a range of oligonucleotide concentrations from 0-3.6 μg, although we did observe some variability in the difference between the two oligonucleotides (indicated in Table 7 as a fold difference between HygE3T/74α and HygE3T/74). Furthermore, as shown in Table 8, we observe increased efficiency of correction by HygE3T/74α relative to HygE3T/74 regardless of whether the oligonucleotides were used to correct the base substitution mutation in pAURHYG(rep)GFP or the insertion mutation in pAURHYG(ins)GFP. The data presented in Table 8 further indicate that the single-stranded oligonucleotides correct a base substitution mutation more efficiently than an insertion mutation. However, this last effect was much less pronounced and the oligonucleotides of the invention are clearly able efficiently to correct both types of mutations in yeast cells. In addition, the role of transcription is investigated using plasmids with inducible promoters such as that described in FIG. 10.


Optimization of oligonucleotide concentration. To determine the optimal concentration of oligonucleotide for the purpose of gene alteration, we test the ability of increasing concentrations of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678. We chose this assay system because our previous experiments indicated that it supports the highest level of correction. However, this same approach could be used to determine the optimal concentration of any given oligonucleotide. We test the ability of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678 over a range of oligonucleotide concentrations from 0-10.0 μg. As shown in Table 9, we observe that the correction efficiency initially increases with increasing oligonucleotide concentration, but then declines at the highest concentration tested.


Tables are attached hereto.









TABLE 6







Correction of an insertion mutation in pAURHYG(ins)GFP


by HygGG/Rev, HygE3T/25 and HygE3T/74










Oligonucleotide
Colonies on
Colonies on
Correction


Tested
Hygromycin
Aureobasidin (/105)
Efficiency













HygGG/Rev
3
157
0.02


HygE3T/25
64
147
0.44


HygE3T/74
280
174
1.61


Kan70T
0


















TABLE 7







An oligonucleotide targeting the sense strand of the target


sequence corrects more efficiently.









Colonies per hygromycin plate









Amount of Oligonuleotide (μg)
HygE3T/74
HygE3T/74α












0
0
0


0.6
24
128 (8.4×)*


1.2
69
140 (7.5×)*


2.4
62
167 (3.8×)*


3.6
29
367 (15×)* 





*The numbers in parentheses represent the fold increase in efficiency for targeting the non-transcribed strand as compared to the other strand of a DNA duplex that encodes a protein.













TABLE 8







Correction of a base substitution mutation is more


efficient than correction of a frame shift mutation.








Oligonucleotide
Plasmid tested (contained in LSY678)









Tested (5 μg)
pAURHYG(ins)GFP
pAURHYG(rep)GFP












HygE3T/74
72
277


HygE3T/74α
1464
2248


Kan70T
0
0
















TABLE 9







Optimization of oligonucleotide concentration in


electroporated yeast cells.












Amount
Colonies on
Colonies on
Correction



(μg)
hygromycin
aureobasidin (/105)
efficiency
















0
0
67
0



1.0
5
64
0.08



2.5
47
30
1.57



5.0
199
33
6.08



7.5
383
39
9.79



10.0
191
33
5.79










EXAMPLE 3
Cultured Cell Manipulation

Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, Calif.). LinCD38 cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, Calif.). Cells used for microinjection are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjection. S Medium contains Iscoves' Modified Dulbecco's Medium without phenol red (IMDM) with 100 μg/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 μg/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM; Stem Cell Technologies), 40 μg/ml low-density lipoprotein (LDL; Sigma, St. Louis, Mo.), 50 mM HEPEs buffer and 50 μM 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, flt-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, N.J.). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing.


35 mm dishes are coated overnight at 4° C. with 50 μg/ml Fibronectin (FN) fragment CH-296 (Retronectin; TaKaRa Biomedicals, Panvera, Madison, Wis.) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37° C. prior to microinjection. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjection. Pulled injection needles with a range of 0.22μ to 0.3μ outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37° C. and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are flourescently labeled allow determination of the amount of oligonucleotide delivered to the cells.


For in vitro erythropoiesis from LinCD38 cells, the procedure of Malik, 1998 can be used. Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks. Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny. CD34+ cells can convert a normal A (βA) to sickle T (βS) mutation in the β-globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene. Alternatively, stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.


Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycatons, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phophate precipitation, or any other method known in the art.


Notes on the Tables Presented Below:


Each of the following tables presents, for the specified human gene, a plurality of mutations that are known to confer a clinically-relevant phenotype and, for each mutation, the oligonucleotides that can be used to correct the respective mutation site-specifically in the human genome according to the present invention.


The left-most column identifies each mutation and the clinical phenotype that the mutation confers.


For most entries, the mutation is identified at both the nucleic acid and protein level. At the amino acid level, mutations are presented according to the following standard nomenclature. The centered number identifies the position of the mutated codon in the protein sequence; to the left of the number is the wild type residue and to the right of the number is the mutant codon. Codon numbering is according to the Human Gene Mutation Database, Cardiff, Wales, UK (http://archive.uwcm.ac.uk/search/mg/allgenes). Terminator codons are shown as “TERM”. At the nucleic acid level, the entire triplet of the wild type and mutated codons is shown.


The middle column presents, for each mutation, four oligonucleotides capable of repairing the mutation site-specifically in the human genome or in cloned human DNA including human DNA in artificial chromosomes, episomes, plasmids, or other types of vectors. The oligonucleotides of the invention, however, may include any of the oligonucleotides sharing portions of the sequence of the 121 base sequence. Thus, oligonucleotides of the invention for each of the depicted targets may be 18, 19, 20 up to about 121 nucleotides in length. Sequence may be added non-symmetrically.


All oligonucleotides are presented, per convention, in the 5′ to 3′ orientation. The nucleotide that effects the change in the genome is underlined and presented in bold.


The first of the four oligonucleotides for each mutation is a 121 nt oligonucleotide centered about the repair nucleotide. The second oligonucleotide, its reverse complement, targets the opposite strand of the DNA duplex for repair. The third oligonucleotide is the minimal 17 nt domain of the first oligonucleotide, also centered about the repair nucleotide. The fourth oligonucleotide is the reverse complement of the third, and thus represents the minimal 17 nt domain of the second.


The third column of each table presents the SEQ ID NO: of the respective repair oligonucleotide.


EXAMPLE 4
Adenosine Deaminase (ADA)

Adenosine deaminase (ADA, EC 3.5.4.4) catalyses the deamination of adenosine and 2′-deoxyadenosine to inosine or 2′-deoxyinosine respectively. ADA deficiency has been identified as the metabolic basis for 20-30% of cases with recessively inherited severe combined immunodeficiency (SCID). Affected infants are subject to recurrent chronic viral, fungal, protozoal, and bacterial infections and frequently present with persistent diarrhea, failure to thrive and candidiasis. In patents homozygous for ADA deficiency, 2′-deoxyadenosine accumulating during the rapid turnover of cells rich in DNA is converted back to dATP, either by adenosine kinase or deoxycytidine kinase. Many hypotheses have been advanced to explain the specific toxicity to the immune system in ADA deficiency. The apparently selective accumulation of dATP in thymocytes and peripheral blood B cells, with resultant inhibition of ribonucleotide reductase and DNA synthesis is probably the principal mechanism.


The structural gene for ADA is encoded as a single 32 kb locus containing 12 exons. Studies of the molecular defect in ADA-deficient patents have shown that mRNA is usually detectable in normal or supranormal amounts. Specific base substitution mutations have been detected in the majority of cases with the complete deficiency. A C-to-T base substitution mutation in exon 11 accounts for a high proportion of these, whilst a few patents are homozygous for large deletions encompassing exon 1. A common point mutation resulting in a heat-labile ADA has been characterised in some patients with partial ADA deficiency, a disorder with an apparently increased prevalence in the Caribbean.


As yet no totally effective therapy for ADA deficiency has been reported, except in those few cases where bone marrow from an HLA/MLR compatible sibling donor was available.


Two therapeutic approaches have provided long-term benefit in specific instances. First, reconstitution using T cell depleted mismatched sibling marrow has been encouraging, particularly in early presenters completely deficient in ADA. Secondly, therapy with polyethylene glycol-modified adenosine deaminase (PEG-ADA) for more than 5 years has produced a sustained increase in lymphocyte numbers and mitogen responses together with evidence of in vivo B cell function. Success has generally been achieved in late presenters with residual ADA activity in mononuclear cells.


ADA deficiency has been chosen as the candidate disease for gene replacement therapy and the first human experiment commenced in 1990. The clinical consequences of overexpression of ADA activity—one of the potential hazards of gene implant—are known and take the form of an hereditary haemolytic anaemia associated with a tissue-specific increase in ADA activity. The genetic basis for the latter autosomal dominant disorder seemingly relates to markedly increased levels of structurally normal ADA mRNA.









TABLE 10







ADA Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:












Adenosine deaminase
AGAGACCCACCGAGCGGCGGCGGAGGGAGCAGCGCCGGGG
1


deficiency
CGCACGAGGGCACCATGGCCCAGACGCCCGCCTTCGACAAG


GLN3TERM
CCCAAAGTGAGCGCGCGCGGGGGCTCCGGGGACGGGGGTC


CAG to TAG
GACCCCCGTCCCCGGAGCCCCCGCGCGCGCTCACTTTGGG
2



CTTGTCGAAGGCGGGCGTCTGGGCCATGGTGCCCTCGTGCG



CCCCGGCGCTGCTCCCTCCGCCGCCGCTCGGTGGGTCTCT



CCATGGCCCAGACGCCC
3



GGGCGTCTGGGCCATGG
4


Adenosine deaminase
TATTTGTTCTCTCTCTCCCTTTCTCTCTCTCTTCCCCCTGCCC
5


deficiency
CCTTGCAGGTAGAACTGCATGTCCACCTAGACGGATCCATCA


HIS15ASP
AGCCTGAAACCATCTTATACTATGGCAGGTAAGTCC


CAT to GAT
GGACTTACCTGCCATAGTATAAGATGGTTTCAGGCTTGATGGA
6



TCCGTCTAGGTGGACATGCAGTTCTACCTGCAAGGGGGCAG



GGGGAAGAGAGAGAGAAAGGGAGAGAGAGAACAAATA



TAGAACTGCATGTCCAC
7



GTGGACATGCAGTTCTA
8


Adenosine deaminase
TCCCTTTCTCTCTCTCTTCCCCCTGCCCCCTTGCAGGTAGAA
9


deficiency
CTGCATGTCCACCTAGACGGATCCATCAAGCCTGAAACCATC


GLY20ARG
TTATACTATGGCAGGTAAGTCCATACAGAAGAGCCCT


GGA to AGA
AGGGCTCTTCTGTATGGACTTACCTGCCATAGTATAAGATGGT
10



TTCAGGCTTGATGGATCCGTCTAGGTGGACATGCAGTTCTAC



CTGCAAGGGGGCAGGGGGAAGAGAGAGAGAAAGGGA



ACCTAGACGGATCCATC
11



GATGGATCCGTCTAGGT
12


Adenosine deaminase
CCTGGAGCTCCCAAGGGACTTGGGGAAGGTTGTTCCCAACC
13


deficiency
CCTTTCTTCCCTTCCCAGGGGCTGCCGGGAGGCTATCAAAAG


GLY74CYS
GATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGG


GGC to TGC
CCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCTTTT
14



GATAGCCTCCCGGCAGCCCCTGGGAAGGGAAGAAAGGGGTT



GGGAACAACCTTCCCCAAGTCCCTTGGGAGCTCCAGG



CTATCGCGGGCTGCCGG
15



CCGGCAGCCCGCGATAG
16


Adenosine Deaminase
GCTCCCAAGGGACTTGGGGAAGGTTGTTCCCAACCCCTTTCT
17


Deficiency
TCCCTTCCCAGGGGCTGCCGGGAGGCTATCAAAAGGATCGC


ARG76TRP
CTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCGTGG


CGG to TGG
CCACGCCCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGAT
18



CCTTTTGATAGCCTCCCGGCAGCCCCTGGGAAGGGAAGAAA



GGGGTTGGGAACAACCTTCCCCAAGTCCCTTGGGAGC



GGGGCTGCCGGGAGGCT
19



AGCCTCCCGGCAGCCCC
20


Adenosine Deaminase
TTGGGGAAGGTTGTTCCCAACCCCTTTCTTCCCTTCCCAGGG
21


Deficiency
GCTGCCGGGAGGCTATCAAAAGGATCGCCTATGAGTTTGTAG


LYS80ARG
AGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAGGT


AAA to AGA
ACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTACAA
22



ACTCATAGGCGATCCTTTTGATAGCCTCCCGGCAGCCCCTGG



GAAGGGAAGAAAGGGGTTGGGAACAACCTTCCCCAA



GGCTATCAAAAGGATCG
23



CGATCCTTTTGATAGCC
24


Adenosine deaminase
GTTGTTCCCAACCCCTTTCTTCCCTTCCCAGGGGCTGCCGGG
25


deficiency
AGGCTATCAAAAGGATCGCCTATGAGTTTGTAGAGATGAAGG


ALA83ASP
CCAAAGAGGGCGTGGTGTATGTGGAGGTGCGGTACAG


GCC to GAC
CTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTC
26



ATCTCTACAAACTCATAGGCGATCCTTTTGATAGCCTCCCGGC



AGCCCCTGGGAAGGGAAGAAAGGGGTTGGGAACAAC



AAGGATCGCCTATGAGT
27



ACTCATAGGCGATCCTT
28


Adenosine deaminase
AGGCTATCAAAAGGATCGCCTATGAGTTTGTAGAGATGAAGG
29


deficiency
CCAAAGAGGGCGTGGTGTATGTGGAGGTGCGGTACAGTCCG


TYR97CYS
CACCTGCTGGCCAACTCCAAAGTGGAGCCAATCCCCTG


TAT to TGT
CAGGGGATTGGCTCCACTTTGGAGTTGGCCAGCAGGTGCGG
30



ACTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTT



CATCTCTACAAACTCATAGGCGATCCTTTTGATAGCCT



CGTGGTGTATGTGGAGG
31



CCTCCACATACACCACG
32


Adenosine deaminase
GGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCG
33


deficiency
TGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGCC


ARG101GLN
AACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTGA


CGG to CAG
TCAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCC
34



AGCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCC



CTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCC



GGAGGTGCGGTACAGTC
35



GACTGTACCGCACCTCC
36


Adenosine deaminase
GGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCG
37


deficiency
TGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGCC


ARG101LEU
AACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTGA


CGG to CTG
TCAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCC
38



AGCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCC



CTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCC



GGAGGTGCGGTACAGTC
39



GACTGTACCGCACCTCC
40


Adenosine deaminase
AGGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGC
41


deficiency
GTGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGC


ARG101TRP
CAACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTG


CGG to TGG
CAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCCA
42



GCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCCC



TCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCT



TGGAGGTGCGGTACAGT
43



ACTGTACCGCACCTCCA
44


Adenosine deaminase
ATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATG
45


deficiency
TGGAGGTGCGGTACAGTCCGCACCTGCTGGCCAACTCCAAA


PRO104LEU
GTGGAGCCAATCCCCTGGAACCAGGCTGAGTGAGTGAT


CCG to CTG
ATCACTCACTCAGCCTGGTTCCAGGGGATTGGCTCCACTTTG
46



GAGTTGGCCAGCAGGTGCGGACTGTACCGCACCTCCACATA



CACCACGCCCTCTTTGGCCTTCATCTCTACAAACTCAT



GTACAGTCCGCACCTGC
47



GCAGGTGCGGACTGTAC
48


Adenosine deaminase
TTTGTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAG
49


deficiency
GTGCGGTACAGTCCGCACCTGCTGGCCAACTCCAAAGTGGA


LEU106VAL
GCCAATCCCCTGGAACCAGGCTGAGTGAGTGATGGGCC


CTG to GTG
GGCCCATCACTCACTCAGCCTGGTTCCAGGGGATTGGCTCCA
50



CTTTGGAGTTGGCCAGCAGGTGCGGACTGTACCGCACCTCC



ACATACACCACGCCCTCTTTGGCCTTCATCTCTACAAA



GTCCGCACCTGCTGGCC
51



GGCCAGCAGGTGCGGAC
52


Adenosine deaminase
TAGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAGGTG
53


deficiency
CGGTACAGTCCGCACCTGCTGGCCAACTCCAAAGTGGAGCC


LEU107PRO
AATCCCCTGGAACCAGGCTGAGTGAGTGATGGGCCTGGA


CTG to CCG
TCCAGGCCCATCACTCACTCAGCCTGGTTCCAGGGGATTGGC
54



TCCACTTTGGAGTTGGCCAGCAGGTGCGGACTGTACCGCAC



CTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTA



GCACCTGCTGGCCAACT
55



AGTTGGCCAGCAGGTGC
56



Adenosine deaminase
GCCTTCCTTTTGCCTCAGGCCCATCCCTACTCCTCTCCTCAC
57


deficiency
ACAGAGGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTG


PRO126GLN
GGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGT


CCA to CAA
ACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCAC
58



TAGGGCCACCACCTCGTCTGGGGTGAGGTCCCCTCTGTGTG



AGGAGAGGAGTAGGGATGGGCCTGAGGCAAAAGGAAGGC



CCTCACCCCAGACGAGG
59



CCTCGTCTGGGGTGAGG
60


Adenosine deaminase
TTTGCCTCAGGCCCATCCCTACTCCTCTCCTCACACAGAGGG
61


deficiency
GACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCAGGG


VAL129MET
CCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC


GTG to ATG
GGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCC
62



TGGCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCC



TCTGTGTGAGGAGAGGAGTAGGGATGGGCCTGAGGCAAA



CAGACGAGGTGGTGGCC
63



GGCCACCACCTCGTCTG
64


Adenosine deaminase
ACAGAGGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTG
65


deficiency
GGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCA


GLY140GLU
AGGCCCGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAG


GGG to GAG
CTGGGCTGGTGGCGCATGCAGCACAGGATGGACCGGGCCTT
66



GACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCA



CTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCCTCTGT



GCAGGAGGGGGAGCGAG
67



CTCGCTCCCCCTCCTGC
68


Adenosine deaminase
GGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCAG
69


deficiency
GGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC


ARG142GLN
GGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTA


CGA to CAA
TACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCG
70



GGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCT



GGCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCC



GGGGGAGCGAGACTTCG
71



CGAAGTCTCGCTCCCCC
72


Adenosine deaminase
GGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCA
73


deficiency
GGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCC


ARG142TERM
CGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGT


CGA to TGA
ACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCGG
74



GCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTG



GCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCC



AGGGGGAGCGAGACTTC
75



GAAGTCTCGCTCCCCCT
76


Adenosine deaminase
TGGTGGCCCTAGTGGGCCAGGGCCTGCAGGAGGGGGAGCG
77


deficiency
AGACTTCGGGGTCAAGGCCCGGTCCATCCTGTGCTGCATGC


ARG149GLN
GCCACCAGCCCAGTGAGTAGGATCACCGCCCTGCCCAGGG


CGG to CAG
CCCTGGGCAGGGCGGTGATCCTACTCACTGGGCTGGTGGCG
78



CATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTC



GCTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCA



CAAGGCCCGGTCCATCC
79



GGATGGACCGGGCCTTG
80


Adenosine deaminase
GTGGTGGCCCTAGTGGGCCAGGGCCTGCAGGAGGGGGAGC
81


deficiency
GAGACTTCGGGGTCAAGGCCCGGTCCATCCTGTGCTGCATG


ARG149TRP
CGCCACCAGCCCAGTGAGTAGGATCACCGCCCTGCCCAGG


CGG to TGG
CCTGGGCAGGGCGGTGATCCTACTCACTGGGCTGGTGGCGC
82



ATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTCG



CTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCAC



TCAAGGCCCGGTCCATC
83



GATGGACCGGGCCTTGA
84


Adenosine deaminase
CTAGTGGGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCG
85


deficiency
GGGTCAAGGCCCGGTCCATCCTGTGCTGCATGCGCCACCAG


LEU152MET
CCCAGTGAGTAGGATCACCGCCCTGCCCAGGGCCGCCCGT


CTG to ATG
ACGGGCGGCCCTGGGCAGGGCGGTGATCCTACTCACTGGG
86



CTGGTGGCGCATGCAGCACAGGATGGACCGGGCCTTGACCC



CGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCACTAG



GGTCCATCCTGTGCTGC
87



GCAGCACAGGATGGACC
88


Adenosine deaminase
GGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC
89


deficiency
GGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTAG


ARG156CYS
GATCACCGCCCTGCCCAGGGCCGCCCGTCTCACCCTGGCC


CGC to TGC
GGCCAGGGTGAGACGGGCGGCCCTGGGCAGGGCGGTGATC
90



CTACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACC



GGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCC



GCTGCATGCGCCACCAG
91



CTGGTGGCGCATGCAGC
92


Adenosine deaminase
GCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCCG
93


deficiency
GTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTAGG


ARG156HIS
ATCACCGCCCTGCCCAGGGCCGCCCGTCTCACCCTGGCCC


CGC to CAC
GGGCCAGGGTGAGACGGGCGGCCCTGGGCAGGGCGGTGAT
94



CCTACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGAC



CGGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGC



CTGCATGCGCCACCAGC
95



GCTGGTGGCGCATGCAG
96


Adenosine deaminase
CTGCCCACAGACTGGTCCCCCAAGGTGGTGGAGCTGTGTAA
97


deficiency
GAAGTACCAGCAGCAGACCGTGGTAGCCATTGACCTGGCTG


VAL177MET
GAGATGAGACCATCCCAGGAAGCAGCCTCTTGCCTGGAC


GTG to ATG
GTCCAGGCAAGAGGCTGCTTCCTGGGATGGTCTCATCTCCAG
98



CCAGGTCAATGGCTACCACGGTCTGCTGCTGGTACTTCTTAC



ACAGCTCCACCACCTTGGGGGACCAGTCTGTGGGCAG



AGCAGACCGTGGTAGCC
99



GGCTACCACGGTCTGCT
100


Adenosine deaminase
CAGACTGGTCCCCCAAGGTGGTGGAGCTGTGTAAGAAGTAC
101


deficiency
CAGCAGCAGACCGTGGTAGCCATTGACCTGGCTGGAGATGA


ALA179ASP
GACCATCCCAGGAAGCAGCCTCTTGCCTGGACATGTCCA


GCC to GAC
TGGACATGTCCAGGCAAGAGGCTGCTTCCTGGGATGGTCTCA
102



TCTCCAGCCAGGTCAATGGCTACCACGGTCTGCTGCTGGTAC



TTCTTACACAGCTCCACCACCTTGGGGGACCAGTCTG



CGTGGTAGCCATTGACC
103



GGTCAATGGCTACCACG
104


Adenosine deaminase
CCATTGACCTGGCTGGAGATGAGACCATCCCAGGAAGCAGC
105


deficiency
CTCTTGCCTGGACATGTCCAGGCCTACCAGGTGGGTCCTGT


GLN199PRO
GAGAAGGAATGGAGAGGCTGGCCCTGGGTGAGCTTGTCT


CAG to CCG
AGACAAGCTCACCCAGGGCCAGCCTCTCCATTCCTTCTCACA
106



GGACCCACCTGGTAGGCCTGGACATGTCCAGGCAAGAGGCT



GCTTCCTGGGATGGTCTCATCTCCAGCCAGGTCAATGG



ACATGTCCAGGCCTACC
107



GGTAGGCCTGGACATGT
108


Adenosine deaminase
GCTAGGGCACCCATGACCTGGCTCTCCCCCTTCCAGGAGGC
109


deficiency
TGTGAAGAGCGGCATTCACCGTACTGTCCACGCCGGGGAGG


ARG211CYS
TGGGCTCGGCCGAAGTAGTAAAAGAGGTGAGGGCCTGGG


CGT to TGT
CCCAGGCCCTCACCTCTTTTACTACTTCGGCCGAGCCCACCT
110



CCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGCC



TCCTGGAAGGGGGAGAGCCAGGTCATGGGTGCCCTAGC



GCATTCACCGTACTGTC
111



GACAGTACGGTGAATGC
112


Adenosine deaminase
CTAGGGCACCCATGACCTGGCTCTCCCCCTTCCAGGAGGCT
113


deficiency
GTGAAGAGCGGCATTCACCGTACTGTCCACGCCGGGGAGGT


ARG211HIS
GGGCTCGGCCGAAGTAGTAAAAGAGGTGAGGGCCTGGGC


CGT to CAT
GCCCAGGCCCTCACCTCTTTTACTACTTCGGCCGAGCCCACC
114



TCCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGC



CTCCTGGAAGGGGGAGAGCCAGGTCATGGGTGCCCTAG



CATTCACCGTACTGTCC
115



GGACAGTACGGTGAATG
116


Adenosine deaminase
ATGACCTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGG
117


deficiency
CATTCACCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCG


ALA215THR
AAGTAGTAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGG


GCC to ACC
CCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTACTTCGG
118



CCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGAATGCCG



CTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGTCAT



CTGTCCACGCCGGGGAG
119



CTCCCCGGCGTGGACAG
120


Adenosine deaminase
ACCTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGGCAT
121


deficiency
TCACCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCGAAG


GLY216ARG
TAGTAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGGTCC


GGG to AGG
GGACCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTACTT
122



CGGCCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGAATG



CCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGT



TCCACGCCGGGGAGGTG
123



CACCTCCCCGGCGTGGA
124


Adenosine deaminase
TGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGGCATTCA
125


deficiency
CCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCGAAGTAG


GLU217LYS
TAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGGTCCCTC


GAG to AAG
GAGGGACCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTA
126



CTTCGGCCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGA



ATGCCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCA



ACGCCGGGGAGGTGGGC
127



GCCCACCTCCCCGGCGT
128


Adenosine deaminase
CTGCCTCCTCCCATACTTGGCTCTATTCTGCTTCTCTACAGGC
129


deficiency
TGTGGACATACTCAAGACAGAGCGGCTGGGACACGGCTACC


THR233ILE
ACACCCTGGAAGACCAGGCCCTTTATAACAGGCTGCG


ACA to ATA
CGCAGCCTGTTATAAAGGGCCTGGTCTTCCAGGGTGTGGTAG
130



CCGTGTCCCAGCCGCTCTGTCTTGAGTATGTCCACAGCCTGT



AGAGAAGCAGAATAGAGCCAAGTATGGGAGGAGGCAG



ACTCAAGACAGAGCGGC
131



GCCGCTCTGTCTTGAGT
132


Adenosine deaminase
CAGAGCGGCTGGGACACGGCTACCACACCCTGGAAGACCAG
133


deficiency
GCCCTTTATAACAGGCTGCGGCAGGAAAACATGCACTTCGAG


ARG253PRO
GTAAGCGGGCCAGGGAGTGGGGAGGAACCATCCCCGGC


CGG to CCG
GCCGGGGATGGTTCCTCCCCACTCCCTGGCCCGCTTACCTC
134



GAAGTGCATGTTTTCCTGCCGCAGCCTGTTATAAAGGGCCTG



GTCTTCCAGGGTGTGGTAGCCGTGTCCCAGCCGCTCTG



CAGGCTGCGGCAGGAAA
135



TTTCCTGCCGCAGCCTG
136


Adenosine deaminase
GAGCGGCTGGGACACGGCTACCACACCCTGGAAGACCAGGC
137


deficiency
CCTTTATAACAGGCTGCGGCAGGAAAACATGCACTTCGAGGT


GLN254TERM
AAGCGGGCCAGGGAGTGGGGAGGAACCATCCCCGGCTG


CAG to TAG
CAGCCGGGGATGGTTCCTCCCCACTCCCTGGCCCGCTTACC
138



TCGAAGTGCATGTTTTCCTGCCGCAGCCTGTTATAAAGGGCC



TGGTCTTCCAGGGTGTGGTAGCCGTGTCCCAGCCGCTC



GGCTGCGGCAGGAAAAC
139



GTTTTCCTGCCGCAGCC
140


Adenosine deaminase
CCACACACCTGCTCTTCCAGATCTGCCCCTGGTCCAGCTACC
141


deficiency
TCACTGGTGCCTGGAAGCCGGACACGGAGCATGCAGTCATT


PRO274LEU
CGGTGAGCTCTGTTCCCCTGGGCCTGTTCAATTTTGTT


CCG to CTG
AACAAAATTGAACAGGCCCAGGGGAACAGAGCTCACCGAATG
142



ACTGCATGCTCCGTGTCCGGCTTCCAGGCACCAGTGAGGTA



GCTGGACCAGGGGCAGATCTGGAAGAGCAGGTGTGTGG



CTGGAAGCCGGACACGG
143



CCGTGTCCGGCTTCCAG
144


Adenosine deaminase
GGAGGCTGATTCTCTCCTCCTCCCTCTTCTGCAGGCTCAAAA
145


deficiency
ATGACCAGGCTAACTACTCGCTCAACACAGATGACCCGCTCA


SER291LEU
TCTTCAAGTCCACCCTGGACACTGATTACCAGATGAC


TCG to TTG
GTCATCTGGTAATCAGTGTCCAGGGTGGACTTGAAGATGAGC
146



GGGTCATCTGTGTTGAGCGAGTAGTTAGCCTGGTCATTTTTGA



GCCTGCAGAAGAGGGAGGAGGAGAGAATCAGCCTCC



TAACTACTCGCTCAACA
147



TGTTGAGCGAGTAGTTA
148


Adenosine deaminase
CCTCCCTCTTCTGCAGGCTCAAAAATGACCAGGCTAACTACT
149


deficiency
CGCTCAACACAGATGACCCGCTCATCTTCAAGTCCACCCTGG


PRO297GLN
ACACTGATTACCAGATGACCAAACGGGACATGGGCTT


CCG to CAG
AAGCCCATGTCCCGTTTGGTCATCTGGTAATCAGTGTCCAGG
150



GTGGACTTGAAGATGAGCGGGTCATCTGTGTTGAGCGAGTAG



TTAGCCTGGTCATTTTTGAGCCTGCAGAAGAGGGAGG



AGATGACCCGCTCATCT
151



AGATGAGCGGGTCATCT
152


Adenosine deaminase
AAAATGACCAGGCTAACTACTCGCTCAACACAGATGACCCGC
153


deficiency
TCATCTTCAAGTCCACCCTGGACACTGATTACCAGATGACCAA


LEU304ARG
ACGGGACATGGGCTTTACTGAAGAGGAGTTTAAAAG


CTG to CGG
CTTTTAAACTCCTCTTCAGTAAAGCCCATGTCCCGTTTGGTCA
154



TCTGGTAATCAGTGTCCAGGGTGGACTTGAAGATGAGCGGGT



CATCTGTGTTGAGCGAGTAGTTAGCCTGGTCATTTT



GTCCACCCTGGACACTG
155



CAGTGTCCAGGGTGGAC
156


Adenosine deaminase
GCCTTCTTTGTTCTCTGGTTCCATGTTGTCTGCCATTCTGGCC
157


deficiency
TTTCCAGAACATCAATGCGGCCAAATCTAGTTTCCTCCCAGAA


ALA329VAL
GATGAAAAGAGGGAGCTTCTCGACCTGCTCTATAA


C-to-T at base 1081
TTATAGAGCAGGTCGAGAAGCTCCCTCTTTTCATCTTCTGGGA
158



GGAAACTAGATTTGGCCGCATTGATGTTCTGGAAAGGCCAGA



ATGGCAGACAACATGGAACCAGAGAACAAAGAAGGC



CATCAATGCGGCCAAAT
159



ATTTGGCCGCATTGATG
160









EXAMPLE 5
P53 Mutations

The p53 gene codes for a protein that acts as a transcription factor and serves as a key regulator of the cell cycle. Mutation in this gene is probably the most significant genetic change characterizing the transformation of cells from normalcy to malignancy.


Inactivation of p53 by mutation disrupts the cell cycle which, in turn, sets the stage for tumor formation. Mutations in the p53 gene are among the most commonly diagnosed genetic disorders, occuring in as many as 50% of cancer patients. For some types of cancer, most notably of the breast, lung and colon, p53 mutations are the predominant genetic alternations found thus far. These mutations are associated with genomic instability and thus an increased susceptibility to cancer. Some p53 lesions result in malignancies that are resistant to the most widely used therapeutic regimens and therefore demand more aggressive treatment.


That p53 is associated with different malignant tumors is illustrated in the Li-Fraumeni autosomal dominant hereditary disorder characterized by familial multiple tumors due to mutation in the p53 gene. Affected individuals can develop one or more tumors, including: brain (12%); soft-tissue sarcoma (12%); breast cancer (25%); adrenal tumors (1%); bone cancer (osteosarcoma) (6%); cancer of the lung, prostate, pancreas, and colon as well as lymphoma and melanoma can also occur.


Certain of the most frequently mutated codons are codons 175, 248 and 273, however a variety of oligonucleotides are described below in the attached table.









TABLE 11







p53 Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:












In 2 families with
GACTGTACCACCATCCACTACAACTACATGTGTAACAGTTCCT
161


Li-Fraumeni
GCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATC


syndrome, there was a
ACACTGGAAGACTCCAGGTCAGGAGCCACTTGCCACC


C-to-T mutation at the
GGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTGTGATGA
162


first nucleotide of
TGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAA


codon 248 which
CTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTC


changed arginine to
GCATGAACCGGAGGCCC
163


tryptophan.
GGGCCTCCGGTTCATGC
164


In a family with the
TGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCAT
165


Li-Fraumeni
CCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCAC


syndrome, a G-to-A
TTGCCACCCTGCACACTGGCCTGCTGTGCCCCAGCCTC


mutation at the first
GAGGCTGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGT
166


nucleotide of codon
GGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGAT


258 resulting in the
GGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACA


substitution of lysine
TCACACTGGAAGACTCC
167


for glutamic acid.
GGAGTCTTCCAGTGTGA
168


In a family with the
GTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTA
169


Li-Fraumeni
ACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTC


syndrome, a G-to-T
ACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCA


mutation at


the first nucleotide of


codon 245 resulting in


the substitution of


cysteine for glycine.


A gly245-to-ser,
TGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGA
170


GGC-to-AGC,
TGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACA


mutation was found in
TGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAAC


a patient in whom
GCATGGGCGGCATGAAC
171


osteosarcoma was
GTTCATGCCGCCCATGC
172


diagnosed at the age


of 18 years.


In a family with the
TCCACTACAACTACATGTGTAACAGTTCCTGCATGGGCGGCA
173


Li-Fraumeni
TGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGACT


syndrome, a germline
CCAGGTCAGGAGCCACTTGCCACCCTGCACACTGGCC


mutation at codon 252:
GGCCAGTGTGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTC
174


a T-to-C change at the
TTCCAGTGTGATGATGGTGAGGATGGGCCTCCGGTTCATGCC


second position
GCCCATGCAGGAACTGTTACACATGTAGTTGTAGTGGA


resulted in substitution
GCCCATCCTCACCATCA
175


of proline for leucine.
TGATGGTGAGGATGGGC
176


Researchers analyzed
TACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCATG
177


for mutations in p53
GGCGGCATGAACCGGAGGCCCATCCTCACCATCATCACACT


hepatocellular
GGAAGACTCCAGGTCAGGAGCCACTTGCCACCCTGCA


carcinomas from
TGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTG
178


patients in Qidong, an
TGATGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATG


area of high incidence
CAGGAACTGTTACACATGTAGTTGTAGTGGATGGTGGTA


in China, in which both
AACCGGAGGCCCATCCT
179


hepatitis B virus and
AGGATGGGCCTCCGGTT
180


aflatoxin B1 are risk


factors. Eight of 16


tumors had a point


mutation at the third


base position of codon


249. The G-to-T


mutation at codon 249


led to a change from


arginine to serine


(AGG to AGT).


In cases of
CTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTCCACA
181


hepatocellular
CCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAA


carcinoma in southern
GCAGTCACAGCACATGACGGAGGTTGTGAGGCGCTGCC


Africa, a G-to-T
GGCAGCGCCTCACAACCTCCGTCATGTGCTGTGACTGCTTGT
182


substitution in codon
AGATGGCCATGGCGCGGACGCGGGTGCCGGGCGGGGGTGT


157 resulting in a
GGAATCAACCCACAGCTGCACAGGGCAGGTCTTGGCCAG


change from valine to
GCACCCGCGTCCGCGCC
183


phenylalanine.
GGCGCGGACGCGGGTGC
184


In a family with
TTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTAA
185


Li-Fraumeni in which
CAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCA


noncancerous skin
CCATCATCACACTGGAAGACTCCAGGTCAGGAGCCAC


fibroblasts from
GTGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGG
186


affected individuals
ATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACAC


showed an unusual
ATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAA


radiation-resistant
CATGGGCGGCATGAACC
187


phenotype, a point
GGTTCATGCCGCCCATG
188


mutation in codon 245


of the P53 gene. A


change from GGC to


GAC predicted


substitution of aspartic


acid for glycine.


In 2 of 8 families with
ACTGTACCACCATCCACTACAACTACATGTGTAACAGTTCCTG
189


Li-Fraumeni
CATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATCA


syndrome, a mutation
CACTGGAAGACTCCAGGTCAGGAGCCACTTGCCACCC


in codon 248: a
GGGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTGTGAT
190


CGG-to-CAG change
GATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGG


resulting in substi-
AACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGT


tution of glutamine
CATGAACCGGAGGCCCA
191


for arginine.
TGGGCCTCCGGTTCATG
192


In 9 members of an
CCCTGACTTTCAACTCTGTCTCCTTCCTCTTCCTACAGTACTC
193


extended family with
CCCTGCCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTG


Li-Fraumeni
CCCTGTGCAGCTGTGGGTTGATTCCACACCCCCGCC


syndrome, a germline
GGCGGGGGTGTGGAATCAACCCACAGCTGCACAGGGCAGGT
194


mutation at codon 133
CTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCAGGGGAGTA


(ATG-to-ACG),
CTGTAGGAAGAGGAAGGAGACAGAGTTGAAAGTCAGGG


resulted in the
CAACAAGATGTTTTGCC
195


substitution of
GGCAAAACATCTTGTTG
196


threonine for


methionine (M133T),


and completely


cosegregated with the


cancer syndrome.


In 1 pedigree
TCTTGCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGG
197


consistent with the
GACGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGA


Li-Fraumeni
GAGACCGGCGCACAGAGGAAGAGAATCTCCGCAAGA


syndrome, a germline
TCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCCCAG
198


G-to-T transversion at
GACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCAGTA


codon 272 (valine to
GATTACCACTACTCAGGATAGGAAAAGAGAAGCAAGA


leucine) was found.
GCTTTGAGGTGCGTGTT
199



AACACGCACCTCAAAGC
200


A ser241-to-phe
TTATCTCCTAGGTTGGCTCTGACTGTACCACCATCCACTACAA
201


mutation due to a
CTACATGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAG


TCC-to-TTC change
GCCCATCCTCACCATCATCACACTGGAAGACTCCAG


was found in a patient
CTGGAGTCTTCCAGTGTGATGATGGTGAGGATGGGCCTCCG
202


with hepatoblastoma
GTTCATGCCGCCCATGCAGGAACTGTTACACATGTAGTTGTA


and multiple foci of
GTGGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAA


osteosarcoma
TAACAGTTCCTGCATGG
203



CCATGCAGGAACTGTTA
204


An AAG-to-TAG
CAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTC
205


change of codon 120,
TTGCATTCTGGGACAGCCAAGTCTGTGACTTGCACGGTCAGT


resulting in conversion
TGCCCTGAGGGGCTGGCTTCCATGAGACTTCAATGCC


from lysine to a stop
GGCATTGAAGTCTCATGGAAGCCAGCCCCTCAGGGCAACTG
206


codon, was found in a
ACCGTGCAAGTCACAGACTTGGCTGTCCCAGAATGCAAGAAG


patient with
CCCAGACGGAAACCGTAGCTGCCCTGGTAGGTTTTCTG


osteosarcoma and
GGACAGCCAAGTCTGTG
207


adenocarcinoma of the
CACAGACTTGGCTGTCC
208


lung at age 18 and


brain tumor (glioma) at


the age of 27.


A CGG-to-TGG
GGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTGTTTGT
209


change at codon 282,
GCCTGTCCTGGGAGAGACCGGCGCACAGAGGAAGAGAATCT


resulting in the
CCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCCCCAG


substitution of
CTGGGGGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGA
210


tryptophan for argi-
TTCTCTTCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAA


nine, was found in a
ACACGCACCTCAAAGCTGTTCCGTCCCAGTAGATTACC


patient who developed
GGAGAGACCGGCGCACA
211


osteosarcoma at the
TGTGCGCCGGTCTCTCC
212


age of 10 years.


In 5 of 6 anaplastic
GCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGACG
213


carcinomas of the
GAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGA


thyroid and in an
CCGGCGCACAGAGGAAGAGAATCTCCGCAAGAAAGG


anaplastic carcinoma
CCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTC
214


thyroid cell line ARO,a
CCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCC


CGT-to-CAT mutation
AGTAGATTACCACTACTCAGGATAGGAAAAGAGAAGC


converted
TGAGGTGCGTGTTTGTG
215


arginine-273 to
CACAAACACGCACCTCA
216


histidine.


A germline
TCCTAGCACTGCCCAACAACACCAGCTCCTCTCCCCAGCCAA
217


GGA-to-GTA mutation
AGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAGGTACT


resulting in a change
AAGTCTTGGGACCTCTTATCAAGTGGAAAGTTTCCA


of
TGGAAACTTTCCACTTGATAAGAGGTCCCAAGACTTAGTACCT
218


glycine-325 to valine
GAAGGGTGAAATATTCTCCATCCAGTGGTTTCTTCTTTGGCTG


was found in a patient
GGGAGAGGAGCTGGTGTTGTTGGGCAGTGCTAGGA


who had non-Hodgkin
ACTGGATGGAGAATATT
219


lymphoma diagnosed
AATATTCTCCATCCAGT
220


at age 17 and colon


carcinoma at age 26.


CGC-CCC
AATGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAA
221


Arg-72 to Pro
TGCCAGAGGCTGCTCCCCGCGTGGCCCCTGCACCAGCAGCT


association with Lung
CCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCC


cancer
GGCCAGGAGGGGGCTGGTGCAGGGGCCGCCGGTGTAGGAG
222



CTGCTGGTGCAGGGGCCACGCGGGGAGCAGCCTCTGGCATT



CTGGGAGCTTCATCTGGACCTGGGTCTTCAGTGAACCATT



TGCTCCCCGCGTGGCCC
223



GGGCCACGCGGGGAGCA
224


CCG-CTG
AAGCTCCCAGAATGCCAGAGGCTGCTCCCCGCGTGGCCCCT
225


Pro-82 to Leu
GCACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCC


Breast cancer
CTCCTGGCCCCTGTCATCTTCTGTCCCTTCCCAGAAAAC



GTTTTCTGGGAAGGGACAGAAGATGACAGGGGCCAGGAGGG
226



GGCTGGTGCAGGGGCCGCCGGTGTAGGAGCTGCTGGTGCA



GGGGCCACGCGGGGAGCAGCCTCTGGCATTCTGGGAGCTT



TCCTACACCGGCGGCCC
227



GGGCCGCCGGTGTAGGA
228


cCAA-TAA
TTCAACTCTGTCTCCTTCCTCTTCCTACAGTACTCCCCTGCCC
229


Gln-136 to Term
TCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGC


Li-Fraumeni syndrome
AGCTGTGGGTTGATTCCACACCCCCGCCCGGCACCC



GGGTGCCGGGCGGGGGTGTGGAATCAACCCACAGCTGCACA
230



GGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCA



GGGGAGTACTGTAGGAAGAGGAAGGAGACAGAGTTGAA



TGTTTTGCCAACTGGCC
231



GGCCAGTTGGCAAAACA
232


TGC-TAC
TCCTCTTCCTACAGTACTCCCCTGCCCTCAACAAGATGTTTTG
233


Cys-141 to Tyr
CCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTC


Li-Fraumeni syndrome
CACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGC



GCCATGGCGCGGACGCGGGTGCCGGGCGGGGGTGTGGAAT
234



CAACCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAA



AACATCTTGTTGAGGGCAGGGGAGTACTGTAGGAAGAGGA



CAAGACCTGCCCTGTGC
235



GCACAGGGCAGGTCTTG
236


aCCC-TCC
AACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAG
237


Pro-151 to Ser
CTGTGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCG


Li-Fraumeni syndrome
CGCCATGGCCATCTACAAGCAGTCACAGCACATGACGG



CCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCGCGG
238



ACGCGGGTGCCGGGCGGGGGTGTGGAATCAACCCACAGCT



GCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTT



ATTCCACACCCCCGCCC
239



GGGCGGGGGTGTGGAAT
240


CCG-CTG
AGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGT
241


Pro-152 to Leu
GGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCC


Adrenocortical
ATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGT


carcinoma
ACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCG
242



CGGACGCGGGTGCCGGGCGGGGGTGTGGAATCAACCCACA



GCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCT



CACACCCCCGCCCGGCA
243



TGCCGGGCGGGGGTGTG
244


GGC-GTC
TTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTG
245


Gly-154 to Val
ATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCC


Glioblastoma
ATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAG



CTCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCC
246



ATGGCGCGGACGCGGGTGCCGGGCGGGGGTGTGGAATCAA



CCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAA



CCCGCCCGGCACCCGCG
247



CGCGGGTGCCGGGCGGG
248


CGC-CAC
CCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCAC
249


Arg-175 to His
ATGACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTG


Li-Fraumeni syndrome
CTCAGATAGCGATGGTGAGCAGCTGGGGCTGGAGAGACG



CGTCTCTCCAGCCCCAGCTGCTCACCATCGCTATCTGAGCAG
250



CGCTCATGGTGGGGGCAGCGCCTCACAACCTCCGTCATGTG



CTGTGACTGCTTGTAGATGGCCATGGCGCGGACGCGGG



TGTGAGGCGCTGCCCCC
251



GGGGGCAGCGCCTCACA
252


tGAG-AAG
ATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTG
253


Glu-180 to Lys
AGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGG


Li-Fraumeni syndrome
TGAGCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGC



GCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTCACCAT
254



CGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCCTCACA



ACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCAT



CCCACCATGAGCGCTGC
255



GCAGCGCTCATGGTGGG
256


gCGC-TGC
GCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGG
257


Arg-181 to Cys
CGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTGA


Breast cancer
GCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGCCCA



TGGGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTCA
258



CCATCGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCCT



CACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGC



ACCATGAGCGCTGCTCA
259



TGAGCAGCGCTCATGGT
260


CGC-CAC
CCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGGC
261


Arg-81 to His
GCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTGAG


Breast cancer
CAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGCCCAG



CTGGGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTC
262



ACCATCGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCC



TCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGG



CCATGAGCGCTGCTCAG
263



CTGAGCAGCGCTCATGG
264


CAT-CGT
CCAGGGTCCCCAGGCCTCTGATTCCTCACTGATTGCTCTTAG
265


His-193 to Arg
GTCTGGCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATT


Li-Fraumeni syndrome
TGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCG



CGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAATTTC
266



CTTCCACTCGGATAAGATGCTGAGGAGGGGCCAGACCTAAGA



GCAATCAGTGAGGAATCAGAGGCCTGGGGACCCTGG



TCCTCAGCATCTTATCC
267



GGATAAGATGCTGAGGA
268


cCGA-TGA
CCCAGGCCTCTGATTCCTCACTGATTGCTCTTAGGTCTGGCC
269


Arg-196 to Term
CCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTG


Adrenocortical
GAGTATTTGGATGACAGAAACACTTTTCGACATAGTG


carcinoma
CACTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACG
270



CAAATTTCCTTCCACTCGGATAAGATGCTGAGGAGGGGCCAG



ACCTAAGAGCAATCAGTGAGGAATCAGAGGCCTGGG



ATCTTATCCGAGTGGAA
271



TTCCACTCGGATAAGAT
272


cAGA-TGA
GCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGT
273


Arg-209 to Term
GTGGAGTATTTGGATGACAGAAACACTTTTCGACATAGTGTG


Li-Fraumeni syndrome
GTGGTGCCCTATGAGCCGCCTGAGGTCTGGTTTGCAA



TTGCAAACCAGACCTCAGGCGGCTCATAGGGCACCACCACA
274



CTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCA



AATTTCCTTCCACTCGGATAAGATGCTGAGGAGGGGC



TGGATGACAGAAACACT
275



AGTGTTTCTGTCATCCA
276


tCGA-TGA
CATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTG
277


Arg-213 to Term
GATGACAGAAACACTTTTCGACATAGTGTGGTGGTGCCCTAT


Li-Fraumeni syndrome
GAGCCGCCTGAGGTCTGGTTTGCAACTGGGGTCTCTG



CAGAGACCCCAGTTGCAAACCAGACCTCAGGCGGCTCATAG
278



GGCACCACCACACTATGTCGAAAAGTGTTTCTGTCATCCAAAT



ACTCCACACGCAAATTTCCTTCCACTCGGATAAGATG



ACACTTTTCGACATAGT
279



ACTATGTCGAAAAGTGT
280


gCCC-TCC
GGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTC
281


Pro-219 to Ser
GACATAGTGTGGTGGTGCCCTATGAGCCGCCTGAGGTCTGG


Adrenocortical
TTTGCAACTGGGGTCTCTGGGAGGAGGGGTTAAGGGT


carcinoma
ACCCTTAACCCCTCCTCCCAGAGACCCCAGTTGCAAACCAGA
282



CCTCAGGCGGCTCATAGGGCACCACCACACTATGTCGAAAAG



TGTTTCTGTCATCCAAATACTCCACACGCAAATTTCC



TGGTGGTGCCCTATGAG
283



CTCATAGGGCACCACCA
284


TAT-TGT
ATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGACA
285


Tyr-220 to Cys
TAGTGTGGTGGTGCCCTATGAGCCGCCTGAGGTCTGGTTTG


Li-Fraumeni syndrome
CAACTGGGGTCTCTGGGAGGAGGGGTTAAGGGTGGTT



AACCACCCTTAACCCCTCCTCCCAGAGACCCCAGTTGCAAAC
286



CAGACCTCAGGCGGCTCATAGGGCACCACCACACTATGTCG



AAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAAT



GGTGCCCTATGAGCCGC
287



GCGGCTCATAGGGCACC
288


cTCT-ACT
CACAGGTCTCCCCAAGGCGCACTGGCCTCATCTTGGGCCTG
289


Ser-227 to Thr
TGTTATCTCCTAGGTTGGCTCTGACTGTACCACCATCCACTAC


Rhabdomyosarcoma
AACTACATGTGTAACAGTTCCTGCATGGGCGGCATGA



TCATGCCGCCCATGCAGGAACTGTTACACATGTAGTTGTAGT
290



GGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAACACAG



GCCCAAGATGAGGCCAGTGCGCCTTGGGGAGACCTGTG



AGGTTGGCTCTGACTGT
291



ACAGTCAGAGCCAACCT
292


cCAC-AAC
GCACTGGCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGC
293


His-233 to Asn
TCTGACTGTACCACCATCCACTACAACTACATGTGTAACAGTT


Glioma
CCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCA



TGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTG
294



TTACACATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCA



ACCTAGGAGATAACACAGGCCCAAGATGAGGCCAGTGC



CCACCATCCACTACAAC
295



GTTGTAGTGGATGGTGG
296


cAAC-GAC
GCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGCTCTGAC
297


Asn-235 to Asp
TGTACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCA


Adrenocortical
TGGGCGGCATGAACCGGAGGCCCATCCTCACCATCA


carcinoma
TGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAG
298



GAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTCA



GAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGGC



TCCACTACAACTACATG
299



CATGTAGTTGTAGTGGA
300


AAC-AGC
CCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGCTCTGACT
301


Asn-235 to Ser
GTACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCAT


Rhabdomyosarcoma
GGGCGGCATGAACCGGAGGCCCATCCTCACCATCAT



ATGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCA
302



GGAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTC



AGAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGG



CCACTACAACTACATGT
303



ACATGTAGTTGTAGTGG
304


ATCc-ATG
CATCCACTACAACTACATGTGTAACAGTTCCTGCATGGGCGG
305


Ile-251 to Met
CATGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGA


Glioma
CTCCAGGTCAGGAGCCACTTGCCACCCTGCACACTGG



CCAGTGTGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTCTT
306



CCAGTGTGATGATGGTGAGGATGGGCCTCCGGTTCATGCCG



CCCATGCAGGAACTGTTACACATGTAGTTGTAGTGGATG



AGGCCCATCCTCACCAT
307



ATGGTGAGGATGGGCCT
308


ACA-ATA
ACATGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGG
309


Thr-256 to Ile
CCCATCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGA


Glioblastoma
GCCACTTGCCACCCTGCACACTGGCCTGCTGTGCCCCA



TGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGTGGCTCC
310



TGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGGGCCT



CCGGTTCATGCCGCCCATGCAGGAACTGTTACACATGT



CATCATCACACTGGAAG
311



CTTCCAGTGTGATGATG
312


CTG-CAG
TGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCC
313


Leu-257 to Gln
ATCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGCC


Li-Fraumeni syndrome
ACTTGCCACCCTGCACACTGGCCTGCTGTGCCCCAGCC



GGCTGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGTGG
314



CTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGG



GCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACA



CATCACACTGGAAGACT
315



AGTCTTCCAGTGTGATG
316


CTG-CCG
GACCTGATTTCCTTACTGCCTCTTGCTTCTCTTTTCCTATCCT
317


Leu-265 to Pro
GAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCG


Li-Fraumeni syndrome
TGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGA



TCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCAC
318



CTCAAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGAT



AGGAAAAGAGAAGCAAGAGGCAGTAAGGAAATCAGGTC



TAATCTACTGGGACGGA
319



TCCGTCCCAGTAGATTA
320


gCGT-TGT
TGCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGAC
321


Arg-273 to Cys
GGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGA


Li-Fraumeni syndrome
GACCGGCGCACAGAGGAAGAGAATCTCCGCAAGAAAG



CTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCC
322



CAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCA



GTAGATTACCACTACTCAGGATAGGAAAAGAGAAGCA



TTGAGGTGCGTGTTTGT
323



ACAAACACGCACCTCAA
324


TGT-TAT
CTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGACGGAACA
325


Cys-275 to Tyr
GCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGG


Li-Fraumeni syndrome
CGCACAGAGGAAGAGAATCTCCGCAAGAAAGGGGAGCC



GGCTCCCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGG
326



TCTCTCCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTC



CGTCCCAGTAGATTACCACTACTCAGGATAGGAAAAG



GCGTGTTTGTGCCTGTC
327



GACAGGCACAAACACGC
328


CCT-CTT
TCCTGAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGG
329


Pro-278 to Leu
TGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAG


Breast cancer
GAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGA



TCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTCCTCT
330



GTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCACCTC



AAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGA



TGCCTGTCCTGGGAGAG
331



CTCTCCCAGGACAGGCA
332


AGA-AAA
GTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTG
333


Arg-280 to Lys
TTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAGGAAGAG


Glioma
AATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCC



GGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCT
334



TCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACG



CACCTCAAAGCTGTTCCGTCCCAGTAGATTACCACTAC



TCCTGGGAGAGACCGGC
335



GCCGGTCTCTCCCAGGA
336


GAA-GCA
GGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGA
337


Glu-286 to Ala
GACCGGCGCACAGAGGAAGAGAATCTCCGCAAGAAAGGGGA


Adrenocortical
GCCTCACCACGAGCTGCCCCCAGGGAGCACTAAGCGAGG


carcinoma
CCTCGCTTAGTGCTCCCTGGGGGCAGCTCGTGGTGAGGCTC
338



CCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCT



CCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCC



AGAGGAAGAGAATCTCC
339



GGAGATTCTCTTCCTCT
340


CGA-CCA
AAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTG
341


Arg-306 to Pro
CCCCCAGGGAGCACTAAGCGAGGTAAGCAAGCAGGACAAGA


Rhabdomyosarcoma
AGCGGTGGAGGAGACCAAGGGTGCAGTTATGCCTCAGAT



ATCTGAGGCATAACTGCACCCTTGGTCTCCTCCACCGCTTCT
342



TGTCCTGCTTGCTTACCTCGCTTAGTGCTCCCTGGGGGCAGC



TCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTT



CACTAAGCGAGGTAAGC
343



GCTTACCTCGCTTAGTG
344


gCGA-TGA
GAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCT
345


Arg-306 to Term
GCCCCCAGGGAGCACTAAGCGAGGTAAGCAAGCAGGACAAG


Li-Fraumeni syndrome
AAGCGGTGGAGGAGACCAAGGGTGCAGTTATGCCTCAGA



TCTGAGGCATAACTGCACCCTTGGTCTCCTCCACCGCTTCTT
346



GTCCTGCTTGCTTACCTCGCTTAGTGCTCCCTGGGGGCAGCT



CGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTC



GCACTAAGCGAGGTAAG
347



CTTACCTCGCTTAGTGC
348


gCGC-TGC
GGTACTGTGAATATACTTACTTCTCCCCCTCCTCTGTTGCTGC
349


Arg-337 to Cys
AGATCCGTGGGCGTGAGCGCTTCGAGATGTTCCGAGAGCTG


Osteosarcoma
AATGAGGCCTTGGAACTCAAGGATGCCCAGGCTGGGA



TCCCAGCCTGGGCATCCTTGAGTTCCAAGGCCTCATTCAGCT
350



CTCGGAACATCTCGAAGCGCTCACGCCCACGGATCTGCAGC



AACAGAGGAGGGGGAGAAGTAAGTATATTCACAGTACC



GGCGTGAGCGCTTCGAG
351



CTCGAAGCGCTCACGCC
352


CTG-CCG
CTCCCCCTCCTCTGTTGCTGCAGATCCGTGGGCGTGAGCGC
353


Leu-344 to Pro
TTCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCAAG


Li-Fraumeni syndrome
GATGCCCAGGCTGGGAAGGAGCCAGGGGGGAGCAGGGC



GCCCTGCTCCCCCCTGGCTCCTTCCCAGCCTGGGCATCCTT
354



GAGTTCCAAGGCCTCATTCAGCTCTCGGAACATCTCGAAGCG



CTCACGCCCACGGATCTGCAGCAACAGAGGAGGGGGAG



CCGAGAGCTGAATGAGG
355



CCTCATTCAGCTCTCGG
356









EXAMPLE 6
Beta Globin

Hemoglobin, the major protein in the red blood cell, binds oxygen reversibly and is responsible for the cells' capacity to transport oxygen to the tissues. In adults, the major hemoglobin is hemoglobin A, a tetrameric protein consisting of two identical alpha globin chains and two beta globin chains. Disorders involving hemoglobin are among the most common genetic disorders worldwide, with approximately 5% of the world's population being carriers for clinically important hemoglobin mutations. Approximately 300,000 severely affected homozygotes or compound heterozygotes are born each year.


Mutation of the glutamic acid at position 7 in beta globin to valine causes sickle cell anemia, the clinical manifestations of which are well known. Mutations that cause absence of beta chain cause beta-zero-thalassemia. Reduced amounts of detectable beta globin causes beta-plus-thalassemia. For clinical purposes, beta-thalassemia is divided into thalassemia major (transfusion dependent), thalassemia intermedia (of intermediate severity), and thalassemia minor (asymptomatic). Patients with thalassemia major present in the first year of life with severe anemia; they are unable to maintain a hemoglobin level about 5 gm/dl.


The beta-thalassemias were among the first human genetic diseases to be examined by means of recombinant DNA analysis. Baysal et al., Hemoglobin 19(3-4):213-36 (1995) and others provide a compendium of mutations that result in beta-thalassemia.


Hemoglobin disorders were among the first to be considered for gene therapy. Transcriptional silencing of genes transferred into hematopoietic stem cells, however, poses one of the most significant challenges to its success. If the transferred gene is not completely silenced, a progressive decline in gene expression is often observed. Position effect variegation (PEV) and silencing mechanisms may act on a transferred globin gene residing in chromatin outside of the normal globin locus during the important terminal phases of erythroblast development when globin transcripts normally accumulate rapidly despite heterochromatization and shutdown of the rest of the genome. The attached table discloses the correcting oligonucleotide base sequences for the beta globin oligonucleotides of the invention.









TABLE 12







Beta Globin Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:












Sickle Cell Anemia
TCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCA
357


GLU-7-VAL
TGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCC


GAG to GTG
CTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGA



TCACCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCA
358



GTAACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGGT



GTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGA



GACTCCTGAGGAGAAGT
359



ACTTCTCCTCAGGAGTC
360


Thalassaemia Beta
CTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA
361


MET-0-ARG
ACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGA


ATG to AGG
AGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT



ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC
362



CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT



AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG



AGACACCATGGTGCACC
363



GGTGCACCATGGTGTCT
364


Thalassaemia Beta
TATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA
365


MET-0-ILE
CCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAA


ATG to ATA
GTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTG



CACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCT
366



CCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGC



TAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATA



GACACCATGGTGCACCT
367



AGGTGCACCATGGTGTC
368


Thalassaemia Beta
TATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA
369


MET-0-ILE
CCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGACAA


ATG to ATT
GTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTG



CACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCT
370



CCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGC



TAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATA



GACACCATGGTGCACCT
371



AGGTGCACCATGGTGTC
372


Thalassaemia Beta
CTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA
373


MET-0-LYS
ACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGA


ATG to AAG
AGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT



ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC
374



CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT



AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG



AGACACCATGGTGCACC
375



GGTGCACCATGGTGTCT
376


Thalassaemia Beta
CTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA
377


MET-0-THR
ACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGA


ATG to ACG
AGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT



ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC
378



CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT



AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG



AGACACCATGGTGCACC
379



GGTGCACCATGGTGTCT
380


Thalassaemia Beta
TCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGC
381


MET-0-VAL
AACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAG


ATG to GTG
AAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACG



CGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCC
382



TCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCTAG



TGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAGA



CAGACACCATGGTGCAC
383



GTGCACCATGGTGTCTG
384


Thalassaemia Beta
TCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGT
385


TRP-16-Term
CTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAA


TGG to TGA
GTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTA



TAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTTC
386



ATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACT



TCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGA



GCCCTGTGGGGCAAGGT
387



ACCTTGCCCCACAGGGC
388


Thalassaemia Beta
CTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAG
389


TRP-16-Term
TCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGA


TGG to TAG
AGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTT



AACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTTCA
390



TCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTT



CTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAG



TGCCCTGTGGGGCAAGG
391



CCTTGCCCCACAGGGCA
392


Thalassaemia Beta
ACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGC
393


LYS-18-Term
CGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTG


AAG to TAG
GTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAG



CTTGTAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAA
394



CTTCATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCA



GACTTCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGT



TGTGGGGCAAGGTGAAC
395



GTTCACCTTGCCCCACA
396


Thalassaemia Beta
CCATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACT
397


ASN-20-SER
GCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGA


AAC to AGC
GGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGGTT



AACCTGTCTTGTAACCTTGATACCAACCTGCCCAGGGCCTCA
398



CCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCAGTA



ACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGG



CAAGGTGAACGTGGATG
399



CATCCACGTTCACCTTG
400


Thalassaemia Beta
ACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGG
401


GLU-23-ALA
GGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGG


GAA to GCA
GCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGAC



GTCTCCTTAAACCTGTCTTGTAACCTTGATACCAACCTGCCC
402



AGGGCCTCACCACCAACTTCATCCACGTTCACCTTGCCCCAC



AGGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGT



CGTGGATGAAGTTGGTG
403



CACCAACTTCATCCACG
404


Thalassaemia Beta
CACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTG
405


GLU-23-term
GGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTG


GAA to TAA
GGCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGA



TCTCCTTAAACCTGTCTTGTAACCTTGATACCAACCTGCCCA
406



GGGCCTCACCACCAACTTCATCCACGTTCACCTTGCCCCACA



GGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGTG



ACGTGGATGAAGTTGGT
407



ACCAACTTCATCCACGT
408


Thalassaemia Beta
GAGGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAA
409


GLU-27-LYS
CGTGGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTAT


GAG to AAG
CAAGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACT



AGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGATAC
410



CAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGTTCA



CTTTGCCCCACAGGGCATTGACAGCAGTCTTCTCCTC



TTGGTGGTGAGGCCCTG
411



CAGGGCCTCACCACCAA
412


Thalassaemia Beta
GAGGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAA
413


GLU-27-Term
CGTGGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTAT


GAG to TAG
CAAGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACT



AGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGATAC
414



CAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGTTCA



CTTTGCCCCACAGGGCATTGACAGCAGTCTTCTCCTC



TTGGTGGTGAGGCCCTG
415



CAGGGCCTCACCACCAA
416


Thalassaemia Beta
GAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAACGT
417


ALA-28-SER
GGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAA


GCC to TCC
GGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACTGGG



CCCAGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGA
418



TACCAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGT



TCACTTTGCCCCACAGGGCATTGACAGCAGTCTTCTC



GTGGTGAGGCCCTGGGC
419



GCCCAGGGCCTCACCAC
420


Thalassaemia Beta
CTGTCAATGCCCTGTGGGGCAAAGTGAACGTGGATGCAGTT
421


ARG-31-THR
GGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTATAAGA


AGG to ACG
GAGGCTCAAGGAGGCAAATGGAAACTGGGCATGTGTAGA



TCTACACATGCCCAGTTTCCATTTGCCTCCTTGAGCCTCTCTT
422



ATAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTG



CATCCACGTTCACTTTGCCCCACAGGGCATTGACAG



CCTGGGCAGGTTGGTAT
423



ATACCAACCTGCCCAGG
424


Thalassaemia Beta
TGGGTTTCTGATAGGCACTGACTCTCTGTCCCTTGGGCTGTT
425


Leu-33-GLN
TTCCTACCCTCAGATTACTGGTGGTCTACCCTTGGACCCAGA


CTG to CAG
GGTTCTTTGAGTCCTTTGGGGATCTGTCCTCTCCTGA



TCAGGAGAGGACAGATCCCCAAAGGACTCAAAGAACCTCTG
426



GGTCCAAGGGTAGACCACCAGTAATCTGAGGGTAGGAAAAC



AGCCCAAGGGACAGAGAGTCAGTGCCTATCAGAAACCCA



CAGATTACTGGTGGTCT
427



AGACCACCAGTAATCTG
428


Thalassaemia Beta
ATAGGCACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCT
429


TYR-36-Term
CAGATTACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGA


TAC to TAA
GTCCTTTGGGGATCTGTCCTCTCCTGATGCTGTTATG



CATAACAGCATCAGGAGAGGACAGATCCCCAAAGGACTCAAA
430



GAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCTGAGGG



TAGGAAAACAGCCCAAGGGACAGAGAGTCAGTGCCTAT



GTGGTCTACCCTTGGAC
431



GTCCAAGGGTAGACCAC
432


Thalassaemia Beta
ACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGATT
433


TRP-38-Term
ACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTT


TGG to TGA
TGGGGATCTGTCCTCTCCTGATGCTGTTATGGGCAAC



GTTGCCCATAACAGCATCAGGAGAGGACAGATCCCCAAAGG
434



ACTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAGTAATC



TGAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGT



TACCCTTGGACCCAGAG
435



CTCTGGGTCCAAGGGTA
436


Thalassaemia Beta
CACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGAT
437


TRP-38-Term
TACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCT


TGG to TAG
TTGGGGATCTGTCCTCTCCTGATGCTGTTATGGGCAA



TTGCCCATAACAGCATCAGGAGAGGACAGATCCCCAAAGGA
438



CTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCT



GAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGTG



CTACCCTTGGACCCAGA
439



TCTGGGTCCAAGGGTAG
440


Thalassaemia Beta
ACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGATTACTG
441


GLN-40-Term
GTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGG


CAG-TAG
GATCTGTCCTCTCCTGATGCTGTTATGGGCAACCCTA



TAGGGTTGCCCATAACAGCATCAGGAGAGGACAGATCCCCA
442



AAGGACTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAG



TAATCTGAGGGTAGGAAAACAGCCCAAGGGACAGAGAGT



CTTGGACCCAGAGGTTC
443



GAACCTCTGGGTCCAAG
444


Thalassaemia Beta
TTGGGCTGTTTTCCTACCCTCAGATTACTGGTGGTCTACCCT
445


GLU-44-Term
TGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCTCT


GAG to TAG
CCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTC



GAGCCTTCACCTTAGGGTTGCCCATAACAGCATCAGGAGAG
446



GACAGATCCCCAAAGGACTCAAAGAACCTCTGGGTCCAAGG



GTAGACCACCAGTAATCTGAGGGTAGGAAAACAGCCCAA



GGTTCTTTGAGTCCTTT
447



AAAGGACTCAAAGAACC
448


Thalassaemia Beta
TTCTTTGAGTCCTTTGGGGATCTGTCCTCTCCTGATGCTGTTA
449


LYS-62-Term
TGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAGGTGCTA


AAG to TAG
GGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACC



GGTTGTCCAGGTGAGCCAGGCCATCACTAAAGGCACCTAGC
450



ACCTTCTTGCCATGAGCCTTCACCTTAGGGTTGCCCATAACA



GCATCAGGAGAGGACAGATCCCCAAAGGACTCAAAGAA



CTAAGGTGAAGGCTCAT
451



ATGAGCCTTCACCTTAG
452


Thalassaemia Beta
TGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGA
453


SER-73-ARG
AGGTGCTAGGTGCCTTTAGTGATGGCCTGGCTCACCTGGAC


AGT to AGA
AACCTCAAGGGCACTTTTTCTCAGCTGAGTGAGCTGCAC



GTGCAGCTCACTCAGCTGAGAAAAAGTGCCCTTGAGGTTGTC
454



CAGGTGAGCCAGGCCATCACTAAAGGCACCTAGCACCTTCT



TGCCATGAGCCTTCACCTTAGGGTTGCCCATAACAGCA



GCCTTTAGTGATGGCCT
455



AGGCCATCACTAAAGGC
456


Haemolytic Anaemia
TTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAGGTG
457


GLY-75-VAL
CTAGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCT


GGC to GTC
CAAGGGCACTTTTTCTCAGCTGAGTGAGCTGCACTGTGA



TCACAGTGCAGCTCACTCAGCTGAGAAAAAGTGCCCTTGAG
458



GTTGTCCAGGTGAGCCAGGCCATCACTAAAGGCACCTAGCA



CCTTCTTGCCATGAGCCTTCACCTTAGGGTTGCCCATAA



TAGTGATGGCCTGGCTC
459



GAGCCAGGCCATCACTA
460


Thalassaemia Beta
GCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGG
461


GLU-91-Term
CACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGC


GAG to TAG
ACGTGGATCCTGAGAACTTCAGGGTGAGTCTATGGGACC



GGTCCCATAGACTCACCCTGAAGTTCTCAGGATCCACGTGCA
462



GCTTGTCACAGTGCAGCTCACTCAGTGTGGCAAAGGTGCCC



TTGAGGTTGTCCAGGTGAGCCAGGCCATCACTAAAGGC



CACTGAGTGAGCTGCAC
463



GTGCAGCTCACTCAGTG
464


Thalassaemia Beta
CTGGACAACCTCAAGGGCACTTTTTCTCAGCTGAGTGAGCTG
465


VAL-99-MET
CACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGGT


GTG to ATG
GAGTCCAGGAGATGCTTCACTTTTCTCTTTTTACTTTC



GAAAGTAAAAAGAGAAAAGTGAAGCATCTCCTGGACTCACCC
466



TGAAGTTCTCAGGATCCACGTGCAGCTTGTCACAGTGCAGCT



CACTCAGCTGAGAAAAAGTGCCCTTGAGGTTGTCCAG



AGCTGCACGTGGATCCT
467



AGGATCCACGTGCAGCT
468


Thalassaemia Beta
CCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACA
469


LEU-111-PRO
GCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACT


CTG-CCG
TTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTA



TAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCCAAAGTG
470



ATGGGCCAGCACACAGACCAGCACGTTGCCCAGGAGCTGTG



GGAGGAAGATAAGAGGTATGAACATGATTAGCAAAAGGG



CAACGTGCTGGTCTGTG
471



CACAGACCAGCACGTTG
472


Thalassaemia Beta
GCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTG
473


CYS-113-Term
GGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAA


TGT to TGA
AGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAA



TTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCC
474



AAAGTGATGGGCCAGCACACAGACCAGCACGTTGCCCAGGA



GCTGTGGGAGGAAGATAAGAGGTATGAACATGATTAGC



CTGGTCTGTGTGCTGGC
475



GCCAGCACACAGACCAG
476


Thalassaemia Beta
TCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCA
477


LEU-115-PRO
ACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAAT


CTG to CCG
TCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGT



ACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCT
478



TTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCC



CAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACATGA



CTGTGTGCTGGCCCATC
479



GATGGGCCAGCACACAG
480


Thalassaemia Beta
TGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACG
481


ALA-116-ASP
TGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA


GCC to GAC
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGC



GCCACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAA
482



TTCTTTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTT



GCCCAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACA



TGTGCTGGCCCATCACT
483



AGTGATGGGCCAGCACA
484


Thalassaemia Beta
TTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCT
485


GLU-122-Term
GGCCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGG


GAA to TAA
CTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCC



GGGCATTAGCCACACCAGCCACCACTTTCTGATAGGCAGCC
486



TGCACTGGTGGGGTGAATTCTTTGCCAAAGTGATGGGCCAG



CACACAGACCAGCACGTTGCCCAGGAGCTGTGGGAGGAA



TTGGCAAAGAATTCACC
487



GGTGAATTCTTTGCCAA
488


Thalassaemia Beta
GCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAA
489


GLN-128-PRO
GAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGT


CAG to CCG
GGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTA



TAGTGATACTTGTGGGCCAGGGCATTAGCCACACCAGCCAC
490



CACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTT



GCCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGC



ACCAGTGCAGGCTGCCT
491



AGGCAGCCTGCACTGGT
492


Thalassaemia Beta
GGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAA
493


GLN-128-Term
AGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGT


CAG to TAG
GGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACT



AGTGATACTTGTGGGCCAGGGCATTAGCCACACCAGCCACC
494



ACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTG



CCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCC



CACCAGTGCAGGCTGCC
495



GGCAGCCTGCACTGGTG
496


Thalassaemia Beta
GTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACCCCA
497


GLN-132-LYS
CCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGC


CAG to AAG
TAATGCCCTGGCCCACAAGTATCACTAAGCTCGCTTTC



GAAAGCGAGCTTAGTGATACTTGTGGGCCAGGGCATTAGCC
498



ACACCAGCCACCACTTTCTGATAGGCAGCCTGCACTGGTGG



GGTGAATTCTTTGCCAAAGTGATGGGCCAGCACACAGAC



CTGCCTATCAGAAAGTG
499



CACTTTCTGATAGGCAG
500









EXAMPLE 7
Retinoblastoma

Retinoblastoma (RB) is an embryonic neoplasm of retinal origin. It almost always presents in early childhood and is often bilateral. The risk of osteogenic sarcoma is increased 500-fold in bilateral retinoblastoma patents, the bone malignancy being at sites removed from those exposed to radiation treatment of the eye tumor.


The retinoblastoma susceptibility gene (pRB; pRb) plays a pivotal role in the regulation of the cell cycle. pRB restrains cell cycle progression by maintaining a checkpoint in late G1 that controls commitment of cells to enter S phase. The critical role that pRB plays in cell cycle regulation explains its status as archetypal tumor suppressor: loss of pRB function results in an inability to maintain control of the G1 checkpoint; unchecked progression through the cell cycle is, in turn, a hallmark of neoplasia.


Blanquet et al., Hum. Molec. Genet. 4: 383-388 (1995) performed a mutation survey of the RB1 gene in 232 patents with hereditary or nonhereditary retinoblastoma. They systematically explored all 27 exons and flanking sequences, as well as the promoter. All types of point mutations were represented and found to be unequally distributed along the RB1 gene sequence. In the population studied, exons 3, 8, 18, and 19 were preferentially altered. The attached table discloses the correcting oligonucleotide base sequences for the retinoblastoma oligonucleotides of the invention.









TABLE 13







pRB Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Retinoblastoma
AATATTTGATCTTTATTTTTTGTTCCCAGGGAGGTTATATTCAA
501


Trp99Term
AAGAAAAAGGAACTGTGGGGAATCTGTATCTTTATTGCAGCA


TGG-TAG
GTTGACCTAGATGAGATGTCGTTCACTTTTACTGA



TCAGTAAAAGTGAACGACATCTCATCTAGGTCAACTGCTGCA
502



ATAAAGATACAGATTCCCCACAGTTCCTTTTTCTTTTGAATATA



ACCTCCCTGGGAACAAAAAATAAAGATCAAATATT



GGAACTGTGGGGAATCT
503



AGATTCCCCACAGTTCC
504


Retinoblastoma
ATTTACTTTTTTCTATTCTTTCCTTTGTAGTGTCCATAAATTCTT
505


Glu137Asp
TAACTTACTAAAAGAAATTGATACCAGTACCAAAGTTGATAAT


GAA-GAT
GCTATGTCAAGACTGTTGAAGAAGTATGATGTA



TACATCATACTTCTTCAACAGTCTTGACATAGCATTATCAACTT
506



TGGTACTGGTATCAATTTCTTTTAGTAAGTTAAAGAATTTATGG



ACACTACAAAGGAAAGAATAGAAAAAAGTAAAT



CTAAAAGAAATTGATAC
507



GTATCAATTTCTTTTAG
508


Retinoblastoma
TGATTTACTTTTTTCTATTCTTTCCTTTGTAGTGTCCATAAATT
509


Glu137Term
CTTTAACTTACTAAAAGAAATTGATACCAGTACCAAAGTTGAT


GAA-TAA
AATGCTATGTCAAGACTGTTGAAGAAGTATGATG



CATCATACTTCTTCAACAGTCTTGACATAGCATTATCAACTTT
510



GGTACTGGTATCAATTTCTTTTAGTAAGTTAAAGAATTTATGG



ACACTACAAAGGAAAGAATAGAAAAAAGTAAATCA



TACTAAAAGAAATTGAT
511



ATCAATTTCTTTTAGTA
512


Retinoblastoma
AAAATGTTAAAAAGTCATAATGTTTTTCTTTTCAGGACATGTGA
513


Gln176Term
ACTTATATATTTGACACAACCCAGCAGTTCGTAAGTAGTTCAC


CAA-TAA
AGAATGTTATTTTTCACTTAAAAAAAAAGATTTT



AAAATCTTTTTTTTTAAGTGAAAAATAACATTCTGTGAACTACT
514



TACGAACTGCTGGGTTGTGTCAAATATATAAGTTCACATGTCC



TGAAAAGAAAAACATTATGACTTTTTAACATTTT



ATTTGACACAACCCAGC
515



GCTGGGTTGTGTCAAAT
516


Retinoblastoma
TGATACATTTTTCCTGTTTTTTTTCTGCTTTCTATTTGTTTAATA
517


Ile185Thr
GGATATCTACTGAAATAAATTCTGCATTGGTGCTAAAAGTTTC


ATA-ACA
TTGGATCACATTTTTATTAGCTAAAGGTAAGTT



AACTTACCTTTAGCTAATAAAAATGTGATCCAAGAAACTTTTA
518



GCACCAATGCAGAATTTATTTCAGTAGATATCCTATTAAACAA



ATAGAAAGCAGAAAAAAAACAGGAAAAATGTATCA



TACTGAAATAAATTCTG
519



CAGAATTTATTTCAGTA
520


Retinoblastoma
AAAGATCTGAATCTCTAACTTTCTTTAAAAATGTACATTTTTTT
521


Gln207Term
TTCAGGGGAAGTATTACAAATGGAAGATGATCTGGTGATTTC


CAA-TAA
ATTTCAGTTAATGCTATGTGTCCTTGACTATTTTA



TAAAATAGTCAAGGACACATAGCATTAACTGAAATGAAATCAC
522



CAGATCATCTTCCATTTGTAATACTTCCCCTGAAAAAAAAATG



TACATTTTTAAAGAAAGTTAGAGATTCAGATCTTT



AAGTATTACAAATGGAA
523



TTCCATTTGTAATACTT
524


Retinoblastoma
GTTCTTATCTAATTTACCACTTTTACAGAAACAGCTGTTATACC
525


Arg251Term
CATTAATGGTTCACCTCGAACACCCAGGCGAGGTCAGAACA


CGA to TGA
GGAGTGCACGGATAGCAAAACAACTAGAAAATGATA



TATCATTTTCTAGTTGTTTTGCTATCCGTGCACTCCTGTTCTG
526



ACCTCGCCTGGGTGTTCGAGGTGAACCATTAATGGGTATAAC



AGCTGTTTCTGTAAAAGTGGTAAATTAGATAAGAAC



GTTCACCTCGAACACCC
527



GGGTGTTCGAGGTGAAC
528


Retinoblastoma
TTTACCACTTTTACAGAAACAGCTGTTATACCCATTAATGGTT
529


Arg255Term
CACCTCGAACACCCAGGCGAGGTCAGAACAGGAGTGCACG


CGA to TGA
GATAGCAAAACAACTAGAAAATGATACAAGAATTATTG



CAATAATTCTTGTATCATTTTCTAGTTGTTTTGCTATCCGTGCA
530



CTCCTGTTCTGACCTCGCCTGGGTGTTCGAGGTGAACCATTA



ATGGGTATAACAGCTGTTTCTGTAAAAGTGGTAAA



CACCCAGGCGAGGTCAG
531



CTGACCTCGCCTGGGTG
532


Retinoblastoma
ATTAATGGTTCACCTCGAACACCCAGGCGAGGTCAGAACAG
533


Gln266Term
GAGTGCACGGATAGCAAAACAACTAGAAAATGATACAAGAAT


CAA to TAA
TATTGAAGTTCTCTGTAAAGAACATGAATGTAATATAG



CTATATTACATTCATGTTCTTTACAGAGAACTTCAATAATTCTT
534



GTATCATTTTCTAGTTGTTTTGCTATCCGTGCACTCCTGTTCT



GACCTCGCCTGGGTGTTCGAGGTGAACCATTAAT



TAGCAAAACAACTAGAA
535



TTCTAGTTGTTTTGCTA
536


Retinoblastoma
TGACATGTAAAGGATAATTGTCAGTGACTTTTTTCTTTCAAGG
537


Arg320Term
TTGAAAATCTTTCTAAACGATACGAAGAAATTTATCTTAAAAAT


CGA to TGA
AAAGATCTAGATGCAAGATTATTTTTGGATCATG



CATGATCCAAAAATAATCTTGCATCTAGATCTTTATTTTTAAGA
538



TAAATTTCTTCGTATCGTTTAGAAAGATTTTCAACCTTGAAAGA



AAAAAGTCACTGACAATTATCCTTTACATGTCA



TTTCTAAACGATACGAA
539



TTCGTATCGTTTAGAAA
540


Retinoblastoma
ACAAATTGTAAATTTTCAGTATGTGAATGACTTCACTTATTGTT
541


Gln354Term
ATTTAGTTTTGAAACACAGAGAACACCACGAAAAAGTAACCTT


CAG to TAG
GATGAAGAGGTGAATGTAATTCCTCCACACACTC



GAGTGTGTGGAGGAATTACATTCACCTCTTCATCAAGGTTAC
542



TTTTTCGTGGTGTTCTCTGTGTTTCAAAACTAAATAACAATAA



GTGAAGTCATTCACATACTGAAAATTTACAATTTGT



TTGAAACACAGAGAACA
543



TGTTCTCTGTGTTTCAA
544


Retinoblastoma
TTTTCAGTATGTGAATGACTTCACTTATTGTTATTTAGTTTTGA
545


Arg358Gly
AACACAGAGAACACCACGAAAAAGTAACCTTGATGAAGAGGT


CGA to GGA
GAATGTAATTCCTCCACACACTCCAGTTAGGTATG



CATACCTAACTGGAGTGTGTGGAGGAATTACATTCACCTCTT
546



CATCAAGGTTACTTTTTCGTGGTGTTCTCTGTGTTTCAAAACT



AAATAACAATAAGTGAAGTCATTCACATACTGAAAA



GAACACCACGAAAAAGT
547



ACTTTTTCGTGGTGTTC
548


Retinoblastoma
TTTTCAGTATGTGAATGACTTCACTTATTGTTATTTAGTTTTGA
549


Arg358Term
AACACAGAGAACACCACGAAAAAGTAACCTTGATGAAGAGGT


CGA to TGA
GAATGTAATTCCTCCACACACTCCAGTTAGGTATG



CATACCTAACTGGAGTGTGTGGAGGAATTACATTCACCTCTT
550



CATCAAGGTTACTTTTTCGTGGTGTTCTCTGTGTTTCAAAACT



AAATAACAATAAGTGAAGTCATTCACATACTGAAAA



GAACACCACGAAAAAGT
551



ACTTTTTCGTGGTGTTC
552


Retinoblastoma
CTGTTATGAACACTATCCAACAATTAATGATGATTTTAAATTCA
553


Ser397Term
GCAAGTGATCAACCTTCAGAAAATCTGATTTCCTATTTTAACG


TCA to TAA
TAAGCCATATATGAAACATTATTTATTGTAATAT



ATATTACAATAAATAATGTTTCATATATGGCTTACGTTAAAATA
554



GGAAATCAGATTTTCTGAAGGTTGATCACTTGCTGAATTTAAA



ATCATCATTAATTGTTGGATAGTGTTCATAACAG



TCAACCTTCAGAAAATC
555



GATTTTCTGAAGGTTGA
556


Retinoblastoma
TTTCATAATTGTGATTTTCTAAAATAGCAGGCTCTTATTTTTCT
557


Arg445Term
TTTTGTTTGTTTGTAGCGATACAAACTTGGAGTTCGCTTGTAT


CGA to TGA
TACCGAGTAATGGAATCCATGCTTAAATCAGTAA



TTACTGATTTAAGCATGGATTCCATTACTCGGTAATACAAGCG
558



AACTCCAAGTTTGTATCGCTACAAACAAACAAAAAGAAAAATA



AGAGCCTGCTATTTTAGAAAATCACAATTATGAAA



GTTTGTAGCGATACAAA
559



TTTGTATCGCTACAAAC
560


Retinoblastoma
GCTCTTATTTTTCTTTTTGTTTGTTTGTAGCGATACAAACTTGG
561


Arg455Term
AGTTCGCTTGTATTACCGAGTAATGGAATCCATGCTTAAATCA


CGA to TGA
GTAAGTTAAAAACAATATAAAAAAATTTCAGCCG



CGGCTGAAATTTTTTTATATTGTTTTTAACTTACTGATTTAAGC
562



ATGGATTCCATTACTCGGTAATACAAGCGAACTCCAAGTTTGT



ATCGCTACAAACAAACAAAAAGAAAAATAAGAGC



TGTATTACCGAGTAATG
563



CATTACTCGGTAATACA
564


Retinoblastoma
ATCGAAAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAA
565


Arg552Term
ATGATAAAACATTTAGAACGATGTGAACATCGAATCATGGAAT


CGA to TGA
CCCTTGCATGGCTCTCAGTAAGTAGCTAAATAATTG



CAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGATTCCAT
566



GATTCGATGTTCACATCGTTCTAAATGTTTTATCATTTCTCTTG



TCAAGTTGCCTTCTGCTTTGATAAAACTTTCGAT



ATTTAGAACGATGTGAA
567



TTCACATCGTTCTAAAT
568


Retinoblastoma
AAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAAATGATA
569


Cys553Term
AAACATTTAGAACGATGTGAACATCGAATCATGGAATCCCTTG


TGT to TGA
CATGGCTCTCAGTAAGTAGCTAAATAATTGAAGAA



TTCTTCAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGAT
570



TCCATGATTCGATGTTCACATCGTTCTAAATGTTTTATCATTTC



TCTTGTCAAGTTGCCTTCTGCTTTGATAAAACTT



GAACGATGTGAACATCG
571



CGATGTTCACATCGTTC
572


Retinoblastoma
AGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAAATGATAA
573


Glu554Term
AACATTTAGAACGATGTGAACATCGAATCATGGAATCCCTTG


GAA to TAA
CATGGCTCTCAGTAAGTAGCTAAATAATTGAAGAAA



TTTCTTCAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGA
574



TTCCATGATTCGATGTTCACATCGTTCTAAATGTTTTATCATTT



CTCTTGTCAAGTTGCCTTCTGCTTTGATAAAACT



AACGATGTGAACATCGA
575



TCGATGTTCACATCGTT
576


Retinoblastoma
TACCTGGGAAAATTATGCTTACTAATGTGGTTTTAATTTCATC
577


Ser567Leu
ATGTTTCATATAGGATTCACCTTTATTTGATCTTATTAAACAAT


TCA to TTA
CAAAGGACCGAGAAGGACCAACTGATCACCTTGA



TCAAGGTGATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAA
578



TAAGATCAAATAAAGGTGAATCCTATATGAAACATGATGAAAT



TAAAACCACATTAGTAAGCATAATTTTCCCAGGTA



ATAGGATTCACCTTTAT
579



ATAAAGGTGAATCCTAT
580


Retinoblastoma
AATGTGGTTTTAATTTCATCATGTTTCATATAGGATTCACCTTT
581


Gln575Term
ATTTGATCTTATTAAACAATCAAAGGACCGAGAAGGACCAACT


CAA to TAA
GATCACCTTGAATCTGCTTGTCCTCTTAATCTTC



GAAGATTAAGAGGACAAGCAGATTCAAGGTGATCAGTTGGTC
582



CTTCTCGGTCCTTTGATTGTTTAATAAGATCAAATAAAGGTGA



ATCCTATATGAAACATGATGAAATTAAAACCACATT



TTATTAAACAATCAAAG
583



CTTTGATTGTTTAATAA
584


Retinoblastoma
ATTTCATCATGTTTCATATAGGATTCACCTTTATTTGATCTTAT
585


Arg579Term
TAAACAATCAAAGGACCGAGAAGGACCAACTGATCACCTTGA


CGA to TGA
ATCTGCTTGTCCTCTTAATCTTCCTCTCCAGAATA



TATTCTGGAGAGGAAGATTAAGAGGACAAGCAGATTCAAGGT
586



GATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAATAAGATC



AAATAAAGGTGAATCCTATATGAAACATGATGAAAT



CAAAGGACCGAGAAGGA
587



TCCTTCTCGGTCCTTTG
588


Retinoblastoma
TCATCATGTTTCATATAGGATTCACCTTTATTTGATCTTATTAA
589


Glu580Term
ACAATCAAAGGACCGAGAAGGACCAACTGATCACCTTGAATC


GAA to TAA
TGCTTGTCCTCTTAATCTTCCTCTCCAGAATAATC



GATTATTCTGGAGAGGAAGATTAAGAGGACAAGCAGATTCAA
590



GGTGATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAATAAG



ATCAAATAAAGGTGAATCCTATATGAAACATGATGA



AGGACCGAGAAGGACCA
591



TGGTCCTTCTCGGTCCT
592


Retinoblastoma
AGAAAAAAGGTTCAACTACGCGTGTAAATTCTACTGCAAATG
593


Ser634Term
CAGAGACACAAGCAACCTCAGCCTTCCAGACCCAGAAGCCA


TCA to TGA
TTGAAATCTACCTCTCTTTCACTGTTTTATAAAAAAGG



CCTTTTTTATAAAACAGTGAAAGAGAGGTAGATTTCAATGGCT
594



TCTGGGTCTGGAAGGCTGAGGTTGCTTGTGTCTCTGCATTTG



CAGTAGAATTTACACGCGTAGTTGAACCTTTTTTCT



AGCAACCTCAGCCTTCC
595



GGAAGGCTGAGGTTGCT
596


Retinoblastoma
AAAAAAGGTTCAACTACGCGTGTAAATTCTACTGCAAATGCA
597


Ala635Pro
GAGACACAAGCAACCTCAGCCTTCCAGACCCAGAAGCCATT


GCC to CCC
GAAATCTACCTCTCTTTCACTGTTTTATAAAAAAGGTT



AACCTTTTTTATAAAACAGTGAAAGAGAGGTAGATTTCAATGG
598



CTTCTGGGTCTGGAAGGCTGAGGTTGCTTGTGTCTCTGCATT



TGCAGTAGAATTTACACGCGTAGTTGAACCTTTTTT



CAACCTCAGCCTTCCAG
599



CTGGAAGGCTGAGGTTG
600


Retinoblastoma
ACTACGCGTGTAAATTCTACTGCAAATGCAGAGACACAAGCA
601


Gln639Term
ACCTCAGCCTTCCAGACCCAGAAGCCATTGAAATCTACCTCT


CAG to TAG
CTTTCACTGTTTTATAAAAAAGGTTAGTAGATGATTA



TAATCATCTACTAACCTTTTTTATAAAACAGTGAAAGAGAGGT
602



AGATTTCAATGGCTTCTGGGTCTGGAAGGCTGAGGTTGCTTG



TGTCTCTGCATTTGCAGTAGAATTTACACGCGTAGT



TCCAGACCCAGAAGCCA
603



TGGCTTCTGGGTCTGGA
604


Retinoblastoma
TTGTAATTCAAAATGAACAGTAAAAATGACTAATTTTTCTTATT
605


Leu657Pro
CCCACAGTGTATCGGCTAGCCTATCTCCGGCTAAATACACTT


CTA to CCA
TGTGAACGCCTTCTGTCTGAGCACCCAGAATTAGA



TCTAATTCTGGGTGCTCAGACAGAAGGCGTTCACAAAGTGTA
606



TTTAGCCGGAGATAGGCTAGCCGATACACTGTGGGAATAAG



AAAAATTAGTCATTTTTACTGTTCATTTTGAATTACAA



GTATCGGCTAGCCTATC
607



GATAGGCTAGCCGATAC
608


Retinoblastoma
AATGAACAGTAAAAATGACTAATTTTTCTTATTCCCACAGTGTA
609


Arg661Trp
TCGGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGCCT


CGG to TGG
TCTGTCTGAGCACCCAGAATTAGAACATATCATCT



AGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGGCGTT
610



CACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATACACTG



TGGGAATAAGAAAAATTAGTCATTTTTACTGTTCATT



CCTATCTCCGGCTAAAT
611



ATTTAGCCGGAGATAGG
612


Retinoblastoma
AACAGTAAAAATGACTAATTTTTCTTATTCCCACAGTGTATCG
613


Leu662Pro
GCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGCCTTCT


CTA to CCA
GTCTGAGCACCCAGAATTAGAACATATCATCTGGAC



GTCCAGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGG
614



CGTTCACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATAC



ACTGTGGGAATAAGAAAAATTAGTCATTTTTACTGTT



TCTCCGGCTAAATACAC
615



GTGTATTTAGCCGGAGA
616


Retinoblastoma
TATCGGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGC
617


Glu675Term
CTTCTGTCTGAGCACCCAGAATTAGAACATATCATCTGGACC


GAA to TAA
CTTTTCCAGCACACCCTGCAGAATGAGTATGAACTCA



TGAGTTCATACTCATTCTGCAGGGTGTGCTGGAAAAGGGTCC
618



AGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGGCGTT



CACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATA



AGCACCCAGAATTAGAA
619



TTCTAATTCTGGGTGCT
620


Retinoblastoma
TTTGTGAACGCCTTCTGTCTGAGCACCCAGAATTAGAACATA
621


Gln685Pro
TCATCTGGACCCTTTTCCAGCACACCCTGCAGAATGAGTATG


CAG to CCG
AACTCATGAGAGACAGGCATTTGGACCAAGTAAGAAA



TTTCTTACTTGGTCCAAATGCCTGTCTCTCATGAGTTCATACT
622



CATTCTGCAGGGTGTGCTGGAAAAGGGTCCAGATGATATGTT



CTAATTCTGGGTGCTCAGACAGAAGGCGTTCACAAA



CCTTTTCCAGCACACCC
623



GGGTGTGCTGGAAAAGG
624


Retinoblastoma
AAAACCATGTAATAAAATTCTGACTACTTTTACATCAATTTATT
625


Cys706Tyr
TACTAGATTATGATGTGTTCCATGTATGGCATATGCAAAGTGA


TGT to TAT
AGAATATAGACCTTAAATTCAAAATCATTGTAAC



GTTACAATGATTTTGAATTTAAGGTCTATATTCTTCACTTTGCA
626



TATGCCATACATGGAACACATCATAATCTAGTAAATAAATTGA



TGTAAAAGTAGTCAGAATTTTATTACATGGTTTT



TATGATGTGTTCCATGT
627



ACATGGAACACATCATA
628


Retinoblastoma
TTCTGACTACTTTTACATCAATTTATTTACTAGATTATGATGTG
629


Cys712Arg
TTCCATGTATGGCATATGCAAAGTGAAGAATATAGACCTTAAA


TGC to CGC
TTCAAAATCATTGTAACAGCATACAAGGATCTTC



GAAGATCCTTGTATGCTGTTACAATGATTTTGAATTTAAGGTC
630



TATATTCTTCACTTTGCATATGCCATACATGGAACACATCATA



ATCTAGTAAATAAATTGATGTAAAAGTAGTCAGAA



ATGGCATATGCAAAGTG
631



CACTTTGCATATGCCAT
632


Retinoblastoma
GTATGGCATATGCAAAGTGAAGAATATAGACCTTAAATTCAAA
633


Tyr728Term
ATCATTGTAACAGCATACAAGGATCTTCCTCATGCTGTTCAG


TAC to TAA
GAGGTAGGTAATTTTCCATAGTAAGTTTTTTTGATA



TATCAAAAAAACTTACTATGGAAAATTACCTACCTCCTGAACA
634



GCATGAGGAAGATCCTTGTATGCTGTTACAATGATTTTGAATT



TAAGGTCTATATTCTTCACTTTGCATATGCCATAC



ACAGCATACAAGGATCT
635



AGATCCTTGTATGCTGT
636


Retinoblastoma
TTTTTTTTTTTTTTTACTGTTCTTCCTCAGACATTCAAACGTGT
637


Glu748Term
TTTGATCAAAGAAGAGGAGTATGATTCTATTATAGTATTCTATA


GAG to TAG
ACTCGGTCTTCATGCAGAGACTGAAAACAAATA



TATTTGTTTTCAGTCTCTGCATGAAGACCGAGTTATAGAATAC
638



TATAATAGAATCATACTCCTCTTCTTTGATCAAAACACGTTTGA



ATGTCTGAGGAAGAACAGTAAAAAAAAAAAAAAA



AAGAAGAGGAGTATGAT
639



ATCATACTCCTCTTCTT
640


Retinoblastoma
GTTTTGATCAAAGAAGAGGAGTATGATTCTATTATAGTATTCT
641


Gln762Term
ATAACTCGGTCTTCATGCAGAGACTGAAAACAAATATTTTGCA


CAG to TAG
GTATGCTTCCACCAGGGTAGGTCAAAAGTATCCTT



AAGGATACTTTTGACCTACCCTGGTGGAAGCATACTGCAAAA
642



TATTTGTTTTCAGTCTCTGCATGAAGACCGAGTTATAGAATAC



TATAATAGAATCATACTCCTCTTCTTTGATCAAAAC



TCTTCATGCAGAGACTG
643



CAGTCTCTGCATGAAGA
644


Retinoblastoma
TAATCTACTTTTTTGTTTTTGCTCTAGCCCCCTACCTTGTCAC
645


Arg787Term
CAATACCTCACATTCCTCGAAGCCCTTACAAGTTTCCTAGTTC


CGA-TGA
ACCCTTACGGATTCCTGGAGGGAACATCTATATTT



AAATATAGATGTTCCCTCCAGGAATCCGTAAGGGTGAACTAG
646



GAAACTTGTAAGGGCTTCGAGGAATGTGAGGTATTGGTGACA



AGGTAGGGGGCTAGAGCAAAAACAAAAAAGTAGATTA



ACATTCCTCGAAGCCCT
647



AGGGCTTCGAGGAATGT
648


Retinoblastoma
CCTTACGGATTCCTGGAGGGAACATCTATATTTCACCCCTGA
649


Ser816Term
AGAGTCCATATAAAATTTCAGAAGGTCTGCCAACACCAACAA


TCA to TGA
AAATGACTCCAAGATCAAGGTGTGTGTTTTCTCTTTA



TAAAGAGAAAACACACACCTTGATCTTGGAGTCATTTTTGTTG
650



GTGTTGGCAGACCTTCTGAAATTTTATATGGACTCTTCAGGG



GTGAAATATAGATGTTCCCTCCAGGAATCCGTAAGG



TAAAATTTCAGAAGGTC
651



GACCTTCTGAAATTTTA
652









EXAMPLE 8
BRCA1 and BRCA2

Breast cancer is the second major cause of cancer death in American women, with an estimated 44,190 lives lost (290 men and 43,900 women) in the US in 1997. While ovarian cancer accounts for fewer deaths than breast cancer, it still represents 4% of all female cancers. In 1994, two breast cancer susceptibility genes were identified: BRCA1 on chromosome 17 and BRCA2 on chromosome 13. When a woman carries a mutation in either BRCA1 or BRCA2, she is at increased risk of being diagnosed with breast or ovarian cancer at some point in her life.


Ford et al., Am. J. Hum. Genet. 62: 676-689 (1998) assessed the contribution of BRCA1 and BRCA2 to inherited breast cancer by linkage and mutation analysis in 237 families, each with at least 4 cases of breast cancer. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16%, suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority (76%) of families with both male and female breast cancer were due to BRCA2. The largest proportion (67%) of families due to other genes were families with 4 or 5 cases of female breast cancer only.


More than 75% of the reported mutations in the BRCA1 gene result in truncated proteins. Couch et al., Hum. Mutat. 8: 8-18, 1996. (1996) reported a total of 254 BRCA1 mutations, 132 (52%) of which were unique. A total of 221 (87%) of all mutations or 107 (81%) of the unique mutations are small deletions, insertions, nonsense point mutations, splice variants, and regulatory mutations that result in truncation or absence of the BRCA1 protein. A total of 11 disease-associated missense mutations (5 unique) and 21 variants (19 unique) as yet unclassified as missense mutations or polymorphisms had been detected. Thirty-five independent benign polymorphisms had been described. The most common mutations were 185delAG and 5382insC, which accounted for 30 (11.7%) and 26 (10.1%), respectively, of all the mutations.


Most BRCA2 mutations are predicted to result in a truncated protein product The smallest known cancer-associated deletion removes from the C terminus only 224 of the 3,418 residues constituting BRCA2, suggesting that these terminal amino acids are critical for BRCA2 function. Studies (Spain et al., Proc. Natl. Acad. Sci. 96:13920-13925 (1999)) suggest that such truncations eliminate or interfere with 2 nuclear localizaton signals that reside within the final 156 residues of BRCA2, suggesting that the vast majority of BRCA2 mutants are nonfunctional because they are not translocated into the nucleus.


The attached table discloses the correcting oligonucleotide base sequences for the BRACA1 and BRACA2 oligonucleotides of the invention.









TABLE 14







BRCA1 Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:












Breast Cancer
CTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGGTAAAGTT
653


Met-1-Ile
CATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTG


ATG to ATT
AAGAAGTACAAAATGTCATTAATGCTATGCAGAAAATC



GATTTTCTGCATAGCATTAATGACATTTTGTACTTCTTCAACG
654



CGAAGAGCAGATAAATCCATTTCTTTCTGTTCCAATGAACTTT



ACCCAGAGCAGAGGGTGAAGGCCTCCTGAGCGCAG



AAAGAAATGGATTTATC
655



GATAAATCCATTTCTTT
656


Breast Cancer
CTGGGTAAAGTTCATTGGAACAGAAAGAAATGGATTTATCTG
657


Val-11-Ala
CTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATGCTATGCA


GTA to GCA
GAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGAT



ATCAACTCCAGACAGATGGGACACTCTAAGATTTTCTGCATA
658



GCATTAATGACATTTTGTACTTCTTCAACGCGAAGAGCAGATA



AATCCATTTCTTTCTGTTCCAATGAACTTTACCCAG



TGAAGAAGTACAAAATG
659



CATTTTGTACTTCTTCA
660


Breast Cancer
ATGGATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCA
661


Ile-21-Val
TTAATGCTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGG


ATC to GTC
AGTTGATCAAGGAACCTGTCTCCACAAAGTGTGACC



GGTCACACTTTGTGGAGACAGGTTCCTTGATCAACTCCAGAC
662



AGATGGGACACTCTAAGATTTTCTGCATAGCATTAATGACATT



TTGTACTTCTTCAACGCGAAGAGCAGATAAATCCAT



TGCAGAAAATCTTAGAG
663



CTCTAAGATTTTCTGCA
664


Breast Cancer
ATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAA
665


Leu-22-Ser
TGCTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTT


TTA to TCA
GATCAAGGAACCTGTCTCCACAAAGTGTGACCACAT



ATGTGGTCACACTTTGTGGAGACAGGTTCCTTGATCAACTCC
666



AGACAGATGGGACACTCTAAGATTTTCTGCATAGCATTAATG



ACATTTTGTACTTCTTCAACGCGAAGAGCAGATAAAT



GAAAATCTTAGAGTGTC
667



GACACTCTAAGATTTTC
668


Breast Cancer
AGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGATCAAGG
669


Cys-39-Tyr
AACCTGTCTCCACAAAGTGTGACCACATATTTTGCAAATTTTG


TGT to TAT
CATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTC



GAAGGCCCTTTCTTCTGGTTGAGAAGTTTCAGCATGCAAAAT
670



TTGCAAAATATGTGGTCACACTTTGTGGAGACAGGTTCCTTG



ATCAACTCCAGACAGATGGGACACTCTAAGATTTTCT



CACAAAGTGTGACCACA
671



TGTGGTCACACTTTGTG
672


Breast Cancer
CACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGA
673


Cys-61-Gly
AGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGATATAAC


TGT to GGT
CAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTC



GACTAAATCTCGTACTTTCTTGTAGGCTCCTTTTGGTTATATC
674



ATTCTTACATAAAGGACACTGTGAAGGCCCTTTCTTCTGGTT



GAGAAGTTTCAGCATGCAAAATTTGCAAAATATGTG



CTTCACAGTGTCCTTTA
675



TAAAGGACACTGTGAAG
676


Breast Cancer
TTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGG
677


Leu-63-Stop
GCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGG


TTA to TAA
AGCCTACAAGAAAGTACGAGATTTAGTCAACTTGT



ACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTTTGG
678



TTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTTCTT



CTGGTTGAGAAGTTTCAGCATGCAAAATTTGCAAA



GTGTCCTTTATGTAAGA
679



TCTTACATAAAGGACAC
680


Breast Cancer
TGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGG
681


Cys-64-Arg
CCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGA


TGT to CGT
GCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTG


Breast Cancer
CAACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTTT
682


Cys-64-Gly
GGTTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTTC


TGT to GGT
TTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGCA



GTCCTTTATGTAAGAAT
683



ATTCTTACATAAAGGAC
684


Breast Cancer
GCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGGC
685


Cys-64-Tyr
CTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGAG


TGT to TAT
CCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGA



TCAACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTT
686



TGGTTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTT



CTTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGC



TCCTTTATGTAAGAATG
687



CATTCTTACATAAAGGA
688


Breast Cancer
CAGAAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGAT
689


Gln-74-Stop
ATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAA


CAA to TAA
CTTGTTGAAGAGCTATTGAAAATCATTTGTGCTTTTC



GAAAAGCACAAATGATTTTCAATAGCTCTTCAACAAGTTGACT
690



AAATCTCGTACTTTCTTGTAGGCTCCTTTTGGTTATATCATTCT



TACATAAAGGACACTGTGAAGGCCCTTTCTTCTG



GGAGCCTACAAGAAAGT
691



ACTTTCTTGTAGGCTCC
692


Breast Cancer
AGCTATTGAAAATCATTTGTGCTTTTCAGCTTGACACAGGTTT
693


Tyr-105-Cys
GGAGTATGCAAACAGCTATAATTTTGCAAAAAAGGAAAATAAC


TAT to TGT
TCTCCTGAACATCTAAAAGATGAAGTTTCTATCAT



ATGATAGAAACTTCATCTTTTAGATGTTCAGGAGAGTTATTTT
694



CCTTTTTTGCAAAATTATAGCTGTTTGCATACTCCAAACCTGT



GTCAAGCTGAAAAGCACAAATGATTTTCAATAGCT



AAACAGCTATAATTTTG
695



CAAAATTATAGCTGTTT
696


Breast Cancer
CTACAGAGTGAACCCGAAAATCCTTCCTTGCAGGAAACCAGT
697


Asn-158-Tyr
CTCAGTGTCCAACTCTCTAACCTTGGAACTGTGAGAACTCTG


AAC to TAC
AGGACAAAGCAGCGGATACAACCTCAAAAGACGTCTG



CAGACGTCTTTTGAGGTTGTATCCGCTGCTTTGTCCTCAGAG
698



TTCTCACAGTTCCAAGGTTAGAGAGTTGGACACTGAGACTGG



TTTCCTGCAAGGAAGGATTTTCGGGTTCACTCTGTAG



AACTCTCTAACCTTGGA
699



TCCAAGGTTAGAGAGTT
700


Breast Cancer
GAAACCAGTCTCAGTGTCCAACTCTCTAACCTTGGAACTGTG
701


Gln-169-Stop
AGAACTCTGAGGACAAAGCAGCGGATACAACCTCAAAAGAC


CAG to TAG
GTCTGTCTACATTGAATTGGGATCTGATTCTTCTGAAG



CTTCAGAAGAATCAGATCCCAATTCAATGTAGACAGACGTCTT
702



TTGAGGTTGTATCCGCTGCTTTGTCCTCAGAGTTCTCACAGT



TCCAAGGTTAGAGAGTTGGACACTGAGACTGGTTTC



GGACAAAGCAGCGGATA
703



TATCCGCTGCTTTGTCC
704


Breast Cancer
CTCCCAGCACAGAAAAAAAGGTAGATCTGAATGCTGATCCCC
705


Trp-353-Stop
TGTGTGAGAGAAAAGAATGGAATAAGCAGAAACTGCCATGCT


TGG to TAG
CAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGAT



ATCCAAGGAACATCTTCAGTATCTCTAGGATTCTCTGAGCAT
706



GGCAGTTTCTGCTTATTCCATTCTTTTCTCTCACACAGGGGAT



CAGCATTCAGATCTACCTTTTTTTCTGTGCTGGGAG



AAAAGAATGGAATAAGC
707



GCTTATTCCATTCTTTT
708


Breast Cancer
ATGCTCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGAT
709


Ile-379-Met
AACACTAAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTTCC


ATT to ATG
AGAAGTGATGAACTGTTAGGTTCTGATGACTCACAT



ATGTGAGTCATCAGAACCTAACAGTTCATCACTTCTGGAAAAC
710



CACTCATTAACTTTCTGAATGCTGCTATTTAGTGTTATCCAAG



GAACATCTTCAGTATCTCTAGGATTCTCTGAGCAT



AGCAGCATTCAGAAAGT
711



ACTTTCTGAATGCTGCT
712


Breast Cancer
GGGAGTCTGAATCAAATGCCAAAGTAGCTGATGTATTGGACG
713


Glu-421-Gly
TTCTAAATGAGGTAGATGAATATTCTGGTTCTTCAGAGAAAAT


GAA to GGA
AGACTTACTGGCCAGTGATCCTCATGAGGCTTTAAT



ATTAAAGCCTCATGAGGATCACTGGCCAGTAAGTCTATTTTCT
714



CTGAAGAACCAGAATATTCATCTACCTCATTTAGAACGTCCAA



TACATCAGCTACTTTGGCATTTGATTCAGACTCCC



GGTAGATGAATATTCTG
715



CAGAATATTCATCTACC
716


Breast Cancer
ATATGTAAAAGTGAAAGAGTTCACTCCAAATCAGTAGAGAGTA
717


Phe-461-Leu
ATATTGAAGACAAAATATTTGGGAAAACCTATCGGAAGAAGG


TTT to CTT
CAAGCCTCCCCAACTTAAGCCATGTAACTGAAAATC



GATTTTCAGTTACATGGCTTAAGTTGGGGAGGCTTGCCTTCT
718



TCCGATAGGTTTTCCCAAATATTTTGTCTTCAATATTACTCTCT



ACTGATTTGGAGTGAACTCTTTCACTTTTACATAT



ACAAAATATTTGGGAAA
719



TTTCCCAAATATTTTGT
720


Breast Cancer
GAAAGAGTTCACTCCAAATCAGTAGAGAGTAATATTGAAGAC
721


Tyr-465-Leu
AAAATATTTGGGAAAACCTATCGGAAGAAGGCAAGCCTCCCC


TAT to GAT
AACTTAAGCCATGTAACTGAAAATCTAATTATAGGAG



CTCCTATAATTAGATTTTCAGTTACATGGCTTAAGTTGGGGAG
722



GCTTGCCTTCTTCCGATAGGTTTTCCCAAATATTTTGTCTTCA



ATATTACTCTCTACTGATTTGGAGTGAACTCTTTC



GGAAAACCTATCGGAAG
723



CTTCCGATAGGTTTTCC
724


Breast Cancer
ACCTATCGGAAGAAGGCAAGCCTCCCCAACTTAAGCCATGTA
725


Gly-484-Stop
ACTGAAAATCTAATTATAGGAGCATTTGTTACTGAGCCACAGA


GGA to TGA
TAATACAAGAGCGTCCCCTCACAAATAAATTAAAGC



GCTTTAATTTATTTGTGAGGGGACGCTCTTGTATTATCTGTGG
726



CTCAGTAACAAATGCTCCTATAATTAGATTTTCAGTTACATGG



CTTAAGTTGGGGAGGCTTGCCTTCTTCCGATAGGT



TAATTATAGGAGCATTT
727



AAATGCTCCTATAATTA
728


Breast Cancer
TTACTGAGCCACAGATAATACAAGAGCGTCCCCTCACAAATA
729


Arg-507-Ile
AATTAAAGCGTAAAAGGAGACCTACATCAGGCCTTCATCCTG


AGA to ATA
AGGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAA



TTTTGAACTGCCAAATCTGCTTTCTTGATAAAATCCTCAGGAT
730



GAAGGCCTGATGTAGGTCTCCTTTTACGCTTTAATTTATTTGT



GAGGGGACGCTCTTGTATTATCTGTGGCTCAGTAA



TAAAAGGAGACCTACAT
731



ATGTAGGTCTCCTTTTA
732


Breast Cancer
CACAGATAATACAAGAGCGTCCCCTCACAAATAAATTAAAGC
733


Ser-510-Stop
GTAAAAGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTA


TCA to TGA
TCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGA



TCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATAAAAT
734



CCTCAGGATGAAGGCCTGATGTAGGTCTCCTTTTACGCTTTA



ATTTATTTGTGAGGGGACGCTCTTGTATTATCTGTG



ACCTACATCAGGCCTTC
735



GAAGGCCTGATGTAGGT
736


Breast Cancer
AGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCAAG
737


Gln-526-Stop
AAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATC


CAA to TAA
AGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA



TCACTTGACCATTCTGCTCCGTTTGGTTAGTTCCCTGATTTAT
738



CATTTCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATA



AAATCCTCAGGATGAAGGCCTGATGTAGGTCTCCT



TGGCAGTTCAAAAGACT
739



AGTCTTTTGAACTGCCA
740


Breast Cancer
AGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCAAG
741


Gln-541-Stop
AAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATC


CAG to TAG
AGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA



TCACTTGACCATTCTGCTCCGTTTGGTTAGTTCCCTGATTTAT
742



CATTTCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATA



AAATCCTCAGGATGAAGGCCTGATGTAGGTCTCCT



AAACGGAGCAGAATGGT
743



ACCATTCTGCTCCGTTT
744


Breast Cancer
TAAATCAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA
745


Gly-552-Val
TGAATATTACTAATAGTGGTCATGAGAATAAAACAAAAGGTGA


GGT to GTT
TTCTATTCAGAATGAGAAAAATCCTAACCCAATAGA



TCTATTGGGTTAGGATTTTTCTCATTCTGAATAGAATCACCTTT
746



TGTTTTATTCTCATGACCACTATTAGTAATATTCATCACTTGAC



CATTCTGCTCCGTTTGGTTAGTTCCCTGATTTA



TAATAGTGGTCATGAGA
747



TCTCATGACCACTATTA
748


Breast Cancer
GGTCAAGTGATGAATATTACTAATAGTGGTCATGAGAATAAAA
749


Gln-563-Stop
CAAAAGGTGATTCTATTCAGAATGAGAAAAATCCTAACCCAAT


CAG to TAG
AGAATCACTCGAAAAAGAATCTGCTTTCAAAACGA



TCGTTTTGAAAGCAGATTCTTTTTCGAGTGATTCTATTGGGTT
750



AGGATTTTTCTCATTCTGAATAGAATCACCTTTTGTTTTATTCT



CATGACCACTATTAGTAATATTCATCACTTGACC



ATTCTATTCAGAATGAG
751



CTCATTCTGAATAGAAT
752


Ovarian Cancer
ATAAGCAGCAGTATAAGCAATATGGAACTCGAATTAAATATCC
753


Lys-607-Stop
ACAATTCAAAAGCACCTAAAAAGAATAGGCTGAGGAGGAAGT


AAA to TAA
CTTCTACCAGGCATATTCATGCGCTTGAACTAGTAG



CTACTAGTTCAAGCGCATGAATATGCCTGGTAGAAGACTTCC
754



TCCTCAGCCTATTCTTTTTAGGTGCTTTTGAATTGTGGATATT



TAATTCGAGTTCCATATTGCTTATACTGCTGCTTAT



AAGCACCTAAAAAGAAT
755



ATTCTTTTTAGGTGCTT
756


Breast Cancer
ATATTCATGCGCTTGAACTAGTAGTCAGTAGAAATCTAAGCCC
757


Leu-639-Stop
ACCTAATTGTACTGAATTGCAAATTGATAGTTGTTCTAGCAGT


TTG to TAG
GAAGAGATAAAGAAAAAAAAGTACAACCAAATGCC



GGCATTTGGTTGTACTTTTTTTTCTTTATCTCTTCACTGCTAGA
758



ACAACTATCAATTTGCAATTCAGTACAATTAGGTGGGCTTAGA



TTTCTACTGACTACTAGTTCAAGCGCATGAATAT



TACTGAATTGCAAATTG
759



CAATTTGCAATTCAGTA
760


Breast Cancer
GAACCTGCAACTGGAGCCAAGAAGAGTAACAAGCCAAATGAA
761


Asp-693-Asn
CAGACAAGTAAAAGACATGACAGCGATACTTTCCCAGAGCTG


GAC to AAC
AAGTTAACAAATGCACCTGGTTCTTTTACTAAGTGTT



AACACTTAGTAAAAGAACCAGGTGCATTTGTTAACTTCAGCTC
762



TGGGAAAGTATCGCTGTCATGTCTTTTACTTGTCTGTTCATTT



GGCTTGTTACTCTTCTTGGCTCCAGTTGCAGGTTC



AAAGACATGACAGCGAT
763



ATCGCTGTCATGTCTTT
764


Ovarian Cancer
CTGAAGTTAACAAATGCACCTGGTTCTTTTACTAAGTGTTCAA
765


Glu-720-Stop
ATACCAGTGAACTTAAAGAATTTGTCAATCCTAGCCTTCCAAG


GAA to TAA
AGAAGAAAAAGAAGAGAAACTAGAAACAGTTAAAG



CTTTAACTGTTTCTAGTTTCTCTTCTTTTTCTTCTCTTGGAAGG
766



CTAGGATTGACAAATTCTTTAAGTTCACTGGTATTTGAACACT



TAGTAAAAGAACCAGGTGCATTTGTTAACTTCAG



AACTTAAAGAATTTGTC
767



GACAAATTCTTTAAGTT
768


Breast Cancer
CTAGAAACAGTTAAAGTGTCTAATAATGCTGAAGACCCCAAA
769


Glu-755-Stop
GATCTCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGA


GAA to TAA
TCTGTAGAGAGTAGCAGTATTTCATTGGTACCTGGTA



TACCAGGTACCAATGAAATACTGCTACTCTCTACAGATCTTTC
770



AGTTTGCAAAACCCTTTCTCCACTTAACATGAGATCTTTGGGG



TCTTCAGCATTATTAGACACTTTAACTGTTTCTAG



TAAGTGGAGAAAGGGTT
771



AACCCTTTCTCCACTTA
772


Breast Cancer
TCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTG
773


Ser-770-Stop
TAGAGAGTAGCAGTATTTCATTGGTACCTGGTACTGATTATG


TCA to TAA
GCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCAC



GTGCTAACTTCCAGTAACGAGATACTTTCCTGAGTGCCATAA
774



TCAGTACCAGGTACCAATGAAATACTGCTACTCTCTACAGAT



CTTTCAGTTTGCAAAACCCTTTCTCCACTTAACATGA



CAGTATTTCATTGGTAC
775



GTACCAATGAAATACTG
776


Breast Cancer
TAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTGTAGAGA
777


Val-772-Ala
GTAGCAGTATTTCATTGGTACCTGGTACTGATTATGGCACTC


GTA to GCA
AGGAAAGTATCTCGTTACTGGAAGTTAGCACTCTAGG



CCTAGAGTGCTAACTTCCAGTAACGAGATACTTTCCTGAGTG
778



CCATAATCAGTACCAGGTACCAATGAAATACTGCTACTCTCTA



CAGATCTTTCAGTTTGCAAAACCCTTTCTCCACTTA



TTCATTGGTACCTGGTA
779



TACCAGGTACCAATGAA
780


Breast Cancer
ACTGAAAGATCTGTAGAGAGTAGCAGTATTTCATTGGTACCT
781


Gln-780-Stop
GGTACTGATTATGGCACTCAGGAAAGTATCTCGTTACTGGAA


CAG to TAG
GTTAGCACTCTAGGGAAGGCAAAAACAGAACCAAATA



TATTTGGTTCTGTTTTTGCCTTCCCTAGAGTGCTAACTTCCAG
782



TAACGAGATACTTTCCTGAGTGCCATAATCAGTACCAGGTAC



CAATGAAATACTGCTACTCTCTACAGATCTTTCAGT



ATGGCACTCAGGAAAGT
783



ACTTTCCTGAGTGCCAT
784


Breast Cancer
TATGGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCACT
785


Glu-797-Stop
CTAGGGAAGGCAAAAACAGAACCAAATAAATGTGTGAGTCAG


GAA to TAA
TGTGCAGCATTTGAAAACCCCAAGGGACTAATTCATG



CATGAATTAGTCCCTTGGGGTTTTCAAATGCTGCACACTGAC
786



TCACACATTTATTTGGTTCTGTTTTTGCCTTCCCTAGAGTGCT



AACTTCCAGTAACGAGATACTTTCCTGAGTGCCATA



CAAAAACAGAACCAAAT
787



ATTTGGTTCTGTTTTTG
788


Breast Cancer
AAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGGA
789


Lys-820-Glu
CTAATTCATGGTTGTTCCAAAGATAATAGAAATGACACAGAAG


AAA to GAA
GCTTTAAGTATCCATTGGGACATGAAGTTAACCACA



TGTGGTTAACTTCATGTCCCAATGGATACTTAAAGCCTTCTGT
790



GTCATTTCTATTATCTTTGGAACAACCATGAATTAGTCCCTTG



GGGTTTTCAAATGCTGCACACTGACTCACACATTT



GTTGTTCCAAAGATAAT
791



ATTATCTTTGGAACAAC
792


Breast Cancer
CAGCATTTGAAAACCCCAAGGGACTAATTCATGGTTGTTCCA
793


Thr-826-Lys
AAGATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGG


ACA to AAA
GACATGAAGTTAACCACAGTCGGGAAACAAGCATAGA



TCTATGCTTGTTTCCCGACTGTGGTTAACTTCATGTCCCAATG
794



GATACTTAAAGCCTTCTGTGTCATTTCTATTATCTTTGGAACA



ACCATGAATTAGTCCCTTGGGGTTTTCAAATGCTG



AAATGACACAGAAGGCT
795



AGCCTTCTGTGTCATTT
796


Breast Cancer
GATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGGGA
797


Arg-841-Trp
CATGAAGTTAACCACAGTCGGGAAACAAGCATAGAAATGGAA


CGG to TGG
GAAAGTGAACTTGATGCTCAGTATTTGCAGAATACAT



ATGTATTCTGCAAATACTGAGCATCAAGTTCACTTTCTTCCAT
798



TTCTATGCTTGTTTCCCGACTGTGGTTAACTTCATGTCCCAAT



GGATACTTAAAGCCTTCTGTGTCATTTCTATTATC



ACCACAGTCGGGAAACA
799



TGTTTCCCGACTGTGGT
800


Breast Cancer
AACTTGATGCTCAGTATTTGCAGAATACATTCAAGGTTTCAAA
801


Pro-871-Leu
GCGCCAGTCATTTGCTCCGTTTTCAAATCCAGGAAATGCAGA


CCG to CTG
AGAGGAATGTGCAACATTCTCTGCCCACTCTGGGTC



GACCCAGAGTGGGCAGAGAATGTTGCACATTCCTCTTCTGCA
802



TTTCCTGGATTTGAAAACGGAGCAAATGACTGGCGCTTTGAA



ACCTTGAATGTATTCTGCAAATACTGAGCATCAAGTT



ATTTGCTCCGTTTTCAA
803



TTGAAAACGGAGCAAAT
804


Breast Cancer
TTTCAAATCCAGGAAATGCAGAAGAGGAATGTGCAACATTCT
805


Leu-892-Ser
CTGCCCACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCA


TTA to TCA
CTTTTGAATGTGAACAAAAGGAAGAAAATCAAGGAAA



TTTCCTTGATTTTCTTCCTTTTGTTCACATTCAAAAGTGACTTT
806



TGGACTTTGTTTCTTTAAGGACCCAGAGTGGGCAGAGAATGT



TGCACATTCCTCTTCTGCATTTCCTGGATTTGAAA



TGGGTCCTTAAAGAAAC
807



GTTTCTTTAAGGACCCA
808


Breast Cancer
CACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCACTTTTG
809


Glu-908-Stop
AATGTGAACAAAAGGAAGAAAATCAAGGAAAGAATGAGTCTA


GAA to TAA
ATATCAAGCCTGTACAGACAGTTAATATCACTGCAG



CTGCAGTGATATTAACTGTCTGTACAGGCTTGATATTAGACTC
810



ATTCTTTCCTTGATTTTCTTCCTTTTGTTCACATTCAAAAGTGA



CTTTTGGACTTTGTTTCTTTAAGGACCCAGAGTG



AAAAGGAAGAAAATCAA
811



TTGATTTTCTTCCTTTT
812


Breast Cancer
ATAATGCCAAATGTAGTATCAAAGGAGGCTCTAGGTTTTGTCT
813


Gly-960-Asp
ATCATCTCAGTTCAGAGGCAACGAAACTGGACTCATTACTCC


GGC to GAC
AAATAAACATGGACTTTTACAAAACCCATATCGTAT



ATACGATATGGGTTTTGTAAAAGTCCATGTTTATTTGGAGTAA
814



TGAGTCCAGTTTCGTTGCCTCTGAACTGAGATGATAGACAAA



ACCTAGAGCCTCCTTTGATACTACATTTGGCATTAT



GTTCAGAGGCAACGAAA
815



TTTCGTTGCCTCTGAAC
816


Breast Cancer
ATTTGTTAAAACTAAATGTAAGAAAAATCTGCTAGAGGAAAAC
817


Met-1008-Ile
TTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAAAT


ATG to ATA
GAGAACATTCCAAGTACAGTGAGCACAATTAGCCGT



ACGGCTAATTGTGCTCACTGTACTTGGAATGTTCTCATTTCCC
818



ATTTCTCTTTCAGGTGACATTGAATGTTCCTCAAAGTTTTCCT



CTAGCAGATTTTTCTTACATTTAGTTTTAACAAAT



CATTCAATGTCACCTGA
819



TCAGGTGACATTGAATG
820


Breast Cancer
ACTTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAA
821


Thr-1025-Ile
ATGAGAACATTCCAAGTACAGTGAGCACAATTAGCCGTAATA


ACA to ATA
ACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTCAAG



CTTGAGCTGGCTTCTTTAAAAACATTTTCTCTAATGTTATTACG
822



GCTAATTGTGCTCACTGTACTTGGAATGTTCTCATTTCCCATT



TCTCTTTCAGGTGACATTGAATGTTCCTCAAAGT



TCCAAGTACAGTGAGCA
823



TGCTCACTGTACTTGGA
824


Breast Cancer
ACATTCCAAGTACAGTGAGCACAATTAGCCGTAATAACATTAG
825


Glu-1038-Gly
AGAAAATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAA


GAA to GGA
GTAGGTTCCAGTACTAATGAAGTGGGCTCCAGTAT



ATACTGGAGCCCACTTCATTAGTACTGGAACCTACTTCATTAA
826



TATTGCTTGAGCTGGCTTCTTTAAAAACATTTTCTCTAATGTTA



TTACGGCTAATTGTGCTCACTGTACTTGGAATGT



TTTTAAAGAAGCCAGCT
827



AGCTGGCTTCTTTAAAA
828


Breast Cancer
CAAGTACAGTGAGCACAATTAGCCGTAATAACATTAGAGAAA
829


Ser-1040-Asn
ATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAAGTAGG


AGC to AAC
TTCCAGTACTAATGAAGTGGGCTCCAGTATTAATGA



TCATTAATACTGGAGCCCACTTCATTAGTACTGGAACCTACTT
830



CATTAATATTGCTTGAGCTGGCTTCTTTAAAAACATTTTCTCTA



ATGTTATTACGGCTAATTGTGCTCACTGTACTTG



AGAAGCCAGCTCAAGCA
831



TGCTTGAGCTGGCTTCT
832


Breast Cancer
GCCGTAATAACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTC
833


Val-1047-Ala
AAGCAATATTAATGAAGTAGGTTCCAGTACTAATGAAGTGGG


GTA to GCA
CTCCAGTATTAATGAAATAGGTTCCAGTGATGAAAA



TTTTCATCACTGGAACCTATTTCATTAATACTGGAGCCCACTT
834



CATTAGTACTGGAACCTACTTCATTAATATTGCTTGAGCTGGC



TTCTTTAAAAACATTTTCTCTAATGTTATTACGGC



TAATGAAGTAGGTTCCA
835



TGGAACCTACTTCATTA
836


Breast Cancer
AAATAGGTTCCAGTGATGAAAACATTCAAGCAGAACTAGGTA
837


Leu-1080-Stop
GAAACAGAGGGCCAAAATTGAATGCTATGCTTAGATTAGGGG


TTG to TAG
TTTTGCAACCTGAGGTCTATAAACAAAGTCTTCCTGG



CCAGGAAGACTTTGTTTATAGACCTCAGGTTGCAAAACCCCT
838



AATCTAAGCATAGCATTCAATTTTGGCCCTCTGTTTCTACCTA



GTTCTGCTTGAATGTTTTCATCACTGGAACCTATTT



GCCAAAATTGAATGCTA
839



TAGCATTCAATTTTGGC
840


Breast Cancer
AAAACATTCAAGCAGAACTAGGTAGAAACAGAGGGCCAAAAT
841


Leu-1086-Stop
TGAATGCTATGCTTAGATTAGGGGTTTTGCAACCTGAGGTCT


TTA to TGA
ATAAACAAAGTCTTCCTGGAAGTAATTGTAAGCATCC



GGATGCTTACAATTACTTCCAGGAAGACTTTGTTTATAGACCT
842



CAGGTTGCAAAACCCCTAATCTAAGCATAGCATTCAATTTTG



GCCCTCTGTTTCTACCTAGTTCTGCTTGAATGTTTT



GCTTAGATTAGGGGTTT
843



AAACCCCTAATCTAAGC
844


Breast Cancer
AGCAAGAATATGAAGAAGTAGTTCAGACTGTTAATACAGATTT
845


Ser-1130-Stop
CTCTCCATATCTGATTTCAGATAACTTAGAACAGCCTATGGGA


TCA to TGA
AGTAGTCATGCATCTCAGGTTTGTTCTGAGACACC



GGTGTCTCAGAACAAACCTGAGATGCATGACTACTTCCCATA
846



GGCTGTTCTAAGTTATCTGAAATCAGATATGGAGAGAAATCT



GTATTAACAGTCTGAACTACTTCTTCATATTCTTGCT



TCTGATTTCAGATAACT
847



AGTTATCTGAAATCAGA
848


Breast Cancer
CTAGTTTTGCTGAAAATGACATTAAGGAAAGTTCTGCTGTTTT
849


Lys-1183-Arg
TAGCAAAAGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTA


AAA to AGA
GCCCTTTCACCCATACACATTTGGCTCAGGGTTACCG



CGGTAACCCTGAGCCAAATGTGTATGGGTGAAAGGGCTAGG
850



ACTCCTGCTAAGCTCTCCTTTCTGGACGCTTTTGCTAAAAACA



GCAGAACTTTCCTTAATGTCATTTTCAGCAAAACTAG



CGTCCAGAAAGGAGAGC
851



GCTCTCCTTTCTGGACG
852


Breast Cancer
AGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTT
853


Gln-1200-Stop
CACCCATACACATTTGGCTCAGGGTTACCGAAGAGGGGCCA


CAG to TAG
AGAAATTAGAGTCCTCAGAAGAGAACTTATCTAGTGAGG



CCTCACTAGATAAGTTCTCTTCTGAGGACTCTAATTTCTTGGC
854



CCCTCTTCGGTAACCCTGAGCCAAATGTGTATGGGTGAAAGG



GCTAGGACTCCTGCTAAGCTCTCCTTTCTGGACGCT



ATTTGGCTCAGGGTTAC
855



GTAACCCTGAGCCAAAT
856


Breast Cancer
AAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTTCACCCATACA
857


Arg-1203-Stop
CATTTGGCTCAGGGTTACCGAAGAGGGGCCAAGAAATTAGA


CGA to TGA
GTCCTCAGAAGAGAACTTATCTAGTGAGGATGAAGAGC



GCTCTTCATCCTCACTAGATAAGTTCTCTTCTGAGGACTCTAA
858



TTTCTTGGCCCCTCTTCGGTAACCCTGAGCCAAATGTGTATG



GGTGAAAGGGCTAGGACTCCTGCTAAGCTCTCCTTT



AGGGTTACCGAAGAGGG
859



CCCTCTTCGGTAACCCT
860


Breast Cancer
ACCCATACACATTTGGCTCAGGGTTACCGAAGAGGGGCCAA
861


Glu-1214-Stop
GAAATTAGAGTCCTCAGAAGAGAACTTATCTAGTGAGGATGA


GAG to TAG
AGAGCTTCCCTGCTTCCAACACTTGTTATTTGGTAAAG



CTTTACCAAATAACAAGTGTTGGAAGCAGGGAAGCTCTTCAT
862



CCTCACTAGATAAGTTCTCTTCTGAGGACTCTAATTTCTTGGC



CCCTCTTCGGTAACCCTGAGCCAAATGTGTATGGGT



CCTCAGAAGAGAACTTA
863



TAAGTTCTCTTCTGAGG
864


Breast Cancer
TCAGGGTTACCGAAGAGGGGCCAAGAAATTAGAGTCCTCAG
865


Glu-1219-Asp
AAGAGAACTTATCTAGTGAGGATGAAGAGCTTCCCTGCTTCC


GAG to GAC
AACACTTGTTATTTGGTAAAGTAAACAATATACCTTCT



AGAAGGTATATTGTTTACTTTACCAAATAACAAGTGTTGGAAG
866



CAGGGAAGCTCTTCATCCTCACTAGATAAGTTCTCTTCTGAG



GACTCTAATTTCTTGGCCCCTCTTCGGTAACCCTGA



TCTAGTGAGGATGAAGA
867



TCTTCATCCTCACTAGA
868


Breast Cancer
GGTTACCGAAGAGGGGCCAAGAAATTAGAGTCCTCAGAAGA
869


Glu-1221-Stop
GAACTTATCTAGTGAGGATGAAGAGCTTCCCTGCTTCCAACA


GAA to TAA
CTTGTTATTTGGTAAAGTAAACAATATACCTTCTCAGT



ACTGAGAAGGTATATTGTTTACTTTACCAAATAACAAGTGTTG
870



GAAGCAGGGAAGCTCTTCATCCTCACTAGATAAGTTCTCTTC



TGAGGACTCTAATTTCTTGGCCCCTCTTCGGTAACC



GTGAGGATGAAGAGCTT
871



AAGCTCTTCATCCTCAC
872


Breast Cancer
TTATTTGGTAAAGTAAACAATATACCTTCTCAGTCTACTAGGC
873


Glu-1250-Stop
ATAGCACCGTTGCTACCGAGTGTCTGTCTAAGAACACAGAGG


GAG to TAG
AGAATTTATTATCATTGAAGAATAGCTTAAATGACT



AGTCATTTAAGCTATTCTTCAATGATAATAAATTCTCCTCTGTG
874



TTCTTAGACAGACACTCGGTAGCAACGGTGCTATGCCTAGTA



GACTGAGAAGGTATATTGTTTACTTTACCAAATAA



TTGCTACCGAGTGTCTG
875



CAGACACTCGGTAGCAA
876


Breast Cancer
CTAGGCATAGCACCGTTGCTACCGAGTGTCTGTCTAAGAACA
877


Ser-1262-Stop
CAGAGGAGAATTTATTATCATTGAAGAATAGCTTAAATGACTG


TCA to TAA
CAGTAACCAGGTAATATTGGCAAAGGCATCTCAGGA



TCCTGAGATGCCTTTGCCAATATTACCTGGTTACTGCAGTCAT
878



TTAAGCTATTCTTCAATGATAATAAATTCTCCTCTGTGTTCTTA



GACAGACACTCGGTAGCAACGGTGCTATGCCTAG



TTTATTATCATTGAAGA
879



TCTTCAATGATAATAAA
880


Breast Cancer
TTATCATTGAAGAATAGCTTAAATGACTGCAGTAACCAGGTAA
881


Gln-1281-Stop
TATTGGCAAAGGCATCTCAGGAACATCACCTTAGTGAGGAAA


CAG to TAG
CAAAATGTTCTGCTAGCTTGTTTTCTTCACAGTGCA



TGCACTGTGAAGAAAACAAGCTAGCAGAACATTTTGTTTCCTC
882



ACTAAGGTGATGTTCCTGAGATGCCTTTGCCAATATTACCTG



GTTACTGCAGTCATTTAAGCTATTCTTCAATGATAA



AGGCATCTCAGGAACAT
883



ATGTTCCTGAGATGCCT
884


Breast Cancer
GCTAGCTTGTTTTCTTCACAGTGCAGTGAATTGGAAGACTTG
885


Gln-1313-Stop
ACTGCAAATACAAACACCCAGGATCCTTTCTTGATTGGTTCTT


CAG to TAG
CCAAACAAATGAGGCATCAGTCTGAAAGCCAGGGAG



CTCCCTGGCTTTCAGACTGATGCCTCATTTGTTTGGAAGAAC
886



CAATCAAGAAAGGATCCTGGGTGTTTGTATTTGCAGTCAAGT



CTTCCAATTCACTGCACTGTGAAGAAAACAAGCTAGC



CAAACACCCAGGATCCT
887



AGGATCCTGGGTGTTTG
888


Breast Cancer
TCACAGTGCAGTGAATTGGAAGACTTGACTGCAAATACAAAC
889


Ile-1318-Val
ACCCAGGATCCTTTCTTGATTGGTTCTTCCAAACAAATGAGG


ATT to GTT
CATCAGTCTGAAAGCCAGGGAGTTGGTCTGAGTGACA



TGTCACTCAGACCAACTCCCTGGCTTTCAGACTGATGCCTCA
890



TTTGTTTGGAAGAACCAATCAAGAAAGGATCCTGGGTGTTTG



TATTTGCAGTCAAGTCTTCCAATTCACTGCACTGTGA



CTTTCTTGATTGGTTCT
891



AGAACCAATCAAGAAAG
892


Breast Cancer
TTGGAAGACTTGACTGCAAATACAAACACCCAGGATCCTTTC
893


Gln-1323-Stop
TTGATTGGTTCTTCCAAACAAATGAGGCATCAGTCTGAAAGC


CAA to TAA
CAGGGAGTTGGTCTGAGTGACAAGGAATTGGTTTCAG



CTGAAACCAATTCCTTGTCACTCAGACCAACTCCCTGGCTTT
894



CAGACTGATGCCTCATTTGTTTGGAAGAACCAATCAAGAAAG



GATCCTGGGTGTTTGTATTTGCAGTCAAGTCTTCCAA



CTTCCAAACAAATGAGG
895



CCTCATTTGTTTGGAAG
896


Breast Cancer
CAGTCTGAAAGCCAGGGAGTTGGTCTGAGTGACAAGGAATT
897


Arg-1347-Gly
GGTTTCAGATGATGAAGAAAGAGGAACGGGCTTGGAAGAAA


AGA to GGA
ATAATCAAGAAGAGCAAAGCATGGATTCAAACTTAGGTA



TACCTAAGTTTGAATCCATGCTTTGCTCTTCTTGATTATTTTCT
898



TCCAAGCCCGTTCCTCTTTCTTCATCATCTGAAACCAATTCCT



TGTCACTCAGACCAACTCCCTGGCTTTCAGACTG



ATGAAGAAAGAGGAACG
899



CGTTCCTCTTTCTTCAT
900


Breast Cancer
GAAACAAGCGTCTCTGAAGACTGCTCAGGGCTATCCTCTCAG
901


Gln-1395-Stop
AGTGACATTTTAACCACTCAGGTAAAAAGCGTGTGTGTGTGT


CAG to TAG
GCACATGCGTGTGTGTGGTGTCCTTTGCATTCAGTAG



CTACTGAATGCAAAGGACACCACACACACGCATGTGCACACA
902



CACACACGCTTTTTACCTGAGTGGTTAAAATGTCACTCTGAG



AGGATAGCCCTGAGCAGTCTTCAGAGACGCTTGTTTC



TAACCACTCAGGTAAAA
903



TTTTACCTGAGTGGTTA
904


Breast Cancer
TGGTGCCATTTATCGTTTTTGAAGCAGAGGGATACCATGCAA
905


Gln-1408-Stop
CATAACCTGATAAAGCTCCAGCAGGAAATGGCTGAACTAGAA


CAG to TAG
GCTGTGTTAGAACAGCATGGGAGCCAGCCTTCTAACA



TGTTAGAAGGCTGGCTCCCATGCTGTTCTAACACAGCTTCTA
906



GTTCAGCCATTTCCTGCTGGAGCTTTATCAGGTTATGTTGCAT



GGTATCCCTCTGCTTCAAAAACGATAAATGGCACCA



TAAAGCTCCAGCAGGAA
907



TTCCTGCTGGAGCTTTA
908


Breast Cancer
AGCCAGCCTTCTAACAGCTACCCTTCCATCATAAGTGACTCT
909


Arg-1443-Gly
TCTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGCACATCA


CGA to GGA
GAAAAAGGTGTGTATTGTTGGCCAAACACTGATATCT


Arg-1443-Stop
AGATATCAGTGTTTGGCCAACAATACACACCTTTTTCTGATGT
910


CGA to TGA
GCTTTGTTCTGGATTTCGCAGGTCCTCAAGGGCAGAAGAGTC



ACTTATGATGGAAGGGTAGCTGTTAGAAGGCTGGCT



AGGACCTGCGAAATCCA
911



TGGATTTCGCAGGTCCT
912


Breast Cancer
CAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTT
913


Ser-1512-Ile
GTTGATGTGGAGGAGCAACAGCTGGAAGAGTCTGGGCCACA


AGT to ATT
CGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATC



GATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAAATCGTGTG
914



GCCCAGACTCTTCCAGCTGTTGCTCCTCCACATCAACAACCT



TAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCTG



AGGAGCAACAGCTGGAA
915



TTCCAGCTGTTGCTCCT
916


Breast Cancer
ATCTTTCTAGGTCATCCCCTTCTAAATGCCCATCATTAGATGA
917


Gln-1538-Stop
TAGGTGGTACATGCACAGTTGCTCTGGGAGTCTTCAGAATAG


CAG to TAG
AAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGT



ACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCT
918



GAAGACTCCCAGAGCAACTGTGCATGTACCACCTATCATCTA



ATGATGGGCATTTAGAAGGGGATGACCTAGAAAGAT



CATGCACAGTTGCTCTG
919



CAGAGCAACTGTGCATG
920


Breast Cancer
CAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTT
921


Glu-1541-Stop
GTTGATGTGGAGGAGCAACAGCTGGAAGAGTCTGGGCCACA


GAG to TAG
CGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATC



GATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAAATCGTGTG
922



GCCCAGACTCTTCCAGCTGTTGCTCCTCCACATCAACAACCT



TAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCTG



AGGAGCAACAGCTGGAA
923



TTCCAGCTGTTGCTCCT
924


Breast Cancer
AACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTTGATGTG
925


Thr-1561-Ile
GAGGAGCAACAGCTGGAAGAGTCTGGGCCACACGATTTGAC


ACC to ATC
GGAAACATCTTACTTGCCAAGGCAAGATCTAGGTAATA



TATTACCTAGATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAA
926



ATCGTGTGGCCCAGACTCTTCCAGCTGTTGCTCCTCCACATC



AACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTT



AGCTGGAAGAGTCTGGG
927



CCCAGACTCTTCCAGCT
928


Breast Cancer
TTTGTAATTCAACATTCATCGTTGTGTAAATTAAACTTCTCCCA
929


Tyr-1563-Stop
TTCCTTTCAGAGGGAACCCCTTACCTGGAATCTGGAATCAGC


TAC to TAG
CTCTTCTCTGATGACCCTGAATCTGATCCTTCTGA



TCAGAAGGATCAGATTCAGGGTCATCAGAGAAGAGGCTGATT
930



CCAGATTCCAGGTAAGGGGTTCCCTCTGAAAGGAATGGGAG



AAGTTTAATTTACACAACGATGAATGTTGAATTACAAA



AGAGGGAACCCCTTACC
931



GGTAAGGGGTTCCCTCT
932


Breast Cancer
CAACATTCATCGTTGTGTAAATTAAACTTCTCCCATTCCTTTC
933


Leu-1564-Pro
AGAGGGAACCCCTTACCTGGAATCTGGAATCAGCCTCTTCTC


CTG to CCG
TGATGACCCTGAATCTGATCCTTCTGAAGACAGAGC



GCTCTGTCTTCAGAAGGATCAGATTCAGGGTCATCAGAGAAG
934



AGGCTGATTCCAGATTCCAGGTAAGGGGTTCCCTCTGAAAG



GAATGGGAGAAGTTTAATTTACACAACGATGAATGTTG



CCCTTACCTGGAATCTG
935



CAGATTCCAGGTAAGGG
936


Breast Cancer
GCCCCAGAGTCAGCTCGTGTTGGCAACATACCATCTTCAACC
937


Gln-1604-Stop
TCTGCATTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCC


CAA to TAA
CAGAGTCCAGCTGCTGCTCATACTACTGATACTGCTG



CAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCTGGGCA
938



GATTCTGCAACTTTCAATTGGGGAACTTTCAATGCAGAGGTT



GAAGATGGTATGTTGCCAACACGAGCTGACTCTGGGGC



AAGTTCCCCAATTGAAA
939



TTTCAATTGGGGAACTT
940


Breast Cancer
GAGTCAGCTCGTGTTGGCAACATACCATCTTCAACCTCTGCA
941


Lys-1606-Glu
TTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCCCAGAGT


AAA to GAA
CCAGCTGCTGCTCATACTACTGATACTGCTGGGTATA



TATACCCAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCT
942



GGGCAGATTCTGCAACTTTCAATTGGGGAACTTTCAATGCAG



AGGTTGAAGATGGTATGTTGCCAACACGAGCTGACTC



CCCAATTGAAAGTTGCA
943



TGCAACTTTCAATTGGG
944


Breast Cancer
CAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGATA
945


Met-1628-Thr
CTGCTGGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGAG


ATG to ACG
AAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAA



TTGTTGACCCTTTCTGTTGAAGCTGTCAATTCTGGCTTCTCCC
946



TGCTCACACTTTCTTCCATTGCATTATACCCAGCAGTATCAGT



AGTATGAGCAGCAGCTGGACTCTGGGCAGATTCTG



TAATGCAATGGAAGAAA
947



TTTCTTCCATTGCATTA
948


Breast Cancer
GCAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGAT
949


Met-1628-Val
ACTGCTGGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGA


ATG to GTG
GAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACA



TGTTGACCCTTTCTGTTGAAGCTGTCAATTCTGGCTTCTCCCT
950



GCTCACACTTTCTTCCATTGCATTATACCCAGCAGTATCAGTA



GTATGAGCAGCAGCTGGACTCTGGGCAGATTCTGC



ATAATGCAATGGAAGAA
951



TTCTTCCATTGCATTAT
952


Breast Cancer
CTCATACTACTGATACTGCTGGGTATAATGCAATGGAAGAAA
953


Pro-1637-Leu
GTGTGAGCAGGGAGAAGCCAGAATTGACAGCTTCAACAGAA


CCA to CTA
AGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCT



AGGCCAGACACCACCATGGACATTCTTTTGTTGACCCTTTCT
954



GTTGAAGCTGTCAATTCTGGCTTCTCCCTGCTCACACTTTCTT



CCATTGCATTATACCCAGCAGTATCAGTAGTATGAG



GGAGAAGCCAGAATTGA
955



TCAATTCTGGCTTCTCC
956


Breast Cancer
GAGCAGGGAGAAGCCAGAATTGACAGCTTCAACAGAAAGGG
957


Met-1652-Ile
TCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTGACCCCAG


ATG to ATA
AAGAATTTGTGAGTGTATCCATATGTATCTCCCTAATG



CATTAGGGAGATACATATGGATACACTCACAAATTCTTCTGG
958



GGTCAGGCCAGACACCACCATGGACATTCTTTTGTTGACCCT



TTCTGTTGAAGCTGTCAATTCTGGCTTCTCCCTGCTC



ATGTCCATGGTGGTGTC
959



GACACCACCATGGACAT
960


Breast Cancer
CACTTCCTGATTTTGTTTTCAACTTCTAATCCTTTGAGTGTTTT
961


Glu-1694-Stop
TCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGACACTGAA


GAG to TAG
ATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAG



CTACCCATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGT
962



CCGTTCACACACAAACTCAGCATCTGCAGAATGAAAAACACT



CAAAGGATTAGAAGTTGAAAACAAAATCAGGAAGTG



CAGATGCTGAGTTTGTG
963



CACAAACTCAGCATCTG
964


Breast Cancer
GTGTTTTTCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGA
965


Gly-1706-Glu
CACTGAAATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAG


GGA to GAA
TTAGCTATTTCTGTAAGTATAATACTATTTCTCCCCT



AGGGGAGAAATAGTATTATACTTACAGAAATAGCTAACTACCC
966



ATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGTCCGTTC



ACACACAAACTCAGCATCTGCAGAATGAAAAACAC



TTTTCTAGGAATTGCGG
967



CCGCAATTCCTAGAAAA
968


Breast Cancer
TTCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGACACTGA
969


Ala-1708-Glu
AATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAGTTAGCT


GCG to GAG
ATTTCTGTAAGTATAATACTATTTCTCCCCTCCTCCC



GGGAGGAGGGGAGAAATAGTATTATACTTACAGAAATAGCTA
970



ACTACCCATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTG



TCCGTTCACACACAAACTCAGCATCTGCAGAATGAA



AGGAATTGCGGGAGGAA
971



TTCCTCCCGCAATTCCT
972


Breast Cancer
CTGAGTTTGTGTGTGAACGGACACTGAAATATTTTCTAGGAAT
973


Val-1713-Ala
TGCGGGAGGAAAATGGGTAGTTAGCTATTTCTGTAAGTATAA


GTA to GCA
TACTATTTCTCCCCTCCTCCCTTTAACACCTCAGAA



TTCTGAGGTGTTAAAGGGAGGAGGGGAGAAATAGTATTATAC
974



TTACAGAAATAGCTAACTACCCATTTTCCTCCCGCAATTCCTA



GAAAATATTTCAGTGTCCGTTCACACACAAACTCAG



AAAATGGGTAGTTAGCT
975



AGCTAACTACCCATTTT
976


Breast Cancer
AACGGACACTGAAATATTTTCTAGGAATTGCGGGAGGAAAAT
977


Trp-1718-Stop
GGGTAGTTAGCTATTTCTGTAAGTATAATACTATTTCTCCCCT


TGG to TAG
CCTCCCTTTAACACCTCAGAATTGCATTTTTACACC



GGTGTAAAAATGCAATTCTGAGGTGTTAAAGGGAGGAGGGG
978



AGAAATAGTATTATACTTACAGAAATAGCTAACTACCCATTTTC



CTCCCGCAATTCCTAGAAAATATTTCAGTGTCCGTT



CTATTTCTGTAAGTATA
979



TATACTTACAGAAATAG
980


Breast Cancer
TTCTGCTGTATGTAACCTGTCTTTTCTATGATCTCTTTAGGGG
981


Glu-1725-Stop
TGACCCAGTCTATTAAAGAAAGAAAAATGCTGAATGAGGTAA


GAA to TAA
GTACTTGATGTTACAAACTAACCAGAGATATTCATT



AATGAATATCTCTGGTTAGTTTGTAACATCAAGTACTTACCTC
982



ATTCAGCATTTTTCTTTCTTTAATAGACTGGGTCACCCCTAAA



GAGATCATAGAAAAGACAGGTTACATACAGCAGAA



CTATTAAAGAAAGAAAA
983



TTTTCTTTCTTTAATAG
984


Breast Cancer
TGTATGTAACCTGTCTTTTCTATGATCTCTTTAGGGGTGACCC
985


Lys-1727-Stop
AGTCTATTAAAGAAAGAAAAATGCTGAATGAGGTAAGTACTTG


AAA to TAA
ATGTTACAAACTAACCAGAGATATTCATTCAGTCA



TGACTGAATGAATATCTCTGGTTAGTTTGTAACATCAAGTACT
986



TACCTCATTCAGCATTTTTCTTTCTTTAATAGACTGGGTCACC



CCTAAAGAGATCATAGAAAAGACAGGTTACATACA



AAGAAAGAAAAATGCTG
987



CAGCATTTTTCTTTCTT
988


Breast Cancer
TCTTTCAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATG
989


Pro-1749-Arg
GAAGAAACCACCAAGGTCCAAAGCGAGCAAGAGAATCCCAG


CCA to CGA
GACAGAAAGGTAAAGCTCCCTCCCTCAAGTTGACAAAA



TTTTGTCAACTTGAGGGAGGGAGCTTTACCTTTCTGTCCTGG
990



GATTCTCTTGCTCGCTTTGGACCTTGGTGGTTTCTTCCATTGA



CCACATCTCCTCTGACTTCAAAATCATGCTGAAAGA



CCAAGGTCCAAAGCGAG
991



CTCGCTTTGGACCTTGG
992


Breast Cancer
CAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATGGAAGA
993


Arg-1751-Stop
AACCACCAAGGTCCAAAGCGAGCAAGAGAATCCCAGGACAG


CGA to TGA
AAAGGTAAAGCTCCCTCCCTCAAGTTGACAAAAATCTC



GAGATTTTTGTCAACTTGAGGGAGGGAGCTTTACCTTTCTGT
994



CCTGGGATTCTCTTGCTCGCTTTGGACCTTGGTGGTTTCTTC



CATTGACCACATCTCCTCTGACTTCAAAATCATGCTG



GTCCAAAGCGAGCAAGA
995



TCTTGCTCGCTTTGGAC
996


Breast Cancer
GTCAGAGGAGATGTGGTCAATGGAAGAAACCACCAAGGTCC
997


Gln-1756-Stop
AAAGCGAGCAAGAGAATCCCAGGACAGAAAGGTAAAGCTCC


CAG to TAG
CTCCCTCAAGTTGACAAAAATCTCACCCCACCACTCTGT



ACAGAGTGGTGGGGTGAGATTTTTGTCAACTTGAGGGAGGG
998



AGCTTTACCTTTCTGTCCTGGGATTCTCTTGCTCGCTTTGGA



CCTTGGTGGTTTCTTCCATTGACCACATCTCCTCTGAC



GAGAATCCCAGGACAGA
999



TCTGTCCTGGGATTCTC
1000


Breast Cancer
CTCTCTTCTTCCAGATCTTCAGGGGGCTAGAAATCTGTTGCT
1001


Met-1775-Arg
ATGGGCCCTTCACCAACATGCCCACAGGTAAGAGCCTGGGA


ATG to AGG
GAACCCCAGAGTTCCAGCACCAGCCTTTGTCTTACATA



TATGTAAGACAAAGGCTGGTGCTGGAACTCTGGGGTTCTCCC
1002



AGGCTCTTACCTGTGGGCATGTTGGTGAAGGGCCCATAGCA



ACAGATTTCTAGCCCCCTGAAGATCTGGAAGAAGAGAG



CACCAACATGCCCACAG
1003



CTGTGGGCATGTTGGTG
1004


Breast Cancer
AGTATGCAGATTACTGCAGTGATTTTACATCTAAATGTCCATT
1005


Trp-1782-Stop
TTAGATCAACTGGAATGGATGGTACAGCTGTGTGGTGCTTCT


TGG to TGA
GTGGTGAAGGAGCTTTCATCATTCACCCTTGGCACA



TGTGCCAAGGGTGAATGATGAAAGCTCCTTCACCACAGAAGC
1006



ACCACACAGCTGTACCATCCATTCCAGTTGATCTAAAATGGA



CATTTAGATGTAAAATCACTGCAGTAATCTGCATACT



CTGGAATGGATGGTACA
1007



TGTACCATCCATTCCAG
1008


Breast Cancer
ATTACTGCAGTGATTTTACATCTAAATGTCCATTTTAGATCAAC
1009


Gln-1785-His
TGGAATGGATGGTACAGCTGTGTGGTGCTTCTGTGGTGAAG


CAG to CAT
GAGCTTTCATCATTCACCCTTGGCACAGTAAGTATT



AATACTTACTGTGCCAAGGGTGAATGATGAAAGCTCCTTCAC
1010



CACAGAAGCACCACACAGCTGTACCATCCATTCCAGTTGATC



TAAAATGGACATTTAGATGTAAAATCACTGCAGTAAT



ATGGTACAGCTGTGTGG
1011



CCACACAGCTGTACCAT
1012


Breast Cancer
GTCCATTTTAGATCAACTGGAATGGATGGTACAGCTGTGTGG
1013


Glu-1794-Asp
TGCTTCTGTGGTGAAGGAGCTTTCATCATTCACCCTTGGCAC


GAG to GAT
AGTAAGTATTGGGTGCCCTGTCAGAGAGGGAGGACAC



GTGTCCTCCCTCTCTGACAGGGCACCCAATACTTACTGTGCC
1014



AAGGGTGAATGATGAAAGCTCCTTCACCACAGAAGCACCACA



CAGCTGTACCATCCATTCCAGTTGATCTAAAATGGAC



GTGAAGGAGCTTTCATC
1015



GATGAAAGCTCCTTCAC
1016


Breast Cancer
CTCTGCTTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGT
1017


Arg-1835-Stop
GAGGCACCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGT


CGA to TGA
AGCACTCTACCAGTGCCAGGAGCTGGACACCTACCTGA



TCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAGTGCTACA
1018



CTGTCCAACACCCACTCTCGGGTCACCACAGGTGCCTCACA



CATCTGCCCAATTGCTGGAGACAGAGAACACAAGCAGAG



TGGTGACCCGAGAGTGG
1019



CCACTCTCGGGTCACCA
1020


Breast Cancer
TTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGTGAGGCA
1021


Trp-1837-Arg
CCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTAGCACT


TGG to CGG
CTACCAGTGCCAGGAGCTGGACACCTACCTGATACCCC



GGGGTATCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAGT
1022



GCTACACTGTCCAACACCCACTCTCGGGTCACCACAGGTGC



CTCACACATCTGCCCAATTGCTGGAGACAGAGAACACAA



CCCGAGAGTGGGTGTTG
1023



CAACACCCACTCTCGGG
1024


Breast Cancer
TGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGTGAGGCAC
1025


Trp-1837-Stop
CTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTAGCACTC


TGG to TAG
TACCAGTGCCAGGAGCTGGACACCTACCTGATACCCCA



TGGGGTATCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAG
1026



TGCTACACTGTCCAACACCCACTCTCGGGTCACCACAGGTG



CCTCACACATCTGCCCAATTGCTGGAGACAGAGAACACA



CCGAGAGTGGGTGTTGG
1027



CCAACACCCACTCTCGG
1028
















TABLE 15







BRCA2 Mutations and Genome-Correcting Oligos










Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:





Breast cancer
GTTAAAACTAAGGTGGGATTTTTTTTTTAAATAGATTTAGGAC
1029



PHE32LEU
CAATAAGTCTTAATTGGTTTGAAGAACTTTCTTCAGAAGCTCC


TTT to CTT
ACCCTATAATTCTGAACCTGCAGAAGAATCTGAAC



GTTCAGATTCTTCTGCAGGTTCAGAATTATAGGGTGGAGCTT
1030



CTGAAGAAAGTTCTTCAAACCAATTAAGACTTATTGGTCCTAA




ATCTATTTAAAAAAAAAATCCCACCTTAGTTTTAAC




TTAATTGGTTTGAAGAA
1031



TTCTTCAAACCAATTAA
1032


Breast cancer
TAGATTTAGGACCAATAAGTCTTAATTGGTTTGAAGAACTTTC
1033


TYR42CYS
TTCAGAAGCTCCACCCTATAATTCTGAACCTGCAGAAGAATC



TAT to TGT
TGAACATAAAAACAACAATTACGAACCAAACCTATT




AATAGGTTTGGTTCGTAATTGTTGTTTTTATGTTCAGATTCTTC
1034



TGCAGGTTCAGAATTATAGGGTGGAGCTTCTGAAGAAAGTTC




TTCAAACCAATTAAGACTTATTGGTCCTAAATCTA




TCCACCCTATAATTCTG
1035



CAGAATTATAGGGTGGA
1036


Breast cancer
AAGAACTTTCTTCAGAAGCTCCACCCTATAATTCTGAACCTGC
1037


LYS53ARG
AGAAGAATCTGAACATAAAAACAACAATTACGAACCAAACCTA



AAA to AGA
TTTAAAACTCCACAAAGGAAACCATCTTATAATCA




TGATTATAAGATGGTTTCCTTTGTGGAGTTTTAAATAGGTTTG
1038



GTTCGTAATTGTTGTTTTTATGTTCAGATTCTTCTGCAGGTTC




AGAATTATAGGGTGGAGCTTCTGAAGAAAGTTCTT




TGAACATAAAAACAACA
1039



TGTTGTTTTTATGTTCA
1040


Breast cancer
CTATTTAAAACTCCACAAAGGAAACCATCTTATAATCAGCTGG
1041


Phe81Leu
CTTCAACTCCAATAATATTCAAAGAGCAAGGGCTGACTCTGC



TTC to CTC
CGCTGTACCAATCTCCTGTAAAAGAATTAGATAAAT




ATTTATCTAATTCTTTTACAGGAGATTGGTACAGCGGCAGAGT
1042



CAGCCCTTGCTCTTTGAATATTATTGGAGTTGAAGCCAGCTG




ATTATAAGATGGTTTCCTTTGTGGAGTTTTAAATAG




CAATAATATTCAAAGAG
1043



CTCTTTGAATATTATTG
1044


Breast cancer
GTCAGACACCAAAACATATTTCTGAAAGTCTAGGAGCTGAGG
1045


TRP194TERM
TGGATCCTGATATGTCTTGGTCAAGTTCTTTAGCTACACCACC



TGG to TAG
CACCCTTAGTTCTACTGTGCTCATAGGTAATAATAG




CTATTATTACCTATGAGCACAGTAGAACTAAGGGTGGGTGGT
1046



GTAGCTAAAGAACTTGACCAAGACATATCAGGATCCACCTCA




GCTCCTAGACTTTCAGAAATATGTTTTGGTGTCTGAC




TATGTCTTGGTCAAGTT
1047



AACTTGACCAAGACATA
1048


Breast cancer
CTGAAAGTCTAGGAGCTGAGGTGGATCCTGATATGTCTTGGT
1049


PRO201ARG
CAAGTTCTTTAGCTACACCACCCACCCTTAGTTCTACTGTGCT



CCA to CGA
CATAGGTAATAATAGCAAATGTGTATTTACAAGAAA




TTTCTTGTAAATACACATTTGCTATTATTACCTATGAGCACAGT
1050



AGAACTAAGGGTGGGTGGTGTAGCTAAAGAACTTGACCAAGA




CATATCAGGATCCACCTCAGCTCCTAGACTTTCAG




AGCTACACCACCCACCC
1051



GGGTGGGTGGTGTAGCT
1052


Breast cancer
ACAATACACATAAATTTTTATCTTACAGTCAGAAATGAAGAAG
1053


Pro222Ser
CATCTGAAACTGTATTTCCTCATGATACTACTGCTGTAAGTAA



CCT to TCT
ATATGACATTGATTAGACTGTTGAAATTGCTAACA




TGTTAGCAATTTCAACAGTCTAATCAATGTCATATTTACTTACA
1054



GCAGTAGTATCATGAGGAAATACAGTTTCAGATGCTTCTTCAT




TTCTGACTGTAAGATAAAAATTTATGTGTATTGT




CTGTATTTCCTCATGAT
1055



ATCATGAGGAAATACAG
1056


Breast cancer
AATGGTCTCAACTAACCCTTTCAGGTCTAAATGGAGCCCAGA
1057


Leu-414-Term
TGGAGAAAATACCCCTATTGCATATTTCTTCATGTGACCAAAA



TTG to TAG
TATTTCAGAAAAAGACCTATTAGACACAGAGAACAA




TTGTTCTCTGTGTCTAATAGGTCTTTTTCTGAAATATTTTGGTC
1058



ACATGAAGAAATATGCAATAGGGGTATTTTCTCCATCTGGGC




TCCATTTAGACCTGAAAGGGTTAGTTGAGACCATT




ACCCCTATTGCATATTT
1059



AAATATGCAATAGGGGT
1060


Breast cancer, male
AGCCTCTGAAAGTGGACTGGAAATACATACTGTTTGCTCACA
1061


Cys554Trp
GAAGGAGGACTCCTTATGTCCAAATTTAATTGATAATGGAAG



TGT to TGG
CTGGCCAGCCACCACCACACAGAATTCTGTAGCTTTG




CAAAGCTACAGAATTCTGTGTGGTGGTGGCTGGCCAGCTTC
1062



CATTATCAATTAAATTTGGACATAAGGAGTCCTCCTTCTGTGA




GCAAACAGTATGTATTTCCAGTCCACTTTCAGAGGCT




TCCTTATGTCCAAATTT
1063



AAATTTGGACATAAGGA
1064


Breast cancer
AACTCTACCATGGTTTTATATGGAGACACAGGTGATAAACAA
1065


Lys944Term
GCAACCCAAGTGTCAATTAAAAAAGATTTGGTTTATGTTCTTG



AAA to TAA
CAGAGGAGAACAAAAATAGTGTAAAGCAGCATATAA




TTATATGCTGCTTTACACTATTTTTGTTCTCCTCTGCAAGAAC
1066



ATAAACCAAATCTTTTTTAATTGACACTTGGGTTGCTTGTTTAT




CACCTGTGTCTCCATATAAAACCATGGTAGAGTT




TGTCAATTAAAAAAGAT
1067



ATCTTTTTTAATTGACA
1068


Breast cancer, male
ATGACTACTGGCACTTTTGTTGAAGAAATTACTGAAAATTACA
1069


Glu1320Term
AGAGAAATACTGAAAATGAAGATAACAAATATACTGCTGCCAG



GAA to TAA
TAGAAATTCTCATAACTTAGAATTTGATGGCAGTG




CACTGCCATCAAATTCTAAGTTATGAGAATTTCTACTGGCAGC
1070



AGTATATTTGTTATCTTCATTTTCAGTATTTCTCTTGTAATTTTC




AGTAATTTCTTCAACAAAAGTGCCAGTAGTCAT




CTGAAAATGAAGATAAC
1071



GTTATCTTCATTTTCAG
1072


Breast cancer
CATGAAACAATTAAAAAAGTGAAAGACATATTTACAGACAGTT
1073


Glu1876Term
TCAGTAAAGTAATTAAGGAAAACAACGAGAATAAATCAAAAAT



GAA to TAA
TTGCCAAACGAAAATTATGGCAGGTTGTTACGAGG




CCTCGTAACAACCTGCCATAATTTTCGTTTGGCAAATTTTTGA
1074



TTTATTCTCGTTGTTTTCCTTAATTACTTTACTGAAACTGTCTG




TAAATATGTCTTTCACTTTTTTAATTGTTTCATG




TAATTAAGGAAAACAAC
1075



GTTGTTTTCCTTAATTA
1076


Breast cancer
TGAAAGACATATTTACAGACAGTTTCAGTAAAGTAATTAAGGA
1077


Ser1882Term
AAACAACGAGAATAAATCAAAAATTTGCCAAACGAAAATTATG



TCA to TAA
GCAGGTTGTTACGAGGCATTGGATGATTCAGAGGA




TCCTCTGAATCATCCAATGCCTCGTAACAACCTGCCATAATTT
1078



TCGTTTGGCAAATTTTTGATTTATTCTCGTTGTTTTCCTTAATT




ACTTTACTGAAACTGTCTGTAAATATGTCTTTCA




GAATAAATCAAAAATTT
1079



AAATTTTTGATTTATTC
1080


Breast cancer
AACCAAAATATGTCTGGATTGGAGAAAGTTTCTAAAATATCAC
1081


Glu1953Term
CTTGTGATGTTAGTTTGGAAACTTCAGATATATGTAAATGTAG



GAA to TAA
TATAGGGAAGCTTCATAAGTCAGTCTCATCTGCAA




TTGCAGATGAGACTGACTTATGAAGCTTCCCTATACTACATTT
1082



ACATATATCTGAAGTTTCCAAACTAACATCACAAGGTGATATT




TTAGAAACTTTCTCCAATCCAGACATATTTTGGTT




TTAGTTTGGAAACTTCA
1083



TGAAGTTTCCAAACTAA
1084


Breast cancer
TTAGTTTGGAAACTTCAGATATATGTAAATGTAGTATAGGGAA
1085


Ser1970Term
GCTTCATAAGTCAGTCTCATCTGCAAATACTTGTGGGATTTTT



TCA to TAA
AGCACAGCAAGTGGAAAATCTGTCCAGGTATCAGA




TCTGATACCTGGACAGATTTTCCACTTGCTGTGCTAAAAATCC
1086



CACAAGTATTTGCAGATGAGACTGACTTATGAAGCTTCCCTAT




ACTACATTTACATATATCTGAAGTTTCCAAACTAA




GTCAGTCTCATCTGCAA
1087



TTGCAGATGAGACTGAC
1088


Breast cancer
AAGTCAGTCTCATCTGCAAATACTTGTGGGATTTTTAGCACAG
1089


Gln1987Term
CAAGTGGAAAATCTGTCCAGGTATCAGATGCTTCATTACAAAA



CAG to TAG
CGCAAGACAAGTGTTTTCTGAAATAGAAGATAGTA




TACTATCTTCTATTTCAGAAAACACTTGTCTTGCGTTTTGTAAT
1090



GAAGCATCTGATACCTGGACAGATTTTCCACTTGCTGTGCTA




AAAATCCCACAAGTATTTGCAGATGAGACTGACTT




AATCTGTCCAGGTATCA
1091



TGATACCTGGACAGATT
1092


Breast cancer
AAAATAAGATTAATGACAATGAGATTCATCAGTTTAACAAAAA
1093


Ala2466Val
CAACTCCAATCAAGCAGCAGCTGTAACTTTCACAAAGTGTGA



GCA to GTA
AGAAGAACCTTTAGGTATTGTATGACAATTTGTGTG




CACACAAATTGTCATACAATACCTAAAGGTTCTTCTTCACACT
1094



TTGTGAAAGTTACAGCTGCTGCTTGATTGGAGTTGTTTTTGTT




AAACTGATGAATCTCATTGTCATTAATCTTATTTT




TCAAGCAGCAGCTGTAA
1095



TTACAGCTGCTGCTTGA
1096


Breast cancer
AGGCAACGCGTCTTTCCACAGCCAGGCAGTCTGTATCTTGCA
1097


Arg2520Term
AAAACATCCACTCTGCCTCGAATCTCTCTGAAAGCAGCAGTA



CGA to TGA
GGAGGCCAAGTCCCCTCTGCGTGTCCTCATAAACAGG




CCTGTTTATGAGGACACGCAGAGGGGACTTGGCCTCCTACT
1098



GCTGCTTTCAGAGAGATTCGAGGCAGAGTGGATGTTTTTGCA




AGATACAGACTGCCTGGCTGTGGAAAGACGCGTTGCCT




CTCTGCCTCGAATCTCT
1099



AGAGATTCGAGGCAGAG
1100


Breast cancer
ATTTCATTGAGCGCAAATATATCTGAAACTTCTAGCAATAAAA
1101


Gln2714Term
CTAGTAGTGCAGATACCCAAAAAGTGGCCATTATTGAACTTA



CAA to TAA
CAGATGGGTGGTATGCTGTTAAGGCCCAGTTAGATC




GATCTAACTGGGCCTTAACAGCATACCACCCATCTGTAAGTT
1102



CAATAATGGCCACTTTTTGGGTATCTGCACTACTAGTTTTATT




GCTAGAAGTTTCAGATATATTTGCGCTCAATGAAAT




CAGATACCCAAAAAGTG
1103



CACTTTTTGGGTATCTG
1104


Breast cancer
CAGAACTGGTGGGCTCTCCTGATGCCTGTACACCTCTTGAAG
1105


Leu2776Term
CCCCAGAATCTCTTATGTTAAAGGTAAATTAATTTGCACTCTT



TTA to TGA
GGTAAAAATCAGTCATTGATTCAGTTAAATTCTAGA




TCTAGAATTTAACTGAATCAATGACTGATTTTTACCAAGAGTG
1106



CAAATTAATTTACCTTTAACATAAGAGATTCTGGGGCTTCAAG




AGGTGTACAGGCATCAGGAGAGCCCACCAGTTCTG




TCTTATGTTAAAGATTT
1107



AAATCTTTAACATAAGA
1108


Breast cancer
CCTTTTGTTTTCTTAGAAAACACAACAAAACCATATTTACCATC
1109


Gln2893Term
ACGTGCACTAACAAGACAGCAAGTTCGTGCTTTGCAAGATGG



CAG to TAG
TGCAGAGCTTTATGAAGCAGTGAAGAATGCAGCAG




CTGCTGCATTCTTCACTGCTTCATAAAGCTCTGCACCATCTTG
1110



CAAAGCACGAACTTGCTGTCTTGTTAGTGCACGTGATGGTAA




ATATGGTTTTGTTGTGTTTTCTAAGAAAACAAAAGG




TAACAAGACAGCAAGTT
1111



AACTTGCTGTCTTGTTA
1112


Breast cancer
AATCACAGGCAAATGTTGAATGATAAGAAACAAGCTCAGATC
1113


Ala2951Thr
CAGTTGGAAATTAGGAAGGCCATGGAATCTGCTGAACAAAAG



GCC to ACC
GAACAAGGTTTATCAAGGGATGTCACAACCGTGTGGA




TCCACACGGTTGTGACATCCCTTGATAAACCTTGTTCCTTTTG
1114



TTCAGCAGATTCCATGGCCTTCCTAATTTCCAACTGGATCTGA




GCTTGTTTCTTATCATTCAACATTTGCCTGTGATT




TTAGGAAGGCCATGGAA
1115



TTCCATGGCCTTCCTAA
1116


Breast cancer
ACAATTTACTGGCAATAAAGTTTTGGATAGACCTTAATGAGGA
1117


Met3118Thr
CATTATTAAGCCTCATATGTTAATTGCTGCAAGCAACCTCCAG



ATG to ACG
TGGCGACCAGAATCCAAATCAGGCCTTCTTACTTT




AAAGTAAGAAGGCCTGATTTGGATTCTGGTCGCCACTGGAG
1118



GTTGCTTGCAGCAATTAACATATGAGGCTTAATAATGTCCTCA




TTAAGGTCTATCCAAAACTTTATTGCCAGTAAATTGT




GCCTCATATGTTAATTG
1119



CAATTAACATATGAGGC
1120


Breast cancer
GACTGAAACGACGTTGTACTACATCTCTGATCAAAGAACAGG
1121


Thr3401Met
AGAGTTCCCAGGCCAGTACGGAAGAATGTGAGAAAAATAAGC



ACG to ATG
AGGACACAATTACAACTAAAAAATATATCTAAGCATT




AATGCTTAGATATATTTTTTAGTTGTAATTGTGTCCTGCTTATT
1122



TTTCTCACATTCTTCCGTACTGGCCTGGGAACTCTCCTGTTCT




TTGATCAGAGATGTAGTACAACGTCGTTTCAGTC




GGCCAGTACGGAAGAAT
1123



ATTCTTCCGTACTGGCC
1124


Breast cancer
AAAGAACAGGAGAGTTCCCAGGCCAGTACGGAAGAATGTGA
1125


Ile3412Val
GAAAAATAAGCAGGACACAATTACAACTAAAAAATATATCTAA



ATT to GTT
GCATTTGCAAAGGCGACAATAAATTATTGACGCTTAA




TTAAGCGTCAATAATTTATTGTCGCCTTTGCAAATGCTTAGAT
1126



ATATTTTTTAGTTGTAATTGTGTCCTGCTTATTTTTCTCACATT




CTTCCGTACTGGCCTGGGAACTCTCCTGTTCTTT




AGGACACAATTACAACT
1127



AGTTGTAATTGTGTCCT
1128









EXAMPLE 9
Cystic Fibrosis—CFTR

Cystic fibrosis is a lethal disease affecting approximately one in 2,500 live Caucasian births and is the most common autosomal recessive disease in Caucasians. Patients with this disease have reduced chloride ion permeability in the secretory and absorptive cells of organs with epithelial cell linings, including the airways, pancreas, intestine, sweat glands and male genital tract. This, in turn, reduces the transport of water across the epithelia. The lungs and the GI tract are the predominant organ systems affected in this disease and the pathology is characterized by blocking of the respiratory and GI tracts with viscous mucus. The chloride impermeability in affected tissues is due to mutations in a specific chloride channel, the cystic fibrosis transmembrane conductance regulator protein (CFTR), which prevents normal passage of chloride ions through the cell membrane (Welsh et al., Neuron, 8:821-829 (1992)). Damage to the lungs due to mucus blockage, frequent bacterial infections and inflammation is the primary cause of morbidity and mortality in CF patients and, although maintenance therapy has improved the quality of patients' lives, the median age at death is still only around 30 years. There is no effective treatment for the disease, and therapeutic research is focused on gene therapy using exogenous transgenes in viral vectors and/or activating the defective or other chloride channels in the cell membrane to normalize chloride permeability (Tizzano et al., J. Pediat., 120:337-349 (1992)). However, the death of a teenage patent treated with an adenovirus vector carrying an exogenous CFTR gene in clinical trials in the late 1990's has impacted this area of research.


The oligonucleotides of the invention for correction of the CFTR gene are attached as a table.









TABLE 16







CFTR Mutations and Genome-Correcting Oligos










Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Cystic fibrosis
AAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAA
1129



Ala46Asp
TCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATTGGA



GCT to GAT
AAGGTATGTTCATGTACATTGTTTAGTTGAAGAGAG




CTCTCTTCAACTAAACAATGTACATGAACATACCTTTCCAATTT
1130



TTCAGATAGATTGTCAGCAGAATCAACAGAAGGGATTTGGTA




TATGTCTGACAATTCCAGGCGCTGTCTGTATCCTT




TGATTCTGCTGACAATC
1131



GATTGTCAGCAGAATCA
1132


Cystic fibrosis
AGCGCCTGGAATTGTCAGACATATACCAAATCCCTTCTGTTG
1133


Ser50Tyr
ATTCTGCTGACAATCTATCTGAAAAATAGGAAAGGTATGTTCA


TCT to TAT
TGTACATTGTTTAGTTGAAGAGAGAAATTCATATTA




TAATATGAATTTCTCTCTTCAACTAAACAATGTACATGAACATA
1134



CCTTTCCAATTTTTCAGATAGATTGTCAGCAGAATCAACAGAA




GGGATTTGGTATATGTCTGACAATTCCAGGCGCT




CAATCTATCTGAAAAAT
1135



ATTTTTCAGATAGATTG
1136


Congenital absence of
AGGACAACTAAAATATTTGCACATGCAACTTATTGGTCCCACT
1137


vas deferens
TTTTATTCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAA



Glu56Lys
GAAAAATCCTAAACTCATTAATGCCCTTCGGCGAT



GAA-AAA
ATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTTTGAAGC
1138



CAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGA




CCAATAAGTTGCATGTGCAAATATTTTAGTTGTCCT




TTTGCAGAGAATGGGAT
1139



ATCCCATTCTCTGCAAA
1140


Cystic fibrosis
AGGACAACTAAAATATTTGCACATGCAACTTATTGGTCCCACT
1141


Trp57Gly
TTTTATTCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAA



TGG to GGG
GAAAAATCCTAAACTCATTAATGCCCTTCGGCGAT




ATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTTTGAAGC
1142



CAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGA




CCAATAAGTTGCATGTGCAAATATTTTAGTTGTCCT




TTTGCAGAGAATGGGAT
1143



ATCCCATTCTCTGCAAA
1144


Cystic fibrosis
AACTAAAATATTTGCACATGCAACTTATTGGTCCCACTTTTTAT
1145


Trp57Term
TCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAA



TGG to TGA
ATCCTAAACTCATTAATGCCCTTCGGCGATGTTTT




AAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTTT
1146



GAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGT




GGGACCAATAAGTTGCATGTGCAAATATTTTAGTT




AGAGAATGGGATAGAGA
1147



TCTCTATCCCATTCTCT
1148


Congenital absence of
ACTAAAATATTTGCACATGCAACTTATTGGTCCCACTTTTTATT
1149


vas deferens
CTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAA



Asp58Asn
TCCTAAACTCATTAATGCCCTTCGGCGATGTTTTT



GAT to AAT
AAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTT
1150



TGAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAG




TGGGACCAATAAGTTGCATGTGCAAATATTTTAGT




GAGAATGGGATAGAGAG
1151



CTCTCTATCCCATTCTC
1152


Cystic fibrosis
ATATTTGCACATGCAACTTATTGGTCCCACTTTTTATTCTTTTG
1153


Glu60Term
CAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAA



GAG to TAG
ACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGA




TCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGAT
1154



TTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAA




TAAAAAGTGGGACCAATAAGTTGCATGTGCAAATAT




GGGATAGAGAGCTGGCT
1155



AGCCAGCTCTCTATCCC
1156


Cystic fibrosis
GGTCCCACTTTTTATTCTTTTGCAGAGAATGGGATAGAGAGC
1157


Pro67Leu
TGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGC



CCT to CTT
GATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTT




AAGATTCCATAGAACATAAATCTCCAGAAAAAACATCGCCGAA
1158



GGGCATTAATGAGTTTAGGATTTTTCTTTGAAGCCAGCTCTCT




ATCCCATTCTCTGCAAAAGAATAAAAAGTGGGACC




GAAAAATCCTAAACTCA
1159



TGAGTTTAGGATTTTTC
1160


Cystic fibrosis
TGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCT
1161


Arg74Trp
AAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTA



CGG to TGG
TGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGA




TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT
1162



CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATT




TTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTGCA




ATGCCCTTCGGCGATGT
1163



ACATCGCCGAAGGGCAT
1164


Congenital absence of
GAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAAC
1165


vas deferens
TCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGTT



ARG75GLN
CTATGGAATCTTTTTATATTTAGGGGTAAGGATCTC



CGA to CAA
GAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAA
1166



ATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAG




GATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTC




CCTTCGGCGATGTTTTT
1167



AAAAACATCGCCGAAGG
1168


Cystic fibrosis
GAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAAC
1169


Arg75Leu
TCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGTT



CGA to CTA
CTATGGAATCTTTTTATATTTAGGGGTAAGGATCTC




GAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAA
1170



ATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAG




GATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTC




CCTTCGGCGATGTTTTT
1171



AAAAACATCGCCGAAGG
1172


Cystic fibrosis
AGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAA
1173


Arg75Term
CTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGT



CGA to TGA
TCTATGGAATCTTTTTATATTTAGGGGTAAGGATCT




AGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAA
1174



TCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGG




ATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCT




CCCTTCGGCGATGTTTT
1175



AAAACATCGCCGAAGGG
1176


Cystic fibrosis
AAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTG
1177


Gly85Glu
GAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGG



GGA to GAA
ATCTCATTTGTACATTCATTATGTATCACATAACT




AGTTATGTGATACATAATGAATGTACAAATGAGATCCTTACCC
1178



CTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAA




ACATCGCCGAAGGGCATTAATGAGTTTAGGATTTT




GTTCTATGGAATCTTTT
1179



AAAAGATTCCATAGAAC
1180


Cystic fibrosis
AAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTG
1181


Gly85Val
GAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGG



GGA to GTA
ATCTCATTTGTACATTCATTATGTATCACATAACT




AGTTATGTGATACATAATGAATGTACAAATGAGATCCTTACCC
1182



CTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAA




ACATCGCCGAAGGGCATTAATGAGTTTAGGATTTT




GTTCTATGGAATCTTTT
1183



AAAAGATTCCATAGAAC
1184


Cystic fibrosis
AACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTAT
1185


Leu88Ser
GTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCATTT



TTA to TCA
GTACATTCATTATGTATCACATAACTATATGCATT




AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA
1186



TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT




CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT




AATCTTTTTATATTTAG
1187



CTAAATATAAAAAGATT
1188


Cystic fibrosis
CCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGAT
1189


Phe87Leu
TTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTC



TTT to CTT
ATTTGTACATTCATTATGTATCACATAACTATATG




CATATAGTTATGTGATACATAATGAATGTACAAATGAGATCCT
1190



TACCCCTAAATATAAAAAGATTCCATAGAACATAAATCTCCAG




AAAAAACATCGCCGAAGGGCATTAATGAGTTTAGG




ATGGAATCTTTTTATAT
1191



ATATAAAAAGATTCCAT
1192


Cystic fibrosis
AACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTAT
1193


Leu88Term
GTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCATTT



TTA to TGA
GTACATTCATTATGTATCACATAACTATATGCATT




AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA
1194



TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT




CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT




AATCTTTTTATATTTAG
1195



CTAAATATAAAAAGATT
1196


Cystic fibrosis
AACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTAT
1197


Leu88Term
GTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCATTT



TTA to TAA
GTACATTCATTATGTATCACATAACTATATGCATT




AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA
1198



TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT




CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT




AATCTTTTTATATTTAG
1199



CTAAATATAAAAAGATT
1200


Cystic fibrosis
AATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGTTCTATG
1201


Gly91Arg
GAATCTTTTTATATTTAGGGGTAAGGATCTCATTTGTACATTC



GGG to AGG
ATTATGTATCACATAACTATATGCATTTTTGTGAT




ATCACAAAAATGCATATAGTTATGTGATACATAATGAATGTAC
1202



AAATGAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAAC




ATAAATCTCCAGAAAAAACATCGCCGAAGGGCATT




TATATTTAGGGGTAAGG
1203



CCTTACCCCTAAATATA
1204


Cystic fibrosis
AATAAATGAAATTTAATTTCTCTGTTTTTCCCCTTTTGTAGGAA
1205


Gln98Arg
GTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCATA



CAG to CGG
GCTTCCTATGACCCGGATAACAAGGAGGAACGCTC




GAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATT
1206



CTTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTAC




AAAAGGGGAAAAACAGAGAAATTAAATTTCATTTATT




AGCAGTACAGCCTCTCT
1207



AGAGAGGCTGTACTGCT
1208


Cystic fibrosis
AAATAAATGAAATTTAATTTCTCTGTTTTTCCCCTTTTGTAGGA
1209


Gln98Term
AGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCAT



CAG-TAG
AGCTTCCTATGACCCGGATAACAAGGAGGAACGCT




AGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTC
1210



TTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACA




AAAGGGGAAAAACAGAGAAATTAAATTTCATTTATTT




AAGCAGTACAGCCTCTC
1211



GAGAGGCTGTACTGCTT
1212


Cystic fibrosis
CCCTTTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTAC
1213


Ser108Phe
TGGGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGG



TCC to TTC
AACGCTCTATCGCGATTTATCTAGGCATAGGCTTATG




CATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCCTCC
1214



TTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAG




AGAGGCTGTACTGCTTTGGTGACTTCCTACAAAAGGG




CATAGCTTCCTATGACC
1215



GGTCATAGGAAGCTATG
1216


Cystic fibrosis
TTTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGG
1217


Tyr109Cys
GAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGAAC



TAT to TGT
GCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCT




AGGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCC
1218



TCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGT




AAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAAAA




AGCTTCCTATGACCCGG
1219



CCGGGTCATAGGAAGCT
1220


Cystic fibrosis
TTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGA
1221


Asp110His
AGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGAACGC



GAC to CAC
TCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTC




GAAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTT
1222



CCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCA




GTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAA




CTTCCTATGACCCGGAT
1223



ATCCGGGTCATAGGAAG
1224


Congenital absence of
AGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAA
1225


vas deferens
TCATAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTA



Pro111Leu
TCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTT



CCG to CTG
AAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAG
1226



CGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTT




CCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCT




CTATGACCCGGATAACA
1227



TGTTATCCGGGTCATAG
1228


Cystic fibrosis
GTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGAC
1229


Arg117Cys
CCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGC



CGC to TGC
ATAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGC




GCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCTA
1230



GATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCAT




AGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTAC




AGGAGGAACGCTCTATC
1231



GATAGAGCGTTCCTCCT
1232


Cystic fibrosis
TACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACC
1233


Arg117His
CGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCA



CGC to CAC
TAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCT




AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT
1234



AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCA




TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA




GGAGGAACGCTCTATCG
1235



CGATAGAGCGTTCCTCC
1236


Cystic fibrosis
TACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACC
1237


Arg117Leu
CGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCA



CGC to CTC
TAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCT




AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT
1238



AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCA




TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA




GGAGGAACGCTCTATCG
1239



CGATAGAGCGTTCCTCC
1240


Cystic fibrosis
TACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACC
1241


Arg117Pro
CGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCA



CGC to CCC
TAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCT




AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT
1242



AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCA




TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA




GGAGGAACGCTCTATCG
1243



CGATAGAGCGTTCCTCC
1244


Cystic fibrosis
CTCTTACTGGGAAGAATCATAGCTTCCTATGACCCGGATAAC
1245


Ala120Thr
AAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTA



GCG-ACG
TGCCTTCTCTTTATTGTGAGGACACTGCTCCTACACC




GGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGCATAAG
1246



CCTATGCCTAGATAAATCGCGATAGAGCGTTCCTCCTTGTTA




TCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAG




GCTCTATCGCGATTTAT
1247



ATAAATCGCGATAGAGC
1248


Cystic fibrosis
GGGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGA
1249


Tyr122Term
ACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCT



TAT to TAA
CTTTATTGTGAGGACACTGCTCCTACACCCAGCCATT




AATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAA
1250



GGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCCT




CCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCC




GCGATTTATCTAGGCAT
1251



ATGCCTAGATAAATCGC
1252


Cystic fibrosis
TAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCG
1253


Gly126Asp
CGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAG



GGC-GAC
GACACTGCTCCTACACCCAGCCATTTTTGGCCTTCA




TGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCAC
1254



AATAAAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGAT




AGAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTA




AGGCATAGGCTTATGCC
1255



GGCATAAGCCTATGCCT
1256


Cystic fibrosis
TCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGT
1257


His139Arg
GAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCA



CAC to CGC
CATTGGAATGCAGATGAGAATAGCTATGTTTAGTTT




AAACTAAACATAGCTATTCTCATCTGCATTCCAATGTGATGAA
1258



GGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCACAATA




AAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGA




GCTCCTACACCCAGCCA
1259



TGGCTGGGTGTAGGAGC
1260


Cystic fibrosis
TTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAGGAC
1261


Ala141Asp
ACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGG



GCC to GAC
AATGCAGATGAGAATAGCTATGTTTAGTTTGATTTA




TAAATCAAACTAAACATAGCTATTCTCATCTGCATTCCAATGT
1262



GATGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTC




ACAATAAAGAGAAGGCATAAGCCTATGCCTAGATAAA




ACACCCAGCCATTTTTG
1263



CAAAAATGGCTGGGTGT
1264


Cystic fibrosis
GCCTTCTCTTTATTGTGAGGACACTGCTCCTACACCCAGCCA
1265


Ile148Thr
TTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTAT



ATT to ACT
GTTTAGTTTGATTTATAAGAAGGTAATACTTCCTTG




CAAGGAAGTATTACCTTCTTATAAATCAAACTAAACATAGCTA
1266



TTCTCATCTGCATTCCAATGTGATGAAGGCCAAAAATGGCTG




GGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGC




TCATCACATTGGAATGC
1267



GCATTCCAATGTGATGA
1268


Cystic fibrosis
CTTCTCTTTATTGTGAGGACACTGCTCCTACACCCAGCCATTT
1269


Gly149Arg
TTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTT



GGA to AGA
TAGTTTGATTTATAAGAAGGTAATACTTCCTTGCA




TGCAAGGAAGTATTACCTTCTTATAAATCAAACTAAACATAGC
1270



TATTCTCATCTGCATTCCAATGTGATGAAGGCCAAAAATGGCT




GGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAG




ATCACATTGGAATGCAG
1271



CTGCATTCCAATGTGAT
1272


Cystic fibrosis
TTTATTGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGC
1273


Gln151Term
CTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGTT



CAG to TAG
TGATTTATAAGAAGGTAATACTTCCTTGCACAGGCC




GGCCTGTGCAAGGAAGTATTACCTTCTTATAAATCAAACTAAA
1274



CATAGCTATTCTCATCTGCATTCCAATGTGATGAAGGCCAAAA




ATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAA




TTGGAATGCAGATGAGA
1275



TCTCATCTGCATTCCAA
1276


Cystic fibrosis
AATATATTTGTATTTTGTTTGTTGAAATTATCTAACTTTCCATTT
1277


Lys166Glu
TTCTTTTAGACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAA



AAG-GAG
TAAGTATTGGACAACTTGTTAGTCTCCTTTCCA




TGGAAAGGAGACTAACAAGTTGTCCAATACTTATTTTATCTAG
1278



AACACGGCTTGACAGCTTTAAAGTCTAAAAGAAAAATGGAAA




GTTAGATAATTTCAACAAACAAAATACAAATATATT




AGACTTTAAAGCTGTCA
1279



TGACAGCTTTAAAGTCT
1280


Cystic fibrosis
TTATCTAACTTTCCATTTTTCTTTTAGACTTTAAAGCTGTCAAG
1281


Ile175Val
CCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTC



ATA-GTA
CTTTCCAACAACCTGAACAAATTTGATGAAGTAT




ATACTTCATCAAATTTGTTCAGGTTGTTGGAAAGGAGACTAAC
1282



AAGTTGTCCAATACTTATTTTATCTAGAACACGGCTTGACAGC




TTTAAAGTCTAAAAGAAAAATGGAAAGTTAGATAA




TAGATAAAATAAGTATT
1283



AATACTTATTTTATCTA
1284


Cystic fibrosis
TTTCCATTTTTCTTTTAGACTTTAAAGCTGTCAAGCCGTGTTCT
1285


Gly178Arg
AGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAAC



GGA to AGA
AACCTGAACAAATTTGATGAAGTATGTACCTATT




AATAGGTACATACTTCATCAAATTTGTTCAGGTTGTTGGAAAG
1286



GAGACTAACAAGTTGTCCAATACTTATTTTATCTAGAACACGG




CTTGACAGCTTTAAAGTCTAAAAGAAAAATGGAAA




TAAGTATTGGACAACTT
1287



AAGTTGTCCAATACTTA
1288


Cystic fibrosis
AAGATACAATGACACCTGTTTTTGCTGTGCTTTTATTTTCCAG
1289


His199Gln
GGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGCAA



CAT to CAG
GTGGCACTCCTCATGGGGCTAATCTGGGAGTTGTTA




TAACAACTCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAA
1290



AGGAGCGATCCACACGAAATGTGCCAATGCAAGTCCCTGGA




AAATAAAAGCACAGCAAAAACAGGTGTCATTGTATCTT




TTGGCACATTTCGTGTG
1291



CACACGAAATGTGCCAA
1292


Cystic fibrosis
GGAAGATACAATGACACCTGTTTTTGCTGTGCTTTTATTTTCC
1293


His199Tyr
AGGGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGC



CAT to TAT
AAGTGGCACTCCTCATGGGGCTAATCTGGGAGTTGT




ACAACTCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAAAG
1294



GAGCGATCCACACGAAATGTGCCAATGCAAGTCCCTGGAAA




ATAAAAGCACAGCAAAAACAGGTGTCATTGTATCTTCC




CATTGGCACATTTCGTG
1295



CACGAAATGTGCCAATG
1296


Cystic fibrosis
TGTTTTTGCTGTGCTTTTATTTTCCAGGGACTTGCATTGGCAC
1297


Pro205Ser
ATTTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGG



CCT to TCT
GGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCT




AGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCATG
1298



AGGAGTGCCACTTGCAAAGGAGCGATCCACACGAAATGTGC




CAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAAAACA




GGATCGCTCCTTTGCAA
1299



TTGCAAAGGAGCGATCC
1300


Cystic fibrosis
TTTGCTGTGCTTTTATTTTCCAGGGACTTGCATTGGCACATTT
1301


Leu206Trp
CGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGGGGC



TTG to TGG
TAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGG




CCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCC
1302



CATGAGGAGTGCCACTTGCAAAGGAGCGATCCACACGAAAT




GTGCCAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAA




CGCTCCTTTGCAAGTGG
1303



CCACTTGCAAAGGAGCG
1304


Cystic fibrosis
TTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGGG
1305


Gln220Term
GCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACT



CAG to TAG
TGGTTTCCTGATAGTCCTTGCCCTTTTTCAGGCTGGGC




GCCCAGCCTGAAAAAGGGCAAGGACTATCAGGAAACCAAGT
1306



CCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCC




CATGAGGAGTGCCACTTGCAAAGGAGCGATCCACACGAA




AGTTGTTACAGGCGTCT
1307



AGACGCCTGTAACAACT
1308


Cystic fibrosis
CCTTTGCAAGTGGCACTCCTCATGGGGCTAATCTGGGAGTT
1309


Cys225Arg
GTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGT



TGT-CGT
CCTTGCCCTTTTTCAGGCTGGGCTAGGGAGAATGATGA




TCATCATTCTCCCTAGCCCAGCCTGAAAAAGGGCAAGGACTA
1310



TCAGGAAACCAAGTCCACAGAAGGCAGACGCCTGTAACAAC




TCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAAAGG




CTGCCTTCTGTGGACTT
1311



AAGTCCACAGAAGGCAG
1312


Cystic fibrosis
TGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGT
1313


Val232Asp
GGACTTGGTTTCCTGATAGTCCTTGCCCTTTTTCAGGCTGGG



GTC to GAC
CTAGGGAGAATGATGATGAAGTACAGGTAGCAACCTAT




ATAGGTTGCTACCTGTACTTCATCATCATTCTCCCTAGCCCA
1314



GCCTGAAAAAGGGCAAGGACTATCAGGAAACCAAGTCCACA




GAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCA




CCTGATAGTCCTTGCCC
1315



GGGCAAGGACTATCAGG
1316


Cystic fibrosis
GTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGT
1317


Gly239Arg
CCTTGCCCTTTTTCAGGCTGGGCTAGGGAGAATGATGATGAA



GGG to AGG
GTACAGGTAGCAACCTATTTTCATAACTTGAAAGTTT




AAACTTTCAAGTTATGAAAATAGGTTGCTACCTGTACTTCATC
1318



ATCATTCTCCCTAGCCCAGCCTGAAAAAGGGCAAGGACTATC




AGGAAACCAAGTCCACAGAAGGCAGACGCCTGTAAC




TTTCAGGCTGGGCTAGG
1319



CCTAGCCCAGCCTGAAA
1320









EXAMPLE 10
Cyclin-dependent Kinase Inhibitor 2A—CDKN2A

The human CDKN2A gene was also designated MTS-1 for multiple tumor suppressor-1 and has been implicated in multiple cancers including, for example, malignant melanoma. Malignant melanoma is a cutaneous neoplasm of melanocytes. Melanomas generally have features of asymmetry, irregular border, variegated color, and diameter greater than 6 mm. The precise cause of melanoma is unknown, but sunlight and heredity are risk factors. Melanoma has been increasing during the past few decades.


The CDKN2A gene has been found to be homozygously deleted at high frequency in cell lines derived from tumors of lung, breast, brain, bone, skin, bladder, kidney, ovary, and lymphocyte. Melanoma cell lines carried at least one copy of CDKN2A in combination with a deleted allele. Melanoma cell lines that carried at least 1 copy of CDKN2A frequently showed nonsense, missense, or frameshift mutations in the gene. Thus, CDKN2A may rival p53 (see Example 5) in the universality of its involvement in tumorigenesis. The attached table discloses the correcting oligonucleotide base sequences for the CDKN2A oligonucleotides of the invention.









TABLE 17







CDKN2A Mutations and Genome-Correcting Oligos










Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Melanoma
GGGCGGCGGGGAGCAGCATGGAGCCGGCGGCGGGGAGCAG
1321



Trp15Term
CATGGAGCCTTCGGCTGACTGGCTGGCCACGGCCGCGGCCC



TGG-TAG
GGGGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGG




CCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCCGACCCCG
1322



GGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCCATGC




TGCTCCCCGCCGCCGGCTCCATGCTGCTCCCCGCCGCCC



GGCTGACTGGCTGGCCA
1323



TGGCCAGCCAGTCAGCC
1324


Melanoma
CGGCGGGGAGCAGCATGGAGCCGGCGGCGGGGAGCAGCAT
1325


Leu16Pro
GGAGCCTTCGGCTGACTGGCTGGCCACGGCCGCGGCCCGG



CTG-CCG
GGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGC




GCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCCGACC
1326



CCGGGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCC




ATGCTGCTCCCCGCCGCCGGCTCCATGCTGCTCCCCGCCG




TGACTGGCTGGCCACGG
1327



CCGTGGCCAGCCAGTCA
1328


Melanoma
CGGCGGCGGGGAGCAGCATGGAGCCTTCGGCTGACTGGCTG
1329


Gly23Asp
GCCACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGTGCGGG



GGT-GAT
CGCTGCTGGAGGCGGGGGCGCTGCCCAACGCACCGAATAG




CTATTCGGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGCGC
1330



CCGCACCTCCTCTACCCGACCCCGGGCCGCGGCCGTGGCCA




GCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCGCCG




GGCCCGGGGTCGGGTAG
1331



CTACCCGACCCCGGGCC
1332


Melanoma
CGGCGGGGAGCAGCATGGAGCCTTCGGCTGACTGGCTGGCC
1333


Arg24Pro
ACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGTGCGGGCGC



CGG-CCG
TGCTGGAGGCGGGGGCGCTGCCCAACGCACCGAATAGTTA




TAACTATTCGGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGC
1334



GCCCGCACCTCCTCTACCCGACCCCGGGCCGCGGCCGTGGC




CAGCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCG




CCGGGGTCGGGTAGAGG
1335



CCTCTACCCGACCCCGG
1336


Melanoma
CGGCTGACTGGCTGGCCACGGCCGCGGCCCGGGGTCGGGT
1337


Leu32Pro
AGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGCGCTGCCC



CTG-CCG
AACGCACCGAATAGTTACGGTCGGAGGCCGATCCAGGTGGG




CCCACCTGGATCGGCCTCCGACCGTAACTATTCGGTGCGTTG
1338



GGCAGCGCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTAC




CCGACCCCGGGCCGCGGCCGTGGCCAGCCAGTCAGCCG




GGCGCTGCTGGAGGCGG
1339



CCGCCTCCAGCAGCGCC
1340


Melanoma
GGCTGGCCACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGT
1341


Gly35Ala
GCGGGCGCTGCTGGAGGCGGGGGCGCTGCCCAACGCACCG



GGG-GCG
AATAGTTACGGTCGGAGGCCGATCCAGGTGGGTAGAGGGTC




GACCCTCTACCCACCTGGATCGGCCTCCGACCGTAACTATTC
1342



GGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGCGCCCGCAC




CTCCTCTACCCGACCCCGGGCCGCGGCCGTGGCCAGCC




GGAGGCGGGGGCGCTGC
1343



GCAGCGCCCCCGCCTCC
1344


Melanoma
GGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGCGCTG
1345


Tyr44Term
CCCAACGCACCGAATAGTTACGGTCGGAGGCCGATCCAGGTG



TACg-TAA
GGTAGAGGGTCTGCAGCGGGAGCAGGGGATGGCGGGCGA




TCGCCCGCCATCCCCTGCTCCCGCTGCAGACCCTCTACCCAC
1346



CTGGATCGGCCTCCGACCGTAACTATTCGGTGCGTTGGGCAG




CGCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACC




AATAGTTACGGTCGGAG
1347



CTCCGACCGTAACTATT
1348


Melanoma
TCTCCCATACCTGCCCCCACCCTGGCTCTGACCACTCTGCTC
1349


Met53Ile
TCTCTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGG



ATGa-ATC
AGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCA




TGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCTCCG
1350



CCACGCGGGCGCTGCCCATCATCATGACCTGCCAGAGAGAG




CAGAGTGGTCAGAGCCAGGGTGGGGGCAGGTATGGGAGA




GTCATGATGATGGGCAG
1351



CTGCCCATCATCATGAC
1352


Melanoma
CCCATACCTGCCCCCACCCTGGCTCTGACCACTCTGCTCTCT
1353


Met54Ile
CTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGGAGC



ATGg-ATT
TGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCAGAC




GTCTGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCT
1354



CCGCCACGCGGGCGCTGCCCATCATCATGACCTGCCAGAGA




GAGCAGAGTGGTCAGAGCCAGGGTGGGGGCAGGTATGGG




ATGATGATGGGCAGCGC
1355



GCGCTGCCCATCATCAT
1356


Melanoma
GCCGGCCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGC
1357


Ser56Ile
AGGTCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTG



AGC-ATC
CTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGC




GCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCA
1358



GCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGACCTGCC




AGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGGCCGGC




GATGGGCAGCGCCCGAG
1359



CTCGGGCGCTGCCCATC
1360


Melanoma
GGCCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGG
1361


Ala57Val
TCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTG



GCC-GTC
CTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCAC




GTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCA
1362



GCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGACCT




GCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGGCC




GGGCAGCGCCCGAGTGG
1363



CCACTCGGGCGCTGCCC
1364


Melanoma
CCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGGTC
1365


Arg58Term
ATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGCT



cCGA-TGA
CCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTC




GAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAG
1366



CAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGAC




CTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGG




GCAGCGCCCGAGTGGCG
1367



CGCCACTCGGGCGCTGC
1368


Melanoma
CACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGGTCATGAT
1369


Val59Gly
GATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGCTCCACG



GTG-GGG
GCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCAC




GTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTG
1370



GAGCAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCA




TGACCTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTG




CGCCCGAGTGGCGGAGC
1371



GCTCCGCCACTCGGGCG
1372


Melanoma
TCTGACCACTCTGCTCTCTCTGGCAGGTCATGATGATGGGCA
1373


Leu62Pro
GCGCCCGCGTGGCGGAGCTGCTGCTGCTCCACGGCGCGGA



CTG-CCG
GCCCAACTGCGCAGACCCTGCCACTCTCACCCGACCGGT




ACCGGTCGGGTGAGAGTGGCAGGGTCTGCGCAGTTGGGCTC
1374



CGCGCCGTGGAGCAGCAGCAGCTCCGCCACGCGGGCGCTG




CCCATCATCATGACCTGCCAGAGAGAGCAGAGTGGTCAGA




GGCGGAGCTGCTGCTGC
1375



GCAGCAGCAGCTCCGCC
1376


Melanoma
TCTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGGAG
1377


Ala68Val
CTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCAGACCC



GCG-GTG
TGCCACTCTCACCCGACCGGTGCATGATGCTGCCCGGGA




TCCCGGGCAGCATCATGCACCGGTCGGGTGAGAGTGGCAGG
1378



GTCTGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCT




CCGCCACGCGGGCGCTGCCCATCATCATGACCTGCCAGA




CCACGGCGCGGAGCCCA
1379



TGGGCTCCGCGCCGTGG
1380


Melanoma
CATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGC
1381


Asn71Lys
TCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTC



AACt-AAA
ACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTG




CAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGA
1382



GAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAG




CAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATG




GAGCCCAACTGCGCCGA
1383



TCGGCGCAGTTGGGCTC
1384


Melanoma
TCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTG
1385


Asn71Ser
CTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCT



AAC-AGC
CACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCT




AGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAG
1386



AGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCA




GCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGA




GGAGCCCAACTGCGCCG
1387



CGGCGCAGTTGGGCTCC
1388


Melanoma
AGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCCGAC
1389


Pro81Leu
CCCGCCACTCTCACCCGACCCGTGCACGACGCTGCCCGGGA



CCC-CTC
GGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGCCGG




CCGGCCCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTC
1390



CCGCGCAGCGTCGTGCACGGGTCGGGTGAGAGTGGCGGGG




TCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCT




CACCCGACCCGTGCACG
1391



CGTGCACGGGTCGGGTG
1392


Melanoma
CTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCAC
1393


Asp84Tyr
TCTCACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCC



cGAC-TAC
TGGACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGC




GCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCCAGG
1394



AAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAGAGT




GGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAG




CCGTGCACGACGCTGCC
1395



GGCAGCGTCGTGCACGG
1396


Melanoma
CTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCT
1397


Ala85Thr
CACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGG



cGCT-ACT
ACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGG




CCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCC
1398



AGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAG




AGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAG




TGCACGACGCTGCCCGG
1399



CCGGGCAGCGTCGTGCA
1400


Melanoma
GCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCGA
1401


Arg87Pro
CCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGCT



CGG-CCG
GGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGCG




CGCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAG
1402



CGTGTCCAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTC




GGGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGC




CGCTGCCCGGGAGGGCT
1403



AGCCCTCCCGGGCAGCG
1404


Melanoma
GGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCG
1405


Arg87Trp
ACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGC



cCGG-TGG
TGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGC




GCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGC
1406



GTGTCCAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCG




GGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCC




ACGCTGCCCGGGAGGGC
1407



GCCCTCCCGGGCAGCGT
1408


Melanoma
CTCTCACCCGACCGGTGCATGATGCTGCCCGGGAGGGCTTC
1409


Leu97Arg
CTGGACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCT



CTG-CGG
GGACGTGCGCGATGCCTGGGGTCGTCTGCCCGTGGACTT




AAGTCCACGGGCAGACGACCCCAGGCATCGCGCACGTCCAG
1410



CCGCGCCCCGGCCCGGTCCAGCACCACCAGCGTGTCCAGGA




AGCCCTCCCGGGCAGCATCATGCACCGGTCGGGTGAGAG




GGTGGTGCTGCACCGGG
1411



CCCGGTGCAGCACCACC
1412


Melanoma
CCCGACCGGTGCATGATGCTGCCCGGGAGGGCTTCCTGGAC
1413


Arg99Pro
ACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACG



CGG-CCG
TGCGCGATGCCTGGGGTCGTCTGCCCGTGGACTTGGCCGA




TCGGCCAAGTCCACGGGCAGACGACCCCAGGCATCGCGCAC
1414



GTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGT




CCAGGAAGCCCTCCCGGGCAGCATCATGCACCGGTCGGG




GCTGCACCGGGCCGGGG
1415



CCCCGGCCCGGTGCAGC
1416


Melanoma
CCGGTGCATGATGCTGCCCGGGAGGGCTTCCTGGACACGCT
1417


Gly101Trp
GGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGCGC



cGGG-TGG
GATGCCTGGGGTCGTCTGCCCGTGGACTTGGCCGAGGAGC




GCTCCTCGGCCAAGTCCACGGGCAGACGACCCCAGGCATCG
1418



CGCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAG




CGTGTCCAGGAAGCCCTCCCGGGCAGCATCATGCACCGG




ACCGGGCCGGGGCGCGG
1419



CCGCGCCCCGGCCCGGT
1420


Melanoma
CGGGAGGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGC
1421


Arg107Cys
CGGGGCGCGGCTGGACGTGCGCGATGCCTGGGGTCGTCTGC



gCGC-TGC
CCGTGGACTTGGCCGAGGAGCGGGGCCACCGCGACGTTG




CAACGTCGCGGTGGCCCCGCTCCTCGGCCAAGTCCACGGGC
1422



AGACGACCCCAGGCATCGCGCACGTCCAGCCGCGCCCCGGC




CCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTCCCG




TGGACGTGCGCGATGCC
1423



GGCATCGCGCACGTCCA
1424


Melanoma
CACCGGGCCGGGGCGCGGCTGGACGTGCGCGATGCCTGGG
1425


Ala118Thr
GCCGTCTGCCCGTGGACCTGGCTGAGGAGCTGGGCCATCGC



gGCT-ACT
GATGTCGCACGGTACCTGCGCGCGGCTGCGGGGGGCACCA




TGGTGCCCCCCGCAGCCGCGCGCAGGTACCGTGCGACATCG
1426



CGATGGCCCAGCTCCTCAGCCAGGTCCACGGGCAGACGGCC




CCAGGCATCGCGCACGTCCAGCCGCGCCCCGGCCCGGTG




TGGACCTGGCTGAGGAG
1427



CTCCTCAGCCAGGTCCA
1428


Melanoma
TGCGCGATGCCTGGGGCCGTCTGCCCGTGGACCTGGCTGAG
1429


Val126Asp
GAGCTGGGCCATCGCGATGTCGCACGGTACCTGCGCGCGGC



GTC-GAC
TGCGGGGGGCACCAGAGGCAGTAACCATGCCCGCATAGA




TCTATGCGGGCATGGTTACTGCCTCTGGTGCCCCCCGCAGCC
1430



GCGCGCAGGTACCGTGCGACATCGCGATGGCCCACCTCCTC




AGCCAGGTCCACGGGCAGACGGCCCCAGGCATCGCGCA




TCGCGATGTCGCACGGT
1431



ACCGTGCGACATCGCGA
1432









EXAMPLE 11
Adenomatous Polyposis of the Colon—APC

Adenomatous polyposis of the colon is characterized by adenomatous polyps of the colon and rectum; in extreme cases the bowel is carpeted with a myriad of polyps. This is a viciously premalignant disease with one or more polyps progressing through dysplasia to malignancy in untreated gene carriers with a median age at diagnosis of 40 years.


Mutations in the APC gene are an initiating event for both familial and sporadic colorectal tumorigenesis and many alleles of the APC gene have been identified. Carcinoma may arise at any age from late childhood through the seventh decade with presenting features including, for example, weight loss and inanition, bowel obstruction, or bloody diarrhea. Cases of new mutation still present in these ways but in areas with well organized registers most other gene carriers are detected. The attached table discloses the correcting oligonucleotide base sequences for the APC oligonucleotides of the invention.









TABLE 18







APC Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Adenomatous polyposis
GGATCTGTATCAAGCCGTTCTGGAGAGTGCAGTCCTGTTCCT
1433


coli
ATGGGTTCATTTCCAAGAAGAGGGTTTGTAAATGGAAGCAGA


Arg121Term
GAAAGTACTGGATATTTAGAAGAACTTGAGAAAGAGA


AGA-TGA
TCTCTTTCTCAAGTTCTTCTAAATATCCAGTACTTTCTCTGCTT
1434



CCATTTACAAACCCTCTTCTTGGAAATGAACCCATAGGAACAG



GACTGCACTCTCCAGAACGGCTTGATACAGATCC



TTCCAAGAAGAGGGTTT
1435



AAACCCTCTTCTTGGAA
1436


Adenomatous polyposis
AAAAAAAAAATAGGTCATTGCTTCTTGCTGATCTTGACAAAGAA
1437


coli
GAAAAGGAAAAAGACTGGTATTACGCTCAACTTCAGAATCTCA


Trp157Term
CTAAAAGAATAGATAGTCTTCCTTTAACTGAAAA


TGG-TAG
TTTTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGAGATTCTG
1438



AAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTCTTTGTCAA



GATCAGCAAGAAGCAATGACCTATTTTTTTTTT



AAAAGACTGGTATTACG
1439



CGTAATACCAGTCTTTT
1440


Adenomatous polyposis
AAATAGGTCATTGCTTCTTGCTGATCTTGACAAAGAAGAAAAG
1441


coli
GAAAAAGACTGGTATTACGCTCAACTTCAGAATCTCACTAAAA


Tyr159Term
GAATAGATAGTCTTCCTTTAACTGAAAATGTAAGT


TAC-TAG
ACTTACATTTTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGA
1442



GATTCTGAAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTCT



TTGTCAAGATCAGCAAGAAGCAATGACCTATTT



TGGTATTACGCTCAACT
1443



AGTTGAGCGTAATACCA
1444


Adenomatous polyposis
TTGCTTCTTGCTGATCTTGACAAAGAAGAAAAGGAAAAAGACT
1445


coli
GGTATTACGCTCAACTTCAGAATCTCACTAAAAGAATAGATAG


Gln163Term
TCTTCCTTTAACTGAAAATGTAAGTAACTGGCAGT


CAG-TAG
ACTGCCAGTTACTTACATTTTCAGTTAAAGGAAGACTATCTATT
1446



CTTTTAGTGAGATTCTGAAGTTGAGCGTAATACCAGTCTTTTTC



CTTTTCTTCTTTGTCAAGATCAGCAAGAAGCAA



CTCAACTTCAGAATCTC
1447



GAGATTCTGAAGTTGAG
1448


Adenomatous polyposis
CTTGACAAAGAAGAAAAGGAAAAAGACTGGTATTACGCTCAAC
1449


coli
TTCAGAATCTCACTAAAAGAATAGATAGTCTTCCTTTAACTGAA


Arg168Term
AATGTAAGTAACTGGCAGTACAACTTATTTGAAA


AGA-TGA
TTTCAAATAAGTTGTACTGCCAGTTACTTACATTTTCAGTTAAA
1450



GGAAGACTATCTATTCTTTTAGTGAGATTCTGAAGTTGAGCGT



AATACCAGTCTTTTTCCTTTTCTTCTTTGTCAAG



TCACTAAAAGAATAGAT
1451



ATCTATTCTTTTAGTGA
1452


Adenomatous polyposis
AAGAAAAGGAAAAAGACTGGTATTACGCTCAACTTCAGAATCT
1453


coli
CACTAAAAGAATAGATAGTCTTCCTTTAACTGAAAATGTAAGTA


Ser171Ile
ACTGGCAGTACAACTTATTTGAAACTTTAATAAC


AGT-ATT
GTTATTAAAGTTTCAAATAAGTTGTACTGCCAGTTACTTACATT
1454



TTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGAGATTCTGAA



GTTGAGCGTAATACCAGTCTTTTTCCTTTTCTT



AATAGATAGTCTTCCTT
1455



AAGGAAGACTATCTATT
1456


Adenomatous polyposis
GATTAACGTAAATACAAGATATTGATACTTTTTTATTATTTGTGG
1457


coli
TTTAGTTTTCCTTACAAACAGATATGACCAGAAGGCAATTGG


Gln181Term
TAATATGAAGCAAGGCAAATCAGAGTTGCGATGG


CAA-TAA
CCATCGCAACTCTGATTTGCCTTGCTTCATATTCCAATTGCCT
1458



TCTGGTCATATCTGTTTGTAAGGAAAACTAAAACCACAAATAAT



AAAAAAGTATCAATATCTTGTATTTACGTTAATC



TTTCCTTACAAACAGAT
1459



ATCTGTTTGTAAGGAAA
1460


Adenomatous polyposis
CTTTTTTATTATTTGTGGTTTTAGTTTTCCTTACAAACAGATATG
1461


coli
ACCAGAAGGCAATTGGAATATGAAGCAAGGCAAATCAGAGTT


Glu190Term
GCGATGGAAGAACAACTAGGTACCTGCCAGGATA


GAA-TAA
TATCCTGGCAGGTACCTAGTTGTTCTTCCATCGCAACTCTGAT
1462



TTGCCTTGCTTCATATTCCAATTGCCTTCTGGTCATATCTGTTT



GTAAGGAAAACTAAAACCACAAATAATAAAAAAG



GGCAATTGGAATATGAA
1463



TTCATATTCCAATTGCC
1464


Adenomatous polyposis
CAATTGGAATATGAAGCAAGGCAAATCAGAGTTGCGATGGAA
1465


coli
GAACAACTAGGTACCTGCCAGGATATGGAAAAACGAGCACAG


Gln208Term
GTAAGTTACTTGTTTCTAAGTGATAAAACAGCGAAGA


CAG-TAG
TCTTCGCTGTTTTATCACTTAGAAACAAGTAACTTACCTGTGCT
1466



CGTTTTTCCATATCCTGGCAGGTACCTAGTTGTTCTTCCATCG



CAACTCTGATTTGCCTTGCTTCATATTCCAATTG



GTACCTGCCAGGATATG
1467



CATATCCTGGCAGGTAC
1468


Adenomatous polyposis
GCAAGGCAAATCAGAGTTGCGATGGAAGAACAACTAGGTACC
1469


coli
TGCCAGGATATGGAAAAACGAGCACAGGTAAGTTACTTGTTTC


Arg213Term
TAAGTGATAAAACAGCGAAGAGCTATTAGGAATAAA


CGA-TGA
TTTATTCCTAATAGCTCTTCGCTGTTTTATCACTTAGAAACAAG
1470



TAACTTACCTGTGCTCGTTTTTCCATATCCTGGCAGGTACCTA



GTTGTTCTTCCATCGCAACTCTGATTTGCCTTGC



TGGAAAAACGAGCACAG
1471



CTGTGCTCGTTTTTCCA
1472


Adenomatous polyposis
GTTTTATTTTAGCGAAGAATAGCCAGAATTCAGCAAATCGAAA
1473


coli
AGGACATACTTCGTATACGACAGCTTTTACAGTCCCAAGCAAC


Arg232Term
AGAAGCAGAGGTTAGTAAATTGCCTTTCTTGTTTG


CGA-TGA
CAAACAAGAAAGGCAATTTACTAACCTCTGCTTCTGTTGCTTG
1474



GGACTGTAAAAGCTGTCGTATACGAAGTATGTCCTTTTCGATT



TGCTGAATTCTGGCTATTCTTCGCTAAAATAAAAC



TTCGTATACGACAGCTT
1475



AAGCTGTCGTATACGAA
1476


Adenomatous polyposis
TTATTTTAGCGAAGAATAGCCAGAATTCAGCAAATCGAAAAGG
1477


coli
ACATACTTCGTATACGACAGCTTTTACAGTCCCAAGCAACAGA


Gln233Term
AGCAGAGGTTAGTAAATTGCCTTTCTTGTTTGTGG


CAG-TAG
CCACAAACAAGAAAGGCAATTTACTAACCTCTGCTTCTGTTGC
1478



TTGGGACTGTAAAAGCTGTCGTATACGAAGTATGTCCTTTTCG



ATTTGCTGAATTCTGGCTATTCTTCGCTAAAATAA



GTATACGACAGCTTTTA
1479



TAAAAGCTGTCGTATAC
1480


Adenomatous polyposis
AGAAAGCCTACACCATTTTTGCATGTACTGATGTTAACTCCAT
1481


coli
CTTAACAGAGGTCATCTCAGAACAAGCATGAAACCGGCTCAC


Gln247Term
ATGATGCTGAGCGGCAGAATGAAGGTCAAGGAGTGG


CAG-TAG
CCACTCCTTGACCTTCATTCTGCCGCTCAGCATCATGTGAGC
1482



CGGTTTCATGCTTGTTCTGAGATGACCTCTGTTAAGATGGAGT



TAACATCAGTACATGCAAAAATGGTGTAGGCTTTCT



GGTCATCTCAGAACAAG
1483



CTTGTTCTGAGATGACC
1484


Adenomatous polyposis
CAGAACAAGCATGAAACCGGCTCACATGATGCTGAGCGGCAG
1485


coli
AATGAAGGTCAAGGAGTGGGAGAAATCAACATGGCAACTTCT


Gly267Term
GGTAATGGTCAGGTAAATAAATTATTTTATCATATTT


GGA-TGA
AAATATGATAAAATAATTTATTTACCTGACCATTACCAGAAGTT
1486



GCCATGTTGATTTCTCCCACTCCTTGACCTTCATTCTGCCGCT



CAGCATCATGTGAGCCGGTTTCATGCTTGTTCTG



AAGGAGTGGGAGAAATC
1487



GATTTCTCCCACTCCTT
1488


Adenomatous polyposis
CTTCAAATAACAAAGCATTATGGTTTATGTTGATTTTATTTTTCA
1489


coli
GTGCCAGCTCCTGTTGAACATCAGATCTGTCCTGCTGTGTGT


Glu443Term
GTTCTAATGAAACTTTCATTTGATGAAGAGCATA


GAA-TAA
TATGCTCTTCATCAAATGAAAGTTTCATTAGAACACACACAGCA
1490



GGACAGATCTGATGTTCAACAGGAGCTGGCACTGAAAAATAA



AATCAACATAAACCATAATGCTTTGTTATTTGAAG



CTCCTGTTGAACATCAG
1491



CTGATGTTCAACAGGAG
1492


Adenomatous polyposis
CAGTGCCAGCTCCTGTTGAACATCAGATCTGTCCTGCTGTGT
1493


coli
GTGTTCTAATGAAACTTTCATTTGATGAAGAGCATAGACATGC


SER457TER
AATGAATGAACTAGGTAAGACAAAAATGTTTTTTAA


TCA-TAA
TTAAAAAACATTTTTGTCTTACCTAGTTCATTCATTGCATGTCTA
1494



TGCTCTTCATCAAATGAAAGTTTCATTAGAACACACACAGCAG



GACAGATCTGATGTTCAACAGGAGCTGGCACTG



GAAACTTTCATTTGATG
1495



CATCAAATGAAAGTTTC
1496


Adenomatous polyposis
AGTTGTTTTATTTTAGATGATTGTCTTTTTCCTCTTGCCCTTTTT
1497


coli
AAATTAGGGGGACTACAGGCCATTGCAGAATTATTGCAAGTG


Gln473Term
GACTGTGAAATGTACGGGCTTACTAATGACCACT


CAG-TAG
AGTGGTCATTAGTAAGCCCGTACATTTCACAGTCCACTTGCAA
1498



TAATTCTGCAATGGCCTGTAGTCCCCCTAATTTAAAAAGGGCA



AGAGGAAAAAGACAATCATCTAAAATAAAACAACT



GGGGACTACAGGCCATT
1499



AATGGCCTGTAGTCCCC
1500


Adenomatous polyposis
TTTTAAATTAGGGGGACTACAGGCCATTGCAGAATTATTGCAA
1501


coli
GTGGACTGTGAAATGTACGGGCTTACTAATGACCACTACAGTA


Tyr486Term
TTACACTAAGACGATATGCTGGAATGGCTTTGACA


TAC-TAG
TGTCAAAGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAG
1502



TGGTCATTAGTAAGCCCGTACATTTCACAGTCCACTTGCAATA



ATTCTGCAATGGCCTGTAGTCCCCCTAATTTAAAA



GAAATGTACGGGCTTAC
1503



GTAAGCCCGTACATTTC
1504


Adenomatous polyposis
TTGCAAGTGGACTGTGAAATGTATGGGCTTACTAATGACCACT
1505


coli
ACAGTATTACACTAAGACGATATGCTGGAATGGCTTTGACAAA


Arg499Term
CTTGACTTTTGGAGATGTAGCCAACAAGGTATGTT


CGA-TGA
AACATACCTTGTTGGCTACATCTCCAAAAGTCAAGTTTGTCAA
1506



AGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAGTGGTCA



TTAGTAAGCCCATACATTTCACAGTCCACTTGCAA



CACTAAGACGATATGCT
1507



AGCATATCGTCTTAGTG
1508


Adenomatous polyposis
AGTGGACTGTGAAATGTATGGGCTTACTAATGACCACTACAGT
1509


coli
ATTACACTAAGACGATATGCTGGAATGGCTTTGACAAACTTGA


Tyr500Term
CTTTTGGAGATGTAGCCAACAAGGTATGTTTTTAT


TAT-TAG
ATAAAAACATACCTTGTTGGCTACATCTCCAAAAGTCAAGTTTG
1510



TCAAAGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAGTG



GTCATTAGTAAGCCCATACATTTCACAGTCCACT



AGACGATATGCTGGAAT
1511



ATTCCAGCATATCGTCT
1512


Adenomatous polyposis
GACAAATTCCAACTCTAATTAGATGACCCATATTCTGTTTCTTA
1513


coli
CTAGGAATCAACCCTCAAAAGCGTATTGAGTGCCTTATGGAAT


Lys586Term
TTGTCAGCACATTGCACTGAGAATAAAGCTGATA


AAA-TAA
TATCAGCTTTATTCTCAGTGCAATGTGCTGACAAATTCCATAA
1514



GGCACTCAATACGCTTTTGAGGGTTGATTCCTAGTAAGAAACA



GAATATGGGTCATCTAATTAGAGTTGGAATTTGTC



CAACCCTCAAAAGCGTA
1515



TACGCTTTTGAGGGTTG
1516


Adenomatous polyposis
TAGATGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAA
1517


coli
AGCGTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTG


Leu592Term
AGAATAAAGCTGATATATGTGCTGTAGATGGTGC


TTA-TGA
GCACCATCTACAGCACATATATCAGCTTTATTCTCAGTGCAAT
1518



GTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGAGGGT



TGATTCCTAGTAAGAAACAGAATATGGGTCATCTA



GAGTGCCTTATGGAATT
1519



AATTCCATAAGGCACTC
1520


Adenomatous polyposis
ATGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAAAG
1521


coli
CGTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTGAG


Trp593Term
AATAAAGCTGATATATGTGCTGTAGATGGTGCACT


TGG-TAG
AGTGCACCATCTACAGCACATATATCAGCTTTATTCTCAGTGC
1522



AATGTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGAG



GGTTGATTCCTAGTAAGAAACAGAATATGGGTCAT



TGCCTTATGGAATTTGT
1523



ACAAATTCCATAAGGCA
1524


Adenomatous polyposis
TGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAAAGC
1525


coli
GTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTGAGA


Trp593Term
ATAAAGCTGATATATGTGCTGTAGATGGTGCACTT


TGG-TGA
AAGTGCACCATCTACAGCACATATATCAGCTTTATTCTCAGTG
1526



CAATGTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGA



GGGTTGATTCCTAGTAAGAAACAGAATATGGGTCA



GCCTTATGGAATTTGTC
1527



GACAAATTCCATAAGGC
1528


Adenomatous polyposis
TAAAGCTGATATATGTGCTGTAGATGGTGCACTTGCATTTTTG
1529


coli
GTTGGCACTCTTACTTACCGGAGCCAGACAAACACTTTAGCC


Tyr622Term
ATTATTGAAAGTGGAGGTGGGATATTACGGAATGTG


TAC-TAA
CACATTCCGTAATATCCCACCTCCACTTTCAATAATGGCTAAA
1530



GTGTTTGTCTGGCTCCGGTAAGTAAGAGTGCCAACCAAAAAT



GCAAGTGCACCATCTACAGCACATATATCAGCTTTA



CTTACTTACCGGAGCCA
1531



TGGCTCCGGTAAGTAAG
1532


Adenomatous polyposis
GATATATGTGCTGTAGATGGTGCACTTGCATTTTTGGTTGGCA
1533


coli
CTCTTACTTACCGGAGCCAGACAAACACTTTAGCCATTATTGA


Gln625Term
AAGTGGAGGTGGGATATTACGGAATGTGTCCAGCT


CAG-TAG
AGCTGGACACATTCCGTAATATCCCACCTCCACTTTCAATAAT
1534



GGCTAAAGTGTTTGTCTGGCTCCGGTAAGTAAGAGTGCCAAC



CAAAAATGCAAGTGCACCATCTACAGCACATATATC



ACCGGAGCCAGACAAAC
1535



GTTTGTCTGGCTCCGGT
1536


Adenomatous polyposis
TAGATGGTGCACTTGCATTTTTGGTTGGCACTCTTACTTACCG
1537


coli
GAGCCAGACAAACACTTTAGCCATTATTGAAAGTGGAGGTGG


Leu629Term
GATATTACGGAATGTGTCCAGCTTGATAGCTACAAA


TTA-TAA
TTTGTAGCTATCAAGCTGGACACATTCCGTAATATCCCACCTC
1538



CACTTTCAATAATGGCTAAAGTGTTTGTCTGGCTCCGGTAAGT



AAGAGTGCCAACCAAAAATGCAAGTGCACCATCTA



AAACACTTTAGCCATTA
1539



TAATGGCTAAAGTGTTT
1540


Adenomatous polyposis
GCCATTATTGAAAGTGGAGGTGGGATATTACGGAATGTGTCC
1541


coli
AGCTTGATAGCTACAAATGAGGACCACAGGTATATATAGAGTT


Glu65OTerm
TTATATTACTTTTAAAGTACAGAATTCATACTCTCA


GAG-TAG
TGAGAGTATGAATTCTGTACTTTAAAAGTAATATAAAACTCTAT
1542



ATATACCTGTGGTCCTCATTTGTAGCTATCAAGCTGGACACAT



TCCGTAATATCCCACCTCCACTTTCAATAATGGC



CTACAAATGAGGACCAC
1543



GTGGTCCTCATTTGTAG
1544


Adenomatous polyposis
TGCATGTGGAACTTTGTGGAATCTCTCAGCAAGAAATCCTAAA
1545


coli
GACCAGGAAGCATTATGGGACATGGGGGCAGTTAGCATGCTC


Trp699Term
AAGAACCTCATTCATTCAAAGCACAAAATGATTGCT


TGG-TGA
AGCAATCATTTTGTGCTTTGAATGAATGAGGTTCTTGAGCATG
1546



CTAACTGCCCCCATGTCCCATAATGCTTCCTGGTCTTTAGGAT



TTCTTGCTGAGAGATTCCACAAAGTTCCACATGCA



GCATTATGGGACATGGG
1547



CCCATGTCCCATAATGC
1548


Adenomatous polyposis
AAGACCAGGAAGCATTATGGGACATGGGGGCAGTTAGCATGC
1549


coli
TCAAGAACCTCATTCATTCAAAGCACAAAATGATTGCTATGGG


Ser713Term
AAGTGCTGCAGCTTTAAGGAATCTCATGGCAAATAG


TCA-TGA
CTATTTGCCATGAGATTCCTTAAAGCTGCAGCACTTCCCATAG
1550



CAATCATTTTGTGCTTTGAATGAATGAGGTTCTTGAGCATGCT



AACTGCCCCCATGTCCCATAATGCTTCCTGGTCTT



CATTCATTCAAAGCACA
1551



TGTGCTTTGAATGAATG
1552


Adenomatous polyposis
GGGGCAGTTAGCATGCTCAAGAACCTCATTCATTCAAAGCAC
1553


coli
AAAATGATTGCTATGGGAAGTGCTGCAGCTTTAAGGAATCTCA


Ser722Gly
TGGCAAATAGGCCTGCGAAGTACAAGGATGCCAATA


AGT-GGT
TATTGGCATCCTTGTACTTCGCAGGCCTATTTGCCATGAGATT
1554



CCTTAAAGCTGCAGCACTTCCCATAGCAATCATTTTGTGCTTT



GAATGAATGAGGTTCTTGAGCATGCTAACTGCCCC



CTATGGGAAGTGCTGCA
1555



TGCAGCACTTCCCATAG
1556


Adenomatous polyposis
TCTCCTGGCTCAGCTTGCCATCTCTTCATGTTAGGAAACAAAA
1557


coli
AGCCCTAGAAGCAGAATTAGATGCTCAGCACTTATCAGAAACT


Leu764Term
TTTGACAATATAGACAATTTAAGTCCCAAGGCATC


TTA-TAA
GATGCCTTGGGACTTAAATTGTCTATATTGTCAAAAGTTTCTGA
1558



TAAGTGCTGAGCATCTAATTCTGCTTCTAGGGCTTTTTGTTTC



CTAACATGAAGAGATGGCAAGCTGAGCCAGGAGA



AGCAGAATTAGATGCTC
1559



GAGCATCTAATTCTGCT
1560


Adenomatous polyposis
TTAGATGCTCAGCACTTATCAGAAACTTTTGACAATATAGACAA
1561


coli
TTTAAGTCCCAAGGCATCTCATCGTAGTAAGCAGAGACACAG


Ser784Thr
CAAGTCTCTATGGTGATTATGTTTTTGACACCATC


TCT-ACT
GATGGTGTCAAAAACATAATCACCATAGAGACTTGCTGTGTCT
1562



CTGCTTACTACGATGAGATGCCTTGGGACTTAAATTGTCTATA



TTGTCAAAAGTTTCTGATAAGTGCTGAGCATCTAA



CCAAGGCATCTCATCGT
1563



ACGATGAGATGCCTTGG
1564


Adenomatous polyposis
CTCATCGTAGTAAGCAGAGACACAGCAAGTCTCTATGGTGATT
1565


coli
ATGTTTTTGACACCAATCGACATGATGATAATAGGTCAGACAT


Arg805Term
TTTAATACTGGCACATGACTGTCCTTTCACCATAT


CGA-TGA
ATATGGTGAAAGGACAGTCATGTGCCAGTATTAAAATGTCTGA
1566



CCTATTATCATCATGTCGATTGGTGTCAAAAACATAATCACCAT



AGAGACTTGCTGTGTCTCTGCTTACTACGATGAG



ACACCAATCGACATGAT
1567



ATCATGTCGATTGGTGT
1568


Adenomatous polyposis
GGTCTAGGCAACTACCATCCAGCAACAGAAAATCCAGGAACT
1569


coli
TCTTCAAAGCGAGGTTTGCAGATCTCCACCACTGCAGCCCAG


Gln879Term
ATTGCCAAAGTCATGGAAGAAGTGTCAGCCATTCATA


CAG-TAG
TATGAATGGCTGACACTTCTTCCATGACTTTGGCAATCTGGGC
1570



TGCAGTGGTGGAGATCTGCAAACCTCGCTTTGAAGAAGTTCC



TGGATTTTCTGTTGCTGGATGGTAGTTGCCTAGACC



GAGGTTTGCAGATCTCC
1571



GGAGATCTGCAAACCTC
1572


Adenomatous polyposis
TACATTGTGTGACAGATGAGAGAAATGCACTTAGAAGAAGCTC
1573


coli
TGCTGCCCATACACATTCAAACACTTACAATTTCACTAAGTCG


Ser932Term
GAAAATTCAAATAGGACATGTTCTATGCCTTATGC


TCA-TAA
GCATAAGGCATAGAACATGTCCTATTTGAATTTTCCGACTTAG
1574



TGAAATTGTAAGTGTTTGAATGTGTATGGGCAGCAGAGCTTCT



TCTAAGTGCATTTCTCTCATCTGTCACACAATGTA



TACACATTCAAACACTT
1575



AAGTGTTTGAATGTGTA
1576


Adenomatous polyposis
TACATTGTGTGACAGATGAGAGAAATGCACTTAGAAGAAGCTC
1577


coli
TGCTGCCCATACACATTCAAACACTTACAATTTCACTAAGTCG


Ser932Term
GAAAATTCAAATAGGACATGTTCTATGCCTTATGC


TCA-TGA
GCATAAGGCATAGAACATGTCCTATTTGAATTTTCCGACTTAG
1578



TGAAATTGTAAGTGTTTGAATGTGTATGGGCAGCAGAGCTTCT



TCTAAGTGCATTTCTCTCATCTGTCACACAATGTA



TACACATTCAAACACTT
1579



AAGTGTTTGAATGTGTA
1580


Adenomatous polyposis
GACAGATGAGAGAAATGCACTTAGAAGAAGCTCTGCTGCCCA
1581


coli
TACACATTCAAACACTTACAATTTCACTAAGTCGGAAAATTCAA


Tyr935Term
ATAGGACATGTTCTATGCCTTATGCCAAATTAGAA


TAC-TAG
TTCTAATTTGGCATAAGGCATAGAACATGTCCTATTTGAATTTT
1582



CCGACTTAGTGAAATTGTAAGTGTTTGAATGTGTATGGGCAGC



AGAGCTTCTTCTAAGTGCATTTCTCTCATCTGTC



AACACTTACAATTTCAC
1583



GTGAAATTGTAAGTGTT
1584


Adenomatous polyposis
GACAGATGAGAGAAATGCACTTAGAAGAAGCTCTGCTGCCCA
1585


coli
TACACATTCAAACACTTACAATTTCACTAAGTCGGAAAATTCAA


Tyr935Term
ATAGGACATGTTCTATGCCTTATGCCAAATTAGAA


TAC-TAA
TTCTAATTTGGCATAAGGCATAGAACATGTCCTATTTGAATTTT
1586



CCGACTTAGTGAAATTGTAAGTGTTTGAATGTGTATGGGCAGC



AGAGCTTCTTCTAAGTGCATTTCTCTCATCTGTC



AACACTTACAATTTCAC
1587



GTGAAATTGTAAGTGTT
1588


Adenomatous polyposis
ACCCTCGATTGAATCCTATTCTGAAGATGATGAAAGTAAGTTTT
1589


coli
GCAGTTATGGTCAATACCCAGCCGACCTAGCCCATAAAATACA


Tyr1000Term
TAGTGCAAATCATATGGATGATAATGATGGAGAA


TAC-TAA
TTCTCCATCATTATCATCCATATGATTTGCACTATGTATTTTAT
1590



GGGCTAGGTCGGCTGGGTATTGACCATAACTGCAAAACTTAC



TTTCATCATCTTCAGAATAGGATTCAATCGAGGGT



GGTCAATACCCAGCCGA
1591



TCGGCTGGGTATTGACC
1592


Adenomatous polyposis
TACCCAGCCGACCTAGCCCATAAAATACATAGTGCAAATCATA
1593


coli
TGGATGATAATGATGGAGAACTAGATACACCAATAAATTATAG


Glu1020Term
TCTTAAATATTCAGATGAGCAGTTGAACTCTGGAA


GAA-TAA
TTCCAGAGTTCAACTGCTCATCTGAATATTTAAGACTATAATTT
1594



ATTGGTGTATCTAGTTCTCCATCATTATCATCCATATGATTTGC



ACTATGTATTTTATGGGCTAGGTCGGCTGGGTA



ATGATGGAGAACTAGAT
1595



ATCTAGTTCTCCATCAT
1596


Adenomatous polyposis
ATGAAACCCTCGATTGAATCCTATTCTGAAGATGATGAAAGTA
1597


coli
AGTTTTGCAGTTATGGTCAATACCCAGCCGACCTAGCCCATAA


Ser1032Term
AATACATAGTGCAAATCATATGGATGATAATGATG


TCA-TAA
CATCATTATCATCCATATGATTTGCACTATGTATTTTATGGGCT
1598



AGGTCGGCTGGGTATTGACCATAACTGCAAAACTTACTTTCAT



CATCTTCAGAATAGGATTCAATCGAGGGTTTCAT



GTTATGGTCAATACCCA
1599



TGGGTATTGACCATAAC
1600


Adenomatous polyposis
TGAAGATGATGAAAGTAAGTTTTGCAGTTATGGTCAATACCCA
1601


coli
GCCGACCTAGCCCATAAAATACATAGTGCAAATCATATGGATG


Gln1041Term
ATAATGATGGAGAACTAGATACACCAATAAATTAT


CAA-TAA
ATAATTTATTGGTGTATCTAGTTCTCCATCATTATCATCCATAT
1602



GATTTGCACTATGTATTTTATGGGCTAGGTCGGCTGGGTATTG



ACCATAACTGCAAAACTTACTTTCATCATCTTCA



GCCCATAAAATACATAG
1603



CTATGTATTTTATGGGC
1604


Adenomatous polyposis
ATAAATTATAGTCTTAAATATTCAGATGAGCAGTTGAACTCTGG
1605


coli
AAGGCAAAGTCCTTCACAGAATGAAAGATGGGCAAGACCCAA


Gln1O45Term
ACACATAATAGAAGATGAAATAAAACAAAGTGAGC


CAG-TAG
GCTCACTTTGTTTTATTTCATCTTCTATTATGTGTTTGGGTCTT
1606



GCCCATCTTTCATTCTGTGAAGGACTTTGCCTTCCAGAGTTCA



ACTGCTCATCTGAATATTTAAGACTATAATTTAT



GTCCTTCACAGAATGAA
1607



TTCATTCTGTGAAGGAC
1608


Adenomatous polyposis
GAAAGATGGGCAAGACCCAAACACATAATAGAAGATGAAATAA
1609


coli
AACAAAGTGAGCAAAGACAATCAAGGAATCAAAGTACAACTTA


Gln1067Term
TCCTGTTTATACTGAGAGCACTGATGATAAACACC


CAA-TAA
GGTGTTTATCATCAGTGCTCTCAGTATAAACAGGATAAGTTGT
1610



ACTTTGATTCCTTGATTGTCTTTGCTCACTTTGTTTTATTTCATC



TTCTATTATGTGTTTGGGTCTTGCCCATCTTTC



AGCAAAGACAATCAAGG
1611



CCTTGATTGTCTTTGCT
1612


Adenomatous polyposis
AATAGAAGATGAAATAAAACAAAGTGAGCAAAGACAATCAAGG
1613


coli
AATCAAAGTACAACTTATCCTGTTTATACTGAGAGCACTGATG


Tyr1075Term
ATAAACACCTCAAGTTCCAACCACATTTTGGACAG


TAT-TAG
CTGTCCAAAATGTGGTTGGAACTTGAGGTGTTTATCATCAGTG
1614



CTCTCAGTATAAACAGGATAAGTTGTACTTTGATTCCTTGATTG



TCTTTGCTCACTTTGTTTTATTTCATCTTCTATT



ACAACTTATCCTGTTTA
1615



TAAACAGGATAAGTTGT
1616


Adenomatous polyposis
TGATGATAAACACCTCAAGTTCCAACCACATTTTGGACAGCAG
1617


coli
GAATGTGTTTCTCCATACAGGTCACGGGGAGCCAATGGTTCA


Tyr1102Term
GAAACAAATCGAGTGGGTTCTAATCATGGAATTAAT


TAC-TAG
ATTAATTCCATGATTAGAACCCACTCGATTTGTTTCTGAACCAT
1618



TGGCTCCCCGTGACCTGTATGGAGAAACACATTCCTGCTGTC



CAAAATGTGGTTGGAACTTGAGGTGTTTATCATCA



TCTCCATACAGGTCACG
1619



CGTGACCTGTATGGAGA
1620


Adenomatous polyposis
AACCACATTTTGGACAGCAGGAATGTGTTTCTCCATACAGGTC
1621


coli
ACGGGGAGCCAATGGTTCAGAAACAAATCGAGTGGGTTCTAA


Ser1110Term
TCATGGAATTAATCAAAATGTAAGCCAGTCTTTGTG


TCA-TGA
CACAAAGACTGGCTTACATTTTGATTAATTCCATGATTAGAACC
1622



CACTCGATTTGTTTCTGAACCATTGGCTCCCCGTGACCTGTAT



GGAGAAACACATTCCTGCTGTCCAAAATGTGGTT



CAATGGTTCAGAAACAA
1623



TTGTTTCTGAACCATTG
1624


Adenomatous polyposis
GGACAGCAGGAATGTGTTTCTCCATACAGGTCACGGGGAGCC
1625


coli
AATGGTTCAGAAACAAATCGAGTGGGTTCTAATCATGGAATTA


Arg1114Term
ATCAAAATGTAAGCCAGTCTTTGTGTCAAGAAGATG


CGA-TGA
CATCTTCTTGACACAAAGACTGGCTTACATTTTGATTAATTCCA
1626



TGATTAGAACCCACTCGATTTGTTTCTGAACCATTGGCTCCCC



GTGACCTGTATGGAGAAACACATTCCTGCTGTCC



AAACAAATCGAGTGGGT
1627



ACCCACTCGATTTGTTT
1628


Adenomatous polyposis
GGGTTCTAATCATGGAATTAATCAAAATGTAAGCCAGTCTTTG
1629


coli
TGTCAAGAAGATGACTATGAAGATGATAAGCCTACCAATTATA


Tyr1135Term
GTGAACGTTACTCTGAAGAAGAACAGCATGAAGAA


TAT-TAG
TTCTTCATGCTGTTCTTCTTCAGAGTAACGTTCACTATAATTGG
1630



TAGGCTTATCATCTTCATAGTCATCTTCTTGACACAAAGACTG



GCTTACATTTTGATTAATTCCATGATTAGAACCC



GATGACTATGAAGATGA
1631



TCATCTTCATAGTCATC
1632


Adenomatous polyposis
GAAGATGACTATGAAGATGATAAGCCTACCAATTATAGTGAAC
1633


coli
GTTACTCTGAAGAAGAACAGCATGAAGAAGAAGAGAGACCAA


Gln1152Term
CAAATTATAGCATAAAATATAATGAAGAGAAACGTC


CAG-TAG
GACGTTTCTCTTCATTATATTTTATGCTATAATTTGTTGGTCTCT
1634



CTTCTTCTTCATGCTGTTCTTCTTCAGAGTAACGTTCACTATAA



TTGGTAGGCTTATCATCTTCATAGTCATCTTC



AAGAAGAACAGCATGAA
1635



TTCATGCTGTTCTTCTT
1636


Adenomatous polyposis
GAAGAAGAGAGACCAACAAATTATAGCATAAAATATAATGAAG
1637


coli
AGAAACGTCATGTGGATCAGCCTATTGATTATAGTTTAAAATAT


Gln1175Term
GCCACAGATATTCCTTCATCACAGAAACAGTCAT


CAG-TAG
ATGACTGTTTCTGTGATGAAGGAATATCTGTGGCATATTTTAAA
1638



CTATAATCAATAGGCTGATCCACATGACGTTTCTCTTCATTATA



TTTTATGCTATAATTTGTTGGTCTCTCTTCTTC



ATGTGGATCAGCCTATT
1639



AATAGGCTGATCCACAT
1640


Adenomatous polyposis
AAGAGAGACCAACAAATTATAGCATAAAATATAATGAAGAGAA
1641


coli
ACGTCATGTGGATCAGCCTATTGATTATAGTTTAAAATATGCCA


Pro1176Leu
CAGATATTCCTTCATCACAGAAACAGTCATTTTC


CCT-CTT
GAAAATGACTGTTTCTGTGATGAAGGAATATCTGTGGCATATT
1642



TTAAACTATAATCAATAGGCTGATCCACATGACGTTTCTCTTCA



TTATATTTTATGCTATAATTTGTTGGTCTCTCTT



GGATCAGCCTATTGATT
1643



AATCAATAGGCTGATCC
1644


Adenomatous polyposis
ATAAAATATAATGAAGAGAAACGTCATGTGGATCAGCCTATTG
1645


coli
ATTATAGTTTAAAATATGCCACAGATATTCCTTCATCACAGAAA


Ala1184Pro
CAGTCATTTTCATTCTCAAAGAGTTCATCTGGAC


GCC-CCC
GTCCAGATGAACTCTTTGAGAATGAAAATGACTGTTTCTGTGA
1646



TGAAGGAATATCTGTGGCATATTTTAAACTATAATCAATAGGCT



GATCCACATGACGTTTCTCTTCATTATATTTTAT



TAAAATATGCCACAGAT
1647



ATCTGTGGCATATTTTA
1648


Adenomatous polyposis
ATCAGCCTATTGATTATAGTTTAAAATATGCCACAGATATTCCT
1649


coli
TCATCACAGAAACAGTCATTTTCATTCTCAAAGAGTTCATCTG


Ser1194Term
GACAAAGCAGTAAAACCGAACATATGTCTTCAAG


TCA-TGA
CTTGAAGACATATGTTCGGTTTTACTGCTTTGTCCAGATGAAC
1650



TCTTTGAGAATGAAAATGACTGTTTCTGTGATGAAGGAATATCT



GTGGCATATTTTAAACTATAATCAATAGGCTGAT



GAAACAGTCATTTTCAT
1651



ATGAAAATGACTGTTTC
1652


Adenomatous polyposis
ATTATAGTTTAAAATATGCCACAGATATTCCTTCATCACAGAAA
1653


coli
CAGTCATTTTCATTCTCAAAGAGTTCATCTGGACAAAGCAGTA


Ser1198Term
AAACCGAACATATGTCTTCAAGCAGTGAGAATAC


TCA-TGA
GTATTCTCACTGCTTGAAGACATATGTTCGGTTTTACTGCTTTG
1654



TCCAGATGAACTCTTTGAGAATGAAAATGACTGTTTCTGTGAT



GAAGGAATATCTGTGGCATATTTTAAACTATAAT



TTCATTCTCAAAGAGTT
1655



AACTCTTTGAGAATGAA
1656


Adenomatous polyposis
ACCGAACATATGTCTTCAAGCAGTGAGAATACGTCCACACCTT
1657


coli
CATCTAATGCCAAGAGGCAGAATCAGCTCCATCCAGTTCTGC


Gln1228Term
ACAGAGTAGAAGTGGTCAGCCTCAAAGGCTGCCACT


CAG-TAG
AGTGGCAGCCTTTGAGGCTGACCACTTCTACTCTGTGCAGAA
1658



CTGGATGGAGCTGATTCTGCCTCTTGGCATTAGATGAAGGTG



TGGACGTATTCTCACTGCTTGAAGACATATGTTCGGT



CCAAGAGGCAGAATCAG
1659



CTGATTCTGCCTCTTGG
1660


Adenomatous polyposis
CATATGTCTTCAAGCAGTGAGAATACGTCCACACCTTCATCTA
1661


coli
ATGCCAAGAGGCAGAATCAGCTCCATCCAGTTCTGCACAGAG


Gln1230Term
TAGAAGTGGTCAGCCTCAAAGGCTGCCACTTGCAAG


CAG-TAG
CTTGCAAGTGGCAGCCTTTGAGGCTGACCACTTCTACTCTGT
1662



GCAGAACTGGATGGAGCTGATTCTGCCTCTTGGCATTAGATG



AAGGTGTGGACGTATTCTCACTGCTTGAAGACATATG



GGCAGAATCAGCTCCAT
1663



ATGGAGCTGATTCTGCC
1664


Adenomatous polyposis
TCAGCTCCATCCAAGTTCTGCACAGAGTAGAAGTGGTCAGCC
1665


coli
TCAAAAGGCTGCCACTTGCAAAGTTTCTTCTATTAACCAAGAA


Cys1249Term
ACAATACAGACTTATTGTGTAGAAGATACTCCAATA


TGC-TGA
TATTGGAGTATCTTCTACACAATAAGTCTGTATTGTTTCTTGGT
1666



TAATAGAAGAAACTTTGCAAGTGGCAGCCTTTTGAGGCTGACC



ACTTCTACTCTGTGCAGAACTTGGATGGAGCTGA



GCCACTTGCAAAGTTTC
1667



GAAACTTTGCAAGTGGC
1668


Adenomatous polyposis
AGTTTCTTCTATTAACCAAGAAACAATACAGACTTATTGTGTAG
1669


coli
AAGATACTCCAATATGTTTTTCAAGATGTAGTTCATTATCATCT


Cys1270Term
TTGTCATCAGCTGAAGATGAAATAGGATGTAAT


TGT-TGA
ATTACATCCTATTTCATCTTCAGCTGATGACAAAGATGATAATG
1670



AACTACATCTTGAAAAACATATTGGAGTATCTTCTACACAATAA



GTCTGTATTGTTTCTTGGTTAATAGAAGAAACT



CCAATATGTTTTTCAAG
1671



CTTGAAAAACATATTGG
1672


Adenomatous polyposis
AAGAAACAATACAGACTTATTGTGTAGAAGATACTCCAATATGT
1673


coli
TTTTCAAGATGTAGTTCATTATCATCTTTGTCATCAGCTGAAGA


Ser1276Term
TGAAATAGGATGTAATCAGACGACACAGGAAGC


TCA-TGA
GCTTCCTGTGTCGTCTGATTACATCCTATTTCATCTTCAGCTG
1674



ATGACAAAGATGATAATGAACTACATCTTGAAAAACATATTGGA



GTATCTTCTACACAATAAGTCTGTATTGTTTCTT



ATGTAGTTCATTATCAT
1675



ATGATAATGAACTACAT
1676


Adenomatous polyposis
GATACTCCAATATGTTTTTCAAGATGTAGTTCATTATCATCTTT
1677


coli
GTCATCAGCTGAAGATGAAATAGGATGTAATCAGACGACACA


Glu1286Term
GGAAGCAGATTCTGCTAATACCCTGCAAATAGCAG


GAA-TAA
CTGCTATTTGCAGGGTATTAGCAGAATCTGCTTCCTGTGTCGT
1678



CTGATTACATCCTATTTCATCTTCAGCTGATGACAAAGATGATA



ATGAACTACATCTTGAAAAACATATTGGAGTATC



CTGAAGATGAAATAGGA
1679



TCCTATTTCATCTTCAG
1680


Adenomatous polyposis
TGTAGTTCATTATCATCTTTGTCATCAGCTGAAGATGAAATAGG
1681


coli
ATGTAATCAGACGACACAGGAAGCAGATTCTGCTAATACCCTG


Gln1294Term
CAAATAGCAGAAATAAAAGAAAAGATTGGAACTA


CAG-TAG
TAGTTCCAATCTTTTCTTTTATTTCTGCTATTTGCAGGGTATTA
1682



GCAGAATCTGCTTCCTGTGTCGTCTGATTACATCCTATTTCAT



CTTCAGCTGATGACAAAGATGATAATGAACTACA



AGACGACACAGGAAGCA
1683



TGCTTCCTGTGTCGTCT
1684


Predisposition to,
TAGGATGTAATCAGACGACACAGGAAGCAGATTCTGCTAATAC
1685


association with,
CCTGCAAATAGCAGAAATAAAAGAAAAGATTGGAACTAGGTCA


colorectal cancer
GCTGAAGATCCTGTGAGCGAAGTTCCAGCAGTGTC


Ile1307Lys
GACACTGCTGGAACTTCGCTCACAGGATCTTCAGCTGACCTA
1686


ATA-AAA
GTTCCAATCTTTTCTTTTATTTCTGCTATTTGCAGGGTATTAGC



AGAATCTGCTTCCTGTGTCGTCTGATTACATCCTA



AGCAGAAATAAAAGAAA
1687



TTTCTTTTATTTCTGCT
1688


Adenomatous polyposis
CCAAGAAACAATACAGACTTATTGTGTAGAAGATACTCCAATA
1689


coli
TGTTTTTCAAGATGTAGTTCATTATCATCTTTGTCATCAGCTGA


Glu1309Term
AGATGAAATAGGATGTAATCAGACGACACAGGAA


GAA-TAA
TTCCTGTGTCGTCTGATTACATCCTATTTCATCTTCAGCTGATG
1690



ACAAAGATGATAATGAACTACATCTTGAAAAACATATTGGAGTA



TCTTCTACACAATAAGTCTGTATTGTTTCTTGG



AGATGTAGTTCATTATC
1691



GATAATGAACTACATCT
1692


Predisposition to
GATTCTGCTAATACCCTGCAAATAGCAGAAATAAAAGAAAAGA
1693


Colorectal Cancer
TTGGAACTAGGTCAGCTGAAGATCCTGTGAGCGAAGTTCCAG


Glu1317Gln
CAGTGTCACAGCACCCTAGAACCAAATCCAGCAGAC


GAA-CAA
GTCTGCTGGATTTGGTTCTAGGGTGCTGTGACACTGCTGGAA
1694



CTTCGCTCACAGGATCTTCAGCTGACCTAGTTCCAATCTTTTC



TTTTATTTCTGCTATTTGCAGGGTATTAGCAGAATC



GGTCAGCTGAAGATCCT
1695



AGGATCTTCAGCTGACC
1696


Adenomatous polyposis
AAAGAAAAGATTGGAACTAGGTCAGCTGAAGATCCTGTGAGC
1697


coli
GAAGTTCCAGCAGTGTCACAGCACCCTAGAACCAAATCCAGC


Gln1328Term
AGACTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCA


CAG-TAG
TGGCTGATTCTGAAGATAAACTAGAACCCTGCAGTCTGCTGG
1698



ATTTGGTTCTAGGGTGCTGTGACACTGCTGGAACTTCGCTCA



CAGGATCTTCAGCTGACCTAGTTCCAATCTTTTCTTT



CAGTGTCACAGCACCCT
1699



AGGGTGCTGTGACACTG
1700


Adenomatous polyposis
GATCCTGTGAGCGAAGTTCCAGCAGTGTCACAGCACCCTAGA
1701


coli
ACCAAATCCAGCAGACTGCAGGGTTCTAGTTTATCTTCAGAAT


Gln1338Term
CAGCCAGGCACAAAGCTGTTGAATTTTCTTCAGGAG


CAG-TAG
CTCCTGAAGAAAATTCAACAGCTTTGTGCCTGGCTGATTCTGA
1702



AGATAAACTAGAACCCTGCAGTCTGCTGGATTTGGTTCTAGG



GTGCTGTGACACTGCTGGAACTTCGCTCACAGGATC



GCAGACTGCAGGGTTCT
1703



AGAACCCTGCAGTCTGC
1704


Adenomatous polyposis
AAGTTCCAGCAGTGTCACAGCACCCTAGAACCAAATCCAGCA
1705


coli
GACTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCAGGCACAA


Leu1342Term
AGCTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTC


TTA-TAA
GAGGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTTGTGC
1706



CTGGCTGATTCTGAAGATAAACTAGAACCCTGCAGTCTGCTG



GATTTGGTTCTAGGGTGCTGTGACACTGCTGGAACTT



TTCTAGTTTATCTTCAG
1707



CTGAAGATAAACTAGAA
1708


Adenomatous polyposis
CAGCACCCTAGAACCAAATCCAGCAGACTGCAGGGTTCTAGT
1709


coli
TTATCTTCAGAATCAGCCAGGCACAAAGCTGTTGAATTTTCTT


Arg1348Trp
CAGGAGCGAAATCTCCCTCCCGAAAGTGGTGCTCAG


AGG-TGG
CTGAGCACCACTTTCGGGAGGGAGATTTCGCTCCTGAAGAAA
1710



ATTCAACAGCTTTGTGCCTGGCTGATTCTGAAGATAAACTAGA



ACCCTGCAGTCTGCTGGATTTGGTTCTAGGGTGCTG



AATCAGCCAGGCACAAA
1711



TTTGTGCCTGGCTGATT
1712


Adenomatous polyposis
CTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCAGGCACAAAG
1713


coli
CTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTCCCGAAAGTG


Gly1357Term
GTGCTCAGACACCCCAAAGTCCACCTGAACACTAT


GGA-TGA
ATAGTGTTCAGGTGGACTTTGGGGTGTCTGAGCACCACTTTC
1714



GGGAGGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTTGT



GCCTGGCTGATTCTGAAGATAAACTAGAACCCTGCAG



TTTCTTCAGGAGCGAAA
1715



TTTCGCTCCTGAAGAAA
1716


Adenomatous polyposis
CCAGGCACAAAGCTGTTGAATTTTCTTCAGGAGCGAAATCTCC
1717


coli
CTCCCGAAAGTGGTGCTCAGACACCCCAAAGTCCACCTGAAC


Gln1367Term
ACTATGTTCAGGAGACCCCACTCATGTTTAGCAGAT


CAG-TAG
ATCTGCTAAACATGAGTGGGGTCTCCTGAACATAGTGTTCAG
1718



GTGGACTTTGGGGTGTCTGAGCACCACTTTCGGGAGGGAGAT



TTCGCTCCTGAAGAAAATTCAACAGCTTTGTGCCTGG



GTGGTGCTCAGACACCC
1719



GGGTGTCTGAGCACCAC
1720


Adenomatous polyposis
AAAGCTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTCCAAAA
1721


coli
GTGGTGCTCAGACACCCAAAAGTCCACCTGAACACTATGTTC


Lys1370Term
AGGAGACCCCACTCATGTTTAGCAGATGTACTTCTG


AAA-TAA
CAGAAGTACATCTGCTAAACATGAGTGGGGTCTCCTGAACATA
1722



GTGTTCAGGTGGACTTTTGGGTGTCTGAGCACCACTTTTGGA



GGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTT



AGACACCCAAAAGTCCA
1723



TGGACTTTTGGGTGTCT
1724


Adenomatous polyposis
CACCTGAACACTATGTTCAGGAGACCCCACTCATGTTTAGCA
1725


coli
GATGTACTTCTGTCAGTTCACTTGATAGTTTTGAGAGTCGTTC


Ser1392Term
GATTGCCAGCTCCGTTCAGAGTGAACCATGCAGTGG


TCA-TAA
CCACTGCATGGTTCACTCTGAACGGAGCTGGCAATCGAACGA
1726



CTCTCAAAACTATCAAGTGAACTGACAGAAGTACATCTGCTAA



ACATGAGTGGGGTCTCCTGAACATAGTGTTCAGGTG



TGTCAGTTCACTTGATA
1727



TATCAAGTGAACTGACA
1728


Adenomatous polyposis
CACCTGAACACTATGTTCAGGAGACCCCACTCATGTTTAGCA
1729


coli
GATGTACTTCTGTCAGTTCACTTGATAGTTTTGAGAGTCGTTC


Ser1392Term
GATTGCCAGCTCCGTTCAGAGTGAACCATGCAGTGG


TCA-TGA
CCACTGCATGGTTCACTCTGAACGGAGCTGGCAATCGAACGA
1730



CTCTCAAAACTATCAAGTGAACTGACAGAAGTACATCTGCTAA



ACATGAGTGGGGTCTCCTGAACATAGTGTTCAGGTG



TGTCAGTTCACTTGATA
1731



TATCAAGTGAACTGACA
1732


Adenomatous polyposis
GTTCAGGAGACCCCACTCATGTTTAGCAGATGTACTTCTGTCA
1733


coli
GTTCACTTGATAGTTTTGAGAGTCGTTCGATTGCCAGCTCCGT


Glu1397Term
TCAGAGTGAACCATGCAGTGGAATGGTAGGTGGCA


GAG-TAG
TGCCACCTACCATTCCACTGCATGGTTCACTCTGAACGGAGC
1734



TGGCAATCGAACGACTCTCAAAACTATCAAGTGAACTGACAGA



AGTACATCTGCTAAACATGAGTGGGGTCTCCTGAAC



ATAGTTTTGAGAGTCGT
1735



ACGACTCTCAAAACTAT
1736


Adenomatous polyposis
CAAACCATGCCACCAAGCAGAAGTAAAACACCTCCACCACCT
1737


coli
CCTCAAACAGCTCAAACCAAGCGAGAAGTACCTAAAAATAAAG


Lys1449Term
CACCTACTGCTGAAAAGAGAGAGAGTGGACCTAAGC


AAG-TAG
GCTTAGGTCCACTCTCTCTCTTTTCAGCAGTAGGTGCTTTATT
1738



TTTAGGTACTTCTCGCTTGGTTTGAGCTGTTTGAGGAGGTGGT



GGAGGTGTTTTACTTCTGCTTGGTGGCATGGTTTG



CTCAAACCAAGCGAGAA
1739



TTCTCGCTTGGTTTGAG
1740


Adenomatous polyposis
ACCATGCCACCAAGCAGAAGTAAAACACCTCCACCACCTCCT
1741


coli
CAAACAGCTCAAACCAAGCGAGAAGTACCTAAAAATAAAGCAC


Arg1450Term
CTACTGCTGAAAAGAGAGAGAGTGGACCTAAGCAAG


CGA-TGA
CTTGCTTAGGTCCACTCTCTCTCTTTTCAGCAGTAGGTGCTTT
1742



ATTTTTAGGTACTTCTCGCTTGGTTTGAGCTGTTTGAGGAGGT



GGTGGAGGTGTTTTACTTCTGCTTGGTGGCATGGT



AAACCAAGCGAGAAGTA
1743



TACTTCTCGCTTGGTTT
1744


Adenomatous polyposis
CAGATGCTGATACTTTATTACATTTTGCCACGGAAAGTACTCC
1745


coli
AGATGGATTTTCTTGTTCATCCAGCCTGAGTGCTCTGAGCCTC


Ser1503Term
GATGAGCCATTTATACAGAAAGATGTGGAATTAAG


TCA-TAA
CTTAATTCCACATCTTTCTGTATAAATGGCTCATCGAGGCTCA
1746



GAGCACTCAGGCTGGATGAACAAGAAAATCCATCTGGAGTAC



TTTCCGTGGCAAAATGTAATAAAGTATCAGCATCTG



TTCTTGTTCATCCAGCC
1747



GGCTGGATGAACAAGAA
1748


Adenomatous polyposis
CTGAGCCTCGATGAGCCATTTATACAGAAAGATGTGGAATTAA
1749


coli
GAATAATGCCTCCAGTTCAGGAAAATGACAATGGGAATGAAAC


Gln1529Term
AGAATCAGAGCAGCCTAAAGAATCAAATGAAAACC


CAG-TAG
GGTTTTCATTTGATTCTTTAGGCTGCTCTGATTCTGTTTCATTC
1750



CCATTGTCATTTTCCTGAACTGGAGGCATTATTCTTAATTCCAC



ATCTTTCTGTATAAATGGCTCATCGAGGCTCAG



CTCCAGTTCAGGAAAAT
1751



ATTTTCCTGAACTGGAG
1752


Adenomatous polyposis
ATGTGGAATTAAGAATAATGCCTCCAGTTCAGGAAAATGACAA
1753


coli
TGGGAATGAAACAGAATCAGAGCAGCCTAAAGAATCAAATGAA


Ser1539Term
AACCAAGAGAAAGAGGCAGAAAAAACTATTGATTC


TCA-TAA
GAATCAATAGTTTTTTCTGCCTCTTTCTCTTGGTTTTCATTTGA
1754



TTCTTTAGGCTGCTCTGATTCTGTTTCATTCCCATTGTCATTTT



CCTGAACTGGAGGCATTATTCTTAATTCCACAT



AACAGAATCAGAGCAGC
1755



GCTGCTCTGATTCTGTT
1756


Adenomatous polyposis
AAAACCAAGAGAAAGAGGCAGAAAAAACTATTGATTCTGAAAA
1757


coli
GGACCTATTAGATGATTCAGATGATGATGATATTGAAATACTA


Ser1567Term
GAAGAATGTATTATTTCTGCCATGCCAACAAAGTC


TCA-TGA
GACTTTGTTGGCATGGCAGAAATAATACATTCTTCTAGTATTTC
1758



AATATCATCATCATCTGAATCATCTAATAGGTCCTTTTCAGAAT



CAATAGTTTTTTCTGCCTCTTTCTCTTGGTTTT



AGATGATTCAGATGATG
1759



CATCATCTGAATCATCT
1760


Adenomatous polyposis
AGAGAGTTTTCTCAGACAACAAAGATTCAAAGAAACAGAATTT
1761


coli
GAAAAATAATTCCAAGGACTTCAATGATAAGCTCCCAAATAAT


Asp1822Val
GAAGATAGAGTCAGAGGAAGTTTTGCTTTTGATTC


GAC-GTC
GAATCAAAAGCAAAACTTCCTCTGACTCTATCTTCATTATTTGG
1762



GAGCTTATCATTGAAGTCCTTGGAATTATTTTTCAAATTCTGTT



TCTTTGAATCTTTGTTGTCTGAGAAAACTCTCT



TTCCAAGGACTTCAATG
1763



CATTGAAGTCCTTGGAA
1764


Adenomatous polyposis
AAAACTGACAGCACAGAATCCAGTGGAACCCAAAGTCCTAAG
1765


coli
CGCCATTCTGGGTCTTACCTTGTGACATCTGTTTAAAAGAGAG


Leu2839Phe
GAAGAATGAAACTAAGAAAATTCTATGTTAATTACA


CTT-TTT
TGTAATTAACATAGAATTTTCTTAGTTTCATTCTTCCTCTCTTTT
1766



AAACAGATGTCACAAGGTAAGACCCAGAATGGCGCTTAGGAC



TTTGGGTTCCACTGGATTCTGTGCTGTCAGTTTT



GGTCTTACCTTGTGACA
1767



TGTCACAAGGTAAGACC
1768









EXAMPLE 12
Parahemophilia—Factor V Deficiency

Deficiency in clotting Factor V is associated with a lifelong predisposition to thrombosis. The disease typically manifests itself with usually mild bleeding, although bleeding times and clotting times are consistently prolonged. Individuals that are heterozygous for a mulation in Factor V have lowered levels of factor V but probably never have abnormal bleeding. A large number of alleles with a range of presenting symptoms have been identified. The attached table disclosed the correcting oligonucleotide base sequences for the Factor V oligonucleotides of the invention.









TABLE 19







Factor V Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Factor V deficiency
TTGACTGAATGCTTATTTTGGCCTGTGTCTCTCCCTCTTTCTCA
4340


Ala221Val
GATATAACAGTTTGTGCCCATGACCACATCAGCTGGCATCTGC


GCC-GTC
TGGGAATGAGCTCGGGGCCAGAATTATTCTCCAT



ATGGAGAATAATTCTGGCCCCGAGCTCATTCCCAGCAGATGC
1769



CAGCTGATGTGGTCATGGGCACAAACTGTTATATCTGAGAAAG



AGGGAGAGACACAGGCCAAAATAAGCATTCAGTCAA



AGTTTGTGCCCATGACC
1770



GGTCATGGGCACAAACT
1771


Thrombosis
TGTCCTAACTCAGCTGGGATGCAGGCTTACATTGACATTAAAA
1772


Arg306Gly
ACTGCCCAAAGAAAACCAGGAATCTTAAGAAAATAACTCGTGA


AGG-GGG
GCAGAGGCGGCACATGAAGAGGTGGGAATACTTCA



TGAAGTATTCCCACCTCTTCATGTGCCGCCTCTGCTCACGAGT
1773



TATTTTCTTAAGATTCCTGGTTTTCTTTGGGCAGTTTTTAATGT



CAATGTAAGCCTGCATCCCAGCTGAGTTAGGACA



AGAAAACCAGGAATCTT
1774



AAGATTCCTGGTTTTCT
1775


Thrombosis
GTCCTAACTCAGCTGGGATGCAGGCTTACATTGACATTAAAAA
1776


Arg306Thr
CTGCCCAAAGAAAACCAGGAATCTTAAGAAAATAACTCGTGAG


AGG-ACG
CAGAGGCGGCACATGAAGAGGTGGGAATACTTCAT



ATGAAGTATTCCCACCTCTTCATGTGCCGCCTCTGCTCACGA
1777



GTTATTTTCTTAAGATTCCTGGTTTTCTTTGGGCAGTTTTTAAT



GTCAATGTAAGCCTGCATCCCAGCTGAGTTAGGAC



GAAAACCAGGAATCTTA
1778



TAAGATTCCTGGTTTTC
1779


Increased Risk
CCACAGAAAATGATGCCCAGTGCTTAACAAGACCATACTACAG
1780


Thrombosis
TGACGTGGACATCATGAGAGACATCGCCTCTGGGCTAATAGG


Arg485Lys
ACTACTTCTAATCTGTAAGAGCAGATCCCTGGACAG


AGA-AAA
CTGTCCAGGGATCTGCTCTTACAGATTAGAAGTAGTCCTATTA
1781



GCCCAGAGGCGATGTCTCTCATGATGTCCACGTCACTGTAGT



ATGGTCTTGTTAAGCACTGGGCATCATTTTCTGTGG



CATCATGAGAGACATCG
1782



CGATGTCTCTCATGATG
1783


Increased Risk
ACATCGCCTCTGGGCTAATAGGACTACTTCTAATCTGTAAGAG
1784


Thrombosis
CAGATCCCTGGACAGGCGAGGAATACAGGTATTTTGTCCTTG


Arg506Gln
AAGTAACCTTTCAGAAATTCTGAGAATTTCTTCTGG


CGA-CAA
CCAGAAGAAATTCTCAGAATTTCTGAAAGGTTACTTCAAGGAC
1785



AAAATACCTGTATTCCTCGCCTGTCCAGGGATCTGCTCTTACA



GATTAGAAGTAGTCCTATTAGCCCAGAGGCGATGT



GGACAGGCGAGGAATAC
1786



GTATTCCTCGCCTGTCC
1787


Factor V Deficiency
GACATCGCCTCTGGGCTAATAGGACTACTTCTAATCTGTAAGA
1788


Arg506Term
GCAGATCCCTGGACAGGCGAGGAATACAGGTATTTTGTCCTT


CGA-TGA
GAAGTAACCTTTCAGAAATTCTGAGAATTTCTTCTG



CAGAAGAAATTCTCAGAATTTCTGAAAGGTTACTTCAAGGACA
1789



AAATACCTGTATTCCTCGCCTGTCCAGGGATCTGCTCTTACAG



ATTAGAAGTAGTCCTATTAGCCCAGAGGCGATGTC



TGGACAGGCGAGGAATA
1790



TATTCCTCGCCTGTCCA
1791


Thrombosis
AGTGATGCTGACTATGATTACCAGAACAGACTGGCTGCAGCA
1792


Arg712Term
TTAGGAATCAGGTCATTCCGAAACTCATCATTGAATCAGGAAG


CGA-TGA
AAGAAGAGTTCAATCTTACTGCCCTAGCTCTGGAGA



TCTCCAGAGCTAGGGCAGTAAGATTGAACTCTTCTTCTTCCTG
1793



ATTCAATGATGAGTTTCGGAATGACCTGATTCCTAATGCTGCA



GCCAGTCTGTTCTGGTAATCATAGTCAGCATCACT



GGTCATTCCGAAACTCA
1794



TGAGTTTCGGAATGACC
1795


Thrombosis
TCAGTCAGACAAACCTTTCCCCAGCCCTCGGTCAGATGCCCA
1796


His1299Arg
TTTCTCCAGACCTCAGCCATACAACCCTTTCTCTAGACTTCAG


CAT-CGT
CCAGACAAACCTCTCTCCAGAACTCAGTCAAACAAA



TTTGTTTGACTGAGTTCTGGAGAGAGGTTTGTCTGGCTGAAGT
1797



CTAGAGAAAGGGTTGTATGGCTGAGGTCTGGAGAAATGGGCA



TCTGACCGAGGGCTGGGGAAAGGTTTGTCTGACTGA



CCTCAGCCATACAACCC
1798



GGGTTGTATGGCTGAGG
1799









EXAMPLE 13
Hemophilia—Factor VIII Deficiency

The attached table discloses the correcting oligonucleotide base sequences for the Factor VIII oligonucleotides of the invention.









TABLE 20







Factor VIII Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Haemophilia A
AGCTCTCCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTT
1800


Tyr5Cys
TAGTGCCACCAGAAGATACTACCTGGGTGCAGTGGAACTGTC


TAC-TGC
ATGGGACTATATGCAAAGTGATCTCGGTGAGCTGCC



GGCAGCTCACCGAGATCACTTTGCATATAGTCCCATGACAGT
1801



TCCACTGCACCCAGGTAGTATCTTCTGGTGGCACTAAAGCAG



AATCGCAAAAGGCACAGAAAGAAGCAGGTGGAGAGCT



CAGAAGATACTACCTGG
1802



CCAGGTAGTATCTTCTG
1803


Haemophilia A
CCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTTTAGTGC
1804


Leu7Arg
CACCAGAAGATACTACCTGGGTGCAGTGGAACTGTCATGGGA


CTG-CGG
CTATATGCAAAGTGATCTCGGTGAGCTGCCTGTGGA



TCCACAGGCAGCTCACCGAGATCACTTTGCATATAGTCCCAT
1805



GACAGTTCCACTGCACCCAGGTAGTATCTTCTGGTGGCACTA



AAGCAGAATCGCAAAAGGCACAGAAAGAAGCAGGTGG



ATACTACCTGGGTGCAG
1806



CTGCACCCAGGTAGTAT
1807


Haemophilia A
AGTCATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTT
1808


Ser(−1)Arg
TTGCGATTCTGCTTTAGTGCCACCAGAAGATACTACCTGGGT


AGTg-AGG
GCAGTGGAACTGTCATGGGACTATATGCAAAGTGAT



ATCACTTTGCATATAGTCCCATGACAGTTCCACTGCACCCAG
1809



GTAGTATCTTCTGGTGGCACTAAAGCAGAATCGCAAAAGGCA



CAGAAAGAAGCAGGTGGAGAGCTCTATTTGCATGACT



TGCTTTAGTGCCACCAG
1810



CTGGTGGCACTAAAGCA
1811


Haemophilia A
CATTTGTAGCAATAAGTCATGCAAATAGAGCTCTCCACCTGCT
1812


Arg(−5)Term
TCTTTCTGTGCCTTTTGCGATTCTGCTTTAGTGCCACCAGAAG


gCGA-TGA
ATACTACCTGGGTGCAGTGGAACTGTCATGGGACT



AGTCCCATGACAGTTCCACTGCACCCAGGTAGTATCTTCTGG
1813



TGGCACTAAAGCAGAATCGCAAAAGGCACAGAAAGAAGCAGG



TGGAGAGCTCTATTTGCATGACTTATTGCTACAAATG



GCCTTTTGCGATTCTGC
1814



GCAGAATCGCAAAAGGC
1815


Haemophilia A
TTCTGTGCCTTTTGCGATTCTGCTTTAGTGCCACCAGAAGATA
1816


Glu11Val
CTACCTGGGTGCAGTGGAACTGTCATGGGACTATATGCAAAG


GAA-GTA
TGATCTCGGTGAGCTGCCTGTGGACGCAAGGTAAAG



CTTTACCTTGCGTCCACAGGCAGCTCACCGAGATCACTTTGC
1817



ATATAGTCCCATGACAGTTCCACTGCACCCAGGTAGTATCTTC



TGGTGGCACTAAAGCAGAATCGCAAAAGGCACAGAA



TGCAGTGGAACTGTCAT
1818



ATGACAGTTCCACTGCA
1819


Haemophilia A
CTTTTGCGATTCTGCTTTAGTGCCACCAGAAGATACTACCTGG
1820


Trp14Gly
GTGCAGTGGAACTGTCATGGGACTATATGCAAAGTGATCTCG


aTGG-GGG
GTGAGCTGCCTGTGGACGCAAGGTAAAGGCATGTCC



GGACATGCCTTTACCTTGCGTCCACAGGCAGCTCACCGAGAT
1821



CACTTTGCATATAGTCCCATGACAGTTCCACTGCACCCAGGT



AGTATCTTCTGGTGGCACTAAAGCAGAATCGCAAAAG



AACTGTCATGGGACTAT
1822



ATAGTCCCATGACAGTT
1823


Haemophilia A
TTCACGCAGATTTCCTCCTAGAGTGCCAAAATCTTTTCCATTC
1824


Tyr46Term
AACACCTCAGTCGTGTACAAAAAGACTCTGTTTGTAGAATTCA


TACa-TAA
CGGATCACCTTTTCAACATCGCTAAGCCAAGGCCA



TGGCCTTGGCTTAGCGATGTTGAAAAGGTGATCCGTGAATTC
1825



TACAAACAGAGTCTTTTTGTACACGACTGAGGTGTTGAATGGA



AAAGATTTTGGCACTCTAGGAGGAAATCTGCGTGAA



GTCGTGTACAAAAAGAC
1826



GTCTTTTTGTACACGAC
1827


Haemophilia A
ATCTTTTCCATTCAACACCTCAGTCGTGTACAAAAAGACTCTG
1828


Asp56Glu
TTTGTAGAATTCACGGATCACCTTTTCAACATCGCTAAGCCAA


GATc-GAA
GGCCACCCTGGATGGGTAATGAAAACAATGTTGAA



TTCAACATTGTTTTCATTACCCATCCAGGGTGGCCTTGGCTTA
1829



GCGATGTTGAAAAGGTGATCCGTGAATTCTACAAACAGAGTC



TTTTTGTACACGACTGAGGTGTTGAATGGAAAAGAT



TTCACGGATCACCTTTT
1830



AAAAGGTGATCCGTGAA
1831


Haemophilia A
TTCTGGAGTACTATCCCCAAGTAACCTTTGGCGGACATCTCAT
1832


Gly73Val
TCTTACAGGTCTGCTAGGTCCTACCATCCAGGCTGAGGTTTA


GGT-GTT
TGATACAGTGGTCATTACACTTAAGAACATGGCTTC



GAAGCCATGTTCTTAAGTGTAATGACCACTGTATCATAAACCT
1833



CAGCCTGGATGGTAGGACCTAGCAGACCTGTAAGAATGAGAT



GTCCGCCAAAGGTTACTTGGGGATAGTACTCCAGAA



TCTGCTAGGTCCTACCA
1834



TGGTAGGACCTAGCAGA
1835


Haemophilia A
CAAGTAACCTTTGGCGGACATCTCATTCTTACAGGTCTGCTAG
1836


Glu79Lys
GTCCTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTAC


tGAG-AAG
ACTTAAGAACATGGCTTCCCATCCTGTCAGTCTTC



GAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGA
1837



CCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCTAGCA



GACCTGTAAGAATGAGATGTCCGCCAAAGGTTACTTG



TCCAGGCTGAGGTTTAT
1838



ATAAACCTCAGCCTGGA
1839


Haemophilia A
TAACCTTTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCC
1840


Val80Asp
TACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACACTT


GTT-GAT
AAGAACATGGCTTCCCATCCTGTCAGTCTTCATGC



GCATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTA
1841



ATGACCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCT



AGCAGACCTGTAAGAATGAGATGTCCGCCAAAGGTTA



GGCTGAGGTTTATGATA
1842



TATCATAAACCTCAGCC
1843


Haemophilia A
TTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCCTACCAT
1844


Asp82Val
CCAGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAAC


GAT-GTT
ATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGG



CCAACAGCATGAAGACTGACAGGATGGGAAGCCATGTTCTTA
1845



AGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTA



GGACCTAGCAGACCTGTAAGAATGAGATGTCCGCCAA



GGTTTATGATACAGTGG
1846



CCACTGTATCATAAACC
1847


Haemophilia A
TTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCCTACCAT
1848


Asp82Gly
CCAGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAAC


GAT-GGT
ATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGG



CCAACAGCATGAAGACTGACAGGATGGGAAGCCATGTTCTTA
1849



AGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTA



GGACCTAGCAGACCTGTAAGAATGAGATGTCCGCCAA



GGTTTATGATACAGTGG
1850



CCACTGTATCATAAACC
1851


Haemophilia A
ATCTCATTCTTACAGGTCTGCTAGGTCCTACCATCCAGGCTGA
1852


Val85Asp
GGTTTATGATACAGTGGTCATTACACTTAAGAACATGGCTTCC


GTC-GAC
CATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTA



TAGGATACACCAACAGCATGAAGACTGACAGGATGGGAAGCC
1853



ATGTTCTTAAGTGTAATGACCACTGTATCATAAACCTCAGCCT



GGATGGTAGGACCTAGCAGACCTGTAAGAATGAGAT



TACAGTGGTCATTACAC
1854



GTGTAATGACCACTGTA
1855


Haemophilia A
CAGGTCTGCTAGGTCCTACCATCCAGGCTGAGGTTTATGATA
1856


Lys89Thr
CAGTGGTCATTACACTTAAGAACATGGCTTCCCATCCTGTCA


AAG-ACG
GTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCTTC



GAAGCTTTCCAGTAGGATACACCAACAGCATGAAGACTGACA
1857



GGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATCAT



AAACCTCAGCCTGGATGGTAGGACCTAGCAGACCTG



TACACTTAAGAACATGG
1858



CCATGTTCTTAAGTGTA
1859


Haemophilia A
CTGCTAGGTCCTACCATCCAGGCTGAGGTTTATGATACAGTG
1860


Met91Val
GTCATTACACTTAAGAACATGGCTTCCCATCCTGTCAGTCTTC


cATG-GTG
ATGCTGTTGGTGTATCCTACTGGAAAGCTTCTGAGG



CCTCAGAAGCTTTCCAGTAGGATACACCAACAGCATGAAGAC
1861



TGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTG



TATCATAAACCTCAGCCTGGATGGTAGGACCTAGCAG



TTAAGAACATGGCTTCC
1862



GGAAGCCATGTTCTTAA
1863


Haemophilia A
CTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACACT
1864


His94Arg
TAAGAACATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGGT


CAT-CGT
GTATCCTACTGGAAAGCTTCTGAGGGTGAGTAAAA



TTTTACTCACCCTCAGAAGCTTTCCAGTAGGATACACCAACAG
1865



CATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAA



TGACCACTGTATCATAAACCTCAGCCTGGATGGTAG



GGCTTCCCATCCTGTCA
1866



TGACAGGATGGGAAGCC
1867


Haemophilia A
CCTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACAC
1868


His94Tyr
TTAAGAACATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGG


cCAT-TAT
TGTATCCTACTGGAAAGCTTCTGAGGGTGAGTAAA



TTTACTCACCCTCAGAAGCTTTCCAGTAGGATACACCAACAGC
1869



ATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAAT



GACCACTGTATCATAAACCTCAGCCTGGATGGTAGG



TGGCTTCCCATCCTGTC
1870



GACAGGATGGGAAGCCA
1871


Haemophilia A
CTGAGGTTTATGATACAGTGGTCATTACACTTAAGAACATGGC
1872


Leu98Arg
TTCCCATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTACTGG


CTT-CGT
AAAGCTTCTGAGGGTGAGTAAAATACCCTCCTATT



AATAGGAGGGTATTTTACTCACCCTCAGAAGCTTTCCAGTAGG
1873



ATACACCAACAGCATGAAGACTGACAGGATGGGAAGCCATGT



TCTTAAGTGTAATGACCACTGTATCATAAACCTCAG



TGTCAGTCTTCATGCTG
1874



CAGCATGAAGACTGACA
1875


Haemophilia A
GATACAGTGGTCATTACACTTAAGAACATGGCTTCCCATCCTG
1876


Gly102Ser
TCAGTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCTTCTGA


tGGT-AGT
GGGTGAGTAAAATACCCTCCTATTGTCCTGTCATT



AATGACAGGACAATAGGAGGGTATTTTACTCACCCTCAGAAG
1877



CTTTCCAGTAGGATACACCAACAGCATGAAGACTGACAGGAT



GGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATC



ATGCTGTTGGTGTATCC
1878



GGATACACCAACAGCAT
1879


Haemophilia A
CTTTGAGTGTACAGTGGATATAGAAAGGACAATTTTATTTCTTC
1880


Glu113Asp
CTGCTATAGGAGCTGAATATGATGATCAGACCAGTCAAAGGG


GAAt-GAC
AGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGC



GCTTCCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGA
1881



CTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAATA



AAATTGTCCTTTCTATATCCACTGTACACTCAAAG



GGAGCTGAATATGATGA
1882



TCATCATATTCAGCTCC
1883


Haemophilia A
TTGAGTGTACAGTGGATATAGAAAGGACAATTTTATTTCTTCCT
1884


Tyr114Cys
GCTATAGGAGCTGAATATGATGATCAGACCAGTCAAAGGGAG


TAT-TGT
AAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCCA



TGGCTTCCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTT
1885



GACTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAA



TAAAATTGTCCTTTCTATATCCACTGTACACTCAA



AGCTGAATATGATGATC
1886



GATCATCATATTCAGCT
1887


Haemophilia A
GTACAGTGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATA
1888


Asp116Gly
GGAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAA


GAT-GGT
GATGATAAAGTCTTCCCTGGTGGAAGCCATACATA



TATGTATGGCTTCCACCAGGGAAGACTTTATCATCTTCTTTCT
1889



CCCTTTGACTGGTCTGATCATCATATTCAGCTCCTATAGCAGG



AAGAAATAAAATTGTCCTTTCTATATCCACTGTAC



ATATGATGATCAGACCA
1890



TGGTCTGATCATCATAT
1891


Haemophilia A
ACAGTGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATAG
1892


Gln117Term
GAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAAG


tCAG-TAG
ATGATAAAGTCTTCCCTGGTGGAAGCCATACATATG



CATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTTCTTT
1893



CTCCCTTTGACTGGTCTGATCATCATATTCAGCTCCTATAGCA



GGAAGAAATAAAATTGTCCTTTCTATATCCACTGT



ATGATGATCAGACCAGT
1894



ACTGGTCTGATCATCAT
1895


Haemophilia A
TGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATAGGAGC
1896


Thr118Ile
TGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAAGATGA


ACC-ATC
TAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTG



CAGACATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTT
1897



CTTTCTCCCTTTGACTGGTCTGATCATCATATTCAGCTCCTAT



AGCAGGAAGAAATAAAATTGTCCTTTCTATATCCA



TGATCAGACCAGTCAAA
1898



TTTGACTGGTCTGATCA
1899


Haemophilia A
AGGACAATTTTATTTCTTCCTGCTATAGGAGCTGAATATGATG
1900


Glu122Term
ATCAGACCAGTCAAAGGGAGAAAGAAGATGATAAAGTCTTCC


gGAG-TAG
CTGGTGGAAGCCATACATATGTCTGGCAGGTCCTGA



TCAGGACCTGCCAGACATATGTATGGCTTCCACCAGGGAAGA
1901



CTTTATCATCTTCTTTCTCCCTTTGACTGGTCTGATCATCATAT



TCAGCTCCTATAGCAGGAAGAAATAAAATTGTCCT



GTCAAAGGGAGAAAGAA
1902



TTCTTTCTCCCTTTGAC
1903


Haemophilia A
TTTCTTCCTGCTATAGGAGCTGAATATGATGATCAGACCAGTC
1904


Asp126His
AAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCC


tGAT-CAT
ATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTC



GACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCC
1905



ACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGACTGGTC



TGATCATCATATTCAGCTCCTATAGCAGGAAGAAA



AAGAAGATGATAAAGTC
1906



GACTTTATCATCTTCTT
1907


Haemophilia A
AGTCAAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGA
1908


Gln139Term
AGCCATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCA


gCAG-TAG
ATGGCCTCTGACCCACTGTGCCTTACCTACTCATATC



GATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGA
1909



CCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCCAC



CAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGACT



ATGTCTGGCAGGTCCTG
1910



CAGGACCTGCCAGACAT
1911


Haemophilia A
AAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCC
1912


Val140Ala
ATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGG


GTC-GCC
CCTCTGACCCACTGTGCCTTACCTACTCATATCTTTC



GAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATT
1913



GGACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTT



CCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTT



CTGGCAGGTCCTGAAAG
1914



CTTTCAGGACCTGCCAG
1915


Haemophilia A
AGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTG
1916


Asn144Lys
GCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACT


AATg-AAA
GTGCCTTACCTACTCATATCTTTCTCATGTGGACCTG



CAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGG
1917



GTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGAC



ATATGTATGGCTTCCACCAGGGAAGACTTTATCATCT



AAAGAGAATGGTCCAAT
1918



ATTGGACCATTCTCTTT
1919


Haemophilia AG
ATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCA
1920


Gly145Asp
GGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTG


GGT-GAT
CCTTACCTACTCATATCTTTCTCATGTGGACCTGGT



ACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGT
1921



GGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAG



ACATATGTATGGCTTCCACCAGGGAAGACTTTATCAT



AGAGAATGGTCCAATGG
1922



CCATTGGACCATTCTCT
1923


Haemophilia A
ATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCA
1924


Gly145Val
GGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTG


GGT-GTT
CCTTACCTACTCATATCTTTCTCATGTGGACCTGGT



ACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGT
1925



GGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAG



ACATATGTATGGCTTCCACCAGGGAAGACTTTATCAT



AGAGAATGGTCCAATGG
1926



CCATTGGACCATTCTCT
1927


Haemophilia A
GATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCAG
1928


Pro146Ser
GTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGC


tCCA-TCA
CTTACCTACTCATATCTTTCTCATGTGGACCTGGTAA



TTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACA
1929



GTGGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCC



AGACATATGTATGGCTTCCACCAGGGAAGACTTTATC



AGAATGGTCCAATGGCC
1930



GGCCATTGGACCATTCT
1931


Haemophilia A
CCATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAAT
1932


Cys153Trp
GGCCTCTGACCCACTGTGCCTTACCTACTCATATCTTTCTCAT


TGCc-TGG
GTGGACCTGGTAAAAGACTTGAATTCAGGCCTCATT



AATGAGGCCTGAATTCAAGTCTTTTACCAGGTCCACATGAGAA
1933



AGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGA



CCATTCTCTTTCAGGACCTGCCAGACATATGTATGG



CCACTGTGCCTTACCTA
1934



TAGGTAAGGCACAGTGG
1935


Haemophilia A
TGTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGA
1936


Tyr156Term
CCCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCTG


TACt-TAA
GTAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTA



TAGGGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGTC
1937



CACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGA



GGCCATTGGACCATTCTCTTTCAGGACCTGCCAGACA



CTTACCTACTCATATCT
1938



AGATATGAGTAGGTAAG
1939


Haemophilia A
GTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGAC
1940


Ser157Pro
CCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCTGG


cTCA-CCA
TAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTAC



GTAGGGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGT
1941



CCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAG



AGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGAC



TTACCTACTCATATCTT
1942



AAGATATGAGTAGGTAA
1943


Haemophilia A
GTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGC
1944


Ser160Pro
CTTACCTACTCATATCTTTCTCATGTGGACCTGGTAAAAGACT


tTCT-CCT
TGAATTCAGGCCTCATTGGAGCCCTACTAGTATGTA



TACATACTAGTAGGGCTCCAATGAGGCCTGAATTCAAGTCTTT
1945



TACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAG



TGGGTCAGAGGCCATTGGACCATTCTCTTTCAGGAC



CATATCTTTCTCATGTG
1946



CACATGAGAAAGATATG
1947


Haemophilia A
AAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGCCTTACC
1948


Val162Met
TACTCATATCTTTCTCATGTGGACCTGGTAAAAGACTTGAATT


tGTG-ATG
CAGGCCTCATTGGAGCCCTACTAGTATGTAGAGAAG



CTTCTCTACATACTAGTAGGGCTCCAATGAGGCCTGAATTCAA
1949



GTCTTTTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAG



GCACAGTGGGTCAGAGGCCATTGGACCATTCTCTTT



TTTCTCATGTGGACCTG
1950



CAGGTCCACATGAGAAA
1951


Haemophilia A
CAATGGCCTCTGACCCACTGTGCCTTACCTACTCATATCTTTC
1952


Lys166Thr
TCATGTGGACCTGGTAAAAGACTTGAATTCAGGCCTCATTGG


AAA-ACA
AGCCCTACTAGTATGTAGAGAAGGTAAGTGTATGAA



TTCATACACTTACCTTCTCTACATACTAGTAGGGCTCCAATGA
1953



GGCCTGAATTCAAGTCTTTTACCAGGTCCACATGAGAAAGATA



TGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTG



CCTGGTAAAAGACTTGA
1954



TCAAGTCTTTTACCAGG
1955


Haemophilia A
ACCCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCT
1956


Ser170Leu
GGTAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTACTAGT


TCA-TTA
ATGTAGAGAAGGTAAGTGTATGAAAGCGTAGGATTG



CAATCCTACGCTTTCATACACTTACCTTCTCTACATACTAGTAG
1957



GGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGTCCAC



ATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGT



CTTGAATTCAGGCCTCA
1958



TGAGGCCTGAATTCAAG
1959


Haemophilia A
AATGTTCTCACTTCTTTTTCAGGGAGTCTGGCCAAGGAAAAGA
1960


Phe195Val
CACAGACCTTGCACAAATTTATACTACTTTTTGCTGTATTTGAT


aTTT-GTT
GAAGGTTAGTGAGTCTTAATCTGAATTTTGGATT



AATCCAAAATTCAGATTAAGACTCACTAACCTTCATCAAATACA
1961



GCAAAAAGTAGTATAAATTTGTGCAAGGTCTGTGTCTTTTCCT



TGGCCAGACTCCCTGAAAAAGAAGTGAGAACATT



TGCACAAATTTATACTA
1962



TAGTATAAATTTGTGCA
1963


Haemophilia A
CTTCTTTTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCT
1964


Leu198His
TGCACAAATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAG


CTT-CAT
TGAGTCTTAATCTGAATTTTGGATTCCTGAAAGAA



TTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACTAACCTTC
1965



ATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAAGGTCTGT



GTCTTTTCCTTGGCCAGACTCCCTGAAAAAGAAG



TATACTACTTTTTGCTG
1966



CAGCAAAAAGTAGTATA
1967


Haemophilia A
TTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCTTGCACA
1968


Ala200Asp
AATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAGTGAGTC


GCT-GAT
TTAATCTGAATTTTGGATTCCTGAAAGAAATCCTC



GAGGATTTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACT
1969



AACCTTCATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAA



GGTCTGTGTCTTTTCCTTGGCCAGACTCCCTGAAA



ACTTTTTGCTGTATTTG
1970



CAAATACAGCAAAAAGT
1971


Haemophilia A
TTTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCTTGCAC
1972


Ala200Thr
AAATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAGTGAGT


tGCT-ACT
CTTAATCTGAATTTTGGATTCCTGAAAGAAATCCT



AGGATTTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACTA
1973



ACCTTCATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAAG



GTCTGTGTCTTTTCCTTGGCCAGACTCCCTGAAAA



TACTTTTTGCTGTATTT
1974



AAATACAGCAAAAAGTA
1975


Haemophilia A
AACTCCTTGATGCAGGATAGGGATGCTGCATCTGCTCGGGCC
1976


Val234Phe
TGGCCTAAAATGCACACAGTCAATGGTTATGTAAACAGGTCTC


aGTC-TTC
TGCCAGGTATGTACACACCTGCTCAACAATCCTCAG



CTGAGGATTGTTGAGCAGGTGTGTACATACCTGGCAGAGACC
1977



TGTTTACATAACCATTGACTGTGTGCATTTTAGGCCAGGCCCG



AGCAGATGCAGCATCCCTATCCTGCATCAAGGAGTT



TGCACACAGTCAATGGT
1978



ACCATTGACTGTGTGCA
1979


Haemophilia A
ATTTCAGATTCTCTACTTCATAGCCATAGGTGTCTTATTCCTAC
1980


Gly247Glu
TTTACAGGTCTGATTGGATGCCACAGGAAATCAGTCTATTGGC


GGA-GAA
ATGTGATTGGAATGGGCACCACTCCTGAAGTGCA



TGCACTTCAGGAGTGGTGCCCATTCCAATCACATGCCAATAG
1981



ACTGATTTCCTGTGGCATCCAATCAGACCTGTAAAGTAGGAAT



AAGACACCTATGGCTATGAAGTAGAGAATCTGAAAT



TCTGATTGGATGCCACA
1982



TGTGGCATCCAATCAGA
1983


Haemophilia A
ATAGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCAC
1984


Trp255Cys
AGGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACT


TGGc-TGT
CCTGAAGTGCACTCAATATTCCTCGAAGGTCACACA



TGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGT
1985



GCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGGCAT



CCAATCAGACCTGTAAAGTAGGAATAAGACACCTAT



GTCTATTGGCATGTGAT
1986



ATCACATGCCAATAGAC
1987


Haemophilia A
ATAGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCAC
1988


Trp255Term
AGGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACT


TGGc-TGA
CCTGAAGTGCACTCAATATTCCTCGAAGGTCACACA



TGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGT
1989



GCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGGCAT



CCAATCAGACCTGTAAAGTAGGAATAAGACACCTAT



GTCTATTGGCATGTGAT
1990



ATCACATGCCAATAGAC
1991


Haemophilia A
AGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCACAG
1992


His256Leu
GAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCC


CAT-CTT
TGAAGTGCACTCAATATTCCTCGAAGGTCACACATT



AATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTG
1993



GTGCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGG



CATCCAATCAGACCTGTAAAGTAGGAATAAGACACCT



CTATTGGCATGTGATTG
1994



CAATCACATGCCAATAG
1995


Haemophilia A
TATTCCTACTTTACAGGTCTGATTGGATGCCACAGGAAATCAG
1996


Gly259Arg
TCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAAGTGC


tGGA-AGA
ACTCAATATTCCTCGAAGGTCACACATTTCTTGTGA



TCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTC
1997



AGGAGTGGTGCCCATTCCAATCACATGCCAATAGACTGATTT



CCTGTGGCATCCAATCAGACCTGTAAAGTAGGAATA



ATGTGATTGGAATGGGC
1998



GCCCATTCCAATCACAT
1999


Haemophilia A
TTGGATGCCACAGGAAATCAGTCTATTGGCATGTGATTGGAAT
2000


Val266Gly
GGGCACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCA


GTG-GGG
CACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTT



AAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCT
2001



TCGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCATTCCA



ATCACATGCCAATAGACTGATTTCCTGTGGCATCCAA



TCCTGAAGTGCACTCAA
2002



TTGAGTGCACTTCAGGA
2003


Haemophilia A
CAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAAG
2004


Glu272Gly
TGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGAA


GAA-GGA
CCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAAC



GTTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTC
2005



ACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAG



GAGTGGTGCCCATTCCAATCACATGCCAATAGACTG



ATTCCTCGAAGGTCACA
2006



TGTGACCTTCGAGGAAT
2007


Haemophilia A
TCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAA
2008


Glu272Lys
GTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGA


cGAA-AAA
ACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAA



TTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCA
2009



CAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAG



GAGTGGTGCCCATTCCAATCACATGCCAATAGACTGA



TATTCCTCGAAGGTCAC
2010



GTGACCTTCGAGGAATA
2011


Haemophilia A
GGCATGTGATTGGAATGGGCACCACTCCTGAAGTGCACTCAA
2012


Thr275Ile
TATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCATCGCCA


ACA-ATA
GGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTAC



GTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGA
2013



TGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATATTGAGT



GCACTTCAGGAGTGGTGCCCATTCCAATCACATGCC



AGGTCACACATTTCTTG
2014



CAAGAAATGTGTGACCT
2015


Haemophilia A
TTGGAATGGGCACCACTCCTGAAGTGCACTCAATATTCCTCG
2016


Val278Ala
AAGGTCACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCT


GTG-GCG
TGGAAATCTCGCCAATAACTTTCCTTACTGCTCAAAC



GTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCAAGGAC
2017



GCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTTCGAGG



AATATTGAGTGCACTTCAGGAGTGGTGCCCATTCCAA



ATTTCTTGTGAGGAACC
2018



GGTTCCTCACAAGAAAT
2019


Haemophilia A
TGGGCACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTC
2020


Asn280Ile
ACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAA


AAC-ATC
TCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTT



AAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCA
2021



AGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTT



CGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCA



TGTGAGGAACCATCGCC
2022



GGCGATGGTTCCTCACA
2023


Haemophilia A
ACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACAT
2024


Arg282Cys
TTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGC


tCGC-TGC
CAATAACTTTCCTTACTGCTCAAACACTCTTGATGG



CCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGA
2025



TTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGT



GACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGT



GGAACCATCGCCAGGCG
2026



CGCCTGGCGATGGTTCC
2027


Haemophilia A
CCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATT
2028


Arg282His
TCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCC


CGC-CAC
AATAACTTTCCTTACTGCTCAAACACTCTTGATGGA



TCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAG
2029



ATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTG



TGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGG



GAACCATCGCCAGGCGT
2030



ACGCCTGGCGATGGTTC
2031


Haemophilia A
CCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATT
2032


Arg282Leu
TCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCC


CGC-CTC
AATAACTTTCCTTACTGCTCAAACACTCTTGATGGA



TCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAG
2033



ATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTG



TGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGG



GAACCATCGCCAGGCGT
2034



ACGCCTGGCGATGGTTC
2035


Haemophilia A
CTGAAGTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGT
2036


Ala284Glu
GAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAAC


GCG-GAG
TTTCCTTACTGCTCAAACACTCTTGATGGACCTTGG



CCAAGGTCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATT
2037



GGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAG



AAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAG



TCGCCAGGCGTCCTTGG
2038



CCAAGGACGCCTGGCGA
2039


Haemophilia A
CCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATTTCTTG
2040


Ala284Pro
TGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAA


gGCG-CCG
CTTTCCTTACTGCTCAAACACTCTTGATGGACCTTG



CAAGGTCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTG
2041



GCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAA



ATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGG



ATCGCCAGGCGTCCTTG
2042



CAAGGACGCCTGGCGAT
2043


Haemophilia A
TATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCATCGCCA
2044


Ser289Leu
GGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTACTGCTCAA


TCG-TTG
ACACTCTTGATGGACCTTGGACAGTTTCTACTGTT



AACAGTAGAAACTGTCCAAGGTCCATCAAGAGTGTTTGAGCA
2045



GTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGA



TGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATA



GGAAATCTCGCCAATAA
2046



TTATTGGCGAGATTTCC
2047


Haemophilia A
GTCACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGG
2048


Phe293Ser
AAATCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGAT


TTC-TCC
GGACCTTGGACAGTTTCTACTGTTTTGTCATATCTC



GAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCATCAAG
2049



AGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCAAG



GACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGAC



AATAACTTTCCTTACTG
2050



CAGTAAGGAAAGTTATT
2051


Haemophilia A
ACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATC
2052


Thr295Ala
TCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACC


tACT-GCT
TTGGACAGTTTCTACTGTTTTGTCATATCTCTTCCC



GGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCA
2053



TCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTC



CAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGT



CTTTCCTTACTGCTCAA
2054



TTGAGCAGTAAGGAAAG
2055


Haemophilia A
CATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCT
2056


Thr295Ile
CGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACCT


ACT-ATT
TGGACAGTTTCTACTGTTTTGTCATATCTCTTCCCA



TGGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCC
2057



ATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTT



CCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATG



TTTCCTTACTGCTCAAA
2058



TTTGAGCAGTAAGGAAA
2059


Haemophilia A
TTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGC
2060


Ala296Val
CAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACCTTGG


GCT-GTT
ACAGTTTCTACTGTTTTGTCATATCTCTTCCCACCA



TGGTGGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGG
2061



TCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAG



ATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAA



CCTTACTGCTCAAACAC
2062



GTGTTTGAGCAGTAAGG
2063


Haemophilia A
TCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGA
2064


Leu308Pro
CCTTGGACAGTTTCTACTGTTTTGTCATATCTCTTCCCACCAA


CTG-CCG
CATGGTAATATCTTGGATCTTTAAAATGAATATTA



TAATATTCATTTTAAAGATCCAAGATATTACCATGTTGGTGGGA
2065



AGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCATCAA



GAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGA



GTTTCTACTGTTTTGTC
2066



GACAAAACAGTAGAAAC
2067


Haemophilia A
ACAGCCTAATATAGCAAGACACTCTGACATTGTTTGGTTTGTC
2068


Glu321Lys
TGACTCCAGATGGCATGGAAGCTTATGTCAAAGTAGACAGCT


gGAA-AAA
GTCCAGAGGAACCCCAACTACGAATGAAAAATAATG



CATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGACAGCTGTC
2069



TACTTTGACATAAGCTTCCATGCCATCTGGAGTCAGACAAACC



AAACAATGTCAGAGTGTCTTGCTATATTAGGCTGT



ATGGCATGGAAGCTTAT
2070



ATAAGCTTCCATGCCAT
2071


Haemophilia A
ATATAGCAAGACACTCTGACATTGTTTGGTTTGTCTGACTCCA
2072


Tyr323Term
GATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGTCCAGAG


TATg-TAA
GAACCCCAACTACGAATGAAAAATAATGAAGAAGCG



CGCTTCTTCATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGA
2073



CAGCTGTCTACTTTGACATAAGCTTCCATGCCATCTGGAGTCA



GACAAACCAAACAATGTCAGAGTGTCTTGCTATAT



GAAGCTTATGTCAAAGT
2074



ACTTTGACATAAGCTTC
2075


Haemophilia A
AAGACACTCTGACATTGTTTGGTTTGTCTGACTCCAGATGGCA
2076


Val326Leu
TGGAAGCTTATGTCAAAGTAGACAGCTGTCCAGAGGAACCCC


aGTA-CTA
AACTACGAATGAAAAATAATGAAGAAGCGGAAGACT



AGTCTTCCGCTTCTTCATTATTTTTCATTCGTAGTTGGGGTTC
2077



CTCTGGACAGCTGTCTACTTTGACATAAGCTTCCATGCCATCT



GGAGTCAGACAAACCAAACAATGTCAGAGTGTCTT



ATGTCAAAGTAGACAGC
2078



GCTGTCTACTTTGACAT
2079


Haemophilia A
TGACATTGTTTGGTTTGTCTGACTCCAGATGGCATGGAAGCTT
2080


Cys329Arg
ATGTCAAAGTAGACAGCTGTCCAGAGGAACCCCAACTACGAA


cTGT-CGT
TGAAAAATAATGAAGAAGCGGAAGACTATGATGATG



CATCATCATAGTCTTCCGCTTCTTCATTATTTTTCATTCGTAGT
2081



TGGGGTTCCTCTGGACAGCTGTCTACTTTGACATAAGCTTCC



ATGCCATCTGGAGTCAGACAAACCAAACAATGTCA



TAGACAGCTGTCCAGAG
2082



CTCTGGACAGCTGTCTA
2083


Haemophilia A
GACATTGTTTGGTTTGTCTGACTCCAGATGGCATGGAAGCTTA
2084


Cys329Tyr
TGTCAAAGTAGACAGCTGTCCAGAGGAACCCCAACTACGAAT


TGT-TAT
GAAAAATAATGAAGAAGCGGAAGACTATGATGATGA



TCATCATCATAGTCTTCCGCTTCTTCATTATTTTTCATTCGTAG
2085



TTGGGGTTCCTCTGGACAGCTGTCTACTTTGACATAAGCTTCC



ATGCCATCTGGAGTCAGACAAACCAAACAATGTC



AGACAGCTGTCCAGAGG
2086



CCTCTGGACAGCTGTCT
2087


Haemophilia A
ACTCCAGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGT
2088


Arg336Term
CCAGAGGAACCCCAACTACGAATGAAAAATAATGAAGAAGCG


aCGA-TGA
GAAGACTATGATGATGATCTTACTGATTCTGAAATGG



CCATTTCAGAATCAGTAAGATCATCATCATAGTCTTCCGCTTC
2089



TTCATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGACAGCTG



TCTACTTTGACATAAGCTTCCATGCCATCTGGAGT



CCCAACTACGAATGAAA
2090



TTTCATTCGTAGTTGGG
2091


Haemophilia A
GATTCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTC
2092


Arg372Cys
CTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAA


tCGC-TGC
AACTTGGGTACATTACATTGCTGCTGAAGAGGAGG



CCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGATG
2093



CTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGAGTT



GTCATCATCAAACCTGACCACATCCATTTCAGAATC



TCCAAATTCGCTCAGTT
2094



AACTGAGCGAATTTGGA
2095


Haemophilia A
ATTCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCC
2096


Arg372His
TTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAA


CGC-CAC
ACTTGGGTACATTACATTGCTGCTGAAGAGGAGGA



TCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGAT
2097



GCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGAGT



TGTCATCATCAAACCTGACCACATCCATTTCAGAAT



CCAAATTCGCTCAGTTG
2098



CAACTGAGCGAATTTGG
2099


Haemophilia A
CTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTTC
2100


Ser373Leu
CTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACT


TCA-TTA
TGGGTACATTACATTGCTGCTGAAGAGGAGGACTG



CAGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAG
2101



GATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAG



AGTTGTCATCATCAAACCTGACCACATCCATTTCAG



AATTCGCTCAGTTGCCA
2102



TGGCAACTGAGCGAATT
2103


Haemophilia A
TCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTT
2104


Ser373Pro
CCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAAC


cTCA-CCA
TTGGGTACATTACATTGCTGCTGAAGAGGAGGACT



AGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGG
2105



ATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGA



GTTGTCATCATCAAACCTGACCACATCCATTTCAGA



AAATTCGCTCAGTTGCC
2106



GGCAACTGAGCGAATTT
2107


Haemophilia A
CTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTTC
2108


Ser373Term
CTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACT


TCA-TAA
TGGGTACATTACATTGCTGCTGAAGAGGAGGACTG



CAGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAG
2109



GATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAG



AGTTGTCATCATCAAACCTGACCACATCCATTTCAG



AATTCGCTCAGTTGCCA
2110



TGGCAACTGAGCGAATT
2111


Haemophilia A
CCTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTA
2112


Ile386Phe
AAACTTGGGTACATTACATTGCTGCTGAAGAGGAGGACTGGG


cATT-TTT
ACTATGCTCCCTTAGTCCTCGCCCCCGATGACAGGT



ACCTGTCATCGGGGGCGAGGACTAAGGGAGCATAGTCCCAG
2113



TCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGAT



GCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGG



TACATTACATTGCTGCT
2114



AGCAGCAATGTAATGTA
2115


Haemophilia A
CTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAA
2116


Ile386Ser
AACTTGGGTACATTACATTGCTGCTGAAGAGGAGGACTGGGA


ATT-AGT
CTATGCTCCCTTAGTCCTCGCCCCCGATGACAGGTA



TACCTGTCATCGGGGGCGAGGACTAAGGGAGCATAGTCCCA
2117



GTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGA



TGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAG



ACATTACATTGCTGCTG
2118



CAGCAGCAATGTAATGT
2119


Haemophilia A
AAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACTTGGGTACA
2120


Glu390Gly
TTACATTGCTGCTGAAGAGGAGGACTGGGACTATGCTCCCTT


GAG-GGG
AGTCCTCGCCCCCGATGACAGGTAAGCACTTTTTGA



TCAAAAAGTGCTTACCTGTCATCGGGGGCGAGGACTAAGGGA
2121



GCATAGTCCCAGTCCTCCTCTTCAGCAGCAATGTAATGTACC



CAAGTTTTAGGATGCTTCTTGGCAACTGAGCGAATTT



TGCTGAAGAGGAGGACT
2122



AGTCCTCCTCTTCAGCA
2123


Haemophilia A
TCAGTTGCCAAGAAGCATCCTAAAACTTGGGTACATTACATTG
2124


Trp393Gly
CTGCTGAAGAGGAGGACTGGGACTATGCTCCCTTAGTCCTCG


cTGG-GGG
CCCCCGATGACAGGTAAGCACTTTTTGACTATTGGT



ACCAATAGTCAAAAAGTGCTTACCTGTCATCGGGGGCGAGGA
2125



CTAAGGGAGCATAGTCCCAGTCCTCCTCTTCAGCAGCAATGT



AATGTACCCAAGTTTTAGGATGCTTCTTGGCAACTGA



AGGAGGACTGGGACTAT
2126



ATAGTCCCAGTCCTCCT
2127


Haemophilia A
GCCTACCTAGAATTTTTCTTCCCAACCTCTCATCTTTTTTTCTC
2128


Lys408Ile
TTATACAGAAGTTATAAAAGTCAATATTTGAACAATGGCCCTC


AAA-ATA
AGCGGATTGGTAGGAAGTACAAAAAAGTCCGATT



AATCGGACTTTTTTGTACTTCCTACCAATCCGCTGAGGGCCAT
2129



TGTTCAAATATTGACTTTTATAACTTCTGTATAAGAGAAAAAAA



GATGAGAGGTTGGGAAGAAAAATTCTAGGTAGGC



AAGTTATAAAAGTCAAT
2130



ATTGACTTTTATAACTT
2131


Haemophilia A
TTTTCTTCCCAACCTCTCATCTTTTTTTCTCTTATACAGAAGTT
2132


Leu412Phe
ATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTAG


TTGa-TTT
GAAGTACAAAAAAGTCCGATTTATGGCATACACA



TGTGTATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATC
2133



CGCTGAGGGCCATTGTTCAAATATTGACTTTTATAACTTCTGT



ATAAGAGAAAAAAAGATGAGAGGTTGGGAAGAAAA



CAATATTTGAACAATGG
2134



CCATTGTTCAAATATTG
2135


Haemophilia A
TCATCTTTTTTTCTCTTATACAGAAGTTATAAAAGTCAATATTTG
2136


Arg418Trp
AACAATGGCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTC


gCGG-TGG
CGATTTATGGCATACACAGATGAAACCTTTAAGA



TCTTAAAGGTTTCATCTGTGTATGCCATAAATCGGACTTTTTTG
2137



TACTTCCTACCAATCCGCTGAGGGCCATTGTTCAAATATTGAC



TTTTATAACTTCTGTATAAGAGAAAAAAAGATGA



GCCCTCAGCGGATTGGT
2138



ACCAATCCGCTGAGGGC
2139


Haemophilia A
TTTTTCTCTTATACAGAAGTTATAAAAGTCAATATTTGAACAAT
2140


Gly420Val
GGCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTCCGATTT


GGT-GTT
ATGGCATACACAGATGAAACCTTTAAGACTCGTGA



TCACGAGTCTTAAAGGTTTCATCTGTGTATGCCATAAATCGGA
2141



CTTTTTTGTACTTCCTACCAATCCGCTGAGGGCCATTGTTCAA



ATATTGACTTTTATAACTTCTGTATAAGAGAAAAA



GCGGATTGGTAGGAAGT
2142



ACTTCCTACCAATCCGC
2143


Haemophilia A
GAAGTTATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGAT
2144


Lys425Arg
TGGTAGGAAGTACAAAAAAGTCCGATTTATGGCATACACAGAT


AAA-AGA
GAAACCTTTAAGACTCGTGAAGCTATTCAGCATGA



TCATGCTGAATAGCTTCACGAGTCTTAAAGGTTTCATCTGTGT
2145



ATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATCCGCTG



AGGGCCATTGTTCAAATATTGACTTTTATAACTTC



GTACAAAAAAGTCCGAT
2146



ATCGGACTTTTTTGTAC
2147


Haemophilia A
TATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTA
2148


Arg427Term
GGAAGTACAAAAAAGTCCGATTTATGGCATACACAGATGAAAC


cCGA-TGA
CTTTAAGACTCGTGAAGCTATTCAGCATGAATCAG



CTGATTCATGCTGAATAGCTTCACGAGTCTTAAAGGTTTCATC
2149



TGTGTATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATC



CGCTGAGGGCCATTGTTCAAATATTGACTTTTATA



AAAAAGTCCGATTTATG
2150



CATAAATCGGACTTTTT
2151


Haemophilia A
TATTTGAACAATGGCCCTCAGCGGATTGGTAGGAAGTACAAA
2152


Tyr431Asn
AAAGTCCGATTTATGGCATACACAGATGAAACCTTTAAGACTC


aTAC-AAC
GTGAAGCTATTCAGCATGAATCAGGAATCTTGGGAC



GTCCCAAGATTCCTGATTCATGCTGAATAGCTTCACGAGTCTT
2153



AAAGGTTTCATCTGTGTATGCCATAAATCGGACTTTTTTGTAC



TTCCTACCAATCCGCTGAGGGCCATTGTTCAAATA



TTATGGCATACACAGAT
2154



ATCTGTGTATGCCATAA
2155


Haemophilia A
GCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTCCGATTTA
2156


Thr435Ile
TGGCATACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCA


ACC-ATC
GCATGAATCAGGAATCTTGGGACCTTTACTTTATGG



CCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAATAG
2157



CTTCACGAGTCTTAAAGGTTTCATCTGTGTATGCCATAAATCG



GACTTTTTTGTACTTCCTACCAATCCGCTGAGGGC



AGATGAAACCTTTAAGA
2158



TCTTAAAGGTTTCATCT
2159


Haemophilia A
ACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCAGCATGA
2160


Pro451Leu
ATCAGGAATCTTGGGACCTTTACTTTATGGGGAAGTTGGAGA


CCT-CTT
CACACTGTTGGTAAGTTGAAGAAAAGATTTAAGGTC



GACCTTAAATCTTTTCTTCAACTTACCAACAGTGTGTCTCCAA
2161



CTTCCCCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTG



AATAGCTTCACGAGTCTTAAAGGTTTCATCTGTGT



CTTGGGACCTTTACTTT
2162



AAAGTAAAGGTCCCAAG
2163


Haemophilia A
TACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCAGCATG
2164


Pro451Thr
AATCAGGAATCTTGGGACCTTTACTTTATGGGGAAGTTGGAGA


aCCT-ACT
CACACTGTTGGTAAGTTGAAGAAAAGATTTAAGGT



ACCTTAAATCTTTTCTTCAACTTACCAACAGTGTGTCTCCAACT
2165



TCCCCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAA



TAGCTTCACGAGTCTTAAAGGTTTCATCTGTGTA



TCTTGGGACCTTTACTT
2166



AAGTAAAGGTCCCAAGA
2167


Haemophilia A
ACCTTTAAGACTCGTGAAGCTATTCAGCATGAATCAGGAATCT
2168


Gly455Arg
TGGGACCTTTACTTTATGGGGAAGTTGGAGACACACTGTTGG


tGGG-AGG
TAAGTTGAAGAAAAGATTTAAGGTCAGGTAAGAAGA



TCTTCTTACCTGACCTTAAATCTTTTCTTCAACTTACCAACAGT
2169



GTGTCTCCAACTTCCCCATAAAGTAAAGGTCCCAAGATTCCTG



ATTCATGCTGAATAGCTTCACGAGTCTTAAAGGT



TACTTTATGGGGAAGTT
2170



AACTTCCCCATAAAGTA
2171


Haemophilia A
CCTTTAAGACTCGTGAAGCTATTCAGCATGAATCAGGAATCTT
2172


Gly455Glu
GGGACCTTTACTTTATGGGGAAGTTGGAGACACACTGTTGGT


GGG-GAG
AAGTTGAAGAAAAGATTTAAGGTCAGGTAAGAAGAA



TTCTTCTTACCTGACCTTAAATCTTTTCTTCAACTTACCAACAG
2173



TGTGTCTCCAACTTCCCCATAAAGTAAAGGTCCCAAGATTCCT



GATTCATGCTGAATAGCTTCACGAGTCTTAAAGG



ACTTTATGGGGAAGTTG
2174



CAACTTCCCCATAAAGT
2175


Haemophilia A
CGTGAAGCTATTCAGCATGAATCAGGAATCTTGGGACCTTTAC
2176


Asp459Asn
TTTATGGGGAAGTTGGAGACACACTGTTGGTAAGTTGAAGAA


aGAC-AAC
AAGATTTAAGGTCAGGTAAGAAGAAAAAGTCTGGAG



CTCCAGACTTTTTCTTCTTACCTGACCTTAAATCTTTTCTTCAA
2177



CTTACCAACAGTGTGTCTCCAACTTCCCCATAAAGTAAAGGTC



CCAAGATTCCTGATTCATGCTGAATAGCTTCACG



AAGTTGGAGACACACTG
2178



CAGTGTGTCTCCAACTT
2179


Haemophilia A
TGTTGATCCTAGTCGTTTTAGGATTTGATCTTAGATCTCGCTTA
2180


Phe465Cys
TACTTTCAGATTATATTTAAGAATCAAGCAAGCAGACCATATAA


TTT-TGT
CATCTACCCTCACGGAATCACTGATGTCCGTCC



GGACGGACATCAGTGATTCCGTGAGGGTAGATGTTATATGGT
2181



CTGCTTGCTTGATTCTTAAATATAATCTGAAAGTATAAGCGAG



ATCTAAGATCAAATCCTAAAACGACTAGGATCAACA



GATTATATTTAAGAATC
2182



GATTCTTAAATATAATC
2183


Haemophilia A
TCGTTTTAGGATTTGATCTTAGATCTCGCTTATACTTTCAGATT
2184


Ala469Gly
ATATTTAAGAATCAAGCAAGCAGACCATATAACATCTACCCTC


GCA-GGA
ACGGAATCACTGATGTCCGTCCTTTGTATTCAAG



CTTGAATACAAAGGACGGACATCAGTGATTCCGTGAGGGTAG
2185



ATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATCTGAAA



GTATAAGCGAGATCTAAGATCAAATCCTAAAACGA



GAATCAAGCAAGCAGAC
2186



GTCTGCTTGCTTGATTC
2187


Haemophilia A
TTAGGATTTGATCTTAGATCTCGCTTATACTTTCAGATTATATT
2188


Arg471Gly
TAAGAATCAAGCAAGCAGACCATATAACATCTACCCTCACGG


cAGA-GGA
AATCACTGATGTCCGTCCTTTGTATTCAAGGAGAT



ATCTCCTTGAATACAAAGGACGGACATCAGTGATTCCGTGAG
2189



GGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATC



TGAAAGTATAAGCGAGATCTAAGATCAAATCCTAA



AAGCAAGCAGACCATAT
2190



ATATGGTCTGCTTGCTT
2191


Haemophilia A
TTGATCTTAGATCTCGCTTATACTTTCAGATTATATTTAAGAAT
2192


Tyr473Cys
CAAGCAAGCAGACCATATAACATCTACCCTCACGGAATCACT


TAT-TGT
GATGTCCGTCCTTTGTATTCAAGGAGATTACCAAA



TTTGGTAATCTCCTTGAATACAAAGGACGGACATCAGTGATTC
2193



CGTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAA



TATAATCTGAAAGTATAAGCGAGATCTAAGATCAA



CAGACCATATAACATCT
2194



AGATGTTATATGGTCTG
2195


Haemophilia A
TTTGATCTTAGATCTCGCTTATACTTTCAGATTATATTTAAGAA
2196


Tyr473His
TCAAGCAAGCAGACCATATAACATCTACCCTCACGGAATCACT


aTAT-CAT
GATGTCCGTCCTTTGTATTCAAGGAGATTACCAA



TTGGTAATCTCCTTGAATACAAAGGACGGACATCAGTGATTCC
2197



GTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAAT



ATAATCTGAAAGTATAAGCGAGATCTAAGATCAAA



GCAGACCATATAACATC
2198



GATGTTATATGGTCTGC
2199


Haemophilia A
TTAGATCTCGCTTATACTTTCAGATTATATTTAAGAATCAAGCA
2200


Ile475Thr
AGCAGACCATATAACATCTACCCTCACGGAATCACTGATGTCC


ATC-ACC
GTCCTTTGTATTCAAGGAGATTACCAAAAGGTAA



TTACCTTTTGGTAATCTCCTTGAATACAAAGGACGGACATCAG
2201



TGATTCCGTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATT



CTTAAATATAATCTGAAAGTATAAGCGAGATCTAA



ATATAACATCTACCCTC
2202



GAGGGTAGATGTTATAT
2203


Haemophilia A
TTATACTTTCAGATTATATTTAAGAATCAAGCAAGCAGACCATA
2204


Gly479Arg
TAACATCTACCCTCACGGAATCACTGATGTCCGTCCTTTGTAT


cGGA-AGA
TCAAGGAGATTACCAAAAGGTAAATATTCCCTCG



CGAGGGAATATTTACCTTTTGGTAATCTCCTTGAATACAAAGG
2205



ACGGACATCAGTGATTCCGTGAGGGTAGATGTTATATGGTCT



GCTTGCTTGATTCTTAAATATAATCTGAAAGTATAA



ACCCTCACGGAATCACT
2206



AGTGATTCCGTGAGGGT
2207


Haemophilia A
CCAATTCTGCCAGGAGAAATATTCAAATATAAATGGACAGTGA
2208


Thr522Ser
CTGTAGAAGATGGGCCAACTAAATCAGATCCTCGGTGCCTGA


aACT-TCT
CCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAG



CTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGC
2209



ACCGAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGT



CCATTTATATTTGAATATTTCTCCTGGCAGAATTGG



ATGGGCCAACTAAATCA
2210



TGATTTAGTTGGCCCAT
2211


Haemophilia A
CCAGGAGAAATATTCAAATATAAATGGACAGTGACTGTAGAAG
2212


Asp525Asn
ATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATT


aGAT-AAT
ACTCTAGTTTCGTTAATATGGAGAGAGATCTAGCTT



AAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCG
2213



GGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTAC



AGTCACTGTCCATTTATATTTGAATATTTCTCCTGG



CTAAATCAGATCCTCGG
2214



CCGAGGATCTGATTTAG
2215


Haemophilia A
GAAATATTCAAATATAAATGGACAGTGACTGTAGAAGATGGGC
2216


Arg527Trp
CAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA


tCGG-TGG
GTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGAC



GTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTA
2217



ATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATC



TTCTACAGTCACTGTCCATTTATATTTGAATATTTC



CAGATCCTCGGTGCCTG
2218



CAGGCACCGAGGATCTG
2219


Haemophilia A
TATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCA
2220


Arg531Cys
GATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATA


cCGC-TGC
TGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTC



GAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA
2221



CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATT



TAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATA



GCCTGACCCGCTATTAC
2222



GTAATAGCGGGTCAGGC
2223


Haemophilia A
TATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCA
2224


Arg531Gly
GATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATA


cCGC-GGC
TGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTC



GAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA
2225



CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATT



TAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATA



GCCTGACCCGCTATTAC
2226



GTAATAGCGGGTCAGGC
2227


Haemophilia A
ATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCAG
2228


Arg531His
ATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATAT


CGC-CAC
GGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCT



AGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA
2229



CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATT



TAGTTGGCCCATCTTCTACAGTCACTGTCCATTTAT



CCTGACCCGCTATTACT
2230



AGTAATAGCGGGTCAGG
2231


Haemophilia A
ACAGTGACTGTAGAAGATGGGCCAACTAAATCAGATCCTCGG
2232


Ser534Pro
TGCCTGACCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAG


cTCT-CCT
ATCTAGCTTCAGGACTCATTGGCCCTCTCCTCATCT



AGATGAGGAGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCT
2233



CCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACCGAG



GATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGT



GCTATTACTCTAGTTTC
2234



GAAACTAGAGTAATAGC
2235


Haemophilia A
GTGACTGTAGAAGATGGGCCAACTAAATCAGATCCTCGGTGC
2236


Ser535Gly
CTGACCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAGATC


tAGT-GGT
TAGCTTCAGGACTCATTGGCCCTCTCCTCATCTGCT



AGCAGATGAGGAGAGGGCCAATGAGTCCTGAAGCTAGATCTC
2237



TCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACC



GAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCAC



ATTACTCTAGTTTCGTT
2238



AACGAAACTAGAGTAAT
2239


Haemophilia A
TAGAAGATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCC
2240


Val537Asp
GCTATTACTCTAGTTTCGTTAATATGGAGAGAGATCTAGCTTC


GTT-GAT
AGGACTCATTGGCCCTCTCCTCATCTGCTACAAAGA



TCTTTGTAGCAGATGAGGAGAGGGCCAATGAGTCCTGAAGCT
2241



AGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCA



GGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTA



TAGTTTCGTTAATATGG
2242



CCATATTAACGAAACTA
2243


Haemophilia A
CAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA
2244


Arg541Thr
GTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGG


AGA-ACA
CCCTCTCCTCATCTGCTACAAAGAATCTGTAGATCA



TGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAATG
2245



AGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGT



AATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTG



TATGGAGAGAGATCTAG
2246



CTAGATCTCTCTCCATA
2247


Haemophilia A
CTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTTT
2248


Asp542Gly
CGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCC


GAT-GGT
TCTCCTCATCTGCTACAAAGAATCTGTAGATCAAAG



CTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCA
2249



ATGAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAG



AGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAG



GGAGAGAGATCTAGCTT
2250



AAGCTAGATCTCTCTCC
2251


Haemophilia A
ACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTT
2252


Asp542His
TCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCC


aGAT-CAT
CTCTCCTCATCTGCTACAAAGAATCTGTAGATCAAA



TTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAAT
2253



GAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAG



TAATAGCGGGTCAGGCACCGAGGATCTGATTTAGT



TGGAGAGAGATCTAGCT
2254



AGCTAGATCTCTCTCCA
2255


Haemophilia A
ACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTT
2256


Asp542Tyr
TCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCC


aGAT-TAT
CTCTCCTCATCTGCTACAAAGAATCTGTAGATCAAA



TTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAAT
2257



GAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAG



TAATAGCGGGTCAGGCACCGAGGATCTGATTTAGT



TGGAGAGAGATCTAGCT
2258



AGCTAGATCTCTCTCCA
2259


Haemophilia A
GTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCT
2260


Glu557Term
CTCCTCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACC


aGAA-TAA
AGGTGAGTTCTTGCCTTTCCAAGTGCTGGGTTTCAT



ATGAAACCCAGCACTTGGAAAGGCAAGAACTCACCTGGTTTC
2261



CTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGC



CAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAAC



GCTACAAAGAATCTGTA
2262



TACAGATTCTTTGTAGC
2263


Haemophilia A
ATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCTCC
2264


Ser558Phe
TCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGGT


TCT-TTT
GAGTTCTTGCCTTTCCAAGTGCTGGGTTTCATTCTC



GAGAATGAAACCCAGCACTTGGAAAGGCAAGAACTCACCTGG
2265



TTTCCTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAG



GGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATAT



CAAAGAATCTGTAGATC
2266



GATCTACAGATTCTTTG
2267


Haemophilia A
TGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCTCCTCA
2268


Val559Ala
TCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGGTGA


GTA-GCA
GTTCTTGCCTTTCCAAGTGCTGGGTTTCATTCTCAGT



ACTGAGAATGAAACCCAGCACTTGGAAAGGCAAGAACTCACC
2269



TGGTTTCCTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGA



GAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCA



AGAATCTGTAGATCAAA
2270



TTTGATCTACAGATTCT
2271









EXAMPLE 14
Hemophilia—Factor IX Deficiency

The attached table discloses the correcting oligonucleotide base sequences for the Factor IX oligonucleotides of the invention.









TABLE 21







Factor IX Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Haemophilia B
ATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAA
2272


Asn2Asp
TCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTT


tAAT-GAT
CAAGGGAACCTTGAGAGAGAATGTATGGAAGAAA



TTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCT
2273



TCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTT



GTTGGCGTTTTCATGATCAAGAAAAACTGAAAT



AGAGGTATAATTCAGGT
2274



ACCTGAATTATACCTCT
2275


Haemophilia B
TTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAAT
2276


Asn2Ile
CGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTT


AAT-ATT
CAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAA



TTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTC
2277



TTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTT



TGTTGGCGTTTTCATGATCAAGAAAAACTGAAA



GAGGTATAATTCAGGTA
2278



TACCTGAATTATACCTC
2279


Haemophilia B
ATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAA
2280


Asn2Tyr
TCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTT


tAAT-TAT
CAAGGGAACCTTGAGAGAGAATGTATGGAAGAAA



TTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCT
2281



TCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTT



GTTGGCGTTTTCATGATCAAGAAAAACTGAAAT



AGAGGTATAATTCAGGT
2282



ACCTGAATTATACCTCT
2283


Haemophilia B
TCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATC
2284


Ser3Pro
GGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCA


tTCA-CCA
AGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT



ACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAAC
2285



TCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAA



TTTTGTTGGCGTTTTCATGATCAAGAAAAACTGA



GGTATAATTCAGGTAAA
2286



TTTACCTGAATTATACC
2287


Haemophilia B
TTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCC
2288


Gly4Asp
AAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGG


GGT-GAT
AACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAG



CTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAAC
2289



AAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCA



GAATTTTGTTGGCGTTTTCATGATCAAGAAAAA



TAATTCAGGTAAATTGG
2290



CCAATTTACCTGAATTA
2291


Haemophilia B
GTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGC
2292


Gly4Ser
CAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGG


aGGT-AGT
GAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTA



TACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACA
2293



AACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCA



GAATTTTGTTGGCGTTTTCATGATCAAGAAAAAC



ATAATTCAGGTAAATTG
2294



CAATTTACCTGAATTAT
2295


Haemophilia B
TTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAA
2296


Lys5Glu
AGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAA


tAAA-GAA
CCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTT



AACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGA
2297



ACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATT



CAGAATTTTGTTGGCGTTTTCATGATCAAGAAA



ATTCAGGTAAATTGGAA
2298



TTCCAATTTACCTGAAT
2299


Haemophilia B
ATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTA
2300


Glu7Ala
TAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAG


GAA-GCA
AGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGA



TCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTT
2301



CCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTG



GCCGATTCAGAATTTTGTTGGCGTTTTCATGAT



TAAATTGGAAGAGTTTG
2302



CAAACTCTTCCAATTTA
2303


Haemophilia B
GATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGG
2304


Glu7Lys
TATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTG


gGAA-AAA
AGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAG



CTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTC
2305



CCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGG



CCGATTCAGAATTTTGTTGGCGTTTTCATGATC



GTAAATTGGAAGAGTTT
2306



AAACTCTTCCAATTTAC
2307


Haemophilia B
ATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTA
2308


Glu7Val
TAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAG


GAA-GTA
AGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGA



TCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTT
2309



CCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTG



GCCGATTCAGAATTTTGTTGGCGTTTTCATGAT



TAAATTGGAAGAGTTTG
2310



CAAACTCTTCCAATTTA
2311


Haemophilia B
ATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA
2312


Glu8Ala
TTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAG


GAG-GCG
AGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGC



GCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAG
2313



GTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCT



TTGGCCGATTCAGAATTTTGTTGGCGTTTTCAT



ATTGGAAGAGTTTGTTC
2314



GAACAAACTCTTCCAAT
2315


Haemophilia B
ATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA
2316


Glu8Gly
TTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAG


GAG-GGG
AGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGC



GCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAG
2317



GTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCT



TTGGCCGATTCAGAATTTTGTTGGCGTTTTCAT



ATTGGAAGAGTTTGTTC
2318



GAACAAACTCTTCCAAT
2319


Haemophilia B
AAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTC
2320


Phe9Cys
AGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGA


TTT-TGT
ATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACG



CGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTC
2321



AAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATAC



CTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTT



GGAAGAGTTTGTTCAAG
2322



CTTGAACAAACTCTTCC
2323


Haemophilia B
GAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATT
2324


Phe9Ile
CAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAG


gTTT-ATT
AATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCAC



GTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCA
2325



AGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACC



TCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTC



TGGAAGAGTTTGTTCAA
2326



TTGAACAAACTCTTCCA
2327


Haemophilia B
TTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTC
2328


Arg(−1)Ser
TGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTT


AGGt-AGC
TGTTCAAGGGAACCTTGAGAGAGAATGTATGGAA



TTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCC
2329



AATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTT



GGCGTTTTCATGATCAAGAAAAACTGAAATGTAA



CCAAAGAGGTATAATTC
2330



GAATTATACCTCTTTGG
2331


Haemophilia B
TTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATT
2332


Arg(−1)Thr
CTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAG


AGG-ACG
TTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGA



TCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCA
2333



ATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTG



GCGTTTTCATGATCAAGAAAAACTGAAATGTAAA



GCCAAAGAGGTATAATT
2334



AATTATACCTCTTTGGC
2335


Haemophilia B
CTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAA
2336


Lys(−2)Asn
TTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGA


AAGa-AAT
GTTTGTTCAAGGGAACCTTGAGAGAGAATGTATG



CATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAAT
2337



TTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGG



CGTTTTCATGATCAAGAAAAACTGAAATGTAAAAG



CGGCCAAAGAGGTATAA
2338



TTATACCTCTTTGGCCG
2339


Haemophilia B
AATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCC
2340


Arg(−4)Gln
AACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAAT


CGG-CAG
TGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGA



TCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTG
2341



AATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCA



TGATCAAGAAAAACTGAAATGTAAAAGAATAATT



TCTGAATCGGCCAAAGA
2342



TCTTTGGCCGATTCAGA
2343


Haemophilia B
AATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCC
2344


Arg(−4)Leu
AACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAAT


CGG-CTG
TGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGA



TCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTG
2345



AATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCA



TGATCAAGAAAAACTGAAATGTAAAAGAATAATT



TCTGAATCGGCCAAAGA
2346



TCTTTGGCCGATTCAGA
2347


Haemophilia B
GAATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGC
2348


Arg(−4)Trp
CAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAA


tCGG-TGG
TTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAG



CTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGA
2349



ATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCAT



GATCAAGAAAAACTGAAATGTAAAAGAATAATTC



TTCTGAATCGGCCAAAG
2350



CTTTGGCCGATTCAGAA
2351


Haemophilia B
GCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTA
2352


Gln11Term
AATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTAT


tCAA-TAA
GGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAG



CTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCT
2353



CTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAAT



TATACCTCTTTGGCCGATTCAGAATTTTGTTGGC



AGTTTGTTCAAGGGAAC
2354



GTTCCCTTGAACAAACT
2355


Haemophilia B
ACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATT
2356


Gly12Ala
GGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGA


GGG-GCG
AGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTT



AAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACA
2357



TTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCT



GAATTATACCTCTTTGGCCGATTCAGAATTTTGT



TGTTCAAGGGAACCTTG
2358



CAAGGTTCCCTTGAACA
2359


Haemophilia B
AACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAAT
2360


Gly12Arg
TGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGG


aGGG-AGG
AAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTT



AAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACAT
2361



TCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTG



AATTATACCTCTTTGGCCGATTCAGAATTTTGTT



TTGTTCAAGGGAACCTT
2362



AAGGTTCCCTTGAACAA
2363


Haemophilia B
ACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATT
2364


Gly12Glu
GGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGA


GGG-GAG
AGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTT



AAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACA
2365



TTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCT



GAATTATACCTCTTTGGCCGATTCAGAATTTTGT



TGTTCAAGGGAACCTTG
2366



CAAGGTTCCCTTGAACA
2367


Haemophilia B
CGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTC
2368


Glu17Gln
AAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTT


aGAA-CAA
TTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAA



TTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACAC
2369



TTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTC



TTCCAATTTACCTGAATTATACCTCTTTGGCCG



TTGAGAGAGAATGTATG
2370



CATACATTCTCTCTCAA
2371


Haemophilia B
CGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTC
2372


Glu17Lys
AAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTT


aGAA-AAA
TTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAA



TTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACAC
2373



TTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTC



TTCCAATTTACCTGAATTATACCTCTTTGGCCG



TTGAGAGAGAATGTATG
2374



CATACATTCTCTCTCAA
2375


Haemophilia B
CCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAG
2376


Cys18Arg
GGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTG


aTGT-CGT
AAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAA



TTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTA
2377



CACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAA



ACTCTTCCAATTTACCTGAATTATACCTCTTTGG



AGAGAGAATGTATGGAA
2378



TTCCATACATTCTCTCT
2379


Haemophilia B
CAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGG
2380


Cys18Tyr
GAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAA


TGT-TAT
GAAGCACGAGAAGTTTTTGAAAACACTGAAAGAAC



GTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACT
2381



ACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAA



ACTCTTCCAATTTACCTGAATTATACCTCTTTG



GAGAGAATGTATGGAAG
2382



CTTCCATACATTCTCTC
2383


Haemophilia B
GGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCT
2384


Glu20Val
TGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGC


GAA-GTA
ACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAG



CTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTC
2385



AAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTT



GAACAAACTCTTCCAATTTACCTGAATTATACC



ATGTATGGAAGAAAAGT
2386



ACTTTTCTTCCATACAT
2387


Haemophilia B
TATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTG
2388


Glu21Lys
AGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCAC


aGAA-AAA
GAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTA



TACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCT
2389



TCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCC



TTGAACAAACTCTTCCAATTTACCTGAATTATA



GTATGGAAGAAAAGTGT
2390



ACACTTTTCTTCCATAC
2391


Haemophilia B
TCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGA
2392


Cys23Arg
GAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAA


gTGT-CGT
GTTTTTGAAAACACTGAAAGAACAGTGAGTATTTCCA



TGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGT
2393



GCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAG



GTTCCCTTGAACAAACTCTTCCAATTTACCTGA



AAGAAAAGTGTAGTTTT
2394



AAAACTACACTTTTCTT
2395


Haemophilia B
CAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAG
2396


Cys23Tyr
AATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGT


TGT-TAT
TTTTGAAAACACTGAAAGAACAGTGAGTATTTCCAC



GTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTC
2397



GTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCA



AGGTTCCCTTGAACAAACTCTTCCAATTTACCTG



AGAAAAGTGTAGTTTTG
2398



CAAAACTACACTTTTCT
2399


Haemophilia B
AATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTAT
2400


Phe25Ser
GGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAA


TTT-TCT
AACACTGAAAGAACAGTGAGTATTTCCACATAATA



TATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAAC
2401



TTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTC



TCTCAAGGTTCCCTTGAACAAACTCTTCCAATT



GTGTAGTTTTGAAGAAG
2402



CTTCTTCAAAACTACAC
2403


Haemophilia B
TTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATG
2404


Glu26Gln
GAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAA


tGAA-CAA
ACACTGAAAGAACAGTGAGTATTTCCACATAATACC



GGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAA
2405



ACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTC



TCTCTCAAGGTTCCCTTGAACAAACTCTTCCAA



GTAGTTTTGAAGAAGCA
2406



TGCTTCTTCAAAACTAC
2407


Haemophilia B
AAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAG
2408


Glu27Ala
AAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACAC


GAA-GCA
TGAAAGAACAGTGAGTATTTCCACATAATACCCTTC



GAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTT
2409



CAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATA



CATTCTCTCTCAAGGTTCCCTTGAACAAACTCTT



TTTTGAAGAAGCACGAG
2410



CTCGTGCTTCTTCAAAA
2411


Haemophilia B
AGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGA
2412


Glu27Asp
AAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACT


GAAg-GAC
GAAAGAACAGTGAGTATTTCCACATAATACCCTTCA



TGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTT
2413



TCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCAT



ACATTCTCTCTCAAGGTTCCCTTGAACAAACTCT



TTTGAAGAAGCACGAGA
2414



TCTCGTGCTTCTTCAAA
2415


Haemophilia B
GAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAA
2416


Glu27Lys
GAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACA


aGAA-AAA
CTGAAAGAACAGTGAGTATTTCCACATAATACCCTT



AAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTC
2417



AAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATAC



ATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTC



GTTTTGAAGAAGCACGA
2418



TCGTGCTTCTTCAAAAC
2419


Haemophilia B
AAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAG
2420


Glu27Val
AAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACAC


GAA-GTA
TGAAAGAACAGTGAGTATTTCCACATAATACCCTTC



GAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTT
2421



CAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATA



CATTCTCTCTCAAGGTTCCCTTGAACAAACTCTT



TTTTGAAGAAGCACGAG
2422



CTCGTGCTTCTTCAAAA
2423


Haemophilia B
TTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT
2424


Arg29Gln
GTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAG


CGA-CAA
AACAGTGAGTATTTCCACATAATACCCTTCAGATGC



GCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAG
2425



TGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCT



TCCATACATTCTCTCTCAAGGTTCCCTTGAACAA



AGAAGCACGAGAAGTTT
2426



AAACTTCTCGTGCTTCT
2427


Haemophilia B
TTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT
2428


Arg29Pro
GTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAG


CGA-CCA
AACAGTGAGTATTTCCACATAATACCCTTCAGATGC



GCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAG
2429



TGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCT



TCCATACATTCTCTCTCAAGGTTCCCTTGAACAA



AGAAGCACGAGAAGTTT
2430



AAACTTCTCGTGCTTCT
2431


Haemophilia B
TTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT
2432


Arg29Term
GTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAG


aCGA-TGA
AACAGTGAGTATTTCCACATAATACCCTTCAGATG



CATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGT
2433



GTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTT



CCATACATTCTCTCTCAAGGTTCCCTTGAACAAA



AAGAAGCACGAGAAGTT
2434



AACTTCTCGTGCTTCTT
2435


Haemophilia B
GTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGT
2436


Glu30Lys
AGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAA


aGAA-AAA
CAGTGAGTATTTCCACATAATACCCTTCAGATGCAG



CTGCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTC
2437



AGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTT



CTTCCATACATTCTCTCTCAAGGTTCCCTTGAAC



AAGCACGAGAAGTTTTT
2438



AAAAACTTCTCGTGCTT
2439


Haemophilia B
GTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGT
2440


Glu30Term
AGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAA


aGAA-TAA
CAGTGAGTATTTCCACATAATACCCTTCAGATGCAG



CTGCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTC
2441



AGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTT



CTTCCATACATTCTCTCTCAAGGTTCCCTTGAAC



AAGCACGAGAAGTTTTT
2442



AAAAACTTCTCGTGCTT
2443


Haemophilia B
CCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAA
2444


Glu33Asp
GCACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTATTT


GAAa-GAC
CCACATAATACCCTTCAGATGCAGAGCATAGAATA



TATTCTATGCTCTGCATCTGAAGGGTATTATGTGGAAATACTC
2445



ACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAA



ACTACACTTTTCTTCCATACATTCTCTCTCAAGG



GTTTTTGAAAACACTGA
2446



TCAGTGTTTTCAAAAAC
2447


Haemophilia B
AACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAG
2448


Glu33Term
AAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTAT


tGAA-TAA
TTCCACATAATACCCTTCAGATGCAGAGCATAGAA



TTCTATGCTCTGCATCTGAAGGGTATTATGTGGAAATACTCAC
2449



TGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAAC



TACACTTTTCTTCCATACATTCTCTCTCAAGGTT



AAGTTTTTGAAAACACT
2450



AGTGTTTTCAAAAACTT
2451


Haemophilia B
CAAAACACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTT
2452


Trp42Term
TATAGACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCAT


TGG-TAG
TTTATCCTCTAGCTAATATATGAAACATATGAG



CTCATATGTTTCATATATTAGCTAGAGGATAAAATGAATTGCTT
2453



ACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATAAAAG



AAGACAAATTAACGGTAATATCTAAAGTGTTTTG



TGAATTTTGGAAGCAGT
2454



ACTGCTTCCAAAATTCA
2455


Haemophilia B
AAACACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTTTA
2456


Lys43Glu
TAGACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCATTT


gAAG-GAG
TATCCTCTAGCTAATATATGAAACATATGAGAA



TTCTCATATGTTTCATATATTAGCTAGAGGATAAAATGAATTGC
2457



TTACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATAAAA



GAAGACAAATTAACGGTAATATCTAAAGTGTTT



AATTTTGGAAGCAGTAT
2458



ATACTGCTTCCAAAATT
2459


Haemophilia B
CACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTTTATAG
2460


Gln44Term
ACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCATTTTATC


gCAG-TAG
CTCTAGCTAATATATGAAACATATGAGAATTA



TAATTCTCATATGTTTCATATATTAGCTAGAGGATAAAATGAAT
2461



TGCTTACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATA



AAAGAAGACAAATTAACGGTAATATCTAAAGTG



TTTGGAAGCAGTATGTT
2462



AACATACTGCTTCCAAA
2463


Haemophilia B
CCGGGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAAC
2464


Asp49Gly
CTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTA


GAT-GGT
AATGGCGGCAGTTGCAAGGATGACATTAATTCCTA



TAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATG
2465



GATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAA



ATTGAATTGGCACGTAAACTGCTTAGAATGCCCGG



AGATGGAGATCAGTGTG
2466



CACACTGATCTCCATCT
2467


Haemophilia B
GCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATC
2468


Gln50His
TCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGG


CAGt-CAC
CGGCAGTTGCAAGGATGACATTAATTCCTATGAA



TTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAA
2469



CATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTA



AGAAATTGAATTGGCACGTAAACTGCTTAGAATGC



GGAGATCAGTGTGAGTC
2470



GACTCACACTGATCTCC
2471


Haemophilia B
GGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTA
2472


Gln50Pro
TCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAAT


CAG-CCG
GGCGGCAGTTGCAAGGATGACATTAATTCCTATGA



TCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAAC
2473



ATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAA



GAAATTGAATTGGCACGTAAACTGCTTAGAATGCC



TGGAGATCAGTGTGAGT
2474



ACTCACACTGATCTCCA
2475


Haemophilia B
GGGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCT
2476


Gln50Term
ATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAA


tCAG-TAG
TGGCGGCAGTTGCAAGGATGACATTAATTCCTATG



CATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACA
2477



TGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAG



AAATTGAATTGGCACGTAAACTGCTTAGAATGCCC



ATGGAGATCAGTGTGAG
2478



CTCACACTGATCTCCAT
2479


Haemophilia B
CATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCT
2480


Cys51Arg
CAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGG


gTGT-CGT
CGGCAGTTGCAAGGATGACATTAATTCCTATGAAT



ATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAA
2481



ACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTT



AAGAAATTGAATTGGCACGTAAACTGCTTAGAATG



GAGATCAGTGTGAGTCC
2482



GGACTCACACTGATCTC
2483


Haemophilia B
CATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCT
2484


Cys51Ser
CAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGG


gTGT-AGT
CGGCAGTTGCAAGGATGACATTAATTCCTATGAAT



ATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAA
2485



ACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTT



AAGAAATTGAATTGGCACGTAAACTGCTTAGAATG



GAGATCAGTGTGAGTCC
2486



GGACTCACACTGATCTC
2487


Haemophilia B
TTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCTCA
2488


Cys51Trp
AAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCG


TGTg-TGG
GCAGTTGCAAGGATGACATTAATTCCTATGAATGT



ACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTT
2489



AAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGG



TTAAGAAATTGAATTGGCACGTAAACTGCTTAGAA



GATCAGTGTGAGTCCAA
2490



TTGGACTCACACTGATC
2491


Haemophilia B
TCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCTCAA
2492


Glu52Term
AGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGG


tGAG-TAG
CAGTTGCAAGGATGACATTAATTCCTATGAATGTT



AACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATT
2493



TAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAG



GTTAAGAAATTGAATTGGCACGTAAACTGCTTAGA



ATCAGTGTGAGTCCAAT
2494



ATTGGACTCACACTGAT
2495


Haemophilia B
TTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAG
2496


Pro55Ala
ATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCA


tCCA-GCA
AGGATGACATTAATTCCTATGAATGTTGGTGTCCCT



AGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACT
2497



GCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCT



TTGAGATAGGTTAAGAAATTGAATTGGCACGTAAA



AGTCCAATCCATGTTTA
2498



TAAACATGGATTGGACT
2499


Haemophilia B
TTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA
2500


Pro55Arg
TCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAA


CCA-CGA
GGATGACATTAATTCCTATGAATGTTGGTGTCCCTT



AAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC
2501



TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATC



TTTGAGATAGGTTAAGAAATTGAATTGGCACGTAA



GTCCAATCCATGTTTAA
2502



TTAAACATGGATTGGAC
2503


Haemophilia B
TTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA
2504


Pro55Gln
TCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAA


CCA-CAA
GGATGACATTAATTCCTATGAATGTTGGTGTCCCTT



AAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC
2505



TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATC



TTTGAGATAGGTTAAGAAATTGAATTGGCACGTAA



GTCCAATCCATGTTTAA
2506



TTAAACATGGATTGGAC
2507


Haemophilia B
TTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA
2508


Pro55Leu
TCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAA


CCA-CTA
GGATGACATTAATTCCTATGAATGTTGGTGTCCCTT



AAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC
2509



TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATC



TTTGAGATAGGTTAAGAAATTGAATTGGCACGTAA



GTCCAATCCATGTTTAA
2510



TTAAACATGGATTGGAC
2511


Haemophilia B
TTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAG
2512


Pro55Ser
ATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCA


tCCA-TCA
AGGATGACATTAATTCCTATGAATGTTGGTGTCCCT



AGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACT
2513



GCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCT



TTGAGATAGGTTAAGAAATTGAATTGGCACGTAAA



AGTCCAATCCATGTTTA
2514



TAAACATGGATTGGACT
2515


Haemophilia B
ACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATC
2516


Cys56Arg
AGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGG


aTGT-CGT
ATGACATTAATTCCTATGAATGTTGGTGTCCCTTTG



CAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCA
2517



ACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC



ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGT



CCAATCCATGTTTAAAT
2518



ATTTAAACATGGATTGG
2519


Haemophilia B
ACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATC
2520


Cys56Ser
AGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGG


aTGT-AGT
ATGACATTAATTCCTATGAATGTTGGTGTCCCTTTG



CAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCA
2521



ACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC



ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGT



CCAATCCATGTTTAAAT
2522



ATTTAAACATGGATTGG
2523


Haemophilia B
CGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATCA
2524


Cys56Ser
GTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGA


TGT-TCT
TGACATTAATTCCTATGAATGTTGGTGTCCCTTTGG



CCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGC
2525



AACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC



ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACG



CAATCCATGTTTAAATG
2526



CATTTAAACATGGATTG
2527


Haemophilia B
CGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATCA
2528


Cys56Tyr
GTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGA


TGT-TAT
TGACATTAATTCCTATGAATGTTGGTGTCCCTTTGG



CCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGC
2529



AACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC



ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACG



CAATCCATGTTTAAATG
2530



CATTTAAACATGGATTG
2531


Haemophilia B
ATTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAG
2532


Asn58Lys
TCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTA


AATg-AAG
ATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAA



TTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCA
2533



TCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACT



GATCTCCATCTTTGAGATAGGTTAAGAAATTGAAT



TGTTTAAATGGCGGCAG
2534



CTGCCGCCATTTAAACA
2535


Haemophilia B
TCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTC
2536


Gly59Asp
CAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAT


GGC-GAC
TCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG



CCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGT
2537



CATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACA



CTGATCTCCATCTTTGAGATAGGTTAAGAAATTGA



TTTAAATGGCGGCAGTT
2538



AACTGCCGCCATTTAAA
2539


Haemophilia B
TCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTC
2540


Gly59Val
CAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAT


GGC-GTC
TCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG



CCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGT
2541



CATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACA



CTGATCTCCATCTTTGAGATAGGTTAAGAAATTGA



TTTAAATGGCGGCAGTT
2542



AACTGCCGCCATTTAAA
2543


Haemophilia B
TTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGT
2544


Gly59Ser
CCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAA


tGGC-AGC
TTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAG



CTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTC
2545



ATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACAC



TGATCTCCATCTTTGAGATAGGTTAAGAAATTGAA



GTTTAAATGGCGGCAGT
2546



ACTGCCGCCATTTAAAC
2547


Haemophilia B
AATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA
2548


Gly60Ser
ATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTC


cGGC-AGC
CTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAA



TTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT
2549



GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCA



CACTGATCTCCATCTTTGAGATAGGTTAAGAAATT



TAAATGGCGGCAGTTGC
2550



GCAACTGCCGCCATTTA
2551


Haemophilia B
AATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA
2552


Gly60Cys
ATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTC


cGGC-TGC
CTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAA



TTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT
2553



GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCA



CACTGATCTCCATCTTTGAGATAGGTTAAGAAATT



TAAATGGCGGCAGTTGC
2554



GCAACTGCCGCCATTTA
2555


Haemophilia B
ATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAA
2556


Gly60Asp
TCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCC


GGC-GAC
TATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAA



TTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAA
2557



TGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTC



ACACTGATCTCCATCTTTGAGATAGGTTAAGAAAT



AAATGGCGGCAGTTGCA
2558



TGCAACTGCCGCCATTT
2559


Haemophilia B
AATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA
2560


Gly60Arg
ATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTC


cGGC-CGC
CTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAA



TTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT
2561



GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCA



CACTGATCTCCATCTTTGAGATAGGTTAAGAAATT



TAAATGGCGGCAGTTGC
2562



GCAACTGCCGCCATTTA
2563


Haemophilia B
TAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATG
2564


Cys62Tyr
TTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAA


TGC-TAC
TGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTG



CAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGG
2565



AATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATT



GGACTCACACTGATCTCCATCTTTGAGATAGGTTA



CGGCAGTTGCAAGGATG
2566



CATCCTTGCAACTGCCG
2567


Haemophilia B
TAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATG
2568


Cys62Ser
TTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAA


TGC-TCC
TGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTG



CAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGG
2569



AATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATT



GGACTCACACTGATCTCCATCTTTGAGATAGGTTA



CGGCAGTTGCAAGGATG
2570



CATCCTTGCAACTGCCG
2571


Haemophilia B
AACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGT
2572


Cys62Term
TTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAAT


TGCa-TGA
GTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGT



ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG
2573



GAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGAT



TGGACTCACACTGATCTCCATCTTTGAGATAGGTT



GGCAGTTGCAAGGATGA
2574



TCATCCTTGCAACTGCC
2575


Haemophilia B
TCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAAT
2576


Asp64Glu
GGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGG


GATg-GAG
TGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTA



TAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACAT
2577



TCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAAC



ATGGATTGGACTCACACTGATCTCCATCTTTGAGA



TGCAAGGATGACATTAA
2578



TTAATGTCATCCTTGCA
2579


Haemophilia B
ATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAA
2580


Asp64Gly
TGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTG


GAT-GGT
GTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATT



AATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATT
2581



CATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACA



TGGATTGGACTCACACTGATCTCCATCTTTGAGAT



TTGCAAGGATGACATTA
2582



TAATGTCATCCTTGCAA
2583


Haemophilia B
TATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAA
2584


Asp64Asn
ATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTG


gGAT-AAT
GTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAAT



ATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTC
2585



ATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACAT



GGATTGGACTCACACTGATCTCCATCTTTGAGATA



GTTGCAAGGATGACATT
2586



AATGTCATCCTTGCAAC
2587


Haemophilia B
AAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCG
2588


Ile66Ser
GCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCC


ATT-AGT
CTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAA



TTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACC
2589



AACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATT



TAAACATGGATTGGACTCACACTGATCTCCATCTT



GGATGACATTAATTCCT
2590



AGGAATTAATGTCATCC
2591


Haemophilia B
AAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCG
2592


Ile66Thr
GCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCC


ATT-ACT
CTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAA



TTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACC
2593



AACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATT



TAAACATGGATTGGACTCACACTGATCTCCATCTT



GGATGACATTAATTCCT
2594



AGGAATTAATGTCATCC
2595


Haemophilia B
TGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAG
2596


Asn67Lys
TTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTT


AATt-AAA
GGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTAA



TTACTTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGAC
2597



ACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCC



ATTTAAACATGGATTGGACTCACACTGATCTCCA



GACATTAATTCCTATGA
2598



TCATAGGAATTAATGTC
2599


Haemophilia B
ATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCA
2600


Tyr69Cys
AGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATT


TAT-TGT
TGAAGGAAAGAACTGTGAATTAGGTAAGTAACTATT



AATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAATCCAAA
2601



GGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTG



CCGCCATTTAAACATGGATTGGACTCACACTGAT



TAATTCCTATGAATGTT
2602



AACATTCATAGGAATTA
2603


Haemophilia B
TGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGA
2604


Cys71Term
CATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGA


TGTt-TGA
AAGAACTGTGAATTAGGTAAGTAACTATTTTTTGAA



TTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAA
2605



ATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTT



GCAACTGCCGCCATTTAAACATGGATTGGACTCA



TATGAATGTTGGTGTCC
2606



GGACACCAACATTCATA
2607


Haemophilia B
GTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG
2608


Cys71Ser
ACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG


TGT-TCT
AAAGAACTGTGAATTAGGTAAGTAACTATTTTTTGA



TCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAA
2609



TCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTG



CAACTGCCGCCATTTAAACATGGATTGGACTCAC



CTATGAATGTTGGTGTC
2610



GACACCAACATTCATAG
2611


Haemophilia B
GTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG
2612


Cys71Tyr
ACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG


TGT-TAT
AAAGAACTGTGAATTAGGTAAGTAACTATTTTTTGA



TCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAA
2613



TCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTG



CAACTGCCGCCATTTAAACATGGATTGGACTCAC



CTATGAATGTTGGTGTC
2614



GACACCAACATTCATAG
2615


Haemophilia B
TGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGAT
2616


Cys71Ser
GACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAG


aTGT-AGT
GAAAGAACTGTGAATTAGGTAAGTAACTATTTTTTG



CAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAAT
2617



CCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGC



AACTGCCGCCATTTAAACATGGATTGGACTCACA



CCTATGAATGTTGGTGT
2618



ACACCAACATTCATAGG
2619


Haemophilia B
GAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGAC
2620


Trp72Arg
ATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAA


tTGG-AGG
AGAACTGTGAATTAGGTAAGTAACTATTTTTTGAAT



ATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCA
2621



AATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCT



TGCAACTGCCGCCATTTAAACATGGATTGGACTC



ATGAATGTTGGTGTCCC
2622



GGGACACCAACATTCAT
2623


Haemophilia B
GTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACAT
2624


Trp72Term
TAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAG


TGGt-TGA
AACTGTGAATTAGGTAAGTAACTATTTTTTGAATAC



GTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTT
2625



CAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATC



CTTGCAACTGCCGCCATTTAAACATGGATTGGAC



GAATGTTGGTGTCCCTT
2626



AAGGGACACCAACATTC
2627


Haemophilia B
CCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAA
2628


Cys73Tyr
TTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAAC


TGT-TAT
TGTGAATTAGGTAAGTAACTATTTTTTGAATACTC



GAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCC
2629



TTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCA



TCCTTGCAACTGCCGCCATTTAAACATGGATTGG



ATGTTGGTGTCCCTTTG
2630



CAAAGGGACACCAACAT
2631


Haemophilia B
TCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTA
2632


Cys73Arg
ATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAA


gTGT-CGT
CTGTGAATTAGGTAAGTAACTATTTTTTGAATACT



AGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCT
2633



TCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCAT



CCTTGCAACTGCCGCCATTTAAACATGGATTGGA



AATGTTGGTGTCCCTTT
2634



AAAGGGACACCAACATT
2635


Haemophilia B
CCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAA
2636


Cys73Phe
TTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAAC


TGT-TTT
TGTGAATTAGGTAAGTAACTATTTTTTGAATACTC



GAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCC
2637



TTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCA



TCCTTGCAACTGCCGCCATTTAAACATGGATTGG



ATGTTGGTGTCCCTTTG
2638



CAAAGGGACACCAACAT
2639


Haemophilia B
CAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAT
2640


Cys73Term
TCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACT


TGTc-TGA
GTGAATTAGGTAAGTAACTATTTTTTGAATACTCA



TGAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTC
2641



CTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTC



ATCCTTGCAACTGCCGCCATTTAAACATGGATTG



TGTTGGTGTCCCTTTGG
2642



CCAAAGGGACACCAACA
2643


Haemophilia B
GTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGA
2644


Gly76Val
ATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTA


GGA-GTA
GGTAAGTAACTATTTTTTGAATACTCATGGTTCAA



TTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTCACA
2645



GTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAA



TTAATGTCATCCTTGCAACTGCCGCCATTTAAAC



TCCCTTTGGATTTGAAG
2646



CTTCAAATCCAAAGGGA
2647


Haemophilia B
TGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATG
2648


Gly76Arg
AATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATT


tGGA-AGA
AGGTAAGTAACTATTTTTTGAATACTCATGGTTCA



TGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTCACAG
2649



TTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAAT



TAATGTCATCCTTGCAACTGCCGCCATTTAAACA



GTCCCTTTGGATTTGAA
2650



TTCAAATCCAAAGGGAC
2651


Haemophilia B
TAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG
2652


Phe77Cys
TTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGT


TTT-TGT
AAGTAACTATTTTTTGAATACTCATGGTTCAAAGT



ACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC
2653



ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG



GAATTAATGTCATCCTTGCAACTGCCGCCATTTA



CTTTGGATTTGAAGGAA
2654



TTCCTTCAAATCCAAAG
2655


Haemophilia B
TAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG
2656


Phe77Ser
TTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGT


TTT-TCT
AAGTAACTATTTTTTGAATACTCATGGTTCAAAGT



ACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC
2657



ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG



GAATTAATGTCATCCTTGCAACTGCCGCCATTTA



CTTTGGATTTGAAGGAA
2658



TTCCTTCAAATCCAAAG
2659


Haemophilia B
TAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG
2660


Phe77Tyr
TTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGT


TTT-TAT
AAGTAACTATTTTTTGAATACTCATGGTTCAAAGT



ACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC
2661



ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG



GAATTAATGTCATCCTTGCAACTGCCGCCATTTA



CTTTGGATTTGAAGGAA
2662



TTCCTTCAAATCCAAAG
2663


Haemophilia B
AATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTT
2664


Glu78Lys
GGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAA


tGAA-AAA
GTAACTATTTTTTGAATACTCATGGTTCAAAGTTT



AAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAAT
2665



TCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCAT



AGGAATTAATGTCATCCTTGCAACTGCCGCCATT



TTGGATTTGAAGGAAAG
2666



CTTTCCTTCAAATCCAA
2667


Haemophilia B
GCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGT
2668


Gly79Val
GTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTA


GGA-GTA
ACTATTTTTTGAATACTCATGGTTCAAAGTTTCCCT



AGGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTAC
2669



CTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACA



TTCATAGGAATTAATGTCATCCTTGCAACTGCCGC



ATTTGAAGGAAAGAACT
2670



AGTTCTTTCCTTCAAAT
2671


Haemophilia B
GGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGG
2672


Gly79Arg
TGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGT


aGGA-AGA
AACTATTTTTTGAATACTCATGGTTCAAAGTTTCCC



GGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACC
2673



TAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACAT



TCATAGGAATTAATGTCATCCTTGCAACTGCCGCC



GATTTGAAGGAAAGAAC
2674



GTTCTTTCCTTCAAATC
2675


Haemophilia B
GCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGT
2676


Gly79Glu
GTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTA


GGA-GAA
ACTATTTTTTGAATACTCATGGTTCAAAGTTTCCCT



AGGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTAC
2677



CTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACA



TTCATAGGAATTAATGTCATCCTTGCAACTGCCGC



ATTTGAAGGAAAGAACT
2678



AGTTCTTTCCTTCAAAT
2679


Haemophilia B
TTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT
2680


Cys88Ser
CTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGC


TGT-TCT
AGTTTTGTAAAAATAGTGCTGATAACAAGGTGGT



ACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC
2681



TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA



GACAGTAACAGCATCATTTAACATGCATTTCTAA



TGTAACATGTAACATTA
2682



TAATGTTACATGTTACA
2683


Haemophilia B
TTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT
2684


Cys88Phe
CTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGC


TGT-TTT
AGTTTTGTAAAAATAGTGCTGATAACAAGGTGGT



ACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC
2685



TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA



GACAGTAACAGCATCATTTAACATGCATTTCTAA



TGTAACATGTAACATTA
2686



TAATGTTACATGTTACA
2687


Haemophilia B
TTTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCT
2688


Cys88Arg
TCTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAG


aTGT-CGT
CAGTTTTGTAAAAATAGTGCTGATAACAAGGTGG



CCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATCT
2689



GCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA



GACAGTAACAGCATCATTTAACATGCATTTCTAAA



ATGTAACATGTAACATT
2690



AATGTTACATGTTACAT
2691


Haemophilia B
TTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT
2692


Cys88Tyr
CTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGC


TGT-TAT
AGTTTTGTAAAAATAGTGCTGATAACAAGGTGGT



ACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC
2693



TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA



GACAGTAACAGCATCATTTAACATGCATTTCTAA



TGTAACATGTAACATTA
2694



TAATGTTACATGTTACA
2695


Haemophilia B
ATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTA
2696


Ile90Thr
GATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTT


ATT-ACT
GTAAAAATAGTGCTGATAACAAGGTGGTTTGCTC



GAGCAAACCACCTTGTTATCAGCACTATTTTTACAAAACTGCT
2697



CGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAG



CAAAATAGACAGTAACAGCATCATTTAACATGCAT



ATGTAACATTAAGAATG
2698



CATTCTTAATGTTACAT
2699


Haemophilia B
TGTTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGT
2700


Asn92His
AACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAA


gAAT-CAT
AATAGTGCTGATAACAAGGTGGTTTGCTCCTGTA



TACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACAAAA
2701



CTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAA



GAAGCAAAATAGACAGTAACAGCATCATTTAACA



ACATTAAGAATGGCAGA
2702



TCTGCCATTCTTAATGT
2703


Haemophilia B
TTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAA
2704


Asn92Lys
CATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAA


AATg-AAA
TAGTGCTGATAACAAGGTGGTTTGCTCCTGTACT



AGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACAA
2705



AACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTA



AAAGAAGCAAAATAGACAGTAACAGCATCATTTAA



ATTAAGAATGGCAGATG
2706



CATCTGCCATTCTTAAT
2707


Haemophilia B
AAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACA
2708


Gly93Asp
TGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATA


GGC-GAC
GTGCTGATAACAAGGTGGTTTGCTCCTGTACTGA



TCAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTAC
2709



AAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCT



AAAAGAAGCAAAATAGACAGTAACAGCATCATTT



TAAGAATGGCAGATGCG
2710



CGCATCTGCCATTCTTA
2711


Haemophilia B
TAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAAC
2712


Gly93Ser
ATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAAT


tGGC-AGC
AGTGCTGATAACAAGGTGGTTTGCTCCTGTACTG



CAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACA
2713



AAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTA



AAAGAAGCAAAATAGACAGTAACAGCATCATTTA



TTAAGAATGGCAGATGC
2714



GCATCTGCCATTCTTAA
2715


Haemophilia B
GATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTA
2716


Arg94Ser
ACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGC


AGAt-AGT
TGATAACAAGGTGGTTTGCTCCTGTACTGAGGGA



TCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTT
2717



TTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTAC



ATCTAAAAGAAGCAAAATAGACAGTAACAGCATC



AATGGCAGATGCGAGCA
2718



TGCTCGCATCTGCCATT
2719


Haemophilia B
TGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAAC
2720


Cys95Tyr
ATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTG


TGC-TAC
ATAACAAGGTGGTTTGCTCCTGTACTGAGGGATA



TATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTAT
2721



TTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTT



ACATCTAAAAGAAGCAAAATAGACAGTAACAGCA



TGGCAGATGCGAGCAGT
2722



ACTGCTCGCATCTGCCA
2723


Haemophilia B
GCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACA
2724


Cys95Trp
TTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGA


TGCg-TGG
TAACAAGGTGGTTTGCTCCTGTACTGAGGGATAT



ATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTA
2725



TTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGT



TACATCTAAAAGAAGCAAAATAGACAGTAACAGC



GGCAGATGCGAGCAGTT
2726



AACTGCTCGCATCTGCC
2727


Haemophilia B
GCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACA
2728


Cys95Term
TTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGA


TGCg-TGA
TAACAAGGTGGTTTGCTCCTGTACTGAGGGATAT



ATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTA
2729



TTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGT



TACATCTAAAAGAAGCAAAATAGACAGTAACAGC



GGCAGATGCGAGCAGTT
2730



AACTGCTCGCATCTGCC
2731


Haemophilia B
TACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAG
2732


Gln97Pro
AATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACA


CAG-CCG
AGGTGGTTTGCTCCTGTACTGAGGGATATCGACT



AGTCGATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCA
2733



GCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTT



ACATGTTACATCTAAAAGAAGCAAAATAGACAGTA



ATGCGAGCAGTTTTGTA
2734



TACAAAACTGCTCGCAT
2735


Haemophilia B
TTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAA
2736


Gln97Glu
GAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAAC


gCAG-GAG
AAGGTGGTTTGCTCCTGTACTGAGGGATATCGAC



GTCGATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAG
2737



CACTATTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTA



CATGTTACATCTAAAAGAAGCAAAATAGACAGTAA



GATGCGAGCAGTTTTGT
2738



ACAAAACTGCTCGCATC
2739


Haemophilia B
TCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAGAATGG
2740


Cys99Arg
CAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTG


tTGT-CGT
GTTTGCTCCTGTACTGAGGGATATCGACTTGCAG



CTGCAAGTCGATATCCCTCAGTACAGGAGCAAACCACCTTGT
2741



TATCAGCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTT



AATGTTACATGTTACATCTAAAAGAAGCAAAATAGA



AGCAGTTTTGTAAAAAT
2742



ATTTTTACAAAACTGCT
2743


Haemophilia B
CTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAGAATGGC
2744


Cys99Tyr
AGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTG


TGT-TAT
GTTTGCTCCTGTACTGAGGGATATCGACTTGCAGA



TCTGCAAGTCGATATCCCTCAGTACAGGAGCAAACCACCTTG
2745



TTATCAGCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTT



AATGTTACATGTTACATCTAAAAGAAGCAAAATAG



GCAGTTTTGTAAAAATA
2746



TATTTTTACAAAACTGC
2747


Warfarin sensitivity
TTTTTTGCTAAAACTAAAGAATTATTCTTTTACATTTCAGTTTTT
2748


Ala(−10)Thr
CTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGA


cGCC-ACC
GGTATAATTCAGGTAAATTGGAAGAGTTTGTTC



GAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCG
2749



ATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAA



TGTAAAAGAATAATTCTTTAGTTTTAGCAAAAAA



ATGAAAACGCCAACAAA
2750



TTTGTTGGCGTTTTCAT
2751


Warfarin sensitivity
TTTTTGCTAAAACTAAAGAATTATTCTTTTACATTTCAGTTTTTC
2752


Ala(−10)Val
TTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAG


GCC-GTC
GTATAATTCAGGTAAATTGGAAGAGTTTGTTCA



TGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCC
2753



GATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGA



AATGTAAAAGAATAATTCTTTAGTTTTAGCAAAAA



TGAAAACGCCAACAAAA
2754



TTTTGTTGGCGTTTTCA
2755


Haemophilia B
TGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCCTCA
2756


Gly(−26)Val
TCACCATCTGCCTTTTAGGATATCTACTCAGTGCTGAATGTAC


GGA-GTA
AGGTTTGTTTCCTTTTTTAAAATACATTGAGTATGC



GCATACTCAATGTATTTTAAAAAAGGAAACAAACCTGTACATTC
2757



AGCACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGCC



TGGTGATTCTGCCATGATCATGTTCACGCGCTGCA



CCTTTTAGGATATCTAC
2758



GTAGATATCCTAAAAGG
2759


Haemophilia B
TTATGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCC
2760


Leu(−27)Term
TCATCACCATCTGCCTTTTAGGATATCTACTCAGTGCTGAATG


TTA-TAA
TACAGGTTTGTTTCCTTTTTTAAAATACATTGAGTA



TACTCAATGTATTTTAAAAAAGGAAACAAACCTGTACATTCAGC
2761



ACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGCCTGG



TGATTCTGCCATGATCATGTTCACGCGCTGCATAA



CTGCCTTTTAGGATATC
2762



GATATCCTAAAAGGCAG
2763


Haemophilia B
TAGCAAAGGTTATGCAGCGCGTGAACATGATCATGGCAGAAT
2764


Ile(−30)Asn
CACCAGGCCTCATCACCATCTGCCTTTTAGGATATCTACTCAG


ATC-AAC
TGCTGAATGTACAGGTTTGTTTCCTTTTTTAAAATA



TATTTTAAAAAAGGAAACAAACCTGTACATTCAGCACTGAGTA
2765



GATATCCTAAAAGGCAGATGGTGATGAGGCCTGGTGATTCTG



CCATGATCATGTTCACGCGCTGCATAACCTTTGCTA



CATCACCATCTGCCTTT
2766



AAAGGCAGATGGTGATG
2767


Haemophilia B
ACTAATCGACCTTACCACTTTCACAATCTGCTAGCAAAGGTTA
2768


Ile(−40)Phe
TGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCCTCA


gATC-TTC
TCACCATCTGCCTTTTAGGATATCTACTCAGTGCTG



CAGCACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGC
2769



CTGGTGATTCTGCCATGATCATGTTCACGCGCTGCATAACCTT



TGCTAGCAGATTGTGAAAGTGGTAAGGTCGATTAGT



TGAACATGATCATGGCA
2770



TGCCATGATCATGTTCA
2771


Haemophilia B
ACTTTGGTACAACTAATCGACCTTACCACTTTCACAATCTGCT
2772


Arg(−44)His
AGCAAAGGTTATGCAGCGCGTGAACATGATCATGGCAGAATC


CGC-CAC
ACCAGGCCTCATCACCATCTGCCTTTTAGGATATCT



AGATATCCTAAAAGGCAGATGGTGATGAGGCCTGGTGATTCT
2773



GCCATGATCATGTTCACGCGCTGCATAACCTTTGCTAGCAGA



TTGTGAAAGTGGTAAGGTCGATTAGTTGTACCAAAGT



TATGCAGCGCGTGAACA
2774



TGTTCACGCGCTGCATA
2775









EXAMPLE 15
Alpha Thalassemia—Hemoglobin Alpha Locus 1

The thalassemia syndromes are a heterogeneous group of inherited anemias characterized by defects in th synthesis of one or more globin chain subunits. For example, beta-thalassemia discussed in Example 6, is caused by a decrease in beta-chain production relative to alpha-chain production; the converse is the case for alpha-thalassemia. The attached table disclosed the correcting oligonucleotide base sequences for the hemoglobin alpha locus 1 oligonucleotides of the invention.









TABLE 22







HBA1 Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Thalassaemia alpha
CCCTGGCGCGCTCGCGGCCCGGCACTCTTCTGGTCCCCACA
2776


Met(−1)Val
GACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCCGACA


cATG-GTG
AGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGC



GCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTG
2777



TCGGCAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGT



GGGGACCAGAAGAGTGCCGGGCCGCGAGCGCGCCAGGG



AACCCACCATGGTGCTG
2778



CAGCACCATGGTGGGTT
2779


Haemoglobin variant
CACAGACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCC
2780


Ala12Asp
GACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGC


GCC-GAC
GCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTG



CACCTCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGC
2781



GCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGG



CAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGTG



CGTCAAGGCCGCCTGGG
2782



CCCAGGCGGCCTTGACG
2783


Haemoglobin variant
AGAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCA
2784


Gly15Asp
ACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGG


GGT-GAT
CGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCT



AGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCC
2785



AGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGG



TCTTGTCGGCAGGAGACAGCACCATGGTGGGTTCTCTCT



CGCCTGGGGTAAGGTCG
2786



CGACCTTACCCCAGGCG
2787


Haemoglobin variant
CTGCCGACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTC
2788


Tyr24Cys
GGCGCGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGA


TAT-TGT
GGTGAGGCTCCCTCCCCTGCTCCGACCCGGGCTCCTCGCC



GGCGAGGAGCCCGGGTCGGAGCAGGGGAGGGAGCCTCACC
2789



TCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGCGCCG



ACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGGCAG



TGGCGAGTATGGTGCGG
2790



CCGCACCATACTCGCCA
2791


Haemoglobin variant
GACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCAC
2792


Glu27Asp
GCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCT


GAGg-GAT
CCCTCCCCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGAC



C



GGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGGGGAG
2793



GGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCCAG



CGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTC



GGTGCGGAGGCCCTGGA
2794



TCCAGGGCCTCCGCACC
2795


Haemoglobin variant
GAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGG
2796


Asn68Lys
TGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGA


AACg-AAG
CATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG



CGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG
2797



TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCAC



CTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTC



CTGACCAACGCCGTGGC
2798



GCCACGGCGTTGGTCAG
2799


Haemoglobin variant
AGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGACC
2800


Asp74Gly
AACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCTGTC


GAC-GGC
CGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGGA



TCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGA
2801



CAGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGG



TCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCT



GCACGTGGACGACATGC
2802



GCATGTCGTCCACGTGC
2803


Haemoglobin variant
CAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGAC
2804


Asp74His
CAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCTGT


gGAC-CAC
CCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGG



CCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGAC
2805



AGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGT



CAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTG



CGCACGTGGACGACATG
2806



CATGTCGTCCACGTGCG
2807


Haemoglobin variant
CACGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGG
2808


Asn78His
CGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGC


cAAC-CAC
GACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACT



AGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCG
2809



CTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGC



CACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCGTG



ACATGCCCAACGCGCTG
2810



CAGCGCGTTGGGCATGT
2811


Haemoglobin variant
ACCAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCT
2812


His87Tyr
GTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGG


gCAC-TAC
ACCCGGTCAACTTCAAGGTGAGCGGCGGGCCGGGAGCGA



TCGCTCCCGGCCCGCCGCTCACCTTGAAGTTGACCGGGTCC
2813



ACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAG



CGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGT



GCGACCTGCACGCGCAC
2814



GTGCGCGTGCAGGTCGC
2815


Haemoglobin variant
GGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGA
2816


Lys90Asn
GCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAAC


AAGc-AAC
TTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAG



CTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGT
2817



TGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTC



AGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCC



GCGCACAAGCTTCGGGT
2818



ACCCGAAGCTTGTGCGC
2819


Haemoglobin variant
TGGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTG
2820


Lys90Thr
AGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAA


AAG-ACG
CTTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGA



TCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGTT
2821



GACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCA



GGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCCA



CGCGCACAAGCTTCGGG
2822



CCCGAAGCTTGTGCGCG
2823


Haemoglobin variant
ACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGAC
2824


Arg92Gln
CTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAA


CGG-CAG
GGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCG



CGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTT
2825



GAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGT



CGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGT



CAAGCTTCGGGTGGACC
2826



GGTCCACCCGAAGCTTG
2827


Haemoglobin variant
ACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCAC
2828


Asp94Gly
GCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAG


GAC-GGC
CGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGG



CCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCT
2829



CACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGT



GCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGT



TCGGGTGGACCCGGTCA
2830



TGACCGGGTCCACCCGA
2831


Haemoglobin variant
ACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG
2832


Pro95Arg
CACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAGCGG


CCG-CGG
CGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGGCGC



GCGCCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCC
2833



GCTCACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCG



CGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGT



GGTGGACCCGGTCAACT
2834



AGTTGACCGGGTCCACC
2835


Haemoglobin variant
CGGCGGCTGCGGGCCTGGGCCCTCGGCCCCACTGACCCTC
2836


Ser102Arg
TTCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTG


AGCc-AGA
GCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCAC



GTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCC
2837



AGGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAA



GAGGGTCAGTGGGGCCGAGGGCCCAGGCCCGCAGCCGCCG



CTCCTAAGCCACTGCCT
2838



AGGCAGTGGCTTAGGAG
2839


Haemoglobin variant
TTCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTG
2840


Glu116Lys
GCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGC


cGAG-AAG
CTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGC



GCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCG
2841



TGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCA



GGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAA



TCCCCGCCGAGTTCACC
2842



GGTGAACTCGGCGGGGA
2843


Haemoglobin variant
TCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTC
2844


Ala120Glu
CCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAA


GCG-GAG
GTTCCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAATA



TATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTG
2845



TCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGA



GGTGGGCGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGA



CACCCCTGCGGTGCACG
2846



CGTGCACCGCAGGGGTG
2847


Thalassaemia alpha
TGGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCAC
2848


Leu129Pro
GCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCTG


CTG-CCG
ACCTCCAAATACCGTTAAGCTGGAGCCTCGGTGGCCAT



ATGGCCACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGC
2849



ACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTG



CACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCA



CAAGTTCCTGGCTTCTG
2850



CAGAAGCCAGGAACTTG
2851


Haemoglobin variant
TGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCG
2852


Arg141Leu
TGCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTGGCCA


CGT-CTT
TGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCT



AGGAGGGGCTGGGGGGAGGCCCAAGGGGCAAGAAGCATGG
2853



CCACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCACG



GTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCA



CAAATACCGTTAAGCTG
2854



CAGCTTAACGGTATTTG
2855









EXAMPLE 16
Alpha-thalassemia—Hemoglobin Alpha Locus 2

The attached table discloses the correcting oligonucleotide base sequences for the hemoglobin alpha locus 2 oligonucleotides of the invention.









TABLE 23







HBA2 Mutations and Genome-Correcting Oligos









Clinical Phenotype

SEQ ID


& Mutation
Correcting Oligos
NO:





Thalassaemia alpha
CCTGGCGCGCTCGCGGGCCGGCACTCTTCTGGTCCCCACAG
2856


Met(−1)Thr
ACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAG


ATG-ACG
ACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCA



TGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTT
2857



GTCGGCAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCT



GTGGGGACCAGAAGAGTGCCGGCCCGCGAGCGCGCCAGG



ACCCACCATGGTGCTGT
2858



ACAGCACCATGGTGGGT
2859


Haemoglobin variant
CACAGACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCC
2860


Ala12Asp
GACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGC


GCC-GAC
GCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTG



CACCTCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGC
2861



GCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGG



CAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGTG



CGTCAAGGCCGCCTGGG
2862



CCCAGGCGGCCTTGACG
2863


Haemoglobin variant
AGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCAAC
2864


Lys16Glu
GTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGGCG


tAAG-GAG
AGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCTCC



GGAGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCG
2865



CCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTT



GGTCTTGTCGGCAGGAGACAGCACCATGGTGGGTTCTCT



CCTGGGGTAAGGTCGGC
2866



GCCGACCTTACCCCAGG
2867


Haemoglobin variant
GGTGCTGTCTCCTGCCGACAAGACCAACGTCAAGGCCGCCT
2868


His20Gln
GGGGTAAGGTCGGCGCGCACGCTGGCGAGTATGGTGCGGA


CACg-CAA
GGCCCTGGAGAGGTGAGGCTCCCTCCCCTGCTCCGACCCG



CGGGTCGGAGCAGGGGAGGGAGCCTCACCTCTCCAGGGCC
2869



TCCGCACCATACTCGCCAGCGTGCGCGCCGACCTTACCCCA



GGCGGCCTTGACGTTGGTCTTGTCGGCAGGAGACAGCACC



GGCGCGCACGCTGGCGA
2870



TCGCCAGCGTGCGCGCC
2871


Haemoglobin variant
GACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCAC
2872


Glu27Asp
GCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCT


GAGg-GAC
CCCTCCCCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGAC



C



GGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGGGGAG
2873



GGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCCAG



CGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTC



GGTGCGGAGGCCCTGGA
2874



TCCAGGGCCTCCGCACC
2875


Thalassaemia alpha
ACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGG
2876


Leu29Pro
CGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCTCC


CTG-CCG
CCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGACCCACAG



CTGTGGGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGG
2877



GGAGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCG



CCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGT



GGAGGCCCTGGAGAGGT
2878



ACCTCTCCAGGGCCTCC
2879


Haemoglobin variant
GCTTCTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACCAAG
2880


Asp47His
ACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCA


cGAC-CAC
GGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGA



TCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGG
2881



GCAGAGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAGGTCTT



GGTGGTGGGGAAGGACAGGAACATCCTGCGGGGAGAAGC



CGCACTTCGACCTGAGC
2882



GCTCAGGTCGAAGTGCG
2883


Haemoglobin variant
CTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACCAAGACCT
2884


Leu48Arg
ACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCAGGTTA


CTG-CGG
AGGGCCACGGCAAGAAGGTGGCCGACGCGCTGACCAA



TTGGTCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAAC
2885



CTGGGCAGAGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAG



GTCTTGGTGGTGGGGAAGGACAGGAACATCCTGCGGGGAG



CTTCGACCTGAGCCACG
2886



CGTGGCTCAGGTCGAAG
2887


Haemoglobin variant
CTGTCCTTCCCCACCACCAAGACCTACTTCCCGCACTTCGAC
2888


Gln54Glu
CTGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAA


cCAG-GAG
GGTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGG



CCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCACCTTC
2889



TTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTCAGGTC



GAAGTGCGGGAAGTAGGTCTTGGTGGTGGGGAAGGACAG



GCTCTGCCCAGGTTAAG
2890



CTTAACCTGGGCAGAGC
2891


Haemoglobin variant
CCAAGACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTG
2892


Gly59Asp
CCCAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCT


GGC-GAC
GACCAACGCCGTGGCGCACGTGGACGACATGCCCAACGC



GCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAG
2893



CGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGGGCAG



AGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAGGTCTTGG



GGGCCACGGCAAGAAGG
2894



CCTTCTTGCCGTGGCCC
2895


Haemoglobin variant
GAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGG
2896


Asn68Lys
TGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGA


AACg-AAG
CATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG



CGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG
2897



TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCAC



CTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTC



CTGACCAACGCCGTGGC
2898



GCCACGGCGTTGGTCAG
2899


Haemoglobin variant
GAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGG
2900


Asn68Lys
TGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGA


AACg-AAA
CATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG



CGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG
2901



TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCAC



CTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTC



CTGACCAACGCCGTGGC
2902



GCCACGGCGTTGGTCAG
2903


Haemoglobin variant
CGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGGCG
2904


Asn78Lys
CACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGA


AACg-AAA
CCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACTTC



GAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGT
2905



CGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGC



GCCACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCG



ATGCCCAACGCGCTGTC
2906



GACAGCGCGTTGGGCAT
2907


Haemoglobin variant
CGCTGACCAACGCCGTGGCGCACGTGGACGACATGCCCAAC
2908


Asp85Val
GCGCTGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCG


GAC-GTC
GGTGGACCCGGTCAACTTCAAGGTGAGCGGCGGGCCGGG



CCCGGCCCGCCGCTCACCTTGAAGTTGACCGGGTCCACCCG
2909



AAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGT



TGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAGCG



CCTGAGCGACCTGCACG
2910



CGTGCAGGTCGCTCAGG
2911


Haemoglobin variant
GGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGA
2912


Lys90Asn
GCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAAC


AAGc-AAT
TTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAG



CTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGT
2913



TGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTC



AGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCC



GCGCACAAGCTTCGGGT
2914



ACCCGAAGCTTGTGCGC
2915


Haemoglobin variant
GACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCA
2916


Asp94His
CGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGA


gGAC-CAC
GCGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATG



CATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCTC
2917



ACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTG



CAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTC



TTCGGGTGGACCCGGTC
2918



GACCGGGTCCACCCGAA
2919


Haemoglobin variant
ACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG
2920


Pro95Leu
CACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAGCGG


CCG-CTG
CGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGGCGC



GCGCCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCC
2921



GCTCACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCG



CGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGT



GGTGGACCCGGTCAACT
2922



AGTTGACCGGGTCCACC
2923


Haemoglobin variant
TAGCGCAGGCGGCGGCTGCGGGCCTGGGCCGCACTGACCC
2924


Ser102Arg
TCTTCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCC


aAGC-CGC
TGGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGC



GCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCAG
2925



GGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAAGA



GGGTCAGTGCGGCCCAGGCCCGCAGCCGCCGCCTGCGCTA



AGCTCCTAAGCCACTGC
2926



GCAGTGGCTTAGGAGCT
2927


Haemoglobin H
GGCGGCGGCTGCGGGCCTGGGCCGCACTGACCCTCTTCTCT
2928


disease
GCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGC


Cys104Tyr
CCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTC


TGC-TAC
GAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGG
2929



CGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCA



GAGAAGAGGGTCAGTGCGGCCCAGGCCCGCAGCCGCCGCC



AAGCCACTGCCTGCTGG
2930



CCAGCAGGCAGTGGCTT
2931


Haemoglobin variant
CCGCACTGACCCTCTTCTCTGCACAGCTCCTAAGCCACTGCC
2932


Ala111Val
TGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTCACC


GCC-GTC
CCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGCTTC



GAAGCCAGGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGT
2933



GAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGG



CAGTGGCTTAGGAGCTGTGCAGAGAAGAGGGTCAGTGCGG



CCTGGCCGCCCACCTCC
2934



GGAGGTGGGCGGCCAGG
2935


Haemoglobin variant
TCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTC
2936


Ala120Glu
CCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAA


GCG-GAG
GTTCCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAATA



TATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTG
2937



TCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGA



GGTGGGCGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGA



CACCCCTGCGGTGCACG
2938



CGTGCACCGCAGGGGTG
2939


Haemoglobin variant
CCACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCG
2940


His122Gln
AGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTG


CACg-CAG
GCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAA



TTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAG
2941



GAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGG



CGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTGG



GCGGTGCACGCCTCCCT
2942



AGGGAGGCGTGCACCGC
2943


Haemoglobin variant
CACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGA
2944


Ala123Ser
GTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGG


cGCC-TCC
CTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAG



CTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCA
2945



GGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCG



GCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTG



CGGTGCACGCCTCCCTG
2946



CAGGGAGGCGTGCACCG
2947


Thalassaemia alpha
TGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTCACC
2948


Leu125Pro
CCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGT


CTG-CCG
GAGCACCGTGCTGACCTCCAAATACCGTTAAGCTGGAGC



GCTCCAGCTTAACGGTATTTGGAGGTCAGCACGGTGCTCACA
2949



GAAGCCAGGAACTTGTCCAGGGAGGCGTGCACCGCAGGGG



TGAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCA



CGCCTCCCTGGACAAGT
2950



ACTTGTCCAGGGAGGCG
2951


Haemoglobin variant
GCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTC
2952


Ser131Pro
CCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCTGACCTC


tTCT-CCT
CAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTTCCTC



GAGGAACGGCTACCGAGGCTCCAGCTTAACGGTATTTGGAG
2953



GTCAGCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGA



GGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGC



TCCTGGCTTCTGTGAGC
2954



GCTCACAGAAGCCAGGA
2955


Haemoglobin variant
GAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCT
2956


Leu136Met
GGCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAGC


gCTG-ATG
TGGAGCCTCGGTAGCCGTTCCTCCTGCCCGCTGGGCCT



AGGCCCAGCGGGCAGGAGGAACGGCTACCGAGGCTCCAGC
2957



TTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAG



GAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTC



GCACCGTGCTGACCTCC
2958



GGAGGTCAGCACGGTGC
2959


Haemoglobin variant
AGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTG
2960


Leu136Pro
GCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAGCT


CTG-CCG
GGAGCCTCGGTAGCCGTTCCTCCTGCCCGCTGGGCCTC



GAGGCCCAGCGGGCAGGAGGAACGGCTACCGAGGCTCCAG
2961



CTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCA



GGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACT



CACCGTGCTGACCTCCA
2962



TGGAGGTCAGCACGGTG
2963


Haemoglobin variant
GTGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACC
2964


Arg141Cys
GTGCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCC


cCGT-TGT
GTTCCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCC



GGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGGAACGGC
2965



TACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCACGGT



GCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCAC



CCAAATACCGTTAAGCT
2966



AGCTTAACGGTATTTGG
2967


Haemoglobin variant
CACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTG
2968


Term142Gln
CTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTT


tTAA-CAA
CCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCC



GGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGGAAC
2969



GGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCA



CGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTG



AATACCGTTAAGCTGGA
2970



TCCAGCTTAACGGTATT
2971


Haemoglobin variant
CACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTG
2972


Term142Lys
CTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTT


tTAA-AAA
CCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCC



GGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGGAAC
2973



GGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCA



CGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTG



AATACCGTTAAGCTGGA
2974



TCCAGCTTAACGGTATT
2975


Haemoglobin variant
CGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCT
2976


Term142Tyr
GACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTTCC


TAAg-TAT
TCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCCCC



GGGGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGG
2977



AACGGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAG



CACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCG



TACCGTTAAGCTGGAGC
2978



GCTCCAGCTTAACGGTA
2979









EXAMPLE 17
Human Mismatch Repair—MLH1

The human MLH1 gene is homologous to the bacterial mutL gene, which is involved in mismatch repair. Mutations in the MLH1 gene have been identified in many individuals with hereditary nonpolyposis colorectal cancer (HNPCC). Mutations in the MLH1 gene are also implicated in predisposition to a variety of cancers associated with, for example, Muir-Torre syndrome and Turcot syndrome. The attached table discloses the correcting oligonucleotide base sequences for the MLH1 oligonucleotides of the invention.









TABLE 24







MLH1 Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Non-polyposis
TTGGCTGAAGGCACTTCCGTTGAGCATCTAGACGTTTCCTTG
2980


colorectal cancer
GCTCTTCTGGCGCCAAAATGTCGTTCGTGGCAGGGGTTATTC


Met1Arg
GGCGGCTGGACGAGACAGTGGTGAACCGCATCGCGGC


ATG-AGG
GCCGCGATGCGGTTCACCACTGTCTCGTCCAGCCGCCGAAT
2981



AACCCCTGCCACGAACGACATTTTGGCGCCAGAAGAGCCAA



GGAAACGTCTAGATGCTCAACGGAAGTGCCTTCAGCCAA



CGCCAAAATGTCGTTCG
2982



CGAACGACATTTTGGCG
2983


Non-polyposis
TTGGCTGAAGGCACTTCCGTTGAGCATCTAGACGTTTCCTTG
2984


colorectal cancer
GCTCTTCTGGCGCCAAAATGTCGTTCGTGGCAGGGGTTATTC


Met1Lys
GGCGGCTGGACGAGACAGTGGTGAACCGCATCGCGGC


ATG-AAG
GCCGCGATGCGGTTCACCACTGTCTCGTCCAGCCGCCGAAT
2985



AACCCCTGCCACGAACGACATTTTGGCGCCAGAAGAGCCAA



GGAAACGTCTAGATGCTCAACGGAAGTGCCTTCAGCCAA



CGCCAAAATGTCGTTCG
2986



CGAACGACATTTTGGCG
2987


Non-polyposis
TGGTGAACCGCATCGCGGCGGGGGAAGTTATCCAGCGGCCA
2988


colorectal cancer
GCTAATGCTATCAAAGAGATGATTGAGAACTGGTACGGAGGG


Met35Arg
AGTCGAGCCGGGCTCACTTAAGGGCTACGACTTAACGG


ATG-AGG
CCGTTAAGTCGTAGCCCTTAAGTGAGCCCGGCTCGACTCCCT
2989



CCGTACCAGTTCTCAATCATCTCTTTGATAGCATTAGCTGGCC



GCTGGATAACTTCCCCCGCCGCGATGCGGTTCACCA



CAAAGAGATGATTGAGA
2990



TCTCAATCATCTCTTTG
2991


Non-polyposis
TAGAGTAGTTGCAGACTGATAAATTATTTTCTGTTTGATTTGCC
2992


colorectal cancer
AGTTTAGATGCAAAATCCACAAGTATTCAAGTGATTGTTAAAG


Ser44Phe
AGGGAGGCCTGAAGTTGATTCAGATCCAAGACAA


TCC-TTC
TTGTCTTGGATCTGAATCAACTTCAGGCCTCCCTCTTTAACAA
2993



TCACTTGAATACTTGTGGATTTTGCATCTAAACTGGCAAATCA



AACAGAAAATAATTTATCAGTCTGCAACTACTCTA



TGCAAAATCCACAAGTA
2994



TACTTGTGGATTTTGCA
2995


Non-polyposis
GCAAAATCCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGC
2996


colorectal cancer
CTGAAGTTGATTCAGATCCAAGACAATGGCACCGGGATCAGG


Gln62Lys
GTAAGTAAAACCTCAAAGTAGCAGGATGTTTGTGCGC


CAA-AAA
GCGCACAAACATCCTGCTACTTTGAGGTTTTACTTACCCTGAT
2997



CCCGGTGCCATTGTCTTGGATCTGAATCAACTTCAGGCCTCC



CTCTTTTAACAATCACTTGAATACTTGTGGATTTTGC



TTCAGATCCAAGACAAT
2998



ATTGTCTTGGATCTGAA
2999


Non-polyposis
GCAAAATCCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGC
3000


colorectal cancer
CTGAAGTTGATTCAGATCCAAGACAATGGCACCGGGATCAGG


Gln62Term
GTAAGTAAAACCTCAAAGTAGCAGGATGTTTGTGCGC


CAA-TAA
GCGCACAAACATCCTGCTACTTTGAGGTTTTACTTACCCTGAT
3001



CCCGGTGCCATTGTCTTGGATCTGAATCAACTTCAGGCCTCC



CTCTTTAACAATCACTTGAATACTTGTGGATTTTGC



TTCAGATCCAAGACAAT
3002



ATTGTCTTGGATCTGAA
3003


Non-polyposis
CCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGT
3004


colorectal cancer
TGATTCAGATCCAAGACAATGGCACCGGGATCAGGGTAAGTA


Asn64Ser
AAACCTCAAAGTAGCAGGATGTTTGTGCGCTTCATGG


AAT-AGT
CCATGAAGCGCACAAACATCCTGCTACTTTGAGGTTTTACTTA
3005



CCCTGATCCCGGTGCCATTGTCTTGGATCTGAATCAACTTCA



GGCCTCCCTCTTTAACAATCACTTGAATACTTGTGG



CCAAGACAATGGCACCG
3006



CGGTGCCATTGTCTTGG
3007


Non-polyposis
ATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTCAGA
3008


colorectal cancer
TCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAACCTCAA


Gly67Arg
AGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCA


GGG-AGG
TGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT
3009



TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATC



AACTTCAGGCCTCCCTCTTTAACAATCACTTGAAT



ATGGCACCGGGATCAGG
3010



CCTGATCCCGGTGCCAT
3011


Non-polyposis
ATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTCAGA
3012


colorectal cancer
TCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAACCTCAA


Gly67Arg
AGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCA


GGG-CGG
TGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT
3013



TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATC



AACTTCAGGCCTCCCTCTTTAACAATCACTTGAAT



ATGGCACCGGGATCAGG
3014



CCTGATCCCGGTGCCAT
3015


Non-polyposis
ATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTCAGA
3016


colorectal cancer
TCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAACCTCAA


Gly67Trp
AGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCA


GGG-TGG
TGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT
3017



TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATC



AACTTCAGGCCTCCCTCTTTAACAATCACTTGAAT



ATGGCACCGGGATCAGG
3018



CCTGATCCCGGTGCCAT
3019


Non-polyposis
GTAACATGATTATTTACTCATCTTTTTGGTATCTAACAGAAAGA
3020


colorectal cancer
AGATCTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTG


Cys77Arg
CAGTCCTTTGAGGATTTAGCCAGTATTTCTACCT


TGT-CGT
AGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTTTACT
3021



AGTAGTGAACCTTTCACATACAATATCCAGATCTTCTTTCTGTT



AGATACCAAAAAGATGAGTAAATAATCATGTTAC



ATATTGTATGTGAAAGG
3022



CCTTTCACATACAATAT
3023


Non-polyposis
TAACATGATTATTTACTCATCTTTTTGGTATCTAACAGAAAGAA
3024


colorectal cancer
GATCTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTGC


Cys77Tyr
AGTCCTTTGAGGATTTAGCCAGTATTTCTACCTA


TGT-TAT
TAGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTTTAC
3025



TAGTAGTGAACCTTTCACATACAATATCCAGATCTTCTTTCTGT



TAGATACCAAAAAGATGAGTAAATAATCATGTTA



TATTGTATGTGAAAGGT
3026



ACCTTTCACATACAATA
3027


Non-polyposis
CTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTGCAGT
3028


colorectal cancer
CCTTTGAGGATTTAGCCAGTATTTCTACCTATGGCTTTCGAGG


Ser93Gly
TGAGGTAAGCTAAAGATTCAAGAAATGTGTAAAAT


AGT-GGT
ATTTTACACATTTCTTGAATCTTTAGCTTACCTCACCTCGAAAG
3029



CCATAGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTT



TACTAGTAGTGAACCTTTCACATACAATATCCAG



ATTTAGCCAGTATTTCT
3030



AGAAATACTGGCTAAAT
3031


Non-polyposis
TTCACTACTAGTAAACTGCAGTCCTTTGAGGATTTAGCCAGTA
3032


colorectal cancer
TTTCTACCTATGGCTTTCGAGGTGAGGTAAGCTAAAGATTCAA


Arg100Term
GAAATGTGTAAAATATCCTCCTGTGATGACATTGT


CGA-TGA
ACAATGTCATCACAGGAGGATATTTTACACATTTCTTGAATCTT
3033



TAGCTTACCTCACCTCGAAAGCCATAGGTAGAAATACTGGCTA



AATCCTCAAAGGACTGCAGTTTACTAGTAGTGAA



ATGGCTTTCGAGGTGAG
3034



CTCACCTCGAAAGCCAT
3035


Non-polyposis
ACCCAGCAGTGAGTTTTTCTTTCAGTCTATTTTCTTTTCTTCCT
3036


colorectal cancer
TAGGCTTTGGCCAGCATAAGCCATGTGGCTCATGTTACTATTA


Ile107Arg
CAACGAAAACAGCTGATGGAAAGTGTGCATACAG


ATA-AGA
CTGTATGCACACTTTCCATCAGCTGTTTTCGTTGTAATAGTAA
3037



CATGAGCCACATGGCTTATGCTGGCCAAAGCCTAAGGAAGAA



AAGAAAATAGACTGAAAGAAAAACTCACTGCTGGGT



GGCCAGCATAAGCCATG
3038



CATGGCTTATGCTGGCC
3039


Non-polyposis
TTTCTTTTCTTCCTTAGGCTTTGGCCAGCATAAGCCATGTGGC
3040


colorectal cancer
TCATGTTACTATTACAACGAAAACAGCTGATGGAAAGTGTGCA


Thr117Arg
TACAGGTATAGTGCTGACTTCTTTTACTCATATAT


ACG-AGG
ATATATGAGTAAAAGAAGTCAGCACTATACCTGTATGCACACT
3041



TTCCATCAGCTGTTTTCGTTGTAATAGTAACATGAGCCACATG



GCTTATGCTGGCCAAAGCCTAAGGAAGAAAAGAAA



TATTACAACGAAAACAG
3042



CTGTTTTCGTTGTAATA
3043


Non-polyposis
TTTCTTTTCTTCCTTAGGCTTTGGCCAGCATAAGCCATGTGGC
3044


colorectal cancer
TCATGTTACTATTACAACGAAAACAGCTGATGGAAAGTGTGCA


Thr117Met
TACAGGTATAGTGCTGACTTCTTTTACTCATATAT


ACG-ATG
ATATATGAGTAAAAGAAGTCAGCACTATACCTGTATGCACACT
3045



TTCCATCAGCTGTTTTCGTTGTAATAGTAACATGAGCCACATG



GCTTATGCTGGCCAAAGCCTAAGGAAGAAAAGAAA



TATTACAACGAAAACAG
3046



CTGTTTTCGTTGTAATA
3047


Non-polyposis
TCTATCTCTCTACTGGATATTAATTTGTTATATTTTCTCATTAGA
3048


colorectal cancer
GCAAGTTACTCAGATGGAAAACTGAAAGCCCCTCCTAAACCA


Gly133Term
TGTGCTGGCAATCAAGGGACCCAGATCACGGTAA


GGA-TGA
TTACCGTGATCTGGGTCCCTTGATTGCCAGCACATGGTTTAG
3049



GAGGGGCTTTCAGTTTTCCATCTGAGTAACTTGCTCTAATGAG



AAAATATAACAAATTAATATCCAGTAGAGAGATAGA



ACTCAGATGGAAAACTG
3050



CAGTTTTCCATCTGAGT
3051


Non-polyposis
TAGTGTGTGTTTTTGGCAACTCTTTTCTTACTCTTTTGTTTTTC
3052


colorectal cancer
TTTTCCAGGTATTCAGTACACAATGCAGGCATTAGTTTCTCAG


Val185Gly
TTAAAAAAGTAAGTTCTTGGTTTATGGGGGATGG


GTA-GGA
CCATCCCCCATAAACCAAGAACTTACTTTTTTAACTGAGAAAC
3053



TAATGCCTGCATTGTGTACTGAATACCTGGAAAAGAAAAACAA



AAGAGTAAGAAAAGAGTTGCCAAAAACACACACTA



GTATTCAGTACACAATG
3054



CATTGTGTACTGAATAC
3055


Non-polyposis
TTTCTTACTCTTTTGTTTTTCTTTTCCAGGTATTCAGTACACAAT
3056


colorectal cancer
GCAGGCATTAGTTTCTCAGTTAAAAAAGTAAGTTCTTGGTTTAT


Ser193Pro
GGGGGATGGTTTTGTTTTATGAAAAGAAAAAA


TCA-CCA
TTTTTTCTTTTCATAAAACAAAACCATCCCCCATAAACCAAGAA
3057



CTTACTTTTTTAACTGAGAAACTAATGCCTGCATTGTGTACTG



AATACCTGGAAAAGAAAAACAAAAGAGTAAGAAA



TTAGTTTCTCAGTTAAA
3058



TTTAACTGAGAAACTAA
3059


Non-polyposis
TTTGTTTATCAGCAAGGAGAGACAGTAGCTGATGTTAGGACA
3060


colorectal cancer
CTACCCAATGCCTCAACCGTGGACAATATTCGCTCCATCTTTG


Val213Met
GAAATGCTGTTAGTCGGTATGTCGATAACCTATATA


GTG-ATG
TATATAGGTTATCGACATACCGACTAACAGCATTTCCAAAGAT
3061



GGAGCGAATATTGTCCACGGTTGAGGCATTGGGTAGTGTCCT



AACATCAGCTACTGTCTCTCCTTGCTGATAAACAAA



CCTCAACCGTGGACAAT
3062



ATTGTCCACGGTTGAGG
3063


Non-polyposis
CAAGGAGAGACAGTAGCTGATGTTAGGACACTACCCAATGCC
3064


colorectal cancer
TCAACCGTGGACAATATTCGCTCCATCTTTGGAAATGCTGTTA


Arg217Cys
GTCGGTATGTCGATAACCTATATAAAAAAATCTTTT


CGC-TGC
AAAAGATTTTTTTATATAGGTTATCGACATACCGACTAACAGCA
3065



TTTCCAAAGATGGAGCGAATATTGTCCACGGTTGAGGCATTG



GGTAGTGTCCTAACATCAGCTACTGTCTCTCCTTG



ACAATATTCGCTCCATC
3066



GATGGAGCGAATATTGT
3067


Non-polyposis
GAGACAGTAGCTGATGTTAGGACACTACCCAATGCCTCAACC
3068


colorectal cancer
GTGGACAATATTCGCTCCATCTTTGGAAATGCTGTTAGTCGGT


Ile219Val
ATGTCGATAACCTATATAAAAAAATCTTTTACATTT


ATC-GTC
AAATGTAAAAGATTTTTTTATATAGGTTATCGACATACCGACTA
3069



ACAGCATTTCCAAAGATGGAGCGAATATTGTCCACGGTTGAG



GCATTGGGTAGTGTCCTAACATCAGCTACTGTCTC



TTCGCTCCATCTTTGGA
3070



TCCAAAGATGGAGCGAA
3071


Non-polyposis
CTAATAGAGAACTGATAGAAATTGGATGTGAGGATAAAACCCT
3072


colorectal cancer
AGCCTTCAAAATGAATGGTTACATATCCAATGCAAACTACTCA


Gly244Asp
GTGAAGAAGTGCATCTTCTTACTCTTCATCAACCG


GGT-GAT
CGGTTGATGAAGAGTAAGAAGATGCACTTCTTCACTGAGTAG
3073



TTTGCATTGGATATGTAACCATTCATTTTGAAGGCTAGGGTTT



TATCCTCACATCCAATTTCTATCAGTTCTCTATTAG



AATGAATGGTTACATAT
3074



ATATGTAACCATTCATT
3075


Non-polyposis
GATGTGAGGATAAAACCCTAGCCTTCAAAATGAATGGTTACAT
3076


colorectal cancer
ATCCAATGCAAACTACTCAGTGAAGAAGTGCATCTTCTTACTC


Ser252Term
TTCATCAACCGTAAGTTAAAAAGAACCACATGGGA


TCA-TAA
TCCCATGTGGTTCTTTTTAACTTACGGTTGATGAAGAGTAAGA
3077



AGATGCACTTCTTCACTGAGTAGTTTGCATTGGATATGTAACC



ATTCATTTTGAAGGCTAGGGTTTTATCCTCACATC



AAACTACTCAGTGAAGA
3078



TCTTCACTGAGTAGTTT
3079


Non-polyposis
CACCCCTCAGGACAGTTTTGAACTGGTTGCTTTCTTTTTATTG
3080


colorectal cancer
TTTAGATCGTCTGGTAGAATCAACTTCCTTGAGAAAAGCCATA


Glu268Gly
GAAACAGTGTATGCAGCCTATTTGCCCAAAAACAC


GAA-GGA
GTGTTTTTGGGCAAATAGGCTGCATACACTGTTTCTATGGCTT
3081



TCTCAAGGAAGTTGATTCTACCAGACGATCTAAACAATAAAA



TAGAAAGCAACCAGTTCAAAACTGTCCTGAGGGGTG



TCTGGTAGAATCAACTT
3082



AAGTTGATTCTACCAGA
3083


Non-polyposis
CCCTCAGGACAGTTTTGAACTGGTTGCTTTCTTTTTATTGTTTA
3084


colorectal cancer
GATCGTCTGGTAGAATCAACTTCCTTGAGAAAAGCCATAGAAA


Ser269Term
CAGTGTATGCAGCCTATTTGCCCAAAAACACACA


TCA-TGA
TGTGTGTTTTTGGGCAAATAGGCTGCATACACTGTTTCTATGG
3085



CTTTTCTCAAGGAAGTTGATTCTACCAGACGATCTAAACAATA



AAAAGAAAGCAACCAGTTCAAAACTGTCCTGAGGG



GGTAGAATCAACTTCCT
3086



AGGAAGTTGATTCTACC
3087


Non-polyposis
CTTTTTCTCCCCCTCCCACTATCTAAGGTAATTGTTCTCTCTTA
3088


colorectal cancer
TTTTCCTGACAGTTTAGAAATCAGTCCCCAGAATGTGGATGTT


Glu297Term
AATGTGCACCCCACAAAGCATGAAGTTCACTTCC


GAA-TAA
GGAAGTGAACTTCATGCTTTGTGGGGTGCACATTAACATCCA
3089



CATTCTGGGGACTGATTTCTAAACTGTCAGGAAAATAAGAGAG



AACAATTACCTTAGATAGTGGGAGGGGGAGAAAAAG



ACAGTTTAGAAATCAGT
3090



ACTGATTTCTAAACTGT
3091


Non-polyposis
CTCCCACTATCTAAGGTAATTGTTCTCTCTTATTTTCCTGACAG
3092


colorectal cancer
TTTAGAAATCAGTCCCCAGAATGTGGATGTTAATGTGCACCCC


Gln301Term
ACAAAGCATGAAGTTCACTTCCTGCACGAGGAGA


CAG-TAG
TCTCCTCGTGCAGGAAGTGAACTTCATGCTTTGTGGGGTGCA
3093



CATTAACATCCACATTCTGGGGACTGATTTCTAAACTGTCAGG



AAAATAAGAGAGAACAATTACCTTAGATAGTGGGAG



TCAGTCCCCAGAATGTG
3094



CACATTCTGGGGACTGA
3095


Non-polyposis
ATGTGCACCCCACAAAGCATGAAGTTCACTTCCTGCACGAGG
3096


colorectal cancer
AGAGCATCCTGGAGCGGGTGCAGCAGCACATCGAGAGCAAG


Val326Ala
CTCCTGGGCTCCAATTCCTCCAGGATGTACTTCACCCA


GTG-GCG
TGGGTGAAGTACATCCTGGAGGAATTGGAGCCCAGGAGCTT
3097



GCTCTCGATGTGCTGCTGCACCCGCTCCAGGATGCTCTCCT



CGTGCAGGAAGTGAACTTCATGCTTTGTGGGGTGCACAT



GGAGCGGGTGCAGCAGC
3098



GCTGCTGCACCCGCTCC
3099


Non-polyposis
CCACAAAGCATGAAGTTCACTTCCTGCACGAGGAGAGCATCC
3100


colorectal cancer
TGGAGCGGGTGCAGCAGCACATCGAGAGCAAGCTCCTGGGC


His329Pro
TCCAATTCCTCCAGGATGTACTTCACCCAGGTCAGGGC


CAC-CCC
GCCCTGACCTGGGTGAAGTACATCCTGGAGGAATTGGAGCC
3101



CAGGAGCTTGCTCTCGATGTGCTGCTGCACCCGCTCCAGGA



TGCTCTCCTCGTGCAGGAAGTGAACTTCATGCTTTGTGG



GCAGCAGCACATCGAGA
3102



TCTCGATGTGCTGCTGC
3103


Non-polyposis
CAAGTCTGACCTCGTCTTCTACTTCTGGAAGTAGTGATAAGGT
3104


colorectal cancer
CTATGCCCACCAGATGGTTCGTACAGATTCCCGGGAACAGAA


Val384Asp
GCTTGATGCATTTCTGCAGCCTCTGAGCAAACCCCT


GTT-GAT
AGGGGTTTGCTCAGAGGCTGCAGAAATGCATCAAGCTTCTGT
3105



TCCCGGGAATCTGTACGAACCATCTGGTGGGCATAGACCTTA



TCACTACTTCCAGAAGTAGAAGACGAGGTCAGACTTG



CCAGATGGTTCGTACAG
3106



CTGTACGAACCATCTGG
3107


Non-polyposis
AGTGGCAGGGCTAGGCAGCAAGATGAGGAGATGCTTGAACT
3108


colorectal cancer
CCCAGCCCCTGCTGAAGTGGCTGCCAAAAATCAGAGCTTGGA


Ala441Thr
GGGGGATACAACAAAGGGGACTTCAGAAATGTCAGAGA


GCT-ACT
TCTCTGACATTTCTGAAGTCCCCTTTGTTGTATCCCCCTCCAA
3109



GCTCTGATTTTTGGCAGCCACTTCAGCAGGGGCTGGGAGTTC



AAGCATCTCCTCATCTTGCTGCCTAGCCCTGCCACT



CTGAAGTGGCTGCCAAA
3110



TTTGGCAGCCACTTCAG
3111


Non-polyposis
CTTCATTGCAGAAAGAGACATCGGGAAGATTCTGATGTGGAA
3112


colorectal cancer
ATGGTGGAAGATGATTCCCGAAAGGAAATGACTGCAGCTTGT


Arg487Term
ACCCCCCGGAGAAGGATCATTAACCTCACTAGTGTTT


CGA-TGA
AAACACTAGTGAGGTTAATGATCCTTCTCCGGGGGGTACAAG
3113



CTGCAGTCATTTCCTTTCGGGAATCATCTTCCACCATTTCCAC



ATCAGAATCTTCCCGATGTCTCTTTCTGCAATGAAG



ATGATTCCCGAAAGGAA
3114



TTCCTTTCGGGAATCAT
3115


Non-polyposis
AGACATCGGGAAGATTCTGATGTGGAAATGGTGGAAGATGAT
3116


colorectal cancer
TCCCGAAAGGAAATGACTGCAGCTTGTACCCCCCGGAGAAG


Ala492Thr
GATCATTAACCTCACTAGTGTTTTGAGTCTCCAGGAAG


GCA-ACA
CTTCCTGGAGACTCAAAACACTAGTGAGGTTAATGATCCTTCT
3117



CCGGGGGGTACAAGCTGCAGTCATTTCCTTTCGGGAATCATC



TTCCACCATTTCCACATCAGAATCTTCCCGATGTCT



AAATGACTGCAGCTTGT
3118



ACAAGCTGCAGTCATTT
3119


Non-polyposis
CCCGAAAGGAAATGACTGCAGCTTGTACCCCCCGGAGAAGG
3120


colorectal cancer
ATCATTAACCTCACTAGTGTTTTGAGTCTCCAGGAAGAAATTA


Val506Ala
ATGAGCAGGGACATGAGGGTACGTAAACGCTGTGGCC


GTT-GCT
GGCCACAGCGTTTACGTACCCTCATGTCCCTGCTCATTAATTT
3121



CTTCCTGGAGACTCAAAACACTAGTGAGGTTAATGATCCTTCT



CCGGGGGGTACAAGCTGCAGTCATTTCCTTTCGGG



CACTAGTGTTTTGAGTC
3122



GACTCAAAACACTAGTG
3123


Non-polyposis
GGGAGATGTTGCATAACCACTCCTTCGTGGGCTGTGTGAATC
3124


colorectal cancer
CTCAGTGGGCCTTGGCACAGCATCAAACCAAGTTATACCTTC


Gln542Leu
TCAACACCACCAAGCTTAGGTAAATCAGCTGAGTGTG


CAG-CTG
CACACTCAGCTGATTTACCTAAGCTTGGTGGTGTTGAGAAGG
3125



TATAACTTGGTTTGATGCTGTGCCAAGGCCCACTGAGGATTC



ACACAGCCCACGAAGGAGTGGTTATGCAACATCTCCC



CTTGGCACAGCATCAAA
3126



TTTGATGCTGTGCCAAG
3127


Non-polyposis
CCTTCGTGGGCTGTGTGAATCCTCAGTGGGCCTTGGCACAG
3128


colorectal cancer
CATCAAACCAAGTTATACCTTCTCAACACCACCAAGCTTAGGT


Leu549Pro
AAATCAGCTGAGTGTGTGAACAAGCAGAGCTACTACA


CTT-CCT
TGTAGTAGCTCTGCTTGTTCACACACTCAGCTGATTTACCTAA
3129



GCTTGGTGGTGTTGAGAAGGTATAACTTGGTTTGATGCTGTG



CCAAGGCCCACTGAGGATTCACACAGCCCACGAAGG



GTTATACCTTCTCAACA
3130



TGTTGAGAAGGTATAAC
3131


Non-polyposis
TGGGCTGTGTGAATCCTCAGTGGGCCTTGGCACAGCATCAAA
3132


colorectal cancer
CCAAGTTATACCTTCTCAACACCACCAAGCTTAGGTAAATCAG


Asn55lThr
CTGAGTGTGTGAACAAGCAGAGCTACTACAACAATG


AAC-ACC
CATTGTTGTAGTAGCTCTGCTTGTTCACACACTCAGCTGATTT
3133



ACCTAAGCTTGGTGGTGTTGAGAAGGTATAACTTGGTTTGATG



CTGTGCCAAGGCCCACTGAGGATTCACACAGCCCA



CCTTCTCAACACCACCA
3134



TGGTGGTGTTGAGAAGG
3135


Non-polyposis
ATGAATTCAGCTTTTCCTTAAAGTCACTTCATTTTTATTTTCAG
3136


colorectal cancer
TGAAGAACTGTTCTACCAGATACTCATTTATGATTTTGCCAATT


Gln562Term
TTGGTGTTCTCAGGTTATCGGTAAGTTTAGATC


CAG-TAG
GATCTAAACTTACCGATAACCTGAGAACACCAAAATTGGCAAA
3137



ATCATAAATGAGTATCTGGTAGAACAGTTCTTCACTGAAAATA



AAAATGAAGTGACTTTAAGGAAAAGCTGAATTCAT



TGTTCTACCAGATACTC
3138



GAGTATCTGGTAGAACA
3139


Non-polyposis
GCTTTTCCTTAAAGTCACTTCATTTTTATTTTCAGTGAAGAACT
3140


colorectal cancer
GTTCTACCAGATACTCATTTATGATTTTGCCAATTTTGGTGTTC


Ile565Phe
TCAGGTTATCGGTAAGTTTAGATCCTTTTCACT


ATT-TTT
AGTGAAAAGGATCTAAACTTACCGATAACCTGAGAACACCAAA
3141



ATTGGCAAAATCATAAATGAGTATCTGGTAGAACAGTTCTTCA



CTGAAAATAAAAATGAAGTGACTTTAAGGAAAAGC



AGATACTCATTTATGAT
3142



ATCATAAATGAGTATCT
3143


Non-polyposis
TTTTCAGTGAAGAACTGTTCTACCAGATACTCATTTATGATTTT
3144


colorectal cancer
GCCAATTTTGGTGTTCTCAGGTTATCGGTAAGTTTAGATCCTT


Leu574Pro
TTCACTTCTGAAATTTCAACTGATCGTTTCTGAA


CTC-CCC
TTCAGAAACGATCAGTTGAAATTTCAGAAGTGAAAAGGATCTA
3145



AACTTACCGATAACCTGAGAACACCAAAATTGGCAAAATCATA



AATGAGTATCTGGTAGAACAGTTCTTCACTGAAAA



TGGTGTTCTCAGGTTAT
3146



ATAACCTGAGAACACCA
3147


Non-polyposis
TGGATGCTCCGTTAAAGCTTGCTCCTTCATGTTCTTGCTTCTT
3148


colorectal cancer
CCTAGGAGCCAGCACCGCTCTTTGACCTTGCCATGCTTGCCT


Leu582Val
TAGATAGTCCAGAGAGTGGCTGGACAGAGGAAGATG


CTC-GTC
CATCTTCCTCTGTCCAGCCACTCTCTGGACTATCTAAGGCAA
3149



GCATGGCAAGGTCAAAGAGCGGTGCTGGCTCCTAGGAAGAA



GCAAGAACATGAAGGAGCAAGCTTTAACGGAGCATCCA



CAGCACCGCTCTTTGAC
3150



GTCAAAGAGCGGTGCTG
3151


Non-polyposis
TGCTTGCCTTAGATAGTCCAGAGAGTGGCTGGACAGAGGAAG
3152


colorectal cancer
ATGGTCCCAAAGAAGGACTTGCTGAATACATTGTTGAGTTTCT


Leu607His
GAAGAAGAAGGCTGAGATGCTTGCAGACTATTTCTC


CTT-CAT
GAGAAATAGTCTGCAAGCATCTCAGCCTTCTTCTTCAGAAACT
3153



CAACAATGTATTCAGCAAGTCCTTCTTTGGGACCATCTTCCTC



TGTCCAGCCACTCTCTGGACTATCTAAGGCAAGCA



AGAAGGACTTGCTGAAT
3154



ATTCAGCAAGTCCTTCT
3155


Non-polyposis
ACAGAGGAAGATGGTCCCAAAGAAGGACTTGCTGAATACATT
3156


colorectal cancer
GTTGAGTTTCTGAAGAAGAAGGCTGAGATGCTTGCAGACTAT


Lys618Term
TTCTCTTTGGAAATTGATGAGGTGTGACAGCCATTCT


AAG-TAG
AGAATGGCTGTCACACCTCATCAATTTCCAAAGAGAAATAGTC
3157



TGCAAGCATCTCAGCCTTCTTCTTCAGAAACTCAACAATGTAT



TCAGCAAGTCCTTCTTTGGGACCATCTTCCTCTGT



TGAAGAAGAAGGCTGAG
3158



CTCAGCCTTCTTCTTCA
3159


Non-polyposis
CAGAGGAAGATGGTCCCAAAGAAGGACTTGCTGAATACATTG
3160


colorectal cancer
TTGAGTTTCTGAAGAAGAAGGCTGAGATGCTTGCAGACTATTT


Lys618Thr
CTCTTTGGAAATTGATGAGGTGTGACAGCCATTCTT


AAG-ACG
AAGAATGGCTGTCACACCTCATCAATTTCCAAAGAGAAATAGT
3161



CTGCAAGCATCTCAGCCTTCTTCTTCAGAAACTCAACAATGTA



TTCAGCAAGTCCTTCTTTGGGACCATCTTCCTCTG



GAAGAAGAAGGCTGAGA
3162



TCTCAGCCTTCTTCTTC
3163


Non-polyposis
TACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGAC
3164


colorectal cancer
TGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATCA


Arg659Leu
AGCAGATACTAAGCATTTCGGTACATGCATGTGTGC


CGA-CTA
GCACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCAC
3165



TGACCTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCT



CCAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTA



CATTCTTCGACTAGCCA
3166



TGGCTAGTCGAACAATG
3167


Non-polyposis
TACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGAC
3168


colorectal cancer
TGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATCA


Arg659Pro
AGCAGATACTAAGCATTTCGGTACATGCATGTGTGC


CGA-CCA
GCACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCAC
3169



TGACCTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCT



CCAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTA



CATTCTTCGACTAGCCA
3170



TGGCTAGTCGAAGAATG
3171


Non-polyposis
TTACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGA
3172


colorectal cancer
CTGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATC


Arg659Term
AAGCAGATACTAAGCATTTCGGTACATGCATGTGTG


CGA-TGA
CACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCACT
3173



GACCTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCTC



CAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTAA



TCATTCTTCGACTAGCC
3174



GGCTAGTCGAAGAATGA
3175


Non-polyposis
TTGGACCAGGTGAATTGGGACGAAGAAAAGGAATGTTTTGAA
3176


colorectal cancer
AGCCTCAGTAAAGAATGCGCTATGTTCTATTCCATCCGGAAG


Ala681Thr
CAGTACATATCTGAGGAGTCGACCCTCTCAGGCCAGC


GCT-ACT
GCTGGCCTGAGAGGGTCGACTCCTCAGATATGTACTGCTTCC
3177



GGATGGAATAGAACATAGCGCATTCTTTACTGAGGCTTTCAAA



ACATTCCTTTTCTTCGTCCCAATTCACCTGGTCCAA



AAGAATGCGCTATGTTC
3178



GAACATAGCGCATTCTT
3179


Non-polyposis
AGGCTTATGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGG
3180


colorectal cancer
CTCCATTCCAAACTCCTGGAAGTGGACTGTGGAACACATTGT


Trp7l2Term
CTATAAAGCCTTGCGCTCACACATTCTGCCTCCTAA


TGG-TAG
TTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATAGACAATG
3181



TGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGAGCCAGGC



ACTTCACTCTGGAAAACACATTAGATGTCATAAGCCT



AAACTCCTGGAAGTGGA
3182



TCCACTTCCAGGAGTTT
3183


Non-polyposis
ATGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCAT
3184


colorectal cancer
TCCAAACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAA


Trp7l4Term
GCCTTGCGCTCACACATTCTGCCTCCTAAACATTT


TGG-TAG
AAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATAG
3185



ACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGAG



CCAGGCACTTCACTCTGGAAAACACATTAGATGTCAT



CTGGAAGTGGACTGTGG
3186



CCACAGTCCACTTCCAG
3187


Non-polyposis
TGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCATT
3188


colorectal cancer
CCAAACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAA


Trp7l4Term
GCCTTGCGCTCACACATTCTGCCTCCTAAACATTTC


TGG-TGA
GAAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATA
3189



GACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGA



GCCAGGCACTTCACTCTGGAAAACACATTAGATGTCA



TGGAAGTGGACTGTGGA
3190



TCCACAGTCCACTTCCA
3191


Non-polyposis
ATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCATTCCAA
3192


colorectal cancer
ACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAAGCCTT


Val7l6Met
GCGCTCACACATTCTGCCTCCTAAACATTTCACAG


GTG-ATG
CTGTGAAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTT
3193



TATAGACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAAT



GGAGCCAGGCACTTCACTCTGGAAAACACATTAGAT



AGTGGACTGTGGAACAC
3194



GTGTTCCACAGTCCACT
3195


Non-polyposis
GAGTGAAGTGCCTGGCTCCATTCCAAACTCCTGGAAGTGGAC
3196


colorectal cancer
TGTGGAACACATTGTCTATAAAGCCTTGCGCTCACACATTCTG


Tyr72lTerm
CCTCCTAAACATTTCACAGAAGATGGAAATATCCTG


TAT-TAA
CAGGATATTTCCATCTTCTGTGAAATGTTTAGGAGGCAGAATG
3197



TGTGAGCGCAAGGCTTTATAGACAATGTGTTCCACAGTCCAC



TTCCAGGAGTTTGGAATGGAGCCAGGCACTTCACTC



ATTGTCTATAAAGCCTT
3198



AAGGCTTTATAGACAAT
3199


Non-polyposis
CTAAACATTTCACAGAAGATGGAAATATCCTGCAGCTTGCTAA
3200


colorectal cancer
CCTGCCTGATCTATACAAAGTCTTTGAGAGGTGTTAAATATGG


Lys75lArg
TTATTTATGCACTGTGGGATGTGTTCTTCTTTCTC


AAA-AGA
GAGAAAGAAGAACACATCCCACAGTGCATAAATAACCATATTT
3201



AACACCTCTCAAAGACTTTGTATAGATCAGGCAGGTTAGCAAG



CTGCAGGATATTTCCATCTTCTGTGAAATGTTTAG



TCTATACAAAGTCTTTG
3202



CAAAGACTTTGTATAGA
3203


Non-polyposis
ACAGAAGATGGAAATATCCTGCAGCTTGCTAACCTGCCTGAT
3204


colorectal cancer
CTATACAAAGTCTTTGAGAGGTGTTAAATATGGTTATTTATGCA


Arg755Trp
CTGTGGGATGTGTTCTTCTTTCTCTGTATTCCGAT


AGG-TGG
ATCGGAATACAGAGAAAGAAGAACACATCCCACAGTGCATAA
3205



ATAACCATATTTAACACCTCTCAAAGACTTTGTATAGATCAGG



CAGGTTAGCAAGCTGCAGGATATTTCCATCTTCTGT



TCTTTGAGAGGTGTTAA
3206



TTAACACCTCTCAAAGA
3207









EXAMPLE 18
Human Mismatch Repair—MSH2

The human MSH2 gene is homologous to the bacterial mutS gene, which is involved in mismatch repair. Mutations in the MSH2 gene have been identified in a variety of cancers, including, for example, ovarian tumors, colorectal cancer, endometrial cancer, uterine cancer. The attached table discloses the correcting oligonucleotide base sequences for the MSH2 oligonucleotides of the invention.









TABLE 25







MSH2 Mutations and Genome-Correcting Oligos








Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:












Non polyposis
TTTTCCACAAAAGACATTTATCAGGACCTCAACCGGTTGTTGA
3208


colorectal cancer
AAGGCAAAAAGGGAGAGCAGATGAATAGTGCTGTATTGCCAG


Gln252Term
AAATGGAGAATCAGGTACATGGATTATAAATGTGAA


CAG-TAG
TTCACATTTATAATCCATGTACCTGATTCTCCATTTCTGGCAAT
3209



ACAGCACTATTCATCTGCTCTCCCTTTTTGCCTTTCAACAACC



GGTTGAGGTCCTGATAAATGTCTTTTGTGGAAAA



AGGGAGAGCAGATGAAT
3210



ATTCATCTGCTCTCCCT
3211


Non polyposis
TCATCACTGTCTGCGGTAATCAAGTTTTTAGAACTCTTATCAG
3212


colorectal cancer
ATGATTCCAACTTTGGACAGTTTGAACTGACTACTTTTGACTT


Gln288Term
CAGCCAGTATATGAAATTGGATATTGCAGCAGTCA


CAG-TAG
TGACTGCTGCAATATCCAATTTCATATACTGGCTGAAGTCAAA
3213



AGTAGTCAGTTCAAACTGTCCAAAGTTGGAATCATCTGATAAG



AGTTCTAAAAACTTGATTACCGCAGACAGTGATGA



ACTTTGGACAGTTTGAA
3214



TTCAAACTGTCCAAAGT
3215


Non polyposis
AACTTTGGACAGTTTGAACTGACTACTTTTGACTTCAGCCAGT
3216


colorectal cancer
ATATGAAATTGGATATTGCAGCAGTCAGAGCCCTTAACCTTTT


Ala305Thr
TCAGGTAAAAAAAAAAAAAAAAAAAAAAAAAAAGG


GCA-ACA
CCTTTTTTTTTTTTTTTTTTTTTTTTTTTACCTGAAAAAGGTTAAG
3217



GGCTCTGACTGCTGCAATATCCAATTTCATATACTGGCTGAAG



TCAAAAGTAGTCAGTTCAAACTGTCCAAAGTT



TGGATATTGCAGCAGTC
3218



GACTGCTGCAATATCCA
3219


Non polyposis
AGCTTGCCATTCTTTCTATTTTATTTTTTGTTTACTAGGGTTCT
3220


colorectal cancer
GTTGAAGATACCACTGGCTCTCAGTCTCTGGCTGCCTTGCTG


Gly322Asp
AATAAGTGTAAAACCCCTCAAGGACAAAGACTTGT


GGC-GAC
ACAAGTCTTTGTCCTTGAGGGGTTTTACACTTATTCAGCAAGG
3221



CAGCCAGAGACTGAGAGCCAGTGGTATCTTCAACAGAACCCT



AGTAAACAAAAAATAAAATAGAAAGAATGGCAAGCT



TACCACTGGCTCTCAGT
3222



ACTGAGAGCCAGTGGTA
3223


Non polyposis
TTGCCATTCTTTCTATTTTATTTTTTGTTTACTAGGGTTCTGTTG
3224


colorectal cancer
AAGATACCACTGGCTCTCAGTCTCTGGCTGCCTTGCTGAATA


Ser323Cys
AGTGTAAAACCCCTCAAGGACAAAGACTTGTTAA


TCT-TGT
TTAACAAGTCTTTGTCCTTGAGGGGTTTTACACTTATTCAGCA
3225



AGGCAGCCAGAGACTGAGAGCCAGTGGTATCTTCAACAGAAC



CCTAGTAAACAAAAAATAAAATAGAAAGAATGGCAA



CACTGGCTCTCAGTCTC
3226



GAGACTGAGAGCCAGTG
3227


Non polyposis
GTGGAAGCTTTTGTAGAAGATGCAGAATTGAGGCAGACTTTA
3228


colorectal cancer
CAAGAAGATTTACTTCGTCGATTCCCAGATCTTAACCGACTTG


Arg383Term
CCAAGAAGTTTCAAAGACAAGCAGCAAACTTACAAG


CGA-TGA
CTTGTAAGTTTGCTGCTTGTCTTTGAAACTTCTTGGCAAGTCG
3229



GTTAAGATCTGGGAATCGACGAAGTAAATCTTCTTGTAAAGTC



TGCCTCAATTCTGCATCTTCTACAAAAGCTTCCAC



TACTTCGTCGATTCCCA
3230



TGGGAATCGACGAAGTA
3231


Non polyposis
CAAGAAGATTTACTTCGTCGATTCCCAGATCTTAACCGACTTG
3232


colorectal cancer
CCAAGAAGTTTCAAAGACAAGCAGCAAACTTACAAGATTGTTA


Gln397Term
CCGACTCTATCAGGGTATAAATCAACTACCTAATG


CAA-TAA
CATTAGGTAGTTGATTTATACCCTGATAGAGTCGGTAACAATC
3233



TTGTAAGTTTGCTGCTTGTCTTTGAAACTTCTTGGCAAGTCGG



TTAAGATCTGGGAATCGACGAAGTAAATCTTCTTG



TTCAAAGACAAGCAGCA
3234



TGCTGCTTGTCTTTGAA
3235


Non polyposis
GATCTTAACCGACTTGCCAAGAAGTTTCAAAGACAAGCAGCA
3236


colorectal cancer
AACTTACAAGATTGTTACCGACTCTATCAGGGTATAAATCAAC


Arg406Term
TACCTAATGTTATACAGGCTCTGGAAAAACATGAAG


CGA-TGA
CTTCATGTTTTTCCAGAGCCTGTATAACATTAGGTAGTTGATTT
3237



ATACCCTGATAGAGTCGGTAACAATCTTGTAAGTTTGCTGCTT



GTCTTTGAAACTTCTTGGCAAGTCGGTTAAGATC



ATTGTTACCGACTCTAT
3238



ATAGAGTCGGTAACAAT
3239


Non polyposis
GCAAACTTACAAGATTGTTACCGACTCTATCAGGGTATAAATC
3240


colorectal cancer
AACTACCTAATGTTATACAGGCTCTGGAAAAACATGAAGGTAA


Gln419Term
CAAGTGATTTTGTTTTTTTGTTTTCCTTCAACTCA


CAG-TAG
TGAGTTGAAGGAAAACAAAAAAACAAAATCACTTGTTACCTTC
3241



ATGTTTTTCCAGAGCCTGTATAACATTAGGTAGTTGATTTATAC



CCTGATAGAGTCGGTAACAATCTTGTAAGTTTGC



ATGTTATACAGGCTCTG
3242



CAGAGCCTGTATAACAT
3243


Non polyposis
TATTCTGTAAAATGAGATCTTTTTATTTGTTTGTTTTACTACTTT
3244


colorectal cancer
CTTTTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTTGTGA


Gln429Term
CTCCTCTTACTGATCTTCGTTCTGACTTCTCCA


CAG-TAG
TGGAGAAGTCAGAACGAAGATCAGTAAGAGGAGTCACAAAAA
3245



CTGCCAACAATAATTTCTGGTGTTTTCCTAAAAGAAAGTAGTA



AAACAAACAAATAAAAAGATCTCATTTTACAGAATA



GAAAACACCAGAAATTA
3246



TAATTTCTGGTGTTTTC
3247


Non polyposis
CTCCTCTTACTGATCTTCGTTCTGACTTCTCCAAGTTTCAGGA
3248


colorectal cancer
AATGATAGAAACAACTTTAGATATGGATCAGGTATGCAATATA


Leu458Term
CTTTTTAATTTAAGCAGTAGTTATTTTTAAAAAGC


TTA-TGA
GCTTTTTAAAAATAACTACTGCTTAAATTAAAAAGTATATTGCA
3249



TACCTGATCCATATCTAAAGTTGTTTCTATCATTTCCTGAAACT



TGGAGAAGTCAGAACGAAGATCAGTAAGAGGAG



AACAACTTTAGATATGG
3250



CCATATCTAAAGTTGTT
3251


Non polyposis
TTTCTTCTTGATTATCAAGGCTTGGACCCTGGCAAACAGATTA
3252


colorectal cancer
AACTGGATTCCAGTGCACAGTTTGGATATTACTTTCGTGTAAC


Gln518Term
CTGTAAGGAAGAAAAAGTCCTTCGTAACAATAAAA


CAG-TAG
TTTTATTGTTACGAAGGACTTTTTCTTCCTTACAGGTTACACGA
3253



AAGTAATATCCAAACTGTGCACTGGAATCCAGTTTAATCTGTT



TGCCAGGGTCCAAGCCTTGATAATCAAGAAGAAA



CCAGTGCACAGTTTGGA
3254



TCCAAACTGTGCACTGG
3255


Non polyposis
GCTTGGACCCTGGCAAACAGATTAAACTGGATTCCAGTGCAC
3256


colorectal cancer
AGTTTGGATATTACTTTCGTGTAACCTGTAAGGAAGAAAAAGT


Arg524Pro
CCTTCGTAACAATAAAAACTTTAGTACTGTAGATAT


CGT-CCT
ATATCTACAGTACTAAAGTTTTTATTGTTACGAAGGACTTTTTC
3257



TTCCTTACAGGTTACACGAAAGTAATATCCAAACTGTGCACTG



GAATCCAGTTTAATCTGTTTGCCAGGGTCCAAGC



TTACTTTCGTGTAACCT
3258



AGGTTACACGAAAGTAA
3259


Non polyposis
TTAATATTTTTAATAAAACTGTTATTTCGATTTGCAGCAAATTGA
3260


colorectal cancer
CTTCTTTAAATGAAGAGTATACCAAAAATAAAACAGAATATGAA


Glu562Val
GAAGCCCAGGATGCCATTGTTAAAGAAATTGT


GAG-GTG
ACAATTTCTTTAACAATGGCATCCTGGGCTTCTTCATATTCTGT
3261



TTTATTTTTGGTATACTCTTCATTTAAAGAAGTCAATTTGCTGC



AAATCGAAATAACAGTTTTATTAAAAATATTAA



AAATGAAGAGTATACCA
3262



TGGTATACTCTTCATTT
3263


Glioma
AATGAAGAGTATACCAAAAATAAAACAGAATATGAAGAAGCCC
3264


Glu580Term
AGGATGCCATTGTTAAAGAAATTGTCAATATTTCTTCAGGTAAA


GAA-TAA
CTTAATAGAACTAATAATGTTCTGAATGTCACCT



AGGTGACATTCAGAACATTATTAGTTCTATTAAGTTTACCTGAA
3265



GAAATATTGACAATTTCTTTAACAATGGCATCCTGGGCTTCTT



CATATTCTGTTTTATTTTTGGTATACTCTTCATT



TTGTTAAAGAAATTGTC
3266



GACAATTTCTTTAACAA
3267


Non polyposis
TGTTTTTATTTTTATACAGGCTATGTAGAACCAATGCAGACACT
3268


colorectal cancer
CAATGATGTGTTAGCTCAGCTAGATGCTGTTGTCAGCTTTGCT


Gln601Term
CACGTGTCAAATGGAGCACCTGTTCCATATGTAC


GAG-TAG
GTACATATGGAACAGGTGCTCCATTTGACACGTGAGCAAAGC
3269



TGACAACAGCATCTAGCTGAGCTAACACATCATTGAGTGTCTG



CATTGGTTCTACATAGCCTGTATAAAAATAAAAACA



TGTTAGCTCAGCTAGAT
3270



ATCTAGCTGAGCTAACA
3271


Non polyposis
AGCTCAGCTAGATGCTGTTGTCAGCTTTGCTCACGTGTCAAAT
3272


colorectal cancer
GGAGCACCTGTTCCATATGTACGACCAGCCATTTTGGAGAAA


Tyr619Term
GGACAAGGAAGAATTATATTAAAAGCATCCAGGCAT


TAT-TAG
ATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTCTCCA
3273



AAATGGCTGGTCGTACATATGGAACAGGTGCTCCATTTGACA



CGTGAGCAAAGCTGACAACAGCATCTAGCTGAGCT



GTTCCATATGTACGACC
3274



GGTCGTACATATGGAAC
3275


Non polyposis
CAGCTAGATGCTGTTGTCAGCTTTGCTCACGTGTCAAATGGA
3276


colorectal cancer
GCACCTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGA


Arg621Term
CAAGGAAGAATTATATTAAAAGCATCCAGGCATGCTT


CGA-TGA
AAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTC
3277



TCCAAAATGGCTGGTCGTACATATGGAACAGGTGCTCCATTT



GACACGTGAGCAAAGCTGACAACAGCATCTAGCTG



CATATGTACGACCAGCC
3278



GGCTGGTCGTACATATG
3279


Non polyposis
TAGATGCTGTTGTCAGCTTTGCTCACGTGTCAAATGGAGCAC
3280


colorectal cancer
CTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGACAAG


Pro622Leu
GAAGAATTATATTAAAAGCATCCAGGCATGCTTGTGT


CCA-CTA
ACACAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTC
3281



CTTTCTCCAAAATGGCTGGTCGTACATATGGAACAGGTGCTC



CATTTGACACGTGAGCAAAGCTGACAACAGCATCTA



TGTACGACCAGCCATTT
3282



AAATGGCTGGTCGTACA
3283


Non polyposis
CCTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGACAA
3284


colorectal cancer
GGAAGAATTATATTAAAAGCATCCAGGCATGCTTGTGTTGAAG


Ala636Pro
TTCAAGATGAAATTGCATTTATTCCTAATGACGTAT


GCA-CCA
ATACGTCATTAGGAATAAATGCAATTTCATCTTGAACTTCAACA
3285



CAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTT



CTCCAAAATGGCTGGTCGTACATATGGAACAGG



TATTAAAAGCATCCAGG
3286



CCTGGATGCTTTTAATA
3287


Non polyposis
ATGTACGACCAGCCATTTTGGAGAAAGGACAAGGAAGAATTA
3288


colorectal cancer
TATTAAAAGCATCCAGGCATGCTTGTGTTGAAGTTCAAGATGA


His639Arg
AATTGCATTTATTCCTAATGACGTATACTTTGAAAA


CAT-CGT
TTTTCAAAGTATACGTCATTAGGAATAAATGCAATTTCATCTTG
3289



AACTTCAACACAAGCATGCCTGGATGCTTTTAATATAATTCTTC



CTTGTCCTTTCTCCAAAATGGCTGGTCGTACAT



ATCCAGGCATGCTTGTG
3290



CACAAGCATGCCTGGAT
3291


Non polyposis
TATGTACGACCAGCCATTTTGGAGAAAGGACAAGGAAGAATT
3292


colorectal cancer
ATATTAAAAGCATCCAGGCATGCTTGTGTTGAAGTTCAAGATG


His639Tyr
AAATTGCATTTATTCCTAATGACGTATACTTTGAAA


CAT-TAT
TTTCAAAGTATACGTCATTAGGAATAAATGCAATTTCATCTTGA
3293



ACTTCAACACAAGCATGCCTGGATGCTTTTAATATAATTCTTC



CTTGTCCTTTCTCCAAAATGGCTGGTCGTACATA



CATCCAGGCATGCTTGT
3294



ACAAGCATGCCTGGATG
3295


Non polyposis
AAAGGACAAGGAAGAATTATATTAAAAGCATCCAGGCATGCTT
3296


colorectal cancer
GTGTTGAAGTTCAAGATGAAATTGCATTTATTCCTAATGACGT


Glu647Lys
ATACTTTGAAAAAGATAAACAGATGTTCCACATCA


GAA-AAA
TGATGTGGAACATCTGTTTATCTTTTTCAAAGTATACGTCATTA
3297



GGAATAAATGCAATTTCATCTTGAACTTCAACACAAGCATGCC



TGGATGCTTTTAATATAATTCTTCCTTGTCCTTT



TTCAAGATGAAATTGCA
3298



TGCAATTTCATCTTGAA
3299


Non polyposis
ATCCAGGCATGCTTGTGTTGAAGTTCAAGATGAAATTGCATTT
3300


colorectal cancer
ATTCCTAATGACGTATACTTTGAAAAAGATAAACAGATGTTCCA


Tyr656Term
CATCATTACTGGTAAAAAACCTGGTTTTTGGGCT


TAC-TAG
AGCCCAAAAACCAGGTTTTTTACCAGTAATGATGTGGAACATC
3301



TGTTTATCTTTTTCAAAGTATACGTCATTAGGAATAAATGCAAT



TTCATCTTGAACTTCAACACAAGCATGCCTGGAT



GACGTATACTTTGAAAA
3302



TTTTCAAAGTATACGTC
3303


Non polyposis
GAAAGAAGTTTAAAATCTTGCTTTCTGATATAATTTGTTTTGTA
3304


colorectal cancer
GGCCCCAATATGGGAGGTAAATCAACATATATTCGACAAACT


Gly674Asp
GGGGTGATAGTACTCATGGCCCAAATTGGGTGTTT


GGT-GAT
AAACACCCAATTTGGGCCATGAGTACTATCACCCCAGTTTGTC
3305



GAATATATGTTGATTTACCTCCCATATTGGGGCCTACAAAACA



AATTATATCAGAAAGCAAGATTTTAAACTTCTTTC



TATGGGAGGTAAATCAA
3306



TTGATTTACCTCCCATA
3307


Non polyposis
TTGCTTTCTGATATAATTTGTTTTGTAGGCCCCAATATGGGAG
3308


colorectal cancer
GTAAATCAACATATATTCGACAAACTGGGGTGATAGTACTCAT


Arg680Term
GGCCCAAATTGGGTGTTTTGTGCCATGTGAGTCAG


CGA-TGA
CTGACTCACATGGCACAAAACACCCAATTTGGGCCATGAGTA
3309



CTATCACCCCAGTTTGTCGAATATATGTTGATTTACCTCCCAT



ATTGGGGCCTACAAAACAAATTATATCAGAAAGCAA



CATATATTCGACAAACT
3310



AGTTTGTCGAATATATG
3311


Non polyposis
ATGGGAGGTAAATCAACATATATTCGACAAACTGGGGTGATA
3312


colorectal cancer
GTACTCATGGCCCAAATTGGGTGTTTTGTGCCATGTGAGTCA


Gly692Arg
GCAGAAGTGTCCATTGTGGACTGCATCTTAGCCCGAG


GGG-CGG
CTCGGGCTAAGATGCAGTCCACAATGGACACTTCTGCTGACT
3313



CACATGGCACAAAACACCCAATTTGGGCCATGAGTACTATCA



CCCCAGTTTGTCGAATATATGTTGATTTACCTCCCAT



CCCAAATTGGGTGTTTT
3314



AAAACACCCAATTTGGG
3315


Non polyposis
ACATATATTCGACAAACTGGGGTGATAGTACTCATGGCCCAAA
3316


colorectal cancer
TTGGGTGTTTTGTGCCATGTGAGTCAGCAGAAGTGTCCATTG


Cys697Arg
TGGACTGCATCTTAGCCCGAGTAGGGGCTGGTGACA


TGT-CGT
TGTCACCAGCCCCTACTCGGGCTAAGATGCAGTCCACAATGG
3317



ACACTTCTGCTGACTCACATGGCACAAAACACCCAATTTGGG



CCATGAGTACTATCACCCCAGTTTGTCGAATATATGT



TTGTGCCATGTGAGTCA
3318



TGACTCACATGGCACAA
3319


Non polyposis
CATATATTCGACAAACTGGGGTGATAGTACTCATGGCCCAAAT
3320


colorectal cancer
TGGGTGTTTTGTGCCATGTGAGTCAGCAGAAGTGTCCATTGT


Cys697Phe
GGACTGCATCTTAGCCCGAGTAGGGGCTGGTGACAG


TGT-TTT
CTGTCACCAGCCCCTACTCGGGCTAAGATGCAGTCCACAATG
3321



GACACTTCTGCTGACTCACATGGCACAAAACACCCAATTTGG



GCCATGAGTACTATCACCCCAGTTTGTCGAATATATG



TGTGCCATGTGAGTCAG
3322



CTGACTCACATGGCACA
3323


Non polyposis
GAGTCAGCAGAAGTGTCCATTGTGGACTGCATCTTAGCCCGA
3324


colorectal cancer
GTAGGGGCTGGTGACAGTCAATTGAAAGGAGTCTCCACGTTC


Gln718Term
ATGGCTGAAATGTTGGAAACTGCTTCTATCCTCAGGT


CAA-TAA
ACCTGAGGATAGAAGCAGTTTCCAACATTTCAGCCATGAACG
3325



TGGAGACTCCTTTCAATTGACTGTCACCAGCCCCTACTCGGG



CTAAGATGCAGTCCACAATGGACACTTCTGCTGACTC



GTGACAGTCAATTGAAA
3326



TTTCAATTGACTGTCAC
3327


Non polyposis
CCAATCAGATACCAACTGTTAATAATCTACATGTCACAGCACT
3328


colorectal cancer
CACCACTGAAGAGACCTTAACTATGCTTTATCAGGTGAAGAAA


Leu811Term
GGTATGTACTATTGGAGTACTCTAAATTCAGAACT


TTA-TGA
AGTTCTGAATTTAGAGTACTCCAATAGTACATACCTTTCTTCAC
3329



CTGATAAAGCATAGTTAAGGTCTCTTCAGTGGTGAGTGCTGT



GACATGTAGATTATTAACAGTTGGTATCTGATTGG



AGAGACCTTAACTATGC
3330



GCATAGTTAAGGTCTCT
3331


Non polyposis
TTCCCCAAATTTCTTATAGGTGTCTGTGATCAAAGTTTTGGGA
3332


colorectal cancer
TTCATGTTGCAGAGCTTGCTAATTTCCCTAAGCATGTAATAGA


Ala834Thr
GTGTGCTAAACAGAAAGCCCTGGAACTTGAGGAGT


GCT-ACT
ACTCCTCAAGTTCCAGGGCTTTCTGTTTAGCACACTCTATTAC
3333



ATGCTTAGGGAAATTAGCAAGCTCTGCAACATGAATCCCAAAA



CTTTGATCACAGACACCTATAAGAAATTTGGGGAA



CAGAGCTTGCTAATTTC
3334



GAAATTAGCAAGCTCTG
3335


Non polyposis
ATAGAGTGTGCTAAACAGAAAGCCCTGGAACTTGAGGAGTTT
3336


colorectal cancer
CAGTATATTGGAGAATCGCAAGGATATGATATCATGGAACCAG


Gln861Term
CAGCAAAGAAGTGCTATCTGGAAAGAGAGGTTTGTC


CAA-TAA
GACAAACCTCTCTTTCCAGATAGCACTTCTTTGCTGCTGGTTC
3337



CATGATATCATATCCTTGCGATTCTCCAATATACTGAAACTCCT



CAAGTTCCAGGGCTTTCTGTTTAGCACACTCTAT



GAGAATCGCAAGGATAT
3338



ATATCCTTGCGATTCTC
3339


Non polyposis
AGGAGTTCCTGTCCAAGGTGAAACAAATGCCCTTTACTGAAAT
3340


colorectal cancer
GTCAGAAGAAAACATCACAATAAAGTTAAAACAGCTAAAAGCT


Thr905Arg
GAAGTAATAGCAAAGAATAATAGCTTTGTAAATGA


ACA-AGA
TCATTTACAAAGCTATTATTCTTTGCTATTACTTCAGCTTTTAG
3341



CTGTTTTAACTTTATTGTGATGTTTTCTTCTGACATTTCAGTAA



AGGGCATTTGTTTCACCTTGGACAGGAACTCCT



AAACATCACAATAAAGT
3342



ACTTTATTGTGATGTTT
3343









EXAMPLE 19
Human Mismatch Repair—MSH6

The human MSH6 gene is homologous to the bacterial mutS gene, which is involved in mismatch repair. Mutations in the MSH6 gene have been identified in a variety of cancers, including particularly hereditary nonpolyposis colorectal cancer. The attached table discloses the correcting oligonucleotide base sequences for the MSH6 oligonucleotides of the invention.









TABLE 26







MSH6 Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Non-polyposis
GGAAATCAGTCCGTGTTCATGTACAGTTTTTTGATGACAGCCC
3344


colorectal cancer
AACAAGGGGCTGGGTTAGCAAAAGGCTTTTAAAGCCATATAC


Ser144Ile
AGGTAAGAGTCACTACTGCCATGTGTGTGTGTTTGT


AGC-ATC
ACAAACACACACACATGGCAGTAGTGACTCTTACCTGTATATG
3345



GCTTTAAAAGCCTTTTGCTAACCCAGCCCCTTGTTGGGCTGT



CATCAAAAAACTGTACATGAACACGGACTGATTTCC



CTGGGTTAGCAAAAGGC
3346



GCCTTTTGCTAACCCAG
3347


Endometrial cancer
CGTGAGCCTCTGCACCCGGCCCTTATTGTTTATAAATACATTT
3348


Ser156Term
CTTTCTAGGTTCAAAATCAAAGGAAGCCCAGAAGGGAGGTCA


TCA-TGA
TTTTTACAGTGCAAAGCCTGAAATACTGAGAGCAAT



ATTGCTCTCAGTATTTCAGGCTTTGCACTGTAAAAATGACCTC
3349



CCTTCTGGGCTTCCTTTGATTTTGAACCTAGAAAGAAATGTAT



TTATAAACAATAAGGGCCGGGTGCAGAGGCTCACG



TTCAAAATCAAAGGAAG
3350



CTTCCTTTGATTTTGAA
3351


Early onset colo-
TTCCAAATTTTGATTTGTTTTTAAATACTCTTTCCTTGCCTGGC
3352


rectal cancer
AGGTAGGCACAACTTACGTAACAGATAAGAGTGAAGAAGATA


Tyr214Term
ATGAAATTGAGAGTGAAGAGGAAGTACAGCCTAAG


TAC-TAG
CTTAGGCTGTACTTCCTCTTCACTCTCAATTTCATTATCTTCTT
3353



CACTCTTATCTGTTACGTAAGTTGTGCCTACCTGCCAGGCAA



GGAAAGAGTATTTAAAAACAAATCAAAATTTGGAA



ACAACTTACGTAACAGA
3354



TCTGTTACGTAAGTTGT
3355


Endometrial cancer
GAAGAGGAAGTACAGCCTAAGACACAAGGATCTAGGCGAAGT
3356


Arg248Term
AGCCGCCAAATAAAAAAACGAAGGGTCATATCAGATTCTGAG


CGA-TGA
AGTGACATTGGTGGCTCTGATGTGGAATTTAAGCCAG



CTGGCTTAAATTCCACATCAGAGCCACCAATGTCACTCTCAGA
3357



ATCTGATATGACCCTTCGTTTTTTTATTTGGCGGCTACTTCGC



CTAGATCCTTGTGTCTTAGGCTGTACTTCCTCTTC



TAAAAAAACGAAGGGTC
3358



GACCCTTCGTTTTTTTA
3359


Colorectal cancer
TTAAGCCAGACACTAAGGAGGAAGGAAGCAGTGATGAAATAA
3360


Ser285Ile
GCAGTGGAGTGGGGGATAGTGAGAGTGAAGGCCTGAACAGC


AGT-ATT
CCTGTCAAAGTTGCTCGAAAGCGGAAGAGAATGGTGAC



GTCACCATTCTCTTCCGCTTTCGAGCAACTTTGACAGGGCTG
3361



TTCAGGCCTTCACTCTCACTATCCCCCACTCCACTGCTTATTT



CATCACTGCTTCCTTCCTCCTTAGTGTCTGGCTTAA



GGGGGATAGTGAGAGTG
3362



CACTCTCACTATCCCCC
3363


Colorectal cancer
GAGGAAGATTCTTCTGGCCATACTCGTGCATATGGTGTGTGC
3364


Gly566Arg
TTTGTTGATACTTCACTGGGAAAGTTTTTCATAGGTCAGTTTTC


GGA-AGA
AGATGATCGCCATTGTTCGAGATTTAGGACTCTAG



CTAGAGTCCTAAATCTCGAACAATGGCGATCATCTGAAAACTG
3365



ACCTATGAAAAACTTTCCCAGTGAAGTATCAACAAAGCACACA



CCATATGCACGAGTATGGCCAGAAGAATCTTCCTC



CTTCACTGGGAAAGTTT
3366



AAACTTTCCCAGTGAAG
3367


Non-polyposis
GAATTGGCCCTCTCTGCTCTAGGTGGTTGTGTCTTCTACCTC
3368


colorectal cancer
AAAAAATGCCTTATTGATCAGGAGCTTTTATCAATGGCTAATTT


Gln698Glu
TGAAGAATATATTCCCTTGGATTCTGACACAGTCA


CAG-GAG
TGACTGTGTCAGAATCCAAGGGAATATATTCTTCAAAATTAGC
3369



CATTGATAAAAGCTCCTGATCAATAAGGCATTTTTTGAGGTAG



AAGACACAACCACCTAGAGCAGAGAGGGCCAATTC



TTATTGATCAGGAGCTT
3370



AAGCTCCTGATCAATAA
3371


Endometrial cancer
CCCTTGGATTCTGACACAGTCAGCACTACAAGATCTGGTGCT
3372


Gln731Term
ATCTTCACCAAAGCCTATCAACGAATGGTGCTAGATGCAGTG


CAA-TAA
ACATTAAACAACTTGGAGATTTTTCTGAATGGAACAA



TTGTTCCATTCAGAAAAATCTCCAAGTTGTTTAATGTCACTGCA
3373



TCTAGCACCATTCGTTGATAGGCTTTGGTGAAGATAGCACCA



GATCTTGTAGTGCTGACTGTGTCAGAATCCAAGGG



AAGCCTATCAACGAATG
3374



CATTCGTTGATAGGCTT
3375


Colorectal cancer
GCCCCACTCTGTAACCATTATGCTATTAATGATCGTCTAGATG
3376


Val800Leu
CCATAGAAGACCTCATGGTTGTGCCTGACAAAATCTCCGAAG


GTT-CTT
TTGTAGAGCTTCTAAAGAAGCTTCCAGATCTTGAGA



TCTCAAGATCTGGAAGCTTCTTTAGAAGCTCTACAACTTCGGA
3377



GATTTTGTCAGGCACAACCATGAGGTCTTCTATGGCATCTAGA



CGATCATTAATAGCATAATGGTTACAGAGTGGGGC



ACCTCATGGTTGTGCCT
3378



AGGCACAACCATGAGGT
3379


Colorectal cancer
GTAACCATTATGCTATTAATGATCGTCTAGATGCCATAGAAGA
3380


Asp803Gly
CCTCATGGTTGTGCCTGACAAAATCTCCGAAGTTGTAGAGCT


GAC-GGC
TCTAAAGAAGCTTCCAGATCTTGAGAGGCTACTCAG



CTGAGTAGCCTCTCAAGATCTGGAAGCTTCTTTAGAAGCTCTA
3381



CAACTTCGGAGATTTTGTCAGGCACAACCATGAGGTCTTCTAT



GGCATCTAGACGATCATTAATAGCATAATGGTTAC



TGTGCCTGACAAAATCT
3382



AGATTTTGTCAGGCACA
3383


Non-polyposis
CTCCCCTGAAGAGTGAGAACCACCCAGACAGCAGGGCTATAA
3384


colorectal cancer
TGTATGAAGAAACTACATACAGCAAGAAGAAGATTATTGATTT


Tyr850Cys
TCTTTCTGCTCTGGAAGGATTCAAAGTAATGTGTAA


TAC-TGC
TTACACATTACTTTGAATCCTTCCAGAGCAGAAAGAAAATCAA
3385



TAATCTTCTTCTTGCTGTATGTAGTTTCTTCATACATTATAGCC



CTGCTGTCTGGGTGGTTCTGACTCTTCAGGGGAG



AACTACATACAGCAAGA
3386



TCTTGCTGTATGTAGTT
3387


Colorectal cancer
TATAGTCGAGGGGGTGATGGTCCTATGTGTCGCCCAGTAATT
3388


Pro1087Thr
CTGTTGCCGGAAGATACCCCCCCCTTCTTAGAGCTTAAAGGA


CCC-ACC
TCACGCCATCCTTGCATTACGAAGACTTTTTTTGGAG



CTCCAAAAAAAGTCTTCGTAATGCAAGGATGGCGTGATCCTTT
3389



AAGCTCTAAGAAGGGGGGGGTATCTTCCGGCAACAGAATTAC



TGGGCGACACATAGGACCATCACCCCCTCGACTATA



AAGATACCCCCCCCTTC
3390



GAAGGGGGGGGTATCTT
3391


Non-polyposis
ACTATAAAATGTCGTACATTATTTTCAACTCACTACCATTCATT
3392


colorectal cancer
AGTAGAAGATTATTCTCAAAATGTTGCTGTGCGCCTAGGACAT


Gln1258Term
ATGGTATGTGCAAATTGTTTTTTTCCACAAATTC


CAA-TAA
GAATTTGTGGAAAAAAACAATTTGCACATACCATATGTCCTAG
3393



GCGCACAGCAACATTTTGAGAATAATCTTCTACTAATGAATGG



TAGTGAGTTGAAAATAATGTACGACATTTTATAGT



ATTATTCTCAAAATGTT
3394



AACATTTTGAGAATAAT
3395









EXAMPLE 20
Hyperlipidemia—APOE

Hyperlipidemia is the abnormal elevation of plasma cholesterol and/or triglyceride levels and it is one of the most common diseased. The human apolipoprotein E protein is involved in the transport of endogenous lipids and appears to be crucial for both the direct removal of cholesterol-rich LDL from plasma and conversion of IDL particles to LDL particles. Individuals who either lack apolipoprotein E or who are homozygous for particular alleies of apoE may have have a condition known as dysbetaiipoproteinemia, which is characterized by elevated plasma cholesterol and triglyceride levels and an increased risk for atherosclerosis.


In a comprehensive review of apoE variants, de Knijff et al., Hum. Mutat. 4:178-194 (1994) found that 30 variants had been characterized, including the most common variant, apoE3. To that time, 14 apoE variants had been found to be associated with familial dysbetalipoproteinemia. The attached table discloses the correcting oligonucleotide base sequences for the APOE oligonucleotides of the invention.









TABLE 27







APOE Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Apolipoprotein E
TTGTTCCACACAGGATGCCAGGCCAAGGTGGAGCAAGCGGT
3396


Glu13Lys
GGAGACAGAGCCGGAGCCCGAGCTGCGCCAGCAGACCGAG


cGAG-AAG
TGGCAGAGCGGCCAGCGCTGGGAACTGGCACTGGGTCGCT



AGCGACCCAGTGCCAGTTCCCAGCGCTGGCCGCTCTGCCAC
3397



TCGGTCTGCTGGCGCAGCTCGGGCTCCGGCTCTGTCTCCAC



CGCTTGCTCCACCTTGGCCTGGCATCCTGTGTGGAACAA



CGGAGCCCGAGCTGCGC
3398



GCGCAGCTCGGGCTCCG
3399


Apolipoprotein E
CAAGGTGGAGCAAGCGGTGGAGACAGAGCCGGAGCCCGAG
3400


Trp20Term
CTGCGCCAGCAGACCGAGTGGCAGAGCGGCCAGCGCTGGG


TGGc-TGA
AACTGGCACTGGGTCGCTTTTGGGATTACCTGCGCTGGGTG



CACCCAGCGCAGGTAATCCCAAAAGCGACCCAGTGCCAGTT
3401



CCCAGCGCTGGCCGCTCTGCCACTCGGTCTGCTGGCGCAGC



TCGGGCTCCGGCTCTGTCTCCACCGCTTGCTCCACCTTG



ACCGAGTGGCAGAGCGG
3402



CCGCTCTGCCACTCGGT
3403


Apolipoprotein E
CAGAGCCGGAGCCCGAGCTGCGCCAGCAGACCGAGTGGCA
3404


Leu28Pro
GAGCGGCCAGCGCTGGGAACTGGCACTGGGTCGCTTTTGGG


CTG-CCG
ATTACCTGCGCTGGGTGCAGACACTGTCTGAGCAGGTGCA



TGCACCTGCTCAGACAGTGTCTGCACCCAGCGCAGGTAATCC
3405



CAAAAGCGACCCAGTGCCAGTTCCCAGCGCTGGCCGCTCTG



CCACTCGGTCTGCTGGCGCAGCTCGGGCTCCGGCTCTG



CTGGGAACTGGCACTGG
3406



CCAGTGCCAGTTCCCAG
3407


Apolipoprotein E
CGGCTGTCCAAGGAGCTGCAGGCGGCGCAGGCCCGGCTGG
3408


Cys112Arg
GCGCGGACATGGAGGACGTGTGCGGCCGCCTGGTGCAGTA


gTGC-CGC
CCGCGGCGAGGTGCAGGCCATGCTCGGCCAGAGCACCGAG



G



CCTCGGTGCTCTGGCCGAGCATGGCCTGCACCTCGCCGCGG
3409



TACTGCACCAGGCGGCCGCACACGTCCTCCATGTCCGCGCC



CAGCCGGGCCTGCGCCGCCTGCAGCTCCTTGGACAGCCG



AGGACGTGTGCGGCCGC
3410



GCGGCCGCACACGTCCT
3411


Apolipoprotein E
ACATGGAGGACGTGTGCGGCCGCCTGGTGCAGTACCGCGG
3412


Gly127Asp
CGAGGTGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTG


GGC-GAC
CGGGTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCG



CGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCACCC
3413



GCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCACCTCG



CCGCGGTACTGCACCAGGCGGCCGCACACGTCCTCCATGT



CATGCTCGGCCAGAGCA
3414



TGCTCTGGCCGAGCATG
3415


Apolipoprotein E
GTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGA
3416


Arg136Cys
GCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCG


gCGC-TGC
CAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGC



GCAGGTCATCGGCATCGCGGAGGAGCCGCTTACGCAGCTTG
3417



CGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGC



TCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCAC



TGCGGGTGCGCCTCGCC
3418



GGCGAGGCGCACCCGCA
3419


Apolipoprotein E
TGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGAG
3420


Arg136His
CACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCGC


CGC-CAC
AAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGCA



TGCAGGTCATCGGCATCGCGGAGGAGCCGCTTACGCAGCTT
3421



GCGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTG



CTCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCA



GCGGGTGCGCCTCGCCT
3422



AGGCGAGGCGCACCCGC
3423


Apolipoprotein E
GTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGA
3424


Arg136Ser
GCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCG


gCGC-AGC
CAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGC



GCAGGTCATCGGCATCGCGGAGGAGCCGCTTACGCAGCTTG
3425



CGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGC



TCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCAC



TGCGGGTGCGCCTCGCC
3426



GGCGAGGCGCACCCGCA
3427


Apolipoprotein E
GTGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGCGGG
3428


Arg142Cys
TGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTC


gCGC-TGC
CTCCGCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGT



ACACTGCCAGGCGCTTCTGCAGGTCATCGGCATCGCGGAGG
3429



AGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCA



CCCGCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCAC



CCCACCTGCGCAAGCTG
3430



CAGCTTGCGCAGGTGGG
3431


Apolipoprotein E
TGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGCGGGT
3432


Arg142Leu
GCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCC


CGC-CTC
TCCGCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGTA



TACACTGCCAGGCGCTTCTGCAGGTCATCGGCATCGCGGAG
3433



GAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGC



ACCCGCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCA



CCACCTGCGCAAGCTGC
3434



GCAGCTTGCGCAGGTGG
3435


Apolipoprotein E
ATGCTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCG
3436


Arg145Cys
CCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGAT


gCGT-TGT
GCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCG



CGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGCA
3437



TCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGG



CGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAGCAT



GCAAGCTGCGTAAGCGG
3438



CCGCTTACGCAGCTTGC
3439


Apolipoprotein E
TGCTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGC
3440


Arg145Pro
CTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATG


CGT-CCT
CCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGG



CCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGC
3441



ATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAG



GCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAGCA



CAAGCTGCGTAAGCGGC
3442



GCCGCTTACGCAGCTTG
3443


Apolipoprotein E
CTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGCCT
3444


Lys146Gln
CCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCC


tAAG-CAG
GATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGG



CCCCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCG
3445



GCATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGA



GGCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAG



AGCTGCGTAAGCGGCTC
3446



GAGCCGCTTACGCAGCT
3447


Apolipoprotein E
CTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGCCT
3448


Lys146Glu
CCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCC


tAAG-GAG
GATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGG



CCCCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCG
3449



GCATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGA



GGCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAG



AGCTGCGTAAGCGGCTC
3450



GAGCCGCTTACGCAGCT
3451


Apolipoprotein E
GCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGA
3452


Arg158Cys
TGCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCG


gCGC-TGC
GGGCCCGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCC



GGATGGCGCTGAGGCCGCGCTCGGCGCCCTCGCGGGCCCC
3453



GGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGCAT



CGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGC



TGCAGAAGCGCCTGGCA
3454



TGCCAGGCGCTTCTGCA
3455


Apolipoprotein E
CGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCCGCGAGC
3456


Gln187Glu
GCCTGGGGCCCCTGGTGGAACAGGGCCGCGTGCGGGCCGC


aCAG-GAG
CACTGTGGGCTCCCTGGCCGGCCAGCCGCTACAGGAGCGG



G



CCCGCTCCTGTAGCGGCTGGCCGGCCAGGGAGCCCACAGT
3457



GGCGGCCCGCACGCGGCCCTGTTCCACCAGGGGCCCCAGG



CGCTCGCGGATGGCGCTGAGGCCGCGCTCGGCGCCCTCGC



G



TGGTGGAACAGGGCCGC
3458



GCGGCCCTGTTCCACCA
3459


Apolipoprotein E
TGCGGGCCGCCACTGTGGGCTCCCTGGCCGGCCAGCCGCT
3460


Trp210Term
ACAGGAGCGGGCCCAGGCCTGGGGCGAGCGGCTGCGCGC


TGG-TAG
GCGGATGGAGGAGATGGGCAGCCGGACCCGCGACCGCCTG



GA



TCCAGGCGGTCGCGGGTCCGGCTGCCCATCTCCTCCATCCG
3461



CGCGCGCAGCCGCTCGCCCCAGGCCTGGGCCCGCTCCTGT



AGCGGCTGGCCGGCCAGGGAGCCCACAGTGGCGGCCCGCA



CCAGGCCTGGGGCGAGC
3462



GCTCGCCCCAGGCCTGG
3463


Apolipoprotein E
CAGGCCTGGGGCGAGCGGCTGCGCGCGCGGATGGAGGAGA
3464


Arg228Cys
TGGGCAGCCGGACCCGCGACCGCCTGGACGAGGTGAAGGA


cCGC-TGC
GCAGGTGGCGGAGGTGCGCGCCAAGCTGGAGGAGCAGGCC



C



GGGCCTGCTCCTCCAGCTTGGCGCGCACCTCCGCCACCTGC
3465



TCCTTCACCTCGTCCAGGCGGTCGCGGGTCCGGCTGCCCAT



CTCCTCCATCCGCGCGCGCAGCCGCTCGCCCCAGGCCTG



CCCGCGACCGCCTGGAC
3466



GTCCAGGCGGTCGCGGG
3467


Apolipoprotein E
CGGACCCGCGACCGCCTGGACGAGGTGAAGGAGCAGGTGG
3468


Glu244Lys
CGGAGGTGCGCGCCAAGCTGGAGGAGCAGGCCCAGCAGAT


gGAG-AAG
ACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCT



AGCTCTTGAGGCGGGCCTGGAAGGCCTCGGCCTGCAGGCGT
3469



ATCTGCTGGGCCTGCTCCTCCAGCTTGGCGCGCACCTCCGC



CACCTGCTCCTTCACCTCGTCCAGGCGGTCGCGGGTCCG



CCAAGCTGGAGGAGCAG
3470



CTGCTCCTCCAGCTTGG
3471









EXAMPLE 21
Familial Hypercholesterolemia—LDLR

Familial hypercholesterolemia is characterized by elevation of serum cholesterol bound to low density lipoprotein (LDL) and is, hence, one of the conditions producing a hyperlipoproteinemia phenotype. Familial hypercholesterolemia is an autosomal dominant disorder characterized by elevation of serum cholesterol bound to low density lipoprotein (LDL). Mutations in the LDL receptor (LDLR) gene cause this disorder. The attached table discloses the correcting oligonucleotide base sequences for the LDLR oligonucleotides of the invention.









TABLE 28







LDLR Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Hypercholesterolaemia
GCGTTGAGAGACCCTTTCTCCTTTTCCTCTCTCTCAGTGGGC
3472


Glu10Term
GACAGATGCGAAAGAAACGAGTTCCAGTGCCAAGACGGGAA


cGAG-TAG
ATGCATCTCCTACAAGTGGGTCTGCGATGGCAGCGCTG



CAGCGCTGCCATCGCAGACCCACTTGTAGGAGATGCATTTCC
3473



CGTCTTGGCACTGGAACTCGTTTCTTTCGCATCTGTCGCCCA



CTGAGAGAGAGGAAAAGGAGAAAGGGTCTCTCAACGC



AAAGAAACGAGTTCCAG
3474



CTGGAACTCGTTTCTTT
3475


Hypercholesterolaemia
AGAGACCCTTTCTCCTTTTCCTCTCTCTCAGTGGGCGACAGA
3476


Gln12Term
TGCGAAAGAAACGAGTTCCAGTGCCAAGACGGGAAATGCATC


cCAG-TAG
TCCTACAAGTGGGTCTGCGATGGCAGCGCTGAGTGCC



GGCACTCAGCGCTGCCATCGCAGACCCACTTGTAGGAGATG
3477



CATTTCCCGTCTTGGCACTGGAACTCGTTTCTTTCGCATCTGT



CGCCCACTGAGAGAGAGGAAAAGGAGAAAGGGTCTCT



ACGAGTTCCAGTGCCAA
3478



TTGGCACTGGAACTCGT
3479


Hypercholesterolaemia
CCTTTCTCCTTTTCCTCTCTCTCAGTGGGCGACAGATGCGAA
3480


Gln14Term
AGAAACGAGTTCCAGTGCCAAGACGGGAAATGCATCTCCTAC


cCAA-TAA
AAGTGGGTCTGCGATGGCAGCGCTGAGTGCCAGGATG



CATCCTGGCACTCAGCGCTGCCATCGCAGACCCACTTGTAG
3481



GAGATGCATTTCCCGTCTTGGCACTGGAACTCGTTTCTTTCG



CATCTGTCGCCCACTGAGAGAGAGGAAAAGGAGAAAGG



TCCAGTGCCAAGACGGG
3482



CCCGTCTTGGCACTGGA
3483


Hypercholesterolaemia
GCGACAGATGCGAAAGAAACGAGTTCCAGTGCCAAGACGGG
3484


Trp23Term
AAATGCATCTCCTACAAGTGGGTCTGCGATGGCAGCGCTGAG


TGG-TAG
TGCCAGGATGGCTCTGATGAGTCCCAGGAGACGTGCTG



CAGCACGTCTCCTGGGACTCATCAGAGCCATCCTGGCACTCA
3485



GCGCTGCCATCGCAGACCCACTTGTAGGAGATGCATTTCCCG



TCTTGGCACTGGAACTCGTTTCTTTCGCATCTGTCGC



CTACAAGTGGGTCTGCG
3486



CGCAGACCCACTTGTAG
3487


Hypercholesterolaemia
AACGAGTTCCAGTGCCAAGACGGGAAATGCATCTCCTACAAG
3488


Ala29Ser
TGGGTCTGCGATGGCAGCGCTGAGTGCCAGGATGGCTCTGA


cGCT-TCT
TGAGTCCCAGGAGACGTGCTGTGAGTCCCCTTTGGGCA



TGCCCAAAGGGGACTCACAGCACGTCTCCTGGGACTCATCA
3489



GAGCCATCCTGGCACTCAGCGCTGCCATCGCAGACCCACTT



GTAGGAGATGCATTTCCCGTCTTGGCACTGGAACTCGTT



ATGGCAGCGCTGAGTGC
3490



GCACTCAGCGCTGCCAT
3491


Hypercholesterolaemia
TCCAGTGCCAAGACGGGAAATGCATCTCCTACAAGTGGGTCT
3492


Cys31Tyr
GCGATGGCAGCGCTGAGTGCCAGGATGGCTCTGATGAGTCC


TGC-TAC
CAGGAGACGTGCTGTGAGTCCCCTTTGGGCATGATATG



CATATCATGCCCAAAGGGGACTCACAGCACGTCTCCTGGGAC
3493



TCATCAGAGCCATCCTGGCACTCAGCGCTGCCATCGCAGAC



CCACTTGTAGGAGATGCATTTCCCGTCTTGGCACTGGA



CGCTGAGTGCCAGGATG
3494



CATCCTGGCACTCAGCG
3495


Hypercholesterolaemia
AATCCTGTCTCTTCTGTAGTGTCTGTCACCTGCAAATCCGGG
3496


Arg57Cys
GACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATTCCTCA


cCGT-TGT
GTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAACG



CGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAG
3497



GAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCG



GATTTGCAGGTGACAGACACTACAGAAGAGACAGGATT



GTGGGGGCCGTGTCAAC
3498



GTTGACACGGCCCCCAC
3499


Hypercholesterolaemia
TCTGTCACCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCG
3500


Gln64Term
TGTCAACCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCA


tCAG-TAG
AGTGGACTGCGACAACGGCTCAGACGAGCAAGGCTGTC



GACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCACTTGGC
3501



CATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGG



CCCCCACAGCTGAAGTCCCCGGATTTGCAGGTGACAGA



GCATTCCTCAGTTCTGG
3502



CCAGAACTGAGGAATGC
3503


Hypercholesterolaemia
ACCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAA
3504


Trp66Gly
CCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGG


cTGG-GGG
ACTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGT



ACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCA
3505



CTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTG



ACACGGCCCCCACAGCTGAAGTCCCCGGATTTGCAGGT



CTCAGTTCTGGAGGTGC
3506



GCACCTCCAGAACTGAG
3507


Hypercholesterolaemia
CCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAAC
3508


Trp66Term
CGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGA


TGG-TAG
CTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTG



CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCC
3509



ACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTG



ACACGGCCCCCACAGCTGAAGTCCCCGGATTTGCAGG



TCAGTTCTGGAGGTGCG
3510



CGCACCTCCAGAACTGA
3511


Hypercholesterolaemia
AAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTG
3512


Cys68Arg
CATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGA


gTGC-CGC
CAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCC



GGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGC
3513



AGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAG



CGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATTT



TCTGGAGGTGCGATGGC
3514



GCCATCGCACCTCCAGA
3515


Hypercholesterolaemia
ATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCA
3516


Cys68Trp
TTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACA


TGCg-TGG
ACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCT



AGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTC
3517



GCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCA



GCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGAT



TGGAGGTGCGATGGCCA
3518



TGGCCATCGCACCTCCA
3519


Hypercholesterolaemia
AATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGC
3520


Cys68Tyr
ATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGAC


TGC-TAC
AACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCC



GGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTC
3521



GCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCA



GCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATT



CTGGAGGTGCGATGGCC
3522



GGCCATCGCACCTCCAG
3523


Hypercholesterolaemia
TCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCAT
3524


Asp69Asn
TCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACA


cGAT-AAT
ACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTG



CAGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGT
3525



CGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATG



CAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGA



GGAGGTGCGATGGCCAA
3526



TTGGCCATCGCACCTCC
3527


Hypercholesterolaemia
CCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATT
3528


Asp69Gly
CCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAA


GAT-GGT
CGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTGC



GCAGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTT
3529



GTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAAT



GCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGG



GAGGTGCGATGGCCAAG
3530



CTTGGCCATCGCACCTC
3531


Hypercholesterolaemia
TCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCAT
3532


Asp69Tyr
TCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACA


cGAT-TAT
ACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTG



CAGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGT
3533



CGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATG



CAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGA



GGAGGTGCGATGGCCAA
3534



TTGGCCATCGCACCTCC
3535


Hypercholesterolaemia
GACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATTCCTCA
3536


Gln71Glu
GTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAACGGCT


cCAA-GAA
CAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTGCCTTTG



CAAAGGCAGGGCCACACTTACGACAGCCTTGCTCGTCTGAG
3537



CCGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGA



GGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTC



GCGATGGCCAAGTGGAC
3538



GTCCACTTGGCCATCGC
3539


Hypercholesterolaemia
TGTGGGGGCCGTGTCAACCGCTGCATTCCTCAGTTCTGGAG
3540


Cys74Gly
GTGCGATGGCCAAGTGGACTGCGACAACGGCTCAGACGAGC


cTGC-GGC
AAGGCTGTCGTAAGTGTGGCCCTGCCTTTGCTATTGAGC



GCTCAATAGCAAAGGCAGGGCCACACTTACGACAGCCTTGCT
3541



CGTCTGAGCCGTTGTCGCAGTCCACTTGGCCATCGCACCTC



CAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACA



AAGTGGACTGCGACAAC
3542



GTTGTCGCAGTCCACTT
3543


Hypercholesterolaemia
TCAACCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAG
3544


Ser78Term
TGGACTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAG


TCA-TGA
TGTGGCCCTGCCTTTGCTATTGAGCCTATCTGAGTCCT



AGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCACACTTA
3545



CGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCACTTGG



CCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGA



CAACGGCTCAGACGAGC
3546



GCTCGTCTGAGCCGTTG
3547


Hypercholesterolaemia
CGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGA
3548


Glu80Lys
CTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTG


cGAG-AAG
GCCCTGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGA



TCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCA
3549



CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCC



ACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCG



GCTCAGACGAGCAAGGC
3550



GCCTTGCTCGTCTGAGC
3551


Hypercholesterolaemia
CGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGA
3552


Glu80Term
CTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTG


cGAG-TAG
GCCCTGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGA



TCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCA
3553



CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCC



ACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCG



GCTCAGACGAGCAAGGC
3554



GCCTTGCTCGTCTGAGC
3555


Hypercholesterolaemia
TGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGC
3556


Gln81Term
GACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCC


gCAA-TAA
TGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGAGTG



CACTCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGG
3557



CCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAG



TCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCA



CAGACGAGCAAGGCTGT
3558



ACAGCCTTGCTCGTCTG
3559


Hypercholesterolaemia
TGGGAGACTTCACACGGTGATGGTGGTCTCGGCCCATCCAT
3560


Cys88Arg
CCCTGCAGCCCCCAAGACGTGCTCCCAGGACGAGTTTCGCT


gTGC-CGC
GCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTCTGTG



CACAGACGAACTGCCGAGAGATGCACTTCCCATCGTGGCAG
3561



CGAAACTCGTCCTGGGAGCACGTCTTGGGGGCTGCAGGGAT



GGATGGGCCGAGACCACCATCACCGTGTGAAGTCTCCCA



CCAAGACGTGCTCCCAG
3562



CTGGGAGCACGTCTTGG
3563


Hypercholesterolaemia
CACGGTGATGGTGGTCTCGGCCCATCCATCCCTGCAGCCCC
3564


Glu92Term
CAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGATGGGA


cGAG-TAG
AGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGG



CCCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTTC
3565



CCATCGTGGCAGCGAAACTCGTCCTGGGAGCACGTCTTGGG



GGCTGCAGGGATGGATGGGCCGAGACCACCATCACCGTG



CCCAGGACGAGTTTCGC
3566



GCGAAACTCGTCCTGGG
3567


Hypercholesterolaemia
GGTGGTCTCGGCCCATCCATCCCTGCAGCCCCCAAGACGTG
3568


Cys95Arg
CTCCCAGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCT


cTGC-CGC
CTCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGG



CCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGCCGAGAG
3569



ATGCACTTCCCATCGTGGCAGCGAAACTCGTCCTGGGAGCA



CGTCTTGGGGGCTGCAGGGATGGATGGGCCGAGACCACC



AGTTTCGCTGCCACGAT
3570



ATCGTGGCAGCGAAACT
3571


Hypercholesterolaemia
CTCGGCCCATCCATCCCTGCAGCCCCCAAGACGTGCTCCCA
3572


Asp97Tyr
GGACGAGTTTCGCTGCCACGATGGGAAGTGCATCTCTCGGC


cGAT-TAT
AGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACGGCT



AGCCGTCCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGC
3573



CGAGAGATGCACTTCCCATCGTGGCAGCGAAACTCGTCCTG



GGAGCACGTCTTGGGGGCTGCAGGGATGGATGGGCCGAG



GCTGCCACGATGGGAAG
3574



CTTCCCATCGTGGCAGC
3575


Hypercholesterolaemia
GGGTCGGGACACTGCCTGGCAGAGGCTGCGAGCATGGGGC
3576


Trp(−12)Arg
CCTGGGGCTGGAAATTGCGCTGGACCGTCGCCTTGCTCCTC


cTGG-AGG
GCCGCGGCGGGGACTGCAGGTAAGGCTTGCTCCAGGCGCC



GGCGCCTGGAGCAAGCCTTACCTGCAGTCCCCGCCGCGGC
3577



GAGGAGCAAGGCGACGGTCCAGCGCAATTTCCAGCCCCAGG



GCCCCATGCTCGCAGCCTCTGCCAGGCAGTGTCCCGACCC



AATTGCGCTGGACCGTC
3578



GACGGTCCAGCGCAATT
3579


Hypercholesterolaemia
CAGCAGGTCGTGATCCGGGTCGGGACACTGCCTGGCAGAGG
3580


Trp(−18)Term
CTGCGAGCATGGGGCCCTGGGGCTGGAAATTGCGCTGGACC


TGGg-TGA
GTCGCCTTGCTCCTCGCCGCGGCGGGGACTGCAGGTAAG



CTTACCTGCAGTCCCCGCCGCGGCGAGGAGCAAGGCGACG
3581



GTCCAGCGCAATTTCCAGCCCCAGGGCCCCATGCTCGCAGC



CTCTGCCAGGCAGTGTCCCGACCCGGATCACGACCTGCTG



GGGCCCTGGGGCTGGAA
3582



TTCCAGCCCCAGGGCCC
3583


Hypercholesterolaemia
CAGCTAGGACACAGCAGGTCGTGATCCGGGTCGGGACACTG
3584


Met(−21)Leu
CCTGGCAGAGGCTGCGAGCATGGGGCCCTGGGGCTGGAAA


cATG-TTG
TTGCGCTGGACCGTCGCCTTGCTCCTCGCCGCGGCGGGGA



TCCCCGCCGCGGCGAGGAGCAAGGCGACGGTCCAGCGCAA
3585



TTTCCAGCCCCAGGGCCCCATGCTCGCAGCCTCTGCCAGGC



AGTGTCCCGACCCGGATCACGACCTGCTGTGTCCTAGCTG



CTGCGAGCATGGGGCCC
3586



GGGCCCCATGCTCGCAG
3587


Hypercholesterolaemia
CAGCTAGGACACAGCAGGTCGTGATCCGGGTCGGGACACTG
3588


Met(−21)Val
CCTGGCAGAGGCTGCGAGCATGGGGCCCTGGGGCTGGAAA


cATG-GTG
TTGCGCTGGACCGTCGCCTTGCTCCTCGCCGCGGCGGGGA



TCCCCGCCGCGGCGAGGAGCAAGGCGACGGTCCAGCGCAA
3589



TTTCCAGCCCCAGGGCCCCATGCTCGCAGCCTCTGCCAGGC



AGTGTCCCGACCCGGATCACGACCTGCTGTGTCCTAGCTG



CTGCGAGCATGGGGCCC
3590



GGGCCCCATGCTCGCAG
3591


Hypercholesterolaemia
ATCCCTGCAGCCCCCAAGACGTGCTCCCAGGACGAGTTTCG
3592


Ile101Phe
CTGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTCTGTGA


cATC-TTC
CTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGCCT



AGGCCTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCA
3593



CAGACGAACTGCCGAGAGATGCACTTCCCATCGTGGCAGCG



AAACTCGTCCTGGGAGCACGTCTTGGGGGCTGCAGGGAT



GGAAGTGCATCTCTCGG
3594



CCGAGAGATGCACTTCC
3595


Hypercholesterolaemia
GCCCCCAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGA
3596


Gln104Term
TGGGAAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCG


gCAG-TAG
GGACTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGG



CCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCAGTCCCG
3597



GTCTGAGTCACAGACGAACTGCCGAGAGATGCACTTCCCATC



GTGGCAGCGAAACTCGTCCTGGGAGCACGTCTTGGGGGC



TCTCTCGGCAGTTCGTC
3598



GACGAACTGCCGAGAGA
3599


Hypercholesterolaemia
TTTCGCTGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTC
3600


Cys113Arg
TGTGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGC


cTGC-CGC
CTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCC



GGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGC
3601



CTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCACAGA



CGAACTGCCGAGAGATGCACTTCCCATCGTGGCAGCGAAA



ACCGGGACTGCTTGGAC
3602



GTCCAAGCAGTCCCGGT
3603


Hypercholesterolaemia
AAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGGAC
3604


Glu119Lys
TGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCAC


cGAG-AAG
CTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCT



AGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTG
3605



AGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCAGTC



CCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTT



GCTCAGACGAGGCCTCC
3606



GGAGGCCTCGTCTGAGC
3607


Hypercholesterolaemia
AAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGGAC
3608


Glu119Term
TGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCAC


cGAG-TAG
CTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCT



AGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTG
3609



AGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCAGTC



CCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTT



GCTCAGACGAGGCCTCC
3610



GGAGGCCTCGTCTGAGC
3611


Hypercholesterolaemia
TCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACG
3612


Cys122Term
GCTCAGACGAGGCCTCCTGCCCGGTGCTCACCTGTGGTCCC


TGCc-TGA
GCCAGCTTCCAGTGCAACAGCTCCACCTGCATCCCCCAG



CTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGG
3613



GACCACAGGTGAGCACCGGGCAGGAGGCCTCGTCTGAGCC



GTCCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGCCGA



GCCTCCTGCCCGGTGCT
3614



AGCACCGGGCAGGAGGC
3615


Hypercholesterolaemia
TGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGCCT
3616


Cys127Trp
CCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCCAGTGC


TGTg-TGG
AACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGAC



GTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGC
3617



ACTGGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGA



GGCCTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCA



CTCACCTGTGGTCCCGC
3618



GCGGGACCACAGGTGAG
3619


Hypercholesterolaemia
TGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCAC
3620


Gln133Term
CTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCAT


cCAG-TAG
CCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCG



CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT
3621



GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGG



TGAGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCA



CCAGCTTCCAGTGCAAC
3622



GTTGCACTGGAAGCTGG
3623


Hypercholesterolaemia
TTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCACCTG
3624


Cys134Gly
TGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATCC


gTGC-GGC
CCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAG



CTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGG
3625



ATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA



GGTGAGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAA



GCTTCCAGTGCAACAGC
3626



GCTGTTGCACTGGAAGC
3627


Hypercholesterolaemia
GAGGCCTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTT
3628


Cys139Gly
CCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCT


cTGC-GGC
GCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGT



ACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAG
3629



GCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAA



GCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGCCTC



GCTCCACCTGCATCCCC
3630



GGGGATGCAGGTGGAGC
3631


Hypercholesterolaemia
AGGCCTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTC
3632


Cys139Tyr
CAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTG


TGC-TAC
CGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTG



CACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCA
3633



GGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGA



AGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGCCT



CTCCACCTGCATCCCCC
3634



GGGGGATGCAGGTGGAG
3635


Hypercholesterolaemia
CTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCAT
3636


Cys146Term
CCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAG


TGCg-TGA
ATGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTT



AAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTTC
3637



GCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATG



CAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAG



TGGGCCTGCGACAACGA
3638



TCGTTGTCGCAGGCCCA
3639


Hypercholesterolaemia
TGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC
3640


Asp147Asn
CCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGA


cGAC-AAC
TGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTT



AAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT
3641



CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT



GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA



GGGCCTGCGACAACGAC
3642



GTCGTTGTCGCAGGCCC
3643


Hypercholesterolaemia
TGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC
3644


Asp147His
CCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGA


cGAC-CAC
TGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTT



AAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT
3645



CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT



GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA



GGGCCTGCGACAACGAC
3646



GTCGTTGTCGCAGGCCC
3647


Hypercholesterolaemia
TGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC
3648


Asp147Tyr
CCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGA


cGAC-TAC
TGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTT



AAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT
3649



CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT



GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA



GGGCCTGCGACAACGAC
3650



GTCGTTGTCGCAGGCCC
3651


Hypercholesterolaemia
TTCCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGC
3652


Cys152Arg
CTGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGT


cTGC-CGC
GGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGG



CCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCAC
3653



TCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGC



CCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAA



ACCCCGACTGCGAAGAT
3654



ATCTTCGCAGTCGGGGT
3655


Hypercholesterolaemia
TTCCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGC
3656


Cys152Gly
CTGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGT


cTGC-GGC
GGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGG



CCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCAC
3657



TCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGC



CCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAA



ACCCCGACTGCGAAGAT
3658



ATCTTCGCAGTCGGGGT
3659


Hypercholesterolaemia
CCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCT
3660


Cys152Trp
GCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGG


TGCg-TGG
CCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGAC



GTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCC
3661



ACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAG



GCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGG



CCCGACTGCGAAGATGG
3662



CCATCTTCGCAGTCGGG
3663


Hypercholesterolaemia
TGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGA
3664


Asp154Asn
CAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGC


aGAT-AAT
AGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTA



TACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCG
3665



GCCACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCG



CAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCA



ACTGCGAAGATGGCTCG
3666



CGAGCCATCTTCGCAGT
3667


Hypercholesterolaemia
GCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGACAACGAC
3668


Ser156Leu
CCCGACTGCGAAGATGGCTCGGATGAGTGGCCGCAGCGCTG


TCG-TTG
TAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGCCCCTG



CAGGGGCTACTGTCCCCTTGGAACACGTAAAGACCCCTACAG
3669



CGCTGCGGCCACTCATCCGAGCCATCTTCGCAGTCGGGGTC



GTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGC



AGATGGCTCGGATGAGT
3670



ACTCATCCGAGCCATCT
3671


Hypercholesterolaemia
TGTGGGCCTGCGACAACGACCCCGACTGCGAAGATGGCTCG
3672


Cys163Tyr
GATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAA


TGT-TAT
GGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTG



CAGTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTG
3673



GAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCG



AGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACA



GCAGCGCTGTAGGGGTC
3674



GACCCCTACAGCGCTGC
3675


Hypercholesterolaemia
CAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGC
3676


Tyr167Term
AGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGC


TACg-TAG
CCCTGCTCGGCCTTCGAGTTCCACTGCCTAAGTGGCGAG



CTCGCCACTTAGGCAGTGGAACTCGAAGGCCGAGCAGGGGC
3677



TACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCG



GCCACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTG



GGTCTTTACGTGTTCCA
3678



TGGAACACGTAAAGACC
3679


Hypercholesterolaemia
CCCGACTGCGAAGATGGCTCGGATGAGTGGCCGCAGCGCTG
3680


Gln170Term
TAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGCCCCTGCTC


cCAA-TAA
GGCCTTCGAGTTCCACTGCCTAAGTGGCGAGTGCATCC



GGATGCACTCGCCACTTAGGCAGTGGAACTCGAAGGCCGAG
3681



CAGGGGCTACTGTCCCCTTGGAACACGTAAAGACCCCTACAG



CGCTGCGGCCACTCATCCGAGCCATCTTCGCAGTCGGG



ACGTGTTCCAAGGGGAC
3682



GTCCCCTTGGAACACGT
3683


Hypercholesterolaemia
CGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTC
3684


Cys176Phe
CAAGGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTG


TGC-TTC
CCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGA



TCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA
3685



GTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTGGA



ACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCG



TAGCCCCTGCTCGGCCT
3686



AGGCCGAGCAGGGGCTA
3687


Hypercholesterolaemia
CGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTC
3688


Cys176Tyr
CAAGGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTG


TGC-TAC
CCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGA



TCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA
3689



GTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTGGA



ACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCG



TAGCCCCTGCTCGGCCT
3690



AGGCCGAGCAGGGGCTA
3691


Hypercholesterolaemia
ATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAG
3692


Ser177Leu
GGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTGCCTA


TCG-TTG
AGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATGG



CCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAG
3693



GCAGTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTT



GGAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCAT



CCCCTGCTCGGCCTTCG
3694



CGAAGGCCGAGCAGGGG
3695


Hypercholesterolaemia
TACGTGTTCCAAGGGGACAGTAGCCCCTGCTCGGCCTTCGA
3696


Glu187Lys
GTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGC


cGAG-AAG
GCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACG



CGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGC
3697



CAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTC



GAAGGCCGAGCAGGGGCTACTGTCCCCTTGGAACACGTA



TAAGTGGCGAGTGCATC
3698



GATGCACTCGCCACTTA
3699


Hypercholesterolaemia
CAAGGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTG
3700


His190Tyr
CCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATG


cCAC-TAC
GTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACT



AGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCAT
3701



CACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAG



TGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTG



AGTGCATCCACTCCAGC
3702



GCTGGAGTGGATGCACT
3703


Hypercholesterolaemia
CCTTCGAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCA
3704


Gly198Asp
GCTGGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCT


GGC-GAC
GACGAGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGG



CCCACCCTGGCCCCGCCCATACCGCAGTTTTCCTCGTCAGAT
3705



TTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGA



GTGGATGCACTCGCCACTTAGGCAGTGGAACTCGAAGG



TGATGGTGGCCCCGACT
3706



AGTCGGGGCCACCATCA
3707


Hypercholesterolaemia
GAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTG
3708


Asp200Asn
GCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACG


cGAC-AAC
AGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGG



CCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTTCCTCG
3709



TCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAG



CTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTC



GTGGCCCCGACTGCAAG
3710



CTTGCAGTCGGGGCCAC
3711


Hypercholesterolaemia
AGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGC
3712


Asp200Gly
GCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAG


GAC-GGC
GAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGG



CCCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTTCCTC
3713



GTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCA



GCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACT



TGGCCCCGACTGCAAGG
3714



CCTTGCAGTCGGGGCCA
3715


Hypercholesterolaemia
GAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTG
3716


Asp200Tyr
GCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACG


cGAC-TAC
AGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGG



CCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTTCCTCG
3717



TCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAG



CTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTC



GTGGCCCCGACTGCAAG
3718



CTTGCAGTCGGGGCCAC
3719


Hypercholesterolaemia
CCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCT
3720


Cys201Term
GTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAA


TGCa-TGA
AACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGT



ACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTT
3721



CCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGC



GCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGG



CCCGACTGCAAGGACAA
3722



TTGTCCTTGCAGTCGGG
3723


Hypercholesterolaemia
TCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGC
3724


Cys201Tyr
TGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGA


TGC-TAC
AAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCG



CGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTTC
3725



CTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCG



CCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGA



CCCCGACTGCAAGGACA
3726



TGTCCTTGCAGTCGGGG
3727


Hypercholesterolaemia
TGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGA
3728


Asp203Asn
TGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACT


gGAC-AAC
GCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTA



TAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA
3729



GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATC



ACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA



ACTGCAAGGACAAATCT
3730



AGATTTGTCCTTGCAGT
3731


Hypercholesterolaemia
GCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGAT
3732


Asp203Gly
GGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTG


GAC-GGC
CGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTAT



ATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA
3733



GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATC



ACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGC



CTGCAAGGACAAATCTG
3734



CAGATTTGTCCTTGCAG
3735


Hypercholesterolaemia
GCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGAT
3736


Asp203Val
GGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTG


GAC-GTC
CGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTAT



ATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA
3737



GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATC



ACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGC



CTGCAAGGACAAATCTG
3738



CAGATTTGTCCTTGCAG
3739


Hypercholesterolaemia
AGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGG
3740


Ser205Pro
CCCCGACTGCAAGGACAAATCTGACGAGGAAAACTGCGGTAT


aTCT-CCT
GGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCT



AGGTGATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATA
3741



CCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCA



CCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACT



AGGACAAATCTGACGAG
3742



CTCGTCAGATTTGTCCT
3743


Hypercholesterolaemia
CGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCG
3744


Asp206Glu
ACTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGC


GACg-GAG
GGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCC



GGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCCG
3745



CCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCG



GGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCG



AAATCTGACGAGGAAAA
3746



TTTTCCTCGTCAGATTT
3747


Hypercholesterolaemia
GAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA
3748


Glu207Gln
CTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGCG


cGAG-CAG
GGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCT



AGGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCC
3749



GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTC



GGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTC



AATCTGACGAGGAAAAC
3750



GTTTTCCTCGTCAGATT
3751


Hypercholesterolaemia
GAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA
3752


Glu207Lys
CTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGCG


cGAG-AAG
GGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCT



AGGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCC
3753



GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTC



GGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTC



AATCTGACGAGGAAAAC
3754



GTTTTCCTCGTCAGATT
3755


Hypercholesterolaemia
GAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA
3756


Glu207Term
CTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGCG


cGAG-TAG
GGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCT



AGGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCC
3757



GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTC



GGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTC



AATCTGACGAGGAAAAC
3758



GTTTTCCTCGTCAGATT
3759


Hypercholesterolaemia
TCTTGAGAAAATCAACACACTCTGTCCTGTTTTCCAGCTGTGG
3760


Glu219Lys
CCACCTGTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACT


cGAA-AAA
GCATCCATGGCAGCCGGCAGTGTGACCGGGAATATG



CATATTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTTC
3761



CATCAGAGCACTGGAATTCGTCAGGGCGACAGGTGGCCACA



GCTGGAAAACAGGACAGAGTGTGTTGATTTTCTCAAGA



GCCCTGACGAATTCCAG
3762



CTGGAATTCGTCAGGGC
3763


Hypercholesterolaemia
GAAAATCAACACACTCTGTCCTGTTTTCCAGCTGTGGCCACCT
3764


Gln221Term
GTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCC


cCAG-TAG
ATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCA



TGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATGC
3765



AGTTTCCATCAGAGCACTGGAATTCGTCAGGGCGACAGGTGG



CCACAGCTGGAAAACAGGACAGAGTGTGTTGATTTTC



ACGAATTCCAGTGCTCT
3766



AGAGCACTGGAATTCGT
3767


Hypercholesterolaemia
CCTGTTTTCCAGCTGTGGCCACCTGTCGCCCTGACGAATTCC
3768


Cys227Phe
AGTGCTCTGATGGAAACTGCATCCATGGCAGCCGGCAGTGT


TGC-TTC
GACCGGGAATATGACTGCAAGGACATGAGCGATGAAGT



ACTTCATCGCTCATGTCCTTGCAGTCATATTCCCGGTCACACT
3769



GCCGGCTGCCATGGATGCAGTTTCCATCAGAGCACTGGAATT



CGTCAGGGCGACAGGTGGCCACAGCTGGAAAACAGG



TGGAAACTGCATCCATG
3770



CATGGATGCAGTTTCCA
3771


Hypercholesterolaemia
TCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCCA
3772


Asp235Glu
TGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGACA


GACc-GAA
TGAGCGATGAAGTTGGCTGCGTTAATGGTGAGCGCTGG



CCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCATGTC
3773



CTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGAT



GCAGTTTCCATCAGAGCACTGGAATTCGTCAGGGCGA



CAGTGTGACCGGGAATA
3774



TATTCCCGGTCACACTG
3775


Hypercholesterolaemia
GTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCC
3776


Asp235Gly
ATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGAC


GAC-GGC
ATGAGCGATGAAGTTGGCTGCGTTAATGGTGAGCGCTG



CAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCATGTCC
3777



TTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATG



CAGTTTCCATCAGAGCACTGGAATTCGTCAGGGCGAC



GCAGTGTGACCGGGAAT
3778



ATTCCCGGTCACACTGC
3779


Hypercholesterolaemia
CCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCCATGGC
3780


Glu237Lys
AGCCGGCAGTGTGACCGGGAATATGACTGCAAGGACATGAG


gGAA-AAA
CGATGAAGTTGGCTGCGTTAATGGTGAGCGCTGGCCAT



ATGGCCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCA
3781



TGTCCTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCAT



GGATGCAGTTTCCATCAGAGCACTGGAATTCGTCAGG



GTGACCGGGAATATGAC
3782



GTCATATTCCCGGTCAC
3783


Hypercholesterolaemia
TCCAGTGCTCTGATGGAAACTGCATCCATGGCAGCCGGCAGT
3784


Cys240Phe
GTGACCGGGAATATGACTGCAAGGACATGAGCGATGAAGTTG


TGC-TTC
GCTGCGTTAATGGTGAGCGCTGGCCATCTGGTTTTCC



GGAAAACCAGATGGCCAGCGCTCACCATTAACGCAGCCAACT
3785



TCATCGCTCATGTCCTTGCAGTCATATTCCCGGTCACACTGC



CGGCTGCCATGGATGCAGTTTCCATCAGAGCACTGGA



ATATGACTGCAAGGACA
3786



TGTCCTTGCAGTCATAT
3787


Hypercholesterolaemia
AAACTGCATCCATGGCAGCCGGCAGTGTGACCGGGAATATG
3788


Asp245Glu
ACTGCAAGGACATGAGCGATGAAGTTGGCTGCGTTAATGGTG


GATg-GAA
AGCGCTGGCCATCTGGTTTTCCATCCCCCATTCTCTGT



ACAGAGAATGGGGGATGGAAAACCAGATGGCCAGCGCTCAC
3789



CATTAACGCAGCCAACTTCATCGCTCATGTCCTTGCAGTCATA



TTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTT



ATGAGCGATGAAGTTGG
3790



CCAACTTCATCGCTCAT
3791


Hypercholesterolaemia
ATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGAC
3792


Cys249Tyr
ATGAGCGATGAAGTTGGCTGCGTTAATGGTGAGCGCTGGCC


TGC-TAC
ATCTGGTTTTCCATCCCCCATTCTCTGTGCCTTGCTGCT



AGCAGCAAGGCACAGAGAATGGGGGATGGAAAACCAGATGG
3793



CCAGCGCTCACCATTAACCCAGCCAACTTCATCGCTCATGTC



CTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCAT



AGTTGGCTGCGTTAATG
3794



CATTAACGCAGCCAACT
3795


Hypercholesterolaemia
AGGCTCAGACACACCTGACCTTCCTCCTTCCTCTCTCTGGCT
3796


Glu256Lys
CTCACAGTGACACTCTGCGAGGGACCCAACAAGTTCAAGTGT


cGAG-AAG
CACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCA



TGCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACACT
3797



TGAACTTGTTGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCA



GAGAGAGGAAGGAGGAAGGTCAGGTGTGTCTGAGCCT



CACTCTGCGAGGGACCC
3798



GGGTCCCTCGCAGAGTG
3799


Hypercholesterolaemia
CCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGACCCAA
3800


Ser265Arg
CAAGTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAA


AGCg-AGA
AGTCTGCAACATGGCTAGAGACTGCCGGGACTGGTCA



TGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTGTC
3801



CAGGGTGATGCATTCGCCGCTGTGACACTTGAACTTGTTGGG



TCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGAGAGG



TGTCACAGCGGCGAATG
3802



CATTCGCCGCTGTGACA
3803


Hypercholesterolaemia
TCTCTGGCTCTCACAGTGACACTCTGCGAGGGACCCAACAAG
3804


Glu267Lys
TTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTC


cGAA-AAA
TGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATG



CATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTT
3805



TGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACTTGT



TGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGA



ACAGCGGCGAATGCATC
3806



GATGCATTCGCCGCTGT
3807


Hypercholesterolaemia
TCTCTGGCTCTCACAGTGACACTCTGCGAGGGACCCAACAAG
3808


Glu267Term
TTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTC


cGAA-TAA
TGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATG



CATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTT
3809



TGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACTTGT



TGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGA



ACAGCGGCGAATGCATC
3810



GATGCATTCGCCGCTGT
3811


Hypercholesterolaemia
ACACTCTGCGAGGGACCCAACAAGTTCAAGTGTCACAGCGG
3812


Lys273Glu
CGAATGCATCACCCTGGACAAAGTCTGCAACATGGCTAGAGA


cAAA-GAA
CTGCCGGGACTGGTCAGATGAACCCATCAAAGAGTGCG



CGCACTCTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTC
3813



TAGCCATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGC



TGTGACACTTGAACTTGTTGGGTCCCTCGCAGAGTGT



CCCTGGACAAAGTCTGC
3814



GCAGACTTTGTCCAGGG
3815


Hypercholesterolaemia
CGAGGGACCCAACAAGTTCAAGTGTCACAGCGGCGAATGCA
3816


Cys275Term
TCACCCTGGACAAAGTCTGCAACATGGCTAGAGACTGCCGG


TGCa-TGA
GACTGGTCAGATGAACCCATCAAAGAGTGCGGTGAGTCT



AGACTCACCGCACTCTTTGATGGGTTCATCTGACCAGTCCCG
3817



GCAGTCTCTAGCCATGTTGCAGACTTTGTCCAGGGTGATGCA



TTCGCCGCTGTGACACTTGAACTTGTTGGGTCCCTCG



AAAGTCTGCAACATGGC
3818



GCCATGTTGCAGACTTT
3819


Hypercholesterolaemia
AGTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAG
3820


Asp280Gly
TCTGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATGAA


GAC-GGC
CCCATCAAAGAGTGCGGTGAGTCTCGGTGCAGGCGGCT



AGCCGCCTGCACCGAGACTCACCGCACTCTTTGATGGGTTCA
3821



TCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTG



TCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACT



GGCTAGAGACTGCCGGG
3822



CCCGGCAGTCTCTAGCC
3823


Hypercholesterolaemia
TCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCT
3824


Cys281Tyr
GCAACATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCC


TGC-TAC
ATCAAAGAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGC



GCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGATGGG
3825



TTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGAC



TTTGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGA



TAGAGACTGCCGGGACT
3826



AGTCCCGGCAGTCTCTA
3827


Hypercholesterolaemia
TGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAAC
3828


Asp283Asn
ATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAA


gGAC-AAC
GAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGT



ACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGA
3829



TGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGC



AGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACA



ACTGCCGGGACTGGTCA
3830



TGACCAGTCCCGGCAGT
3831


Hypercholesterolaemia
TCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAACAT
3832


Asp283Glu
GGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAAG


GACt-GAG
AGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTT



AAACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTT
3833



GATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTT



GCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGA



TGCCGGGACTGGTCAGA
3834



TCTGACCAGTCCCGGCA
3835


Hypercholesterolaemia
TGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAAC
3836


Asp283Tyr
ATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAA


gGAC-TAC
GAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGT



ACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGA
3837



TGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGC



AGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACA



ACTGCCGGGACTGGTCA
3838



TGACCAGTCCCGGCAGT
3839


Hypercholesterolaemia
CAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAACATGG
3840


Trp284Term
CTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAAGAGT


TGGt-TGA
GCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTTGTG



CACAAACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACT
3841



CTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCA



TGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGCTG



CGGGACTGGTCAGATGA
3842



TCATCTGACCAGTCCCG
3843


Hypercholesterolaemia
GCGGCGAATGCATCACCCTGGACAAAGTCTGCAACATGGCTA
3844


Ser285Leu
GAGACTGCCGGGACTGGTCAGATGAACCCATCAAAGAGTGC


TCA-TTA
GGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTTGTGGG



CCCACAAACTCTGCAAGCCGCCTGCACCGAGACTCACCGCA
3845



CTCTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGC



CATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGC



GGACTGGTCAGATGAAC
3846



GTTCATCTGACCAGTCC
3847


Hypercholesterolaemia
CCCTGGACAAAGTCTGCAACATGGCTAGAGACTGCCGGGAC
3848


Lys290Arg
TGGTCAGATGAACCCATCAAAGAGTGCGGTGAGTCTCGGTG


AAA-AGA
CAGGCGGCTTGCAGAGTTTGTGGGGAGCCAGGAAAGGGA



TCCCTTTCCTGGCTCCCCACAAACTCTGCAAGCCGCCTGCAC
3849



CGAGACTCACCGCACTCTTTGATGGGTTCATCTGACCAGTCC



CGGCAGTCTCTAGCCATGTTGCAGACTTTGTCCAGGG



ACCCATCAAAGAGTGCG
3850



CGCACTCTTTGATGGGT
3851


Hypercholesterolaemia
GGGTAGGGGCCCGAGAGTGACCAGTCTGCATCCCCTGGCCC
3852


Cys297Phe
TGCGCAGGGACCAACGAATGCTTGGACAACAACGGCGGCTG


TGC-TTC
TTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTG



CACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAG
3853



CCGCCGTTGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGG



CCAGGGGATGCAGACTGGTCACTCTCGGGCCCCTACCC



CAACGAATGCTTGGACA
3854



TGTCCAAGCATTCGTTG
3855


Hypercholesterolaemia
GGGTAGGGGCCCGAGAGTGACCAGTCTGCATCCCCTGGCCC
3856


Cys297Tyr
TGCGCAGGGACCAACGAATGCTTGGACAACAACGGCGGCTG


TGC-TAC
TTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTG



CACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAG
3857



CCGCCGTTGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGG



CCAGGGGATGCAGACTGGTCACTCTCGGGCCCCTACCC



CAACGAATGCTTGGACA
3858



TGTCCAAGCATTCGTTG
3859


Hypercholesterolaemia
TGCATCCCCTGGCCCTGCGCAGGGACCAACGAATGCTTGGA
3860


His306Tyr
CAACAACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGAT


cCAC-TAC
CGGCTACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGG



CCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGATC
3861



TTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCC



AAGCATTCGTTGGTCCCTGCGCAGGGCCAGGGGATGCA



GCTGTTCCCACGTCTGC
3862



GCAGACGTGGGAACAGC
3863


Hypercholesterolaemia
CCCTGGCCCTGCGCAGGGACCAACGAATGCTTGGACAACAA
3864


Cys308Gly
CGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTA


cTGC-GGC
CGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCC



GGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTA
3865



GCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGT



TGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGGCCAGGG



CCCACGTCTGCAATGAC
3866



GTCATTGCAGACGTGGG
3867


Hypercholesterolaemia
CCTGGCCCTGCGCAGGGACCAACGAATGCTTGGACAACAAC
3868


Cys308Tyr
GGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTAC


TGC-TAC
GAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCA



TGGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTA
3869



GCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTT



GTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGGCCAGG



CCACGTCTGCAATGACC
3870



GGTCATTGCAGACGTGG
3871


Hypercholesterolaemia
ACCAACGAATGCTTGGACAACAACGGCGGCTGTTCCCACGTC
3872


Gly3l4Ser
TGCAATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGAC


cGGC-AGC
GGCTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTG



CACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCCGTCG
3873



GGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGAC



GTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGTTGGT



TTAAGATCGGCTACGAG
3874



CTCGTAGCCGATCTTAA
3875


Hypercholesterolaemia
CCAACGAATGCTTGGACAACAACGGCGGCTGTTCCCACGTCT
3876


Gly314Val
GCAATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGAC


GGC-GTC
GGCTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGA



TCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCCGTC
3877



GGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGA



CGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGTTGG



TAAGATCGGCTACGAGT
3878



ACTCGTAGCCGATCTTA
3879


Hypercholesterolaemia
CGAATGCTTGGACAACAACGGCGGCTGTTCCCACGTCTGCAA
3880


Tyr315Term
TGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTT


TACg-TAA
CCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTC



GAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCC
3881



GTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCA



GACGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCG



ATCGGCTACGAGTGCCT
3882



AGGCACTCGTAGCCGAT
3883


Hypercholesterolaemia
TGCTTGGACAACAACGGCGGCTGTTCCCACGTCTGCAATGAC
3884


Cys317Gly
CTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTTCCA


gTGC-GGC
GCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCGGG



CCCGGAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGG
3885



AAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTC



ATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCA



GCTACGAGTGCCTGTGC
3886



GCACAGGCACTCGTAGC
3887


Hypercholesterolaemia
TGCTTGGACAACAACGGCGGCTGTTCCCACGTCTGCAATGAC
3888


Cys317Ser
CTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTTCCA


gTGC-AGC
GCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCGGG



CCCGGAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGG
3889



AAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTC



ATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCA



GCTACGAGTGCCTGTGC
3890



GCACAGGCACTCGTAGC
3891


Hypercholesterolaemia
ACAACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCG
3892


Pro320Arg
GCTACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCC


CCC-CGC
CAGCGAAGATGCGAAGGTGATTTCCGGGTGGGACTGAG



CTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTGGGCC
3893



ACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGAT



CTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGT



CCTGTGCCCCGACGGCT
3894



AGCCGTCGGGGCACAGG
3895


Hypercholesterolaemia
AACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGC
3896


Asp321Asn
TACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCA


cGAC-AAC
GCGAAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCC



GGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTGGG
3897



CCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCG



ATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTT



TGTGCCCCGACGGCTTC
3898



GAAGCCGTCGGGGCACA
3899


Hypercholesterolaemia
CGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTA
3900


Asp321Glu
CGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGC


GACg-GAG
GAAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCCCT



AGGGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTG
3901



GGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAG



CCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCG



TGCCCCGACGGCTTCCA
3902



TGGAAGCCGTCGGGGCA
3903


Hypercholesterolaemia
GGCGGCTGTTCCCACGTGTGCAATGACCTTAAGATCGGCTAC
3904


Gly322Ser
GAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGCG


cGGC-AGC
AAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCCCTG



CAGGGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCT
3905



GGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTA



GCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCC



GCCCCGACGGCTTCCAG
3906



CTGGAAGCCGTCGGGGC
3907


Hypercholesterolaemia
TGTTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTGC
3908


Gln324Term
CTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGCGAAGATG


cCAG-TAG
CGAAGGTGATTTCCGGGTGGGACTGAGCCCTGGGCCCC



GGGGCCCAGGGCTCAGTCCCACCCGGAAATCACCTTCGCAT
3909



CTTCGCTGGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCA



CTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACA



ACGGCTTCCAGCTGGTG
3910



CACCAGCTGGAAGCCGT
3911


Hypercholesterolaemia
ATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGC
3912


Arg329Pro
TTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCG


CGA-CCA
GGTGGGACTGAGCCCTGGGCCCCCTCTGCGCTTCCTGAC



GTCAGGAAGCGCAGAGGGGGCCCAGGGCTCAGTCCCACCC
3913



GGAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAG



CCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCAT



GGCCCAGCGAAGATGCG
3914



CGCATCTTCGCTGGGCC
3915


Hypercholesterolaemia
AATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGG
3916


Arg329Term
CTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCC


gCGA-TGA
GGGTGGGACTGAGCCCTGGGCCCCCTCTGCGCTTCCTGA



TCAGGAAGCGCAGAGGGGGCCCAGGGCTCAGTCCCACCCG
3917



GAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCC



GTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATT



TGGCCCAGCGAAGATGC
3918



GCATCTTCGCTGGGCCA
3919


Hypercholesterolaemia
TCTAGCCATTGGGGAAGAGCCTCCCCACCAAGCCTCTTTCTC
3920


Glu336Lys
TCTCTTCCAGATATCGATGAGTGTCAGGATCCCGACACCTGC


tGAG-AAG
AGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACAAGT



ACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAG
3921



GTGTCGGGATCCTGACACTCATCGATATCTGGAAGAGAGAGA



AAGAGGCTTGGTGGGGAGGCTCTTCCCCAATGGCTAGA



ATATCGATGAGTGTCAG
3922



CTGACACTCATCGATAT
3923


Hypercholesterolaemia
CATTGGGGAAGAGCCTCCCCACCAAGCCTCTTTCTCTCTCTT
3924


Gln338Term
CCAGATATCGATGAGTGTCAGGATCCCGACACCTGCAGCCAG


tCAG-TAG
CTCTGCGTGAACCTGGAGGGTGGCTACAAGTGCCAGT



ACTGGCACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGG
3925



CTGCAGGTGTCGGGATCCTGACACTCATCGATATCTGGAAGA



GAGAGAAAGAGGCTTGGTGGGGAGGCTCTTCCCCAATG



ATGAGTGTCAGGATCCC
3926



GGGATCCTGACACTCAT
3927


Hypercholesterolaemia
TCCCCACCAAGCCTCTTTCTCTCTCTTCCAGATATCGATGAGT
3928


Cys343Arg
GTCAGGATCCCGACACCTGCAGCCAGCTCTGCGTGAACCTG


cTGC-CGC
GAGGGTGGCTACAAGTGCCAGTGTGAGGAAGGCTTCC



GGAAGCCTTCCTCACACTGGCACTTGTAGCCACCCTCCAGGT
3929



TCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTGACACTCA



TCGATATCTGGAAGAGAGAGAAAGAGGCTTGGTGGGGA



CCGACACCTGCAGCCAG
3930



CTGGCTGCAGGTGTCGG
3931


Hypercholesterolaemia
CAAGCCTCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGA
3932


Gln345Arg
TCCCGACACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTG


CAG-CGG
GCTACAAGTGCCAGTGTGAGGAAGGCTTCCAGCTGGA



TCCAGCTGGAAGCCTTCCTCACACTGGCACTTGTAGCCACCC
3933



TCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTG



ACACTCATCGATATCTGGAAGAGAGAGAAAGAGGCTTG



CTGCAGCCAGCTCTGCG
3934



CGCAGAGCTGGCTGCAG
3935


Hypercholesterolaemia
TCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGATCCCGA
3936


Cys347Tyr
CACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACA


TGC-TAC
AGTGCCAGTGTGAGGAAGGCTTCCAGCTGGACCCCCA



TGGGGGTCCAGCTGGAAGCCTTCCTCACACTGGCACTTGTA
3937



GCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGG



GATCCTGACACTCATCGATATCTGGAAGAGAGAGAAAGA



CCAGCTCTGCGTGAACC
3938



GGTTCACGCAGAGCTGG
3939


Hypercholesterolaemia
CTCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGATCCCG
3940


Cys347Arg
ACACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTAC


cTGC-CGC
AAGTGCCAGTGTGAGGAAGGCTTCCAGCTGGACCCCC



GGGGGTCCAGCTGGAAGCCTTCCTCACACTGGCACTTGTAG
3941



CCACCCTCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGG



ATCCTGACACTCATCGATATCTGGAAGAGAGAGAAAGAG



GCCAGCTCTGCGTGAAC
3942



GTTCACGCAGAGCTGGC
3943


Hypercholesterolaemia
CAGATATCGATGAGTGTCAGGATCCCGACACCTGCAGCCAGC
3944


Gly352Asp
TCTGCGTGAACCTGGAGGGTGGCTACAAGTGCCAGTGTGAG


GGT-GAT
GAAGGCTTCCAGCTGGACCCCCACACGAAGGCCTGCAA



TTGCAGGCCTTCGTGTGGGGGTCCAGCTGGAAGCCTTCCTC
3945



ACACTGGCACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTG



GCTGCAGGTGTCGGGATCCTGACACTCATCGATATCTG



CCTGGAGGGTGGCTACA
3946



TGTAGCCACCCTCCAGG
3947


Hypercholesterolaemia
TCGATGAGTGTCAGGATCCCGACACCTGCAGCCAGCTCTGC
3948


Tyr354Cys
GTGAACCTGGAGGGTGGCTACAAGTGCCAGTGTGAGGAAGG


TAC-TGC
CTTCCAGCTGGACCCCCACACGAAGGCCTGCAAGGCTGT



ACAGCCTTGCAGGCCTTCGTGTGGGGGTCCAGCTGGAAGCC
3949



TTCCTCACACTGGCACTTGTAGCCACCCTCCAGGTTCACGCA



GAGCTGGCTGCAGGTGTCGGGATCCTGACACTCATCGA



GGGTGGCTACAAGTGCC
3950



GGCACTTGTAGCCACCC
3951


Hypercholesterolaemia
CAGGATCCCGACACCTGCAGCCAGCTCTGCGTGAACCTGGA
3952


Cys358Arg
GGGTGGCTACAAGTGCCAGTGTGAGGAAGGCTTCCAGCTGG


gTGT-CGT
ACCCCCACACGAAGGCCTGCAAGGCTGTGGGTGAGCACG



CGTGCTCACCCACAGCCTTGCAGGCCTTCGTGTGGGGGTCC
3953



AGCTGGAAGCCTTCCTCACACTGGCACTTGTAGCCACCCTCC



AGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTG



AGTGCCAGTGTGAGGAA
3954



TTCCTCACACTGGCACT
3955


Hypercholesterolaemia
TGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACAAGTG
3956


Gln363Term
CCAGTGTGAGGAAGGCTTCCAGCTGGACCCCCACACGAAGG


cCAG-TAG
CCTGCAAGGCTGTGGGTGAGCACGGGAAGGCGGCGGGTG



CACCCGCCGCCTTCCCGTGCTCACCCACAGCCTTGCAGGCC
3957



TTCGTGTGGGGGTCCAGCTGGAAGCCTTCCTCACACTGGCA



CTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGGCTGCA



AAGGCTTCCAGCTGGAC
3958



GTCCAGCTGGAAGCCTT
3959









EXAMPLE 22
UDP-glucuronosyltransferase—UGT1

Mutations in the human UGT1 gene result in a range of disease syndromes, ranging from relatively common diseases such as Gilbert's syndrome, which effects up to 7% of the population, to rare disorders such as Crigler-Najjar syndrome. Symptoms of these diseases are the result of diminished bilirubin conjugation and typically present with jaundice or, when mild, as an incidental finding during routing laboratory analysis. Severe cases of Crigler-Najjar syndrome are caused by an absence of UGT1 activity and the majority of these patients die in the neonatal period. The only known treatment is liver transplant. The attached table discloses the correcting oligonucleotide base sequences for the UGT1 oligonucleotides of the invention.









TABLE 29







UGT1 Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Crigler-Najjar syndrome
GCAGGAGCAAAGGCGCCATGGCTGTGGAGTCCCAGGGCGG
3960


2
ACGCCCACTTGTCCTGGGCCTGCTGCTGTGTGTGCTGGGCC


Leu15Arg
CAGTGGTGTCCCATGCTGGGAAGATACTGTTGATCCCAGT


CTG-CGG
ACTGGGATCAACAGTATCTTCCCAGCATGGGACACCACTGGG
3961



CCCAGCACACACAGCAGCAGGCCCAGGACAAGTGGGCGTCC



GCCCTGGGACTCCACAGCCATGGCGCCTTTGCTCCTGC



CCTGGGCCTGCTGCTGT
3962



ACAGCAGCAGGCCCAGG
3963


Crigler-Najjar syndrome
GGGAAGATACTGTTGATCCCAGTGGATGGCAGCCACTGGCT
3964


1
GAGCATGCTTGGGGCCATCCAGCAGCTGCAGCAGAGGGGAC


Gln49Term
ATGAAATAGTTGTCCTAGCACCTGACGCCTCGTTGTACA


CAG-TAG
TGTACAACGAGGCGTCAGGTGCTAGGACAACTATTTCATGTC
3965



CCCTCTGCTGCAGCTGCTGGATGGCCCCAAGCATGCTCAGC



CAGTGGCTGCCATCCACTGGGATCAACAGTATCTTCCC



GGGCCATCCAGCAGCTG
3966



CAGCTGCTGGATGGCCC
3967


Crigler-Najjar syndrome
CAGCAGAGGGGACATGAAATAGTTGTCCTAGCACCTGACGCC
3968


1
TCGTTGTACATCAGAGACGGAGCATTTTACACCTTGAAGACGT


Gly71Arg
ACCCTGTGCCATTCCAAAGGGAGGATGTGAAAGAGT


GGA-AGA
ACTCTTTCACATCCTCCCTTTGGAATGGCACAGGGTACGTCTT
3969



CAAGGTGTAAAATGCTCCGTCTCTGATGTACAACGAGGCGTC



AGGTGCTAGGACAACTATTTCATGTCCCCTCTGCTG



TCAGAGACGGAGCATTT
3970



AAATGCTCCGTCTCTGA
3971


Gilbert syndrome
GGGTGAAGAACATGCTCATTGCCTTTTCACAGAACTTTCTGTG
3972


Pro229Gln
CGACGTGGTTTATTCCCCGTATGCAACCCTTGCCTCAGAATT


CCG-CAG
CCTTCAGAGAGAGGTGACTGTCCAGGACCTATTGAG



CTCAATAGGTCCTGGACAGTCACCTCTCTCTGAAGGAATTCT
3973



GAGGCAAGGGTTGCATACGGGGAATAAACCACGTCGCACAG



AAAGTTCTGTGAAAAGGCAATGAGCATGTTCTTCACCC



TTATTCCCCGTATGCAA
3974



TTGCATACGGGGAATAA
3975


Crigler-Najjar syndrome
TGTGAAGGATTACCCTAGGCCCATCATGCCCAATATGGTTTTT
3976


1
GTTGGTGGAATCAACTGCCTTCACCAAAATCCACTATCCCAG


Cys280Term
GTGTGTATTGGAGTGGGACTTTTACATGCGTATATT


TGC-TGA
AATTACGCATGTAAAAGTCCCACTCCAATACACACCTGGGAT
3977



AGTGGATTTTGGTGAAGGCAGTTGATTCCACCAACAAAAACC



ATATTGGGCATGATGGGCCTAGGGTAATCCTTCACA



ATCAACTGCCTTCACCA
3978



TGGTGAAGGCAGTTGAT
3979


Crigler-Najjar syndrome
ATCAAAGAATATGAGAAAAAATTAACTGAAAATTTTTCTTCTGG
3980


1
CTCTAGGAATTTGAAGCCTACATTAATGCTTCTGGAGAACATG


Ala292Val
GAATTGTGGTTTTCTCTTTGGGATCAATGGTCTC


GCC-GTC
GAGACCATTGATCCCAAAGAGAAAACCACAATTCCATGTTCTC
3981



CAGAAGCATTAATGTAGGCTTCAAATTCCTAGAGCCAGAAGAA



AAATTTTCAGTTAATTTTTTCTCATATTCTTTGAT



ATTTGAAGCCTACATTA
3982



TAATGTAGGCTTCAAAT
3983


Crigler-Najjar syndrome
AGGAATTTGAAGCCTACATTAATGCTTCTGGAGAACATGGAAT
3984


1
TGTGGTTTTCTCTTTGGGATCAATGGTCTCAGAAATTCCAGAG


Gly308Glu
AAGAAAGCTATGGCAATTGCTGATGCTTTGGGCAA


GGA-GAA
TTGCCCAAAGCATCAGCAATTGCCATAGCTTTCTTCTCTGGAA
3985



TTTCTGAGACCATTGATCCCAAAGAGAAAACCACAATTCCATG



TTCTCCAGAAGCATTAATGTAGGCTTCAAATTCCT



CTCTTTGGGATCAATGG
3986



CCATTGATCCCAAAGAG
3987


Crigler-Najjar syndrome
GTCTCAGAAATTCCAGAGAAGAAAGCTATGGCAATTGCTGAT
3988


1
GCTTTGGGCAAAATCCCTCAGACAGTAAGAAGATTCTATACCA


Gln331Term
TGGCCTCATATCTATTTTCACAGGAGCGCTAATCCC


CAG-TAG
GGGATTAGCGCTCCTGTGAAAATAGATATGAGGCCATGGTAT
3989



AGAATCTTCTTACTGTCTGAGGGATTTTGCCCAAAGCATCAGC



AATTGCCATAGCTTTCTTCTCTGGAATTTCTGAGAC



AAATCCCTCAGACAGTA
3990



TACTGTCTGAGGGATTT
3991


Crigler-Najjar syndrome
TCTAATCATATTATGTTCTTTCTTTACGTTCTGCTCTTTTTGCC
3992


1
CCTCCCAGGTCCTGTGGCGGTACACTGGAACCCGACCATCG


Trp335Term
AATCTTGCGAACAACACGATACTTGTTAAGTGGCTA


TGG-TGA
TAGCCACTTAACAAGTATCGTGTTGTTCGCAAGATTCGATGGT
3993



CGGGTTCCAGTGTACCGCCACAGGACCTGGGAGGGGCAAAA



AGAGCAGAACGTAAAGAAAGAACATAATATGATTAGA



GTCCTGTGGCGGTACAC
3994



GTGTACCGCCACAGGAC
3995


Crigler-Najjar syndrome
ACACTGGAACCCGACCATCGAATCTTGCGAACAACACGATAC
3996


1
TTGTTAAGTGGCTACCCCAAAACGATCTGCTTGGTATGTTGG


Gln357Arg
GCGGATTGGATGTATAGGTCAAACCAGGGTCAAATTA


CAA-CGA
TAATTTGACCCTGGTTTGACCTATACATCCAATCCGCCCAACA
3997



TACCAAGCAGATCGTTTTGGGGTAGCCACTTAACAAGTATCGT



GTTGTTCGCAAGATTCGATGGTCGGGTTCCAGTGT



GCTACCCCAAAACGATC
3998



GATCGTTTTGGGGTAGC
3999


Crigler-Najjar syndrome
TACACTGGAACCCGACCATCGAATCTTGCGAACAACACGATA
4000


1
CTTGTTAAGTGGCTACCCCAAAACGATCTGCTTGGTATGTTG


Gln357Term
GGCGGATTGGATGTATAGGTCAAACCAGGGTCAAATT


CAA-TAA
AATTTGACCCTGGTTTGACCTATACATCCAATCCGCCCAACAT
4001



ACCAAGCAGATCGTTTTGGGGTAGCCACTTAACAAGTATCGT



GTTGTTCGCAAGATTCGATGGTCGGGTTCCAGTGTA



GGCTACCCCAAAACGAT
4002



ATCGTTTTGGGGTAGCC
4003


Gilbert syndrome
AACTCAGAGATGTAACTGCTGACATCCTCCCTATTTTGCATCT
4004


Arg367Gly
CAGGTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTT


CGT-GGT
CCCATGGTGTTTATGAAAGCATATGCAATGGCGTTC



GAACGCCATTGCATATGCTTTCATAAACACCATGGGAACCAG
4005



CATGGGTGATAAAGGCACGGGTCATCGGGTGACCTGAGATG



CAAAATAGGGAGGATGTCAGCAGTTACATCTCTGAGTT



CGATGACCCGTGCCTTT
4006



AAAGGCACGGGTCATCG
4007


Crigler-Najjar syndrome
TCAGAGATGTAACTGCTGACATCCTCCCTATTTTGCATCTCAG
4008


1
GTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTTCCC


Ala368Thr
ATGGTGTTTATGAAAGCATATGCAATGGCGTTCCCA


GCC-ACC
TGGGAACGCCATTGCATATGCTTTCATAAACACCATGGGAAC
4009



CAGCATGGGTGATAAAGGCACGGGTCATCGGGTGACCTGAG



ATGCAAAATAGGGAGGATGTCAGCAGTTACATCTCTGA



TGACCCGTG CCTTTATC
4010



GATAAAGGC ACGGGTCA
4011


Crigler-Najjar syndrome
CCTCCCTATTTTGCATCTCAGGTCACCCGATGACCCGTGCCT
4012


1
TTATCACCCATGCTGGTTCCCATGGTGTTTATGAAAGCATATG


Ser375Phe
CAATGGCGTTCCCATGGTGATGATGCCCTTGTTTGG


TCC-TTC
CCAAACAAGGGCATCATCACCATGGGAACGCCATTGCATATG
4013



CTTTCATAAACACCATGGGAACCAGCATGGGTGATAAAGGCA



CGGGTCATCGGGTGACCTGAGATGCAAAATAGGGAGG



TGCTGGTTCCCATGGTG
4014



CACCATGGGAACCAGCA
4015


Crigler-Najjar syndrome
AGGTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTTC
4016


1
CCATGGTGTTTATGAAAGCATATGCAATGGCGTTCCCATGGT


Ser381Arg
GATGATGCCCTTGTTTGGTGATCAGATGGACAATGCA


AGC-AGG
TGCATTGTCCATCTGATCACCAAACAAGGGCATCATCACCAT
4017



GGGAACGCCATTGCATATGCTTTCATAAACACCATGGGAACC



AGCATGGGTGATAAAGGCACGGGTCATCGGGTGACCT



TATGAAAGCATATGCAA
4018



TTGCATATGCTTTCATA
4019


Crigler-Najjar syndrome
AGCATATGCAATGGCGTTCCCATGGTGATGATGCCCTTGTTT
4020


1
GGTGATCAGATGGACAATGCAAAGCGCATGGAGACTAAGGG


Ala401Pro
AGCTGGAGTGACCCTGAATGTTCTGGAAATGACTTCTG


GCA-CCA
CAGAAGTCATTTCCAGAACATTCAGGGTCACTCCAGCTCCCT
4021



TAGTCTCCATGCGCTTTGCATTGTCCATCTGATCACCAAACAA



GGGCATCATCACCATGGGAACGCCATTGCATATGCT



TGGACAATGCAAAGCGC
4022



GCGCTTTGCATTGTCCA
4023


Crigler-Najjar syndrome
GGAGCTGGAGTGACCCTGAATGTTCTGGAAATGACTTCTGAA
4024


1
GATTTAGAAAATGCTCTAAAAGCAGTCATCAATGACAAAAGGT


Lys428Glu
AAGAAAGAAGATACAGAAGAATACTTTGGTCATGGC


AAA-GAA
GCCATGACCAAAGTATTCTTCTGTATCTTCTTTCTTACCTTTTG
4025



TCATTGATGACTGCTTTTAGAGCATTTTCTAAATCTTCAGAAGT



CATTTCCAGAACATTCAGGGTCACTCCAGCTCC



ATGCTCTAAAAGCAGTC
4026



GACTGCTTTTAGAGCAT
4027


Crigler-Najjar syndrome
ATGAGGCACAAGGGCGCGCCACACCTGCGCCCCGCAGCCC
4028


1
ACGACCTCACCTGGTACCAGTACCATTCCTTGGACGTGATTG


Tyr486Asp
GTTTCCTCTTGGCCGTCGTGCTGACAGTGGCCTTCATCA


TAC-GAC
TGATGAAGGCCACTGTCAGCACGACGGCCAAGAGGAAACCA
4029



ATCACGTCCAAGGAATGGTACTGGTACCAGGTGAGGTCGTG



GGCTGCGGGGCGCAGGTGTGGCGCGCCCTTGTGCCTCAT



GGTACCAGTACCATTCC
4030



GGAATGGTACTGGTACC
4031


Crigler-Najjar syndrome
ACAAGGGCGCGCCACACCTGCGCCCCGCAGCCCACGACCT
4032


1
CACCTGGTACCAGTACCATTCCTTGGACGTGATTGGTTTCCT


Ser488Phe
CTTGGCCGTCGTGCTGACAGTGGCCTTCATCACCTTTAA


TCC-TTC
TTAAAGGTGATGAAGGCCACTGTCAGCACGACGGCCAAGAG
4033



GAAACCAATCACGTCCAAGGAATGGTACTGGTACCAGGTGAG



GTCGTGGGCTGCGGGGCGCAGGTGTGGCGCGCCCTTGT



GTACCATTCCTTGGACG
4034



CGTCCAAGGAATGGTAC
4035









EXAMPLE 23
Alzheimer's Disease—Amyloid Precursor Protein (APP)

Over the past few decades Alzheimer's disease (AD), once considered a rare disorder, has become recognized as a major public health problem. Although there is no agreement on the exact prevalence of Alzheimer's disease, in part due to difficulties of diagnosis, studies consistently point to an exponential rise in prevalence of this disease with age. After age 65, the percentage of affected people approximately doubles with every decade of life, regardless of definition. Among people age 85 or loder, studies suggest that 25 to 35 percent have dementia, including Alzheimer's disease; one study reports that 47.2 percent of people over age 85 have Alzheimer's disease, exclusive of other dementias.


Alzheimer's disease progressively destroys memory, reason, judgment, language, and, eventually, the ability to carry out even the simplest tasks. Anatomic changes associated with Alzheimer's disease begin in the entorhinal cortex, procees to the hippocampus, and then gradually spread to other regions, particularly the cerebral cortex. Chief among such anatomic changes are the presence of characteristic extracellular plaques and internal neureofibriillary tangles.


At least four genes have been identified to date that contribute to development of Alzheimer's disease: AD1 is caused by mutations in the amyloid precursor gene (APP); AD2 is associated with a particular allele of APOE (see Example 20); AD3 is caused by mutation in a gene encoding a 7-transmembrane domain protein, presenilin-1 (PSEN1), and AD4 is caused by mutation in a gene that encodes a similar 7-transmembrane domain protein, presenilin-2 (PSEN2). The attached table discloses the correcting oligonucleotide base sequences for the APP oligonucleotides of the invention.









TABLE 30







APP Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Alzheimer disease
CTGCATACTTTAATTATGATGTAATACAGGTTCTGGGTTGACA
4036


Glu665Asp
AATATCAAGACGGAGGAGATCTCTGAAGTGAAGATGGATGCA


GAG-GAC
GAATTCCGACATGACTCAGGATATGAAGTTCATCAT



ATGATGAACTTCATATCCTGAGTCATGTCGGAATTCTGCATCC
4037



ATCTTCACTTCAGAGATCTCCTCCGTCTTGATATTTGTCAACC



CAGAACCTGTATTACATCATAATTAAAGTATGCAG



ACGGAGGAGATCTCTGA
4038



TCAGAGATCTCCTCCGT
4039


Alzheimer disease
ATTATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTT
4040


Ala692Gly
CAAGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGC


GCA-GGA
AATCATTGGACTCATGGTGGGCGGTGTTGTCAT



ATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTTTG
4041



TTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAAATT



AAGAAAAAGAATTTTAATTTCTAAATGCAATATAAT



GTTCTTTGCAGAAGATG
4042



CATCTTCTGCAAAGAAC
4043


Alzheimer disease
TATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTTC
4044


Glu693Gln
AAGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCA


GAA-CAA
ATCATTGGACTCATGGTGGGCGGTGTTGTCATAG



CTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTT
4045



TGTTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAAA



TTAAGAAAAAGAATTTTAATTTCTAAATGCAATATA



TCTTTGCAGAAGATGTG
4046



CACATCTTCTGCAAAGA
4047


Alzheimer disease
ATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTTCA
4048


Glu693Gly
AGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCAA


GAA-GGA
TCATTGGACTCATGGTGGGCGGTGTTGTCATAGC



GCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCT
4049



TTGTTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAA



ATTAAGAAAAAGAATTTTAATTTCTAAATGCAATAT



CTTTGCAGAAGATGTGG
4050



CCACATCTTCTGCAAAG
4051


Alzheimer disease
GAAGATGTGGGTTCAAACAAAGGTGCAATCATTGGACTCATG
4052


Ala713Thr
GTGGGCGGTGTTGTCATAGCGACAGTGATCGTCATCACCTTG


GCG-ACG
GTGATGCTGAAGAAGAAACAGTACACATCCATTCATC



GATGAATGGATGTGTACTGTTTCTTCTTCAGCATCACCAAGGT
4053



GATGACGATCACTGTCGCTATGACAACACCGCCCACCATGAG



TCCAATGATTGCACCTTTGTTTGAACCCACATCTTC



TTGTCATAGCGACAGTG
4054



CACTGTCGCTATGACAA
4055


Schizophrenia
AAGATGTGGGTTCAAACAAAGGTGCAATCATTGGACTCATGG
4056


Ala713Val
TGGGCGGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGG


GCG-GTG
TGATGCTGAAGAAGAAACAGTACACATCCATTCATCA



TGATGAATGGATGTGTACTGTTTCTTCTTCAGCATCACCAAGG
4057



TGATGACGATCACTGTCGCTATGACAACACCGCCCACCATGA



GTCCAATGATTGCACCTTTGTTTGAACCCACATCTT



TGTCATAGCGACAGTGA
4058



TCACTGTCGCTATGACA
4059


Alzheimer disease
GTGGGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGC
4060


Val715Met
GGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGGTGATG


GTG-ATG
CTGAAGAAGAAACAGTACACATCCATTCATCATGGTG



CACCATGATGAATGGATGTGTACTGTTTCTTCTTCAGCATCAC
4061



CAAGGTGATGACGATCACTGTCGCTATGACAACACCGCCCAC



CATGAGTCCAATGATTGCACCTTTGTTTGAACCCAC



TAGCGACAGTGATCGTC
4062



GACGATCACTGTCGCTA
4063


Alzheimer disease
GGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGT
4064


Ile716Val
GTTGTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTG


ATC-GTC
AAGAAGAAACAGTACACATCCATTCATCATGGTGTGG



CCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAGCAT
4065



CACCAAGGTGATGACGATCACTGTCGCTATGACAACACCGCC



CACCATGAGTCCAATGATTGCACCTTTGTTTGAACC



CGACAGTGATCGTCATC
4066



GATGACGATCACTGTCG
4067


Alzheimer disease
CAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTTG
4068


Val717Gly
TCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAGA


GTC-GGC
AGAAACAGTACACATCCATTCATCATGGTGTGGTGGA



TCCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCA
4069



GCATCACCAAGGTGATGACGATCACTGTCGCTATGACAACAC



CGCCCACCATGAGTCCAATGATTGCACCTTTGTTTG



AGTGATCGTCATCACCT
4070



AGGTGATGACGATCACT
4071


Alzheimer disease
TCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTT
4072


Val717Ile
GTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAG


GTC-ATC
AAGAAACAGTACACATCCATTCATCATGGTGTGGTGG



CCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAG
4073



CATCACCAAGGTGATGACGATCACTGTCGCTATGACAACACC



GCCCACCATGAGTCCAATGATTGCACCTTTGTTTGA



CAGTGATCGTCATCACC
4074



GGTGATGACGATCACTG
4075


Alzheimer disease
TCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTT
4076


Val717Phe
GTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAG


GTC-TTC
AAGAAACAGTACACATCCATTCATCATGGTGTGGTGG



CCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAG
4077



CATCACCAAGGTGATGACGATCACTGTCGCTATGACAACACC



GCCCACCATGAGTCCAATGATTGCACCTTTGTTTGA



CAGTGATCGTCATCACC
4078



GGTGATGACGATCACTG
4079


Alzheimer disease
TTGGACTCATGGTGGGCGGTGTTGTCATAGCGACAGTGATCG
4080


Leu723Pro
TCATCACCTTGGTGATGCTGAAGAAGAAACAGTACACATCCAT


CTG-CCG
TCATCATGGTGTGGTGGAGGTAGGTAAACTTGACTG



CAGTCAAGTTTACCTACCTCCACCACACCATGATGAATGGAT
4081



GTGTACTGTTTCTTCTTCAGCATCACCAAGGTGATGACGATCA



CTGTCGCTATGACAACACCGCCCACCATGAGTCCAA



GGTGATGCTGAAGAAGA
4082



TCTTCTTCAGCATCACC
4083









EXAMPLE 24
Alzheimer's Disease—Presenilin-1 (PSEN1)

The attached table discloses the correcting oligonucleotide base sequences for the PSEN1 oligonucleotides of the invention.









TABLE 31







PSEN1 Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:





Alzheimer disease
CCCGGCAGGTGGTGGAGCAAGATGAGGAAGAAGATGAGGAG
4084


Ala79Val
CTGACATTGAAATATGGCGCCAAGCATGTGATCATGCTCTTTG


GCC-GTC
TCCCTGTGACTCTCTGCATGGTGGTGGTCGTGGCTAC



GTAGCCACGACCACCACCATGCAGAGAGTCACAGGGACAAA
4085



GAGCATGATCACATGCTTGGCGCCATATTTCAATGTCAGCTC



CTCATCTTCTTCCTCATCTTGCTCCACCACCTGCCGGG



ATATGGCGCCAAGCATG
4086



CATGCTTGGCGCCATAT
4087


Alzheimer disease
GTGGTGGAGCAAGATGAGGAAGAAGATGAGGAGCTGACATT
4088


Val82Leu
GAAATATGGCGCCAAGCATGTGATCATGCTCTTTGTCCCTGT


tGTG-CTG
GACTCTCTGCATGGTGGTGGTCGTGGCTACCATTAAGT



ACTTAATGGTAGCCACGACCACCACCATGCAGAGAGTCACAG
4089



GGACAAAGAGCATGATCACATGCTTGGCGCCATATTTCAATG



TCAGCTCCTCATCTTCTTCCTCATCTTGCTCCACCAC



CCAAGCATGTGATCATG
4090



CATGATCACATGCTTGG
4091


Alzheimer disease
AAATATGGCGCCAAGCATGTGATCATGCTCTTTGTCCCTGTG
4092


Val96Phe
ACTCTCTGCATGGTGGTGGTCGTGGCTACCATTAAGTCAGTC


gGTC-TTC
AGCTTTTATACCCGGAAGGATGGGCAGCTGTACGTAT



ATACGTACAGCTGCCCATCCTTCCGGGTATAAAAGCTGACTG
4093



ACTTAATGGTAGCCACGACCACCACCATGCAGAGAGTCACAG



GGACAAAGAGCATGATCACATGCTTGGCGCCATATTT



TGGTGGTGGTCGTGGCT
4094



AGCCACGACCACCACCA
4095


Alzheimer disease
CTTTGTCCCTGTGACTCTCTGCATGGTGGTGGTCGTGGCTAC
4096


Phe105Leu
CATTAAGTCAGTCAGCTTTTATACCCGGAAGGATGGGCAGCT


TTTt-TTG
GTACGTATGAGTTTTGTTTTATTATTCTCAAAGCCAG



CTGGCTTTGAGAATAATAAAACAAAACTCATACGTACAGCTGC
4097



CCATCCTTCCGGGTATAAAAGCTGACTGACTTAATGGTAGCC



ACGACCACCACCATGCAGAGAGTCACAGGGACAAAG



GTCAGCTTTTATACCCG
4098



CGGGTATAAAAGCTGAC
4099


Alzheimer disease
TGGTGATCTCCATTAACACTGACCTAGGGCTTTTGTGTTTGTT
4100


Thr116Asn
TTATTGTAGAATCTATACCCCATTCACAGAAGATACCGAGACT


ACC-AAC
GTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGC



GCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTCG
4101



GTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACAAAC



ACAAAAGCCCTAGGTCAGTGTTAATGGAGATCACCA



AATCTATACCCCATTCA
4102



TGAATGGGGTATAGATT
4103


Alzheimer disease
TGATCTCCATTAACACTGACCTAGGGCTTTTGTGTTTGTTTTAT
4104


Pro117Leu
TGTAGAATCTATACCCCATTCACAGAAGATACCGAGACTGTG


CCA-CTA
GGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGC



GCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTC
4105



TCGGTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACA



AACACAAAAGCCCTAGGTCAGTGTTAATGGAGATCA



CTATACCCCATTCACAG
4106



CTGTGAATGGGGTATAG
4107


Alzheimer disease
TAACACTGACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCT
4108


Glu120Asp
ATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGAG


GAAg-GAT
CCCTGCACTCAATTCTGAATGCTGCCATCATGATC



GATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTG
4109



GCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCT



ACAATAAAACAAACACAAAAGCCCTAGGTCAGTGTTA



TTCACAGAAGATACCGA
4110



TCGGTATCTTCTGTGAA
4111


Alzheimer disease
TAACACTGACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCT
4112


Glu120Asp
ATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGAG


GAAg-GAC
CCCTGCACTCAATTCTGAATGCTGCCATCATGATC



GATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTG
4113



GCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCT



ACAATAAAACAAACACAAAAGCCCTAGGTCAGTGTTA



TTCACAGAAGATACCGA
4114



TCGGTATCTTCTGTGAA
4115


Alzheimer disease
ATTAACACTGACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAAT
4116


Glu120Lys
CTATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAG


aGAA-AAA
AGCCCTGCACTCAATTCTGAATGCTGCCATCATGA



TCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGC
4117



CCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCTACA



ATAAAACAAACACAAAAGCCCTAGGTCAGTGTTAAT



CATTCACAGAAGATACC
4118



GGTATCTTCTGTGAATG
4119


Alzheimer disease
GACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCTATACCC
4120


Glu123Lys
CATTCACAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTG


cGAG-AAG
CACTCAATTCTGAATGCTGCCATCATGATCAGTGTCA



TGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGG
4121



CTCTCTGGCCCACAGTCTCGGTATCTTCTGTGAATGGGGTAT



AGATTCTACAATAAAACAAACACAAAAGCCCTAGGTC



AAGATACCGAGACTGTG
4122



CACAGTCTCGGTATCTT
4123


Alzheimer disease
TATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGA
4124


Asn135Asp
GCCCTGCACTCAATTCTGAATGCTGCCATCATGATCAGTGTC


gAAT-GAT
ATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTATA



TATACAGAACCACCAGGAGGATAGTCATGACAACAATGACAC
4125



TGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCT



GGCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATA



CAATTCTGAATGCTGCC
4126



GGCAGCATTCAGAATTG
4127


Alzheimer disease
AGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCAA
4128


Met139Ile
TTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGAC


ATGa-ATA
TATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTAT



ATAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATG
4129



ACAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT



GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCT



GCCATCATGATCAGTGT
4130



ACACTGATCATGATGGC
4131


Alzheimer disease
CAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCA
4132


Met139Lys
ATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGA


ATG-AAG
CTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTA



TAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA
4133



CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT



GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTG



TGCCATCATGATCAGTG
4134



CACTGATCATGATGGCA
4135


Alzheimer disease
CAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCA
4136


Met139Thr
ATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGA


ATG-ACG
CTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTA



TAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA
4137



CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT



GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTG



TGCCATCATGATCAGTG
4138



CACTGATCATGATGGCA
4139


Alzheimer disease
ACAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTC
4140


Met139Val
AATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATG


cATG-GTG
ACTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCT



AGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA
4141



CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT



GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTGT



CTGCCATCATGATCAGT
4142



ACTGATCATGATGGCAG
4143


Alzheimer disease
GAGACTGTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGCT
4144


Ile143Phe
GCCATCATGATCAGTGTCATTGTTGTCATGACTATCCTCCTGG


cATT-TTT
TGGTTCTGTATAAATACAGGTGCTATAAGGTGAGCA



TGCTCACCTTATAGCACCTGTATTTATACAGAACCACCAGGAG
4145



GATAGTCATGACAACAATGACACTGATCATGATGGCAGCATTC



AGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTC



TCAGTGTCATTGTTGTC
4146



GACAACAATGACACTGA
4147


Alzheimer disease
AGACTGTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGCTG
4148


Ile143Thr
CCATCATGATCAGTGTCATTGTTGTCATGACTATCCTCCTGGT


ATT-ACT
GGTTCTGTATAAATACAGGTGCTATAAGGTGAGCAT



ATGCTCACCTTATAGCACCTGTATTTATACAGAACCACCAGGA
4149



GGATAGTCATGACAACAATGACACTGATCATGATGGCAGCAT



TCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCT



CAGTGTCATTGTTGTCA
4150



TGACAACAATGACACTG
4151


Alzheimer disease
CCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATGAT
4152


Met146Ile
CAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTAT


ATGa-ATA
AAATACAGGTGCTATAAGGTGAGCATGAGACACAGA



TCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGA
4153



ACCACCAGGAGGATAGTCATGACAACAATGACACTGATCATG



ATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGG



GTTGTCATGACTATCCT
4154



AGGATAGTCATGACAAC
4155


Alzheimer disease
CCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATGAT
4156


Met146Ile
CAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTAT


ATGa-ATC
AAATACAGGTGCTATAAGGTGAGCATGAGACACAGA



TCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGA
4157



ACCACCAGGAGGATAGTCATGACAACAATGACACTGATCATG



ATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGG



GTTGTCATGACTATCCT
4158



AGGATAGTCATGACAAC
4159


Alzheimer disease
GGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATG
4160


Met146Leu
ATCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGT


cATG-TTG
ATAAATACAGGTGCTATAAGGTGAGCATGAGACACA



TGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGAAC
4161



CACCAGGAGGATAGTCATGACAACAATGACACTGATCATGAT



GGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCC



TTGTTGTCATGACTATC
4162



GATAGTCATGACAACAA
4163


Alzheimer disease
GGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATG
4164


Met146Val
ATCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGT


cATG-GTG
ATAAATACAGGTGCTATAAGGTGAGCATGAGACACA



TGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGAAC
4165



CACCAGGAGGATAGTCATGACAACAATGACACTGATCATGAT



GGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCC



TTGTTGTCATGACTATC
4166



GATAGTCATGACAACAA
4167


Alzheimer disease
AGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATGATCA
4168


Thr147Ile
GTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTATAA


ACT-ATT
ATACAGGTGCTATAAGGTGAGCATGAGACACAGATC



GATCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACA
4169



GAACCACCAGGAGGATAGTCATGACAACAATGACACTGATCA



TGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCT



TGTCATGACTATCCTCC
4170



GGAGGATAGTCATGACA
4171


Alzheimer disease
CTTTTTAAGGGTTGTGGGACCTGTTAATTATATTGAAATGCTTT
4172


His163Arg
CTTTTCTAGGTCATCCATGCCTGGCTTATTATATCATCTCTATT


CAT-CGT
GTTGCTGTTCTTTTTTTCATTCATTTACTTGGG



CCCAAGTAAATGAATGAAAAAAAGAACAGCAACAATAGAGATG
4173



ATATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTT



CAATATAATTAACAGGTCCCACAACCCTTAAAAAG



GGTCATCCATGCCTGGC
4174



GCCAGGCATGGATGACC
4175


Alzheimer disease
ACTTTTTAAGGGTTGTGGGACCTGTTAATTATATTGAAATGCTT
4176


His163Tyr
TCTTTTCTAGGTCATCCATGCCTGGCTTATTATATCATCTCTAT


cCAT-TAT
TGTTGCTGTTCTTTTTTTCATTCATTTACTTGG



CCAAGTAAATGAATGAAAAAAAGAACAGCAACAATAGAGATGA
4177



TATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTTC



AATATAATTAACAGGTCCCACAACCCTTAAAAAGT



AGGTCATCCATGCCTGG
4178



CCAGGCATGGATGACCT
4179


Alzheimer disease
AGGGTTGTGGGACCTGTTAATTATATTGAAATGCTTTCTTTTCT
4180


Trp165Cys
AGGTCATCCATGCCTGGCTTATTATATCATCTCTATTGTTGCT


TGGc-TGC
GTTCTTTTTTTCATTCATTTACTTGGGGTAAGTT



AACTTACCCCAAGTAAATGAATGAAAAAAAGAACAGCAACAAT
4181



AGAGATGATATAATAAGCCAGGCATGGATGACCTAGAAAAGA



AAGCATTTCAATATAATTAACAGGTCCCACAACCCT



CATGCCTGGCTTATTAT
4182



ATAATAAGCCAGGCATG
4183


Alzheimer disease
ACCTGTTAATTATATTGAAATGCTTTCTTTTCTAGGTCATCCAT
4184


Ser169Leu
GCCTGGCTTATTATATCATCTCTATTGTTGCTGTTCTTTTTTTC


TCA-TTA
ATTCATTTACTTGGGGTAAGTTGTGAAATTTTT



AAAAATTTCACAACTTACCCCAAGTAAATGAATGAAAAAAAGAA
4185



CAGCAACAATAGAGATGATATAATAAGCCAGGCATGGATGAC



CTAGAAAAGAAAGCATTTCAATATAATTAACAGGT



TATTATATCATCTCTAT
4186



ATAGAGATGATATAATA
4187


Alzheimer disease
TAATTATATTGAAATGCTTTCTTTTCTAGGTCATCCATGCCTGG
4188


Leu171Pro
CTTATTATATCATCTCTATTGTTGCTGTTCTTTTTTTCATTCATT


CTA-CCA
TACTTGGGGTAAGTTGTGAAATTTTTGGTCTG



CAGACCAAAAATTTCACAACTTACCCCAAGTAAATGAATGAAA
4189



AAAAGAACAGCAACAATAGAGATGATATAATAAGCCAGGCAT



GGATGACCTAGAAAAGAAAGCATTTCAATATAATTA



ATCATCTCTATTGTTGC
4190



GCAACAATAGAGATGAT
4191


Alzheimer disease
TATTGAAATGCTTTCTTTTCTAGGTCATCCATGCCTGGCTTATT
4192


Leu173Trp
ATATCATCTCTATTGTTGCTGTTCTTTTTTTCATTCATTTACTTG


TTG-TGG
GGGTAAGTTGTGAAATTTTTGGTCTGTCTTTC



GAAAGACAGACCAAAAATTTCACAACTTACCCCAAGTAAATGA
4193



ATGAAAAAAAGAACAGCAACAATAGAGATGATATAATAAGCCA



GGCATGGATGACCTAGAAAAGAAAGCATTTCAATA



TCTATTGTTGCTGTTCT
4194



AGAACAGCAACAATAGA
4195


Alzheimer disease
TATAACGTTGCTGTGGACTACATTACTGTTGCACTCCTGATCT
4196


Gly209Arg
GGAATTTTGGTGTGGTGGGAATGATTTCCATTCACTGGAAAG


gGGA-AGA
GTCCACTTCGACTCCAGCAGGCATATCTCATTATGA



TCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTCC
4197



AGTGAATGGAAATCATTCCCACCACACCAAAATTCCAGATCAG



GAGTGCAACAGTAATGTAGTCCACAGCAACGTTATA



GTGTGGTGGGAATGATT
4198



AATCATTCCCACCACAC
4199


Alzheimer disease
ATAACGTTGCTGTGGACTACATTACTGTTGCACTCCTGATCTG
4200


Gly209Val
GAATTTTGGTGTGGTGGGAATGATTTCCATTCACTGGAAAGGT


GGA-GTA
CCACTTCGACTCCAGCAGGCATATCTCATTATGAT



ATCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTC
4201



CAGTGAATGGAAATCATTCCCACCACACCAAAATTCCAGATCA



GGAGTGCAACAGTAATGTAGTCCACAGCAACGTTAT



TGTGGTGGGAATGATTT
4202



AAATCATTCCCACCACA
4203


Alzheimer disease
TGGACTACATTACTGTTGCACTCCTGATCTGGAATTTTGGTGT
4204


Ile213Thr
GGTGGGAATGATTTCCATTCACTGGAAAGGTCCACTTCGACT


ATT-ACT
CCAGCAGGCATATCTCATTATGATTAGTGCCCTCAT



ATGAGGGCACTAATCATAATGAGATATGCCTGCTGGAGTCGA
4205



AGTGGACCTTTCCAGTGAATGGAAATCATTCCCACCACACCA



AAATTCCAGATCAGGAGTGCAACAGTAATGTAGTCCA



GATTTCCATTCACTGGA
4206



TCCAGTGAATGGAAATC
4207


Alzheimer disease
CACTCCTGATCTGGAATTTTGGTGTGGTGGGAATGATTTCCAT
4208


Leu219Pro
TCACTGGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCAT


CTT-CCT
TATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAA



TTGATAAACACCAGGGCCATGAGGGCACTAATCATAATGAGA
4209



TATGCCTGCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAA



ATCATTCCCACCACACCAAAATTCCAGATCAGGAGTG



AGGTCCACTTCGACTCC
4210



GGAGTCGAAGTGGACCT
4211


Alzheimer disease
ATTTCCATTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCA
4212


Ala231Thr
TATCTCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCA


tGCC-ACC
AGTACCTCCCTGAATGGACTGCGTGGCTCATCTTGG



CCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGATAA
4213



ACACCAGGGCCATGAGGGCACTAATCATAATGAGATATGCCT



GCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAAAT



TGATTAGTGCCCTCATG
4214



CATGAGGGCACTAATCA
4215


Alzheimer disease
TTTCCATTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCAT
4216


Ala231Val
ATCTCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAA


GCC-GTC
GTACCTCCCTGAATGGACTGCGTGGCTCATCTTGGC



GCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGATA
4217



AACACCAGGGCCATGAGGGCACTAATCATAATGAGATATGCC



TGCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAAA



GATTAGTGCCCTCATGG
4218



CCATGAGGGCACTAATC
4219


Alzheimer disease
TTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCA
4220


Met233Thr
TTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTACCT


ATG-ACG
CCCTGAATGGACTGCGTGGCTCATCTTGGCTGTGAT



ATCACAGCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTAC
4221



TTGATAAACACCAGGGCCATGAGGGCACTAATCATAATGAGA



TATGCCTGCTGGAGTCGAAGTGGACCTTTCCAGTGAA



TGCCCTCATGGCCCTGG
4222



CCAGGGCCATGAGGGCA
4223


Alzheimer disease
GGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCATTATGA
4224


Leu235Pro
TTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTACCTCCCTG


CTG-CCG
AATGGACTGCGTGGCTCATCTTGGCTGTGATTTCAGT



ACTGAAATCACAGCCAAGATGAGCCACGCAGTCCATTCAGGG
4225



AGGTACTTGATAAACACCAGGGCCATGAGGGCACTAATCATA



ATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTCC



CATGGCCCTGGTGTTTA
4226



TAAACACCAGGGCCATG
4227


Alzheimer disease
TCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTA
4228


Ala246Glu
CCTCCCTGAATGGACTGCGTGGCTCATCTTGGCTGTGATTTC


GCG-GAG
AGTATATGGTAAAACCCAAGACTGATAATTTGTTTG



CAAACAAATTATCAGTCTTGGGTTTTACCATATACTGAAATCAC
4229



AGCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGAT



AAACACCAGGGCCATGAGGGCACTAATCATAATGA



ATGGACTGCGTGGCTCA
4230



TGAGCCACGCAGTCCAT
4231


Alzheimer disease
GTGCCCTCATGGCCCTGGTGTTTATCAAGTACCTCCCTGAAT
4232


Leu250Ser
GGACTGCGTGGCTCATCTTGGCTGTGATTTCAGTATATGGTA


TTG-TCG
AAACCCAAGACTGATAATTTGTTTGTCACAGGAATGC



GCATTCCTGTGACAAACAAATTATCAGTCTTGGGTTTTACCAT
4233



ATACTGAAATCACAGCCAAGATGAGCCACGCAGTCCATTCAG



GGAGGTACTTGATAAACACCAGGGCCATGAGGGCAC



GCTCATCTTGGCTGTGA
4234



TCACAGCCAAGATGAGC
4235


Alzheimer disease
AGTTTAGCCCATACATTTTATTAGATGTCTTTTATGTTTTTCTTT
4236


Ala260Val
TTCTAGATTTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCG


GCT-GTT
TATGCTGGTTGAAACAGCTCAGGAGAGAAATGA



TCATTTCTCTCCTGAGCTGTTTCAACCAGCATACGAAGTGGAC
4237



CTTTCGGACACAAAACAGCCACTAAATCTAGAAAAAGAAAAAC



ATAAAAGACATCTAATAAAATGTATGGGCTAAACT



TTTAGTGGCTGTTTTGT
4238



ACAAAACAGCCACTAAA
4239


Alzheimer disease
CCCATACATTTTATTAGATGTCTTTTATGTTTTTCTTTTTCTAGA
4240


Leu262Phe
TTTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTG


TTGt-TTC
GTTGAAACAGCTCAGGAGAGAAATGAAACGCTT



AAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCATACGA
4241



AGTGGACCTTTCGGACACAAAACAGCCACTAAATCTAGAAAAA



GAAAAACATAAAAGACATCTAATAAAATGTATGGG



GCTGTTTTGTGTCCGAA
4242



TTCGGACACAAAACAGC
4243


Alzheimer disease
CCATACATTTTATTAGATGTCTTTTATGTTTTTCTTTTTCTAGAT
4244


Cys263Arg
TTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTG


gTGT-CGT
GTTGAAACAGCTCAGGAGAGAAATGAAACGCTTT



AAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCATACG
4245



AAGTGGACCTTTCGGACACAAAACAGCCACTAAATCTAGAAA



AAGAAAAACATAAAAGACATCTAATAAAATGTATGG



CTGTTTTGTGTCCGAAA
4246



TTTCGGACACAAAACAG
4247


Alzheimer disease
ACATTTTATTAGATGTCTTTTATGTTTTTCTTTTTCTAGATTTAG
4248


Pro264Leu
TGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTG


CCG-CTG
AAACAGCTCAGGAGAGAAATGAAACGCTTTTTCC



GGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCA
4249



TACGAAGTGGACCTTTCGGACACAAAACAGCCACTAAATCTA



GAAAAAGAAAAACATAAAAGACATCTAATAAAATGT



TTTGTGTCCGAAAGGTC
4250



GACCTTTCGGACACAAA
4251


Alzheimer disease
GTCTTTTATGTTTTTCTTTTTCTAGATTTAGTGGCTGTTTTGTG
4252


Arg269Gly
TCCGAAAGGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGA


tCGT-GGT
GAGAAATGAAACGCTTTTTCCAGCTCTCATTTACT



AGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCTGAGC
4253



TGTTTCAACCAGCATACGAAGTGGACCTTTCGGACACAAAAC



AGCCACTAAATCTAGAAAAAGAAAAACATAAAAGAC



GTCCACTTCGTATGCTG
4254



CAGCATACGAAGTGGAC
4255


Alzheimer disease
TCTTTTATGTTTTTCTTTTTCTAGATTTAGTGGCTGTTTTGTGTC
4256


Arg269His
CGAAAGGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGAGA


CGT-CAT
GAAATGAAACGCTTTTTCCAGCTCTCATTTACTC



GAGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCTGAG
4257



CTGTTTCAACCAGCATACGAAGTGGACCTTTCGGACACAAAA



CAGCCACTAAATCTAGAAAAAGAAAAACATAAAAGA



TCCACTTCGTATGCTGG
4258



CCAGCATACGAAGTGGA
4259


Alzheimer disease
TAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGG
4260


Arg278Thr
TTGAAACAGCTCAGGAGAGAAATGAAACGCTTTTTCCAGCTCT


AGA-ACA
CATTTACTCCTGTAAGTATTTGAGAATGATATTGAA



TTCAATATCATTCTCAAATACTTACAGGAGTAAATGAGAGCTG
4261



GAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCAT



ACGAAGTGGACCTTTCGGACACAAAACAGCCACTA



TCAGGAGAGAAATGAAA
4262



TTTCATTTCTCTCCTGA
4263


Alzheimer disease
CTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAAC
4264


Glu280Ala
AGCTCAGGAGAGAAATGAAACGCTTTTTCCAGCTCTCATTTAC


GAA-GCA
TCCTGTAAGTATTTGAGAATGATATTGAATTAGTA



TACTAATTCAATATCATTCTCAAATACTTACAGGAGTAAATGAG
4265



AGCTGGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACC



AGCATACGAAGTGGACCTTTCGGACACAAAACAG



GAGAAATGAAACGCTTT
4266



AAAGCGTTTCATTTCTC
4267


Alzheimer disease
CTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAAC
4268


Glu280Gly
AGCTCAGGAGAGAAATGAAACGCTTTTTCCAGCTCTCATTTAC


GAA-GGA
TCCTGTAAGTATTTGAGAATGATATTGAATTAGTA



TACTAATTCAATATCATTCTCAAATACTTACAGGAGTAAATGAG
4269



AGCTGGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACC



AGCATACGAAGTGGACCTTTCGGACACAAAACAG



GAGAAATGAAACGCTTT
4270



AAAGCGTTTCATTTCTC
4271


Alzheimer disease
TGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAACAGCTC
4272


Leu282Arg
AGGAGAGAAATGAAACGCTTTTTCCAGCTCTCATTTACTCCTG


CTTCGT
TAAGTATTTGAGAATGATATTGAATTAGTAATCAGT



ACTGATTACTAATTCAATATCATTCTCAAATACTTACAGGAGTA
4273



AATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTT



TCAACCAGCATACGAAGTGGACCTTTCGGACACA



TGAAACGCTTTTTCCAG
4274



CTGGAAAAAGCGTTTCA
4275


Alzheimer disease
AAGGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGAGAGAA
4276


Ala285Val
ATGAAACGCTTTTTCCAGCTCTCATTTACTCCTGTAAGTATTTG


GCT-GTT
AGAATGATATTGAATTAGTAATCAGTGTAGAATTT



AAATTCTACACTGATTACTAATTCAATATCATTCTCAAATACTTA
4277



CAGGAGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCT



GAGCTGTTTCAACCAGCATACGAAGTGGACCTT



TTTTCCAGCTCTCATTT
4278



AAATGAGAGCTGGAAAA
4279


Alzheimer disease
GGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGAGAGAAAT
4280


Leu286Val
GAAACGCTTTTTCCAGCTCTCATTTACTCCTGTAAGTATTTGA


tCTC-GTC
GAATGATATTGAATTAGTAATCAGTGTAGAATTTAT



ATAAATTCTACACTGATTACTAATTCAATATCATTCTCAAATACT
4281



TACAGGAGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTC



CTGAGCTGTTTCAACCAGCATACGAAGTGGACC



TTCCAGCTCTCATTTAC
4282



GTAAATGAGAGCTGGAA
4283


Alzheimer disease
GTGACCAACTTTTTAATATTTGTAACCTTTCCTTTTTAGGGGGA
4284


Gly384Ala
GTAAAACTTGGATTGGGAGATTTCATTTTCTACAGTGTTCTGG


GGA-GCA
TTGGTAAAGCCTCAGCAACAGCCAGTGGAGACTG



CAGTCTCCACTGGCTGTTGCTGAGGCTTTACCAACCAGAACA
4285



CTGTAGAAAATGAAATCTCCCAATCCAAGTTTTACTCCCCCTA



AAAAGGAAAGGTTACAAATATTAAAAAGTTGGTCAC



TGGATTGGGAGATTTCA
4286



TGAAATCTCCCAATCCA
4287


Alzheimer disease
TTTGTAACCTTTCCTTTTTAGGGGGAGTAAAACTTGGATTGGG
4288


Ser390Ile
AGATTTCATTTTCTACAGTGTTCTGGTTGGTAAAGCCTCAGCA


AGT-ATT
ACAGCCAGTGGAGACTGGAACACAACCATAGCCTG



CAGGCTATGGTTGTGTTCCAGTCTCCACTGGCTGTTGCTGAG
4289



GCTTTACCAACCAGAACACTGTAGAAAATGAAATCTCCCAATC



CAAGTTTTACTCCCCCTAAAAAGGAAAGGTTACAAA



TTTCTACAGTGTTCTGG
4290



CCAGAACACTGTAGAAA
4291


Alzheimer disease
AACCTTTCCTTTTTAGGGGGAGTAAAACTTGGATTGGGAGATT
4292


Leu392Val
TCATTTTCTACAGTGTTCTGGTTGGTAAAGCCTCAGCAACAGC


tCTG-GTG
CAGTGGAGACTGGAACACAACCATAGCCTGTTTCG



CGAAACAGGCTATGGTTGTGTTCCAGTCTCCACTGGCTGTTG
4293



CTGAGGCTTTACCAACCAGAACACTGTAGAAAATGAAATCTCC



CAATCCAAGTTTTACTCCCCCTAAAAAGGAAAGGTT



ACAGTGTTCTGGTTGGT
4294



ACCAACCAGAACACTGT
4295


Alzheimer disease
ATTTCATTTTCTACAGTGTTCTGGTTGGTAAAGCCTCAGCAAC
4296


Asn405Ser
AGCCAGTGGAGACTGGAACACAACCATAGCCTGTTTCGTAGC


AAC-AGC
CATATTAATTGTAAGTATACACTAATAAGAATGTGT



ACACATTCTTATTAGTGTATACTTACAATTAATATGGCTACGAA
4297



ACAGGCTATGGTTGTGTTCCAGTCTCCACTGGCTGTTGCTGA



GGCTTTACCAACCAGAACACTGTAGAAAATGAAAT



AGACTGGAACACAACCA
4298



TGGTTGTGTTCCAGTCT
4299


Alzheimer disease
TACAGTGTTCTGGTTGGTAAAGCCTCAGCAACAGCCAGTGGA
4300


Ala409Thr
GACTGGAACACAACCATAGCCTGTTTCGTAGCCATATTAATTG


aGCC-ACC
TAAGTATACACTAATAAGAATGTGTCAGAGCTCTTA



TAAGAGCTCTGACACATTCTTATTAGTGTATACTTACAATTAAT
4301



ATGGCTACGAAACAGGCTATGGTTGTGTTCCAGTCTCCACTG



GCTGTTGCTGAGGCTTTACCAACCAGAACACTGTA



CAACCATAGCCTGTTTC
4302



GAAACAGGCTATGGTTG
4303


Alzheimer disease
GTGTTCTGGTTGGTAAAGCCTCAGCAACAGCCAGTGGAGACT
4304


Cys410Tyr
GGAACACAACCATAGCCTGTTTCGTAGCCATATTAATTGTAAG


TGT-TAT
TATACACTAATAAGAATGTGTCAGAGCTCTTAATGT



ACATTAAGAGCTCTGACACATTCTTATTAGTGTATACTTACAAT
4305



TAATATGGCTACGAAACAGGCTATGGTTGTGTTCCAGTCTCCA



CTGGCTGTTGCTGAGGCTTTACCAACCAGAACAC



CATAGCCTGTTTCGTAG
4306



CTACGAAACAGGCTATG
4307


Alzheimer disease
TGTGAATGTGTGTCTTTCCCATCTTCTCCACAGGGTTTGTGCC
4308


Ala426Pro
TTACATTATTACTCCTTGCCATTTTCAAGAAAGCATTGCCAGCT


tGCC-CCC
CTTCCAATCTCCATCACCTTTGGGCTTGTTTTCT



AGAAAACAAGCCCAAAGGTGATGGAGATTGGAAGAGCTGGCA
4309



ATGCTTTCTTGAAAATGGCAAGGAGTAATAATGTAAGGCACAA



ACCCTGTGGAGAAGATGGGAAAGACACACATTCACA



TACTCCTTGCCATTTTC
4310



GAAAATGGCAAGGAGTA
4311


Alzheimer disease
AGGGTTTGTGCCTTACATTATTACTCCTTGCCATTTTCAAGAA
4312


Pro436Gln
AGCATTGCCAGCTCTTCCAATCTCCATCACCTTTGGGCTTGTT


CCA-CAA
TTCTACTTTGCCACAGATTATCTTGTACAGCCTTT



AAAGGCTGTACAAGATAATCTGTGGCAAAGTAGAAAACAAGC
4313



CCAAAGGTGATGGAGATTGGAAGAGCTGGCAATGCTTTCTTG



AAAATGGCAAGGAGTAATAATGTAAGGCACAAACCCT



AGCTCTTCCAATCTCCA
4314



TGGAGATTGGAAGAGCT
4315


Alzheimer disease
CAGGGTTTGTGCCTTACATTATTACTCCTTGCCATTTTCAAGA
4316


Pro436Ser
AAGCATTGCCAGCTCTTCCAATCTCCATCACCTTTGGGCTTGT


tCCA-TCA
TTTCTACTTTGCCACAGATTATCTTGTACAGCCTT



AAGGCTGTACAAGATAATCTGTGGCAAAGTAGAAAACAAGCC
4317



CAAAGGTGATGGAGATTGGAAGAGCTGGCAATGCTTTCTTGA



AAATGGCAAGGAGTAATAATGTAAGGCACAAACCCTG



CAGCTCTTCCAATCTCC
4318



GGAGATTGGAAGAGCTG
4319









EXAMPLE 25
Alzheimer's Disease—Presenilin-2 (PSEN2)

The attached table discloses the correcting oligonucleotide base sequences for the PSEN2 oligonucleotides of the invention.









TABLE 32







PSEN2 Mutations and Genome-Correcting Oligos









Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO:













Alzheimer disease
GATGTGGTTTCCCACAGAGAAGCCAGGAGAACGAGGAGGAC
4320



Arg62His
GGTGAGGAGGACCCTGACCGCTATGTCTGTAGTGGGGTTCC


CGC-CAC
CGGGCGGCCGCCAGGCCTGGAGGAAGAGCTGACCCTCAA



TTGAGGGTCAGCTCTTCCTCCAGGCCTGGCGGCCGCCCGGG
4321



AACCCCACTACAGACATAGCGGTCAGGGTCCTCCTCACCGTC



CTCCTCGTTCTCCTGGCTTCTCTGTGGGAAACCACATC



CCCTGACCGCTATGTCT
4322



AGACATAGCGGTCAGGG
4323


Alzheimer disease
GCCTCGAGGAGCAGTCAGGGCCGGGAGCATCAGCCCTTTGC
4324


Thr122Pro
CTTCTCCCTCAGCATCTACACGACATTCACTGAGGACACACC


cACG-CCG
CTCGGTGGGCCAGCGCCTCCTCAACTCCGTGCTGAACA



TGTTCAGCACGGAGTTGAGGAGGCGCTGGCCCACCGAGGGT
4325



GTGTCCTCAGTGAATGTCGTGTAGATGCTGAGGGAGAAGGCA



AAGGGCTGATGCTCCCGGCCCTGACTGCTCCTCGAGGC



GCATCTACACGACATTC
4326



GAATGTCGTGTAGATGC
4327


Alzheimer disease
ACACGCCATTCACTGAGGACACACCCTCGGTGGGCCAGCGC
4328


Asn141Ile
CTCCTCAACTCCGTGCTGAACACCCTCATCATGATCAGCGTC


AAC-ATC
ATCGTGGTTATGACCATCTTCTTGGTGGTGCTCTACAA



TTGTAGAGCACCACCAAGAAGATGGTCATAACCACGATGACG
4329



CTGATCATGATGAGGGTGTTCAGCACGGAGTTGAGGAGGCG



CTGGCCCACCGAGGGTGTGTCCTCAGTGAATGGCGTGT



CGTGCTGAACACCCTCA
4330



TGAGGGTGTTCAGCACG
4331


Alzheimer disease
CCACTGGAAGGGCCCTCTGGTGCTGCAGCAGGCCTACCTCA
4332


Met239Ile
TCATGATCAGTGCGCTCATGGCCCTAGTGTTCATCAAGTACCT


ATGg-ATA
CCCAGAGTGGTCCGCGTGGGTCATCCTGGGCGCCATC



GATGGCGCCCAGGATGACCCACGCGGACCACTCTGGGAGGT
4333



ACTTGATGAACACTAGGGCCATGAGCGCACTGATCATGATGA



GGTAGGCCTGCTGCAGCACCAGAGGGCCCTTCCAGTGG



GCGCTCATGGCCCTAGT
4334



ACTAGGGCCATGAGCGC
4335


Alzheimer disease
ATCCACTGGAAGGGCCCTCTGGTGCTGCAGCAGGCCTACCT
4336


Met239Val
CATCATGATCAGTGCGCTCATGGCCCTAGTGTTCATCAAGTA


cATG-GTG
CCTCCCAGAGTGGTCCGCGTGGGTCATCCTGGGCGCCA



TGGCGCCCAGGATGACCCACGCGGACCACTCTGGGAGGTAC
4337



TTGATGAACACTAGGGCCATGAGCGCACTGATCATGATGAGG



TAGGCCTGCTGCAGCACCAGAGGGCCCTTCCAGTGGAT



GTGCGCTCATGGCCCTA
4338



TAGGGCCATGAGCGCAC
4339









EXAMPLE 26
Plant Cells

The oligonucleotides of the invention can also be used to repair or direct a mulagenic event in plants and animal cells. Although little information is available on plant mutations amongst natural cultivars, the oligonucleotides of the invention can be used to produce “knock out” mutations by modification of specific amino acid codons to produce stop codons (e.g., a CAA codon specifying Gln can be modified at a specific site to TAA; a AAG codon specifying Lys can be modified to UAG at a specific site; and a CGA codon for Arg can be modified to a UGA codon at a specific site). Such base pair changes will terminate the reading frame and produce a defective truncated protein, shortened at the site of the stop codon. Alternatively, frameshift additions or deletions can be directed into the genome at a specific sequence to interrupt the reading frame and produce a garbled downstream protein. Such stop or frameshift mutations can be introduced to determine the effect of knocking out the protein in either plant or animal cells.


All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of oridinary skill in the art in light of the teachings of this invention that certain changes and modifications may by made thereto without departing from the spirit or scope of the appended claims.

Claims
  • 1. A method of targeted alteration of a chromosomal sequence present within a cell in vitro, the method comprising: introducing a sequence-altering oligonucleotide into a cell in vitro, wherein said sequence-altering oligonucleotide: is a single-stranded nonhairpin oligonucleotide 17-121 nucleotides in length; has an unmodified DNA domain of at least 8 contiguous deoxyribonucleotides; is fully complementary in sequence to a first strand of the cell's chromosomal DNA at a chromosomal target sequence, except for one or two mismatches positioned (i) within said oligonucleotide's unmodified DNA domain and (ii) at least 8 nucleotides from said oligonucleotide's 5′ and 3′ termini; and has chemical modifications consisting essentially of at least one terminal locked nucleic acid (LNA), or at least one terminal 2′-O-Me base analog, or at least three terminal phosphorothioate linkages, or combinations thereof, and wherein said cell is not a human embryonic stem cell, whereby said introduced oligonucleotide directs sequence alteration at said chromosomal target sequence by the cellular repair enzyme machinery.
  • 2. The method of claim 1, wherein said sequence alteration is a substitution of at least one base.
  • 3. The method of claim 1, wherein said sequence alteration is a deletion of at least one base.
  • 4. The method of claim 1, wherein said alteration is an insertion of at least one base.
  • 5. The method of claim 1, wherein said chromosome is an artificial chromosome.
  • 6. The method of claim 1, wherein said cellular repair proteins are purified.
  • 7. The method of claim 1, wherein said cellular repair proteins are present in a cell-free protein extract.
  • 8. The method of claim 1, wherein said cellular repair proteins are present within an intact cell.
  • 9. The method of claim 8, wherein said cell is cultured ex vivo.
  • 10. The method of claim 1, wherein said cellular repair proteins are of a cell selected from the group consisting of: prokaryotic cells and eukaryotic cells.
  • 11. The method of claim 10, wherein said cell is a prokaryotic cell.
  • 12. The method of claim 11, wherein said prokaryotic cell is a bacterial cell.
  • 13. The method of claim 12, wherein said bacterial cell is an E. coli cell.
  • 14. The method of claim 10, wherein said cell is a eukaryotic cell.
  • 15. The method of claim 14, wherein said eukaryotic cell is a yeast cell, plant cell, human cell, or a mammalian cell.
  • 16. The method of claim 15, wherein said eukaryotic cell is a yeast cell.
  • 17. The method of claim 16, wherein said yeast cell is a Saccharomyces cerevisiae, Ustilago maydis, or Candida albicans cell.
  • 18. The method of claim 15, wherein said eukaryotic cell is a plant cell.
  • 19. The method of claim 15, wherein said eukaryotic cell is a human cell.
  • 20. The method of claim 19, wherein said human cell is selected from the group consisting of liver cell, lung cell, colon cell, cervical cell, kidney cell, epithelial cell, cancer cell, and stem cell.
  • 21. The method of claim 15, wherein said eukaryotic cell is from a mammal.
  • 22. The method of claim 21, wherein said mammal is selected from the group consisting of: rodent, mouse, hamster, rat, and monkey.
  • 23. The method of claim 1, wherein said oligonucleotide is at least 25 nucleotides in length.
  • 24. The method of claim 1, wherein said oligonucleotide is no more than 74 nucleotides in length.
  • 25. The method of claim 1, wherein said first strand is the nontranscribed strand of the target nucleic acid.
  • 26. The method of claim 1, wherein the sequences of said unmodified DNA domain and of the target nucleic acid first strand are mismatched at a single nucleotide.
  • 27. The method of claim 1, wherein the sequences of said unmodified DNA domain and of its complement on the target nucleic acid first strand are mismatched at two or more nucleotides.
  • 28. The method of claim 1, wherein said at least one terminal modification is at least one 3′ terminal LNA analogue.
  • 29. The method of claim 28, wherein said oligonucleotide has no more than 3 LNA analogues at its 3′ terminus.
  • 30. The method of claim 28, wherein said oligonucleotide has at least one LNA at its 3′ terminus and at least one LNA at its 5′ terminus.
  • 31. The method of claim 30, wherein said oligonucleotide has no more than 3 contiguous LNA at each of its 3′ or 5′ termini.
  • 32. The method of claim 1, wherein said at least one terminal modification is at least one 2′-O-methyl ribonucleotide analog at its 3′ terminus.
  • 33. The method of claim 32, wherein said oligonucleotide has no more than 4 contiguous 2′-O-methyl ribonucleotide analogs.
  • 34. The method of claim 32, wherein said oligonucleotide has at least one 2′-O-methyl ribonucleotide analog at its 3′ terminus and at least one 2′-O-methyl ribonucleotide analog at its 5′ terminus.
  • 35. The method of claim 34, wherein said oligonucleotide has no more than 4 contiguous 2′-O-methyl ribonucleotide analogs.
  • 36. The method of claim 1, wherein said at least one terminal modification comprises at least three terminal phosphorothioate linkages.
  • 37. The method of claim 36, wherein said phosphorothioate linkages at said oligonucleotide's 3′ terminus.
  • 38. The method of claim 36, wherein said oligonucleotide comprises no more than 6 contiguous phosphorothioate linkages.
  • 39. A method of targeted sequence alteration of a nucleic acid present within selectively enriched cells in vitro, cells in culture, or cell-free extracts, comprising: contacting the targeted nucleic acid in the presence of cellular repair proteins with a single-stranded nonhairpin oligonucleotide 17-121 nucleotides in length, said oligonucleotide having a domain of at least B contiguous deoxyribonucleotides, wherein said oligonucleotide is fully complementary in sequence to the sequence of a first strand of the targeted nucleic acid, but for one or more mismatches as between the sequences of said deoxyribonucleotide domain and its complement on the target nucleic acid first strand, each of said mismatches positioned at least B nucleotides from said oligonucleotide's 5′ and 3′ termini; wherein said oligonucleotide has at least one terminal modification selected from the group consisting of: at least one terminal locked nucleic acid (LNA), at least one terminal 2′-O-Me base analog, and at least three terminal phosphorothioate linkages; wherein said cultured or selectively enriched cells are not human embryonic stem cells, and wherein said targeted nucleic acid is selected from the group of human genes consisting of: ADA, p53, beta-globin, RB, BRCA1, BRCA2, CFTR, CDKN2A, APC, Factor V, Factor VIII, Factor IX, hemoglobin alpha 1, hemoglobin alpha 2, MLH1, MSH2, MSH6, ApoE, LDL receptor, UGT1, APP, PSEN1, and PSEN2.
  • 40. The method of claim 39, wherein said targeted nucleic acid is the human beta-globin gene.
  • 41. The method of claim 40, wherein said human beta-globin gene is targeted in a human hematopoietic stem cell.
  • 42. A method of targeted sequence alteration of a nucleic acid present within selectively enriched cells in vitro, cells in culture, or cell-free extracts, comprising: contacting the targeted nucleic acid in the presence of cellular repair proteins with a single-stranded nonhairpin oligonucleotide 17-121 nucleotides in length, said oligonucleotide having a domain of at least 8 contiguous deoxyribonucleotides, wherein said oligonucleotide is fully complementary in sequence to the sequence of a first strand of the targeted nucleic acid, but for one or more mismatches as between the sequences of said deoxyribonucleotide domain and its complement on the target nucleic acid first strand, each of said mismatches positioned at least 8 nucleotides from said oligonucleotide's 5′ and 3′ termini; wherein said oligonucleotide has at least one terminal modification selected from the group consisting of: at least one terminal locked nucleic acid (LNA), at least one terminal 2′-O-Me base analog, and at least three terminal phosphorothioate linkages; wherein said cultured or selectively enriched cells are not human embryonic stem cells, and wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1-4340.
  • 43. The method of claim 42, wherein said oligonucleotide has sequence identical to any one of SEQ ID NOs: 1-4340.
  • 44. A method of targeted sequence alteration of a nucleic acid present within selectively enriched cells in vitro, cells in culture, or cell-free extracts, comprising: contacting the targeted nucleic acid in the presence of cellular repair proteins with a single-stranded nonhairpin oligonucleotide 17-121 nucleotides in length, said oligonucleotide having a domain of at least 8 contiguous deoxyribonucleotides, wherein said oligonucleotide is fully complementary in sequence to the sequence of a first strand of the targeted nucleic acid, but for one or more mismatches as between the sequences of said deoxyribonucleotide domain and its complement on the target nucleic acid first strand, each of said mismatches positioned at least 8 nucleotides from said oligonucleotide's 5′ and 3′ termini; wherein said oligonucleotide has at least one terminal modification, said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1-4340, and said cultured or selectively enriched cells are not human embryonic stem cells.
  • 45. The method of claim 44, wherein said at least one terminal modification is selected from the group consisting of: at least one terminal locked nucleic acid (LNA), at least one terminal 2′-O-Me base analog, and at least three terminal phosphorothioate linkages.
  • 46. The method of claim 44, wherein said target is chromosomal genomic DNA.
  • 47. A method of targeted sequence alteration of a nucleic acid present within selectively enriched hematopoietic stem cells in vitro or hematopoietic stem cells in culture, comprising: contacting the targeted nucleic acid in the presence of cellular repair proteins with a single-stranded nonhairpin oligonucleotide 17-121 nucleotides in length, said oligonucleotide having a domain of at least 8 contiguous deoxyribonucleotides, wherein said oligonucleotide is fully complementary in sequence to the sequence of a first strand of the targeted nucleic acid, but for one or more mismatches as between the sequences of said deoxyribonucleotide domain and its complement on the target nucleic acid first strand, each of said mismatches positioned at least B nucleotides from said oligonucleotide's 5′ and 3′ termini; and wherein said oligonucleotide has at least one terminal modification selected from the group consisting of: at least one terminal locked nucleic acid (LNA), at least one terminal 2′-O-Me base analog, and at least three terminal phosphorothioate linkages.
  • 48. The method of claim 39, wherein said targeted nucleic acid is the human ADA gene.
  • 49. The method of claim 48, wherein said ADA gene is targeted in a human hematopoietic stem cell.
  • 50. The method of claim 39, wherein said targeted nucleic acid is the human p53 gene.
  • 51. The method of claim 39, wherein said targeted nucleic acid is the human RB gene.
  • 52. The method of claim 39, wherein said targeted nucleic acid is the human BRCA1 gene.
  • 53. The method of claim 39, wherein said targeted nucleic acid is the human BRCA2 gene.
  • 54. The method of claim 39, wherein said targeted nucleic acid is the human CFTR gene.
  • 55. The method of claim 39, wherein said targeted nucleic acid is the human CDKN2A gene.
  • 56. The method of claim 39, wherein said targeted nucleic acid is the human APC gene.
  • 57. The method of claim 39, wherein said targeted nucleic acid is the human Factor V gene.
  • 58. The method of claim 39, wherein said targeted nucleic acid is the human Factor VIII gene.
  • 59. The method of claim 39, wherein said targeted nucleic acid is the human Factor IX gene.
  • 60. The method of claim 39, wherein said targeted nucleic acid is the human hemoglobin alpha 1 gene.
  • 61. The method of claim 60, wherein said hemoglobin gene is targeted in a human hematopoietic stem cell.
  • 62. The method of claim 39, wherein said targeted nucleic acid is the human hemoglobin alpha 2 gene.
  • 63. The method of claim 62, wherein said hemoglobin gene is targeted in a human hematopoietic stem cell.
  • 64. The method of claim 39, wherein said targeted nucleic acid is the human MLH1 gene.
  • 65. The method of claim 39, wherein said targeted nucleic acid is the human MSH2 gene.
  • 66. The method of claim 39, wherein said targeted nucleic acid is the human MSH6 gene.
  • 67. The method of claim 39, wherein said targeted nucleic acid is the human ApoE gene.
  • 68. The method of claim 39, wherein said targeted nucleic acid is the human LDL receptor.
  • 69. The method of claim 39, wherein said targeted nucleic acid is the human UGT1 gene.
  • 70. The method of claim 39, wherein said targeted nucleic acid is the human APP gene.
  • 71. The method of claim 39, wherein said targeted nucleic acid is the human PSEN1 gene.
  • 72. The method of claim 39, wherein said targeted nucleic acid is the human PSEN2 gene.
  • 73. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1-160.
  • 74. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 161-356.
  • 75. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 357-500.
  • 76. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 501-652.
  • 77. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 653-1028.
  • 78. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1029-1128.
  • 79. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1129-1320.
  • 80. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1321-1432.
  • 81. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1433-1768.
  • 82. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 4340, 1769-1799.
  • 83. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1800-2271.
  • 84. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 2272-2775.
  • 85. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 2776-2855.
  • 86. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 2856-2979.
  • 87. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 2980-3207.
  • 88. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 3208-3343.
  • 89. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 3344-3395.
  • 90. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 3396-3471.
  • 91. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 3472-3959.
  • 92. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 3960-4035.
  • 93. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 4036-4083.
  • 94. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 4084-4319.
  • 95. The method of claim 42, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 4320-4339.
  • 96. The method of claim 42, wherein said oligonucleotide has sequence identical to any one of SEQ ID NOs: 1-4340.
  • 97. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1-160.
  • 98. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 161-356.
  • 99. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 357-500.
  • 100. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 501-652.
  • 101. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 653-1028.
  • 102. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1029-1128.
  • 103. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1129-1320.
  • 104. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1321-1432.
  • 105. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1433-1768.
  • 106. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 4340, 1769-1799.
  • 107. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1800-2271.
  • 108. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 2272-2775.
  • 109. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 2776-2855.
  • 110. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 2856-2979.
  • 111. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 2980-3207.
  • 112. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 3208-3343.
  • 113. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 3344-3395.
  • 114. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 3396-3471.
  • 115. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 3472-3959.
  • 116. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID Nos: 3960-4035.
  • 117. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 4036-4083.
  • 118. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 4084-4319.
  • 119. The method of claim 44, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 4320-4339.
  • 120. The method of claim 44, wherein said oligonucleotide has sequence identical to any one of SEQ ID NOs: 1-4340.
  • 121. The method of claim 47, wherein said oligonucleotide has at least three terminal phosphorothioate linkages.
  • 122. The method of claim 121, wherein said targeted nucleic acid is the human ADA gene.
  • 123. The method of claim 122, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 1-160.
  • 124. The method of claim 121, wherein said targeted nucleic acid is the human beta globin gene.
  • 125. The method of claim 124, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 357-500.
  • 126. The method of claim 121, wherein said targeted nucleic acid is the human hemoglobin alpha 1 gene.
  • 127. The method of claim 126, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 2776-2855.
  • 128. The method of claim 121, wherein said targeted nucleic acid is the human hemoglobin alpha 2 gene.
  • 129. The method of claim 128, wherein said oligonucleotide includes the sequence of any one of SEQ ID NOs: 2856-2979.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/192,176, filed Mar. 27, 2000; U.S. Provisional Application No. 60/192,179, filed Mar. 27, 2000; U.S. Provisional Application No. 60/208,538, filed Jun. 1, 2000; and U.S. Provisional Application No. 60/244,989, filed Oct. 30, 2000.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made in the course of research under NIH grants R01 HL58563-05 and R01 DK56134-03. The government has certain rights in this invention.

US Referenced Citations (7)
Number Name Date Kind
5565350 Kmiec Oct 1996 A
5731181 Kmiec Mar 1998 A
5801154 Baracchini et al. Sep 1998 A
5912340 Kutyavin Jun 1999 A
6004804 Kumar Dec 1999 A
6136601 Meyer, Jr. et al. Oct 2000 A
6271360 Metz Aug 2001 B1
Foreign Referenced Citations (3)
Number Date Country
WO 9914226 Mar 1999 WO
WO 0056748 Sep 2000 WO
WO 0066604 Nov 2000 WO
Related Publications (1)
Number Date Country
20030051270 A1 Mar 2003 US
Provisional Applications (4)
Number Date Country
60244989 Oct 2000 US
60208538 Jun 2000 US
60192179 Mar 2000 US
60192176 Mar 2000 US