Targeted chromosomal genomic alterations with modified single stranded oligonucleotides

Abstract
Presented are methods and compositions for targeted chromosomal genomic alterations using modified single-stranded oligonucleotides of the invention have at least one modified nuclease-resistant terminal region comprising phosphorothioate linkages, LNA analogs or 2′-O-Me base analogs.
Description
INCORPORATION BY REFERENCE OF MATERIALS FILED ON COMPACT DISC

The present application includes a Sequence Listing filed on a single compact disc (CD-R), filed in duplicate. The Sequence Listing is presented in a single file on each CD-R and is named SequenceListingNapro4. The Sequence Listing was last modified Apr. 18, 2003 at 10:24:54 AM and comprises 930,640 bytes.


FIELD OF THE INVENTION

The technical field of the invention is oligonucleotide-directed repair or alteration of genetic information using novel chemically modified oligonucleotides. Such genetic information is preferably from a eukaryotic organism, i.e. a plant, animal or fungus.


BACKGROUND OF THE INVENTION

A number of methods have been developed specifically to alter the sequence of an isolated DNA in addition to methods to alter directly the genomic information of various plants, fungi and animals, including humans (“gene therapy”). The latter methods generally include the use of viral or plasmid vectors carrying nucleic acid sequences encoding partial or complete portions of a particular protein which is expressed in a cell or tissue to effect the alteration. The expression of the particular protein then results in the desired phenotype. For example, retroviral vectors containing a transgenic DNA sequence allowing for the production of a normal CFTR protein when administered to defective cells are described in U.S. Pat. No. 5,240,846. Others have developed different “gene therapy vectors” which include, for example, portions of adenovirus (Ad) or adeno-associated virus (AAV), or other viruses. The virus portions used are often long terminal repeat sequences which are added to the ends of a transgene of choice along with other necessary control sequences which allow expression of the transgene. See U.S. Pat. Nos. 5,700,470 and 5,139,941. Similar methods have been developed for use in plants. See, for example, U.S. Pat. No. 4,459,355 which describes a method for transforming plants with a DNA vector and U.S. Pat. No. 5,188,642 which describes cloning or expression vectors containing a transgenic DNA sequence which when expressed in plants confers resistance to the herbicide glyphosate. The use of such transgene vectors in any eukaryotic organism adds one or more exogenous copies of a gene, which gene may be foreign to the host, in a usually random fashion at one or more integration sites of the organism's genome at some frequency. The gene which was originally present in the genome, which may be a normal allelic variant, mutated, defective, and/or functional, is retained in the genome of the host.


These methods of gene correction are problematic in that complications which can compromise the health of the recipient, or even lead to death, may result. One such problem is that insertion of exogenous nucleic acid at random location(s) in the genome can have deleterious effects. Another problem with such systems includes the addition of unnecessary and unwanted genetic material to the genome of the recipient, including, for example, viral or other vector remnants, control sequences required to allow production of the transgene protein, and reporter genes or resistance markers. Such remnants and added sequences may have presently unrecognized consequences, for example, involving genetic rearrangements of the recipient genomes. Other problems associated with these types of traditional gene therapy methods include autoimmune suppression of cells expressing an inserted gene due to the presence of foreign antigens. Concerns have also been raised with consumption, especially by humans, of plants containing exogenous genetic material.


More recently, simpler systems involving poly- or oligo-nucleotides have been described for use in the alteration of genomic DNA. These chimeric RNA-DNA oligonucleotides, requiring contiguous RNA and DNA bases in a double-stranded molecule folded by complementarity into a double hairpin conformation, have been shown to effect single basepair or frameshift alterations, for example, for mutation or repair of plant or animal genomes. See, for example, WO 99/07865 and U.S. Pat. No. 5,565,350. In the chimeric RNA-DNA oligonucleotide, an uninterrupted stretch of DNA bases within the molecule is required for sequence alteration of the targeted genome while the obligate RNA residues are involved in complex stability. Due to the length, backbone composition, and structural configuration of these chimeric RNA-DNA molecules, they are expensive to synthesize and difficult to purify. Moreover, if the RNA-containing strand of the chimeric RNA-DNA oligonucleotide is designed so as to direct gene conversion, a series of mutagenic reactions resulting in nonspecific base alteration can result. Such a result compromises the utility of such a molecule in methods designed to alter the genomes of plants and animals, including in human gene therapy applications.


Alternatively, other oligo- or poly-nucleotides have been used which require a triplex forming, usually polypurine or polypyrimidine, structural domain which binds to a DNA helical duplex through Hoogsteen interactions between the major groove of the DNA duplex and the oligonucleotide. Such oligonucleotides may have an additional DNA reactive moiety, such as psoralen, covalently linked to the oligonucleotide. These reactive moieties function as effective intercalation agents, stabilize the formation of a triplex and can be mutagenic. Such agents may be required in order to stabilize the triplex forming domain of the oligonucleotide with the DNA double helix if the Hoogsteen interactions from the oligonucleotide/target base composition are insufficient. See, e.g., U.S. Pat. No. 5,422,251. The utility of these oligonucleotides for directing gene conversion is compromised by a high frequency of nonspecific base changes.


In more recent work, the domain for altering a genome is linked or tethered to the triplex forming domain of the bi-functional oligonucleotide, adding an additional linking or tethering functional domain to the oligonucleotide. See, e.g., Culver et al., Nature Biotechnology 17: 989-93 (1999). Such chimeric or triplex forming molecules have distinct structural requirements for each of the different domains of the complete poly- or oligo-nucleotide in order to effect the desired genomic alteration in either episomal or chromosomal targets.


Other genes, e.g. CFTR, have been targeted by homologous recombination using duplex fragments having several hundred basepairs. See, e.g., Kunzelmann et al., Gene Ther. 3:859-867 (1996). Early experiments to mutagenize an antibiotic resistance indicator gene by homologous recombination used an unmodified DNA oligonucleotide with no functional domains other than a region of complementary sequence to the target See Campbell et al., New Biologist 1: 223-227 (1989). These experiments required large concentrations of the oligonucleotide, exhibited a very low frequency of episomal modification of a targeted exogenous plasmid gene not normally found in the cell and have not been reproduced. However, as shown in the examples herein, we have observed that an unmodified DNA oligonucleotide can convert a base at low frequency which is detectable using the assay systems described herein.


Artificial chromosomes can be useful for the screening purposed identified herein. These molecules are man-made linear or circular DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al., 1983). The essential elements are: (1) Autonomous Replication Sequences (ARS), (2) Centromeres, and (3) Telomeres.


Yeast artificial chromosomes (YACs) allow large genomic DNA to be modified and used for generating transgenic animals [Burke et al., Science 236:806; Peterson et al., Trends Genet. 13:61 (1997); Choi, et al., Nat. Genet, 4:117-223 (1993), Davies, et al., Biotechnology 11:911-914 (1993), Matsuura, et al., Hum. Mol. Genet., 5:451-459 (1996), Peterson et al., Proc. Natl. Acad. Sci., 93:6605-6609 (1996); and Schedl, et al., Cell, 86:71-82 (1996)]. Other vectors also have been developed for the cloning of large segments of mammalian DNA, including cosmids, and bacteriophage P1 [Sternberg et al., Proc. Natl. Acad. Sci. U.S.A., 87:103-107 (1990)]. YACs have certain advantages over these alternative large capacity cloning vectors [Burke et al., Science, 236:806-812 (1987)]. The maximum insert size is 35-30 kb for cosmids, and 100 kb for bacteriophage P1, both of which are much smaller than the maximal insert for a YAC.


An alternative to YACs are E. coli based cloning systems based on the E. coli fertility factor that have been developed to construct large genomic DNA insert libraries. They are bacterial artificial chromosomes (BACs) and P-1 derived artificial chromosomes (PACs) [Mejia et al., Genome Res. 7:179-186 (1997); Shizuya et al., Proc. Natl. Acad. Sci. 89:8794-8797 (1992); Ioannou et al., Nat. Genet., 6:84-89 (1994); Hosoda et al., Nucleic Acids Res. 18:3863 (1990)]. BACs are based on the E. coli fertility plasmid (F factor); and PACs are based on the bacteriophage P1. These vectors propagate at a very low copy number (1-2 per cell) enabling genomic inserts up to 300 kb in size to be stably maintained in recombination deficient hosts. Furthermore, the PACs and BACs are circular DNA molecules that are readily isolated from the host genomic background by classical alkaline lysis [Birnboim et al., Nucleic Acids Res. 7:1513-1523 (1979].


Oligonucleotides designed for use in the alteration of genetic information are significantly different from oligonucleotides designed for antisense approaches. For example, antisense oligonucleotides are perfectly complementary to and bind an mRNA strand in order to modify expression of a targeted mRNA and are used at high concentration. As a consequence, they are unable to produce a gene conversion event by either mutagenesis or repair of a defect in the chromosomal DNA of a host genome. Furthermore, the backbone chemical composition used in most oligonucleotides designed for use in antisense approaches renders them inactive as substrates for homologous pairing or mismatch repair enzymes and the high concentrations of oligonucleotide required for antisense applications can be toxic with some types of nucleotide modifications. In addition, antisense oligonucleotides must be complementary to the mRNA and therefore, may not be complementary to the other DNA strand or to genomic sequences that span the junction between intron sequence and exon sequence.


A need exists for simple, inexpensive oligonucleotides capable of producing targeted alteration of genetic material such as those described herein as well as methods to identify optimal oligonucleotides that accurately and efficiently alter target DNA.


SUMMARY OF THE INVENTION

Novel, modified single-stranded nucleic acid molecules that direct gene alteration in plants, fungi and animals are identified and the efficiency of alteration is analyzed both in vitro using a cell-free extract assay and in vivo using a yeast cell system. The alteration in an oligonucleotide of the invention may comprise an insertion, deletion, substitution, as well as any combination of these. Site specific alteration of DNA is not only useful for studying function of proteins in vivo, but it is also useful for creating animal models for human disease, and in gene therapy. As described herein, oligonucleotides of the invention target directed specific gene alterations in genomic double-stranded DNA cells. The target DNA can be normal, cellular chromosomal DNA, extrachromosomal DNA present in cells in different forms including, e.g., mammalian artificial chromosomes (MACs), PACs from P-1 vectors, yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PLACs), as well as episomal DNA, including episomal DNA from an exogenous source such as a plasmid or recombinant vector. Many of these artificial chromosome constructs containing human DNA can be obtained from a variety of sources, including, e.g., the Whitehead Institute, and are described, e.g., in Cohen et al., Nature 336:698-701 (1993) and Chumakov, et al., Nature 377:174-297 (1995). The target DNA may be transitionally silent or active. In a preferred embodiment, the target DNA to be altered is the non-transcribed strand of a genomic DNA duplex.


The low efficiency of gene alteration obtained using unmodified DNA oligonucleotides is believed to be largely the result of degradation by nucleases present in the reaction mixture or the target cell. Although different modifications are known to have different effects on the nuclease resistance of oligonucleotides or stability of duplexes formed by such oligonucleotides (see, e.g., Koshkin et al., J. Am. Chem. Soc., 120:13252-3), we have found that it is not possible to predict which of any particular known modification would be most useful for any given alteration event, including for the construction of gene conversion oligonucleotides, because of the interaction of different as yet unidentified proteins during the gene alteration event. Herein, a variety of nucleic acid analogs have been developed that increase the nuclease resistance of oligonucleotides that contain them, including, e.g., nucleotides containing phosphorothioate linkages or 2′-O-methyl analogs. We recently discovered that single-stranded DNA oligonucleotides modified to contain 2′-O-methyl RNA nucleotides or phosphorothioate linkages can enable specific alteration of genetic information at a higher level than either unmodified single-stranded DNA or a chimeric RNA/DNA molecule. See priority applications incorporated herein in their entirety; see also Gamper et al., Nucleic Acids Research 28: 4332-4339 (2000). We also found that additional nucleic acid analogs which increase the nuclease resistance of oligonucleotides that contain them, including, e.g., “locked nucleic acids” or “LNAs”, xylo-LNAs and L-ribo-LNAs; see, for example, Wengel & Nielsen, WO 99/14226; Wengel, WO 00/56748 and Wengel, WO 00/66604; also allow specific targeted alteration of genetic information.


The assay allows for determining the optimum length of the oligonucleotide, optimum sequence of the oligonucleotide, optimum position of the mismatched base or bases, optimum chemical modification or modifications, optimum strand targeted for identifying and selecting the most efficient oligonucleotide for a particular gene alteration event by comparing to a control oligonucleotide. Control oligonucleotides may include a chimeric RNA-DNA double hairpin oligonucleotide directing the same gene alteration event, an oligonucleotide that matches its target completely, an oligonucleotide in which all linkages are phosphorothiolated, an oligonucleotide fully substituted with 2′-O-methyl analogs or an RNA oligonucleotide. Such control oligonucleotides either fail to direct a targeted alteration or do so at a lower efficiency as compared to the oligonucleotides of the invention. The assay further allows for determining the optimum position of a gene alteration event within an oligonucleotide, optimum concentration of the selected oligonucleotide for maximum alteration efficiency by systematically testing a range of concentrations, as well as optimization of either the source of cell extract by testing different organisms or strains, or testing cells derived from different organisms or strains, or cell lines. Using a series of single-stranded oligonucleotides, comprising all RNA or DNA residues and various mixtures of the two, several new structures are identified as viable molecules in nucleotide conversion to direct or repair a genomic mutagenic event. When extracts from mammalian, plant and fungal cells are used and are analyzed using a genetic readout assay in bacteria, single-stranded oligonucleotides having one of several modifications are found to be more active than a control RNA-DNA double hairpin chimera structure when evaluated using an in vitro gene repair assay. Similar results are also observed in vivo using yeast, mammalian, rodent, monkey, human and embryonic cells, including stem cells. Molecules containing various lengths of modified bases were found to possess greater activity than unmodified single-stranded DNA molecules.


DETAILED DESCRIPTION OF THE INVENTION

The present invention provides oligonucleotides having chemically modified, nuclease resistant residues, preferably at or near the termini of the oligonucleotides, and methods for their identificaton and use in targeted alteration of genetic material, including gene mutation, targeted gene repair and gene knockout. The oligonucleotides are preferably used for mismatch repair or alteration by changing at least one nucleic acid base, or for frameshift repair or alteration by addition or deletion of at least one nucleic acid base. The oligonucleotides of the invention direct any such alteration, including gene correction, gene repair or gene mutation and can be used, for example, to introduce a polymorphism or haplotype or to eliminate (“knockout”) a particular protein activity.


The oligonucleotides of the invention are designed as substrates for homologous pairing and repair enzymes and as such have a unique backbone composition that differs from chimeric RNA-DNA double hairpin oligonucleotides, antsense oligonucleotides, and/or other poly- or oligo-nucleotides used for altering genomic DNA, such as triplex forming oligonucleotides. The single-stranded oligonucleotides described herein are inexpensive to synthesize and easy to purify. In side-by-side comparisons, an optimized single-stranded oligonucleotide comprising modified residues as described herein is significantly more efficient than a chimeric RNA-DNA double hairpin oligonucleotide in directing a base substitution or frameshift mutation in a cell-free extract assay.


We have discovered that single-stranded oligonucleotides having a DNA domain surrounding the targeted base, with the domain preferably central to the poly- or oligo-nucleotide, and having at least one modified end, preferably at the 3′ terminal region are able to alter a target genetic sequence and with an efficiency that is higher than chimeric RNA-DNA double hairpin oligonucleotides disclosed in U.S. Pat. No. 5,565,350. Oligonucleotides of the invention can efficiently be used to introduce targeted alterations in a genetic sequence of DNA in the presence of human, animal, plant, fungal (including yeast) proteins and in cultured cells of human liver, lung, colon, cervix, kidney, epethelium and cancer cells and in monkey, hamster, rat and mouse cells of different types, as well as embryonic stem cells. Cells for use in the invention include, e.g., fungi including S. cerevisiae, Ustillago maydis and Candida albicans, mammalian, mouse, hamster, rat, monkey, human and embryonic cells including stem cells. The DNA domain is preferably fully complementary to one strand of the gene target, except for the mismatch base or bases responsible for the gene alteration or conversion events. On either side of the preferably central DNA domain, the contiguous bases may be either RNA bases or, preferably, are primarily DNA bases. The central DNA domain is generally at least 8 nucleotides in length. The base(s) targeted for alteration in the most preferred embodiments are at least about 8, 9 or 10 bases from one end of the oligonucleotide.


According to certain embodiments, the termini of the oligonucleotides of the present invention comprise phosphorothioate modifications, LNA backbone modifications, or 2′-O-methyl base analogs, or any combination of these modifications. Oligonucleotides comprising 2′-O-methyl or LNA analogs are a mixed DNA/RNA polymer. These oligonucleotides are, however, single-stranded and are not designed to form a stable internal duplex structure within the oligonucleotide. The efficiency of gene alteration is surprisingly increased with oligonucleotides having internal complementary sequence comprising phosphorothioate modified bases as compared to 2′-O-methyl modifications. This result indicates that specific chemical interactions are involved between the converting oligonucleotide and the proteins involved in the conversion. The effect of other such chemical interactions to produce nuclease resistant termini using modifications other than LNA, phosphorothioate linkages, or 2′-O-methyl analog incorporation into an oligonucleotide can not yet be predicted because the proteins involved in the alteration process and their particular chemical interaction with the oligonucleotide substituents are not yet known and cannot be predicted.


In the examples, correcting oligonucleotides of defined sequence are provided for correction of genes mutated in human diseases. In the tables of these examples, the oligonucleotides of the invention are not limited to the particular sequences disclosed. The oligonucleotides of the invention include extensions of the appropriate sequence of the longer 120 base oligonucleotides which can be added base by base to the smallest disclosed oligonucleotides of 17 bases. Thus the oligonucleotides of the invention include for each correcting change, oligonucleotides of length 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 with further single-nucleotide additions up to the longest sequence disclosed. Moreover, the oligonucleotides of the invention do not require a symmetrical extension on either side of the central DNA domain. Similarly, the oligonucleotides of the invention as disclosed in the various tables for correction of human diseases contain phosphorothioate linkages, 2′-O-methyl analogs or LNAs or any combination of these modifications just as the assay oligonucleotides do.


The present invention, however, is not limited to oligonucleotides that contain any particular nuclease resistant modification. Oligonucleotides of the invention may be altered with any combination of additional LNAs, phosphorothioate linkages or 2′-O-methyl analogs to maximize conversion efficiency. For oligonucleotides of the invention that are longer than about 17 to about 25 bases in length, internal as well as terminal region segments of the backbone may be altered. Alternatively, simple fold-back structures at each end of a oligonucleotide or appended end groups may be used in addition to a modified backbone for conferring additional nuclease resistance.


The different oligonucleotides of the present invention preferably contain more than one of the aforementioned backbone modifications at each end. In some embodiments, the backbone modifications are adjacent to one another. However, the optimal number and placement of backbone modifications for any individual oligonucleotide will vary with the length of the oligonucleotide and the particular type of backbone modification(s) that are used. If constructs of identical sequence having phosphorothioate linkages are compared, 2, 3, 4, 5, or 6 phosphorothioate linkages at each end are preferred. If constructs of identical sequence having 2′-O-methyl base analogs are compared, 1, 2, 3 or 4 analogs are preferred. The optimal number and type of backbone modifications for any particular oligonucleotide useful for altering target DNA may be determined empirically by comparing the alteration efficiency of the oligonucleotide comprising any combination of the modifications to a control molecule of comparable sequence using any of the assays described herein. The optimal positon(s) for oligonucleotide modifications for a maximally efficient altering oligonucleotide can be determined by testing the various modifications as compared to control molecule of comparable sequence in one of the assays disclosed herein. In such assays, a control molecule includes, e.g., a completely 2′-O-methyl substituted molecule, a completely complementary oligonucleotide, or a chimeric RNA-DNA double hairpin.


Increasing the number of phosphorothioate linkages, LNAs or 2′-O-methyl bases beyond the preferred number generally decreases the gene repair activity of a 25 nucleotide long oligonucleotide. Based on analysis of the concentration of oligonucleotide present in the extract after different time periods of incubation, it is believed that the terminal modifications impart nuclease resistance to the oligonucleotide thereby allowing it to survive within the cellular environment. However, this may not be the only possible mechanism by which such modifications confer greater efficiency of conversion. For example, as disclosed herein, certain modifications to oligonucleotides confer a greater improvement to the efficiency of conversion than other modifications.


Efficiency of conversion is defined herein as the percentage of recovered substate molecules that have undergone a conversion event. Depending on the nature of the target genetic material, e.g. the genome of a cell, efficiency could be represented as the proportion of cells or clones containing an extrachromosomal element that exhibit a particular phenotype. Alternatively, representative samples of the target genetic material can be sequenced to determine the percentage that have acquired the desire change. The oligonucleotides of the invention in different embodiments can alter DNA one, two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold more than control oligonucleotides. Such control oligonucleotides are oligonucleotides with fully phosphorothiolated linkages, oligonucleotides that are fully substituted with 2′-O-methyl analogs, a perfectly matched oligonucleotide that is fully complementary to a target sequence or a chimeric DNA-RNA double hairpin oligonucleotide such as disclosed in U.S. Pat. No. 5,565,350.


In addition, for a given oligonucleotide length, additional modifications interfere with the ability of the oligonucleotide to act in concert with the cellular recombination or repair enzyme machinery which is necessary and required to mediate a targeted substitution, addition or deletion event in DNA. For example, fully phosphorothiolated or fully 2-O-methylated molecules are inefficient in targeted gene alteration.


The oligonucleotides of the invention as optimized for the purpose of targeted alteration of genetic material, including gene knockout or repair, are different in structure from antisense oligonucleotides that may possess a similar mixed chemical composition backbone. The oligonucleotides of the invention differ from such antisense oligonucleotides in chemical composition, structure, sequence, and in their ability to alter genomic DNA. Significantly, antisense oligonucleotides fail to direct targeted gene alteration. The oligonucleotides of the invention may target either the Watson or the Crick strand of DNA and can include any component of the genome including, for example, intron and exon sequences. The preferred embodiment of the invention is a modified oligonucleotide that binds to the non-transcribed strand of a genomic DNA duplex. In other words, the preferred oligonucleotides of the invention target the sense strand of the DNA, i.e. the oligonucleotides of the invention are complementary to the non-transcribed strand of the target duplex DNA. The sequence of the non-transcribed strand of a DNA duplex is found in the mRNA produced from that duplex, given that mRNA uses uracil-containing nucleotides in place of thymine-containing nucleotides.


Moreover, the initial observation that single-stranded oligonucleotides comprising these modifications and lacking any particular triplex forming domain have reproducibly enhanced gene repair activity in a variety of assay systems as compared to a chimeric RNA-DNA double-stranded hairpin control or single-stranded oligonucleotides comprising other backbone modifications was surprising. The single-stranded molecules of the invention totally lack the complementary RNA binding structure that stabilizes a normal chimeric double-stranded hairpin of the type disclosed in U.S. Pat. No. 5,565,350 yet is more effective in producing targeted base conversion as compared to such a chimeric RNA-DNA double-stranded hairpin. In addition, the molecules of the invention lack any particular triplex forming domain involved in Hoogsteen interactions with the DNA double helix and required by other known oligonucleotides in other oligonucleotide dependant gene conversion systems. Although the lack of these functional domains was expected to decrease the efficiency of an alteration in a sequence, just the opposite occurs: the efficiency of sequence alteration using the modified oligonucleotides of the invention is higher than the efficiency of sequence alteration using a chimeric RNA-DNA hairpin targeting the same sequence alteration. Moreover, the efficiency of sequence alteration or gene conversion directed by an unmodified oligonucleotide is many times lower as compared to a control chimeric RNA-DNA molecule or the modified oligonucleotides of the invention targeting the same sequence alteration. Similarly, molecules containing at least 3 2′-O-methyl base analogs are about four to five fold less efficient as compared to an oligonucleotide having the same number of phosphorothioate linkages.


The oligonucleotides of the present invention for alteration of a single base are about 17 to about 121 nucleotides in length, preferably about 17 to about 74 nucleotides in length. Most preferably, however, the oligonucleotides of the present invention are at least about 25 bases in length, unless there are self-dimerization structures within the oligonucleotide. If the oligonucleotide has such an unfavorable structure, lengths longer than 35 bases are preferred. Oligonucleotides with modified ends both shorter and longer than certain of the exemplified, modified oligonucleotides herein function as gene repair or gene knockout agents and are within the scope of the present invention.


Once an oligomer is chosen, it can be tested for its tendency to self-dimerize, since self-dimerization may result in reduced efficiency of alteration of genetic information. Checking for self-dimenzation tendency can be accomplished manually or, more preferably, by using a software program. One such program is Oligo Analyzer 2.0, available through Integrated DNA Technologies (Coralville, Iowa 52241); this program is available for use on the world wide web at the Integrated DNA Technologies web site.


For each oligonucleotide sequence input into the program, Oligo Analyzer 2.0 reports possible seif-dimerized duplex forms, which are usually only partially duplexed, along with the free energy change associated with such self-dimerization. Delta G-values that are negative and large in magnitude, indicating strong seif-dimerization potential, are automatically flagged by the software as “bad”. Another software program that analyzes oligomers for pair dimer formation is Primer Select from DNASTAR, Inc., 1228 S. Park St., Madison, Wis. 53715, Phone: (608) 258-7420


If the sequence is subject to significant self-dimerization, the addition of further sequence flanking the “repair” nucleotide can improve gene correction frequency.


Generally, the oligonucleotides of the present invention are identical in sequence to one strand of the target DNA, which can be either strand of the target DNA, with the exception of one or more targeted bases positioned within the DNA domain of the oligonucleotide, and preferably toward the middle between the modified terminal regions. Preferably, the difference in sequence of the oligonucleotide as compared to the targeted genomic DNA is located at about the middle of the oligonucleotide sequence. In a preferred embodiment, the oligonucleotides of the invention are complementary to the non-transcribed strand of a duplex. In other words, the preferred oligonucleotides target the sense strand of the DNA, i.e. the oligonucleotides of the invention are preferably complementary to the strand of the target DNA the sequence of which is found in the mRNA.


The oligonucleotides of the invention can include more than a single base change. In an oligonucleotide that is about a 70-mer, with at least one modified residue incorporated on the ends, as disclosed herein, multiple bases can be simultaneously targeted for change. The target bases may be up to 27 nucleotides apart and may not be changed together in all resultant plasmids in all cases. There is a frequency distribution such that the closer the target bases are to each other in the central DNA domain within the oligonucleotides of the invention, the higher the frequency of change in a given cell. Target bases only two nucleotides apart are changed together in every case that has been analyzed. The farther apart the two target bases are, the less frequent the simultaneous change. Thus, oligonucleotides of the invention may be used to repair or alter multiple bases rather than just one single base. For example, in a 74-mer oligonucleotide having a central base targeted for change, a base change event up to about 27 nucleotides away can also be effected. The positions of the altering bases within the oligonucleotide can be optimized using any one of the assays described herein. Preferably, the altering bases are at least about 8 nucleotides from one end of the oligonucleotide.


The oligonucleotides of the present invention can be introduced into cells by any suitable means. According to certain preferred embodiments, the modified oligonucleotides may be used alone. Suitable means, however, include the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, microinjecton and other methods known in the art to facilitate cellular uptake. According to certain preferred embodiments of the present invention, the isolated cells are treated in culture according to the methods of the invention, to mutate or repair a target gene. Modified cells may then be reintroduced into the organism as, for example, in bone marrow having a targeted gene. Alternatively, modified cells may be used to regenerate the whole organism as, for example, in a plant having a desired targeted genomic change. In other instances, targeted genomic alteration, including repair or mutagenesis, may take place in vivo following direct administration of the modified, single-stranded oligonucleotides of the invention to a subject.


The single-stranded, modified oligonucleotides of the present invention have numerous applications as gene repair, gene modification, or gene knockout agents. Such oligonucleotides may be advantageously used, for example, to introduce or correct multiple point mutations. Each mutation leads to the addition, deletion or substitution of at least one base pair. The methods of the present invention offer distinct advantages over other methods of altering the genetic makeup of an organism, in that only the individually targeted bases are altered. No additional foreign DNA sequences are added to the genetic complement of the organism. Such agents may, for example, be used to develop plants or animals with improved traits by rationally changing the sequence of selected genes in cultured cells. Modified cells are then cloned into whole plants or animals having the altered gene. See, e.g., U.S. Pat. No. 6,046,380 and U.S. Pat. No. 5,905,185 incorporated herein by reference. Such plants or animals produced using the compositions of the invention lack additional undesirable selectable markers or other foreign DNA sequences. Targeted base pair substitution or frameshift mutations introduced by an oligonucleotide in the presence of a cell-free extract also provides a way to modify the sequence of extrachromosomal elements, including, for example, plasmids, cosmids and artificial chromosomes. The oligonucleotides of the invention also simplify the production of transgenic animals having particular modified or inactivated genes. Altered animal or plant model systems such as those produced using the methods and oligonucleotides of the invention are invaluable in determining the function of a gene and in evaluating drugs. The oligonucleotides and methods of the present invention may also be used for gene therapy to correct mutations causative of human diseases.


The purified oligonucleotide compositions may be formulated in accordance with routine procedures as a pharmaceutical composition adapted for bathing cells in culture, for microinjecton into cells in culture, and for intravenous administration to human beings or animals. Typically, compositions for cellular administration or for intravenous administration into animals, including humans, are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anaesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients will be supplied either separately or mixed together in unit dosage form, for example, as a dry, lyophilized powder or water-free concentrate. The composition may be stored in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent in activity units. Where the composition is administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade “water for injection” or saline. Where the composition is to be administered by injection, an ampule of sterile water for injection or saline may be provided so that the ingredients may be mixed prior to administration.


Pharmaceutical compositions of this invention comprise the compounds of the present invention and pharmaceutically acceptable salts thereof, with any pharmaceutically acceptable ingredient, excipient, carrier, adjuvant or vehicle.


The oligonucleotides of the invention are preferably administered to the subject in the form of an injectable composition. The composition is preferably administered parenterally, meaning intravenously, intraarterially, intrathecally, interstitially or intracavitarilly. Pharmaceutical compositions of this invention can be administered to mammals including humans in a manner similar to other diagnostic or therapeutic agents. The dosage to be administered, and the mode of administration will depend on a variety of factors including age, weight, sex, condition of the subject and genetic factors, and will ultimately be decided by medical personnel subsequent to experimental determinations of varying dosage as described herein. In general, dosage required for correction and therapeutic efficacy will range from about 0.001 to 50,000 μg/kg, preferably between 1 to 250 μg/kg of host cell or body mass, and most preferably at a concentration of between 30 and 60 micromolar.


For cell administration, direct injection into the nucleus, biolistic bombardment, electroporation, liposome transfer and calcium phosphate precipitation may be used. In yeast, lithium acetate or spheroplast transformation may also be used. In a preferred method, the administration is performed with a liposomal transfer compound, e.g., DOTAP (Boehringer-Mannheim) or an equivalent such as lipofectin. The amount of the oligonucleotide used is about 500 nanograms in 3 micrograms of DOTAP per 100,000 cells. For electroporation, between 20 and 2000 nanograms of oligonucleotide per million cells to be electroporated is an appropriate range of dosages which can be increased to improve efficiency of genetic alteration upon review of the appropriate sequence according to the methods described herein.


Another aspect of the invention is a kit comprising at least one oligonucleotide of the invention. The kit may comprise an addition reagent or article of manufacture. The additional reagent or article of manufacture may comprise a cell extract, a cell, or a plasmid, such as one of those disclosed in the Figures herein, for use in an assay of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. Flow diagram for the generation of modified single-stranded oligonucleotides. The upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (A) 2′-O-methyl RNA nucleotides or (B) phosphorothioate linkages. Fold changes in repair activity for correction of kans in the HUH7 cell-free extract are presented in parenthesis. HUH-7 cells are described in Nakabayashi et al., Cancer Research 42: 3858-3863 (1982). Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene. The numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the molecule. Hence oligo 12S/25G contains an all phosphorothioate backbone, displayed as a dotted line. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G). FIG. 1(C) provides a schematic plasmid indicating the sequence of the kan chimeric double-stranded hairpin oligonucleotide (left; SEQ ID NO:4341) and the sequence the tet chimeric double-stranded hairpin oligonucleotide used in other experiments (SEQ ID NO:4342). FIG. 1(D) provides a flow chart of a kan experiment in which a chimeric double-stranded hairpin oligonucleotide (SEQ ID NO:4341) is used. In FIG. 1(D), the Kan mutant sequence corresponds to SEQ ID NO:4343 and SEQ ID NO:4344: the Kan converted sequence corresponds to SEQ ID NO:4345 and SEQ ID NO:4346; the mutant sequence in the sequence trace corresponds to SEQ ID NO:4347 and the converted sequences in the sequence trace correspond to SEQ ID NO:4348.



FIG. 2. Genetic readout system for correction of a point mutation in plasmid pKsm4021. A mutant kanamycin gene harbored in plasmid pKsm4021 is the target for correction by oligonucleotides. The mutant G is converted to a C by the action of the oligo. Corrected plasmids confer resistance to kanamycin in E.coli (DH10B) after electroporation leading to the genetic readout and colony counts. The wild type sequence corresponds to SEQ ID NO:4349.



FIG. 3. Target plasmid and sequence correction of a frameshift mutation by chimeric and single-stranded oligonucleotides. (A) Plasmid pTsΔ208 contains a single base deletion mutation at position 208 rendering it unable to confer tet resistance. The target sequence presented below indicates the insertion of a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) DNA sequence confirming base insertion directed by Tet 3S/25G; the yellow highlight indicates the position of frame shift repair. The wild type sequence corresponds to SEQ ID NO:4350, the mutant sequence corresponds to SEQ ID NO:4351 and the converted sequence corresponds to SEQ ID NO:4352. The control sequence in the sequence trace corresponds to SEQ ID NO:4353 and the 3S/25A sequence in the sequence trace corresponds to SEQ ID NO:4354.



FIG. 4. DNA sequences of representative kanr colonies. Confirmation of sequence alteration directed by the indicated molecule is presented along with a table outlining codon distribution. Note that 10S/25G and 12S/25G elicit both mixed and unfaithful gene repair. The number of clones sequenced is listed in parentheses next to the designation for the single-stranded oligonucleotide. A plus (+) symbol indicates the codon identified while a figure after the (+) symbol indicates the number of colonies with a particular sequence. TAC/TAG indicates a mixed peak. Representative DNA sequences are presented below the table with yellow highlighting altered residues. The sequences in the sequence trace have been assigned numbers as follows: 3S/25G, 6S/25G and 8S/25G correspond to SEQ ID NO:4355, 10S/25G corresponds to SEQ ID NO:4356, 25S/25G on the lower left corresponds to SEQ ID NO:4357 and 25S/25G on the lower right corresponds to SEQ ID NO:4358.



FIG. 5. Gene correction in HeLa cells. Representative oligonucleotides of the invention are co-transfected with the pCMVneo()FlAsH plasmid (shown in FIG. 9) into HeLa cells. Ligand is diffused into cells after co-transfection of plasmid and oligonucleotides. Green fluorescence indicates gene correction of the mutation in the antibiotic resistance gene. Correction of the mutation results in the expression of a fusion protein that carries a marker ligand binding site and when the fusion protein binds the ligand, a green fluorescence is emitted. The ligand is produced by Aurora Biosciences and can readily diffuse into cells enabling a measurement of corrected protein function; the protein must bind the ligand directly to induce fluorescence. Hence cells bearing the corrected plasmid gene appear green while “uncorrected” cells remain colorless.



FIG. 6. Z-series imaging of corrected cells. Serial cross-sections of the HeLa cell represented in FIG. 5 are produced by Zeiss 510 LSM confocal microscope revealing that the fusion protein is contained within the cell.



FIG. 7. Hygromycin-eGFP target plasmids. (A) Plasmid pAIJRHYG(ins)GFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter. The target sequence presented below indicates the deletion of an A and the substitution of a C for a T directed by the oligonucleotides to re-establish the resistant phenotype. In FIG. 7A, the sequence of the normal allele corresponds to SEQ ID NO:4359, the sequence of the target/existing mutation corresponds to SEQ ID NO:4360 and the sequence of the desired alteration corresponds to SEQ ID NO:4361. (B) Plasmid pAURHYG(rep)GFP contains a base substitution mutation introducing a G at nucleotide 137, at codon 46, of the Hygromycin B coding sequence (cds). The target sequence presented below the diagram indicates the amino acid conservative replacement of G with C, restoring gene function. In FIG. 7B, the sequence of the normal allele corresponds to SEQ ID NO:4359, the sequence of the target/existing mutation corresponds to SEQ ID NO:4362 and the sequence of the desired alteration corresponds to SEQ ID NO:4361.



FIG. 8. Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined. In FIG. 8, the sequence of HygE3T/25 corresponds to SEQ ID NO:4363, the sequence of HygE3T/74 corresponds to SEQ ID NO:4364, the sequence of HygE3T/74a corresponds to SEQ ID NO:4365, the sequence of HygGG/Rev corresponds to SEQ ID NO:4366 and the sequence of Kan70T corresponds to SEQ ID NO:4367.



FIG. 9. pAURNeo(−)FlAsH plasmid. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the gene alteration event by fluorescence. In FIG. 9, the sequence of the Neo/kan target mutant corresponds to SEQ ID NO:4343 and SEQ ID NO:4344, the converted sequence corresponds to SEQ ID NO:4345 and SEQ ID NO:4346 and the FIAsH peptide sequence corresponds to SEQ ID NO:4367.



FIG. 10. pYESHyg(x)eGFP plasmid. This plasmid is a construct similar to the pAURHyg(x)eGFP construct shown in FIG. 7, except the promoter is the inducible GAL1 promoter. This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose.





The following examples are provided by way of illustration only, and are not intended to limit the scope of the invention disclosed herein.


EXAMPLE 1
Assay Method for Base Alteration and Preferred Oligonucleotide Selection

In this example, single-stranded and double-hairpin oligonucleotides with chimeric backbones (see FIG. 1 for structures (A and B) and sequences (C and D) of assay oligonucleotides) are used to correct a point mutation in the kanamycin gene of pKsm4021 (FIG. 2) or the tetracycline gene of pTsΔ208 (FIG. 3). All kan oligonucleotides share the same 25 base sequence surrounding the target base identified for change, just as all tet oligonucleotides do. The sequence is given in FIG. 1C and FIG. 1D. Each plasmid contains a functional ampicillin gene. Kanamycin gene function is restored when a G at position 4021 is converted to a C (via a substitution mutation); tetracycline gene function is restored when a deletion at position 208 is replaced by a C (via frameshift mutation). A separate plasmid, pAURNeo(−)FlAsH (FIG. 9), bearing the kans gene is used in the cell culture experiments. This plasmid was constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferase (kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FlAsH ligand into the pAUR123 shuttle vector (Panvera Corp., Madison, Wis.). The resulting construct replicates in S. cerevisiae at low copy number, confers resistance to aureobasidinA and constitutively expresses either the Neo+/FlAsH fusion product (after alteration) or the truncated Neo−/FlAsH product (before alteration) from the ADH1 promoter. By extending the reading frame of this gene to code for a unique peptide sequence capable of binding a small ligand to form a fluorescent complex, restoration of expression by correction of the stop codon can be detected in real time using confocal microscopy. Additional constructs can be made to test additional gene alteration events.


We also construct three mammalian expression vectors, pHyg(rep)eGFP, pHyg(Δ)eGFP, pHyg(ins)eGFP, that contain a substitution mutation at nucleotide 137 of the hygromycin-B coding sequence. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. All point mutations create a nonsense termination codon at residue 46. We use pHygEGFP plasmid (Invitrogen, CA) DNA as a template to introduce the mutations into the hygromycin-eGFP fusion gene by a two step site-directed mutagenesis PCR protocol. First, we generate overlapping 5′ and a 3′ amplicons surrounding the mutation site by PCR for each of the point mutation sites. A 215 bp 5′ amplicon for the (rep), (Δ) or (ins) was generated by polymerization from oligonucleotide primer HygEGFPf (5′-AATACGACTCACTATAGG-3′; SEQ ID NO:4369) to primer Hygrepr (5′GACCTATCCACGCCCTCC-3′: SEQ ID NO:4370), HygΔr (5′-GACTATCCACGCCCTCC-3′; SEQ ID NO:4371), or Hyginsr (5′-GACATTATCCACGCCCTCC-3α; SEQ ID NO:4372), respectively. We generate a 300 bp 3′ amplicon for the (rep), (Δ) or (ins) by polymerization from oligonucleotide primers Hygrepf (5′-CTGGGATAGGTCCTGCGG-3′; SEQ ID NO:4373), HygΔf(5′-CGTGGATAGTCCTGCGG-3+; SEQ ID NO:4374), Hyginsf (5′-CGTGGATAATGTCCTGCGG-3′; SEQ ID NO:4375), respectively to primer HygEGFPr (5′-AAATCACGCCATGTAGTG-3′; SEQ ID NO:4376). We mix 20 ng of each of the resultant 5′ and 3′ overlapping amplicon mutation sets and use the mixture as a template to amplify a 523 bp fragment of the Hygromycin gene spanning the KpnI and RsrII restriction endonuclease sites. We use the Expand PCR system (Roche) to generate all amplicons with 25 cycles of denaturing at 94° C. for 10 seconds, annealing at 55° C. for 20 seconds and elongation at 68° C. for 1 minute. We digest 10 μg of vector pHygEGFP and 5 μg of the resulting fragments for each mutation with KpnI and RsrII (NEB) and gel purify the fragment for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ration using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm the mutation by Sanger dideoxy chain termination sequencing and purify the plasmid using a Qiagen maxiprep kit.


Oligonucleotide synthesis and cells. Chimeric oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) are synthesized using available phosphoramidites on controlled pore glass supports. After deprotecton and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al., Biochem. 39, 5808-5816 (2000) and the concentrations determined spectrophotometrically (33 or 40 μg/ml per A260 unit of single-stranded or hairpin oligomer). HUH7 cells are grown in DMEM, 10% FBS, 2 mM glutamine, 0.5% pen/strep. The E.coli strain, DH10B, is obtained from Life Technologies (Gaithersburg, Md.); DH10B cells contain a mutation in the RECA gene (recA).


Cell-free extracts. We prepare cell-free extracts from HUH7 cells or other mammalian cells, as follows. We employ this protocol with essentially any mammalian cell including, for example, H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C127I (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma). We harvest approximately 2×108 cells. We then wash the cells immediately in cold hypotonic buffer (20 mM HEPES, pH7.5; 5 mM KCl; 1.5 mM MgCl2; 1 mM DTT) with 250 mM sucrose. We then resuspend the cells in cold hypotonic buffer without sucrose and after 15 minutes we lyse the cells with 25 strokes of a Dounce homogenizer using a tight fitting pestle. We incubate the lysed cells for 60 minutes on ice and centrifuge the sample for 15 minutes at 12000×g. The cytoplasmic fraction is enriched with nuclear proteins due to the extended co-incubation of the fractions following cell breakage. We then immediately aliquote and freeze the supernatant at −80° C. We determine the protein concentration in the extract by the Bradford assay.


We also perform these experiments with cell-free extracts obtained from fungal cells, including, for example, S. cerevisiae (yeast), Ustilago maydis, and Candida albicans. For example, we grow yeast cells into log phase in 2L YPD medium for 3 days at 30° C. We then centrifuge the cultures at 5000×g, resuspend the pellets in a 10% sucrose, 50 mM Tris, 1 mM EDTA lysis solution and freeze them on dry ice. After thawing, we add KCl, spermidine and lyticase to final concentrations of 0.25 mM, 5 mM and 0.1 mg/ml, respectively. We incubate the suspension on ice for 60 minutes, add PMSF and Triton X100 to final concentrations of 0.1 mM and 0.1% and continue to incubate on ice for 20 minutes. We centrifuge the lysate at 3000×g for 10 minutes to remove larger debris. We then remove the supernatant and clarify it by centrifuging at 30000×g for 15 minutes. We then add glycerol to the clarified extract to a concentration of 10% (v/v) and freeze aliquots at −80° C. We determine the protein concentration of the extract by the Bradford assay.


Reaction mixtures of 50 μl are used, consisting of 10-30 μg protein of cell-free extract, which can be optionally substituted with purified proteins or enriched fractions, about 1.5 μg chimeric double-hairpin oligonucleotide or 0.55 μg single-stranded molecule (3S/25G or 6S/25G, see FIG. 1), and 1 μg of plasmid DNA (see FIGS. 2 and 3) in a reaction buffer of 20 mM Tris, pH 7.4, 15 mM MgCl2, 0.4 mM DTT, and 1.0 mM ATP. Reactions are initiated with extract and incubated at 30° C. for 45 min. The reaction is stopped by placing the tubes on ice and then immediately deproteinized by two phenol/chloroform (1:1) extractions. Samples are then ethanol precipitated. The nucleic acid is pelleted at 15,000 r.p.m. at 4° C. for 30 min., is washed with 70% ethanol, resuspended in 50 μl H2O, and is stored at −20° C. 5 μl of plasmid from the resuspension (˜100 ng) was transfected in 20 μl of DH10B cells by electroporation (400 V, 300 μF, 4 kΩ) in a Cell-Porator apparatus (Life Technologies). After electroporation, cells are transferred to a 14 ml Falcon snap-cap tube with 2 ml SOC and shaken at 37° C. for 1 h. Enhancement of final kan colony counts is achieved by then adding 3 ml SOC with 10 μg/ml kanamycin and the cell suspension is shaken for a further 2 h at 37° C. Cells are then spun down at 3750×g and the pellet is resuspended in 500 μl SOC. 200 μl is added undiluted to each of two kanamycin (50 μg/ml) agar plates and 200 μl of a 105 dilution is added to an ampicillin (100 μg/ml) plate. After overnight 37° C. incubation, bacterial colonies are counted using an Accucount 1000 (Biologics). Gene conversion effectiveness is measured as the ratio of the average of the kan colonies on both plates per amp colonies multiplied by 10−5 to correct for the amp dilution.


The following procedure can also be used. 5 μl of resuspended reaction mixtures (total volume 50 μl) are used to transform 20 μl aliquots of electro-competent ΔH10B bacteria using a Cell-Porator apparatus (Life Technologies). The mixtures are allowed to recover in 1 ml SOC at 37° C. for 1 hour at which time 50 μg/ml kanamycin or 12 μg/ml tetracycline is added for an additional 3 hours. Prior to plating, the bacteria are pelleted and resuspended in 200 μl of SOC. 100 μl aliquots are plated onto kan or tet agar plates and 100 μl of a 10−4 dilution of the cultures are concurrently plated on agar plates containing 100 μg/ml of ampicillin. Plating is performed in triplicate using sterile Pyrex beads. Colony counts are determined by an Accu-count 1000 plate reader (Biologics). Each plate contains 200-500 ampicillin resistant colonies or 0-500 tetracycline or kanamycin resistant colonies. Resistant colonies are selected for plasmid extraction and DNA sequencing using an ABI Prism kit on an ABI 310 capillary sequencer (PE Biosystems).


Chimeric single-stranded oligonucleotides. In FIG. 1 the upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (FIG. 1A) 2′-O-methyl RNA nucleotides or (FIG. 1B) phosphorothioate linkages. Fold changes in repair activity for correction of kans in the HUH7 cell-free extract are presented in parenthesis. Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene.


Molecules bearing 3, 6, 8, 10 and 12 phosphorothioate linkages in the terminal regions at each end of a backbone with a total of 24 linkages (25 bases) are tested in the kans system. Alternatively, molecules bearing 2, 4, 5, 7, 9 and 11 in the terminal regions at each end are tested. The results of one such experiment, presented in Table 1 and FIG. 1B, illustrate an enhancement of correction activity directed by some of these modified structures. In this illustrative example, the most efficient molecules contained 3 or 6 phosphorothioate linkages at each end of the 25-mer; the activities are approximately equal (molecules IX and X with results of 3.09 and 3.7 respectively). A reduction in alteration activity may be observed as the number of modified linkages in the molecule is further increased. Interestingly, a single-strand molecule containing 24 phosphorothioate linkages is minimally active suggesting that this backbone modification when used throughout the molecule supports only a low level of targeted gene repair or alteration. Such a non-altering, completely modified molecule can provide a baseline control for determining efficiency of correction for a specific oligonucleotide molecule of known sequence in defining the optimum oligonucleotide for a particular alteration event.


The efficiency of gene repair directed by phosphorothioate-modified, single-stranded molecules, in a length dependent fashion, led us to examine the length of the RNA modification used in the original chimera as it relates to correction. Construct III represents the “RNA-containing” strand of chimera I and, as shown in Table 1 and FIG. 2A, it promotes inefficient gene repair. But, as shown in the same figure, reducing the RNA residues on each end from 10 to 3 increases the frequency of repair. At equal levels of modification, however, 25-mers with 2′-O-methyl ribonucleotides were less effective gene repair agents than the same oligomers with phosphorothioate linkages. These results reinforce the fact that an RNA containing oligonucleotide is not as effective in promoting gene repair or alteration as a modified DNA oligonucleotide.


Repair of the kanamycin mutation requires a G→C exchange. To confirm that the specific desired correction alteration was obtained, colonies selected at random from multiple experiments are processed and the isolated plasmid DNA is sequenced. As seen in FIG. 4, colonies generated through the action of the single-stranded molecules 3S/25G (IX), 6S/25G (X) and 8S/25G (XI) respectively contained plasmid molecules harboring the targeted base correction. While a few colonies appeared on plates derived from reaction mixtures containing 25-mers with 10 or 12 thioate linkages on both ends, the sequences of the plasmid molecules from these colonies contain nonspecific base changes. In these illustrative examples, the second base of the codon is changed (see FIG. 3). These results show that modified single-strands can direct gene repair, but that efficiency and specificity are reduced when the 25-mers contain 10 or more phosphorothioate linkages at each end.


In FIG. 1, the numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the exemplified molecule although other molecules with 2, 4, 5, 7, 9 and 11 modifications at each end can also be tested. Hence oligo 12S/25G represents a 25-mer oligonucleotide which contains 12 phosphorothioate linkages on each side of the central G target mismatch base producing a fully phosphorothioate linked backbone, displayed as a dotted line. The dots are merely representative of a linkage in the figure and do not depict the actual number of linkages of the oligonucleotide. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G).


Correction of a mutant kanamycin gene in cultured mammalian cells. The experiments are performed using different mammalian cells, including, for example, 293 cells (transformed human primary kidney cells), HeLa cells (human cervical carcinoma), and H1299 (human epithelial carcinoma, non-small cell lung cancer). HeLa cells are grown at 37° C. and 5% CO2 in a humidified incubator to a density of 2×105 cells/ml in an 8 chamber slide (Lab-Tek). After replacing the regular DMEM with Optimem, the cells are co-transfected with 10 μg of plasmid pAURNeo()FlAsH and 5 μg of modified single-stranded oligonucleotide (3S/25G) that is previously complexed with 10 μg lipofectamine, according to the manufacturer's directions (Life Technologies). The cells are treated with the liposome-DNA-oligo mix for 6 hrs at 37° C. Treated cells are washed with PBS and fresh DMEM is added. After a 16-18 hr recovery period, the culture is assayed for gene repair. The same oligonucleotide used in the cell-free extract experiments is used to target transfected plasmid bearing the kans gene. Correction of the point mutation in this gene eliminates a stop codon and restores full expression. This expression can be detected by adding a small non-fluorescent ligand that bound to a C-C-R-E-C-C (SEQ ID NO:4385) sequence in the genetically modified carboxy terminus of the kan protein, to produce a highly fluorescent complex (FIAsH system, Aurora Biosciences Corporation). Following a 60 min incubation at room temperature with the ligand (FlAsH-EDT2), cells expressing full length kan product acquire an intense green fluorescence detectable by fluorescence microscopy using a fluorescein filter set. Similar experiments are performed using the HygeGFP target as described in Example 2 with a variety of mammalian cells, including, for example, COS-1 and COS-7 cells (African green monkey), and CHO-K1 cells (Chinese hamster ovary). The experiments are also performed with PG12 cells (rat pheocliromocytoma) and ES cells (human embryonic stem cells).


Summary of experimental results. Tables 1, 2 and 3 respectively provide data on the efficiency of gene repair directed by single-stranded oligonucleotides. Table 1 presents data using a cell-free extract from human liver cells (HUH7) to catalyze repair of the point mutation in plasmid pkansm4021 (see FIG. 1). Table 2 illustrates that the oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity. Table 3 illustrates data from the repair of a frameshift mutation (FIG. 3) in the tet gene contained in plasmid pTetΔ208. Table 4 illustrates data from repair of the pkansm4021 point mutation catalyzed by plant cell extracts prepared from canola and musa (banana). Colony numbers are presented as kanr or tet and fold increases (single strand versus double hairpin) are presented for kanr in Table 1.



FIG. 5A is a confocal picture of HeLa cells expressing the corrected fusion protein from an episomal target. Gene repair is accomplished by the action of a modified single-stranded oligonucleotide containing 3 phosphorothioate linkages at each end (3S/25G). FIG. 5B represents a “Z-series” of HeLa cells bearing the corrected fusion gene. This series sections the cells from bottom to top and illustrates that the fluorescent signal is “inside the cells”.


Results. In summary, we have designed a novel class of single-stranded oligonucleotides with backbone modifications at the termini and demonstrate gene repair/conversion activity in mammalian and plant cell-free extracts. We confirm that the all DNA strand of the RNA-DNA double-stranded double hairpin chimera is the active component in the process of gene repair. In some cases, the relative frequency of repair by the novel oligonucleotides of the invention is elevated approximately 3-4-fold when compared to frequencies directed by chimeric RNA-DNA double hairpin oligonucleotides.


This strategy centers around the use of extracts from various sources to correct a mutation in a plasmid using a modified single-stranded or a chimeric RNA-DNA double hairpin oligonucleotide. A mutation is placed inside the coding region of a gene conferring antibiotic resistance in bacteria, here kanamycin or tetracycline. The appearance of resistance is measured by genetic readout in E.coli grown in the presence of the specified antibiotic. The importance of this system is that both phenotypic alteration and genetic inheritance can be measured. Plasmid pKsm4021 contains a mutation (T→G) at residue 4021 rendering it unable to confer antibiotic resistance in E.coli. This point mutation is targeted for repair by oligonucleotides designed to restore kanamycin resistance. To avoid concerns of plasmid contamination skewing the colony counts, the directed correction is from G→C rather than G→T (wild-type). After isolation, the plasmid is electroporated into the DH10B strain of E.coli, which contains inactive RecA protein. The number of kanamycin colonies is counted and normalized by ascertaining the number of ampicillin colonies, a process that controls for the influence of electroporation. The number of colonies generated from three to five independent reactions was averaged and is presented for each experiment. A fold increase number is recorded to aid in comparison.


The original RNA-DNA double hairpin chimera design, e.g., as disclosed in U.S. Pat. No. 5,565,350, consists of two hybridized regions of a single-stranded oligonucleotide folded into a double hairpin configuration. The double-stranded targeting region is made up of a 5 base pair DNA/DNA segment bracketed by 10 base pair RNA/DNA segments. The central base pair is mismatched to the corresponding base pair in the target gene. When a molecule of this design is used to correct the kans mutation, gene repair is observed (I in FIG. 1A). Chimera II (FIG. 1B) differs partly from chimera I in that only the DNA strand of the double hairpin is mismatched to the target sequence. When this chimera was used to correct the kans mutation, it was twice as active. In the same study, repair function could be further increased by making the targeting region of the chimera a continuous RNA/DNA hybrid.


Frame shift mutations are repaired. By using plasmid pTsΔ208, described in FIG. 1(C) and FIG. 3, the capacity of the modified single-stranded molecules that showed activity in correcting a point mutation, can be tested for repair of a frameshift. To determine efficiency of correction of the mutation, a chimeric oligonucleotide (Tet I), which is designed to insert a T residue at position 208, is used. A modified single-stranded oligonucleotide (Tet IX) directs the insertion of a T residue at this same site. FIG. 3 illustrates the plasmid and target bases designated for change in the experiments. When all reaction components are present (extract, plasmid, oligomer), tetracycline resistant colonies appear. The colony count increases with the amount of oligonucleotide used up to a point beyond which the count falls off (Table 3). No colonies above background are observed in the absence of either extract or oligonucleotide, nor when a modified single-stranded molecule bearing perfect complementarity is used. FIG. 3 represents the sequence surrounding the target site and shows that a T residue is inserted at the correct site. We have isolated plasmids from fifteen colonies obtained in three independent experiments and each analyzed sequence revealed the same precise nucleotide insertion. These data suggest that the single-stranded molecules used initially for point mutation correction can also repair nucleotide deletions.


Comparison of phosphorothioate oligonucleotides to 2′-O-methyl substituted oligonucleotides. From a comparison of molecules VII and XI, it is apparent that gene repair is more subject to inhibition by RNA residues than by phosphorothioate linkages. Thus, even though both of these oligonucleotides contain an equal number of modifications to impart nuclease resistance, XI (with 16 phosphorothioate linkages) has good gene repair activity while VII (with 16 2′-O-methyl RNA residues) is inactive. Hence, the original chimeric double hairpin oligonucleotide enabled correction directed, in large part, by the strand containing a large region of contiguous DNA residues.


Oligonucleotides can target multiple nucleotide alterations within the same template. The ability of individual single-stranded oligonucleotides to correct multiple mutations in a single target template is tested using the plasmid pKsm4021 and the following single-stranded oligonucleotides modified with 3 phosphorothioate linkages at each end (indicated as underlined nucleotides): Oligo1 is a 25-mer with the sequence TTCGATAAGCCTATGCTGACCCGTG (SEQ ID NO:4377) corrects the original mutation present in the kanamycin resistance gene of pKSm4021 as well as directing another alteration 2 basepairs away in the target sequence (both indicated in boldface); Oligo2 is a 70-mer with the 5′-end sequence TTCGGCTACGACTGGGCACAACAGACAATTGGC (SEQ ID NO:4378) with the remaining nucleotides being completely complementary to the kanamycin resistance gene and also ending in 3 phosphorothioate linkages at the 3′ end. Oligo2 directs correction of the mutation in pKsm4021 as well as directing another alteration 21 basepairs away in the target sequence (both indicated in boldface).


We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pKsM4021 plasmid. These include, for example, a second 25-mer that alters two nucleotides that are three nucleotides apart with the sequence 5′-TTGTGCCCAGTCGTATCCGAATAGC-3′ (SEQ ID NO:4379); a 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-CATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGA-3′ (SEQ ID NO:4380); and another 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-GCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAATAGCCT-3′ (SEQ ID NO:4381). The nucleotides in the oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same way as the other oligonucleotides of the invention.


We assay correction of the original mutation in pKsm4021 by monitoring kanamycin resistance (the second alterations which are directed by Oligo2 and Oligo3 are silent with respect to the kanamycin resistance phenotype). In addition, in experiments with Oligo2, we also monitor cleavage of the resulting plasmids using the restriction enzyme Tsp509I which cuts at a specific site present only when the second alteration has occurred (at ATT in Oligo2). We then sequence these clones to determine whether the additional, silent alteration has also been introduced. The results of an analysis are presented below:
















Oligo1 (25-mer)
Oligo2 (70-mer)


















Clones with both sites changed
9
7


Clones with a single site changed
0
2


Clones that were not changed
4
1









Nuclease sensitivity of unmodified DNA oligonucleotide. Electrophoretic analysis of nucleic acid recovered from the cell-free extract reactions conducted here confirm that the unmodified single-stranded 25-mer did not survive incubation whereas greater than 90% of the terminally modified oligos did survive (as judged by photo-image analyses of agarose gels).


Plant extracts direct repair. The modified single-stranded constructs can be tested in plant cell extracts. We have observed gene alteration using extracts from multiple plant sources, including, for example, Arabidopsis, tobacco, banana, maize, soybean, canola, wheat, spinach as well as spinach chloroplast extract. We prepare the extracts by grinding plant tissue or cultured cells under liquid nitrogen with a mortar and pestle. We extract 3 ml of the ground plant tissue with 1.5 ml of extraction buffer (20 mM HEPES, pH7.5; 5 mM Kcl; 1.5 mM MgCl2; 10 mM DTT; 10% [v/v] glycerol; and 1% [w/v] PVP). We then homogenize the samples with 15 strokes of a Dounce homogenizer. Following homogenization, we incubate the samples on ice for 1 hour and centrifuge at 3000×g for 5 minutes to remove plant cell debris. We then determine the protein concentration in the supernatants (extracts) by Bradford assay. We dispense 100 μg (protein) aliquots of the extracts which we freeze in a dry ice-ethanol bath and store at −80° C.


We describe experiments using two sources here: a dicot (canola) and a monocot (banana, Musa acuminata cv. Rasthali). Each vector directs gene repair of the kanamycin mutation (Table 4); however, the level of correction is elevated 2-3 fold relative to the frequency observed with the chimeric oligonucleotide. These results are similar to those observed in the mammalian system wherein a significant improvement in gene repair occurred when modified single-stranded molecules were used.


Tables are attached hereto.









TABLE I







Gene repair activity is directed by single-stranded oligonucleotides.











Oligonucleotide
Plasmid
Extract (ug)
kanr colonies
Fold increase














I
pKSm4021
10
300



I

20
418
 1.0 ×


II

10
537


II

20
748
 1.78 ×


III

10
3


III

20
5
 0.01 ×


IV

10
112


IV

20
96
 0.22 ×


V

10
217


V

20
342
 0.81 ×


VI

10
6


VI

20
39
0.093 ×


VII

10
0


VII

20
0
   0 ×


VIII

10
3


VIII

20
5
 0.01 ×


IX

10
936


IX

20
1295
 3.09 ×


X

10
1140


X

20
1588
 3.7 ×


XI

10
480


XI

20
681
 1.6 ×


XII

10
18


XII

20
25
0.059 ×


XIII

10
0


XIII

20
4
0.009 ×




20
0


I


0










Plasmid pKsm4021 (1 μg), the indicated oligonucleotide (1.5 μg chimeric oligonucleotide or 0.55 μg single-stranded oligonucleotide; molar ratio of oligo to plasmid of 360 to 1) and either 10 or 20 μg of HUH7 cell-free extract were incubated 45 min at 37° C. Isolated plasmid DNA was electroporated into E. coli (strain DH10B) and the number of kanr colonies counted. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies generated from the same reaction and is the average of three experiments (standard deviation usually less than +/−15%). Fold increase is defined relative to 418 kanr colonies (second reaction) and in all reactions was calculated using the 20 μg sample.









TABLE II







Modified single-stranded oligomers are not dependent on MSH2


or MSH3 for optimal gene repair activity.













A.
Oligonucleotide
Plasmid
Extract
kanr colonies


















IX (3S/25G)

HUH7
637




X (6S/25G)

HUH7
836




IX

MEF2−/−
781




X

MEF2−/−
676




IX

MEF3−/−
582




X

MEF3−/−
530




IX

MEF+/+
332




X

MEF+/+
497






MEF2−/−
10






MEF3−/−
5






MEF+/+
14











Chimeric oligonucleotide (1.5 μg) or modified single-stranded oligonucleotide (0.55 μg) was incubated with 1 μg of plasmid pKsm4021 and 20 μg of the indicated extracts. MEF represents mouse embryonic fibroblasts with either MSH2 (2−/−) or MSH3 (3−/−) deleted. MEF+/+ indicates wild-type mouse embryonic fibroblasts. The other reaction components were then added and processed through the bacterial readout system. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies.









TABLE III







Frameshift mutation repair is directed by


single-stranded oligonucleotides










Oligonucleotide
Plasmid
Extract
tetr colonies














Tet IX (3S/25A; 0.5 μg)
pTSΔ208 (1 μg)


0




20 μg

0


Tet IX (0.5 μg)



48


Tet IX (1.5 μg)



130


Tet IX (2.0 μg)



68


Tet I (chimera; 1.5 μg)



48










Each reaction mixture contained the indicated amounts of plasmid and oligonucleotide. The extract used for these experiments came from HUH7 cells. The data represent the number of tetracycline resistant colonies per 106 ampicillin resistant colonies generated from the same reaction and is the average of 3 independent experiments. Tet I is a chimeric oligonucleotide and Tet IX is a modified single-stranded oligonucleotide that are designed to insert a T residue at position 208 of pTsΔ208. These oligonucleotides are equivalent to structures I and IX in FIG. 2.









TABLE IV







Plant cell-free extracts support gene repair by


single-stranded oligonucleotides










Oligonucleotide
Plasmid
Extract
kanr colonies














II (chimera)
pKSm402l
30 μg
Canola
337


IX (3S/25G)


Canola
763


X (6S/25G)


Canola
882


II


Musa
203


IX


Musa
343


X


Musa
746





Canola
0





Musa
0


IX


Canola
0


X


Musa
0










Canola or Musa cell-free extracts were tested for gene repair activity on the kanamycin-sensitive gene as previously described in (18). Chimeric oligonucleotide II (1.5 μg) and modified single-stranded oligonucleotides IX and X (0.55 μg) were used to correct pKSm4021. Total number of kanr colonies are present per 107 ampicillin resistant colonies and represent an average of four independent experiments.









TABLE V







Gene repair activity in cell-free extracts prepared from yeast


(Saccharomyces cerevisiae)











Cell-type
Plasmid
Chimeric Oligo
SS Oligo
kanr/ampr × 106














Wild type
pKansm4021
1 μg

0.36


Wild type


1 μg
0.81


ΔRAD52

1 μg

10.72


ΔRAD52


1 μg
17.41


ΔPMS1

1 μg

2.02


ΔPMS1


1 μg
3.23





In this experiment, the kans gene in pKans4021 is corrected by either a chimeric double-hairpin oligonucleotide or a single-stranded oligonucleotide containing three thioate linkages at each end (3S/25G).






EXAMPLE 2
Yeast Cell Targeting Assay Method for Base Alteration and Preferred Oligonucleotide Selection

In this example, single-stranded oligonucleotides with modified backbones and double-hairpin oligonucleotides with chimeric, RNA-DNA backbones are used to measure gene repair using two episomal targets with a fusion between a hygromycin resistance gene and eGFP as a target for gene repair. These plasmids are pAURHYG(rep)GFP, which contains a point mutation in the hygromycin resistance gene (FIG. 7), pAURHYG(ins)GFP, which contains a single-base insertion in the hygromycin resistance gene (FIG. 7) and pAURHYG(Δ)GFP which has a single base deletion. We also use the plasmid containing a wild-type copy of the hygromycin-eGFP fusion gene, designated pAURHYG(wt)GFP, as a control. These plasmids also contain an aureobasidinA resistance gene. In pAURHYG(rep)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region. In pAURHYG(ins)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, at codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene.


We synthesize the set of three yeast expression constructs pAURHYG(rep)eGFP, pAURHYG(Δ)eGFP, pAURHYG(ins)eGFP, that contain a point mutation at nucleotide 137 of the hygromycin-B coding sequence as follows. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. We construct this set of plasmids by excising the respective expression cassettes by restriction digest from pHyg(x)EGFP and ligation into pAUR123 (Panvera, Calif.). We digest 10 μg pAUR123 vector DNA, as well as, 10 μg of each pHyg(x)EGFP construct with KpnI and SaII (NEB). We gel purify each of the DNA fragments and prepare them for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ration using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm by Sanger dideoxy chain termination sequencing and purify using a Qiagen maxiprep kit.


We use this system to assay the ability of five oligonucleotides (shown in FIG. 8) to support correction under a variety of conditions. The oligonucleotides which direct correction of the mutation in pAURHYG(rep)GFP can also direct correction of the mutation in pAURHYG(ins)GFP. Three of the four oligonucleotides (HygE3T/25, HygE3T/74 and HygGG/Rev) share the same 25-base sequence surrounding the base targeted for alteration. HygGG/Rev is an RNA-DNA chimeric double hairpin oligonucleotide of the type described in the prior art. One of these oligonucleotides, HygE3T/74, is a 74-base oligonucleotide with the 25-base sequence centrally positioned. The fourth oligonucleotide, designated HygE3T/74α, is the reverse complement of HygE3T/74. The fifth oligonucleotide, designated Kan70T, is a non-specific, control oligonucleotide which is not complementary to the target sequence. Alternatively, an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2-O-methylated modified oligonucleotide may be used as a control.


Oligonucleotide synthesis and cells. We synthesized and purified the chimeric, double-hairpin oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 1. Plasmids used for assay were maintained stably in yeast (Saccharomyces cerevisiae) strain LSY678 MATα at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30° C. We then add 30 ml of fresh YPD media to the overnight cultures and continue shaking at 30° C. until the OD600 was between 0.5 and 1.0 (3-5 hours). We then wash the cells by centrifuging at 4° C. at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water. We then centrifuge at 4° C. at 3000 rpm for 5 minutes and resuspend in 1 ml ice-cold 1M sorbitol and then finally centrifuge the cells at 4° C. at 5000 rpm for 5 minutes and resuspend the cells in 120 μl 1M sorbitol. To transform electrocompetent cells with plasmids or oligonucleotides, we mix 40 μl of cells with 5 μg of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes. We then transfer the mixture to a 0.2 cm electroporation cuvette and electroporate with a BIO-RAD Gene Pulser apparatus at 1.5 kV, 25 μF, 200Ω for one five-second pulse. We then immediately resuspend the cells in 1 ml YPD supplemented with 1M sorbitol and incubate the cultures at 30° C. with shaking at 300 rpm for 6 hours. We then spread 200 μl of this culture on selective plates containing 300 μg/ml hygromycin and spread 200 μl of a 105 dilution of this culture on selective plates containing 500 ng/ml aureobasidinA and/or and incubate at 30° C. for 3 days to allow individual yeast colonies to grow. We then count the colonies on the plates and calculate the gene conversion efficiency by determining the number of hygromycin resistance colonies per 105 aureobasidinA resistant colonies.


Frameshift mutations are repaired in yeast cells. We test the ability of the oligonucleotides shown in FIG. 8 to correct a frameshift mutation in vivo using LSY678 yeast cells containing the plasmid pAURHYG(ins)GFP. These experiments, presented in Table 6, indicate that these oligonucleotides can support gene correction in yeast cells. These data reinforce the results described in Example 1 indicating that oligonucleotides comprising phosphorothioate linkages facilitate gene correction much more efficiently than control duplex, chimeric RNA-DNA oligonucleotides. This gene correction activity is also specific as transformation of cells with the control oligonucleotide Kan70T produced no hygromycin resistant colonies above background and thus Kan70T did not support gene correction in this system. In addition, we observe that the 74-base oligonucleotide (HygE3T/74) corrects the mutation in pAURHYG(ins)GFP approximately five-fold more efficiently than the 25-base oligonucleotide (HygE3T/25). We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)GFP. With this strain we observed that even without added oligonucleotides, there are too many hygromycin resistant colonies to count.


We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAUIRHYG(x)eGFP plasmid. These include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGGTACGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTAC-3′ (SEQ ID NO:4382); a 74-mer that alters two basepairs that are 15 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAACAGCTGCGCCGATGGTTTCTAC-3 (SEQ ID NO:4383)′; and a 74-mer that alters two basepairs that are 27 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAATAGCTGCGCCGACGGTTTCTAC (SEQ ID NO:4384). The nucleotides in these oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same ways as the other oligonucleotides of the invention.


Oligonucleotides targeting the sense strand direct gene coffection more efficiently. We compare the ability of single-stranded oligonucleotides to target each of the two strands of the target sequence of both pAURHYG(ins)GFP and pAURHYG(rep)GFP. These experiments, presented in Tables 7 and 8, indicate that an oligonucleotide, HygE3T/74α, with sequence complementary to the sense strand (i.e. the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the non-transcribed strand which serves as the template for the synthesis of RNA. As indicated in Table 7, this effect was observed over a range of oligonucleotide concentrations from 0-3.6 μg, although we did observe some variability in the difference between the two oligonucleotides (indicated in Table 7 as a fold difference between HygE3T/74α and HygE3T/74). Furthermore, as shown in Table 8, we observe increased efficiency of correction by HygE3T/74α relative to HygE3T/74 regardless of whether the oligonucleotides were used to correct the base substitution mutation in pAURHYG(rep)GFP or the insertion mutation in pAURHYG(ins)GFP. The data presented in Table 8 further indicate that the single-stranded oligonucleotides correct a base substitution mutation more efficiently than an insertion mutation. However, this last effect was much less pronounced and the oligonucleotides of the invention are clearly able efficiently to correct both types of mutations in yeast cells. In addition, the role of transcription is investigated using plasmids with inducible promoters such as that described in FIG. 10.


Optimization of oligonucleotide concentration. To determine the optimal concentration of oligonucleotide for the purpose of gene alteration, we test the ability of increasing concentrations of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678. We chose this assay system because our previous experiments indicated that it supports the highest level of correction. However, this same approach could be used to determine the optimal concentration of any given oligonucleotide. We test the ability of Hyg3T/74α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678 over a range of oligonucleotide concentrations from 0-10.0 μg. As shown in Table 9, we observe that the correction efficiency initially increases with increasing oligonucleotide concentration, but then declines at the highest concentration tested.


Tables are attached hereto.









TABLE 6







Correction of an insertion mutation in pAURHYG(ins)GFP


by HygGG/Rev, HygE3T/25 and HygE3T/74











Colonies on
Colonies on
Correction


Oligonucleotide Tested
Hygromycin
Aureobasidin (/105)
Efficiency













HygGG/Rev
3
157
0.02


HygE3T/25
64
147
0.44


HygE3T/74
280
174
1.61


Kan70T
0


















TABLE 7







An oligonucleotide targeting the sense strand


of the target sequence corrects more efficiently.









Colonies per hygromycin plate









Amount of Oligonucleotide (μg)
HygE3T/74
HygE3T/74α












0
0
0


0.6
24
128 (8.4x)*


1.2
69
140 (7.5x)*


2.4
62
167 (3.8x)*


3.6
29
367 (15x)*





*The numbers in parentheses represent the fold increase in efficiency for targeting the non-transcribed strand as compared to the other strand of a DNA duplex that encodes a protein.













TABLE 8







Correction of a base substitution mutation


is more efficient than correction of a frame shift mutation.








Oligonucleotide
Plasmid tested (contained in LSY678)









Tested (5 μg)
pAURHYG(ins)GFP
pAURHYG(rep)GFP












HygE3T/74
72
277


HygE3T/74α
1464
2248


Kan70T
0
0
















TABLE 9







Optimization of oligonucleotide concentration


in electroporated yeast cells.











Colonies on
Colonies on



Amount (μg)
hygromycin
aureobasidin (/105)
Correction efficiency













0
0
67
0


1.0
5
64
0.08


2.5
47
30
1.57


5.0
199
33
6.08


7.5
383
39
9.79


10.0
191
33
5.79









EXAMPLE 3
Cultured Cell Manipulation

Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, Calif.). LinCD38 cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, Calif.). Cells used for microinjecton are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjecton. S Medium contains Iscoves' Modified Dulbecco's Medium without phenol red (IMDM) with 100 μg/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 μg/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM; Stem Cell Technologies), 40 μg/ml low-density lipoprotein (LDL; Sigma, St. Louis, Mo.), 50 mM HEPEs buffer and 50 μM 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, flt-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, N.J.). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing.


35 mm dishes are coated overnight at 40° C. with 50 μg/ml Fibronectn (FN) fragment CH-296 (Retronectn; TaKaRa Biomedicals, Panvera, Madison, Wis.) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37° C. prior to microinjecton. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjecton. Pulled injection needles with a range of 0.22μ to 0.3μ outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37° C. and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are flourescently labeled allow determination of the amount of oligonucleotide delivered to the cells.


For in vitro erythropoiesis from LinCD38 cells, the procedure of Malik, 1998 can be used. Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks. Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny. CD34+ cells can convert a normal A (βA) to sickle T (βS) mutation in the β-globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene. Alternatively, stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.


Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporaton, biolistcs, calcium phophate precipitation, or any other method known in the art.


Notes on the Tables Presented Below:


Each of the following tables presents, for the specified human gene, a plurality of mutations that are known to confer a clinically-relevant phenotype and, for each mutation, the oligonucleotides that can be used to correct the respective mutation site-specifically in the human genome according to the present invention.


The left-most column identifies each mutation and the clinical phenotype that the mutation confers.


For most entries, the mutation is identified at both the nucleic acid and protein level. At the amino acid level, mutations are presented according to the following standard nomenclature. The centered number identifies the position of the mutated codon in the protein sequence; to the left of the number is the wild type residue and to the right of the number is the mutant codon. Codon numbering is according to the Human Gene Mutation Database, Cardiff, Wales, UK. Terminator codons are shown as “TERM”. At the nucleic acid level, the entire triplet of the wild type and mutated codons is shown.


The middle column presents, for each mutation, four oligonucleotides capable of repairing the mutation site-specifically in the human genome or in cloned human DNA including human DNA in artificial chromosomes, episomes, plasmids, or other types of vectors. The oligonucleotides of the invention, however, may include any of the oligonucleotides sharing portions of the sequence of the 121 base sequence. Thus, oligonucleotides of the invention for each of the depicted targets may be 18, 19, 20 up to about 121 nucleotides in length. Sequence may be added non-symmetrically.


All oligonucleotides are presented, per convention, in the 5′ to 3′ orientation. The nucleotide that effects the change in the genome is underlined and presented in bold.


The first of the four oligonucleotides for each mutation is a 121 nt oligonucleotide centered about the repair nucleotide. The second oligonucleotide, its reverse complement, targets the opposite strand of the DNA duplex for repair. The third oligonucleotide is the minimal 17 nt domain of the first oligonucleotide, also centered about the repair nucleotide. The fourth oligonucleotide is the reverse complement of the third, and thus represents the minimal 17 nt domain of the second.


The third column of each table presents the SEQ ID NO: of the respective repair oligonucleotide.


EXAMPLE 4
Adenosine Deaminase (ADA)

Adenosine deaminase (ADA, EC 3.5.4.4) catalyses the deamination of adenosine and 2′-deoxyadenosine to inosine or 2′-deoxyinosine respectively. ADA deficiency has been identified as the metabolic basis for 20-30% of cases with recessively inherited severe combined immunodeficiency (SCID). Affected infants are subject to recurrent chronic viral, fungal, protozoal, and bacterial infections and frequently present with persistent diarrhea, failure to thrive and candidiasis. In patients homozygous for ADA deficiency, 2′-deoxyadenosine accumulating during the rapid turnover of cells rich in DNA is converted back to dATP, either by adenosine kinase or deoxycytidine kinase. Many hypotheses have been advanced to explain the specific toxicity to the immune system in ADA deficiency. The apparently selective accumulation of dATP in thymocytes and peripheral blood B cells, with resultant inhibition of ribonucleotide reductase and DNA synthesis is probably the principal mechanism.


The structural gene for ADA is encoded as a single 32 kb locus containing 12 exons. Studies of the molecular defect in ADA-deficient patients have shown that mRNA is usually detectable in normal or supranormal amounts. Specific base substitution mutations have been detected in the majority of cases with the complete deficiency. A C-to-T base substitution mutation in exon 11 accounts for a high proportion of these, whilst a few patents are homozygous for large deletions encompassing exon I. A common point mutation resulting in a heat-labile ADA has been characterised in some patients with partial ADA deficiency, a disorder with an apparently increased prevalence in the Caribbean.


As yet no totally effective therapy for ADA deficiency has been reported, except in those few cases where bone marrow from an HLA/MLR compatible sibling donor was available.


Two therapeutic approaches have provided long-term benefit in specific instances. First, reconstitution using T cell depleted mismatched sibling marrow has been encouraging, particularly in early presenters completely deficient in ADA. Secondly, therapy with polyethylene glycol-modified adenosine deaminase (PEG-ADA) for more than 5 years has produced a sustained increase in lymphocyte numbers and mitogen responses together with evidence of in vivo B cell function. Success has generally been achieved in late presenters with residual ADA activity in mononuclear cells.


ADA deficiency has been chosen as the candidate disease for gene replacement therapy and the first human experiment commenced in 1990. The clinical consequences of overexpression of ADA activity—one of the potential hazards of gene implant—are known and take the form of an hereditary haemolytic anaemia associated with a tissue-specific increase in ADA activity. The genetic basis for the latter autosomal dominant disorder seemingly relates to markedly increased levels of structurally normal ADA mRNA.










TABLE 10







ADA Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Adenosine deaminase
AGAGACCCACCGAGCGGCGGCGGAGGGAGCAGCGCCGGGG
1



deficiency
CGCACGAGGGCACCATGGCCCAGACGCCCGCCTTCGACAAG


GLN3TERM
CCCAAAGTGAGCGCGCGCGGGGGCTCCGGGGACGGGGGTC


CAG to TAG



GACCCCCGTCCCCGGAGCCCCCGCGCGCGCTCACTTTGGG
2



CTTGTCGAAGGCGGGCGTCTGGGCCATGGTGCCCTCGTGCG



CCCCGGCGCTGCTCCCTCCGCCGCCGCTCGGTGGGTCTCT






CCATGGCCCAGACGCCC
3






GGGCGTCTGGGCCATGG
4





Adenosine deaminase
TATTTGTTCTCTCTCTCCCTTTCTCTCTCTCTTCCCCCTGCCC
5


deficiency
CCTTGCAGGTAGAACTGCATGTCCACCTAGACGGATCCATCA


HIS15ASP
AGCCTGAAACCATCTTATACTATGGCAGGTAAGTCC


CAT to GAT



GGACTTACCTGCCATAGTATAAGATGGTTTCAGGCTTGATGGA
6



TCCGTCTAGGTGGACATGCAGTTCTACCTGCAAGGGGGCAG



GGGGAAGAGAGAGAGAAAGGGAGAGAGAGAACAAATA






TAGAACTGCATGTCCAC
7






GTGGACATGCAGTTCTA
8





Adenosine deaminase
TCCCTTTCTCTCTCTCTTCCCCCTGCCCCCTTGCAGGTAGAA
9


deficiency
CTGCATGTCCACCTAGACGGATCCATCAAGCCTGAAACCATC


GLY20ARG
TTATACTATGGCAGGTAAGTCCATACAGAAGAGCCCT


GGA to AGA



AGGGCTCTTCTGTATGGACTTACCTGCCATAGTATAAGATGGT
10



TTCAGGCTTGATGGATCCGTCTAGGTGGACATGCAGTTCTAC



CTGCAAGGGGGCAGGGGGAAGAGAGAGAGAAAGGGA






ACCTAGACGGATCCATC
11






GATGGATCCGTCTAGGT
12





Adenosine deaminase
CCTGGAGCTCCCAAGGGACTTGGGGAAGGTTGTTCCCAACC
13


deficiency
CCTTTCTTCCCTTCCCAGGGGCTGCCGGGAGGCTATCAAAAG


GLY74CYS
GATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGG


GGC to TGC



CCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCTTTT
14



GATAGCCTCCCGGCAGCCCCTGGGAAGGGAAGAAAGGGGTT



GGGAACAACCTTCCCCAAGTCCCTTGGGAGCTCCAGG






CTATCGCGGGCTGCCGG
15






CCGGCAGCCCGCGATAG
16





Adenosine Deaminase
GCTCCCAAGGGACTTGGGGAAGGTTGTTCCCAACCCCTTTCT
17


Deficiency
TCCCTTCCCAGGGGCTGCCGGGAGGCTATCAAAAGGATCGC


ARG76TRP
CTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCGTGG


CGG to TGG



CCACGCCCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGAT
18



CCTTTTGATAGCCTCCCGGCAGCCCCTGGGAAGGGAAGAAA



GGGGTTGGGAACAACCTTCCCCAAGTCCCTTGGGAGC






GGGGCTGCCGGGAGGCT
19






AGCCTCCCGGCAGCCCC
20





Adenosine Deaminase
TTGGGGAAGGTTGTTCCCAACCCCTTTCTTCCCTTCCCAGGG
21


Deficiency
GCTGCCGGGAGGCTATCAAAAGGATCGCCTATGAGTTTGTAG


LYS80ARG
AGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAGGT


AAA to AGA



ACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTACAA
22



ACTCATAGGCGATCCTTTTGATAGCCTCCCGGCAGCCCCTGG



GAAGGGAAGAAAGGGGTTGGGAACAACCTTCCCCAA






GGCTATCAAAAGGATCG
23






CGATCCTTTTGATAGCC
24





Adenosine deaminase
GTTGTTCCCAACCCCTTTCTTCCCTTCCCAGGGGCTGCCGGG
25


deficiency
AGGCTATCAAAAGGATCGCCTATGAGTTTGTAGAGATGAAGG


ALA83ASP
CCAAAGAGGGCGTGGTGTATGTGGAGGTGCGGTACAG


GCC to GAC



CTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTC
26



ATCTCTACAAACTCATAGGCGATCCTTTTGATAGCCTCCCGGC



AGCCCCTGGGAAGGGAAGAAAGGGGTTGGGAACAAC






AAGGATCGCCTATGAGT
27






ACTCATAGGCGATCCTT
28





Adenosine deaminase
AGGCTATCAAAAGGATCGCCTATGAGTTTGTAGAGATGAAGG
29


deficiency
CCAAAGAGGGCGTGGTGTATGTGGAGGTGCGGTACAGTCCG


TYR97CYS
CACCTGCTGGCCAACTCCAAAGTGGAGCCAATCCCCTG


TAT to TGT



CAGGGGATTGGCTCCACTTTGGAGTTGGCCAGCAGGTGCGG
30



ACTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTT



CATCTCTACAAACTCATAGGCGATCCTTTTGATAGCCT






CGTGGTGTATGTGGAGG
31






CCTCCACATACACCACG
32





Adenosine deaminase
GGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCG
33


deficiency
TGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGCC


ARG101GLN
AACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTGA


CGG to CAG



TCAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCC
34



AGCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCC



CTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCC






GGAGGTGCGGTACAGTC
35






GACTGTACCGCACCTCC
36





Adenosine deaminase
GGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCG
37


deficiency
TGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGCC


ARG101LEU
AACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTGA


CGG to CTG



TCAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCC
38



AGCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCC



CTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCC






GGAGGTGCGGTACAGTC
39






GACTGTACCGCACCTCC
40





Adenosine deaminase
AGGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGC
41


deficiency
GTGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGC


ARG101TRP
CAACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTG


CGG to TGG



CAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCCA
42



GCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCCC



TCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCT






TGGAGGTGCGGTACAGT
43






ACTGTACCGCACCTCCA
44





Adenosine deaminase
ATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATG
45


deficiency
TGGAGGTGCGGTACAGTCCGCACCTGCTGGCCAACTCCAAA


PRO104LEU
GTGGAGCCAATCCCCTGGAACCAGGCTGAGTGAGTGAT


CCG to CTG



ATCACTCACTCAGCCTGGTTCCAGGGGATTGGCTCCACTTTG
46



GAGTTGGCCAGCAGGTGCGGACTGTACCGCACCTCCACATA



CACCACGCCCTCTTTGGCCTTCATCTCTACAAACTCAT






GTACAGTCCGCACCTGC
47






GCAGGTGCGGACTGTAC
48





Adenosine deaminase
TTTGTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAG
49


deficiency
GTGCGGTACAGTCCGCACCTGCTGGCCAACTCCAAAGTGGA


LEU106VAL
GCCAATCCCCTGGAACCAGGCTGAGTGAGTGATGGGCC


CTG to GTG



GGCCCATCACTCACTCAGCCTGGTTCCAGGGGATTGGCTCCA
50



CTTTGGAGTTGGCCAGCAGGTGCGGACTGTACCGCACCTCC



ACATACACCACGCCCTCTTTGGCCTTCATCTCTACAAA






GTCCGCACCTGCTGGCC
51






GGCCAGCAGGTGCGGAC
52





Adenosine deaminase
TAGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAGGTG
53


deficiency
CGGTACAGTCCGCACCTGCTGGCCAACTCCAAAGTGGAGCC


LEU107PRO
AATCCCCTGGAACCAGGCTGAGTGAGTGATGGGCCTGGA


CTG to CCG



TCCAGGCCCATCACTCACTCAGCCTGGTTCCAGGGGATTGGC
54



TCCACTTTGGAGTTGGCCAGCAGGTGCGGACTGTACCGCAC



CTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTA






GCACCTGCTGGCCAACT
55






AGTTGGCCAGCAGGTGC
56





Adenosine deaminase
GCCTTCCTTTTGCCTCAGGCCCATCCCTACTCCTCTCCTCAC
57


deficiency
ACAGAGGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTG


PRO126GLN
GGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGT


CCA to CAA



ACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCAC
58



TAGGGCCACCACCTCGTCTGGGGTGAGGTCCCCTCTGTGTG



AGGAGAGGAGTAGGGATGGGCCTGAGGCAAAAGGAAGGC






CCTCACCCCAGACGAGG
59






CCTCGTCTGGGGTGAGG
60





Adenosine deaminase
TTTGCCTCAGGCCCATCCCTACTCCTCTCCTCACACAGAGGG
61


deficiency
GACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCAGGG


TAL129MET
CCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC


GTG to ATG



GGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCC
62



TGGCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCC



TCTGTGTGAGGAGAGGAGTAGGGATGGGCCTGAGGCAAA






CAGACGAGGTGGTGGCC
63






GGCCACCACCTCGTCTG
64





Adenosine deaminase
ACAGAGGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTG
65


deficiency
GGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCA


GLY140GLU
AGGCCCGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAG


GGG to GAG



CTGGGCTGGTGGCGCATGCAGCACAGGATGGACCGGGCCTT
66



GACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCA



CTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCCTCTGT






GCAGGAGGGGGAGCGAG
67






CTCGCTCCCCCTCCTGC
68





Adenosine deaminase
GGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCAG
69


deficiency
GGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC


ARG142GLN
GGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTA


CGA to CAA



TACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCG
70



GGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCT



GGCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCC






GGGGGAGCGAGACTTCG
71






CGAAGTCTCGCTCCCCC
72





Adenosine deaminase
GGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCA
73


deficiency
GGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCC


ARG142TERM
CGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGT


CGA to TGA



ACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCGG
74



GCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTG



GCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCC






AGGGGGAGCGAGACTTC
75






GAAGTCTCGCTCCCCCT
76





Adenosine deaminase
TGGTGGCCCTAGTGGGCCAGGGCCTGCAGGAGGGGGAGCG
77


deficiency
AGACTTCGGGGTCAAGGCCCGGTCCATCCTGTGCTGCATGC


ARG149GLN
GCCACCAGCCCAGTGAGTAGGATCACCGCCCTGCCCAGGG


CGG to CAG



CCCTGGGCAGGGCGGTGATCCTACTCACTGGGCTGGTGGCG
78



CATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTC



GCTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCA






CAAGGCCCGGTCCATCC
79






GGATGGACCGGGCCTTG
80





Adenosine deaminase
GTGGTGGCCCTAGTGGGCCAGGGCCTGCAGGAGGGGGAGC
81


deficiency
GAGACTTCGGGGTCAAGGCCCGGTCCATCCTGTGCTGCATG


ARG149TRP
CGCCACCAGCCCAGTGAGTAGGATCACCGCCCTGCCCAGG


CGG to TGG



CCTGGGCAGGGCGGTGATCCTACTCACTGGGCTGGTGGCGC
82



ATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTCG



CTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCAC






TCAAGGCCCGGTCCATC
83






GATGGACCGGGCCTTGA
84





Adenosine deaminase
CTAGTGGGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCG
85


deficiency
GGGTCAAGGCCCGGTCCATCCTGTGCTGCATGCGCCACCAG


LEU152MET
CCCAGTGAGTAGGATCACCGCCCTGCCCAGGGCCGCCCGT


CTG to ATG



ACGGGCGGCCCTGGGCAGGGCGGTGATCCTACTCACTGGG
86



CTGGTGGCGCATGCAGCACAGGATGGACCGGGCCTTGACCC



CGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCACTAG






GGTCCATCCTGTGCTGC
87






GCAGCACAGGATGGACC
88





Adenosine deaminase
GGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC
89


deficiency
GGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTAG


ARG156CYS
GATCACCGCCCTGCCCAGGGCCGCCCGTCTCACCCTGGCC


CGC to TGC



GGCCAGGGTGAGACGGGCGGCCCTGGGCAGGGCGGTGATC
90



CTACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACC



GGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCC






GCTGCATGCGCCACCAG
91






CTGGTGGCGCATGCAGC
92





Adenosine deaminase
GCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCCG
93


deficiency
GTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGTAGG


ARG156HIS
ATCACCGCCCTGCCCAGGGCCGCCCGTCTCACCCTGGCCC


CGC to CAC



GGGCCAGGGTGAGACGGGCGGCCCTGGGCAGGGCGGTGAT
94



CCTACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGAC



CGGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGC






CTGCATGCGCCACCAGC
95






GCTGGTGGCGCATGCAG
96





Adenosine deaminase
CTGCCCACAGACTGGTCCCCCAAGGTGGTGGAGCTGTGTAA
97


deficiency
GAAGTACCAGCAGCAGACCGTGGTAGCCATTGACCTGGCTG


VAL177MET
GAGATGAGACCATCCCAGGAAGCAGCCTCTTGCCTGGAC


GTG to ATG



GTCCAGGCAAGAGGCTGCTTCCTGGGATGGTCTCATCTCCAG
98



CCAGGTCAATGGCTACCACGGTCTGCTGCTGGTACTTCTTAC



ACAGCTCCACCACCTTGGGGGACCAGTCTGTGGGCAG






AGCAGACCGTGGTAGCC
99






GGCTACCACGGTCTGCT
100





Adenosine deaminase
CAGACTGGTCCCCCAAGGTGGTGGAGCTGTGTAAGAAGTAC
101


deficiency
CAGCAGCAGACCGTGGTAGCCATTGACCTGGCTGGAGATGA


ALA179ASP
GACCATCCCAGGAAGCAGCCTCTTGCCTGGACATGTCCA


GCC to GAC



TGGACATGTCCAGGCAAGAGGCTGCTTCCTGGGATGGTCTCA
102



TCTCCAGCCAGGTCAATGGCTACCACGGTCTGCTGCTGGTAC



TTCTTACACAGCTCCACCACCTTGGGGGACCAGTCTG






CGTGGTAGCCATTGACC
103






GGTCAATGGCTACCACG
104





Adenosine deaminase
CCATTGACCTGGCTGGAGATGAGACCATCCCAGGAAGCAGC
105


deficiency
CTCTTGCCTGGACATGTCCAGGCCTACCAGGTGGGTCCTGT


GLN199PRO
GAGAAGGAATGGAGAGGCTGGCCCTGGGTGAGCTTGTCT


CAG to CCG



AGACAAGCTCACCCAGGGCCAGCCTCTCCATTCCTTCTCACA
106



GGACCCACCTGGTAGGCCTGGACATGTCCAGGCAAGAGGCT



GCTTCCTGGGATGGTCTCATCTCCAGCCAGGTCAATGG






ACATGTCCAGGCCTACC
107






GGTAGGCCTGGACATGT
108





Adenosine deaminase
GCTAGGGCACCCATGACCTGGCTCTCCCCCTTCCAGGAGGC
109


deficiency
TGTGAAGAGCGGCATTCACCGTACTGTCCACGCCGGGGAGG


ARG211CYS
TGGGCTCGGCCGAAGTAGTAAAAGAGGTGAGGGCCTGGG


CGT to TGT



CCCAGGCCCTCACCTCTTTTACTACTTCGGCCGAGCCCACCT
110



CCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGCC



TCCTGGAAGGGGGAGAGCCAGGTCATGGGTGCCCTAGC






GCATTCACCGTACTGTC
111






GACAGTACGGTGAATGC
112





Adenosine deaminase
CTAGGGCACCCATGACCTGGCTCTCCCCCTTCCAGGAGGCT
113


deficiency
GTGAAGAGCGGCATTCACCGTACTGTCCACGCCGGGGAGGT


ARG211HIS
GGGCTCGGCCGAAGTAGTAAAAGAGGTGAGGGCCTGGGC


CGT to CAT



GCCCAGGCCCTCACCTCTTTTACTACTTCGGCCGAGCCCACC
114



TCCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGC



CTCCTGGAAGGGGGAGAGCCAGGTCATGGGTGCCCTAG






CATTCACCGTACTGTGC
115






GGACAGTACGGTGAATG
116





Adenosine deaminase
ATGACCTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGG
117


deficiency
CATTCACCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCG


ALA215THR
AAGTAGTAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGG


GCC to ACC



CCCCATGGCCAGCGCAGGCCCTCACCTCTTTTACTACTTCGG
118



CCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGAATGCCG



CTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGTCAT






CTGTCCACGCCGGGGAG
119






CTCCCCGGCGTGGACAG
120





Adenosine deaminase
ACCTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGGCAT
121


deficiency
TCACCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCGAAG


GLY216ARG
TAGTAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGGTCC


GGG to AGG



GGACCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTACTT
122



CGGCCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGAATG



CCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGT






TCCACGCCGGGGAGGTG
123






CACCTCCCCGGCGTGGA
124





Adenosine deaminase
TGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGGCATTCA
125


deficiency
CCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCGAAGTAG


GLU217LYS
TAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGGTCCCTC


GAG to AAG



GAGGGACCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTA
126



CTTCGGCCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGA



ATGCCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCA






ACGCCGGGGAGGTGGGC
127






GCCCACCTCCCCGGCGT
128





Adenosine deaminase
CTGCCTCCTCCCATACTTGGCTCTATTCTGCTTCTCTACAGGC
129


deficiency
TGTGGACATACTCAAGACAGAGCGGCTGGGACACGGCTACC


THR233ILE
ACACCCTGGAAGACCAGGCCCTTTATAACAGGCTGCG


ACA to ATA



CGCAGCCTGTTATAAAGGGCCTGGTCTTCCAGGGTGTGGTAG
130



CCGTGTCCCAGCCGCTCTGTCTTGAGTATGTCCACAGCCTGT



AGAGAAGCAGAATAGAGCCAAGTATGGGAGGAGGCAG






ACTCAAGACAGAGCGGC
131






GCCGCTCTGTCTTGAGT
132





Adenosine deaminase
CAGAGCGGCTGGGACACGGCTACCACACCCTGGAAGACCAG
133


deficiency
GCCCTTTATAACAGGCTGCGGCAGGAAAACATGCACTTCGAG


ARG253PRO
GTAAGCGGGCCAGGGAGTGGGGAGGAACCATCCCCGGC


CGG to CCG



GCCGGGGATGGTTCCTCCCCACTCCCTGGCCCGCTTACCTC
134



GAAGTGCATGTTTTCCTGCCGCAGCCTGTTATAAAGGGCCTG



GTCTTCCAGGGTGTGGTAGCCGTGTCCCAGCCGCTCTG






CAGGCTGCGGCAGGAAA
135






TTTCCTGCCGCAGCCTG
136





Adenosine deaminase
GAGCGGCTGGGACACGGCTACCACACCCTGGAAGACCAGGC
137


deficiency
CCTTTATAACAGGCTGCGGCAGGAAAACATGCACTTCGAGGT


GLN254TERM
AAGCGGGCCAGGGAGTGGGGAGGAACCATCCCCGGCTG


CAG to TAG



CAGCCGGGGATGGTTCCTCCCCACTCCCTGGCCCGCTTACC
138



TCGAAGTGCATGTTTTCCTGCCGCAGCCTGTTATAAAGGGCC



TGGTCTTCCAGGGTGTGGTAGCCGTGTCCCAGCCGCTC






GGCTGCGGCAGGAAAAC
139






GTTTTCCTGCCGCAGCC
140





Adenosine deaminase
CCACACACCTGCTCTTCCAGATCTGCCCCTGGTCCAGCTACC
141


deficiency
TCACTGGTGCCTGGAAGCCGGACACGGAGCATGCAGTCATT


PRO274LEU
CGGTGAGCTCTGTTCCCCTGGGCCTGTTCAATTTTGTT


CCG to CTG



AACAAAATTGAACAGGCCCAGGGGAACAGAGCTCACCGAATG
142



ACTGCATGCTCCGTGTCCGGCTTCCAGGCACCAGTGAGGTA



GCTGGACCAGGGGCAGATCTGGAAGAGCAGGTGTGTGG






CTGGAAGCCGGACACGG
143






CCGTGTCCGGCTTCCAG
144





Adenosine deaminase
GGAGGCTGATTCTCTCCTCCTCCCTCTTCTGCAGGCTCAAAA
145


deficiency
ATGACCAGGCTAACTACTCGCTCAACACAGATGACCCGCTCA


SER291LEU
TCTTCAAGTCCACCCTGGACACTGATTACCAGATGAC


TCG to TTG



GTCATCTGGTAATCAGTGTCCAGGGTGGACTTGAAGATGAGC
146



GGGTCATCTGTGTTGAGCGAGTAGTTAGCCTGGTCATTTTTGA



GCCTGCAGAAGAGGGAGGAGGAGAGAATCAGCCTCC






TAACTACTCGCTCAACA
147






TGTTGAGCGAGTAGTTA
148





Adenosine deaminase
CCTCCCTCTTCTGCAGGCTCAAAAATGACCAGGCTAACTACT
149


deficiency
CGCTCAACACAGATGACCCGCTCATCTTCAAGTCCACCCTGG


PRO297GLN
ACACTGATTACCAGATGACCAAACGGGACATGGGCTT


CCG to CAG



AAGCCCATGTCCCGTTTGGTCATCTGGTAATCAGTGTCCAGG
150



GTGGACTTGAAGATGAGCGGGTCATCTGTGTTGAGCGAGTAG



TTAGCCTGGTCATTTTTGAGCCTGCAGAAGAGGGAGG






AGATGACCCGCTCATCT
151






AGATGAGCGGGTCATCT
152





Adenosine deaminase
AAAATGACCAGGCTAACTACTCGCTCAACACAGATGACCCGC
153


deficiency
TCATCTTCAAGTCCACCCTGGACACTGATTACCAGATGACCAA


LEU304ARG
ACGGGACATGGGCTTTACTGAAGAGGAGTTTAAAAG


CTG to CGG



CTTTTAAACTCCTCTTCAGTAAAGCCCATGTCCCGTTTGGTCA
154



TCTGGTAATCAGTGTCCAGGGTGGACTTGAAGATGAGCGGGT



CATCTGTGTTGAGCGAGTAGTTAGCCTGGTCATTTT






GTCCACCCTGGACACTG
155






CAGTGTCCAGGGTGGAC
156





Adenosine deaminase
GCCTTCTTTGTTCTCTGGTTCCATGTTGTCTGCCATTCTGGCC
157


deficiency
TTTCCAGAACATCAATGCGGCCAAATCTAGTTTCCTCCCAGAA


ALA329TAL
GATGAAAAGAGGGAGCTTCTCGACCTGCTCTATAA


C-to-T at base 1081



TTATAGAGCAGGTCGAGAAGCTCCCTCTTTTCATCTTCTGGGA
158



GGAAACTAGATTTGGCCGCATTGATGTTCTGGAAAGGCCAGA



ATGGCAGACAACATGGAACCAGAGAACAAAGAAGGC






CATCAATGCGGCCAAAT
159






ATTTGGCCGCATTGATG
160









EXAMPLE 5
P53 Mutations

The p53 gene codes for a protein that acts as a transcription factor and serves as a key regulator of the cell cycle. Mutation in this gene is probably the most significant genetic change characterizing the transformation of cells from normalcy to malignancy.


Inactivation of p53 by mutation disrupts the cell cycle which, in turn, sets the stage for tumor formation. Mutations in the p53 gene are among the most commonly diagnosed genetic disorders, occuring in as many as 50% of cancer patients. For some types of cancer, most notably of the breast, lung and colon, p53 mutations are the predominant genetic alternations found thus far. These mutations are associated with genomic instability and thus an increased susceptibility to cancer. Some p53 lesions result in malignancies that are resistant to the most widely used therapeutic regimens and therefore demand more aggressive treatment.


That p53 is associated with different malignant tumors is illustrated in the Li-Fraumeni autosomal dominant hereditary disorder characterized by familial multiple tumors due to mutation in the p53 gene. Affected individuals can develop one or more tumors, including: brain (12%); soft-tissue sarcoma (12%); breast cancer (25%); adrenal tumors (1%); bone cancer (osteosarcoma) (6%); cancer of the lung, prostate, pancreas, and colon as well as lymphoma and melanoma can also occur.


Certain of the most frequently mutated codons are codons 175, 248 and 273, however a variety of oligonucleotides are described below in the atttached table.










TABLE 11







p53 Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













In 2 families with
GACTGTACCACCATCCACTACAACTACATGTGTAACAGTTCCT
161



Li-Fraumeni
GCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATC


syndrome, there was a
ACACTGGAAGACTCCAGGTCAGGAGCCACTTGCCACC


C-to-T mutation at the


first nucleotide of
GGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTGTGATGA
162


codon 248 which
TGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAA


changed arginine to
CTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTC


tryptophan.






GCATGAACCGGAGGCCC
163






GGGCCTCCGGTTCATGC
164





In a family with the
TGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCAT
165


Li-Fraumeni
CCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCAC


syndrome, a G-to-A
TTGCCACCCTGCACACTGGCCTGCTGTGCCCCAGCCTC


mutation at the first


nucleotide of codon
GAGGCTGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGT
166


258 resulting in the
GGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGAT


substitution of lysine
GGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACA


for glutamic acid.



TCACACTGGAAGACTCC
167






GGAGTCTTCCAGTGTGA
168





In a family with the
GTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTA
169


Li-Fraumeni
ACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTC


syndrome, a G-to-T
ACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCA


mutation at


the first nucleotide of


codon 245 resulting in


the substitution of


cysteine for glycine.





A gly245-to-ser,
TGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGA
170


GGC-to-AGC,
TGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACA


mutation was found in
TGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAAC


a patient in whom


osteosarcoma was
GCATGGGCGGCATGAAC
171


diagnosed at the age


of 18 years.
GTTCATGCCGCCCATGC
172





In a family with the
TCCACTACAACTACATGTGTAACAGTTCCTGCATGGGCGGCA
173


Li-Fraumeni
TGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGACT


syndrome, a germline
CCAGGTCAGGAGCCACTTGCCACCCTGCACACTGGCC


mutation at codon 252:


a T-to-C change at the
GGCCAGTGTGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTC
174


second position
TTCCAGTGTGATGATGGTGAGGATGGGCCTCCGGTTCATGCC


resulted in substitution
GCCCATGCAGGAACTGTTACACATGTAGTTGTAGTGGA


of proline for leucine.






GCCCATCCTCACCATCA
175






TGATGGTGAGGATGGGC
176





Researchers analyzed
TACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCATG
177


for mutations in p53
GGCGGCATGAACCGGAGGCCCATCCTCACCATCATCACACT


hepatocellular
GGAAGACTCCAGGTCAGGAGCCACTTGCCACCCTGCA


carcinomas from


patents in Qidong, an
TGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTG
178


area of high incidence
TGATGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATG


in China, in which both
CAGGAACTGTTACACATGTAGTTGTAGTGGATGGTGGTA


hepatitis B virus and


aflatoxin B1 are risk
AACCGGAGGCCCATCCT
179


factors. Eight of 16


tumors had a point
AGGATGGGCCTCCGGTT
180


mutation at the third


base position of codon


249. The G-to-T


mutation at codon 249


led to a change from


arginine to serine


(AGG to AGT).





In cases of
CTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTCCACA
181


hepatocellular
CCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAA


carcinoma in southern
GCAGTCACAGCACATGACGGAGGTTGTGAGGCGCTGCC


Africa, a G-to-T


substitution in codon
GGCAGCGCCTCACAACCTCCGTCATGTGCTGTGACTGCTTGT
182


157 resulting in a
AGATGGCCATGGCGCGGACGCGGGTGCCGGGCGGGGGTGT


change from valine to
GGAATCAACCCACAGCTGCACAGGGCAGGTCTTGGCCAG


phenylahanine.



GCACCCGCGTCCGCGCC
183






GGCGCGGACGCGGGTGC
184





In a family with
TTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTAA
185


Li-Fraumeni in which
CAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCA


noncancerous skin
CCATCATCACACTGGAAGACTCCAGGTCAGGAGCCAC


fibroblasts from


affected individuals
GTGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGG
186


showed an unusual
ATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACAC


radiation-resistant
ATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAA


phenotype, a point


mutation in codon 245
CATGGGCGGCATGAACC
187


of the P53 gene. A


change from GGC to
GGTTCATGCCGCCCATG
188


GAC predicted


substitution of aspartic


acid for glycine.





In 2 of 8 families with
ACTGTACCACCATCCACTACAACTACATGTGTAACAGTTCCTG
189


Li-Fraumeni
CATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATCA


syndrome, a mutation
CACTGGAAGACTCCAGGTCAGGAGCCACTTGCCACCC


in codon 248: a
GGGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTGTGAT
190


CGG-to-CAG change
GATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGG


resulting in substitution
AACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGT


of glutamine for


arginine.
CATGAACCGGAGGCCCA
191






TGGGCCTCCGGTTCATG
192





In 9 members of an
CCCTGACTTTCAACTCTGTCTCCTTCCTCTTCCTACAGTACTC
193


extended family with
CCCTGCCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTG


Li-Fraumeni
CCCTGTGCAGCTGTGGGTTGATTCCACACCCCCGCC


syndrome, a germline


mutation at codon 133
GGCGGGGGTGTGGAATCAACCCACAGCTGCACAGGGCAGGT
194


(ATG-to-ACG),
CTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCAGGGGAGTA


resulted in the
CTGTAGGAAGAGGAAGGAGACAGAGTTGAAAGTCAGGG


substitution of


threonine for
CAACAAGATGTTTTGCC
195


methionine (M133T),


and completely
GGCAAAACATCTTGTTG
196


cosegregated with the


cancer syndrome.





In 1 pedigree
TCTTGCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGG
197


consistent with the
GACGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGA


Li-Fraumeni
GAGACCGGCGCACAGAGGAAGAGAATCTCCGCAAGA


syndrome, a germline


G-to-T transversion at
TCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCCCAG
198


codon 272 (valine to
GACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCAGTA


leucine) was found.
GATTACCACTACTCAGGATAGGAAAAGAGAAGCAAGA






GCTTTGAGGTGCGTGTT
199






AACACGCACCTCAAAGC
200





A ser241-to-phe
TTATCTCCTAGGTTGGCTCTGACTGTACCACCATCCACTACAA
201


mutation due to a
CTACATGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAG


TCC-to-TTC change
GCCCATCCTCACCATCATCACACTGGAAGACTCCAG


was found in a patient


with hepatoblastoma
CTGGAGTCTTCCAGTGTGATGATGGTGAGGATGGGCCTCCG
202


and multiple foci of
GTTCATGCCGCCCATGCAGGAACTGTTACACATGTAGTTGTA


osteosarcoma.
GTGGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAA






TAACAGTTCCTGCATGG
203






CCATGCAGGAACTGTTA
204





An AAG-to-TAG
CAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTC
205


change of codon 120,
TTGCATTCTGGGACAGCCAAGTCTGTGACTTGCACGGTCAGT


resulting in conversion
TGCCCTGAGGGGCTGGCTTCCATGAGACTTCAATGCC


from lysine to a stop


codon, was found in a
GGCATTGAAGTCTCATGGAAGCCAGCCCCTCAGGGCAACTG
206


patient with
ACCGTGCAAGTCACAGACTTGGCTGTCCCAGAATGCAAGAAG


osteosarcoma and
CCCAGACGGAAACCGTAGCTGCCCTGGTAGGTTTTCTG


adenocarcinoma of


the lung at age 18 and
GGACAGCCAAGTCTGTG
207


brain tumor (glioma) at


the age of 27.
CACAGACTTGGCTGTCC
208





A CGG-to-TGG
GGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTGTTTGT
209


change at codon 282,
GCCTGTCCTGGGAGAGACCGGCGCACAGAGGAAGAGAATCT


resulting in the
CCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCCCCAG


substitution of


tryptophan for arginine,
CTGGGGGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGA
210


was found in a
TTCTCTTCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAA


patient who developed
ACACGCACCTCAAAGCTGTTCCGTCCCAGTAGATTACC


osteosarcoma at the


age of 10 years.
GGAGAGACCGGCGCACA
211






TGTGCGCCGGTCTCTCC
212





In 5 of 6 anaplastic
GCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGACG
213


carcinomas of the
GAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGA


thyroid and in an
CCGGCGCACAGAGGAAGAGAATCTCCGCAAGAAAGG


anaplastic carcinoma


thyroid cell line ARO, a
CCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTC
214


CGT-to-CAT mutation
CCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCC


converted
AGTAGATTACCACTACTCAGGATAGGAAAAGAGAAGC


arginine-273 to


histidine.
TGAGGTGCGTGTTTGTG
215






CACAAACACGCACCTCA
216





A germline
TCCTAGCACTGCCCAACAACACCAGCTCCTCTCCCCAGCCAA
217


GGA-to-GTA mutation
AGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAGGTACT


resulting in a change
AAGTCTTGGGACCTCTTATCAAGTGGAAAGTTTCCA


of


glycine-325 to valine
TGGAAACTTTCCACTTGATAAGAGGTCCCAAGACTTAGTACCT
218


was found in a patient
GAAGGGTGAAATATTCTCCATCCAGTGGTTTCTTCTTTGGCTG


who had non-Hodgkin
GGGAGAGGAGCTGGTGTTGTTGGGCAGTGCTAGGAA


lymphoma diagnosed


at age 17 and colon
ACTGGATGGAGAATATT
219


carcinoma at age 26.



AATATTCTCCATCCAGT
220





CGC-CCC
AATGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAA
221


Arg-72 to Pro
TGCCAGAGGCTGCTCCCCGCGTGGCCCCTGCACCAGCAGCT


association with Lung
CCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCC


cancer



GGCCAGGAGGGGGCTGGTGCAGGGGCCGCCGGTGTAGGAG
222



CTGCTGGTGCAGGGGCCACGCGGGGAGCAGCCTCTGGCATT



CTGGGAGCTTCATCTGGACCTGGGTCTTCAGTGAACCATT






TGCTCCCCGCGTGGCCC
223






GGGCCACGCGGGGAGCA
224





CCG-CTG
AAGCTCCCAGAATGCCAGAGGCTGCTCCCCGCGTGGCCCCT
225


Pro-82 to Leu
GCACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCC


Breast cancer
CTCCTGGCCCCTGTCATCTTCTGTCCCTTCCCAGAAAAC






GTTTTCTGGGAAGGGACAGAAGATGACAGGGGCCAGGAGGG
226



GGCTGGTGCAGGGGCCGCCGGTGTAGGAGCTGCTGGTGCA



GGGGCCACGCGGGGAGCAGCCTCTGGCATTCTGGGAGCTT






TCCTACACCGGCGGCCC
227






GGGCCGCCGGTGTAGGA
228





cCAA-TAA
TTCAACTCTGTCTCCTTCCTCTTCCTACAGTACTCCCCTGCCC
229


Gln-136 to Term
TCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGC


Li-Fraumeni syndrome
AGCTGTGGGTTGATTCCACACCCCCGCCCGGCACCC






GGGTGCCGGGCGGGGGTGTGGAATCAACCCACAGCTGCACA
230



GGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCA



GGGGAGTACTGTAGGAAGAGGAAGGAGACAGAGTTGAA






TGTTTTGCCAACTGGCC
231






GGCCAGTTGGCAAAACA
232





TGC-TAC
TCCTCTTCCTACAGTACTCCCCTGCCCTCAACAAGATGTTTTG
233


Cys-141 to Tyr
CCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTC


Li-Fraumeni syndrome
CACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGC






GCCATGGCGCGGACGCGGGTGCCGGGCGGGGGTGTGGAAT
234



CAACCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAA



AACATCTTGTTGAGGGCAGGGGAGTACTGTAGGAAGAGGA






CAAGACCTGCCCTGTGC
235






GCACAGGGCAGGTCTTG
236





aCCC-TCC
AACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAG
237


Pro-151 to Ser
CTGTGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCG


Li-Fraumeni syndrome
CGCCATGGCCATCTACAAGCAGTCACAGCACATGACGG






CCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCGCGG
238



ACGCGGGTGCCGGGCGGGGGTGTGGAATCAACCCACAGCT



GCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTT






ATTCCACACCCCCGCCC
239






GGGCGGGGGTGTGGAAT
240





CCG-CTG
AGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGT
241


Pro-152 to Leu
GGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCC


Adrenocortical
ATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGT


carcinoma



ACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCG
242



CGGACGCGGGTGCCGGGCGGGGGTGTGGAATCAACCCACA



GCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCT






CACACCCCCGCCCGGCA
243






TGCCGGGCGGGGGTGTG
244





GGC-GTC
TTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTG
245


Gly-154 to Val
ATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCC


Glioblastoma
ATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAG






CTCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCC
246



ATGGCGCGGACGCGGGTGCCGGGCGGGGGTGTGGAATCAA



CCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAA






CCCGCCCGGCACCCGCG
247






CGCGGGTGCCGGGCGGG
248





CGC-CAC
CCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCAC
249


Arg-175 to His
ATGACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTG


Li-Fraumeni syndrome
CTCAGATAGCGATGGTGAGCAGCTGGGGCTGGAGAGACG






CGTCTCTCCAGCCCCAGCTGCTCACCATCGCTATCTGAGCAG
250



CGCTCATGGTGGGGGCAGCGCCTCACAACCTCCGTCATGTG



CTGTGACTGCTTGTAGATGGCCATGGCGCGGACGCGGG






TGTGAGGCGCTGCCCCC
251






GGGGGCAGCGCCTCACA
252





tGAG-AAG
ATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTG
253


GTu-180 to Lys
AGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGG


Li-Fraumeni syndrome
TGAGCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGC






GCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTCACCAT
254



CGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCCTCACA



ACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCAT






CCCACCATGAGCGCTGC
255






GCAGCGCTCATGGTGGG
256





gCGC-TGC
GCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGG
257


Arg-181 to Cys
CGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTGA


Breast cancer
GCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGCCCA






TGGGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTCA
258



CCATCGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCCT



CACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGC






ACCATGAGCGCTGCTCA
259






TGAGCAGCGCTCATGGT
260





CGC-CAC
CCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGGC
261


Arg-81 to His
GCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTGAG


Breast cancer
CAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGCCCAG






CTGGGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTC
262



ACCATCGCTATCTGAGCAGCGCTCATGGTGGGGGCAGCGCC



TCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGG






CCATGAGCGCTGCTCAG
263






CTGAGCAGCGCTCATGG
264





CAT-CGT
CCAGGGTCCCCAGGCCTCTGATTCCTCACTGATTGCTCTTAG
265


His-193 to Arg
GTCTGGCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATT


Li-Fraumeni syndrome
TGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCG






CGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAATTTC
266



CTTCCACTCGGATAAGATGCTGAGGAGGGGCCAGACCTAAGA



GCAATCAGTGAGGAATCAGAGGCCTGGGGACCCTGG






TCCTCAGCATCTTATCC
267






GGATAAGATGCTGAGGA
268





cCGA-TGA
CCCAGGCCTCTGATTCCTCACTGATTGCTCTTAGGTCTGGCC
269


Arg-196 to Term
CCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTG


Adrenocortical
GAGTATTTGGATGACAGAAACACTTTTCGACATAGTG


carcinoma



CACTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACG
270



CAAATTTCCTTCCACTCGGATAAGATGCTGAGGAGGGGCCAG



ACCTAAGAGCAATCAGTGAGGAATCAGAGGCCTGGG






ATCTTATCCGAGTGGAA
271






TTCCACTCGGATAAGAT
272





cAGA-TGA
GCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGT
273


Arg-209 to Term
GTGGAGTATTTGGATGACAGAAACACTTTTCGACATAGTGTG


Li-Fraumeni syndrome
GTGGTGCCCTATGAGCCGCCTGAGGTCTGGTTTGCAA






TTGCAAACCAGACCTCAGGCGGCTCATAGGGCACCACCACA
274



CTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCA



AATTTCCTTCCACTCGGATAAGATGCTGAGGAGGGGC






TGGATGACAGAAACACT
275






AGTGTTTCTGTCATCCA
276





tCGA-TGA
CATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTG
277


Arg-213 to Term
GATGACAGAAACACTTTTCGACATAGTGTGGTGGTGCCCTAT


Li-Fraumeni syndrome
GAGCCGCCTGAGGTCTGGTTTGCAACTGGGGTCTCTG






CAGAGACCCCAGTTGCAAACCAGACCTCAGGCGGCTCATAG
278



GGCACCACCACACTATGTCGAAAAGTGTTTCTGTCATCCAAAT



ACTCCACACGCAAATTTCCTTCCACTCGGATAAGATG






ACACTTTTCGACATAGT
279






ACTATGTCGAAAAGTGT
280





gCCC-TCC
GGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTC
281


Pro-219 to Ser
GACATAGTGTGGTGGTGCCCTATGAGCCGCCTGAGGTCTGG


Adrenocortical
TTTGCAACTGGGGTCTCTGGGAGGAGGGGTTAAGGGT


carcinoma



ACCCTTAACCCCTCCTCCCAGAGACCCCAGTTGCAAACCAGA
282



CCTCAGGCGGCTCATAGGGCACCACCACACTATGTCGAAAAG



TGTTTCTGTCATCCAAATACTCCACACGCAAATTTCC






TGGTGGTGCCCTATGAG
283






CTCATAGGGCACCACCA
284





TAT-TGT
ATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGACA
285


Tyr-220 to Cys
TAGTGTGGTGGTGCCCTATGAGCCGCCTGAGGTCTGGTTTG


Li-Fraumeni syndrome
CAACTGGGGTCTCTGGGAGGAGGGGTTAAGGGTGGTT






AACCACCCTTAACCCCTCCTCCCAGAGACCCCAGTTGCAAAC
286



CAGACCTCAGGCGGCTCATAGGGCACCACCACACTATGTCG



AAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAAT






GGTGCCCTATGAGCCGC
287






GCGGCTCATAGGGCACC
288





cTCT-ACT
CACAGGTCTCCCCAAGGCGCACTGGCCTCATCTTTGGGCCTG
289


Ser-227 to Thr
TGTTATCTCCTAGGTTGGCTCTGACTGTACCACCATCCACTAC


Rhabdomyosarcoma
AACTACATGTGTAACAGTTCCTGCATGGGCGGCATGA






TCATGCCGCCCATGCAGGAACTGTTACACATGTAGTTGTAGT
290



GGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAACACAG



GCCCAAGATGAGGCCAGTGCGCCTTGGGGAGACCTGTG






AGGTTGGCTCTGACTGT
291






ACAGTCAGAGCCAACCT
292





cCAC-AAC
GCACTGGCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGC
293


His-233 to Asn
TCTGACTGTACCACCATCCACTACAACTACATGTGTAACAGTT


Glioma
CCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCA






TGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTG
294



TTACACATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCA



ACCTAGGAGATAACACAGGCCCAAGATGAGGCCAGTGC






CCACCATCCACTACAAC
295






GTTGTAGTGGATGGTGG
296





cAAC-GAC
GCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGCTCTGAC
297


Asn-235 to Asp
TGTACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCA


Adrenocortical
TGGGCGGCATGAACCGGAGGCCCATCCTCACCATCA


carcinoma



TGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAG
298



GAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTCA



GAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGGC






TCCACTACAACTACATG
299






CATGTAGTTGTAGTGGA
300





AAC-AGC
CCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGCTCTGACT
301


Asn-235 to Ser
GTACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCAT


Rhabdomyosarcoma
GGGCGGCATGAACCGGAGGCCCATCCTCACCATCAT






ATGATGGTGAGGATGGGCCTCCGGTTTCATGCCGCCCATGCA
302



GGAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTC



AGAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGG






CCACTACAACTACATGT
303






ACATGTAGTTGTAGTGG
304





ATCc-ATG
CATCCACTACAACTACATGTGTAACAGTTCCTGCATGGGCGG
305


Ile-251 to Met
CATGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGA


Glioma
CTCCAGGTCAGGAGCCACTTGCCACCCTGCACACTGG






CCAGTGTGCAGGGTGGCAAGTGGCTCCTGACGTGGAGTCTT
306



CCAGTGTGATGATGGTGAGGATGGGCCTCCGGTTCATGCCG



CCCATGCAGGAACTGTTACACATGTAGTTGTAGTGGATG






AGGCCCATCCTCACCAT
307






ATGGTGAGGATGGGCCT
308





ACA-ATA
ACATGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGG
309


Thr-256 to Ile
CCCATCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGA


Glioblastoma
GCCACTTGCCACCCTGCACACTGGCCTGCTGTGCCCCA






TGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGTGGCTCC
310



TGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGGGCCT



CCGGTTCATGCCGCCCATGCAGGAACTGTTACACATGT






CATCATCACACTGGAAG
311






CTTCCAGTGTGATGATG
312





CTG-CAG
TGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCC
313


Leu-257 to Gln
ATCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGCC


Li-Fraumeni syndrome
ACTTGCCACCCTGCACACTGGCCTGCTGTGCCCCAGCC






GGCTGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGTGG
314



CTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGG



GCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACA






CATCACACTGGAAGACT
315






AGTCTTCCAGTGTGATG
316





CTG-CCG
GACCTGATTTCCTTACTGCCTCTTGCTTCTCTTTTCCTATCCT
317


Leu-265 to Pro
GAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCG


Li-Fraumeni syndrome
TGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGA






TCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCAC
318



CTCAAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGAT



AGGAAAAGAGAAGCAAGAGGCAGTAAGGAAATCAGGTC






TAATCTACTGGGACGGA
319






TCCGTCCCAGTAGATTA
320





gCGT-TGT
TGCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGAC
321


Arg-273 to Cys
GGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGA


Li-Fraumeni syndrome
GACCGGCGCACAGAGGAAGAGAATCTCCGCAAGAAAG






CTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCC
322



CAGGACAGGCACAAACACGCACCTCAAAGCTGTTCCGTCCCA



GTAGATTACCACTACTCAGGATAGGAAAAGAGAAGCA






TTGAGGTGCGTGTTTGT
323






ACAAACACGCACCTCAA
324





TGT-TAT
CTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGACGGAACA
325


Cys-275 to Tyr
GCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGG


Li-Fraumeni syndrome
CGCACAGAGGAAGAGAATCTCCGCAAGAAAGGGGAGCC






GGCTCCCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGG
326



TCTCTCCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTC



CGTCCCAGTAGATTACCACTACTCAGGATAGGAAAAG






GCGTGTTTGTGCCTGTC
327






GACAGGCACAAACACGC
328





CCT-CTT
TCCTGAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGG
329


Pro-278 to Leu
TGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAG


Breast cancer
GAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGA






TCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTCCTCT
330



GTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCACCTC



AAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGA






TGCCTGTCCTGGGAGAG
331






CTCTCCCAGGACAGGCA
332





AGA-AAA
GTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTG
333


Arg-280 to Lys
TTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAGGAAGAG


Glioma
AATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCC






GGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCT
334



TCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACG



CACCTCAAAGCTGTTCCGTCCCAGTAGATTACCACTAC






TCCTGGGAGAGACCGGC
335






GCCGGTCTCTCCCAGGA
336





GAA-GCA
GGAACAGCTTTGAGGTGCGTGWTTGTGCCTGTCCTGGGAGA
337


GTu-286 to Ala
GACCGGCGCACAGAGGAAGAGAATCTCCGCAAGAATTAGGGGA


Adrenocortical
GCCTCACCACGAGCTGCCCCCAGGGAGCACTAAGCGAGG


carcinoma



CCTCGCTTAGTGCTCCCTGGGGGCAGCTCGTGGTGAGGCTC
338



CCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCT



CCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCC






AGAGGAAGAGAATCTCC
339






GGAGATTCTCTTCCTCT
340





CGA-CCA
AAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTG
341


Arg-306 to Pro
CCCCCAGGGAGCACTAAGCGAGGTAAGCAAGCAGGACAAGA


Rhabdomyosarcoma
AGCGGTGGAGGAGACCAAGGGTGCAGTTATGCCTCAGAT






ATCTGAGGCATAACTGCACCCTTGGTCTCCTCCACCGCTTCT
342



TGTCCTGCTTGCTTACCTCGCTTAGTGCTCCCTGGGGGCAGC



TCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTT






CACTAAGCGAGGTAAGC
343






GCTTACCTCGCTTAGTG
344





gCGA-TGA
GAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCT
345


Arg-306 to Term
GCCCCCAGGGAGCACTAAGCGAGGTAAGCAAGCAGGACAAG


Li-Fraumeni syndrome
AAGCGGTGGAGGAGACCAAGGGTGCAGTTATGCCTCAGA






TCTGAGGCATAACTGCACCCTTGGTCTCCTCCACCGCTTCTT
346



GTCCTGCTTGCTTACCTCGCTTAGTGCTCCCTGGGGGCAGCT



CGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTC






GCACTAAGCGAGGTAAG
347






CTTACCTCGCTTAGTGC
348





gCGC-TGC
GGTACTGTGAATATACTTACTTCTCCCCCTCCTCTGTTGCTGC
349


Arg-337 to Cys
AGATCCGTGGGCGTGAGCGCTTCGAGATGTTCCGAGAGCTG


Osteosarcoma
AATGAGGCCTTGGAACTCAAGGATGCCCAGGCTGGGA






TCCCAGCCTGGGCATCCTTGAGTTCCAAGGCCTCATTCAGCT
350



CTCGGAACATCTCGAAGCGCTCACGCCCACGGATCTGCAGC



AACAGAGGAGGGGGAGAAGTAAGTATATTCACAGTACC






GGCGTGAGCGCTTCGAG
351






CTCGAAGCGCTCACGCC
352





CTG-CCG
CTCTCCCCCTCCTCTGTTGCTGCAGATCCGTGGGCGTGAGCGC
353


Leu-344 to Pro
TTCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCAAG


Li-Fraumeni syndrome
GATGCCCAGGCTGGGAAGGAGCCAGGGGGGAGCAGGGC






GCCCTGCTCCCCCCTGGCTCCTTCCCAGCCTGGGCATCCTT
354



GAGTTCCAAGGCCTCATTCAGCTCTCGGAACATCTCGAAGCG



CTCACGCCCACGGATCTGCAGCAACAGAGGAGGGGGAG






CCGAGAGCTGAATGAGG
355






CCTCATTCAGCTCTCGG
356









EXAMPLE 6
Beta Globin

Hemoglobin, the major protein in the red blood cell, binds oxygen reversibly and is responsible for the cells' capacity to transport oxygen to the tissues. In adults, the major hemoglobin is hemoglobin A, a tetrameric protein consisting of two identical alpha globin chains and two beta globin chains. Disorders involving hemoglobin are among the most common genetic disorders worldwide, with approximately 5% of the world's population being carriers for clinically important hemoglobin mutations. Approximately 300,000 severely affected homozygotes or compound heterozygotes are born each year.


Mutation of the glutamic acid at position 7 in beta globin to valine causes sickle cell anemia, the clinical manifestations of which are well known. Mutations that cause absence of beta chain cause beta-zero-thalassemia. Reduced amounts of detectable beta globin causes beta-plus-thalassemia. For clinical purposes, beta-thalassemia is divided into thalassemia major (transfusion dependent), thalassemia intermedia (of intermediate severity), and thalassemia minor (asymptomatic). Patients with thalassemia major present in the first year of life with severe anemia; they are unable to maintain a hemoglobin level about 5 gm/dl.


The beta-thalassemias were among the first human genetic diseases to be examined by means of recombinant DNA analysis. Baysal et al., Hemoglobin 19(3-4):213-36 (1995) and others provide a compendium of mutations that result in beta-thalassemia.


Hemoglobin disorders were among the first to be considered for gene therapy. Transcriptional silencing of genes transferred into hematopoietic stem cells, however, poses one of the most significant challenges to its success. If the transferred gene is not completely silenced, a progressive decline in gene expression is often observed. Position effect variegation (PEV) and silencing mechanisms may act on a transferred globin gene residing in chromatin outside of the normal globin locus during the important terminal phases of erythroblast development when globin transcripts normally accumulate rapidly despite heterochromatization and shutdown of the rest of the genome. The attached table discloses the correcting oligonucleotide base sequences for the beta globin oligonucleotides of the invention.










TABLE 12







Beta Globin Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Sickle Cell Anemia
TCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCA
357



GLU-7-VAL
TGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCC


GAG to GTG
CTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGA






TCACCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCA
358



GTAACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGGT



GTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGA






GACTCCTGAGGAGAAGT
359






ACTTCTCCTCAGGAGTC
360





Thalassaemia Beta
CTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA
361


MET-0-ARG
ACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGA


ATG to AGG
AGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT






ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC
362



CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT



AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG






AGACACCATGGTGCACC
363






GGTGCACCATGGTGTCT
364





Thalassaemia Beta
TATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA
365


MET-0-ILE
CCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAA


ATG to ATA
GTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTG






CACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCT
366



CCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGC



TAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATA






GACACCATGGTGCACCT
367






AGGTGCACCATGGTGTC
368





Thalassaemia Beta
TATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA
369


MET-0-ILE
CCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAT


ATG to ATT
GTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTG






CACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCT
370



CCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGC



TAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATA






GACACCATGGTGCACCT
371






AGGTGCACCATGGTGTC
372





Thalassaemia Beta
CTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA
373


MET-0-LYS
ACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGA


ATG to AAG
AGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT






ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC
374



CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT



AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG






AGACACCATGGTGCACC
375






GGTGCACCATGGTGTCT
376





Thalassaemia Beta
CTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA
377


MET-0-THR
ACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGA


ATG to ACG
AGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT






ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC
378



CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT



AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG






AGACACCATGGTGCACC
379






GGTGCACCATGGTGTCT
380





Thalassaemia Beta
TCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGC
381


MET-0-VAL
AACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAG


ATG to GTG
AAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACG






CGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCC
382



TCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCTAG



TGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAGA






CAGACACCATGGTGCAC
383






GTGCACCATGGTGTCTG
384





Thalassaemia Beta
TCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGT
385


TRP-16-Term
CTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAA


TGG to TGA
GTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTA






TAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTTC
386



ATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACT



TCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGA






GCCCTGTGGGGCAAGGT
387






ACCTTGCCCCACAGGGC
388





Thalassaemia Beta
CTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAG
389


TRP-16-Term
TCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGA


TGG to TAG
AGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTT






AACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTTCA
390



TCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTT



CTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAG






TGCCCTGTGGGGCAAGG
391






CCTTGCCCCACAGGGCA
392





Thalassaemia Beta
ACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGC
393


LYS-18-Term
CGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTG


AAG to TAG
GTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAG






CTTGTAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAA
394



CTTCATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCA



GACTTCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGT






TGTGGGGCAAGGTGAAC
395






GTTCACCTTGCCCCACA
396





Thalassaemia Beta
CCATGGTGCACCTGACTCGTGAGGAGAAGTCTGCCGTTACT
397


ASN-20-SER
GCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGA


AAC to AGC
GGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGGTT






AACCTGTCTTGTAACCTTGATACCAACCTGCCCAGGGCCTCA
398



CCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCAGTA



ACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGG






CAAGGTGAACGTGGATG
399






CATCCACGTTCACCTTG
400





Thalassaemia Beta
ACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGG
401


GLU-23-ALA
GGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGG


GAA to GCA
GCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGAC






GTCTCCTTAAACCTGTCTTGTAACCTTGATACCAACCTGCCC
402



AGGGCCTCACCACCAACTTCATCCACGTTCACCTTGCCCCAC



AGGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGT






CGTGGATGAAGTTGGTG
403






CACCAACTTCATCCACG
404





Thalassaemia Beta
CACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTG
405


GLU-23-term
GGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTG


GAA to TAA
GGCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGA






TCTCCTTAAACCTGTCTTGTAACCTTGATACCAACCTGCCCA
406



GGGCCTCACCACCAACTTCATCCACGTTCACCTTGCCCCACA



GGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGTG






ACGTGGATGAAGTTGGT
407






ACCAACTTCATCCACGT
408





Thalassaemia Beta
GAGGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAA
409


GLU-27-LYS
CGTGGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTAT


GAG to AAG
CAAGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACT






AGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGATAC
410



CAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGTTCA



CTTTGCCCCACAGGGCATTGACAGCAGTCTTCTCCTC






TTGGTGGTGAGGCCCTG
411






CAGGGCCTCACCACCAA
412





Thalassaemia Beta
GAGGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAA
413


GLU-27-Term
CGTGGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTAT


GAG to TAG
CAAGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACT






AGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGATAC
414



CAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGTTCA



CTTTGCCCCACAGGGCATTGACAGCAGTCTTCTCCTC






TTGGTGGTGAGGCCCTG
415






CAGGGCCTCACCACCAA
416





Thalassaemia Beta
GAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAACGT
417


ALA-28-SER
GGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAA


GCC to TCC
GGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACTGGG






CCCAGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGA
418



TACCAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGT



TCACTTTGCCCCACAGGGCATTGACAGCAGTCTTCTC






GTGGTGAGGCCCTGGGC
419






GCCCAGGGCCTCACCAC
420





Thalassaemia Beta
CTGTCAATGCCCTGTGGGGCAAAGTGAACGTGGATGCAGTT
421


ARG-31-THR
GGTGGTGAGGCCCTGGGCAGGTTGGTATGAAGGTTATAAGA


AGG to ACG
GAGGCTCAAGGAGGCAAATGGAAACTGGGCATGTGTAGA






TCTACACATGCCCAGTTTCCATTTGCCTCCTTGAGCCTCTCTT
422



ATAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTG



CATCCACGTTCACTTTGCCCCACAGGGCATTGACAG






CCTGGGCAGGTTGGTAT
423






ATACCAACCTGCCCAGG
424





Thalassaemia Beta
TGGGTTTCTGATAGGCACTGACTCTCTGTCCCTTGGGCTGTT
425


Leu-33-GLN
TTCCTACCCTCAGATTACTGGTGGTCTACCCTTGGACCCAGA


CTG to CAG
GGTTCTTTGAGTCCTTTGGGGATCTGTCCTCTCCTGA






TCAGGAGAGGAGAGATCCCCAAAGGACTCAAAGAACCTCTG
426



GGTCCAAGGGTAGACCACCAGTAATCTGAGGGTAGGAAAAC



AGCCCAAGGGACAGAGAGTCAGTGCCTATCAGAAACCCA






CAGATTACTGGTGGTCT
427






AGACCACCAGTAATCTG
428





Thalassaemia Beta
ATAGGCACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCT
429


TYR-36-Term
CAGATTACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGA


TAC to TAA
GTCCTTTGGGGATCTGTCCTCTCCTGATGCTGTTATG






CATAACAGCATCAGGAGAGGACAGATCCCCAAAGGACTCAAA
430



GAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCTGAGGG



TAGGAAAACAGCCCAAGGGACAGAGAGTCAGTGCCTAT






GTGGTCTACCCTTGGAC
431






GTCCAAGGGTAGACCAC
432





Thalassaemia Beta
ACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGATT
433


TRP-38-Term
ACTGGTGGTCTACCCGTTGGACCCAGAGGTTCTTTGAGTCCTT


TGG to TGA
TGGGGATCTGTCCTCTCCTGATGCTGTTATGGGCAAC






GTTGCCCATAACAGCATCAGGAGAGGACAGATCCCCAAAGG
434



ACTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAGTAATC



TGAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGT






TACCCTTGGACCCAGAG
435






CTCTGGGTCCAAGGGTA
436





Thalassaemia Beta
CACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGAT
437


TRP-38-Term
TACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTGAGTCCT


TGG to TAG
TTGGGGATCTGTCCTCTCCTGATGCTGTTATGGGCAA






TTGCCCATAACAGCATCAGGAGAGGACAGATCCCCAAAGGA
438



CTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCT



GAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGTG






CTACCCTTGGACCCAGA
439






TCTGGGTCCAAGGGTAG
440





Thalassaemia Beta
ACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGATTACTG
441


GLN-40-Term
GTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGG


CAG-TAG
GATCTGTCCTCTCCTGATGCTGTTATGGGCAACCCTA






TAGGGTTGCCCATAACAGCATCAGGAGAGGACAGATCCCCA
442



AAGGACTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAG



TAATCTGAGGGTAGGAAAACAGCCCAAGGGAGAGAGAGT






CTTGGACCCAGAGGTTC
443






GAACCTCTGGGTCCAAG
444





Thalassaemia Beta
TTGGGCTGTTTTCCTACCCTCAGATTACTGGTGGTCTACCCT
445


GLU-44-Term
TGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCTCT


GAG to TAG
CCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTC






GAGCCTTCACCTTAGGGTTGCCCATAACAGCATCAGGAGAG
446



GACAGATCCCCAAAGGACTCAAAGAACCTGTGGGTCCAAGG



GTAGACCACCAGTAATCTGAGGGTAGGAAAACAGCCCAA






GGTTCTTTGAGTCCTTT
447






AAAGGACTCAAAGAACC
448





Thalassaemia Beta
TTCTTTGAGTCCTTTGGGGATCTGTCCTCTCCTGATGCTGTTA
449


LYS-62-Term
TGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAGGTGCTA


AAG to TAG
GGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACC






GGTTGTCCAGGTGAGCCAGGCCATCACTAAAGGCACCTAGC
450



ACCTTCTTGCCATGAGCCTTCACCTTAGGGTTGCCCATAACA



GCATCAGGAGAGGACAGATCCCCAAAGGACTCAAAGAA






CTAAGGTGAAGGCTCAT
451






ATGAGCCTTCACCTTAG
452





Thalassaemia Beta
TGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGA
453


SER-73-ARG
AGGTGCTAGGTGCCTTTAGTGATGGCCTGGCTCACCTGGAC


AGT to AGA
AACCTCAAGGGCACTTTTTCTCAGCTGAGTGAGCTGCAC






GTGCAGCTCACTCAGCTGAGAAAAAGTGCCCTTGAGGTTGTC
454



CAGGTGAGCCAGGCCATCACTAAAGGCACCTAGCACCTTCT



TGCCATGAGCCTTCACCTTAGGGTTGCCCATAACAGCA






GCCTTTAGTGATGGCCT
455






AGGCCATCACTAAAGGC
456





Haemolylic Anaemia
TTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAGGTG
457


GLY-75-VAL
CTAGGTGCCTTTTAGTGATGGCCTGGCTCACCTGGACAACCT


GGC to GTC
CAAGGGCACTTTTTCTCAGCTGAGTGAGCTGCACTGTGA






TCACAGTGCAGCTCACTCAGCTGAGAAAAAGTGCCCTTGAG
458



GTTGTCCAGGTGAGCCAGGCCATCACTAAAGGCACCTAGCA



CCTTCTTGCCATGAGCCTTCACCTTAGGGTTGCCCATAA






TAGTGATGGCCTGGCTC
459






GAGCCAGGCCATCACTA
460





Thalassaemia Beta
GCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGG
461


GLU-91-Term
CACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGC


GAG to TAG
ACGTGGATCCTGAGAACTTCAGGGTGAGTCTATGGGACC






GGTCCCATAGACTCACCCTGAAGTTCTCAGGATCCACGTGCA
462



GCTTGTCACAGTGCAGCTCACTCAGTGTGGCAAAGGTGCCC



TTGAGGTTGTCCAGGTGAGCCAGGCCATCACTAAAGGC






CACTGAGTGAGCTGCAC
463






GTGCAGCTCACTCAGTG
464





Thalassaemia Beta
CTGGACAACCTCAAGGGCACTTTTTCTCAGCTGAGTGAGCTG
465


VAL-99-MET
CACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGGT


GTG to ATG
GAGTCCAGGAGATGCTTCACTTTTCTCTTTTTACTTTC






GAAAGTAAAAAGAGAAAAGTGAAGCATCTCCTGGACTCACCC
466



TGAAGTTCTCAGGATCCACGTGCAGCTTGTCACAGTGCAGCT



CACTCAGCTGAGAAAAAGTGCCCTTGAGGTTGTCCAG






AGCTGCACGTGGATCCT
467






AGGATCCACGTGCAGCT
468





Thalassaemia Beta
CCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACA
469


LEU-111-PRO
GCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACT


CTG-CCG
TTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTA






TAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCCAAAGTG
470



ATGGGCCAGCACACAGACCAGCACGTTGCCCAGGAGCTGTG



GGAGGAAGATAAGAGGTATGAACATGATTAGCAAAAGGG






CAACGTGCTGGTCTGTG
471






CACAGACCAGCACGTTG
472





Thalassaemia Beta
GCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTG
473


CYS-113-Term
GGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAA


TGT to TGA
AGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAA






TTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCC
474



AAAGTGATGGGCCAGCACACAGACCAGCACGTTGCCCAGGA



GCTGTGGGAGGAAGATAAGAGGTATGAACATGATTAGC






CTGGTCTGTGTGCTGGC
475






GCCAGCACACAGACCAG
476





Thalassaemia Beta
TCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCA
477


LEU-115-PRO
ACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAAT


CTG to CCG
TCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGT






ACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCT
478



TTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCC



CAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACATGA






CTGTGTGCTGGCCCATC
479






GATGGGCCAGCACACAG
480





Thalassaemia Beta
TGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACG
481


ALA-116-ASP
TGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA


GCC to GAC
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGC






GCCACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAA
482



TTCTTTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTT



GCCCAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACA






TGTGCTGGCCCATCACT
483






AGTGATGGGCCAGCACA
484





Thalassaemia Beta
TTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCT
485


GLU-122-Term
GGCCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGG


GAA to TAA
CTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCC






GGGCATTAGCCACACCAGCCACCACTTTCTGATAGGCAGCC
486



TGCACTGGTGGGGTGAATTCTTTGCCAAAGTGATGGGCCAG



CACACAGACCAGCACGTTGCCCAGGAGCTGTGGGAGGAA






TTGGCAAAGAATTCACC
487






GGTGAATTCTTTGCCAA
488





Thalassaemia Beta
GCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAA
489


GLN-128-PRO
GAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGT


CAG to CCG
GGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTA






TAGTGATACTTGTGGGCCAGGGCATTAGCCACACCAGCCAC
490



CACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTT



GCCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGC






ACCAGTGCAGGCTGCCT
491






AGGCAGCCTGCACTGGT
492





Thalassaemia Beta
GGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAA
493


GLN-128-Term
AGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGT


CAG to TAG
GGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACT






AGTGATACTTGTGGGCCAGGGCATTAGCCACACCAGCCACC
494



ACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTG



CCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCC






CACCAGTGCAGGCTGCC
495






GGCAGCCTGCACTGGTG
496





Thalassaemia Beta
GTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACCCCA
497


GLN-132-LYS
CCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGC


CAG to AAG
TAATGCCCTGGCCCACAAGTATCACTAAGCTCGCTTTC






GAAAGCGAGCTTAGTGATACTTGTGGGCCAGGGCATTAGCC
498



ACACCAGCCACCACTTTCTGATAGGCAGCCTGCACTGGTGG



GGTGAATTCTTTGCCAAAGTGATGGGCCAGCACACAGAC






CTGCCTATCAGAAAGTG
499






CACTTTCTGATAGGCAG
500









EXAMPLE 7
Retinoblastoma

Retinoblastoma (RB) is an embryonic neoplasm of retinal origin. It almost always presents in early childhood and is often bilateral. The risk of osteogenic sarcoma is increased 500-fold in bilateral retinoblastoma patients, the bone malignancy being at sites removed from those exposed to radiation treatment of the eye tumor.


The retinoblastoma susceptibility gene (pRB; pRb) plays a pivotal role in the regulation of the cell cycle. pRB restrains cell cycle progression by maintaining a checkpoint in late G1 that controls commitment of cells to enter S phase. The critical role that pRB plays in cell cycle regulation explains its status as archetypal tumor suppressor: loss of pRB function results in an inability to maintain control of the G1 checkpoint; unchecked progression through the cell cycle is, in turn, a hallmark of neoplasia.


Blanquet et al., Hum. Molec. Genet. 4: 383-388 (1995) performed a mutation survey of the RB1 gene in 232 patients with hereditary or nonhereditary retinoblastoma. They systematically explored all 27 exons and flanking sequences, as well as the promoter. All types of point mutations were represented and found to be unequally distributed along the RB1 gene sequence. In the population studied, exons 3, 8, 18, and 19 were preferentially altered. The attached table discloses the correcting oligonucleotide base sequences for the retinoblastoma oligonucleotides of the invention.










TABLE 13







pRB Mutations and Genome-Correcting Oligos











Clinical Phenotype

SEQ ID



Mutation
Correcting Oligos
NO:





Retinoblastoma
AATATTTGATCTTTATTTTTTGTTCCCAGGGAGGTTATATTCAA
501



Trp99Term
AAGAAAAAGGAACTGTGGGGAATCTGTATCTTTATTGCAGCA


TGG-TAG
GTTGACCTAGATGAGATGTCGTTCACTTTTACTGA






TCAGTAAAAGTGAACGACATCTCATCTAGGTCAACTGCTGCA
502



ATAAAGATACAGATTCCCCACAGTTCCTTTTTCTTTTGAAIATA



ACCTCCCTGGGAACAAAAAATAAAGATCAAATATT






GGAACTGTGGGGAATCT
503






AGATTCCCCACAGTTCC
504





Retinoblastoma
ATTTACTTTTTTCTATTCTTTCCTTTGTAGTGTCCATAAATTCTT
505


Glu137Asp
TAACTTACTAAAAGAAATTGATACCAGTACCAAAGTTGATAAT


GAA-GAT
GCTATGTCAAGACTGTTGAAGAAGTATGAIGTA






TACATCATACTTCTTCAACAGTCTTGACATAGCATTATCAACTT
506



TGGTACTGGTATCAATTTCTTTTAGTAAGTTAAAGAATTTATGG



ACACTACAAAGGAAAGAATAGAAAAAAGTAAAT






CTAAAAGAAATTGATAC
507






GTATCAATTTCTTTTAG
508





Retinoblastoma
TGATTTACTTTTTTTCTATTCTTTCCTTTGTAGTGTCCATAAATT
509


Glu137Term
CTTTAACTTACTAAAAGAAATTGATACCAGTACCAAAGTTGAT


GAA-TAA
AATGCTATGTCAAGACTGTTGAAGAAGTATGATG







CATCATACTTCTTCAACAGTCTTGACATAGCATTATCAACTTT
510



GGTACTGGTATCAATTTCTTTTAGTAAGTTAAAGAATTTATGG



ACACTACAAAGGAAAGAATAGAAAAAAGTAAATCA






TACTAAAAGAAATTGAT
511






ATCAATTTCTTTTAGTA
512





Retinoblastoma
AAAATGTTAAAAAGTCATAATGTTTTTCTTTTCAGGACATGTGA
513


Gln176Term
ACTTATATATTTGACACAACCCAGCAGTTCGTAAGTAGTTCAC


CAA-TAA
AGAATGTTATTTTTCACTTAAAAAAAAAGATTTT






AAAATCTTTTTTTTTAAGTGAAAAATAACATTCTGTGAACTACT
514



TACGAACTGCTGGGTTGTGTCAAATATATAAGTTCACATGTCC



TGAAAAGAAAAACATTATGACTTTTTAACATTTT






ATTTGACACAACCCAGC
515






GCTGGGTTGTGTCAAAT
516





Relinoblastoma
TGATACATTTTTCCTGTTTTTTTTCTGCTTTCTATTTGTTTAATA
517


lle185Thr
GGATATCTACTGAAATAAATTCTGCATTGGTGCTAAAAGTTTC


ATA-ACA
TTGGATCACATTTTTATTAGCTAAAGGTAAGTT






AACTTACCTTTAGCTAATAAAAATGTGATCCAAGAAACTTTTA
518



GCACCAATGCAGAATTTATTTCAGTAGATATCCTATTAAACAA



ATAGAAAGCAGAAAAAAAACAGGAAAAATGTATCA






TACTGAAATAAATTCTG
519






CAGAATTTATTTCAGTA
520





Retinoblastoma
AAAGATCTGAATCTCTAACTTTCTTTAAAAATGTACATTTTTTT
521


Gln207Term
TTCAGGGGAAGTATTACAAATGGAAGATGATCTGGTGATTTC


CAA-TAA
ATTTCAGTTAATGCTATGTGTCCTTGACTATTTTA






TAAAATAGTCAAGGACACATAGCATTAACTGAAATGAAATCAC
522



CAGATCATCTTCCATTTGTAATACTTCCCCTGAAAAAAAAAATG



TACATTTTTAAAGAAAGTTAGAGATTCAGATCTTT






AAGTATTACAAATGGAA
523






TTCCATTTGTAATACTT
524





Retinoblastoma
GTTCTTATCTAATTTACCACTTTTACAGAAACAGCTGTTATACC
525


Arg251Term
CATTAATGGTTCACCTCGAACACCCAGGCGAGGTCAGAACA


CGA to TGA
GGAGTGCACGGATAGCAAAACAACTAGAAAATGATA






TATCATTTTCTAGTTGTTTTGCTATCCGTGCACTCCTGTTCTG
526



ACCTCGCCTGGGTGTTCGAGGTGAACCATTAATGGGTATAAC



AGCTGTTTCTGTAAAAGTGGTAAATTAGATAAGAAC






GTTCACCTCGAACACCC
527






GGGTGTTCGAGGTGAAC
528





Retinoblastoma
TTTACCACTTTTACAGAAACAGCTGTTATACCCATTAATGGTT
529


Arg255Term
CACCTCGAACACCCAGGCGAGGTCAGAACAGGAGTGCACG


CGA to TGA
GATAGCAAAACAACTAGAAAATGATACAAGAATTATTG






CAATAATTCTTGTATCATTTTCTAGTTGTTTTGCTATCCGTGCA
530



CTCCTGTTCTGACCTCGCCTGGGTGTTCGAGGTGAACCATTA



ATGGGTATAACAGCTGTTTCTGTAAAAGTGGTAAA






CACCCAGGCGAGGTCAG
531






CTGACCTCGCCTGGGTG
532





Retinoblastoma
ATTAATGGTTCACCTCGAACACCCAGGCGAGGTCAGAACAG
533


Gln266Term
GAGTGCACGGATAGCAAAACAACTAGAAAATGATACAAGAAT


CAA to TAA
TATTGAAGTTCTCTGTAAAGAACATGAATGTAATATAG






CTATATTACATTCATGTTCTTTACAGAGAACTTCAATAATTCTT
534



GTATCATTTTCTAGTTGTTTTGCTATCCGTGCACTCCTGTTCT



GACCTCGCCTGGGTGTTCGAGGTGAACCATTAAT






TAGCAAAACAACTAGAA
535






TTCTAGTTGTTTTGCTA
536





Retinoblastoma
TGACATGTAAAGGATAATTGTCAGTGACTTTTTTCTTTCAAGG
537


Arg320Term
TTGAAAATCTTTCTAAACGATACGAAGAAATTTATCTTAAAAAT


CGA to TGA
AAAGATCTAGATGCAAGATTATTTTTGGATCATG






CATGATCCAAAAATAATCTTGCATCTAGATCTTTATTTTTAAGA
538



TAAATTTCTTCGTATCGTTTAGAAAGATTTTCAACCTTGAAAGA



AAAAAGTCACTGACAATTATCCTTTACATGTCA






TTTCTAAACGATACGAA
539






TTCGTATCGTTTAGAAA
540





Retinoblastoma
ACAAATTGTAAATTTTCAGTATGAAGACTTGACTTCACTTATTGTT
541


Gln354Term
ATTTAGTTTTGAAACACAGAGAACACCACGAAAAAGTAACCTT


CAG to TAG
GATGAAGAGGTGAATGTAATTCCTCCACACACTC






GAGTGTGTGGAGGAATTACATTCACCTCTTCATCAAGGTTAC
542



TTTTTCGTGGTGTTCTCTGTGTTTCAAAACTAAATAACAATAA



GTGAAGTCATTCACATACTGAAAATTTACAATTTGT






TTGAAACACAGAGAACA
543






TGTTCTCTGTGTTTCAA
544





Retinoblastoma
TTTTCAGTATGIGAATGACTTCACTTATTGTTATTTAGTTTTGA
545


Arg358Gly
AACACAGAGAACACCACGAAAAAGTAACCTTGATGAAGAGGT


CGA to GGA
GAATGTAATTCCTCCACACACTCCAGTTAGGTATG






CATACCTAACTGGAGTGTGTGGAGGAATTACATTCACCTCTT
546



CATCAAGGTTACTTTTTCGTGGTGTTCTCTGTGTTTCAAAACT



AAATAACAATAAGTGAAGTCATTCACATACTGAAAA






GAACACCACGAAAAAGT
547






ACTTTTTCGTGGTGTTC
548





Retinoblastoma
TTTTCAGTATGTGAATGACTTCACTTATTGTTATTTATTTTTGA
549


Arg358Term
AACACAGAGAACACCACGAAAAAGTAACCTTGATGAAGAGGT


CGA to TGA
GAATGTAATTCCTCCACACACTCCAGTTAGGTATG






CATACCTAACTGGAGTGTGTGGAGGAATTACATTCACCTCTT
550



CATCAAGGTTACTTTTTCGTGGTGTTCTCTGTGTTTCAAAACT



AAATAACAATAAGTGAAGTCATTCACATACTGAAAA






GAACACCACGAAAAAGT
551






ACTTTTTCGTGGTGTTC
552





Retinoblastoma
CTGTTATGAACACTATCCAACAATTAATGATGATTTTAAATTCA
553


Ser397Term
GCAAGIGATCAACCTTCAGAAAATCTGATTTCCTATTTTAACG


TCA to TAA
TAAGCCATATATGAAACATTATTTATTGTAATAT






ATATTACAATAAATAATGTTTCATATATGGCTTACGTTAAAATA
554



GGAAATCAGATTTTCTGAAGGTTGATCACTTGCTGAATTTAAA



ATCATCATTAATTGTTGGATAGTGTTCATAACAG






TCAACCTTCAGAAAATC
555






GATTTTCTGAAGGTTGA
556





Retinoblastoma
TTTCATAATTGTGATTTTCTAAAATAGCAGGCTCTTATTTTTCT
557


Arg445Term
TTTTGTTTGTTTGTAGCGATACAAACTTGGAGTTCGCTTGTAT


CGA to TGA
TACCGAGTAATGGAATCCATGCTTAAATCAGTAA






TTACTGATTTAAGCATGGATTCCATTACTCGGTAATACAAGCG
558



AACTCCAAGTTTGTATCGCTACAAACAAACAAAAAGAAAAATA



AGAGCCTGCTATTTTAGAAAATCACAATTATGAAA






GTTTGTAGCGATACAAA
559






TTTGTATCGCTACAAAC
560





Retinoblastoma
GCTCTTATTTTTCTTTTTGTTTGTTTGTAGCGATACAAACTTGG
561


Arg455Term
AGTTCGCTTGTATTACCGAGTAATGGAATCCATGCTTAAATCA


CGA to TGA
GTAAGTAAAAACAATATAAAAAAATTTCAGCCG






CGGCTGAAATTTTTTTATATTGTTTTTAACTTACTGATTTAAGC
562



ATGGATTCCATTACTCGGTAATACAAGCGAACTCCAAGTTTGT



ATCGCTACAAACAAACAAAAAGAAAAATAAGAGC






TGTATTACCGAGTAATG
563






CATTACTCGGTAATACA
564





Retinoblastoma
ATCGAAAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAA
565


Arg552Term
ATGATAAAACATTTAGAACGATGTGAACATCGAATCATGGAAT


CGA to TGA
CCCTTGCATGGCTCTCAGTAAGTAGCTAAATAATTG






CAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGATTCCAT
566



GATTCGATGTTCACATCGTTCTAAATGTTTTATCATTTCTCTTG



TCAAGTTGCCTTCTGCTTTGATAAAACTTTCGAT






ATTTAGAACGATGTGAA
567






TTCACATCGTTCAAAT
568





Retinoblastoma
AAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAAATGATA
569


Cys553Term
AAACATTTAGAACGATGTGAACATCGAATCATGGAATCCCTTG


TGT to TGA
CATGGCTCTCAGTAAGTAGCTAAATAATTGAAGAA






TTCTTCAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGAT
570



TCCATGATTCGATGTTCACATCGTTCTAAATGTTTTATCATTTC



TCTTGTCAAGTTGCCTTCTGCTTTGATAAAACTT






GAACGATGTGAACATCG
571






CGATGTTCACATCGTTC
572





Retinoblastoma
AGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAAATGATAA
573


Glu554Term
AACATTTAGAACGATGTGAACATCGAATCATGGAATCCCTTG


GAA to TAA
CATGGCTCTCAGTAAGTAGCTAAATAATTGAAGAAA






TTTCTTCAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGA
574



TTCCATGATTCGATGTTCACATCGTTCTAAATGTTTTATCATTT



CTCTTGTCAAGTTGCCTTCTGCTTTGATAAAACT






AACGATGTGAACATCGA
575






TCGATGTTCACATCGTT
576





Retinoblastoma
TACCTGGGAAAATTATGCTTACTAATGTGGTTTTAATTTCATC
577


Ser567Leu
ATGTTTCATATAGGATTCACCTTTATTTGATCTTATTAAACAAT


TCA to TTA
CAAAGGACCGAGAAGGACCAACTGATCACCTTGA






TCAAGGTGATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAA
578



TAAGATCAAATAAAGGTGAATCCTATATGAAACATGATGAAAT



TAAAACCACATTAGTAAGCATAATTTTCCCAGGTA






ATAGGATTCACCTTTAT
579






ATAAAGGTGAATCCTAT
580





Retinoblastoma
AATGTGGTTTTAATTTCATCATGTTTFCATATAGGATTCACCTTT
581


Gln575Term
ATTTGATCTTATTAAACAATCAAAGGACCGAGAAGGACCAACT


CAA to TAA
GATCACCTTGAATCTGCTTGTCCTCTTAATCTTC






GAAGATTAAGAGGACAAGCAGATTCAAGGTGATCAGTTGGTC
582



CTTCTCGGTCCTTTGATTGTTTAATAAGATCAAATAAAGGTGA



ATCCTATATGAAACATGATGAAATTAAAACCACATT






TTATTAAACAATCAAAG
583






CTTTGATTGTTTAATAA
584





Retinoblastoma
ATTTCATCATGTTTCATATAGGATTCACCTTTATTTGATCTTAT
585


Arg579Term
TAAACAATCAAAGGACCGAGAAGGACCAACTGATCACCTTGA


CGA to TGA
ATCTGCTTGTCCTCTTAATCTTCCTCTCCAGAATA






TATTCTGGAGAGGAAGATTAAGAGGACAAGCAGATTCAAGGT
586



GATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAATAAGATC



AAATAAAGGTGAATCCTATATGAAACATGATGAAAT






CAAAGGACCGAGAAGGA
587






TCCTTCTCGGTCCTTTG
588





Retinoblastoma
TCATCATGTTTCATATAGGATTCACCTTTATTTGATCTTATTAA
589


Glu580Term
ACAATCAAAGGACCGAGAAGGACCAACTGATCACCTTGAATC


GAA to TAA
TGCTTGTCCTCTTAATCTTCCTCTCCAGAATAATC






GATTATTCTGGAGAGGAAGATTAAGAGGACAAGCAGATTCAA
590



GGTGATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAATAAG




ATCAAATAAAGGTGAATCCTATATGAAACATGATGA







AGGACCGAGAAGGACCA
591






TGGTCCTTCTCGGTCCT
592





Retinoblastoma
AGAAAAAAGGTTCAACTACGCGTGTAAATTCTACTGCAAATG
593


Ser634Term
CAGAGACACAAGCAACCTCAGCCTTCCAGACCCAGAAGCCA



TCA to TGA
TTGAAATCTACCTCTCTTTCACTGTTTTATAAAAAAGG







CCTTTTTTATAAAACAGTGAAAGAGAGGTAGATTTCAATGGCT
594



TCTGGGTCTGGAAGGCTGAGGTTGCTTGTGTCTCTGCATTTG




CAGTAGAATTTACACGCGTAGTTGAACCTTTTTTCT







AGCAACCTCAGCCTTCC
595






GGAAGGCTGAGGTTGCT
596





Retinoblastoma
AAAAAAGGTTCAACTACGCGTGTAAATTCTACTGCAAATGCA
597


Ala635Pro
GAGACACAAGCAACCTCAGCCTTCCAGACCCAGAAGCCATT



GCC to CCC
GAAATCTACCTCTCTTTCACTGTTTTATAAAAAAGGTT







AACCTTTTTTATAAAACAGTGAAAGAGAGGTAGATTTCAATGG
598



CTTCTGGGTCTGGAAGGCTGAGGTTGCTTGTGTCTCTGCATT




TGCAGTAGAATTTACACGCGTAGTTGAACCTTTTTT







CAACCTCAGCCTTCCAG
599






CTGGAAGGCTGAGGTTG
600





Retinoblastoma
ACTACGCGTGTAAATTCTACTGCAAATGCAGAGACACAAGCA
601


Gln639Term
ACCTCAGCCTTCCAGACCCAGAAGCCATTGAAATCTACCTCT



CAG to TAG
CTTTCACTGTTTTATAAAAAAGGTTAGTAGATGATTA







TAATCATCTACTAACCTTTTTTATAAAACAGTGAAAGAGAGGT
602



AGATTTCAATGGCTTCTGGGTCTGGAAGGCTGAGGTTGCTTG




TGTCTCTGCATTTGCAGTAGAATTTACACGCGTAGT







TCCAGACCCAGAAGCCA
603






TGGCTTCTGGGTCTGGA
604





Retinoblastoma
TTGTAATTCAAAATGAACAGTAAAAATGACTAATTTTTCTTATT
605


Leu657Pro
CCCACAGTGTATCGGCTAGCCTATCTCCGGCTAAATACACTT



CTA to CCA
TGTGAACGCCTTCTGTCTGAGCACCCAGAATTAGA







TCTAATTCTGGGTGCTCAGACAGAAGGCGTTCACAAAGTGTA
606



TTTAGCCGGAGATAGGCTAGCCGATACACTGTGGGAATAAG




AAAAATTAGTCATTTTTACTGTTCATTTTGAATTACAA







GTATCGGCTAGCCTATC
607






GATAGGCTAGCCGATAC
608





Retinoblastoma
AATGAACAGTAAAAATGACTAATTTTTCTTATTCCCACAGTGTA
609


Arg661Trp
TCGGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGCCT



CGG to TGG
TCTGTCTGAGCACCCAGAATTAGAACATATCATCT







AGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGGCGTT
610



CACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATACACTG




TGGGAATAAGAAAAATTAGTCATTTTTACTGTTCATT







CCTATCTCCGGCTAAAT
611






ATTTAGCCGGAGATAGG
612





Retinoblastoma
AACAGTAAAAATGACTAATTTTTCTTATTCCCACAGTGTATCG
613


Leu662Pro
GCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGCCTTCT



CTA to CCA
GTCTGAGCACCCAGAATTAGAACATATCATCTGGAC







GTCCAGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGG
614



CGTTCACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATAC




ACTGTGGGAATAAGAAAAATTAGTCATTTTTACTGTT







TCTCCGGCTAAATACAC
615






GTGTATTTAGCCGGAGA
616





Retinoblastoma
TATCGGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGC
617


Glu675Term
CTTCTGTCTGAGCACCCAGAATTAGAACATATCATCTGGACC



GAA to TAA
CTTTTCCAGCACACCCTGCAGAATGAGTATGAACTCA







TGAGTTCATACTCATTCTGCAGGGTGTGCTGGAAAAGGGTCC
618



AGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGGCGTT




CACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATA







AGCACCCAGAATTAGAA
619






TTCTAATTCTGGGTGCT
620





Retinoblastoma
TTTGTGAACGCCTTCTGTCTGAGCACCCAGAATTAGAACATA
621


Gln685Pro
TCATCTGGACCCTTTTCCAGCACACCCTGCAGAATGAGTATG



CAG to CCG
AACTCATGAGAGACAGGCATTTGGACCAAGTAAGAAA







TTTCTTACTTGGTCCAAATGCCTGTCTCTCATGAGTTCATACT
622



CATTCTGCAGGGTGTGCTGGAAAAGGGTCCAGATGATATGTT




CTAATTCTGGGTGCTCAGACAGAAGGCGTTCACAAA







CCTTTTCCAGCACACCC
623






GGGTGTGCTGGAAAAGG
624





Retinoblastoma
AAAACCATGTAATAAAATTCTGACTACTTTTACATCAATTTATT
625


Cys706Tyr
TACTAGATTATGATGTGTTCCATGTATGGCATATGCAAAGTGA



TGT to TAT
AGAATATAGACCTTAAATTCAAAATCATTGTAAC







GTTACAATGATTTTGAATTTAAGGTCTATATTCTTCACTTTGCA
626



TATGCCATACATGGAACACATCATAATCTAGTAAATAAATTGA




TGTAAAAGTAGTCAGAATTTTATTACATGGTTTT







TATGATGTGTTCCATGT
627






ACATGGAACACATCATA
628





Retinoblastoma
TTCTGACTACTTTTACATCAATTTATTTACTAGATTATGATGTG
629


Cys712Arg
TTCCATGTATGGCATATGCAAAGTGAAGAATATAGACCTTAAA



TGC to CGC
TTCAAAATCATTGTAACAGCATACAAGGATCTTC







GAAGATCCTTGTATGCTGTTACAATGATTTTGAATTTAAGGTC
630



TATATTCTTCACTTTGCATATGCCATACATGGAACACATCATA




ATCTAGTAAATAAATTGATGTAAAAGTAGTCAGAA







ATGGCATATGCAAAGTG
631






CACTTTGCATATGCCAT
632





Retinoblastoma
GTATGGCATATGCAAAGTGAAGAATATAGACCTTAAATTCAAA
633


Tyr728Term
ATCATTGTAACAGCATACAAGGATCTTCCTCATGCTGTTCAG



TAC to TAA
GAGGTAGGTAATTTTCCATAGTAAGTTTTTTTGATA







TATCAAAAAAACTTACTATGGAAAATTACCTACCTCCTGAACA
634



GGATGAGGAAGATCCTTGTATGCTGTTACAATGATTTTGAATT




TAAGGTCTATATTCTTCACTTTGCATATGCCATAC







ACAGCATACAAGGATCT
635






AGATGCTTGTATGCTGT
636





Retinoblastoma
TTTTTTTTTTTTTTTACTGTTGTTCCTCAGACATTCAAACGTGT
637


Glu748Term
TTTGATCAAAGAAGAGGAGTATGATTCTATTATAGTATTCTATA



GAG to TAG
ACTCGGTCTTCATGCAGAGACTGAAAACAAATA







TATTTGTTTTCAGTCTCTGCATGAAGACCGAGTTATAGAATAC
638



TATAATAGAATCATACTCCTCTTCTTTGATCAAAACACGTTTGA




ATGTCTGAGGAAGAACAGTAAAAAAAAAAAAAAA







AAGAAGAGGAGTATGAT
639






ATCATACTCCTCTTCTT
640





Retinoblastoma
GTTTTGATCAAAGAAGAGGAGTATGATTCTATTATAGTATTCT
641


Gln762Term
ATAACTCGGTCTTCATGCAGAGACTGAAAACAAATATTTTGCA



CAG to TAG
GTATGCTTCCACCAGGGTAGGTGAAAAGTATCCTT







AAGGATACTTTTGACCTACCCTGGTGGAAGCATACTGCAAAA
642



TATTTGTTTTCAGTCTCTGCATGAAGACCGAGTTATAGAATAC




TATAATAGAATCATACTCCTCTTCTTTGATCAAAAC







TCTTCATGCAGAGACTG
643






CAGTCTCTGCATGAAGA
644





Retinoblastoma
TAATCTACTTTTTTGTTTTTGCTCTAGCCCCCTACCTTGTCAC
645


Arg787Term
CAATACCTCACATTCCTCGAAGCCCTTACAAGTTTCCTAGTTC



CGA-TGA
ACCCTTACGGATTCCTGGAGGGAACATCTATATTT







AAATATAGATGTTCCCTCCAGGAATCCGTAAGGGTGAACTAG
646



GAAACTTGTAAGGGGCTTCGAGGAATGTGAGGTATTGGTGACA




AGGTAGGGGGCTAGAGCAAAAACAAAAAAGTAGATTA







ACATTCCTCGAAGCCCT
647






AGGGCTTCGAGGAATGT
648





Retinoblastoma
CCTTACGGATTCCTGGAGGGAACATCTATATTTCACCCCTGA
649


Ser816Term
AGAGTCCATATAAAATTTCAGAAGGTCTGCCAACACCAACAA



TCA to TGA
AAATGACTCCAAGATCAAGGTGTGTGTTTTCTCTTTA







TAAAGAGAAAACACACACCTTGATCTTGGAGTCATTTTTGTTG
650



GTGTTGGCAGACCTTCTGAAATTTTATATGGACTCTTCAGGG




GTGAAATATAGATGTTCCCTCCAGGAATCCGTAAGG







TAAAATTTCAGAAGGTC
651






GACCTTCTGAAATTTTA
652









EXAMPLE 8
BRCA1 and BRCA2

Breast cancer is the second major cause of cancer death in American women, with an estimated 44,190 lives lost (290 men and 43,900 women) in the US in 1997. While ovarian cancer accounts for fewer deaths than breast cancer, it still represents 4% of all female cancers. In 1994, two breast cancer susceptibility genes were identified: BRCA1 on chromosome 17 and BRCA2 on chromosome 13. When a woman carries a mutation in either BRCA1 or BRCA2, she is at increased risk of being diagnosed with breast or ovarian cancer at some point in her life.


Ford et al., Am. J. Hum. Genet 62: 676-689 (1998) assessed the contribution of BRCA1 and BRCA2 to inherited breast cancer by linkage and mutation analysis in 237 families, each with at least 4 cases of breast cancer. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16%, suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority (76%) of families with both male and female breast cancer were due to BRCA2. The largest proportion (67%) of families due to other genes were families with 4 or 5 cases of female breast cancer only.


More than 75% of the reported mutations in the BRCA1 gene result in truncated proteins. Couch et al., Hum. Mutat. 8: 8-18, 1996. (1996) reported a total of 254 BRCA1 mutations, 132 (52%) of which were unique. A total of 221 (87%) of all mutations or 107 (81%) of the unique mutations are small deletions, insertions, nonsense point mutations, splice variants, and regulatory mutations that result in truncation or absence of the BRCA1 protein. A total of 11 disease-associated missense mutations (5 unique) and 21 variants (19 unique) as yet unclassified as missense mutations or polymorphisms had been detected. Thirty-five independent benign polymorphisms had been described. The most common mutations were 185delAG and 5382insC, which accounted for 30 (11.7%) and 26 (10.1%), respectively, of all the mutations.


Most BRCA2 mutations are predicted to result in a truncated protein product. The smallest known cancer-associated deletion removes from the C terminus only 224 of the 3,418 residues constituting BRCA2, suggesting that these terminal amino acids are critical for BRCA2 function. Studies (Spain et al., Proc. Natl. Acad. Sci. 96:13920-13925 (1999)) suggest that such truncations eliminate or interfere with 2 nuclear localization signals that reside within the final 156 residues of BRCA2, suggesting that the vast majority of BRCA2 mutants are nonfunctional because they are not translocated into the nucleus.


The attached table discloses the correcting oligonucleotide base sequences for the BRACA1 and BRACA2 oligonucleotides of the invention.










TABLE 14







BRCA1 Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Breast Cancer
CTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGGTAAAGTT
653
653


Met-1-Ile
CATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTG



ATG to ATT
AAGAAGTACAAAATGTCATTAATGCTATGCAGAAAATC







GATTTTCTGCATAGCATTAATGACATTTTGTACTTCTTCAACG
654



CGAAGAGCAGATAAATCCATTTCTTTCTGTTCCAATGAACTTT




ACCCAGAGCAGAGGGTGAAGGCCTCCTGAGCGCAG







AAAGAAATGGATTTATC
655






GATAAATCCATTTCTTT
656





Breast Cancer
CTGGGTAAAGTTCATTGGAACAGAAAGAAATGGATTTATCTG
657


Val-11-Ala
CTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATGCTATGCA



GTA to GCA
GAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGAT







ATCAACTCCAGACAGATGGGACACTCTAAGATTTTCTGCATA
658



GCATTAATGACATTTTGTACTTCTTCAACGCGAAGAGCAGATA




AATCCATTTCTTTCTGTTCCAATGAACTTTACCCAG







TGAAGAAGTACAAAATG
659






CATTTTGTACTTCTTCA
660





Breast Cancer
ATGGATTTATCTCTCTTCGCGTTGAAGAAGTACAAAATGTCA
661


Ile-21-Val
TTAATGCTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGG



ATC to GTC
AGTTGATCAAGGAACCTGTCTCCACAAAGTGTGACC







GGTCACACTTTGTGGAGACAGGTTCCTTGATCAACTCCAGAC
662



AGATGGGACACTCTAAGATTTTCTGCATAGCATTAATGACATT




TTGTACTTCTTCAACGCGAAGAGCAGATAAATCCAT







TGCAGAAAATCTTAGAG
663






CTCTAAGATTTTCTGCA
664





Breast Cancer
ATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAA
665


Leu-22-Ser
TGCTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTT



TTA to TCA
GATCAAGGAACCTGTCTCCACAAAGTGTGACCACAT







ATGTGGTCACACTTTGTGGAGACAGGTTCCTTGATCAACTCC
666



AGACAGATGGGACACTCTAAGATTTTCTGCATAGCATTAATG




ACATTTTGTACTTCTTCAACGCGAAGAGCAGATAAAT







GAAAATCTTAGAGTGTC
667






GACACTCTAAGATTTTC
668





Breast Cancer
AGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGATCAAGG
669


Cys-39-Tyr
AACCTGTCTCCACAAAGTGTGACCACATATTTTGCAAATTTTG



TGT to TAT
CATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTC







GAAGGCCCTTTCTTCTGGTTGAGAAGTTTCAGCATGCAAAAT
670



TTGCAAAATATGTGGTCACACTTTGTGGAGACAGGTTCCTTG




ATCAACTCCAGACAGATGGGACACTCTAAGATTTTCT







CACAAAGTGTGACCACA
671






TGTGGTCACACTTTGTG
672





Breast Cancer
CACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGA
673


Cys-61-Gly
AGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGATATAAC



TGT to GGT
CAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTC







GACTAAATCTCGTACTTTCTTGTAGGCTCCTTTTGGTTATATC
674



ATTCTTACATAAAGGACACTGTGAAGGCCCTTTCTTCTGGTT




GAGAAGTTTCAGCATGCAAAATTTGCAAAATATGTG







CTTCACAGTGTCCTTTA
675






TAAAGGACACTGTGAAG
676





Breast Cancer
TTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGG
677


Leu-63-Stop
GCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGG



TTA to TAA
AGCCTACAAGAAAGTACGAGATTTAGTCAACTTGT







ACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTTTGG
678



TTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTTCTT




CTGGTTGAGAAGTTTCAGCATGCAAAATTTGCAAA







GTGTCCTTTATGTAAGA
679






TCTTACATAAAGGACAC
680





Breast Cancer
TGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGG
681


Cys-64-Arg
CCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGA



TGT to CGT
GCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTG






Breast Cancer
CAACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTTT
682


Cys-64-Gly
GGTTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTTC



TGT to GGT
TTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGCA







GTCCTTTATGTAAGAAT
683






ATTCTTACATAAAGGAC
684





Breast Cancer
GCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGGC
685


Cys-64-Tyr
CTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGAG



TGT to TAT
CCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGA







TCAACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTT
686



TGGTTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTT




CTTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGC







TCCTTTATGTAAGAATG
687






CATTCTTACATAAAGGA
688





Breast Cancer
CAGAAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGAT
689


Gln-74-Stop
ATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAA



CAA to TAA
CTTGTTGAAGAGCTATTGAAAATCATTTGTGCTTTTC







GAAAAGCACAAATGATTTTCAATAGCTCTTCAACAAGTTGACT
690



AAATCTCGTACTTTCTTGTAGGCTCCTTTTGGTTATATCATTCT




TACATAAAGGACACTGTGAAGGCCCTTTCTTCTG







GGAGCCTACAAGAAAGT
691






ACTTTCTTGTAGGCTCC
692





Breast Cancer
AGCTATTGAAAATCATTTGTGCTTTTCAGCTTGACACAGGTTT
693


Tyr-105-Cys
GGAGTATGCAAACAGCTATAATTTTGCAAAAAAGGAAAATAAC



TAT to TGT
TCTCCTGAACATCTAAAAGATGAAGTTTCTATCAT







ATGATAGAAACTTCATCTTTTAGATGTTCAGGAGAGTTATTTT
694



CCTTTTTTGCAAAATTATAGCTGTTTGCATACTCCAAACCTGT




GTCAAGCTGAAAAGCACAAATGATTTTCAATAGCT







AAACAGCTATAATTTTG
695






CAAAATTATAGCTGTTT
696





Breast Cancer
CTACAGAGTGAACCCGAAAATCCTTCCTTGCAGGAAACCAGT
697


Asn-158-Tyr
CTCAGTGTCCAACTCTCTAACCTTGGAACTGTGAGAACTCTG



AAC to TAC
AGGACAAAGCAGCGGATACAACCTCAAAAGACGTCTG







CAGACGTCTTTTGAGGTTGTATCCGCTGCTTTGTCCTCAGAG
698



TTCTCACAGTTCCAAGGTTAGAGAGTTGGACACTGAGACTGG




TTTCCTGCAAGGAAGGATTTTCGGGTTCACTCTGTAG







AACTCTCTAACCTTGGA
699






TCCAAGGTTAGAGAGTT
700





Breast Cancer
GAAACCAGTCTCAGTGTCCAACTCTCTAACCTTGGAACTGTG
701


Gln-169-Stop
AGAACTCTGAGGACAAAGCAGCGGATACAACCTCAAAAGAC



CAG to TAG
GTCTGTCTACATTGAATTGGGATCTGATTCTTCTGAAG







CTTCAGAAGAATCAGATCCCAATTCAATGTAGACAGACGTCTT
702



TTGAGGTTGTATCCGCTGCTTTGTCCTCAGAGTTCTCACAGT




TCCAAGGTTAGAGAGTTGGACACTGAGACTGGTTTC







GGACAAAGCAGCGGATA
703






TATCCGCTGCTTTGTCC
704





Breast Cancer
CTCCCAGCACAGAAAAAAAGGTAGATCTGAATGCTGATCCCC
705


Trp-353-Stop
TGTGTGAGAGAAAAGAATGGAATAAGCAGAAACTGCCATGCT



TGG to TAG
CAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGAT







ATCCAAGGAACATCTTCAGTATCTCTAGGATTCTCTGAGCAT
706



GGCAGTTTCTGCTTATTCCATTCTTTTCTCTCACACAGGGGAT




CAGCATTCAGATCTACCTTTTTTTCTGTGCTGGGAG







AAAAGAATGGAATAAGC
707






GCTTATTCCATTCTTTT
708





Breast Cancer
ATGCTCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGAT
709


Ile-379-Met
AACACTAAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTTCC



ATT to ATG
AGAAGTGATGAACTGTTAGGTTCTGATGACTCACAT







ATGTGAGTCATCAGAACCTAACAGTTCATCACTTCTGGAAAAC
710



CACTCATTAACTTTCTGAATGCTGCTATTTAGTGTTATCCAAG




GAACATCTTCAGTATCTCTAGGATTCTCTGAGCAT







AGCAGCATTCAGAAAGT
711






ACTTTCTGAATGCTGCT
712





Breast Cancer
GGGAGTCTGAATCAAATGCCAAAGTAGCTGATGTATTGGACG
713


Glu-421-Gly
TTCTAAATGAGGTAGATGAATATTCTGGTTCTTCAGAGAAAAT



GAA to GGA
AGACTTACTGGCCAGTGATCCTCATGAGGCTTTAAT







ATTAAAGCCTCATGAGGATCACTGGCCAGTAAGTCTATTTTCT
714



CTGAAGAACCAGAATATTCATCTACCTCATTTAGAACGTCCAA




TACATCAGCTACTTTGGCATTTGATTCAGACTCCC







GGTAGATGAATATTCTG
715






CAGAATATTCATCTACC
716





Breast Cancer
ATATGTAAAAGTGAAAGAGTTCACTCCAAATCAGTAGAGAGTA
717


Phe-461-Leu
ATATTGAAGACAAAATATTTGGGAAAACCTATCGGAAGAAGG



TTT to CTT
CAAGCCTCCCCAACTTAAGCCATGTAACTGAAAATC







GATTTTCAGTTACATGGCTTAAGTTGGGGAGGCTTGCCTTCT
718



TCCGATAGGTTTTCCCAAATATTTTGTCTTCAATATTACTCTCT




ACTGATTTGGAGTGAACTCTTTCACTTTTACATAT







ACAAAATATTTGGGAAA
719






TTTCCCAAATATTTTGT
720





Breast Cancer
GAAAGAGTTCACTCCAAATCAGTAGAGAGTAATATTGAAGAC
721


Tyr-465-Leu
AAAATATTTGGGAAAACCTATCGGAAGAAGGCAAGCCTCCCC



TAT to GAT
AACTTAAGCCATGTAACTGAAAATCTAATTATAGGAG







CTCCTATAATTAGATTTTCAGTTACATGGCTTAAGTTGGGGAG
722



GCTTGCCTTCTTCCGATAGGTTTTCCCAAATATTTTGTCTTCA




ATATTACTCTCTACTGATTTGGAGTGAACTCTTTC







GGAAAACCTATCGGAAG
723






CTTCCGATAGGTTTTCC
724





Breast Cancer
ACCTATCGGAAGAAGGCAAGCCTCCCCAACTTAAGCCATGTA
725


Gly-484-Stop
ACTGAAAATCTAATTATAGGAGCATTTGTTACTGAGCCACAGA



GGA to TGA
TAATACAAGAGCGTCCCCTCACAAATAAATTAAAGC







GCTTTAATTTATTTGTGAGGGGACGCTCTTGTATTATCTGTGG
726



CTCAGTAACAAATGCTCCTATAATTAGATTTTCAGTTACATGG




CTTAAGTTGGGGAGGCTTGCCTTCTTCCGATAGGT







TAATTATAGGAGCATTT
727






AAATGCTCCTATAATTA
728





Breast Cancer
TTACTGAGCCACAGATAATACAAGAGCGTCCCCTCACAAATA
729


Arg-507-Ile
AATTAAAGCGTAAAAGGAGACCTACATCAGGCCTTCATCCTG



AGA to ATA
AGGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAA







TTTTGAACTGCCAAATCTGCTTTCTTGATAAAATCCTCAGGAT
730



GAAGGCCTGATGTAGGTCTCCTTTTACGCTTTAATTTATTTGT




GAGGGGACGCTCTTGTATTATCTGTGGCTCAGTAA







TAAAAGGAGACCTACAT
731






ATGTAGGTCTCCTTTTA
732





Breast Cancer
CACAGATAATACAAGAGCGTCCCCTCACAAATAAATTAAAGC
733


Ser-510-Stop
GTAAAAGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTA



TCA to TGA
TCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGA
Q






TCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATAAAAT
734



CCTCAGGATGAAGGCCTGATGTAGGTCTCCTTTTACGCTTTA




ATTTATTTGTGAGGGGACGCTCTTGTATTATCTGTG







ACCTACATCAGGCCTTC
735






GAAGGCCTGATGTAGGT
736





Breast Cancer
AGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCAAG
737


Gln-526-Stop
AAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATC



CAA to TAA
AGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA







TCACTTGACCATTCTGCTCCGTTTGGTTAGTTCCCTGATTTAT
738



CATTTCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATA




AAATCCTCAGGATGAAGGCCTGATGTAGGTCTCCT







TGGCAGTTCAAAAGACT
739






AGTCTTTTGAACTGCCA
740





Breast Cancer
AGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCAAG
741


Gln-541-Stop
AAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATC



CAG to TAG
AGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA







TCACTTGACCATTCTGCTCCGTTTGGTTAGTTCCCTGATTTAT
742



CATTTCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATA




AAATCCTCAGGATGAAGGCCTGATGTAGGTCTCCT







AAACGGAGCAGAATGGT
743






ACCATTCTGCTCCGTTT
744





Breast Cancer
TAAATCAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA
745


Gly-552-Val
TGAATATTACTAATAGTGGTCATGAGAATAAAACAAAAGGTGA



GGT to GTT
TTCTATTCAGAATGAGAAAAATCCTAACCCAATAGA







TCTATTGGGTTAGGATTTTTCTCATTCTGAATAGAATCACCTTT
746



TGTTTTATTCTCATGACCACTATTAGTAATATTCATCACTTGAC




CATTCTGCTCCGTTTGGTTAGTTCCCTGATTTA







TAATAGTGGTCATGAGA
747






TCTCATGACCACTATTA
748





Breast Cancer
GGTCAAGTGATGAATATTACTAATAGTGGTCATGAGAATAAAA
749


Gln-563-Stop
CAAAAGGTGATTCTATTCAGAATGAGAAAAATCCTAACCCAAT



CAT to TAG
AGAATCACTCGAAAAAGAATCTGCTTTCAAAACGA







TCGTTTTGAAAGCAGATTCTTTTTCGAGTGATTCTATTGGGTT
750



AGGATTTTTCTCATTCTGAATAGAATCACCTTTTGTTTTATTCT




CATGACCACTATTAGTAATATTCATCACTTGACC







ATTCTATTCAGAATGAG
751






CTCATTCTGAATAGAAT
752





Ovarian Cancer
ATAAGCAGCAGTATAAGCAATATGGAACTCGAATTAAATATCC
753


Lys-607-Stop
ACAATTCAAAAGCACCTAAAAAGAATAGGCTGAGGAGGAAGT



AAA to TAA
CTTCTACCAGGCATATTCATGCGCTTGAACTAGTAG







CTACTAGTTCAAGCGCATGAATATGCCTGGTAGAAGACTTCC
754



TCCTCAGCCTATTCTTTTTAGGTGCTTTTGAATTGTGGATATT




TAATTCGAGTTCCATATTGCTTATACTGCTGCTTAT







AAGCACCTAAAAAGAAT
755






ATTCTTTTTAGGTGCTT
756





Breast Cancer
ATATTCATGCGCTTGAACTAGTAGTCAGTAGAAATCTAAGCCC
757


Leu-639-Stop
ACCTAATTGTACTGAATTGCAAATTGATAGTTGTTCTAGCAGT



TTG to TAG
GAAGAGATAAAGAAAAAAAAGTACAACCAAATGCC







GGCATTTGGTTGTACTTTTTTTTCTTTATCTCTTCACTGCTAGA
758



ACAACTATCAATTTGCAATTCAGTACAATTAGGTGGGCTTAGA




TTTCTACTGACTACTAGTTCAAGCGCATGAATAT







TACTGAATTGCAAATTG
759






CAATTTGCAATTCAGTA
760





Breast Cancer
GAACCTGCAACTGGAGCCAAGAAGAGTAACAAGCCAAATGAA
761


Asp-693-Asn
CAGACAAGTAAAAGACATGACAGCGATACTTTCCCAGAGCTG



GAC to AAC
AAGTTAACAAATGCACCTGGTTCTTTTACTAAGTGTT







AACACTTAGTAAAAGAACCAGGTGCATTTGTTAACTTCAGCTC
762



TGGGAAAGTATCGCTGTCATGTCTTTTACTTGTCTGTTCATTT




GGCTTGTTACTCTTCTTGGCTCCAGTTGCAGGTTC







AAAGACATGACAGCGAT
763






ATCGCTGTCATGTCTTT
764





Ovarian Cancer
CTGAAGTTAACAAATGCACCTGGTTCTTTTACTAAGTGTTCAA
765


Glu-720-Stop
ATACCAGTGAACTTAAAGAATTTGTCAATCCTAGCCTTCCAAG



GAA to TAA
AGAAGAAAAAGAAGAGAAACTAGAAACAGTTAAAG







CTTTAACTGTTTCTAGTTTCTCTTCTTTTTCTTCTCTTGGAAGG
766



CTAGGATTGACAAATTCTTTAAGTTCACTGGTATTTGAACACT




TAGTAAAAGAACCAGGTGCATTTGTTAACTTCAG







AACTTAAAGAATTTGTC
767






GACAAATTCTTTAAGTT
768





Breast Cancer
CTAGAAACAGTTAAAGTGTCTAATAATGCTGAAGACCCCAAA
769


Glu-755-Stop
GATCTCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGA



GAA to TAA
TCTGTAGAGAGTAGCAGTATTTCATTGGTACCTGGTA







TACCAGGTACCAATGAAATACTGCTACTCTCTACAGATCTTTC
770



AGTTTGCAAAACCCTTTCTCCACTTAACATGAGATCTTTGGGG




TCTTCAGCATTATTAGACACTTTAACTGTTTCTAG







TAAGTGGAGAAAGGGTT
771






AACCCTTTCTCCACTTA
772





Breast Cancer
TCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTG
773


Ser-770-Stop
TAGAGAGTAGCAGTATTTCATTGGTACCTGGTACTGATTATG



TCA to TAA
GCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCAC







GTGCTAACTTCCAGTAACGAGATACTTTCCTGAGTGCCATAA
774



TCAGTACCAGGTACCAATGAAATACTGCTACTCTCTACAGAT




CTTTCAGTTTGCAAAACCCTTTCTCCACTTAACATGA







CAGTATTTCATTGGTAC
775






GTACCAATGAAATACTG
776





Breast Cancer
TAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTGTAGAGA
777


Val-772-Ala
GTAGCAGTATTTCATTGGTACCTGGTACTGATTATGGCACTC



GTA to GCA
AGGAAAGTATCTCGTTACTGGAAGTTAGCACTCTAGG







CCTAGAGTGCTAACTTCCAGTAACGAGATACTTTCCTGAGTG
778



CCATAATCAGTACCAGGTACCAATGAAATACTGCTACTCTCTA




CAGATCTTTCAGTTTGCAAAACCCTTTCTCCACTTA







TTCATTGGTACCTGGTA
779






TACCAGGTACCAATGAA
780





Breast Cancer
ACTGAAAGATCTGTAGAGAGTAGCAGTATTTCATTGGTACCT
781


Gln-780-Stop
GGTACTGATTATGGCACTCAGGAAAGTATCTCGTTACTGGAA



CAG to TAG
GTTAGCACTCTAGGGAAGGCAAAAACAGAACCAAATA







TATTTGGTTCTGTTTTTGCCTTCCCTAGAGTGCTAACTTCCAG
782



TAACGAGATACTTTCCTGAGTGCCATAATCAGTACCAGGTAC




CAATGAAATACTGCTACTCTCTACAGATCTTTCAGT







ATGGCACTCAGGAAAGT
783






ACTTTCCTGAGTGCCAT
784





Breast Cancer
TATGGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCACT
785


Glu-797-Stop
CTAGGGAAGGCAAAAACAGAACCAAATAAATGTGTGAGTCAG



GAA to TAA
TGTGCAGCATTTGAAAACCCCAAGGGACTAATTCATG







CATGAATTAGTCCCTTGGGGTTTTCAAATGCTGCACACTGAC
786



TCACACATTTATTTGGTTCTGTTTTTGCCTTCCCTAGAGTGCT




AACTTCCAGTAACGAGATACTTTCCTGAGTGCCATA







CAAAAACAGAACCAAAT
787






ATTTGGTTCTGTTTTTG
788





Breast Cancer
AAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGGA
789


Lys-820-Glu
CTAATTCATGGTTGTTCCAAAGATAATAGAAATGACACAGAAG



AAA to GAA
GCTTTAAGTATCCATTGGGACATGAAGTTAACCACA







TGTGGTTAACTTCATGTCCCAATGGATACTTAAAGCCTTCTGT
790



GTCATTTCTATTATCTTTGGAACAACCATGAATTAGTCCCTTG




GGGTTTTCAAATGCTGCACACTGACTCACACATTT







GTTGTTCCAAAGATAAT
791






ATTATCTTTGGAACAAC
792





Breast Cancer
CAGCATTTGAAAACCCCAAGGGACTAATTCATGGTTGTTCCA
793


Thr-826-Lys
AAGATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGG



ACA to AAA
GACATGAAGTTAACCACAGTCGGGAAACAAGCATAGA







TCTATGCTTGTTTCCCGACTGTGGTTAACTTCATGTCCCAATG
794



GATACTTAAAGCCTTCTGTGTCATTTCTATTATCTTTGGAACA




ACCATGAATTAGTCCCTTGGGGTTTTCAAATGCTG







AAATGACACAGAAGGCT
795






AGCCTTCTGGTCATTT
796





Breast Cancer
GATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGGGA
797


Arg-841-Trp
CATGAAGTTAACCACAGTTGGGAAACAAGCATAGAAATGGAA



CGG to TGG
GAAAGTGAACTTGATGCTCAGTATTTGCAGAATACAT







ATGTATTCTGCAAATACTGAGCATCAAGTTCACTTTCTTCCAT
798



TTCTATGCTTGTTTCCCGACTGTGGTTAACTTCATGTCCCAAT



GGATACTTAAAGCCTTCTGTGTCATTTCTATTATC







ACCACAGTCGGGAAACA
799






TGTTTCCCGACTGTGGT
800





Breast Cancer
AACTTGATGCTCAGTATTTGCAGAATACATTCAAGGTTTCAAA
801


Pro-871-Leu
GCGCCAGTCATTTGCTCCGTTTTCAAATCCAGGAAATGCAGA



CCG to CTG
AGAGGAATGTGCAACATTCTCTGCCCACTCTGGGTC







GACCCAGAGTGGGCAGAGAATGTTGCACATTCCTCTTCTGCA
802



TTTCCTGGATTTGAAAACGGAGCAAATGACTGGCGCTTTGAA




ACCTTGAATGTATTCTGCAAATACTGAGCATCAAGTT







ATTTGCTCCGTTTTCAA
803






TTGAAAACGGAGCAAAT
804





Breast Cancer
TTTCAAATCCAGGAAATGCAGAAGAGGAATGTGCAACATTCT



Leu-892-Ser
CTGCCCACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCA



TTA to TCA
CTTTTGAATGTGAACAAAAGGAAGAAAATCAAGGAAA







TTTCCTTGATTTTCTTCCTTTTGTTCACATTCAAAAGTGACTTT
806



TGGACTTTGTTTCTTTAAGGACCCAGAGTGGGCAGAGAATGT




TGCACATTCCTCTTCTGCATTTCCTGGATTTGAAA







TGGGTCCTTAAAGAAAC
807






GTTTCTTTAAGGACCCA
808





Breast Cancer
CACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCACTTTTG
809


Glu-908-Stop
AATGTGAACAAAAGGAAGAAAATCAAGGAAAGAATGAGTCTA



GAA to TAA
ATATCAAGCCTGTACAGACAGTTAATATCACTGCAG







CTGCAGTGATATTAACTGTCTGTACAGGCTTGATATTAGACTC
810



ATTCTTTCCTTGATTTTCTTCCTTTTGTTCACATTCAAAAGTGA




CTTTTGGACTTTGTTTCTTTAAGGACCCAGAGTG







AAAAGGAAGAAAATCAA
811






TTGATTTTCTTCCTTTT
812





Breast Cancer
ATAATGCCAAATGTAGTATCAAAGGAGGCTCTAGGTTTTGTCT
813


Gly-960-Asp
ATCATCTCAGTTCAGAGGCAACGAAACTGGACTCATTACTCC



GGC to GAC
AAATAAACATGGACTTTTACAAAACCCATATCGTAT







ATACGATATGGGTTTTGTAAAAGTCCATGTTTATTTGGAGTAA
814



TGAGTCCAGTTTCGTTGCCTCTGAACTGAGATGATAGACAAA




ACCTAGAGCCTCCTTTGATACTACATTTGGCATTAT







GTTCAGAGGCAACGAAA
815






TTTCGTTGCCTCTGAAC
816





Breast Cancer
ATTTGTTAAAACTAAATGTAAGAAAAATCTGCTAGAGGAAAAC
817


Met-1008-Ile
TTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAAAT



ATG to ATA
GAGAACATTCCAAGTACAGTGAGCACAATTAGCCGT







ACGGCTAATTGTGCTCACTGTACTTGGAATGTTCTCATTTCCC
818



ATTTCTCTTTCAGGTGACATTGAATGTTCCTCAAAGTTTTCCT




CTAGCAGATTTTTCTTACATTTAGTTTTAACAAAT







CATTCAATGTCACCTGA
819






TCAGGTGACATTGAATG
820





Breast Cancer
ACTTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAA
821


Thr-1025-Ile
ATGAGAACATTCCAAGTACAGTGAGCACAATTAGCCGTAATA



ACA to ATA
ACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTCAAG







CTTGAGCTGGCTTCTTTAAAAACATTTTCTCTAATGTTATTACG
822



GCTAATTGTGCTCACTGTACTTGGAATGTTCTCATTTCCCATT




TCTCTTTCAGGTGACATTGAATGTTCCTCAAAGT







TCCAAGTACAGTGAGCA
823






TGCTCACTGTACTTGGA
824





Breast Cancer
ACATTCCAAGTACAGTGAGCACAATTAGCCGTAATAACATTAG
825


Glu-1038-Gly
AGAAAATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAA



GAA to GGA
GTAGGTTCCAGTACTAATGAAGTGGGCTCCAGTAT







ATACTGGAGCCCACTTCATTAGTACTGGAACCTACTTCATTAA
826



TATTGCTTGAGCTGGCTTCTTTAAAAACATTTTCTCTAATGTTA




TTACGGCTAATTGTGCTCACTGTACTTGGAATGT







TTTTAAAGAAGCCAGCT
827






AGCTGGCTTCTTTAAAA
828





Breast Cancer
CAAGTACAGTGAGCACAATTAGCCGTAATAACATTAGAGAAA
829


Ser-1040-Asn
ATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAAGTAGG



AGC to AAC
TTCCAGTACTAATGAAGTGGGCTCCAGTATTAATGA







TCATTAATACTGGAGCCCACTTCATTAGTACTGGAACCTACTT
830



CATTAATATTGCTTGAGCTGGCTTCTTTAAAAACATTTTCTCTA




ATGTTATTACGGCTAATTGTGCTCACTGTACTTG







AGAAGCCAGCTCAAGCA
831






TGCTTGAGCTGGCTTCT
832





Breast Cancer
GCCGTAATAACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTC
833


Val-1047-Ala
AAGCAATATTAATGAAGTAGGTTCCAGTACTAATGAAGTGGG



GTA to GCA
CTCCAGTATTAATGAAATAGGTTCCAGTGATGAAAA







TTTTCATCACTGGAACCTATTTCATTAATACTGGAGCCCACTT
834



CATTAGTACTGGAACCTACTTCATTAATATTGCTTGAGCTGGC




TTCTTTAAAAACATTTTCTCTAATGTTATTACGGC







TAATGAAGTAGGTTCCA
835






TGGAACCTACTTCATTA
836





Breast Cancer
AAATAGGTTCCAGTGATGAAAACATTCAAGCAGAACTAGGTA
837


Leu-1080-Stop
GAAACAGAGGGCCAAAATTGAATGCTATGCTTAGATTAGGGG



TTG to TAG
TTTTGCAACCTGAGGTCTATAAACAAAGTCTTCCTGG







CCAGGAAGACTTTGTTTATAGACCTCAGGTTGCAAAACCCCT
838



AATCTAAGCATAGCATTCAATTTTGGCCCTCTGTTTCTACCTA




GTTCTGCTTGAATGTTTTCATCACTGGAACCTATTT







GCCAAAATTGAATGCTA
839






TAGCATTCAATTTTGGC
840





Breast Cancer
AAAACATTCAAGCAGAACTAGGTAGAAACAGAGGGCCAAAAT
841


Leu-1086-Stop
TGAATGCTATGCTTAGATTAGGGGTTTTGCAACCTGAGGTCT



TTA to TGA
ATAAACAAAGTCTTCCTGGAAGTAATTGTAAGCATCC







GGATGCTTACAATTACTTCCAGGAAGACTTTGTTTATAGACCT
842



CAGGTTGCAAAACCCCTAATCTAAGCATAGCATTCAATTTTG




GCCCTCTGTTTCTACCTAGTTCTGCTTGAATGTTTT







GCTTAGATTAGGGGTTT
843






AAACCCCTAATCTAAGC
844





Breast Cancer
AGCAAGAATATGAAGAAGTAGTTCAGACTGTTAATACAGATTT
845


Ser-1130-Stop
CTCTCCATATCTGATTTCAGATAACTTAGAACAGCCTATGGGA



TCA to TGA
AGTAGTCATGCATCTCAGGTTTGTTCTGAGACACC







GGTGTCTCAGAACAAACCTGAGATGCATGACTACTTCCCATA
846



GGCTGTTCTAAGTTATCTGAAATCAGATATGGAGAGAAATCT




GTATTAACAGTCTGAACTACTTCTTCATATTCTTGCT







TCTGATTTCAGATAACT
847






AGTTATCTGAAATCAGA
848





Breast Cancer
CTAGTTTTGCTGAAAATGACATTAAGGAAAGTTCTGCTGTTTT
849


Lys-1183-Arg
TAGCAAAAGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTA



AAA to AGA
GCCCTTTCACCCATACACATTTGGCTCAGGGTTACCG







CGGTAACCCTGAGCCAAATGTGTATGGGTGAAAGGGCTAGG
850



ACTCCTGCTAAGCTCTCCTTTCTGGACGCTTTTGCTAAAAACA




GCAGAACTTTCCTTAATGTCATTTTCAGCAAAACTAG







CGTCCAGAAAGGAGAGC
851






GCTCTCCTTTCTGGACG
852





Breast Cancer
AGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTT
853


Gln-1200-Stop
CACCCATACACATTTGGCTCAGGGTTACCGAAGAGGGGCCA



CAG to TAG
AGAAATTAGAGTCCTCAGAAGAGAACTTATCTAGTGAGG







CCTCACTAGATAAGTTCTCTTCTGAGGACTCTAATTTCTTGGC
854



CCCTCTTCGGTAACCCTGAGCCAAATGTGTATGGGTGAAAGG




GCTAGGACTCCTGCTAAGCTCTCCTTTCTGGACGCT







ATTTGGCTCAGGGTTAC
855






GTAACCCTGAGCCAAAT
856





Breast Cancer
AAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTTCACCCATACA
857


Arg-1203-Stop
CATTTGGCTCAGGGTTACC GAAGAGGGGCCAAGAAATTAGA


CAG to TAG
GTCCTCAGAAGAGAACTTATCTAGTGAGGATGAAGAGC






GCTCTTCATCCTCACTAGATAAGTTCTCTTCTGAGGACTCTAA
858



TTTCTTGGCCCCTCTTCGGTAACCCTGAGCCAAATGTGTATG



GGTGAAAGGGCTAGGACTCCTGCTAAGCTCTCCTTT






AGGGTTACCGAAGAGGG
859






CCCTCTTCGGTAACCCT
860





Breast Cancer
ACCCATACATTTGGCTCAGGGTTACCGAAGAGGGGCCAA
861


Glu-1214-Stop
GAAATTAGAGTCCTCAGAAGAGAACTTATCTAGTGAGGATGA


GAG to TAG
AGAGCTTCCCTGCTTCCAACACTTGTTATTTGGTAAAG






CTTTACCAAATAACAAGTGTTGGAAGCAGGGAAGCTCTTCAT
862



CCTCACTAGATAAGTTCTCTTCTGAGGACTCTAATTTCTTGGC



CCCTCTTCGGTAACCCTGAGCCAAATGTGTATGGGT






CCTCAGAAGAGAACTTA
863






TAAGTTCTCTTCTGAGG
864





Breast Cancer
TCAGGGTTACCGAAGAGGGGCCAAGAAATTAGAGTCCTCAG
865


Glu-1219-Asp
AAGAGAACTTATCTAGTGAGGATGAAGAGCTTCCCTGCTTCC


GAG to GAC
AACACTTGTTATTTGGTAAAGTAAACAATATACCTTCT






AGAAGGTATATTGTTTACTTTACCAAATAACAAGTGTTGGAAG
866



CAGGGAAGCTCTTCATCCTCACTAGATAAGTTCTCTTCTGAG



GACTCTAATTTCTTGGCCCCTCTTCGGTAACCCTGA






TCTAGTGAGGATGAAGA
867






TCTTCATCCTCACTAGA
868





Breast Cancer
GGTTACCGAAGAGGGGCCAAGAAATTAGAGTCCTCAGAAGA
869


Glu-1221-Stop
GAACTTATCTAGTGAGGATGAAGAGCTTCCCTGCTTCCAACA


GAA to TAA
CTTGTTATTTGGTAAAGTAAACAATATACCTTCTCAGT






ACTGAGAAGGTATATTGTTTACTTTACCAAATAACAAGTGTTG
870



GAAGCAGGGAAGCTCTTCATCCTCACTAGATAAGTTCTCTTC



TGAGGACTCTAATTTCTTGGCCCCTTCGGTAACC






GTGAGGATGAAGAGCTT
871






AAGCTCTTCATCCTCAC
872





Breast Cancer
TTATTTGGTAAACAATATACCTTCTCAGTCTACTAGGC
873


Glu-1250-Stop
ATAGCACCGTTGCTACCGAGTGTCTGTCTAAGAACACAGAGG


GAG to TAG
AGAATTTATTATCATTGAAGAATAGCTTAAATGACT






AGTCATTTAAGCTATTCTTCAATGATAATAAATTCTCCTCTGTG
874



TTCTTAGACAGACACTCGGTAGCAACGGTGCTATGCCTAGTA



GACTGAGAAGGTATATTGTTTACTTTACCAAATAA






TTGCTACCGAGTGTCTG
875






CAGACACTCGGTAGCAA
876





Breast Cancer
CTAGGCATAGCACCGTTGCTACCGACTGTCTGTCTAAGAACA
877


Ser-1262-Stop
CAGAGGAGAATTTATTATCATTGAAGAATAGCTTAAATGACTG


TCA to TAA
CAGTAACCAGGTAATATTGGCAAAGGCATCTCAGGA






TCCTGAGATGCCTTTGCCAATATTACCTGGTTACTGCAGTCAT
878



TTAAGCTATTCTTCAATGATAATAAATTCTCCTCTGTGTTCTTA



GACAGACACTCGGTAGCAACGGTGCTATGCCTAG






TTTATTATCATTGAAGA
879






TCTTCAATGATAATAAA
880





Breast Cancer
TTATCATTGAAGAATAGCTTAAATGACTGCAGTAACCAGGTAA
881


GlN-1281-Stop
TATTGGCAAAGGCATCTCAGGAACATCACCTTAGTGAGGAAA


CAG to TAG
CAAAATGTTCTGCTAGCTTGTTTTCTTCACAGTGCA






TGCACTGTGAAGAAAACAAGCTAGCAGAACATTTTGTTTCCTC
882



ACTAAGGTGATGTTCCTGAGATGCCTTTGCCAATATTACCTG



GTTACTGCAGTCATTTAAGCTATTCTTCAATGATAA






AGGCATCTCAGGAACAT
883






ATGTTCCTGAGATGCCT
884





Breast Cancer
GCTAGCTTGTTTTCTTCACAGTGCAGTGAATTGGAAGACTTG
885


GlN-1313-Stop
ACTGCAAATACAAACACCCAGGATCCTTTCTTGATTCTT


CAG to TAG
CCAAACAAATGAGGCATCAGTCTGAAAGCCAGGGAG






CTCCCTGGCTTTCAGACTGATGCCTCATTTGTTGGAAGAAC
886



CAATCAAGAAAGGATCCTGGGTGTTTGTATTTGCAGTCAAGT



CTTCCAATTCACTGCACTGTGAAGAAAACAAGCTAGC






CAAACACCCAGGATCCT
887






AGGATCCTGGGTGTTTG
888





Breast Cancer
TCACAGTGCAGTGAATTGGAAGACTTGACTGCAAATACAAAC
889


GlN-1318-Stop
ACCCAGGATCCTTTCTTGATTGGTTCTTCCAAACAAATGAGG


ATT to GTT
CATCAGTCTGAAAGCCAGGGAGTTGGTCTGAGTGACA






TGTCACTCAGACCAACTCCCTGGCTTTCAGACTGATGCCTCA
890



TTTGTTTGGAAGAACCAATCAAGAAAGGATCCTGGGTGTTTG



TATTTGCAGTCAAGTCTTCCAATTCACTGCACTGTGA






CTTTCTTGATTGGTTCT
891






AGAACCAATCAAGAAAG
892





Breast Cancer
TTGGAAGACTTGACTGCAAATACAAACACCCAGGATCCTTTC
893


GlN-1323-Stop
TTGATTGGTTCTTCCAAACAAATGAGGCATCAGTCTGAAAGC


CAA to TAA
CAGGGAGTTGGTCTGAGTGACAAGGAATTGGTTTCAG






CTGAAACCAATTCCTTGTCACTCAGACCAACTCCCTGGCTTT
894



CAGACTGATGCCTCATTTGTTTGGAAGAACCAATCAAGAAAG



GATCCTGGGTGTTTGTATTTGCAGTCAAGTCTTCCAA






CTTCCAAACAAATGAGG
895






CCTCATTTGTTTGGAAG
896





Breast Cancer
CAGTCTGAAAGCCAGGGAGTTGGTCTGAGTGACAAGGAATT
897


Arg-1347-Stop
GGTTTCAGATGATGAAGAAAGAGGAACGGGCTTGGAAGAAA


AGA to GGA
ATAATCAAGAAGAGCAAAGCATGGATTCAAACTTAGGTA






TACCTAAGTTTGAATCCATGCTTTGCTCTTCTTGATTATTTTCT
898



TCCAAGCCCGTTCCTCTTTCTTCATCATCTGAAACCAATTCCT



TGCACTCAGACCAACTCCCTGGCTTTCAGACTG






ATGAAGAAAGAGGAACG
899






CGTTCCTCTTTCTTCAT
900





Breast Cancer
GAAACAAGCGTCTCTGAAGACTGCTCAGGGCTATCCTCTCAG
901


Gln-1395-Stop
AGTGACATTTTAACCACTCAGGTAAAAAGCGTGTGTGTGTGT


CAG to TAG
GCACATGCGTGTGTGTGGTGTCCTTTGCATTCAGTAG






CTACTGAATGCAAAGGACACCACACACACGCATGTGCACACA
902



CACACACGCTTTTTACCTGAGTGGTTAAAATGTCACTCTGAG



AGGATAGCCCTGAGCAGTCTTCAGAGACGCTTGTTTC






TAACCACTCAGGTAAAA
903






TTTTACCTGAGTGGTTA
904





Breast Cancer
TGGTGCCATTTATCGTTTTTGAAGCAGAGGGATACCATGCAA
905


Gln-1408-Stop
CATAACCTGATAAAGCTCCAGCAGGAAATGGCTGAACTAGAA


CAG to TAG
GCTGTGTTAGAACAGCATGGGAGCCAGCCTTCTAACA






TGTTAGAAGGCTGGCTCCCATGCTGTTCTAACACAGCTTCTA
906



GTTCAGCCATTTCCTGCTGGAGCTTTATCAGGTTATGTTGCAT



GGTATCCCTCTGCTTCAAAAACGATAAATGGCACCA






TAAAGCTCCAGCAGGAA
907






TTCCTGCTGGAGCTTTA
908





Breast Cancer
AGCCAGCCTTCTAACAGCTACCCTTCCATCATAAGTGACTCT
909


Arg-1443-Gly
TCTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGCACATCA


CGA to GGA
GAAAAAGGTGTGTATTGTTGGCCAAACACTGATATCT


Arg-1443-Stop


CGA to TGA
AGATATCAGTGTTTGGCCAACAATACACACCTTTTTCTGATGT
910



GCTTTGTTCTGGATTTCGCAGGTCCTCAAGGGCAGAAGAGTC



ACTTATGATGGAAGGGTAGCTGTTAGAAGGCTGGCT






AGGACCTGCGAAATCCA
911






TGGATTTCGCAGGTCCT
912





Breast Cancer
CAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTT
913


Ser-1512-Ile
GTTGATGTGGAGGAGCAACAGCTGGAAGAGTCTGGGCCACA



AGT to ATT
CGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATC







GATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAAATCGTGTG
914



GCCCAGACTCTTCCAGCTGTTGCTCCTCCACATCAACAACCT




TAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCTG







AGGAGCAACAGCTGGAA
915






TTCCAGCTGTTGCTCCT
916





Breast Cancer
ATCTTTCTAGGTCATCCCCTTCTAAATGCCCATCATTAGATGA
917


Gln-1538-Stop
TAGGTGGTACATGCACAGTTGCTCTGGGAGTCTTCAGAATAG



CAG to TAG
AAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGT







ACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCT
918



GAAGACTCCCAGAGCAACTGTGCATGTACCACCTATCATCAT




ATGATGGGCATTTAGAAGGGGATGACCTAGAAAGAT







CATGCACAGTTGCTCTG
919






CAGAGCAACTGTGCATG
920





Breast Cancer
CAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTT
921


Glu-1541-Stop
GTTGATGTGGAGGAGCAACAGCTGGAAGAGTCTGGGCCACA



GAG to TAG
CGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATC







GATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAAATCGTGTG
922



GCCCAGACTCTTCCAGCTGTTGCTCCTCCACATCAACAACCT




TAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCTG







AGGAGCAACAGCTGGAA
923






TTCCAGCTGTTGCTCCT
924





Breast Cancer
AACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTTGATGTG
925


Thr-1561-Ile
GAGGAGCAACAGCTGGAAGAGTCTGGGCCACACGATTTGAC



ACC to ATC
GGAAACATCTTACTTGCCAAGGCAAGATCTAGGTAATA







TATTACCTAGATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAA
926



ATCGTGTGGCCCAGACTCTTCCAGCTGTTGCTCCTCCACATC




AACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTT







AGCTGGAAGAGTCTGGG
927






CCCAGACTCTTCCAGCT
928





Breast Cancer
TTTGTAATTCAACATTCATCGTTGTGTAAATTAAACTTCTCCCA
929


Tyr-1563-Stop
TTCCTTTCAGAGGGGAACCCCTTACCTGGAATCTGGAATCAGC



TAC to TAG
CTCTTCTCTGATGACCCTGAATCTGATCCTTCTGA







TCAGAAGGATCAGATTCAGGGTCATCAGAGAAGAGGCTGATT
930



CCAGATTCCAGGTAAGGGGTTCCCTCTGAAAGGAATGGGAG




AAGTTTAATTTACACAACGATGAATGTTGAATTACAAA







AGAGGGAACCCCTTACC
931






GGTAAGGGGTTCCCTCT
932





Breast Cancer
CAACATTCATCGTTGTGTAAATTAAACTTCTCCCATTCCTTTC
933


Leu-1564-Pro
AGAGGGAACCCCTTACCTGGAATCTGGAATCAGCCTCTTCTC



CTG to CCG
TGATGACCCTGAATCTGATCCTTCTGAAGACAGAGC







GCTCTGTCTTCAGAAGGATCAGATTCAGGGTCATCAGAGAAG
934



AGGCTGATTCCAGATTCCAGGTAAGGGGTTCCCTCTGAAAG




GAATGGGAGAAGTTTAATTTACACAACGATGAATGTTG







CCCTTACCTGGAATCTG
935






CAGATTCCAGGTAAGGG
936





Breast Cancer
GCCCCAGAGTCAGCTCGTGTTGGCAACATACCATCTTCAACC
937


Gln-1604-Stop
TCTGCATTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCC



CAA to TAA
CAGAGTCCAGCTGCTGCTCATACTACTGATACTGCTG







CAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCTGGGCA
938



GATTCTGCAACTTTCAATTGGGGAACTTTCAATGCAGAGGTT




GAAGATGGTATGTTGCCAACACGAGCTGACTCTGGGGC







AAGTTCCCCAATTGAAA
939






TTTCAATTGGGGAACTT
940





Breast Cancer
GAGTCAGCTCGTGTTGGCAACATACCATCTTCAACCTCTGCA
941


Lys-1606-Glu
TTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCCCAGAGT



AAA to GAA
CCAGCTGCTGCTCATACTACTGATACTGCTGGGTATA







TATACCCAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCT
942



GGGCAGATTCTGCAACTTTCAATTGGGGAACTTTCAATGCAG




AGGTTGAAGATGGTATGTTGCCAACACGAGCTGACTC







CCCAATTGAAAGTTGCA
943






TGCAACTTTCAATTGGG
944





Breast Cancer
CAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGATA
945


Met-1628-Thr
CTGCTGGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGAG



ATG to ACG
AAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAA







TTGTTGACCCTTTCTGTTGAAGCTGTCAATTCTGGCTTCTCCC
946



TGCTCACACTTTCTTCCATTGCATTATACCCAGCAGTATCAGT




AGTATGAGCAGCAGCTGGACTCTGGGCAGATTCTG







TAATGCAATGGAAGAAA
947






TTTCTTCCATtGCATTA
948





Breast Cancer
GCAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGAT
949


Met-1628-Val
ACTGCTGGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGA



ATG to GTG
GAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACA







TGTTGACCCTTTCTGTTGAAGCTGTCAATTCTGGCTTCTCCCT
950



GCTCACACTTTCTTCCATTGCATTATACCCAGCAGTATCAGTA




GTATGAGCAGCAGCTGGACTCTGGGCAGATTCTGC







ATAATGCAATGGAAGAA
951






TTCTTCCATTGCATTAT
952





Breast Cancer
CTCATACTACTGATACTGCTGGGTATAATGCAATGGAAGAAA
953


Pro-1637-Leu
GTGTGAGCAGGGAGAAGCCAGAATTGACAGCTTCAACAGAA



CCA to CTA
AGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCT







AGGCCAGACACCACCATGGACATTCTTTTGTTGACCCTTTCT
954



GTTGAAGCTGTCAATTCTGGCTTCTCCCTGCTCACACTTTCTT




CCATTGCATTATACCCAGCAGTATCAGTAGTATGAG







GGAGAAGCCAGAATTGA
955






TCAATTCTGGCTTCTCC
956





Breast Cancer
GAGCAGGGAGAAGCCAGAAtTGACAGCTTCAACAGAAAGGG
957


Met-1652-Ile
TCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTGACCCCAG



ATG to ATA
AAGAATTTGTGAGTGTATCCATATGTATCTCCCTAATG







CATTAGGGAGATACATATGGATACACTCACAAATTCTTCTGG
958



GGTCAGGCCAGACACCACCATGGACATTCTTTTGTTGACCCT




TTCTGTTGAAGCTGTCAATTCTGGCTTCTCCCTGCTC







ATGTCCATGGTGGTGTC
959






GACACCACCATGGACAT
960





Breast Cancer
CACTTCCTGATTTTGTTTTCAACTTCTAATCCTTTGAGTGTTTT
961


Glu-1694-Stop
TCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGACACTAA



GAG to TAG
ATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAG







CTACCCATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGT
962



CCGTTCACACACAAACTCAGCATCTGCAGAATGAAAAACACT




CAAAGGATTAGAAGTTGAAAACAAAATCAGGAAGTG







CAGATGCTGAGTTTGTG
963






CACAAACTCAGCATCTG
964





Breast Cancer
GTGTTTTTTCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGA
965


Gly-1706-Glu
CACTGAAATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAG



GGA to GAA
TTAGCTATTTCTGTAAGTATAATACTATTTCTCCCCT







AGGGGAGAAATAGTATTATACTTACAGAAATAGCTAACTACCC
966



ATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGTCCGTTC




ACACACAAACTCAGCATCIGCAGAATGAAAAACAC







TTTTCTAGGAATTGCGG
967






CCGCAATTCCTAGAAAA
968





Breast Cancer
TTCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGACACTGA
969


Ala-1708-Glu
AATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAGTTAGCT



GCG to GAG
ATTTCTGTAAGTATAATACTATTTCTCCCCTCCTCCC







GGGAGGAGGGGAGAAATAGTATTATACTTACAGAAATAGCTA
970



ACTACCCATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTG




TCCGTTCACACACAAACTCAGCATCTGCAGAATGAA







AGGAATTGCGGGAGGAA
971






TTCCTCCCGCAATTCCT
972





Breast Cancer
CTGAGTTTGTGTGTGAACGGACACTGAAATATTTTCTAGGAAT
973


Val-1713-Ala
TGCGGGAGGAAAATGGGTAGTTAGCTATTTCTGTAAGTATAA



GTA to GCA
TACTATTTCTCCCCTCCTCCCTTTAACACCTCAGAA







TTCTGAGGTGTTAAAGGGAGGAGGGGAGAAATAGTATTATAC
974



TTACAGAAATAGCTAACTACCCATTTTCCTCCCGCAATTCCTA




GAAAATATTTCAGTGTCCGTTCACACACAAACTCAG







AAAATGGGTAGTTAGCT
975






AGCTAACTACCCATTTT
976





Breast Cancer
AACGGACACTGAAATATTTTCTAGGAATTGCGGGAGGAAAAT
977


Trp-1718-Stop
GGGTAGTTAGCTATTTCTGTAAGTATAATACTATTTCTCCCCT



TGG to TAG
CCTCCCTTTAACACCTCAGAATTGCATTTTTACACC







GGTGTAAAAATGCAATTCTGAGGTGTTAAAGGGAGGAGGGG
978



AGAAATAGTATTATACTTACAGAAATAGCTAACTACCCATTTTC




CTCCCGCAATTCCTAGAAAATATTTCAGTGTCCGTT







CTATTTCTGTAAGTATA
979






TATACTTACAGAAATAG
980





Breast Cancer
TTCTGCTGTATGTAACCTGTCTTTTCTATGATCTCTTTAGGGG
981


Glu-1725-Stop
TGACCCAGTCTATTAAAGAAAGAAAAATGCTGAATGAGGTAA



GAA to TAA
GTACTTGATGTTACAAACTAACCAGAGATATTCATT







AATGAATATCTCTGGTTAGTTTGTAACATCAAGTACTTACCTC
982



ATTCAGCATTTTTCTTTCTTTAATAGACTGGGTCACCCCTAAA




GAGATCATAGAAAAGACAGGTTACATACAGCAGAA







CTATTAAAGAAAGAAAA
983






TTTTCTTTCTTTAATAG
984





Breast Cancer
TGTATGTAACCTGTCTTTTCTATGATCTCTTTAGGGGTGACCC
985


Lys-1727-Stop
AGTCTATTAAAGAAAGAAAAATGCTGAATGAGGTAAGTACTTG



AAA to TAA
ATGTTACAAACTAACCAGAGATATTCATTCAGTCA







TGACTGAATGAATATCTCTGGTTAGTTTGTAACATCAAGTACT
986



TACCTCATTCAGCATTTTTCTTTCTTTAATAGACTGGGTCACC




CCTAAAGAGATCATAGAAAAGACAGGTTACATACA







AAGAAAGAAAAATGCTG
987






CAGCATTTTTCTTTCTT
988





Breast Cancer
TCTTTCAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATG
989


Pro-1749-Arg
GAAGAAACCACCAAGGTCCAAAGCGAGCAAGAGAATCCCAG



CCA to CGA
GACAGAAAGGTAAAGCTCCCTCCCTCAAGTTGACAAAA







TTTTGTCAACTTGAGGGAGGGAGCTTTACCTTTCTGTCCTGG
990



GATTCTCTTGCTCGCTTTGGACCTTGGTGGTTTCTTCCATTGA




CCACATCTCCTCTGACTTCAAAATCATGCTGAAAGA







CCAAGGTCCAAAGCGAG
991






CTCGCTTTGGACCTTGG
992





Breast Cancer
CAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATGGAAGA
993


Arg-1751-Stop
AACCACCAAGGTCCAAAGCGAGCAAGAGAATCCCAGGACAG



CGA to TGA
AAAGGTAAAGCTCCCTCCCTCAAGTTGACAAAAATCTC







GAGATTTTGTCAACTTGAGGGAGGGAGCTTTACCTTTCTGT
994



CCTGGGATTCTCTTGCTCGCTTTGGACCTTGGTGGTTTCTTC




CATTGACCACATCTCCTCTGACTTCAAAATCATGCTG







GTCCAAAGCGAGCAAGA
995






TCTTGCTCGCTTTGGAC
996





Breast Cancer
GTCAGAGGAGATGTGGTCAATGGAAGAAACCACCAAGGTCC
997


Gln-1756-Stop
AAAGCGAGCAAGAGAATCCCAGGACAGAAAGGTAAAGCTCC



CAG to TAG
CTCCCTCAAGTTGACAAAAATCICACCCCACCACTCTGT







ACAGAGTGGTGGGGTGAGATTTTTGTCAACTTGAGGGAGGG
998



AGCTTTACCTTTCTGTCCTGGGATTCTCTTGCTCGCTTTGGA




CCTTGGTGGTTTCTTCCATTGACCACATCTCCTCTGAC







GAGAATCCCAGGACAGA
999






TCTGTCCTGGGATTCTC
1000





Breast Cancer
CTCTCTTCTTCCAGATCTTCAGGGGGCTAGAAATCTGTTGCT
1001


Met-1775-Arg
ATGGGCCCTTCACCAACATGCCCACAGGTAAGAGCCTGGGA



ATG to AGG
GAACCCCAGAGTTCCAGCACCAGCCTTTGTCTTACATA







TATGTAAGACAAAGGCTGGTGCTGGAACTCTGGGGTTCTCCC
1002



AGGCTCTTACCTGTGGGCATGTTGGTGAAGGGCCCATAGCA




ACAGATTTCTAGCCCCCTGAAGATCTGGAAGAAGAGAG







CACCAACATGCCCACAG
1003






CTGTGGGCATGTTGGTG
1004





Breast Cancer
AGTATGCAGATTACTGCAGTGATTTTACATCTAAAATGTCCATT
1005


Trp-1782-Stop
TTAGATCAACTGGAATGGATGGTACAGCTGTGTGGTGCTTCT



TGG to TGA
GTGGTGAAGGAGCTTTCATCATTCACCCTTGGCACA







TGTGCCAAGGGTGAATGATGAAAGCTCCTTCACCACAGAAGC
1006



ACCACACAGCTGTACCATCCATTCCAGTTGATCTAAAATGGA




CATTTAGATGTAAAATCACTGCAGTAATCTGCATACT







CTGGAATGGATGGTACA
1007






TGTACCATCCATTCCAG
1008





Breast Cancer
ATTACTGCAGTGATTTTACATCTAAATGTCCATTTTAGATCAAC
1009


Gln-1785-His
TGGAATGGATGGTACAGCTGTGTGGTGCTTCTGTGGTGAAG



CAG to CAT
GAGCTTTCATCATTCACCCTTGGCACAGTAAGTATT







AATACTTACTGTGCCAAGGGTGAATGATGAAAGCTCCTTCAC
1010



CACAGAAGCACCACACAGCTGTACCATCCATTCCAGTTGATC




TAAAATGGACATTTAGATGTAAAATCACTGCAGTAAT







ATGGTACAGCTGTGTGG
1011






CCACACAGCTGTACCAT
1012





Breast Cancer
GTCCATTTTAGATCAACTGGAATGGATGGTACAGCTGTGTGG
1013


Glu-1794-Asp
TGCTTCTGTGGTGAAGGAGCTTTCATCATTCACCCTTGGCAC



GAG to GAT
AGTAAGTATTGGGTGCCCTGTCAGAGAGGGAGGACAC







GTGTCCTCCCTCTCTGACAGGGCACCCAATACTTACTGTGCC
1014



AAGGGTGAATGATGAAAGCTCCTTCACCACAGAAGCACCACA




CAGCTGTACCATCCATTCCAGTTGATCTAAAATGGAC







GTGAAGGAGCTTTCATC
1015






GATGAAAGCTCCTTCAC
1016





Breast Cancer
CTCTGCTTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGT
1017


Arg-1835-Stop
GAGGCACCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGT



CGA to TGA
AGCACTCTACCAGTGCCAGGAGCTGGACACCTACCTGA







TCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAGTGCTACA
1018



CTGTCCAACACCCACTCTCGGGTCACCACAGGTGCCTCACA




CATCTGCCCAATTGCTGGAGACAGAGAACACAAGCAGAG







TGGTGACCCGAGAGTGG
1019






CCACTCTCGGGTCACCA
1020





Breast Cancer
TTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGTGAGGCA
1021


Trp-1837-Arg
CCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTAGCACT



TGG to CGG
CTACCAGTGCCAGGAGCTGGACACCTACCTGATACCCC







GGGGTATCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAGT
1022



GCTACACTGTCCAACACCCACTCTCGGGTCACCACAGGTGC




CTCACACATCTGCCCAATTGCTGGAGACAGAGAACACAA







CCCGAGAGTGGGTGTTG
1023






CAACACCCACTCTCGGG
1024





Breast Cancer
TGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGTGAGGCAC
1025


Trp-1837-Stop
CTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTAGCACTC



TGG to TAG
TACCAGTGCCAGGAGCTGGACACCTACCTGATACCCCA







TGGGGTATCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAG
1026



TGCTACACTGTCCAACACCCACTCTCGGGTCACCACAGGTG




CCTCACACATCTGCCCAATTGCTGGAGACAGAGAACACA







CCGAGAGTGGGTGTTGG
1027






CCAACACCCACTCTCGG
1028

















TABLE 15







BRCA2 Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Breast cancer
GTTAAAACTAAGGTGGGATTTTTTTTTTAAATAGATTTAGGAC
1029



PHE32LEU
CAATAAGTCTTAATTGGTTTGAAGAACTTTCTTCAGAAGCTCC


TTT to CTT
ACCCTATAATTCTGAACCTGCAGAAGAATCTGAAC






GTTCAGATTCTTCTGCAGGTTCAGAATTATAGGGTGGAGCTT
1030



CTGAAGAAAGTTCTTCAAACCAATTAAGACTTATTGGTCCTAA



ATCTATTTAAAAAAAAAATCCCACCTTAGTTTTAAC






TTAATTGGTTTGAAGAA
1031






TTCTTCAAACCAATTAA
1032





Breast cancer
TAGATTTAGGACCAATAAGTCTTAATTGGTTTGAAGAACTTTC
1033


TYR42CYS
TTCAGAAGCTCCACCCTATAATTCTGAACCTGCAGAAGAATC


TAT to TGT
TGAACATAAAAACAACAATTACGAACCAAACCTATT






AATAGGTTTGGTTCGTAATTGTTGTTTTTATGTTCAGATTCTTC
1034



TGCAGGTTCAGAATTATAGGGTGGAGCTTCTGAAGAAGTTC



TTCAAACCAATTAAGACTTATTGGTCCTAAATCTA






TCCACCCTATAATTCTG
1035






CAGAATTATAGGGTGGA
1036





Breast cancer
AAGAACTTTCTTCAGAAGCTCCACCCTATAATTCTGAACCTGC
1037


LYS53ARG
AGAAGAATCTGAACATAAAAACAACAATTACGAACCAAACCTA


AAA to AGA
TTTAAAACTCCACAAAGGAAACCATCTTATAATCA






TGATTATAAGATGGTTTCCTTTGTGGAGTTTTAAATAGGTTTG
1038



GTTCGTAATTGTTGTTTTTATGTTCAGATTCTTCTGCAGGTTC



AGAATTATAGGGTGGAGCTTCTGAAGAAAGTTCTT






TGAACATAAAAACAACA
1039






TGTTGTTTTTATGTTCA
1040





Breast cancer
CTATTTAAAACTCCACAAAGGAAACCATCTTATAATCAGCTGG
1041


Phe81Leu
CTTCAACTCCAATAATATTCAAAGAGCAAGGGCTGACTCTGC


TTC to CTC
CGCTGTACCAATCTCCTGTAAAAGAATTAGATAAAT






ATTTATCTAATTCTTTTACAGGAGATTGGTACAGCGGCAGAGT
1042



CAGCCCTTGCTCTTTGAATATTATTGGAGTTGAAGCCAGCTG



ATTATAAGATGGTTTCCTTTGTGGAGTTTTAAATAG






CAATAATATTCAAAGAG
1043






CTCTTTGAATATTATTG
1044





Breast cancer
GTCAGACACCAAAACATATTTCTGAAAGTCTAGGAGCTGAGG
1045


TRP194TERM
TGGATCCTGATATGTCTTGGTCAAGTTCTTTAGCTACACCACC


TGG to TAG
CACCCTTAGTTCTACTGTGCTCATAGGTAATAATAG






CTATTATTACCTATGAGCACAGTAGAACTAAGGGTGGGTGGT
1046



GTAGCTAAAGAACTTGACCAAGACATATCAGGATCCACCTCA



GCTCCTAGACTTTCAGAAATATGTTTTGGTGTCTGAC






TATGTCTTGGTCAAGTT
1047






AACTTGACCAAGACATA
1048





Breast cancer
CTGAAAGTCTAGGAGCTGAGGTGGATCCTGATATGTCTTGGT
1049


PRO201ARG
CAAGTTCTTTAGCTACACCACCCACCCTTAGTTCTACTGTGCT


CCA to CGA
CATAGGTAATAATAGCAAATGTGTATTTACAAGAAA






TTTCTTGTAAATACACATTTGCTATTATTACCTATGAGCACAGT
1050



AGAACTAAGGGTGGGTGGTGTAGCTAAAGAACTTGACCAAGA



CATATCAGGATCCACCTCAGCTCCTAGACTTTCAC






AGCTACACCACCCACCC
1051






GGGTGGGTGGTGTAGCT
1052





Breast cancer
ACAATACACATAAATTTTTATCTTACAGTCAGAAATGAAGAAG
1053


Pro222Ser
CATCTGAAACTGTATTTCCTCATGATACTACTGCTGTAAGTAA


CCT to TCT
ATATGACATTGATTAGACTGTTGAAATTGCTAACA






TGTTAGCAATTTCAACAGTCTAATCAATGTCATATTTACTTACA
1054



GCAGTAGTATCATGAGGAAATACAGTTTCAGATGCTTCTTCAT



TTCTGACTGTAAGATAAAAATTTATGTGTATTGT






CTGTATTTCCTCATGAT
1055






ATCATGAGGAAATACAG
1056





Breast cancer
AATGGTCTCAACTAACCCTTTCAGGTCTAAATGGAGCCCAGA
1057


Leu-414-Term
TGGAGAAAATACCCCTATTGCATATTTCTTCATGTGACCAAAA


TTG to TAG
TATTTCAGAAAAAGACCTATTAGACACAGAGAACAA






TTGTTCTCTGTGTCTAATAGGTCTTTTTCTGAAATATTTTGGTC
1058



ACATGAAGAAATATGCAATAGGGGTATTTTCTCCATCTGGGC



TCCATTTAGACCTGAAAGGGTTAGTTGAGACCATT






ACCCCTATTGCATATTT
1059






AAATATGCAATAGGGGT
1060





Breast cancer, male
AGCCTCTGAAAGTGGACTGGAAATACATACTGTTTGCTCACA
1061


Cys554Trp
GAAGGAGGACTCCTTATGTCCAAATTTAATTGATAATGGAAG


TGT to TGG
CTGGCCAGCCACCACCACACAGAATTCTGTAGCTTTG






CAAAGCTACAGAATTCTGTGTGGTGGTGGCTGGCCAGCTTC
1062



CATTATCAATTAAATTTGGACATAAGGAGTCCTCCTTCTGTGA



GCAAACAGTATGTATTTCCAGTCCACTTTCAGAGGCT






TCCTTATGTCCAAATTT
1063






AAATTTGGACATAAGGA
1064





Breast cancer
AACTCTACCATGGTTTTATATGGAGACACAGGTGATAAACAA
1065


Lys944Term
GCMCCCAAGTGTCAATTAAAAAAGATTTGGTTTATGTTCTTG


AAA to TAA
CAGAGGAGAACAAAAATAGTGTAAAGCAGCATATAA






TTATATGCTGCTTTACACTATTTTTGTTCTCCTCTGCAAGAAC
1066



ATAAACCAAATCTTTTTTAATTGACACTTGGGTTGCTTGTTTAT



CACCTGTGTCTCCATATAAAACCATGGTAGAGTT






TGTCAATTAAAAAAGAT
1067






ATCTTTTTTAATTGACA
1068





Breast cancer, male
ATGACTACTGGCACTTTTGTTGAAGAAATTACTGAAAATTACA
1069


Glu1320Term
AGAGAAATACTGAAAATGAAGATAACAAATATACTGCTGCCAG


GAA to TAA
TAGAAATTCTCATAACTTAGAATTTGATGGCAGTG






CACTGCCATCAAATTCTAAGTTATGAGAATTTCTACTGGCAGC
1070



AGTATATTTGTTATCTTCATTTCAGTATTTCTCTTGTAATTTTC



AGTAATTTCTTCAACAAAAGTGCCAGTAGTCAT






CTGAAAATGAAGATAAC
1071






GTTATCTTCATTTTCAG
1072





Breast cancer
CATGAAACAATTAAAAAAGTGAAAGACATATTTACAGACAGTT
1073


Glu1876Term
TCAGTAAAGTAATTAAGGAAAACAACGAGAATAAATCAAAAAT


GAA to TAA
TTGCCAAACGAAAATTATGGCAGGTTGTTACGAGG






CCTCGTAACAACCTGCCATAATTTTCGTTTGGCAAATTTTTGA
1074



TTTATTCTCGTTGTTTTCCTTAATTACTTTACTGAAACTGTCTG



TAAATATGTCTTTCACTTTTTTAATTGTTTCATG






TAATTAAGGAAAACAAC
1075






GTTGTTTTCCTTAATTA
1076





Breast cancer
TGAAAGACATATTTACAGACAGTTTCAGTAAAGTAATTAAGGA
1077


Ser1882Term
AAACAACGAGAATAAATCAAAAATTTGCCAAACGAAAATTATG


TCA to TAA
GCAGGTTGTTACGAGGCATTGGATGATTCAGAGGA






TCCTCTGAATCATCCAATGCCTCGTAACAACCTGCCATAATTT
1078



TCGTTTGGCAAATTTTTGATTTATTCTCGTTGTTTTCCTTAATT



ACTTTACTGAAACTGTCTGTAAATATGTCTTTCA






GAATAAATCAAAAATTT
1079






AAATTTTTGATTTATTC
1080





Breast cancer
AACCAAAATATGTCTGGATTGGAGAAAGTTTCTAAAATATCAC
1081


Glu1953Term
CTTGTGATGTTAGTTTGGAAACTTCAGATATATGTAAATGTAG


GAA to TAA
TATAGGGAAGCTTCATAAGTCAGTCTCATCTGCAA






TTGCAGATGAGACTGACTTATGAAGCTTCCCTATACTACATTT
1082



ACATATATCTGAAGTTTCCAAACTAACATCACAAGGTGATATT



TTAGAAACTTTCTCCAATCCAGACATATTTTGGTT






TTAGTTTGGAAACTTCA
1083






TGAAGTTTCCAAACTAA
1084





Breast cancer
TTAGTTTGGAAACTTCAGATATATGTAAATGTAGTATAGGGAA
1085


Ser1970Term
GCTTCATAAGTCAGTCTCATCTGCAAATACTTGTGGGATTTTT


TCA to TAA
AGCACAGCAAGTGGAAAATCTGTCCAGGTATCAGA






TCTGATACCTGGACAGATTTTCCACTTGCTGTGCTAAAAATCC
1086



CACAAGTATTTGCAGATGAGACTGACTTATGAAGCTTCCCTAT



ACTACATTTACATATATCTGAAGTTTCCAAACTAA






GTCAGTCTCATCTGCAA
1087






TTGCAGATGAGACTGAC
1088





Breast cancer
AAGTCAGTCTCATCTGCAAATACTTGTGGGATTTTTAGCACAG
1089


Gln1987Term
CAAGTGGAAAATCTGTCCAGGTATCAGATGCTTCATTACAAAA


GAG to TAG
CGCAAGACAAGTGTTTTCTGAAATAGAAGATAGTA






TACTATCTTCTATTTCAGAAAACACTTGTCTTGCGTTTTGTAAT
1090



GAAGCATCTGATACCTGGACAGATTTTCCACTTGCTGTGCTA



AAAATCCCACAAGTATTTGCAGATGAGACTGACTT






AATCTGTCCAGGTATCA
1091






TGATACCTGGACAGATT
1092





Breast cancer
AAAATAAGATTAATGACAATGAGATTCATCAGTTTAACAAAAA
1093


Ala2466Val
CAACTCCAATCAAGCAGCAGCTGTAACTTTCACAAAGTGTGA


GCA to GTA
AGAAGAACCTTTAGGTATTGTATGACAATTTGTGTG






CACACAAATTGTCATACAATACCTAAAGGTTCTTCTTCACACT
1094



TTGTGAAAGTTACAGCTGCTGCTTGATTGGAGTTGTTTTTGTT



AAACTGATGAATCTCATTGTCATTAATCTTATTTT






TCAAGCAGCAGCTGTAA
1095






TTACAGCTGCTGCTTGA
1096





Breast cancer
AGGCAACGCGTCTTTCCACAGCCAGGCAGTCTGTATCTTGCA
1097


Arg2520Term
AAAACATCCACTCTGCCTCGAATCTCTCTGAAAGCAGCAGTA


CGA to TGA
GGAGGCCAAGTCCCCTCTGCGTGTCCTCATAAACAGG






CCTGTTTATGAGGACACGCAGAGGGGACTTGGCCTCCTACT
1098



GCTGCTTTCAGAGAGATTCGAGGCAGAGTGGATGTTTTTGCA



AGATACAGACTGCCTGGCTGTGGAAAGACGCGTTGCCT






CTCTGCCTCGAATCTCT
1099






AGAGATTCGAGGCAGAG
1100





Breast cancer
ATTTCATTGAGCGCAAATATATCTGAAACTTCTAGCAATAAAA
1101


Gln2714Term
CTAGTAGTGCAGATACCCAAAAAGTGGCCATTATTGAACTTA


CAA to TAA
CAGATGGGTGGTATGCTGTTAAGGCCCCAGTTAGATC






GATCTAACTGGGCCTTAACAGCATACCACCCATCTGTAAGTT
1102



CAATAATGGCCACTTTTTGGGTATCTGCACTACTAGTTTTATT



GCTAGAAGTTTCAGATATATTTGCGCTCAATGAAAT






CAGATACCCAAAAAGTG
1103






CACTTTTTGGGTATCTG
1104





Breast cancer
CAGAACTGGTGGGCTCTCCTGATGCCTGTACACCTCTTGAAG
1105


Leu2776Term
CCCCAGAATCTCTTATGTTAAAGGTAAATTAATTTGCACTCTT


TTA to TGA
GGTAAAAATCAGTCATTGATTCAGTTAAATTCTAGA






TCTAGAATTTAACTGAATCAATGACTGATTTTTACCAAGAGTG
1106



CAAATTAATTTACCTTTAACATAAGAGATTCTGGGGCTTCAAG



AGGTGTACAGGCATCAGGAGAGCCCACCAGTTCTG






TCTTATGTTAAAGATTT
1107






AAATCTTTAACATAAGA
1108





Breast cancer
CCTTTTGTTTTCTTAGAAAACACAACAAAACCATATTTACCATC
1109


Gln2893Term
ACGTGCACTAACAAGACAGCAAGTTCGTGCTTTGCAAGATGG


CAG to TAG
TGCAGAGCTTTATGAAGCAGTGAAGAATGCAGCAG






CTGCTGCATTCTTCACTGCTTCATAAAGCTCTGCACCATCTTG
1110



CAAAGCACGAACTTGCTGTCTTGTTAGTGCACGTGATGGTAA



ATATGGTETTGTTGTGTTTTCTAAGAAAACAAAAGG






TAACAAGACAGCAAGTT
1111






AACTTGCTGTCTTGTTA
1112





Breast cancer
AATCACAGGCAAATGTTGAATGATAAGAAACAAGCTCAGATC
1113


Ala2951Thr
CAGTTGGAAATTAGGAAGGCCATGGAATCTGCTGAACAAAAG


GCC to ACC
GAACAAGGTTTATCAAGGGATGTCACAACCGTGTGGA






TCCACACGGTTGTGACATCCCTTGATAAACCTTGTTCCTTTTG
1114



TTCAGCAGATTCCATGGCCTTCCTAATTTCCAACTGGATCTGA



GCTTGTTTCTTATCATTCAACATTVGCCTGTGATT






TTAGGAAGGCCATGGAA
1115






TTCCATGGCCTTCCTAA
1116





Breast cancer
ACAATTTACTGGCAATAAAGTTTTGGATAGACCTTAATGAGGA
1117


Met3118Thr
CATTATTAAGCCTCATATGTTAATTGCTGCAAGCAACCTCCAG


ATG to ACG
TGGCGACCAGAATCCAAATCAGGCCTTCTTACTTT






AAAGTAAGAAGGCCTGATTTGGATTCTGGTCGCCACTGGAG
1118



GTTGCTTGCAGCAATTAACATATGAGGCTTAATAATGTCCTCA



TTAAGGTCTATCCAAAACTTTATTGCCAGTAAATTGT






GCCTCATATGTTAATTG
1119






CAATTAACATATGAGGC
1120





Breast cancer
GACTGAAACGACGTTGTACTACATCTCTGATCAAAGAACAGG
1121


Thr3401Met
AGAGTTCCCAGGCCAGTACGGAAGAATGTGAGAAAAATAAGC


ACG to ATG
AGGACACAATTACAACTAAAAAATATATCTAAGCATT






AATGCTTAGATATATTTTTTAGTTGTAATTGTGTCCTGCTTATT
1122



TTTCTCACATTCTTCCGTACTGGCCTGGGAACTCTCCTGTTCT



TTGATCAGAGATGTAGTACAACGTCGTTTCAGTC






GGCCAGTACGGAAGAAT
1123






ATTCTTCCGTACTGGCC
1124





Breast cancer
AAAGAACAGGAGAGTTCCCAGGCCAGTACGGAAGAATGTGA
1125


lle3412Val
GAAAAATAAGCAGGACACAATTACAACTAAAAAATATATCTAA


ATT to GTT
GCATTTGCAAAGGCGACAATAAATTATTGACGCTTAA






TTAAGCGTCAATAATTTATTGTCGCCTTTTGCAAATGCTTAGAT
1126



ATATTTTTTAGTTGTAATTGTGTCCTGCTTATTTTTCTCACATT



CTTCCGTACTGGCCTGGGAACTCTCCTGTTCTTT






AGGACACAATTACAACT
1127






AGTTGTAATTGTGTCCT
1128









EXAMPLE 9
Cystic Fibrosis—CFTR

Cystic fibrosis is a lethal disease affecting approximately one in 2,500 live Caucasian births and is the most common autosomal recessive disease in Caucasians. Patents with this disease have reduced chloride ion permeability in the secretory and absorptive cells of organs with epithelial cell linings, including the airways, pancreas, intestine, sweat glands and male genital tract. This, in turn, reduces the transport of water across the epithelia. The lungs and the GI tract are the predominant organ systems affected in this disease and the pathology is characterized by blocking of the respiratory and GI tracts with viscous mucus. The chloride impermeability in affected tissues is due to mutations in a specific chloride channel, the cystic fibrosis transmembrane conductance regulator protein (CFTR), which prevents normal passage of chloride ions through the cell membrane (Welsh et al., Neuron, 8:821-829 (1992)). Damage to the lungs due to mucus blockage, frequent bacterial infections and inflammation is the primary cause of morbidity and mortality in CF patients and, although maintenance therapy has improved the quality of patients' lives, the median age at death is still only around 30 years. There is no effective treatment for the disease, and therapeutic research is focused on gene therapy using exogenous transgenes in viral vectors and/or activating the defective or other chloride channels in the cell membrane to normalize chloride permeability (Tizzano et al., J. Pediat., 120:337-349 (1992)). However, the death of a teenage patient treated with an adenovirus vector carrying an exogenous CFTR gene in clinical trials in the late 1990's has impacted this area of research.


The oligonucleotides of the invention for correction of the CFTR gene are attached as a table.










TABLE 16







CFTR Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Cystic fibrosis
AAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAA
1129



Ala46Asp
TCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATTGGA


GCT to GAT
AAGGTATGTTCATGTACATTGTTTAGTTGAAGAGAG






CTCTCTTCAACTAAACAATGTACATGAACATACCTTTCCAATTT
1130



TTCAGATAGATTGTCAGCAGAATCAACAGAAGGGATTTGGTA



TATGTCTGACAATTCCAGGCGCTGTCTGTATCCTT






TGATTCTGCTGACAATC
1131






GATTGTCAGCAGAATCA
1132





Cystic fibrosis
AGCGCCTGGAATTGTCAGACATATACCAAATCCCTTCTGTTG
1133


Ser50Tyr
ATTCTGCTGACAATCTATCTGAAAAATTGGAAAGGTATGTTCA


TCT to TAT
TGTACATTGTTTAGTTGAAGAGAGAAATTCATATTA






TAATATGAATTTCTCTCTTCAACTAAACAATGTACATGAACATA
1134



CCTTTCCAATTTTTCAGATAGATTGTCAGCAGAATCAACAGAA



GGGATTTGGTATATGTCTGACAATTCCAGGCGCT






CAATCTATCTGAAAAAT
1135






ATTTTTCAGATAGATTG
1136





Congenital absence of
AGGACAACTAAAATATTTGCACATGCAACTTATTGGTCCCACT
1137


vas deferens
TTTTATTCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAA


Glu56Lys
GAAAAATCCTAAACTCATTAATGCCCTTCGGCGAT


GAA-AAA



ATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTTCTTGAAGC
1138



CAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGA



CCAATAAGTVGCATGTGCAAATATTTAGTTGTCCT






TTTGCAGAGAATGGGAT
1139






ATCCCATTCTCTGCAAA
1140





Cystic fibrosis
AGGACAACTAAAATATTTGCACATGCAACTTATTGGTCCCACT
1141


Trp57Gly
TTTTTATTCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAA


TGG to GGG
GAAAAATCCTAAACTCATTAATGCCCTTCGGCGAT






ATCGCCGAAGGGCATTAATGAGTTTTAGGATTTTTTCTTTGAAGC
1142



CAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGA



CCAATAAGTTGCATGTGCAAATATTTTTAGTTGTCCT






TTTGCAGAGAATGGGAT
1143






ATCCCATTCTCTGCAAA
1144





Cystic fibrosis
AACTAAAATATTTTGCACATGCAACTTATTGGTCCCACTTTTTAT
1145


Trp57Term
TCTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAA


TGG to TGA
ATCCTAAACTCATTAATGCCCTTCGGCGATGTTTT






AAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTTT
1146



GAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGT



GGGACCAATAAGTTGCATGTGCAAATATTTTAGTT






AGAGAATGGGATAGAGA
1147






TCTCTATCCCATTCTCT
1148





Congenital absence of
ACTAAAATATTTGCACATGCAACTTATTGGTCCCACTTTTTATT
1149


vas deferens
CTTTTGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAA


Asp58Asn
TCCTAAACTCATTAATGCCCTTCGGCGATGTTTTT


GAT to AAT




AAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTT
1150



TGAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAG



TGGGACCAATAAGTTGCATGTGCAAATATTTTAGT






GAGAATGGGATAGAGAG
1151






CTCTCTATCCCATTCTC
1152





Cystic fibrosis
ATATTTGCACATGCAACTTATTGGTCCCACTTTTTATTCTTTTG
1153


Gtu60Term
CAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAA


GAG to TAG
ACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGA






TCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGAT
1154



TTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTGCAAAAGAA



TAAAAAGTGGGACCAATAAGTTGCATGTGCAAATAT






GGGATAGAGAGCTGGCT
1155






AGCCAGCTCTCTATCCC
1156





Cystic fibrosis
GGTCCCACTTTTTATTCTTTTGCAGAGAATGGGATAGAGAGC
1157


Pro67Leu
TGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGC


CCT to CTT
GATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTT






AAGATTCCATAGAACATAAATCTCCAGAAAAAACATCGCCGAA
1158



GGGCATTAATGAGTTTAGGATTTTTCTTTGAAGCCAGCTCTCT



ATCCCATTCTCTGCAAAAGAATAAAAAGTGGGACC






GAAAAATCCTAAACTCA
1159






TGAGTTTAGGAATTTTC
1160





Cystic fibrosis
TGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCT
1161


Arg74Trp
AAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTA



CGG to TGG
TGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGA







TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT
1162



CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATT



TTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTGCA






ATGCCCTTCGGCGATGT
1163






ACATCGCCGAAGGGCAT
1164





Congenital absence of
GAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAAC
1165


vas deferens
TCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTTATGTT


ARG75GLN
CTATGGAATCTTTTTATATTTAGGGGTAAGGATCTC


CGA to CAA



GAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAA
1166



ATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAG



GATTTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTC






CCTTCGGCGATGTTTTT
1167






AAAAACATCGCCGAAGG
1168





Cystic fibrosis
GAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAAC
1169


Arg75Leu
TCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTTATGTT


CGA to CTA
CTATGGAATCTTTTTATATTAGGGGTAAGGATCTC






GAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAA
1170



ATCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTAG



GATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTC






CCTTCGGCGATGTTTTT
1171






AAAAACATCGCCGAAGG
1172





Cystic fibrosis
AGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAA
1173


Arg75Term
CTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGT


CGA to TGA
TCTATGGAATCTTTTTATATTTAGGGGTAAGGATCT






AGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAA
1174



TCTCCAGAAAAAACATCGCCGAAGGGCATTAATGAGTTTTAGG



ATTTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCT






CCCTTCGGCGATGTTTT
1175






AAAACATCGCCGAAGGG
1176





Cystic fibrosis
ATTAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTG
1177


Gly85Glu
GAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGG


GGA to GAA
ATCTCATTTGTACATTCATATGTATCACATAACT






AGTTATGTGATACATAATGAATGTACAAATGAGATCCTTACCC
1178



CTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAA



ACATCGCCGAAGGGCATTAATGAGTTTAGGATTTT






GTTCTATGGAATCTTTT
1179






AAAAGATTCCATAGAAC
1180





Cystic fibrosis
AAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTG
1181


Gly85Val
GAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGG


GGA to GTA
ATCTCATTTGTACATTCATTATGTATCACATAACT






AGTTATGTGATACATAATGAATGTACAAATGAGATCCTTTACCC
1182



CTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAA



ACATCGCCGAAGGGCATTAATGAGTTTAGGATTTT






GTTCTATGGAATCTTTT
1183






AAAAGATTCCATAGAAC
1184





Cystic fibrosis
AACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTAT
1185


Leu88Ser
GTTCTATGGAATCTTTTTTATATTTAGGGGTAAGGATCTCATTT


TTA to TCA
GTACATTCATTATGTATCACATAACTATATGCATT






AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA
1186



TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT



CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT






AATCTTTTTATATTTAG
1187






CTAAATATAAAAAGATT
1188





Cystic fibrosis
CCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGAT
1189


Phe87Leu
TTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTC


TTT to CTT
ATTTGTACATTCATTATGTATCACATAACTATATG






CATATAGTTATGTGATACATAATGAATGTACAAATGAGATCCT
1190



TACCCCTAAATATAAAAAGATTCCATAGAACATAAATCTCCAG



AAAAAACATCGCCGAAGGGCATTAATGAGTTTAGG






ATGGAATCTTTTTATAT
1191






ATATAAAAAGATTCCAT
1192





Cystic fibrosis
AACTCATTAATGCCCHCGGCGATGTTTTTTCTGGAGATTTAT
1193


Leu88Term
GTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCATTT


TTA to TGA
GTACATTCATTATGTATCACATAACTATATGCATT






AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA
1194



TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT



CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT






AATCTTTTTATATTTAG
1195






CTAAATATAAAAAGATT
1196





Cystic fibrosis
AACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTAT
1197


Leu88Term
GTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCATTT


TTA to TAA
GTACATTCATTATGTATCACATAACTATATGCATT






AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA
1198



TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAGAATCT



CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT






AATCTTTTTATATTTAG
1199






CTAAATATAAAAAGATT
1200





Cystic fibrosis
AATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGTTCTATG
1201


Gly91Arg
GAATCTTTTTATATTTAGGGGTAAGGATCTCATTTGTACATTC


GGG to AGG
ATTATGTATCACATAACTATATGCATTTTTGTGAT






ATCACAAAAATGCATATAGTTATGTGATACATAATGAATGTAC
1202



AAATGAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAAC



ATAAATCTCCAGAAAAAACATCGCCGAAGGGCATT






TATATTTAGGGGTAAGG
1203






CCTTACCCCTAAATATA
1204





Cystic fibrosis
AATAAATGAAATTTAATTTCTCTGGTTTTCCCCTTGTGTAGGAA
1205


Gln98Arg
GTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCATA


CAG to CGG
GCTTCCTATGACCCGGATAACAAGGAGGAACGCTC






GAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATT
1206



CTTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTAC



AAAAGGGGAAAAACAGAGAAATTAAATTTCATTTATT






AGCAGTACAGCCTCTCT
1207






AGAGAGGCTGTACTGCT
1208





Cystic fibrosis
AAATAAATGAAATTTAATTTCTCTGTTTTTCCCCTTTTGTAGGA
1209


Gln98Term
AGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCAT


CAG-TAG
AGCTTCCTATGACCCGGATAACAAGGAGGAACGCT






AGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTC
1210



TTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACA



AAAGGGGAAAAACAGAGAAATTAAATTTCATTTATTT






AAGCAGTACAGCCTCTC
1211






GAGAGGCTGTACTGCTT
1212





Cystic fibrosis
CCCTTTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTAC
1213


Ser108Phe
TGGGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGG


TCC to TTC
AACGCTCTATCGCGATTTATCTAGGCATAGGCTTATG






CATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCCTCC
1214



TTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAG



AGAGGCTGTACTGCTTTGGTGACTTCCTACAAAAGGG






CATAGCTTCCTATGACC
1215






GGTCATAGGAAGCTATG
1216





Cystic fibrosis
TTTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGG
1217


Tyr109Cys
GAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGAAC


TAT to TGT
GCTCTATCGCGATTATCTAGGCATAGGCTTATGCCT






AGGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCC
1218



TCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGT



AAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAAAA






AGCTTCCTATGACCCGG
1219






CCGGGTCATAGGAAGCT
1220





Cystic fibrosis
TTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGA
1221


Asp110His
AGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGAACGC


GAC to CAC
TCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTC






GAAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTT
1222



CCTCCYTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCA



GTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAA






CTTCCTATGACCCGGAT
1223






ATCCGGGTCATAGGAAG
1224





Congenital absence of
AGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAA
1225


vas deferens
TCATAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTA


Pro111Leu
TCGCGATTTATCTAGGCATAGGCTTATGCCTTCTTCT


CCG to CTG



AAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAG
1226



CGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTT



CCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCT






CTATGACCCGGATAACA
1227






TGTTATCCGGGTCATAG
1228





Cystic fibrosis
GTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGAC
1229


Arg117Cys
CCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGC


CGC to TGC
ATAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGC






GCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCTA
1230



GATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCAT



AGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTAC






AGGAGGAACGCTCTATC
1231






GATAGAGCGTTCCTCCT
1232





Cystic fibrosis
TACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACC
1233


Arg117His
CGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCA


CGC to CAC
TAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCT






AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT
1234



AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCA



TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA






GGAGGAACGCTCTATCG
1235






CGATAGAGCGTTCCTCC
1236





Cystic fibrosis
TACAGCCTCTCGTACTGGGAAGAATCATAGCTTCCTATGACC
1237


Arg117Leu
CGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCA


CGC to CTC
TAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCT






AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT
1238



AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCA



TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA






GGAGGAACGCTCTATCG
1239






CGATAGAGCGTTCCTCC
1240





Cystic fibrosis
TACAGCCTCTCTTTACTGGGAAGAATCATAGCTTCCTATGACC
1241


Arg117Pro
CGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCA


CGC to CCC
TAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCT






AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT
1242



AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCA



TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA






GGAGGAACGCTCTATCG
1243






CGATAGAGCGTTCCTCC
1244





Cystic fibrosis
CTCTTACTGGGAAGAATCATAGCTTCCTATGACCCGGATAAC
1245


Ala120Thr
AAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTA


GCG-ACG
TGCCTTCTCTTTATTGTGAGGACACTGCTCCTACACC






GGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGCATAAG
1246



CCTATGCCTAGATAAATCGCGATAGAGCGTTCCTCCTTGTTA



TCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAG






GCTCTATCGCGATTTAT
1247






ATAAATCGCGATAGAGC
1248





Cystic fibrosis
GGGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGA
1249


Tyr122Term
ACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCT


TAT to TAA
CTTTATTGTGAGGACACTGCTCCTACACCCAGCCATT






AATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAA
1250



GGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTTCCT



CCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCC






GCGATTTATCTAGGCAT
1251






ATGCCTAGATAAATCGC
1252





Cystic fibrosis
TAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCG
1253


Gly126Asp
CGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAG


GGC-GAC
GACACTGCTCCTACACCCAGCCATTTTTGGCCTTCA






TGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCAC
1254



AATAAAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGAT



AGAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTA






AGGCATAGGCTTATGCC
1255






GGCATAAGCCTATGCCT
1256





Cystic fibrosis
TCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGT
1257


Hist139Arg
GAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCA


CAC to CGC
CATTGGAATGCAGATGAGAATAGCTATGTTTAGTTT






AAACTAAACATAGCTATTCTCATCTGCATTCCAATGTGATGAA
1258



GGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCACAATA



AAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGA






GCTCCTACACCCAGCCA
1259






TGGCTGGGTGTAGGAGC
1260





Cystic fibrosis
TTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAGGAC
1261


Ala141Asp
ACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGG


GCC to GAC
AATGCAGATGAGAATAGCTATGTTTAGTTTGATTTA






TAAATCAAACTAAACATAGCTATTCTCATCTGCATTCCAATGT
1262



GATGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTC



ACAATAAAGAGAAGGCATAAGCCTATGCCTAGATAAA






ACACCCAGCCATTTTTG
1263






CAAAAATGGCTGGGTGT
1264





Cystic fibrosis
GCCTTCTCTTTATTGTGAGGACACTGCTCCTACACCCAGCCA
1265


lle148Thr
TTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTAT


ATT to ACT
GTTAGTTTGATTTATAAGAAGGTAATACTTCCTTG






CAAGGAAGTATTACCTTCTTATAAATCAAACTAAACATAGCTA
1266



TTCTCATCTGCATTCCAATGTGATGAAGGCCAAAAATGGCTG



GGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGC






TCATCACATTGGAATGC
1267






GCATTCCAATGTGATGA
1268





Cystic fibrosis
CTTCTCGTTATTGTGAGGACACTGCTCCTACACCCAGCCATTT
1269


Gly149Arg
TTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTT


GGA to AGA
TAGTTTGATTATAAGAAGGTAATACTTCCTTGCA






TGCAAGGAAGTATTACCTTCTTATAAATCAAACTAAACATAGC
1270



TATTCTCATCTGCATTCCAATGTGATGAAGGCCAAAAATGGCT



GGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAG






ATCACATTGGAATGCAG
1271






CTGCATTCCAATGTGAT
1272





Cystic fibrosis
TTTATTGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGC
1273


Gln1511Term
CTTCATCACATTGGAATGCAGATGAGAATAGCTATGGTTAGTT


CAG to TAG
TGATTTATAAGAAGGTAATACTTCCTTGCACAGGCC






GGCCTGTGCAAGGAAGTATTACCTTCTTATAAATCAAACTAAA
1274



CATAGCTATTCTCATCTGCATTCCAATGTGATGAAGGCCAAAA



ATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAA






TTGGAATGCAGATGAGA
1275






TCTCATCTGCATTCCAA
1276





Cystic fibrosis
AATATATTTGTATTTTGTTTGTTGAAATTATCTAACTTTCCATTT
1277


Lys166Glu
TTCTTTTAGACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAA


AAG-GAG
TAAGTATTGGACAACTTGTTAGTCTCCTTTCCA






TGGAAAGGAGACTAACAAGTTGTCCAATACTTATTTTATCTAG
1278



AACACGGCTTGACAGCTTTAAAGTCTAAAAGAAAAATGGAAA



GTTAGATAATTTCAACAAACAAAATACAAATATATT






AGACTTTAAAGCTGTCA
1279






TGACAGCTTTAAAGTCT
1280





Cystic fibrosis
TTATCTAACTTTCCATTTTTCTTTTAGACTTTAAAGCTGTCAAG
1281


lle175Val
CCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTC


ATA-GTA
CTTTCCAACAACCTGAACAAATTTGATGAAGTAT






ATACTTCATCAAATTTGTTCAGGTTGTTGGAAAGGAGACTAAC
1282



AAGTTGTCCAATACTTATTTTATCTAGAACACGGCTTGACAGC



TTTAAAGTCTAAAAGAAAAATGGAAAGTTAGATAA






TAGATAAAATAAGTATT
1283






AATACTTATTTTATCTA
1284





Cystic fibrosis
TTTCCATTTTTCTTTTAGACTTTAAAGCTGTCAAGCCGTGTTCT
1285


Gly178Arg
AGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAAC


GGA to AGA
AACCTGAACAAATTTGATGAAGTATGTACCTATT






AATAGGTACATACTTCATCAAATTTGTTCAGGTTGTTGGAAAG
1286



GAGACTAACAAGTTGTCCAATACTTATTTTATCTAGAACACGG



CTTGACAGCTTTAAAGTCTAAAAGAAAAATGGAAA






TAAGTATTGGACAACTT
1287






AAGTTGTCCAATACTTA
1288





Cystic fibrosis
AAGATACAATGACACCTGTTTTTGCTGTGCTTTTATTTTCCAG
1289


His199Gln
GGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGCAA


CAT to CAG
GTGGCACTCCTCATGGGGCTAATCTGGGAGTTGTTA






TAACAACTCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAA
1290



AGGAGCGATCCACACGAAATGTGCCAATGCAAGTCCCTGGA



AAATAAAAGCACAGCAAAAACAGGTGTCATTGTATCTT






TTGGCACATTTCGTGTG
1291






CACACGAAATGTGCCAA
1292





Cystic fibrosis
GGAAGATACAATGACACCTGTTTTTGCTGTGCTTTTATTTTCC
1293


His199Tyr
AGGGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGC


CAT to TAT
AAGTGGCACTCCTCATGGGGCTAATCTGGGAGTTGT






ACAACTCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAAAG
1294



GAGCGATCCACACGAAATGTGCCAATGCAAGTCCCTGGAAA



ATAAAAGCACAGCAAAAACAGGTGTCATTGTATCTTCC






CATTGGCACATTTCGTG
1295






CACGAAATGTGCCAATG
1296





Cystic fibrosis
TGTTTTTGCTGTGCTTTATTTTCCAGGGACTTGCATTGGCAC
1297


Pro205Ser
ATTTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGG


CCT to TCT
GGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCT






AGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCATG
1298



AGGAGTGCCACTTGCAAAGGAGCGATCCACACGAAATGTGC



CAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAAAACA






GGATCGCTCCTTTGCAA
1299






TTGCAAAGGAGCGATCC
1300





Cystic fibrosis
TTTGCTGTGCTTTATTTTCCAGGGACTTGCATTGGCACATTT
1301


Leu206Trp
CGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGGGGC


TTG to TGG
TAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGG






CCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCC
1302



CATGAGGAGTGCCACTTGCAAAGGAGCGATCCACACGAAAT



GTGCCAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAA






CGCTCCTTTGCAAGTGG
1303






CCACTTGCAAAGGAGCG
1304





Cystic fibrosis
TTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGGG
1305


Gln220Term
GCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACT


CAG to TAG
TGGTTTCCTGATAGTCCTTGCCCTTTTTCAGGCTGGGC






GCCCAGCCTGAAAAAGGGCAAGGACTATCAGGAAACCAAGT
1306



CCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCC



CATGAGGAGTGCCACTTGCAAAGGAGCGATCCACACGAA






AGTTGTTACAGGCGTCT
1307






AGACGCCTGTAACAACT
1308





Cystic fibrosis
CCTTTGCAAGTGGCACTCCTCATGGGGCTAATCTGGGAGTT
1309


Cys225Arg
GTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGT


TGT-CGT
CCTTGCCCTTTTTCAGGCTGGGCTAGGGAGAATGATGA






TCATCATTCTCCCTAGCCCAGCCTGAAAAAGGGCAAGGACTA
1310



TCAGGAAACCAAGTCCACAGAAGGCAGACGCCTGTAACAAC



TCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAAAGG






CTGCCTTCTGTGGACTT
1311






AAGTCCACAGAAGGCAG
1312





Cystic fibrosis
TGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGT
1313


Val232Asp
GGACTTGGTTTCCTGATAGTCCTTGCCCTTTTTCAGGCTGGG


GTC to GAC
CTAGGGAGAATGATGATGAAGTACAGGTAGCAACCTAT






ATAGGTTGCTACCTGTACTTCATCATCATTCTCCCTAGCCCA 1314



GCCTGAAAAAGGGCAAGGACTATCAGGAAACCAAGTCCACA



GAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCA






CCTGATAGTCCTTGCCC
1315






GGGCAAGGACTATCAGG
1316





Cystic fibrosis
GTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGT
1317


Gly239Arg
CCTTGCCCTTTTTCAGGCTGGGCTAGGGAGAATGATGATGAA


GGG to AGG
GTACAGGTAGCAACCTATTTTCATAACTTGAAAGTTT






AAACTTTCAAGTTATGAAAATAGGTTGCTACCTGTACTTCATC
1318



ATCATTCTCCCTAGCCCAGCCTGAAAATTAGGGCAAGGACTATC



AGGAAACCAAGTCCACAGAAGGCAGACGCCTGTAAC






TTTCAGGCTGGGCTAGG
1319






CCTAGCCCAGCCTGAAA
1320









EXAMPLE 10
Cyclin-dependent Kinase Inhibitor 2A—CDKN2A

The human CDKN2A gene was also designated MTS-1 for multiple tumor suppressor-1 and has been implicated in multiple cancers including, for example, malignant melanoma. Malignant melanoma is a cutaneous neoplasm of melanocytes. Melanomas generally have features of asymmetry, irregular border, variegated color, and diameter greater than 6 mm. The precise cause of melanoma is unknown, but sunlight and heredity are risk factors. Melanoma has been increasing during the past few decades.


The CDKN2A gene has been found to be homozygously deleted at high frequency in cell lines derived from tumors of lung, breast, brain, bone, skin, bladder, kidney, ovary, and lymphocyte. Melanoma cell lines carried at least one copy of CDKN2A in combination with a deleted allele. Melanoma cell lines that carried at least 1 copy of CDKN2A frequently showed nonsense, missense, or frameshift mutations in the gene. Thus, CDKN2A may rival p53 (see Example 5) in the universality of its involvement in tumorigenesis. The attached table discloses the correcting oligonucleotide base sequences for the CDKN2A oligonucleotides of the invention.










TABLE 17







CDKN2A Mutations and Genome-Correcting Oligos













SEQ ID



Clinical Phenotype &
Correcting Oligos
NO:













Melanoma
GGGCGGCGGGGAGCAGCATGGAGCCGGCGGCGGGGAGCAG
1321



Trp15Term
CATGGAGCCTTCGGCTGACTGCTGGCCACGGCCGCGGCCC


TGG–TAG
GGGGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGG






CCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCCGACCCCG
1322



GGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCCATGC



TGCTCCCCGCCGCCGGCTCCATGCTGCTCCCCGCCGCCC






GGCTGACTGGCTGGCCA
1323






TGGCCAGCCAGTCAGCC
1324





Melanoma
CGGCGGGGAGCAGCATGGAGCCGGCGGCGGGGAGCAGCAT
1325


Leu16Pro
GGAGCCTTCGGCTGACTGGCTGGCCACGGCCGCGGCCCGG


CTG–CCG
GGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGG



C






GCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCGACC
1326



CCGGGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCC



ATGCTGCTCCCCGCCGCCGGCTCCATGCTGCTCCCCGCCG






TGACTGGCTGGCCACGG
1327






CCGTGGCCAGCCAGTCA
1328





Melanoma
CGGCGGCGGGGAGCAGCATGGAGCCTTCGGCTGACTGGCTG
1329


Gly23Asp
GCCACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGTGCGGG


CTG–CCG
CGCTGCTGGAGGCGGGGGCGCTGCCCAACGCACCGAATAG






CTATTCGGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGCGC
1330



CCGCACCTCCTCTACCCGACCCCGGGCCGCGGCCGTGGCCA



GCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCGCCG






GGCCCGGGGTCGGGTAG
1331






CTACCCGACCCCGGGCC
1332





Melanoma
CGGCGGGGAGCAGCATGGAGCCTTCGGCTGACTGGCTGGCC
1333


Arg24Pro
ACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGTGCGGGCGC


CGG–CCG
TGCTGGAGGCGGGGGCGCTGCCCAACGCACCGAATAGTTA






TAACTATTCGGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGC
1334



GCCCGCACCTCCTCTACCCGACCCCGGGCCGCGGCCGTGGC



CAGCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCG






CCGGGGTCGGGTAGAGG
1335






CCTCTACCCGACCCCGG
1336





Melanoma
CGGCTGACTGGCTGGCCACGGCCGCGGCCCGGGGTCGGGT
1337


Leu32Pro
AGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGCGCTGCCC


CTG–CCG
AACGCACCGAATAGTTACGGTCGGAGGCCGATCCAGGTGGG






CCCACCTGGATCGGCCTCCGACCGTAACTATTCGGTGCGTTG
1338



GGCAGCGCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTAC



CCGACCCCGGGCCGCGGCCGTGGCCAGCCAGTCAGCCG






GGCGCTGCTGGAGGCGG
1339






CCGCCTCCAGCAGCGCC
1340





Melanoma
GGCTGGCCACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGT
1341


Gly35Ala
GCGGGCGCTGCTGGAGGCGGGGGCGCTGCCCAACGCACCG


GGG–GCG
AATAGTTACGGTCGGAGGCCGATCCAGGTGGGTAGAGGGTC






GACCCTCTACCCACCTGGATCGGCCTCCGACCGTAACTATTC
1342



GGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGCGCCCGCAC



CTCCTCTACCCGACCCCGGGCCGCGGCCGTGGCCAGCC






GGAGGCGGGGGCGCTGC
1343






GCAGCGCCCCCGCCTCC
1344





Melanoma
GGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGGGCGCTG
1345


Tyr44Term
CCCAACGCACCGAATAGTTACGGTCGGAGGCCGATCCAGGTG


TACg–TAA
GGTAGAGGGTCTGCAGCGGGAGCAGGGGATGGCGGGCGA






TCGCCCGCCATCCCCTGCTCCCGCTGCAGACCCTCTACCCAC
1346



CTGGATCGGCCTCCGACCGTAACTATTCGGTGCGTTGGGCAG



CGCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACC






AATAGTTACGGTCGGAG
1346






CTCCGACCGTAACTATT
1348





Melanoma
TCTCCCATACCTGCCCCCACCCTGGCTCTGACCACTCTGCTC
1349


Met53IIe
TCTCTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGG


ATGa–ATC
AGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCA






TGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCTCCG
1350



CCACGCGGGCGCTGCCCATCATCATGACCTGCCAGAGAGAG



CAGAGTGGTCAGAGCCAGGGTGGGGGCAGGTATGGGAGA






GTCATGATGATGGGCAG
1351






CTGCCCATCATCATGAC
1352





Melanoma
CCCATACCTGCCCCCACCCTGGCTCTGACACTCTGCTCTCT
1353


Met54IIe
CTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGGAGC


ATGg–ATV
TGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCAGAC






GTCTGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCT
1354



CCGCCACGCGGGCGCTGCCCATCATCATGACCTGCCAGAGA



GAGCAGAGTGGTCAGAGCCAGGGTGGGGGCAGGTATGGG






ATGATGATGGGCAGCGC
1355






GCGCTGCCCATCATCAT
1356





Melanoma
GCCGGCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGC
1357


Ser56IIe
AGGTCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTG


AGC–ATC
CTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGC






GCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCA
1358



GCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGACCTGCC



AGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGGCCGGC






GATGGGCAGCGCCCGAG
1359






CTCGGGCGCTGCCCATC
1360





Melanoma
GGCCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGG
1361


Ala57Val
TCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTG


GCC–GTC
CTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCAC






GTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCA
1362



GCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGACCT



GCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGGCC






GGGCAGCGCCCGAGTGG
1363






CCACTCGGGCGCTGCCC
1364





Melanoma
CCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGGTC
1365


Arg58Term
ATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGCT


cCGA–TGA
CCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTC






GAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAG
1366



CAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGAC



CTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGG






GCAGCGCCCGAGTGGCG
1367






CGCCACTCGGGCGCTGC
1368





Melanoma
CACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGGTCATGAT
1369


Val59Gly
GATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGCTCCACG


GTG–GGG
GCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCAC






GTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTG
1370



GAGCAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCA



TGACCTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTG






CGCCCGAGTGGCGGAGC
1371






GCTCCGCCACTCGGGCG
1372





Melanoma
TCTGACCACTCTGCTCTCTCTGGCAGGTCATGATGATGGGCA
1373


Leu62Pro
GCGCCCGCGTGGCGGAGCTGCTGCTGCTCCACGGCGCGGA


CTG–CCG
GCCCAACTGCGCAGACCCTGCCACTCTCACCCGACCGGT






ACCGGTCGGGTGAGAGTGGCAGGGTCTGCGCAGTTGGGCTC
1374



CGCGCCGTGGAGCAGCAGCAGCTCCGCCACGCGGGCGCTG



CCCATCATCATGACCTGCCAGAGAGAGCAGAGTGGTCAGA






GGCGGAGCTGCTGCTGC
1375






GCAGCAGCAGCTCCGCC
1376





Melanoma
TCTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGGAG
1377


Ala68Val
CTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCAGACCC


GCG–GTG
TGCCACTCTCACCCGACCGGTGCATGATGCTGCCCGGGA






TCCCGGGCAGCATCATGCACCGGTCGGGTGAGAGTGGCAGG
1378



GTCTGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCT



CCGCCACGCGGGCGCTGCCCATCATCATGACCTGCCAGA






CCACGGCGCGGAGCCCA
1379






TGGGCTCCGCGCCGTGG
1380





Melanoma
CATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGC
1381


Asn71Lys
TCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTC


AACt–AAA
ACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTG






CAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGA
1382



GAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAG



CAGCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATG






GAGCCCAACTGCGCCGA
1383






TCGGCGCAGTTGGGCTC
1384





Melanoma
TCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTG
1385


Asn71Ser
CTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCT


AAC–AGC
CACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCT






AGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAG
1386



AGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCA



GCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGA






GGAGCCCAACTGCGCCG
1387






CGGCGCAGTTGGGCTCC
1388





Melanoma
AGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCCGAC
1389


Pro81Leu
CCGCCACTCTCACCCGACCCGTGCACGACGCTGCCCGGGA


CCC–CTC
GGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGCCGG






CCGGCCCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTC
1390



CCGGGCAGCGTCGTGCACGGGTCGGGTGAGAGTGGCGGGG



TCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCT






CACCCGACCCGTGCACG
1391






CGTGCACGGGTCGGGTG
1392





Melanoma
CTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCAC
1393


Asp84Tyr
TCTCACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCC


cGAC–TAC
TGGACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGC






GCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCCAGG
1394



AAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAGAGT



GGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAG






CCGTGCACGACGCTGCC
1395






GGCAGCGTCGTGCACGG
1396





Melanoma
CTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCT
1397


Ala85Thr
CACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGG


cGCT–ACT
ACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGG






CCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCC
1398



AGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAG



AGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAG






TGCACGACGCTGCCCGG
1399






CCGGGCAGCGTCGTGCA
1400





Melanoma
GCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCGA
1401


Arg87Pro
CCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGCT


CGG–CCG
GGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGCG






CGCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAG
1402



CGTGTCCAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTC



GGGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGC






CGCTGCCCGGGAGGGCT
1403






AGCCCTCCCGGGCAGCG
1404





Melanoma
GGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCG
1405


Arg87Trp
ACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGC


cCGG–TGG
TGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGC






GCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGC
1406



GTGTCCAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCG



GGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCC






ACGCTGCCCGGGAGGGC
1407






GCCCTCCCGGGCAGCGT
1408





Melanoma
CTCTCACCCGACCGGTGCATGATGCTGCCCGGGAGGGCTTC
1409


Leu97Arg
CTGGACACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCT


CTG–CGG
GGACGTGCGCGATGCCTGGGGTCGTCTGCCCGTGGACTT






AAGTCCACGGGCAGACGACCCCAGGCATCGCGCACGTCCAG
1410



CCGCGCCCCGGGCCGGTGCAGCACCACCAGCGTGTCCAGGA



AGCCCTCCCGGGCAGCATCATGCACCGGTCGGGTGAGAG






GGTGGTGCTGCACCGGG
1411






CCCGGTGCAGCACCACC
1412





Melanoma
CCCGACCGGTGCATGATGCTGCCCGGGAGGGCTTCCTGGAC
1413


Arg99Pro
ACGCTGGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACG


CGG–CCG
TGCGCGATGCCTGGGGTCGTCTGCCCGTGGACTTGGCCGA






TCGGCCAAGTCCACGGGCAGACGACCCCAGGCATCGCGCAC
1414



GTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAGCGTGT



CCAGGAAGCCCTCCCGGGCAGCATCATGCACCGGTCGGG






GCTGCACCGGGCCGGGG
1415






CCCCGGCCCGGTGCAGC
1416





Melanoma
CCGGTGCATGATGCTGCCCGGGAGGGCTTCCTGGACACGCT
1417


Gly101Trp
GGTGGTGCTGCACCGGGCCGGGGCGCGGCTGGACGTGCGC


cGGG–TGG
GATGCCTGGGGTCGTCTGCCCGTGGACTTGGCCGAGGAGC






GCTCCTCGGCCAAGTCCACGGGCAGACGACCCCAGGCATCG
1418



CGCACGTCCAGCCGCGCCCCGGCCCGGTGCAGCACCACCAG



CGTGTCCAGGAAGCCCTCCCGGGCAGCATCATGCACCGG






ACCGGGCCGGGGCGCGG
1419






CCGCGCCCCGGCCCGGT
1420





Melanoma
CGGGAGGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGC
1421


Arg107Cys
CGGGGCGCGGCTGGACGTGCGCGATGCCTGGGGTCGTCTGC


gCGC–TGC
CCGTGGACTTGGCCGAGGAGCGGGGCCACCGCGACGTTG






CAACGTCGCGGTGGCCCCGCTCCTCGGCCAAGTCCACGGGC
1422



AGACGACCCCAGGCATCGCGCACGTCCAGCCGCGCCCCGGC



CCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTCCCG






TGGACGTGCGCGATGCC
1423






GGCATCGCGCACGTCCA
1424





Melanoma
CACCGGGCCGGGGCGCGGCTGGACGTGCGCGATGCCTGGG
1425


Ala118Thr
GCCGTCTGCCCGTGGACCTGGCTGAGGAGCTGGGCCATCGC


gGCT–ACT
GATGTCGCACGGTACCTGCGCGCGGCTGCGGGGGGCACCA






TGGTGCCCCCCGCAGCCGCGCGCAGGTACCGTGCGACATCG
1426



CGATGGCCCAGCTCCTCAGCCAGGTCCACGGGCAGACGGCC



CCAGGCATCGCGCACGTCCAGCCGCGCCCCGGCCCGGTG






TGGACCTGGCTGAGGAG
1427






CTCCTCAGCCAGGTCCA
1428





Melanoma
TGCGCGATGCCTGGGGCCGTCTGCCCGTGGACCTGGCTGAG
1429


Val126Asp
GAGCTGGGCCATCGCGATGTCGCACGGTACCTGCGCGCGGC


GTC–GAC
TGCGGGGGGCACCAGAGGCAGTAACCATGCCCGCATAGA






TCTATGCGGGCATGGTTACTGCCTCTGGTGCCCCCCGCAGCC
1430



GCGCGCAGGTACCGTGCGACATCGCGATGGCCCAGCTCCTC



AGCCAGGTCCACGGGCAGACGGCCCCAGGCATCGCGCA






TCGCGATGTCGCACGGT
1431






ACCGTGCGACATCGCGA
1432









EXAMPLE 11
Adenomatous Polyposis of the Colon—APC

Adenomatous polyposis of the colon is characterized by adenomatous polyps of the colon and rectum; in extreme cases the bowel is carpeted with a myriad of polyps. This is a viciously premalignant disease with one or more polyps progressing through dysplasia to malignancy in untreated gene carriers with a median age at diagnosis of 40 years.


Mutations in the APC gene are an initiating event for both familial and sporadic colorectal tumorigenesis and many alleles of the APC gene have been identified. Carcinoma may arise at any age from late childhood through the seventh decade with presenting features including, for example, weight loss and inanition, bowel obstruction, or bloody diarrhea. Cases of new mutation still present in these ways but in areas with well organized registers most other gene carriers are detected. The attached table discloses the correcting oligonucleotide base sequences for the APC oligonucleotides of the invention.










TABLE 18







APC Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting oligos
NO:













Adenomatous polyposis
GGATCTGTATCAAGCCGTTCTGGAGAGTGCAGTCCTGTTCCT
1433



coli
ATGGGTTCATTTCCAAGAAGAGGGTTTGTAAATGGAAGCAGA


Arg121Term
GAAAGTACTGGATATTTAGAAGAACTTGAGAAAGAGA


AGA-TGA



TCTCTTTCTCAAGTTCTTCTAAATATCCAGTACTTTCTCTGCTT
1434



CCATTTACAAACCCTCTTCTTGGAAATGAACCCATAGGAACAG



GACTGCACTCTCCAGAACGGCTTGATACAGATCC






TTCCAAGAAGAGGGTTT
1435






AAACCCTCTTCTTGGAA
1436





Adenomatous polyposis
AAAAAAAAAATAGGTCATTGCTTCTTGCTGATCTTGACAAAGAA
1437


coil
GAAAAGGAAAAAGACTGGTATTACGCTCAACTTCAGAATCTCA


Trp157Term
CTAAAAGAATAGATAGTCTTCCTTTAACTGAAAA


TGG-TAG



TTTTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGAGATTCTG
1438



AAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTCTTTGTCAA



GATCAGCAAGAAGCAATGACCTATTTTTTTTTT






AAAAGACTGGTATTACG
1439






CGTAATACCAGTCTTTT
1440





Adenomatous polyposis
AAATAGGTCATTGCTTCTTGCTGATCTTGACAAAGAAGAAAAG
1441


coli
GAAAAAGACTGGTATTACGCTCAACTTCAGAATCTCACTAAAA


Tyr159Term
GAATAGATAGTCTTCCTTTAACTGAAAATGTAAGT


TAG-TAG



ACTTACATTTTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGA
1442



GATTCTGAAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTCT



TTGTCAAGATCAGCAAGAAGCAATGACCTATTT






TGGTATTACGCTCAACT
1443






AGTTGAGCGTAATACCA
1444





Adenomatous polyposis
TTGCTTCTTGCTGATCTTGACAAAGAAGAAAAGGAAAAAGACT
1445


coli
GGTATTACGCTCAACTTCAGAATCTCACTAAAAGAATAGATAG


Gln163Term
TCTTCCTTTAACTGAAAATGTAAGTAACTGGCAGT


CAG-TAG



ACTGCCAGTTACTTACATTTTCAGTTAAAGGAAGACTATCTATT
1446



CTTTTAGTGAGATTCTGAAGTTGAGCGTAATACCAGTCTTTTTC



CTTTTCTTCTTTGTCAAGATCAGCAAGAAGCAA






CTCAACTTCAGAATCTC
1447






GAGATTCTGAAGTTGAG
1448





Adenomatous polyposis
CTTGACAAAGAAGAAAAGGAAAAAGACTGGTATTACGCTCAAC
1449


coli
TTCAGAATCTCACTAAAAGAATAGATAGTCTTCCTTTAACTGAA


Arg168Term
AATGTAAGTAACTGGCAGTACAACTTATTTGAAA


AGA-TGA



TTTCAAATAAGTTGTACTGCCAGTTACTTACATTTTCAGTTAAA
1450



GGAAGACTATCTATTCTTTTAGTGAGATTCTGAAGTTGAGCGT



AATACCAGTCTTTTTCCTTTTCTTCTTTGTCAAG






TCACTAAAAGAATAGAT
1451






ATCTATTCTTTTAGTGA
1452





Adenomatous polyposis
AAGAAAAGGAAAAAGACTGGTATTACGCTCAACTTCAGAATCT
1453


coli
CACTAAAAGAATAGATAGTCTTCCTTTAACTGAAAATGTAAGTA


Ser171Ile
ACTGGCAGTACAACTTATTTGAAACTTTAATAAC


AGT-ATT



GTTATTAAAGTTTCAAATAAGTTGTACTGCCAGTTACTTACATT
1454



TTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGAGATTCTGAA



GTTGAGCGTAATACCAGTCTTTTTCCTTTTCTT






AATAGATAGTCTTCCTT
1455






AAGGAAGACTATCTATT
1456





Adenomatous polyposis
GATTAACGTAAATACAAGATATTGATACTTTTTTATTATTTGTGG
1457


coli
TTTTAGTTTTCCTTACAAACAGATATGACCAGAAGGCAATTGG


Gln181Term
AATATGAAGCAAGGCAAATCAGAGTTGCGATGG


CAA-TAA



CCATCGCAACTCTGATTTGCCTTGCTTCATATTCCAATTGCCT
1458



TCTGGTCATATCTGTTTGTAAGGAAAACTAAAACCACAAATAAT



AAAAAAGTATCAATATCTTGTATTTACGTTAATC






TTTCCTTACAAACAGAT
1459






ATCTGTTTGTAAGGAAA
1460





Adenomatous polyposis
CTTTTTTATTATTTGTGGTTTTAGTTTTCCTTACAAACAGATATG
1461


coli
ACCAGAAGGCAATTGGAATATGAAGCAAGGCAAATCAGAGTT


Glu190Term
GCGATGGAAGAACAACTAGGTACCTGCCAGGATA


GAA-TAA



TATCCTGGCAGGTACCTAGTTGTTCTTCCATCGCAACTCTGAT
1462



TTGCCTTGCTTCATATTCCAATTGCCTTCTGGTCATATCTGTTT



GTAAGGAAAACTAAAACCACAAATAATAAAAAAG






GGCAATTGGAATATGAA
1463






TTCATATTCCAATTGCC
1464





Adenomatous polyposis
CAATTGGAATATGAAGCAAGGCAAATCAGAGTTGCGATGGAA


coli
GAACAACTAGGTACCTGCCAGGATATGGAAAAACGAGCACAG


Gln208Term
GTAAGTTACTTGTTTCTAAGTGATAAAACAGCGAAGA


CAG-TAG



TCTTCGCTGTTTTATCACTTAGAAACAAGTAACTTACCTGTGCT
1466



CGTTTTTCCATATCCTGGCAGGTACCTAGTTGTTCTTCCATCG



CAACTCTGATTTGCCTTGCTTCATATTCCAATTG






GTACCTGCCGCAGGTAC
1467






CATATCCTGGCAGGTAC
1468





Adenomatous polyposis
GCAAGGCAAATCAGAGTTGCGATGGAAGAACAACTAGGTACC
1469


coli
TGCCAGGATATGGAAAAACGAGCACAGGTAAGTTACTTGTTTC


Arg213Term
TAAGTGATAAAACAGCGAAGAGCTATTAGGAATAAA


CGA-TGA



TTTATTCCTAATAGCTCTTCGCTGTTTTATCACTTAGAAACAAG
1470



TAACTTACCTGTGCTCGTTTTTCCATATCCTGGCAGGTACCTA



GTTGTTCTTCCATCGCAACTCTGATTTGCCTTGC






TGGAAAAACGAGCACAG
1471






CTGTGCTCGTTTTTCCA
1472





Adenomatous polyposis
GTTTTATTTTAGCGAAGAATAGCCAGAATTCAGCAAATCGAAA
1473


coli
AGGACATACTTCGTATACGACAGCTTTTACAGTCCCAAGCAAC


Arg232Term
AGAAGCAGAGGTTAGTAAATTGCCTTTCTTGTTTG


CGA-TGA



CAAACAAGAAAGGCAATTTACTAACCTCTGCTTCTGTTGCTTG
1474



GGACTGTAAAAGCTGTCGTATACGAAGTATGTCCTTTTCGATT



TGCTGAATTCTGGCTATTCTTCGCTAAAATAAAAC






TTCGTATACGACAGCTT
1475






AAGCTGTCGTATACGAA
1476





Adenomatous polyposis
TTATTTTAGCGAAGAATAGCCAGAATTCAGCAAATCGAAAAGG
1477


coli
ACATACTTCGTATACGACAGCTTTTACAGTCCCAAGCAACAGA


Gln233Term
AGCAGAGGTTAGTAAATTGCCTTTCTTGTTTGTGG


CAG-TAG



CCACAAACAAGAAAGGCAATTTACTAACCTCTGCTTCTGTTGC
1478



TTGGGACTGTAAAAGCTGTCGTATACGAAGTATGTCCTTTTCG



ATTTGCTGAATTCTGGCTATTCTTCGCTAAAATAA






GTATACGACAGCTTTTA
1479






TAAAAGCTGTCGTATAC
1480





Adenomatous polyposis
AGAAAGCCTACACCATTTTTGCATGTACTGATGTTAACTCCAT
1481


coli
CTTAACAGAGGTCATCTCCTCACAGAACAAGCATGAAACCGGCTCAC


Gln247Term
ATGATGCTGAGCGGCAGAATGAAGGTCAAGGAGTGG


CAG-TAG



CCACTCCTTGACCTTCATTCTGCCGCTCAGCATCATGTGAGC
1482



CGGTTTCATGCTTGTTCTGAGATGACCTCTGTTAAGATGGAGT



TAACATCAGTACATGCAAAAATGGTGTAGGCTTTCT






GGTCATCTCAGAACAAG
1483






CTTGTTCTGAGATGACC
1484





Adenomatous polyposis
CAGAACAAGCATGAAACCGGCTCACATGATGCTGAGCGGCAG
1485


coli
AATGAAGGTCAAGGAGTGGGAGAAATCAACATGGCAACTTCT


Gly267Term
GGTAATGGTCAGGTAAATAAATTATTTTATCATATTT


GGA-TGA



AAATATGATAAAATAATTTATTTACCTGACCATTACCAGAAGTT
1486



GCCATGTTGATTTCTCCCACTCCTTGACCTTCATTCTGCCGCT



CAGCATCATGTGAGCCGGTTTCATGCTTGTTCTG






AAGGAGTGGGAGAAATC
1487






GATTTCTCCCACTCCTT
1488





Adenomatous polyposis
CTTCAAATAACAAAGCATTATGGTTTATGTTGATTTTATTTTTCA
1489


coli
GTGCCAGCTCCTGTTGAACATCAGATCTGTCCTGCTGTGTGT


Glu443Term
GTTCTAATGAAACTTTCATTTGATGAAGAGCATA


GAA-TAA



TATGCTCTTCATCAAATGAAAGTTTCATTAGAACACACACAGCA
1490



GGACAGATCTGATGTTCAACAGGAGCTGGCACTGAAAAATAA



AATCAACATAAACCATAATGCTTTGTTATTTGAAG






CTCCTGTTGAACATCAG
1491






CTGATGTTCAACAGGAG
1492





Adenomatous polyposis
CAGTGCCAGCTCCTGTTGAACATCAGATCTGTCCTGCTGTGT
1493


coli
GTGTTCTAATGAAACTTTCATTTGATGAAGAGCATAGACATGC


SER457TER
AATGAATGAACTAGGTAAGACAAAAATGTTTTTTAA


TCA-TAA



TTAAAAACATTTTTGTCTTACCTAGTTCATTCATTGCATGTCTA
1494



TGCTCTTCATCAAATGAAAGTTTCATTAGAACACACACAGCAG



GACAGATCTGATGTTCAACAGGAGCTGGCACTG






GAAACTTTCATTTGATG
1495






CATCAAATGAAAGTTTC
1496





Adenomatous polyposis
AGTTGTTTTATTTTAGATGATTGTCTTTTTCCTCTTGCCCTTTTT
1497


coli
AAATTAGGGGGACTACAGGCCATTGCAGAATTATTGCAAGTG


Gln473Term
GACTGTGAAATGTACGGGCTTACTAATGACCACT


CAG-TAG



AGTGGTCATTAGTAAGCCCGTACATTTCACAGTCCACTTGCAA
1498



TAATTCTGCAATGGCCTGTAGTCCCCCTAATTTAAAAAGGGCA



AGAGGAAAAAGACAATCATCTAAAATAAAACAACT






GGGGACTACAGGCCATT
1499






AATGGCCTGTAGTCCCC
1500





Adenomatous polyposis
TTTTAAATTAGGGGGACTACAGGCCATTGCAGAATTATTGCAA
1501


coli
GTGGACTGTGAAATGTACGGGCTTACTAATGACCACTACAGTA


Tyr486Term
TTACACTAAGACGATATGCTGGAATGGCTTTGACA


TAC-TAG



TGTCAAAGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAG
1502



TGGTCATTAGTAAGCCCGTACATTTCACAGTCCACTTGCAATA



ATTCTGCAATGGCCTGTAGTCCCCCTAATTTAAAA






GAAATGTACGGGCTTAC
1503






GTAAGCCCGTACATTTC
1504





Adenomatous polyposis
TTGCAAGTGGACTGTGAAATGTATGGGCTTACTAATGACCACT
1505


coli
ACAGTATTACACTAAGACGATATGCTGGAATGGCTTTGACAAA


Arg499Term
CTTGACTTTTGGAGATGTAGCCAACAAGGTATGTT


CGA-TGA



AACATACCTTGTTGGCTACATCTCCAAAAGTCAAGTTTGTCAA
1506



AGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAGTGGTCA



TTAGTAAGCCCATACATTTCACAGTCCACTTGCAA






CACTAAGACGATATGCT
1507






AGCATATCGTCTTAGTG
1508





Adenomatous polyposis
AGTGGACTGTGAAATGTATGGGCTTACTAATGACCACTACAGT
1509


coli
ATTACACTAAGACGATATGCTGGAATGGCTTTGACAAACTTGA


Tyr500Term
CTTTTGGAGATGTAGCCAACAAGGTATGTTTTTAT


TAT-TAG



ATAAAAACATACCTTGTTGGCTACATCTCCAAAAGTCAAGTTTG
1510



TCAAAGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAGTG



GTCATTAGTAAGCCCATACATTTCACAGTCCACT






AGACGATATGCTGGAAT
1511






ATTCCAGCATATCGTCT
1512





Adenomatous polyposis
GACAAATTCCAACTCTAATTAGATGACCCATATTCTGTTTCTTA
1513


coli
CTAGGAATCAACCCTCAAAAGCGTATTGAGTGCCTTATGGAAT


Lys586Term
TTGTCAGCACATTGCACTGAGAATAAAGCTGATA


AAA-TAA



TATCAGCTTTATTCTCAGTGCAATGTGCTGACAAATTCCATAA
1514



GGCACTCAATACGCTTTTGAGGGTTGATTCCTAGTAAGAAACA



GAATATGGGTCATCTAATTAGAGTTGGAATTTGTC






CAACCCTCAAAAGCGTA
1515






TACGCTTTTGAGGGTTG
1516





Adenomatous polyposis
TAGATGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAA
1517


coli
AGCGTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTG


Leu592Term
AGAATAAAGCTGATATATGTGCTGTAGATGGTGC


TTA-TGA



GCACCATCTACAGCACATATATCAGCTTTATTCTCAGTGCAAT
1518



GTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGAGGGT



TGATTCCTAGTAAGAAACAGAATATGGGTCATCTA






GAGTGCCTTATGGAATT
1519






AATTCCATAAGGCACTC
1520





Adenomatous polyposis
ATGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAAAG
1521


coli
CGTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTGAG


Trp593Term
AATAAAGCTGATATATGTGCTGTAGATGGTGCACT


TGG-TAG



AGTGCACCATCTACAGCACATATATCAGCTTTATTCTCAGTGC
1522



AATGTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGAG



GGTTGATTCCTAGTAAGAAACAGAATATGGGTCAT






TGCCTTATGGAATTTGT
1523






ACAAATTCCATAAGGCA
1524





Adenomatous polyposis
TGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAAAGC
1525


coli
GTATTGAGTGCCTTATGGAATTTGTCAGCACATTGCACTGAGA


Trp593Term
ATAAAGCTGATATATGTGCTGTAGATGGTGCACTT


TGG-TGA



AAGTGCACCATCTACAGCACATATATCAGCTTTATTCTCAGTG
1526



CAATGTGCTGACAAATTCCATAAGGCACTCAATACGCTTTTGA



GGGTTGATTCCTAGTAAGAAACAGAATATGGGTCA






GCCTTATGGAATTTGTC
1527






GACAAATTCCATAAGGC
1528





Adenomatous polyposis
TAAAGCTGATATATGTGCTGTAGATGGTGCACTTGCATTTTTG
1529


coli
GTTGGCACTCTTACTTAICCGGAGCCAGACAAACACTTTAGCC


Tyr622Term
ATTATTGAAAGTGGAGGTGGGATATTACGGAATGTG


TAC-TAA



CACATTCCGTAATATCCCACCTCCACTTTCAATAATGGCTAAA
1530



GTGTTTGTCTGGCTCCGGTAAGTAAGAGTGCCAACCAAAAAT



GCAAGTGCACCATCTACAGCACATATATCAGCTTTA






CTTACTTACCGGAGCCA
1531






TGGCTCCGGTAAGTAAG
1532





Adenomatous polyposis
GATATATGTGCTGTAGATGGTGCACTTGCATTTTTGGTTGGCA
1533


coli
CTCTTACTTACCGGAGCCAGACAAACACTTTAGCCATTATTGA


Gln625Term
AAGTGGAGGTGGGATATTACGGAATGTGTCCAGCT


CAG-TAG



AGCTGGACACATTCCGTAATATCCCACCTCCACTTTCAATAAT
1534



GGCTAAAGTGTTTGTCTGGCTCCGGTAAGTAAGAGTGCCAAC



CAAAAATGCAAGTGCACCATCTACAGCACATATATC






ACCGGAGCCAGACAAAC
1535






GTTTGTCTGGCTCCGGT
1536





Adenomatous polyposis
TAGATGGTGCACTTGCATTTTTGGTTGGCACTCTTACTTACCG
1537


coli
GAGCCAGACAAACACTTTAGCCATTATTGAAAGTGGAGGTGG


Leu629Term
GATATTACGGAATGTGTCCAGCTTGATAGCTACAAA


TTA-TAA



TTTGTAGCTATCAAGCTGGACACATTCCGTAATATCCCACCTC
1538



CACTTTCAATAATGGCTAAAGTGTTTGTCTGGCTCCGGTAAGT



AAGAGTGCCAACCAAAAATGCAAGTGCACCATCTA






AAACACTTTAGCCATTA
1539






TAATGGCTAAAGTGTTT
1540





Adenomatous polyposis
GCCATTATTGAAAGTGGAGGTGGGATATTACGGAATGTGTCC
1541


coli
AGCTTGATAGCTACAAATGAGGACCACAGGTATATATAGAGTT


Glu650Term
TTATATTACTTTTAAAGTACAGAATTCATACTCTCA


GAG-TAG



TGAGAGTATGAATTCTGTACTTTAAAAGTAATATAAAACTCTAT
1542



ATATACCTGTGGTCCTCATTTGTAGCTATCAAGCTGGACACAT



TCCGTAATATCCCACCTCCACTTTCAATAATGGC






CTACAAATGAGGACCAC
1543






GTGGTCCTCATTTGTAG
1544





Adenomatous polyposis
TGCATGTGGAACTTTGTGGAATCTCTCAGCAAGAAATCCTAAA
1545


coli
GACCAGGAAGCATTATGGGACATGGGGGCAGTTAGCATGCTC


Trp699Term
AAGAACCTCATTCATTCAAAGCACAAAATGATTGCT


TGG-TGA



AGCAATCATTTTGTGCTTTGAATGAATGAGGTTCTTGAGCATG
1546



CTAACTGCCCCCATGTCCCATAATGCTTCCTGGTCTTTAGGAT



TTCTTGCTGAGAGATTCCACAAAGTTCCACATGCA






GCATTATGGGACATGGG
1547






CCCATGTCCCATAATGC
1548





Adenomatous polyposis
AAGACCAGGAAGCATTATGGGACATGGGGGCAGTTAGCATGC
1549


coli
TCAAGAACCTCATTCATTCAAAGCACAAAATGATTGCTATGGG


Ser713Term
AAGTGCTGCAGCTTTAAGGAATCTCATGGCAAATAG


TCA-TGA



CTATTTGCCATGAGATTCCTTAAAGCTGCAGCACTTCCCATAG
1550



CAATCATTTTGTGCTTTGAATGAATGAGGTTCTTGAGCATGCT



AACTGCCCCCCATGTCCCATAATGCTTCCTGGTCTT






CATTCATTCAAAGCACA
1551






TGTGCTTTGAATGAATG
1552





Adenomatous polyposis
GGGGCAGTTAGCATGCTCAAGAACCTCATTCATTCAAAGCAC
1553


coli
AAAATGATTGCTATGGGAAGTGCTGCAGCTTTAAGGAATCTCA


Ser722Gly
TGGCAAATAGGCCTGCGAAGTACAAGGATGCCAATA


AGT-GGT



TATTGGCATCCTTGTACTTCGCAGGCCTATTTGCCATGAGATT
1554



CCTTAAAGCTGCAGCACTTCCCATAGCAATCATTTTGTGCTTT



GAATGAATGAGGTTCTTGAGCATGCTAACTGCCCC






CTATGGGAAGTGCTGCA
1555






TGCAGCACTTCCCATAG
1556





Adenomatous polyposis
TCTCCTGGCTCAGCTTGCCATCTCTTCATGTTAGGAAACAAAA
1557


coli
AGCCCTAGAAGCAGAATTAGATGCTCAGCACTTATCAGAAACT


Leu764Term
TTTGACAATATAGACAATTTAAGTCCCAAGGCATC


TTA-TAA



GATGCCTTGGGACTTAAATTGTCTATATTGTCAAAAGTTTCTGA
1558



TAAGTGCTGAGCATCTAATTCTGCTTCTAGGGCTTTTTGTTTC



CTAACATGAAGAGATGGCAAGCTGAGCCAGGAGA






AGCAGAATTAGATGCTC
1559






GAGCATCTAATTCTGCT
1560





Adenomatous polyposis
TTAGATGCTCAGCACTTATCAGAAACTTTTGACAATATAGACAA
1561


coli
TTTAAGTCCCAAGGCATCTCATCGTAGTAAGCAGAGACACAG


Ser784Thr
CAAGTCTCTATGGTGATTATGTTTTTGACACCATC


TCT-ACT



GATGGTGTCAAAAACATAATCACCATAGAGACTTGCTGTGTCT
1562



CTGCTTACTACGATGAGATGCCTTGGGACTTAAATTGTCTATA



TTGTCAAAAGTTTCTGATAAGTGCTGAGCATCTAA






CCAAGGCATCTCATCGT
1563






ACGATGAGATGCCTTGG
1564





Adenomatous potyposis
CTCATCGTAGTAAGCAGAGACACAGCAAGTCTCTATGGTGATT
1565


coli
ATGTTTTTGACACCAATCGACATGATGATAATAGGTCAGACAT


Arg805Term
TTTAATACTGGCACATGACTGTCCTTTCACCATAT


CGA-TGA



ATATGGTGAAAGGACAGTCATGTGCCAGTATTAAAATGTCTGA
1566



CCTATTATCATCATGTCGATTGGTGTCAAAAACATAATCACCAT



AGAGACTTGCTGTGTCTCTGCTTACTACGATGAG






ACACCAATCGACATGAT
1567






ATCATGTCGATTGGTGT
1568





Adenomatous polyposis
GGTCTAGGCAACTACCATCCAGCAACAGAAAATCCAGGAACT
1569


coli
TCTTCAAAGCGAGGTTTGCAGATCTCCACCACTGCAGCCCAG


Gln879Term
ATTGCCAAAGTCATGGAAGAAGTGTCAGCCATTCATA


CAG-TAG



TATGAATGGCTGACACTTCTTCCATGACTTTGGCAATCTGGGC
1570



TGCAGTGGTGGAGATCTGCAAACCTCGCTTTGAAGAAGTTCC



TGGATTTTCTGTTGCTGGATGGTAGTTGCCTAGACC






GAGGTTTGCAGATCTCC
1571






GGAGATCTGCAAACCTC
1572





Adenomatous polyposis
TACATTGTGTGACAGATGAGAGAAATGCACTTAGAAGAAGCTC
1573


coli
TGCTGCCCATACACATTCAAACACTTACAATTTCACTAAGTCG


Ser932Term
GAAAATTCAAATAGGACATGTTCTATGCCTTATGC


TCA-TAA



GCATAAGGCATAGAACATGTCCTATTTGAATTTTCCGACTTAG
1514



TGAAATTGTAAGTGTTTGAATGTGTATGGGCAGCAGAGCTTCT



TCTAAGTGCATTTCTCTCATCTGTCACACAATGTA






TACACATTCAAACACTT
1575






AAGTGTTTGAATGTGTA
1576





Adenomatous potyposis
TACATTGTGTGACAGATGAGAGAAATGCACTTAGAAGAAGCTC
1577


coli
TGCTGCCCATACACATTCAAACACTTACAATTTCACTAAGTCG


Ser932Term
GAAAATTCAAATAGGACATGTTCTATGCCTTATGC


TCA-TGA



GCATAAGGCATAGAACATGTCCTATTTGAATTTTCCGACTTAG
1578



TGAAATTGTAAGTGTTTGAATGTGTATGGGCAGCAGAGCTTCT



TCTAAGTGCATTTCTCTCATCTGTCACACAATGTA






TACACATTCAAACACTT
1579






AAGTGTTTGAATGTGTA
1580





Adenomatous polyposis
GACAGATGAGAGAAATGCACTTAGAAGAAGCTCTGCTGCCCA
1581


coli
TACACATTCAAACACTTACAATTTCACTAAGTCGGAAAATTCAA


Tyr935Term
ATAGGACATGTTCTATGCCTTATGCCAAATTAGAA


TAC-TAG



TTCTAATTTGGCATAAGGCATAGAACATGTCCTATTTGAATTTT
1582



CCGACTTAGTGAAATTGTAAGTGTTTGAATGTGTATGGGCAGC



AGAGCTTCTTCTAAGTGCATTTCTCTCATCTGTC






AACACTTACAATTTCAC
1583






GTGAAATTGTAAGTGTT
1584





Adenomatous polyposis
GACAGATGAGAGAAATGCACTTAGAAGAAGCTCTGCTGCCCA
1585


coli
TACACATTCAAACACTTACAATTTCACTAAGTCGGAAAATTCAA


Tyr935Term
ATAGGACATGTTCTATGCCTTATGCCAAATTAGAA


TAC-TAA



TTCTAATTTGGCATAAGGCATAGAACATGTCCTATTTGAATTTT
1586



CCGACTTAGTGAAATTGTAAGTGTTTGAATGTGTATGGGCAGC



AGAGCTTCTTCTAAGTGCATTTCTCTCATCTGTC






AACACTTACAATTTCAC
1587






GTGAAATTGTAAGTGTT
1588





Adenomatous polyposis
ACCCTCGATTGAATCCTATTCTGAAGATGATGAAAGTAAGTTTT
1589


coli
GCAGTTATGGTCAATACCCAGCCGACCTAGCCCATAAAATACA


Tyr1000Term
TAGTGCAAATCATATGGATGATAATGATGGAGAA


TAC-TAA



TTCTCCATCATTATCATCCATATGATTTGCACTATGTATTTTAT
1590



GGGCTAGGTCGGCTGGGTATTGACCATAACTGCAAAACTTAC



TTTCATCATCTTCAGAATAGGATTCAATCGAGGGT






GGTCAATACCCAGCCGA
1591






TCGGCTGGGTATTGACC
1592





Adenomatous polyposis
TACCCAGCCGACCTAGCCCATAAAATACATAGTGCAAATCATA
1593


coli
TGGATGATAATGATGGAGAACTAGATACACCAATAAATTATAG


Glu1020Term
TCTTAAATATTCAGATGAGCAGTTGAACTCTGGAA


GAA-TAA



TTCCAGAGTTCAACTGCTCATCTGAATATTTAAGACTATAATTT
1594



ATTGGTGTATCTAGTTCTCCATCATTATCATCCATATGATTTGC-



ACTATGTATTTTATGGGCTAGGTCGGCTGGGTA






ATGATGGAGAACTAGAT
1595






ATCTAGTTCTCCATCAT
1596





Adenomatous polyposis
ATGAAACCCTCGATTGAATCCTATTCTGAAGATGATGAAAGTA
1597


coli
AGTTTTGCAGTTATGGTCAATACCCAGCCGACCTAGCCCATAA


Ser1032Term
AATACATAGTGCAAATCATATGGATGATAATGATG


TCA-TAA



CATCATTATCATCCATATGATTTGCACTATGTATTTTATGGGCT
1598



AGGTCGGCTGGGTATTGACCATAACTGCAAAACTTACTTTCAT



CATCTTCAGAATAGGATTCAATCGAGGGTTTCAT






GTTATGGTCAATACCCA
1599






TGGGTATTGACCATAAC
1600





Adenomatous polyposis
TGAAGATGATGAAAGTAAGTTTTGCAGTTATGGTCAATACCCA
1601


coli
GCCGACCTAGCCCATAAAATACATAGTGCAAATCATATGGATG


Gln1041Term
ATAATGATGGAGAACTAGATACACCAATAAATTAT


CAA-TAA



ATAATTTATTGGTGTATCTAGTTCTCCATCATTATCATCCATAT
1602



GATTTGCACTATGTATTTTATGGGCTAGGTCGGCTGGGTATTG



ACCATAACTGCAAAACTTACTTTCATCATCTTCA






GCCCATAAAATACATAG
1603






CTATGTATTTTATGGGC
1604





Adenomatous polyposis
ATAAATTATAGTCTTAAATATTCAGATGAGCAGTTGAACTCTGG
1605


coli
AAGGCAAAGTCCTTCACAGAATGAAAGATGGGCAAGACCCAA


Gln1045Term
ACACATAATAGAAGATGAAATAAAACAAAGTGAGC


CAG-TAG



GCTCACTTTGTTTTATTTCATCTTCTATTATGTGTTTGGGTCTT
1606



GCCCATCTTTCATTCTGTGAAGGACTTTGCCTTCCAGAGTTCA



ACTGCTCATCTGAATATTTAAGACTATAATTTAT






GTCCTTCACAGAATGAA
1607






TTCATTCTGTGAAGGAC
1608





Adenomatous polyposis
GAAAGATGGGCAAGACCCAAACACATAATAGAAGATGAAATAA
1609


coli
AACAAAGTGAGCAAAGACAATCAAGGAATCAAAGTACAACTTA


Gln1067Term
TCCTGTTTATACTGAGAGCACTGATGATAAACACC


CAA-TAA



GGTGTTTATCATCAGTGCTCTCAGTATAAACAGGATAAGTTGT
1610



ACTTTGATTCCTTGATTGTCTTTGCTCACTTTGTTTTATTTCATC



TTCTATTATGTGTTTGGGTCTTGCCCATCTTTC






AGCAAAGACAATCAAGG
1611






CCTTGATTGTCTTTGCT
1612





Adenomatous polyposis
AATAGAAGATGAAATAAAACAAAGTGAGCAAAGACAATCAAGG
1613


coli
AATCAAAGTACAACTTATCCTGTTTATACTGAGAGCACTGATG


Tyr1075Term
ATAAACACCTCAAGTTCCAACCACATTTTGGACAG


TAT-TAG



CTGTCCAAAATGTGGTTGGAACTTGAGGTGTTTATCATCAGTG
1614



CTCTCAGTATAAACAGGATAAGTTGTACTTTGATTCCTTGATTG



TCTTTGCTCACTTTGTTTTATTTCATCTTCTATT






ACAACTTATCCTGTTTA
1615






TAAACAGGATAAGTTGT
1616





Adenomatous polyposis
TGATGATAAACACCTCAAGTTCCAACCACATTTTGGACAGCAG
1617


coli
GAATGTGTTTCTCCATACAGGTCACGGGGAGCCAATGGTTCA


Tyr1102Term
GAAACAAATCGAGTGGGTTCTAATCATGGAATTAAT


TAC-TAG



ATTAATTCCATGATTAGAACCCACTCGATTTGTTTCTGAACCAT
1618



TGGCTCCCCGTGACCTGTATGGAGAAACACATTCCTGCTGTC



CAAAATGTGGTTGGAACTTGAGGTGTTTATCATCA






TCTCCATACAGGTCACG
1619






CGTGACCTGTATGGAGA
1620





Adenomatous polyposis
AACCACATTTTGGACAGCAGGAATGTGTTTCTCCATACAGGTC
1621


coli
ACGGGGAGCCAATGGTTCAGAAACAAATCGAGTGGGTTCTAA


Ser1110Term
TCATGGAATTAATCAAAATGTAAGCCAGTCTTTGTG


TCA-TGA



CACAAAGACTGGCTTACATTTTGATTAATTCCATGATTAGAACC
1622



CACTCGATTTGTTTCTGAACCATTGGCTCCCCGTGACCTGTAT



GGAGAAACACATTCCTGCTGTCCAAAATGTGGTT






CAATGGTTCAGAAACAA
1623






TTGTTTCTGAACCATTG
1624





Adenomatous polyposis
GGACAGCAGGAATGTGTTTCTCCATACAGGTCACGGGGAGCC
1625


coli
AATGGTTCAGAAACAAATCGAGTGGGTTCTAATCATGGAATTA


Arg1114Term
ATCAAAATGTAAGCCAGTCTTTGTGTCAAGAAGATG


CGA-TGA



CATCTTCTTGACACAAAGACTGGCTTACATTTTGATTAATTCCA
1626



TGATTAGAACCCACTCGATTTGTTTCTGAACCATTGGCTCCCC



GTGACCTGTATGGAGAAACACATTCCTGCTGTCC






AAACAAATCGAGTGGGT
1627






ACCCACTCGATTTGTTT
1628





Adenomatous polyposis
GGGTTCTAATCATGGAATTAATCAAAATGTAAGCCAGTCTTTG
1629


coli
TGTCAAGAAGATGACTATGAAGATGATAAGCCTACCAATTATA


Tyr1135Term
GTGAACGTTACTCTGAAGAAGAACAGCATGAAGAA


TAT-TAG



TTCTTCATGCTGTTCTTCTTCAGAGTAACGTTCACTATAATTGG
1630



TAGGCTTATCATCTTCATAGTCATCTTCTTGACACAAAGACTG



GCTTACATTTTGATTAATTCCATGATTAGAACCC






GATGACTATGAAGATGA
1631






TCATCTTCATAGTCATC
1632





Adenomatous polyposis
GAAGATGACTATGAAGATGATAAGCCTACCAATTATAGTGAAC
1633


coli
GTTACTCTGAAGAAGAACAGCATGAAGAAGAAGAGAGACCAA


Gln1152Term
CAAATTATAGCATAAAATATAATGAAGAGAAACGTC


CAG-TAG



GACGTTTCTCTTCATTATATTTTATGCTATAATTTGTTGGTCTCT
1634



CTTCTTCTTCATGCTGTTCTTCTTCAGAGTAACGTTCACTATAA



TTGGTAGGCTTATCATCTTCATAGTCATCTTC






AAGAAGAACAGCATGAA
1635






TTCATGCTGTTCTTCTT
1636





Adenomatous polyposis
GAAGAAGAGAGACCAACAAATTATAGCATAAAATATAATGAAG
1637


coli
AGAAACGTCATGTGGATCAGCCTATTGATTATAGTTTAAAATAT


Gln1175Term
GCCACAGATATTCCTTCATCACAGAAACAGTCAT


CAG-TAG



ATGACTGTTTCTGTGATGAAGGAATATCTGTGGCATATTTTAAA
1638



CTATAATCAATAGGCTGATCCACATGACGTTTCTCTTCATTATA



TTTTATGCTATAATTTGTTGGTCTCTCTTCTTC






ATGTGGATCAGCCTATT
1639






AATAGGCTGATCCACAT
1640





Adenomatous polyposis
AAGAGAGACCAACAAATTATAGCATAAAATATAATGAAGAGAA
1641


coli
ACGTCATGTGGATCAGCCTATTGATTATAGTTTAAAATATGCCA


Pro1176Leu
CAGATATTCCTTCATCACAGAAACAGTCATTTTC


CCT-CTT



GAAAATGACTGTTTCTGTGATGAAGGAATATCTGTGGCATATT
1642



TTAAACTATAATCAATAGGCTGATCCACATGACGTTTCTCTTCA



TTATATTTTATGCTATAATTTGTTGGTCTCTCTT






GGATCAGCCTATTGATT
1643






AATCAATAGGCTGATCC
1644





Adenomatous polyposis
ATAAAATATAATGAAGAGAAACGTCATGTGGATCAGCCTATTG
1645


coli
ATTATAGTTTAAAATATGCCACAGATATTCCTTCATCACAGAAA


Ala1184Pro
CAGTCATTTTCATTCTCAAAGAGTTCATCTGGAC


GCC-CCC



GTCCAGATGAACTCTTTGAGAATGAAAATGACTGTTTCTGTGA
1646



TGAAGGAATATCTGTGGCATATTTTAAACTATAATCAATAGGCT



GATCCACATGACGTTTCTCTTCATTATATTTTAT






TAAAATATGCCACAGAT
1647






ATCTGTGGCATATTTTA
1648





Adenomatous polyposis
ATCAGCCTATTGATTATAGTTTAAAATATGCCACAGATATTCCT
1649


coli
TCATCACAGAAACAGTCATTTTCATTCTCAAAGAGTTCATCTG


Ser1194Term
GACAAAGCAGTAAAACCGAACATATGTCTTCAAG


TCA-TGA



CTTGAAGACATATGTTCGGTTTTACTGCTTTGTCCAGATGAAC
1650



TCTTTGAGAATGAAAATGACTGTTTCTGTGATGAAGGAATATCT



GTGGCATATTTTAAACTATAATCAATAGGCTGAT






GAAACAGTCATTTTCAT
1651






ATGAAAATGACTGTTTC
1652





Adenomatous polyposis
ATTATAGTTTAAAATATGCCACAGATATTCCTTCATCACAGAAA
1653


coli
CAGTCATTTTCATTCTCAAAGAGTTCATCTGGACAAAGCAGTA


Ser1198Term
AAACCGAACATATGTCTTCAAGCAGTGAGAATAC


TCA-TGA



GTATTCTCACTGCTTGAAGACATATGTTCGGTTTTACTGCTTTG
1654



TCCAGATGAACTCTTTGAGAATGAAAATGACTGTTTCTGTGAT



GAAGGAATATCTGTGGCATATTTTAAACTATAAT






TTCATTCTCAAAGAGTT
1655






AACTCTTTGAGAATGAA
1656





Adenomatous polyposis
ACCGAACATATGTCTTCAAGCAGTGAGAATACGTCCACACCTT
1657


coli
CATCTAATGCCAAGAGGCAGAATCAGCTCCATCCAGTTCTGC


Gln1228Term
ACAGAGTAGAAGTGGTCAGCCTCAAAGGCTGCCACT


CAG-TAG



AGTGGCAGCCTTTGAGGCTGACCACTTCTACTCTGTGCAGAA
1658



CTGGATGGAGCTGATTCTGCCTCTTGGCATTAGATGAAGGTG



TGGACGTATTCTCACTGCTTGAAGACATATGTTCGGT






CCAAGAGGCAGAATCAG
1659






CTGATTCTGCCTCTTGG
1660





Adenomatous polyposis
CATATGTCTTCAAGCAGTGAGAATACGTCCACACCTTCATCTA
1661


coli
ATGCCAAGAGGCAGAATCAGCTCCATCCAGTTCTGCACAGAG


Gln1230Term
TAGAAGTGGTCAGCCTCAAAGGCTGCCACTTGCAAG


CAG-TAG



CTTGCAAGTGGCAGCCTTTGAGGCTGACCACTTCTACTCTGT
1662



GCAGAACTGGATGGAGCTGATTCTGCCTCTTGGCATTAGATG



AAGGTGTGGACGTATTCTCACTGCTTGAAGACATATG






GGCAGAATCAGCTCCAT
1663






ATGGAGCTGATTCTGCC
1664





Adenomatous polyposis
TCAGCTCCATCCAAGTTCTGCACAGAGTAGAAGTGGTCAGCC
1665


coli
TCAAAAGGCTGCCACTTGCAAAGTTTCTTCTATTAACCAAGAA


Cys1249Term
ACAATACAGACTTATTGTGTAGAAGATACTCCAATA


TGC-TGA



TATTGGAGTATCTTCTACACAATAAGTCTGTATTGTTTCTTGGT
1666



TAATAGAAGAAACTTTGCAAGTGGCAGCCTTTTGAGGCTGACC



ACTTCTACTCTGTGCAGAACTTGGATGGAGCTGA






GCCACTTGCAAAGTTTC
1667






GAAACTTTGCAAGTGGC
1668





Adenomatous polyposis
AGTTTCTTCTATTAACCAAGAAACAATACAGACTTATTGTGTAG
1669


coli
AAGATACTCCAATATGTTTTTCAAGATGTAGTTCATTATCATCT


Cys1270Term
TTGTCATCAGCTGAAGATGAAATAGGATGTAAT


TGT-TGA



ATTACATCCTATTTCATCTTCAGCTGATGACAAAGATGATAATG
1670



AACTACATCTTGAAAAACATATTGGAGTATCTTCTACACAATAA



GTCTGTATTGTTTCTTGGTTAATAGAAGAAACT






CCAATATGTTTTTCAAG
1671






CTTGAAAAACATATTGG
1672





Adenomatous polyposis
AAGAAACAATACAGACTTATTGTGTAGAAGATACTCCAATATGT
1673


coli
TTTTCAAGATGTAGTTCATTATCATCTTTGTCATCAGCTGAAGA


Ser1276Term
TGAAATAGGATGTAATCAGACGACACAGGAAGC


TCA-TGA



GCTTCCTGTGTCGTCTGATTACATCCTATTTCATCTTCAGCTG
1674



ATGACAAAGATGATAATGAACTACATCTTGAAAAACATATTGGA



GTATCTTCTACACAATAAGTCTGTATTGTTTCTT






ATGTAGTTCATTATCAT
1675






ATGATAATGAACTACAT
1676





Adenomatous polyposis
GATACTCCAATATGTTTTTCAAGATGTAGTTCATTATCATCTTT
1677


coli
GTCATCAGCTGAAGATGAAATAGGATGTAATCAGACGACACA


Glu1286Term
GGAAGCAGATTCTGCTAATACCCTGCAAATAGCAG


GAA-TAA



CTGCTATTTGCAGGGTATTAGCAGAATCTGCTTCCTGTGTCGT
1678



CTGATTACATCCTATTTCATCTTCAGCTGATGACAAAGATGATA



ATGAACTACATCTTGAAAAACATATTGGAGTATC






CTGAAGATGAAATAGGA
1679






TCCTATTTCATCTTCAG
1680





Adenomatous polyposis
TGTAGTTCATTATCATCTTTGTCATCAGCTGAAGATGAAATAGG
1681


coli
ATGTAATCAGACGACACAGGAAGCAGATTCTGCTAATACCCTG


Gln1294Term
CAAATAGCAGAAATAAAAGAAAAGATTGGAACTA


CAG-TAG



TAGTTCCAATCTTTTCTTTTATTTCTGCTATTTGCAGGGTATTA
1682



GCAGAATCTGCTTCCTGTGTCGTCTGATTACATCCTATTTCAT



CTTCAGCTGATGACAAAGATGATAATGAACTACA






AGACGACACAGGAAGCA
1683






TGCTTCCTGTGTCGTCT
1684





Predisposition to,
TAGGATGTAATCAGACGACACAGGAAGCAGATTCTGCTAATAC
1685


association with,
CCTGCAAATAGCAGAAATAAAAGAAAAGATTGGAACTAGGTCA


colorectal cancer
GCTGAAGATCCTGTGAGCGAAGTTCCAGCAGTGTC


Ile1307Lys


ATA-AAA



GACACTGCTGGAACTTCGCTCACAGGATCTTCAGCTGACCTA
1686



GTTCCAATCTTTTCTTTTATTTCTGCTATTTGCAGGGTATTAGC



AGAATCTGCTTCCTGTGTCGTCTGATTACATCCTA






AGCAGAAATAAAAGAAA
1687






TTTCTTTTATTTCTGCT
1688





Adenomatous polyposis
CCAAGAAACAATACAGACTTATTGTGTAGAAGATACTCCAATA
1689


coil
TGTTTTTCAAGATGTAGTTCATTATCATCTTTGTCATCAGCTGA


Glu1309Term
AGATGAAATAGGATGTAATCAGACGACACAGGAA


GAA-TAA



TTCCTGTGTCGTCTGATTACATCCTATTTCATCTTCAGCTGATG
1690



ACAAAGATGATAATGAACTACATCTTGAAAAACATATTGGAGTA



TCTTCTACACAATAAGTCTGTATTGTTTCTTGG






AGATGTAGTTCATTATC
1691






GATAATGAACTACATCT
1692





Predisposition to
GATTCTGCTAATACCCTGCAAATAGCAGAAATAAAAGAAAAGA
1693


Colorectal Cancer
TTGGAACTAGGTCAGCTGAAGATCCTGTGAGCGAAGTTCCAG


Glu1317Gln
CAGTGTCACAGCACCCTAGAACCAAATCCAGCAGAC


GAA-CAA



GTCTGCTGGATTTGGTTCTAGGGTGCTGTGACACTGCTGGAA
1694



CTTCGCTCACAGGATCTTCAGCTGACCTAGTTCCAATCTTTTC



TTTTATTTCTGCTATTTGCAGGGTATTAGCAGAATC






GGTCAGCTGAAGATCCT
1695






AGGATCTTCAGCTGACC
1696





Adenomatous polyposis
AAAGAAAAGATTGGAACTAGGTCAGCTGAAGATCCTGTGAGC
1697


coli
GAAGTTCCAGCAGTGTCACAGCACCCTAGAACCAAATCCAGC


Gln1328Term
AGACTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCA


CAG-TAG



TGGCTGATTCTGAAGATAAACTAGAACCCTGCAGTCTGCTGG
1698



ATTTGGTTCTAGGGTGCTGTGACACTGCTGGAACTTCGCTCA



CAGGATCTTCAGCTGACCTAGTTCCAATCTTTTCTTT






CAGTGTCACAGCACCCT
1699






AGGGTGCTGTGACACTG
1700





Adenomatous polyposis
GATCCTGTGAGCGAAGTTCCAGCAGTGTCACAGCACCCTAGA
1701


coli
ACCAAATCCAGCAGACTGCAGGGTTCTAGTTTATCTTCAGAAT


Gln1338Term
CAGCCAGGCACAAAGCTGTTGAATTTTCTTCAGGAG


CAG-TAG



CTCCTGAAGAAAATTCAACAGCTTTGTGCCTGGCTGATTCTGA
1702



AGATAAACTAGAACCCTGCAGTCTGCTGGATTTGGTTCTAGG



GTGCTGTGACACTGCTGGAACTTCGCTCACAGGATC






GCAGACTGCAGGGTTCT
1703






AGAACCCTGCAGTCTGC
1704





Adenomatous polyposis
AAGTTCCAGCAGTGTCACAGCACCCTAGAACCAAATCCAGCA
1705


coli
GACTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCAGGCACAA


Leu1342Term
AGCTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTC


TTA-TAA



GAGGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTTGTGC
1706



CTGGCTGATTCTGAAGATAAACTAGAACCCTGCAGTCTGCTG



GATTTGGTTCTAGGGTGCTGTGACACTGCTGGAACTT






TTCTAGTTTATCTTCAG
1707






CTGAAGATAAACTAGAA
1708





Adenomatous polyposis
CAGCACCCTAGAACCAAATCCAGCAGACTGCAGGGTTCTAGT
1709


coli
TTATCTTCAGAATCAGCCAGGCACAAAGCTGTTGAATTTTCTT


Arg1348Trp
CAGGAGCGAAATCTCCCTCCCGAAAGTGGTGCTCAG


AGG-TGG



CTGAGCACCACTTTCGGGAGGGAGATTTCGCTCCTGAAGAAA
1710



ATTCAACAGCTTTGTGCCTGGCTGATTCTGAAGATAAACTAGA



ACCCTGCAGTCTGCTGGATTTGGTTCTAGGGTGCTG






AATCAGCCAGGCACAAA
1711






TTTGTGCCTGGCTGATT
1712





Adenomatous polyposis
CTGCAGGGTTCTAGTTTATCTTCAGAATCAGCCAGGCACAAAG
1713


coli
CTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTCCCGAAAGTG


Gly1357Term
GTGCTCAGACACCCCAAAGTCCACCTGAACACTAT


GGA-TGA



ATAGTGTTCAGGTGGACTTTGGGGTGTCTGAGCACCACTTTC
1714



GGGAGGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTTGT



GCCTGGCTGATTCTGAAGATAAACTAGAACCCTGCAG






TTTCTTCAGGAGCGAAA
1715






TTTCGCTCCTGAAGAAA
1716





Adenomatous polyposis
CCAGGCACAAAGCTGTTGAATTTTCTTCAGGAGCGAAATCTCC
1717


coli
CTCCCGAAAGTGGTGCTCAGACACCCCAAAGTCCACCTGAAC


Gln1367Term
ACTATGTTCAGGAGACCCCACTCATGTTTAGCAGAT


CAG-TAG



ATCTGCTAAACATGAGTGGGGTCTCCTGAACATAGTGTTCAG
1718



GTGGACTTTGGGGTGTCTGAGCACCACTTTCGGGAGGGAGAT



TTCGCTCCTGAAGAAAATTCAACAGCTTTGTGCCTGG






GTGGTGCTCAGACACCC
1719






GGGTGTCTGAGCACCAC
1720





Adenomatous polyposis
AAAGCTGTTGAATTTTCTTCAGGAGCGAAATCTCCCTCCAAAA
1721


coli
GTGGTGCTCAGACACCCAAAAGTCCACCTGAACACTATGTTC


Lys1370Term
AGGAGACCCCACTCATGTTTAGCAGATGTACTTCTG


AAA-TAA



CAGAAGTACATCTGCTAAACATGAGTGGGGTCTCCTGAACATA
1722



GTGTTCAGGTGGACTTTTGGGTGTCTGAGCACCACTTTTGGA



GGGAGATTTCGCTCCTGAAGAAAATTCAACAGCTTT






AGACACCCAAAAGTCCA
1723






TGGACTTTTGGGTGTCT
1724





Adenomatous polyposis
CACCTGAACACTATGTTCAGGAGACCCCACTCATGTTTAGCA
1725


coli
GATGTACTTCTGTCAGTTCACTTGATAGTTTTGAGAGTCGTTC


Ser1392Term
GATTGCCAGCTCCGTTCAGAGTGAACCATGCAGTGG


TCA-TAA



CCACTGCATGGTTCACTCTGAACGGAGCTGGCAATCGAACGA
1726



CTCTCAAAACTATCAAGTGAACTGACAGAAGTACATCTGCTAA



ACATGAGTGGGGTCTCCTGAACATAGTGTTCAGGTG






TGTCAGTTCACTTGATA
1727






TATCAAGTGAACTGACA
1728





Adenomatous polyposis
CACCTGAACACTATGTTCAGGAGACCCCACTCATGTTTAGCA
1729


coli
GATGTACTTCTGTCAGTTCACTTGATAGTTTTGAGAGTCGTTC


Ser1392Term
GATTGCCAGCTCCGTTCAGAGTGAACCATGCAGTGG


TCA-TGA



CCACTGCATGGTTCACTCTGAACGGAGCTGGCAATCGAACGA
1730



CTCTCAAAACTATCAAGTGAACTGACAGAAGTACATCTGCTAA



ACATGAGTGGGGTCTCCTGAACATAGTGTTCAGGTG






TGTCAGTTCACTTGATA
1731






TATCAAGTGAACTGACA
1732





Adenomatous polyposis
GTTCAGGAGACCCCACTCATGTTTAGCAGATGTACTTCTGTCA
1733


coli
GTTCACTTGATAGTTTTGAGAGTCGTTCGATTGCCAGCTCCGT


Glu1397Term
TCAGAGTGAACCATGCAGTGGAATGGTAGGTGGCA


GAG-TAG



TGCCACCTACCATTCCACTGCATGGTTCACTCTGAACGGAGC
1734



TGGAATCGAACGACTCTCAAAACTATCAAGTGAACTGACAGA



AGTACATCTGCTAAACATGAGTGGGGTCTCCTGAAC






ATAGTTTTGAGAGTCGT
1735






ACGACTCTCAAAACTAT
1736





Adenomatous polyposis
CAAACCATGCCACCAAGCAGAAGTAAAACACCTCCACCACCT
1737


coli
CCTCAAACAGCTCAAACCAAGCGAGAAGTACCTAAAAATAAAG


Lys1449Term
CACCTACTGCTGAAAAGAGAGAGAGTGGACCTAAGC


AAG-TAG



GCTTAGGTCCACTCTCTCTCTTTTCAGCAGTAGGTGCTTTATT
1738



TTTAGGTACTTCTCGCTTGGTTTGAGCTGTTTGAGGAGGTGGT



GGAGGTGTTTTACTTCTGCTTGGTGGCATGGTTTG






CTCAAACCAAGCGAGAA
1739






TTCTCGCTTGGTTTGAG
1740





Adenomatous polyposis
ACCATGCCACCAAGCAGAAGTAAAACACCTCCACCACCTCCT
1741


coli
CAAACAGCTCAAACCAAGCGAGAAGTACCTAAAAATAAAGCAC


Arg1450Term
CTACTGCTGAAAAGAGAGAGAGTGGACCTAAGCAAG


CGA-TGA



CTTGCTTAGGTCCACTCTCTCTCTTTTCAGCAGTAGGTGCTTT
1742



ATTTTTAGGTACTTCTCGCTTGGTTTGAGCTGTTTGAGGAGGT



GGTGGAGGTGTTTTACTTCTGCTTGGTGGCATGGT






AAACCAAGCGAGAAGTA
1743






TACTTCTCGCTTGGTTT
1744





Adenomatous polyposis
CAGATGCTGATACTTTATTACATTTTGCCACGGAAAGTACTCC
1145


coli
AGATGGATTTTCTTGTTCATCCAGCCTGAGTGCTCTGAGCCTC


SeR1503Term
GATGAGCCATTTATACAGAAAGATGTGGAATTAAG


TCA-TAA



CTTAATTCCACATCTTTCTGTATAAATGGCTCATCGAGGCTCA
1746



GAGCACTCAGGCTGGATGAACAAGAAAATCCATCTGGAGTAC



TTTCCGTGGCAAAATGTAATAAAGTATCAGCATCTG






TTCTTGTTCATCCAGCC
1747






GGCTGGATGAACAAGAA
1748





Adenomatous polyposis
CTGAGCCTCGATGAGCCATTTATACAGAAAGATGTGGAATTAA
1749


coli
GAATAATGCCTCCAGTTCAGGAAAATGACAATGGGAATGAAAC


Gln1529Term
AGAATCAGAGCAGCCTAAAGAATCAAATGAAAACC


CAG-TAG



GGTTTTCATTTGATTCTTTAGGCTGCTCTGATTCTGTTTCATTC
1750



CCATTGTCATTTTCCTGAACTGGAGGCATTATTCTTAATTCCAC



ATCTTTCTGTATAAATGGCTCATCGAGGCTCAG






CTCCAGTTCAGGAAAAT
1751






ATTTTCCTGAACTGGAG
1752





Adenomatous polyposis
ATGTGGAATTAAGAATAATGCCTCCAGTTCAGGAAAATGACAA
1753


coli
TGGGAATGAAACAGAATCAGAGCAGCCTAAAGAATCAAATGAA


Ser1539Term
AACCAAGAGAAAGAGGCAGAAAAAACTATTGATTC


TCA-TAA



GAATCAATAGTTTTTTCTGCCTCTTTCTCTTGGTTTTCATTTGA
1754



TTCTTTAGGCTGCTCTGATTCTGTTTCATTCCCATTGTCATTTT



CCTGAACTGGAGGCATTATTCTTAATTCCACAT






AACAGAATCAGAGCAGC
1755






GCTGCTCTGATTCTGTT
1756





Adenomatous polyposis
AAAACCAAGAGAAAGAGGCAGAAAAAACTATTGATTCTGAAAA
1757


coli
GGACCTATTAGATGATTCAGATGATGATGATATTGAAATACTA


Ser1567Term
GAAGAATGTATTATTTCTGCCATGCCAACAAAGTC


TCA-TGA



GACTTTGTTGGCATGGCAGAAATAATACATTCTTCTAGTATTTC
1758



AATATCATCATCATCTGAATCATCTAATAGGTCCTTTTCAGAAT



CAATAGTTTTTTCTGCCTCTTTCTCTTGGTTTT






AGATGATTCAGATGATG
1759






CATCATCTGAATCATCT
1760





Adenomatous poiyposis
AGAGAGTTTTCTCAGACAACAAAGATTCAAAGAAACAGAATTT
1761


coli
GAAAAATAATTCCAAGGACTTCAATGATAAGCTCCCAAATAAT


Asp1822Val
GAAGATAGAGTCAGAGGAAGTTTTGCTTTTGATTC


GAC-GTC



GAATCAAAAGCAAAACTTCCTCTGACTCTATCTTCATTATTTGG
1762



GAGCTTATCATTGAAGTCCTTGGAATTATTTTTCAAATTCTGTT



TCTTTGAATCTTTGTTGTCTGAGAAAACTCTCT






TTCCAAGGACTTCAATG
1763






CATTGAAGTCCTTGGAA
1764





Adenomatous polyposis
AAAACTGACAGCACAGAATCCAGTGGAACCCAAAGTCCTAAG
1765


coli
CGCCATTCTGGGTCTTACCTTGTGACATCTGTTTAAAAGAGAG


Leu2839Phe
GAAGAATGAAACTAAGAAAATTCTATGTTAATTACA


CTT-TTT



TGTAATTAACATAGAATTTTCTTAGTTTCATTCTTCCTCTCTTTT
1766



AAACAGATGTCACAAGGTAAGACCCAGAATGGCGCTTAGGAC



TTTGGGTTCCACTGGATTCTGTGCTGTCAGTTTT






GGTCTTACCTTGTGACA
1767






TGTCACAAGGTAAGACC
1768









EXAMPLE 12
Parahemophilia—Factor V Deficiency

Deficiency in clotting Factor V is associated with a lifelong predisposition to thrombosis. The disease typically manifests itself with usually mild bleeding, although bleeding times and clotting times are consistently prolonged. Individuals that are heterozygous for a mutation in Factor V have lowered levels of factor V but probably never have abnormal bleeding. A large number of alleles with a range of presenting symptoms have been identified. The attached table discloses the correcting oligonucleotide base sequences for the Factor V oligonucleotides of the invention.










TABLE 19







Factor V Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Factor V deficiency
TTGACTGAATGCTTATTTTGGCCTGTGTCTCTCCCTCTTTCTCA
4340



Ala221Val
GATATAACAGTTTGTGCCCATGACCACATCAGCTGGCATCTGC


GCC-GTC
TGGGAATGAGCTCGGGGCCAGAATTATTCTCCAT






ATGGAGAATAATTCTGGCCCCGAGCTCATTCCCAGCAGATGC
1769



CAGCTGATGTGGTCATGGGCACAAACTGTTATATCTGAGAAAG



AGGGAGAGACACAGGCCAAAATAAGCATTCAGTCAA






AGTTTGTGCCCATGACC
1770






GGTCATGGGCACAAACT
1771





Thrombosis
TGTCCTAACTCAGCTGGGATGCAGGCTTACATTGACATTAAAA
1712


Arg306Gly
ACTGCCCAAAGAAAACCAGGAATCTTAAGAAAATAACTCGTGA


AGG-GGG
GCAGAGGCGGCACATGAAGAGGTGGGAATACTTCA






TGAAGTATTCCCACCTCTTCATGTGCCGCCTCTGCTCACGAGT
1773



TATTTTCTTAAGATTCCTGGTTTTCTTTGGGCAGTTTTTAATGT



CAATGTAAGCCTGCATCCCAGCTGAGTTAGGACA






AGAAAACCAGGAATCTT
1774






AAGATTCCTGGTTTTCT
1775





Thrombosis
GTCCTAACTCAGCTGGGATGCAGGCTTACATTGACATTAAAAA
1776


Arg306Thr
CTGCCCAAAGAAAACCAGGAATCTTAAGAAAATAACTCGTGAG


AGG-ACG
CAGAGGCGGCACATGAAGAGGTGGGAATACTTCAT






ATGAAGTATTCCCACCTCTTCATGTGCCGCCTCTGCTCACGA
1777



GTTATTTTCTTAAGATTCCTGGTTTTCTTTGGGCAGTTTTTAAT



GTCAATGTAAGCCTGCATCCCAGCTGAGTTAGGAC






GAAAACCAGGAATCTTA
1778






TAAGATTCCTGGTTTTC
1779





Increased Risk
CCACAGAAAATGATGCCCAGTGCTTAACAAGACCATACTACAG
1780


Thrombosis
TGACGTGGACATCATGAGAGACATCGCCTCTGGGCTAATAGG


Arg485Lys
ACTACTTCTAATCTGTAAGAGCAGATCCCTGGACAG


AGA-AAA



CTGTCCAGGGATCTGCTCTTACAGATTAGAAGTAGTCCTATTA
1781



GCCCAGAGGCGATGTCTCTCATGATGTCCACGTCACTGTAGT



ATGGTCTTGTTAAGCACTGGGCATCATTTTCTGTGG






CATCATGAGAGACATCG
1782






CGATGTCTCTCATGATG
1783





Increased Risk
ACATCGCCTCTGGGCTAATAGGACTACTTCTAATCTGTAAGAG
1784


Thrombosis
CAGATCCCTGGACAGGCGAGGAATACAGGTATTTTGTCCTTG


Arg506Gln
AAGTAACCTTTCAGAAATTCTGAGAATTTCTTCTGG


CGA-CAA



CCAGAAGAAATTCTCAGAATTTCTGAAAGGTTACTTCAAGGAC
1785



AAAATACCTGTATTCCTCGCCTGTCCAGGGATCTGCTCTTACA



GATTAGAAGTAGTCCTATTAGCCCAGAGGCGATGT






GGACAGGCGAGGAATAC
1786






GTATTCCTCGCCTGTCC
1787





Factor V Deficiency
GACATCGCCTCTGGGCTAATAGGACTACTTCTAATCTGTAAGA
1788


Arg506Term
GCAGATCCCTGGACAGGCGAGGAATACAGGTATTTTGTCCTT


CGA-TGA
GAAGTAACCTTTCAGAAATTCTGAGAATTTCTTCTG






CAGAAGAAATTCTCAGAATTTCTGAAAGGTTACTTCAAGGACA
1789



AAATACCTGTATTCCTCGCCTGTCCAGGGATCTGCTCTTACAG



ATTAGAAGTAGTCCTATTAGCCCAGAGGCGATGTC






TGGACAGGCGAGGAATA
1790






TATTCCTCGCCTGTCCA
1791





Thrombosis
AGTGATGCTGACTATGATTACCAGAACAGACTGGCTGCAGCA
1792


Arg712Term
TTAGGAATCAGGTCATTCCGAAACTCATCATTGAATCAGGAAG


CGA-TGA
AAGAAGAGTTCAATCTTACTGCCCTAGCTCTGGAGA






TCTCCAGAGCTAGGGCAGTAAGATTGAACTCTTCTTCTTCCTG
1793



ATTCAATGATGAGTTTCGGAATGACCTGATTCCTAATGCTGCA



GCCAGTCTGTTCTGGTAATCATAGTCAGCATCACT






GGTCATTCCGAAACTCA
1794






TGAGTTTCGGAATGACC
1795





Thrombosis
TCAGTCAGACAAACCTTTCCCCAGCCCTCGGTCAGATGCCCA
1796


His1299Arg
TTTCTCCAGACCTCAGCCATACAACCCTTTCTCTAGACTTCAG


CAT-CGT
CCAGACAAACCTCTCTCCAGAACTCAGTCAAACAAA






TTTGTTTGACTGAGTTCTGGAGAGAGGTTTGTCTGGCTGAAGT
1797



CTAGAGAAAGGGTTGTATGGTCTGGAGAAATGGGCA



TCTGACCGAGGGCTGGGGAAAGGTTTGTCTGACTGA






CCTCAGCCATACAACCC
1798






GGGTTGTATGGCTGAGG
1799









EXAMPLE 13
Hemophilia—Factor VIII Deficiency

The attached table discloses the correcting oligonucleotide base sequences for the Factor VIII oligonucleotides of the invention.










TABLE 20







Factor VIII Mutations and Genome-Correcting Oligos











ClinicaI Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Haemophilia A
AGCTCTCCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTT
1800



Tyr5Cys
TAGTGCCACCAGAAGATACTACCTGGGTGCAGTGGAACTGTC


TAC-TGC
ATGGGACTATATGCAAAGTGATCTCGGTGAGCTGCC






GGCAGCTCACCGAGATCACTTTGCATATAGTCCCATGACAGT
1801



TCCACTGCACCCAGGTAGTATCTTCTGGTGGCACTAAAGCAG



AATCGCAAAAGGCACAGAAAGAAGCAGGTGGAGAGCT






CAGAAGATACTACCTGG
1802






CCAGGTAGTATCTTCTG
1803





Haemophilia A
CCACCTGCTTCTTTCTGTGCCTTTTGCGATTCTGCTTTAGTGC
1804


Leu7Arg
CACCAGAAGATACTACCTGGGTGCAGTGGAACTGTCATGGGA


CTG-CGG
CTATATGCAAAGTGATCTCGGTGAGCTGCCTGTGGA






TCCACAGGCAGCTCACCGAGATCACTTTGCATATAGTCCCAT
1805



GACAGTTCCACTGCACCCAGGTAGTATCTTCTGGTGGCACTA



AAGCAGAATCGCAAAAGGCACAGAAAGAAGCAGGTGG






ATACTACCTGGGTGCAG
1806






CTGCACCCAGGTAGTAT
1807





Haemophilia A
AGTCATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTT
1808


Ser(−1)Arg
TTGCGATTCTGCTTTAGTGCCACCAGAAGATACTACCTGGGT


AGTg-AGG
GCAGTGGAACTGTCATGGGACTATATGCAAAGTGAT






ATCACTTTGCATATAGTCCCATGACAGTTCCACTGCACCCAG
1809



GTAGTATCTTCTGGTGGCACTAAAGCAGAATCGCAAAAGGCA



CAGAAAGAAGCAGGTGGAGAGCTCTATTTGCATGACT






TGCTTTAGTGCCACCAG
1810






CTGGTGGCACTAAAGCA
1811





Haemophilia A
CATTTGTAGCAAATAAGTCATGCAAATAGAGCTCTCCACCTGCT
1812


Arg(−5)Term
TCTTTCTGTGCCTTTTGCGATTCTGCTTTAGTGCCACCAGAAG


gCGA-TGA
ATACTACCTGGGTGCAGTGGAACTGTCATGGGACT






AGTCCCATGACAGTTCCACTGCACCCAGGTAGTATCTTCTGG
1813



TGGCACTAAAGCAGAATCGCAAAAGGCACAGAAAGAAGCAGG



TGGAGAGCTCTATTTGCATGACTTATTGCTACAAATG






GCCTTTTGCGATTCTGC
1814






GCAGAATCGCAAAAGGC
1815





Haemophilia A
TTCTGTGCCTTTTGCGATTCTGCTTTAGTGCCACCAGAAGATA
1816


Glu11Val
CTACCTGGGTGCAGTGGAACTGTCATGGGACTATATGCAAAG


GAA-GTA
TGATCTCGGTGAGCTGCCTGTGGACGCAAGGTAAAG






CTTTACCTTGCGTCCACAGGCAGCTCACCGAGATCACTTTGC
1817



ATATAGTCCCATGACAGTTCCACTGCACCCAGGTAGTATCTTC



TGGTGGCACTAAAGCAGAATCGCAAAAGGCACAGAA






TGCAGTGGAACTGTCAT
1818






ATGACAGTTCCACTGCA
1819





Haemophilia A
CTTTTGCGATTCTGCTTTAGTGCCACCAGAAGATACTACCTGG
1820


Trp14Gly
GTGCAGTGGAACTGTCATGGGACTATATGCAAAGTGATCTCG


aTGG-GGG
GTGAGCTGCCTGTGGACGCAAGGTAAAGGCATGTCC






GGACATGCCTTTACCTTGCGTCCACAGGCAGCTCACCGAGAT
1821



CACTTTGCATATAGTCCCATGACAGTTCCACTGCACCCAGGT



AGTATCTTCTGGTGGCACTAAAGCAGAATCGCAAAAG






AACTGTCATGGGACTAT
1822






ATAGTCCCATGACAGTT
1823





Haemophilia A
TTCACGCAGATTTCCTCCTAGAGTGCCAAAATCTTTTCCATTC
1824


Tyr46Term
AACACCTCAGTCGTGTACAAAAAGACTCTGTTTGTAGAATTCA


TACa-TAA
CGGATCACCTTTTCAACATCGCTAAGCCAAGGCCA






TGGCCTTGGCTTAGCGATGTTGAAAAGGTGATCCGTGAATTC
1825



TACAAACAGAGTCTTTTTGTACACGACTGAGGTGTTGAATGGA



AAAGATTTTGGCACTCTAGGAGGAAATCTGCGTGAA






GTCGTGTACAAAAAGAC
1826






GTCTTTTTGTACACGAC
1827





Haemophilia A
ATCTTTTCCATTCAACACCTCAGTCGTGTACAAAAAGACTCTG
1828


Asp56Glu
TTTGTAGAATTCACGGATCACCTTTTCAACATCGCTAAGCCAA


GATc-GAA
GGCCACCCTGGATGGGTAATGAAAACAATGTTGAA






TTCAACATTGTTTTCATTACCCATCCAGGGTGGCCTTGGCTTA
1829



GCGATGTTGAAAAGGTGATCCGTGAATTCTACAAACAGAGTC



TTTTTGTACACGACTGAGGTGTTGAATGGAAAAGAT






TTCACGGATCACCTTTT
1830






AAAAGGTGATCCGTGAA
1831





Haemophilia A
TTCTGGAGTACTATCCCCAAGTAACCTTTGGCGGACATCTCAT
1832


Gly73Val
TCTTACAGGTCTGCTAGGTCCTACCATCCAGGCTGAGGTTTA


GGT-GTT
TGATACAGTGGTCATTACACTTAAGAACATGGCTTC






GAAGCCATGTTCTTAAGTGTAATGACCACTGTATCATAAACCT
1833



CAGCCTGGATGGTAGGACCTAGCAGACCTGTAAGAATGAGAT



GTCCGCCAAAGGTTACTTGGGGATAGTACTCCAGAA






TCTGCTAGGTCCTACCA
1834






TGGTAGGACCTAGCAGA
1835





Haemophilia A
CAAGTAACCTTTGGCGGACATCTCATTCTTACAGGTCTGCTAG
1836


Glu79Lys
GTCCTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTAC


tGAG-AAG
ACTTAAGAACATGGCTTCCCATCCTGTCAGTCTTC






GAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGA
1837



CCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCTAGCA



GACCTGTAAGAATGAGATGTCCGCCAAAGGTTACTTG






TCCAGGCTGAGGTTTAT
1838






ATAAACCTCAGCCTGGA
1839





Haemophilia A
TAACCTTTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCC
1840


Val80Asp
TACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACACTT


GTT-GAT
AAGAACATGGCTTCCCATCCTGTCAGTCTTCATGC






GCATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTA
1841



ATGACCACTGTATCATAAACCTCAGCCTGGATGGTAGGACCT



AGCAGACCTGTAAGAATGAGATGTCCGCCAAAGGTTA






GGCTGAGGTTTATGATA
1842






TATCATAAACCTCAGCC
1843





Haemophilia A
TTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCCTACCAT
1844


Asp82Val
CCAGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAAC


GAT-GTT
ATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGG






CCAACAGCATGAAGACTGACAGGATGGGAAGCCATGTTCTTA
1845



AGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTA



GGACCTAGCAGACCTGTAAGAATGAGATGTCCGCCAA






GGTTTATGATACAGTGG
1846






CCACTGTATCATAAACC
1847





Haemophilia A
TTGGCGGACATCTCATTCTTACAGGTCTGCTAGGTCCTACCAT
1848


Asp82Gly
CCAGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAAC


GAT-GGT
ATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGG






CCAACAGCATGAAGACTGACAGGATGGGAAGCCATGTTCTTA
1849



AGTGTAATGACCACTGTATCATAAACCTCAGCCTGGATGGTA-



GGACCTAGCAGACCTGTAAGAATGAGATGTCCGCCAA






GGTTTATGATACAGTGG
1850






CCACTGTATCATAAACC
1851





Haemophilia A
ATCTCATTCTTACAGGTCTGCTAGGTCCTACCATCCAGGCTGA
1852


Val85Asp
GGTTTATGATACAGTGGTCATTACACTTAAGAACATGGCTTCC


GTC-GAC
CATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTA






TAGGATACACCAACAGCATGAAGACTGACAGGATGGGAAGCC
1853



ATGTTCTTAAGTGTAATGACCACTGTATCATAAACCTCAGCCT



GGATGGTAGGACCTAGCAGACCTGTAAGAATGAGAT






TACAGTGGTCATTACAC
1854






GTGTAATGACCACTGTA
1855





Haemophilia A
CAGGTCTGCTAGGTCCTACCATCCAGGCTGAGGTTTATGATA
1856


Lys89Thr
CAGTGGTCATTACACTTAAGAACATGGCTTCCCATCCTGTCA


AAG-ACG
GTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCTTC






GAAGCTTTCCAGTAGGATACACCAACAGCATGAAGACTGACA
1857



GGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATCAT



AAACCTCAGCCTGGATGGTAGGACCTAGCAGACCTG






TACACTTAAGAACATGG
1858






CCATGTTCTTAAGTGTA
1859





Haemophilia A
CTGCTAGGTCCTACCATCCAGGCTGAGGTTTATGATACAGTG
1860


Met91Val
GTCATTACACTTAAGAACATGGCTTCCCATCCTGTCAGTCTTC


cATG-GTG
ATGCTGTTGGTGTATCCTACTGGAAAGCTTCTGAGG






CCTCAGAAGCTTTCCAGTAGGATACACCAACAGCATGAAGAC
1861



TGACAGGATGGGAAGCCATGTTCTTAAGTGTAATGACCACTG



TATCATAAACCTCAGCCTGGATGGTAGGACCTAGCAG






TTAAGAACATGGCTTCC
1862






GGAAGCCATGTTCTTAA
1863





Haemophilia A
CTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACACT
1864


His94Arg
TAAGAACATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGGT


CAT-CGT
GTATCCTACTGGAAAGCTTCTGAGGGTGAGTAAAA






TTTTACTCACCCTCAGAAGCTTTCCAGTAGGATACACCAACAG
1865



CATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAA



TGACCACTGTATCATAAACCTCAGCCTGGATGGTAG






GGCTTCCCATCCTGTCA
1866






TGACAGGATGGGAAGCC
1867





Haemophilia A
CCTACCATCCAGGCTGAGGTTTATGATACAGTGGTCATTACAC
1868


His94Tyr
TTAAGAACATGGCTTCCCATCCTGTCAGTCTTCATGCTGTTGG


cCAT-TAT
TGTATCCTACTGGAAAGCTTCTGAGGGTGAGTAAA






TTTACTCACCCTCAGAAGCTTTCCAGTAGGATACACCAACAGC
1869



ATGAAGACTGACAGGATGGGAAGCCATGTTCTTAAGTGTAAT



GACCACTGTATCATAAACCTCAGCCTGGATGGTAGG






TGGCTTCCCATCCTGTC
1870






GACAGGATGGGAAGCCA
1871





Haemophilia A
CTGAGGTTTATGATACAGTGGTCATTACACTTAAGAACATGGC
1872


Leu98Arg
TTCCCATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTACTGG


CTT-CGT
AAAGCTTCTGAGGGTGAGTAAAATACCCTCCTATT






AATAGGAGGGTATTTTACTCACCCTCAGAAGCTTTCCAGTAGG
1873



ATACACCAACAGCATGAAGACTGACAGGATGGGAAGCCATGT



TCTTAAGTGTAATGACCACTGTATCATAAACCTCAG






TGTCAGTCTTCATGCTG
1874






CAGCATGAAGACTGACA
1875





Haemophilia A
GATACAGTGGTCATTACACTTAAGAACATGGCTTCCCATCCTG
1876


Gly102Ser
TCAGTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCTTCTGA


tGGT-AGT
GGGTGAGTAAAATACCCTCCTATTGTCCTGTCATT






AATGACAGGACAATAGGAGGGTATTTTACTCACCCTCAGAAG
1877



CTTTCCAGTAGGATACACCAACAGCATGAAGACTGACAGGAT



GGGAAGCCATGTTCTTAAGTGTAATGACCACTGTATC






ATGCTGTTGGTGTATCC
1878






GGATACACCAACAGCAT
1879





Haemophilia A
CTTTGAGTGTACAGTGGATATAGAAAGGACAATTTTATTTCTTC
1880


Glu113Asp
CTGCTATAGGAGCTGAATATGATGATCAGACCAGTCAAAGGG


GAAt-GAC
AGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGC






GCTTCCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGA
1881



CTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAATA



AAATTGTCCTTTCTATATCCACTGTACACTCAAAG






GGAGCTGAATATGATGA
1882






TCATCATATTCAGCTCC
1883





Haemophilia A
TTGAGTGTACAGTGGATATAGAAAGGACAATTTTATTTCTTCCT
1884


Tyr114Cys
GCTATAGGAGCTGAATATGATGATCAGACCAGTCAAAGGGAG


TAT-TGT
AAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCCA






TGGCTTCCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTT
1885



GACTGGTCTGATCATCATATTCAGCTCCTATAGCAGGAAGAAA



TAAATTGTCCTTTCTATATCCACTGTACACTCAA






AGCTGAATATGATGATC
1886






GATCATCATATTCAGCT
1887





Haemophilia A
GTACAGTGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATA
1888


Asp116Gly
GGAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAA


GAT-GGT
GATGATAAAGTCTTCCCTGGTGGAAGCCATACATA






TATGTATGGCTTCCACCAGGGAAGACTTTATCATCTTCTTTCT
1889



CCCTTTGACTGGTCTGATCATCATATTCAGCTCCTATAGCAGG



AAGAAATAAAATTGTCCTTTCTATATCCACTGTAC






ATATGATGATCAGACCA
1890






TGGTCTGATCATCATAT
1891





Haemophilia A
ACAGTGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATAG
1892


Gln117Term
GAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAAG


tCAG-TAG
ATGATAAAGTCTTCCCTGGTGGAAGCCATACATATG






CATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTTCTTT
1893



CTCCCTTTGACTGGTCTGATCATCATATTCAGCTCCTATAGCA



GGAAGAAATAAAATTGTCCTTTCTATATCCACTGT






ATGATGATCAGACCAGT
1894






ACTGGTCTGATCATCAT
1895





Haemophilia A
TGGATATAGAAAGGACAATTTTATTTCTTCCTGCTATAGGAGC
1896


Thr118Ile
TGAATATGATGATCAGACCAGTCAAAGGGAGAAAGAAGATGA


ACC-ATC
TAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTG






CAGACATATGTATGGCTTCCACCAGGGAAGACTTTATCATCTT
1897



CTTTCTCCCTTTGACTGGTCTGATCATCATATTCAGCTCCTAT



AGCAGGAAGAAATAAAATTGTCCTTTCTATATCCA






TGATCAGACCAGTCAAA
1898






TTTGACTGGTCTGATCA
1899





Haemophilia A
AGGACAATTTTATTTCTTCCTGCTATAGGAGCTGAATATGATG
1900


Glu122Term
ATCAGACCAGTCAAAGGGAGAAAGAAGATGATAAAGTCTTCC


gGAG-TAG
CTGGTGGAAGCCATACATATGTCTGGCAGGTCCTGA






TCAGGACCTGCCAGACATATGTATGGCTTCCACCAGGGAAGA
1901



CTTTATCATCTTCTTTCTCCCTTTGACTGGTCTGATCATCATAT



TCAGCTCCTATAGCAGGAAGAAATAAAATTGTCCT






GTCAAAGGGAGAAAGAA
1902






TTCTTTCTCCCTTTGAC
1903





Haemophilia A
TTTCTTCCTGCTATAGGAGCTGAATATGATGATCAGACCAGTC
1904


Asp126His
AAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCC


tGAT-CAT
ATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTC






GACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCC
1905



ACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGACTGGTC



TGATCATCATATTCAGCTCCTATAGCAGGAAGAAA






AAGAAGATGATAAAGTC
1906






GACTTTATCATCTTCTT
1907





Haemophilia A
AGTCAAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGA
1908


Gln139Term
AGCCATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCA


gCAG-TAG
ATGGCCTCTGACCCACTGTGCCTTACCTACTCATATC






GATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGA
1909



CCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTTCCAC



CAGGGAAGACTTTATCATCTTCTTTCTCCCTTTGACT






ATGTCTGGCAGGTCCTG
1910






CAGGACCTGCCAGACAT
1911





Haemophilia A
AAAGGGAGAAAGAAGATGATAAAGTCTTCCCTGGTGGAAGCC
1912


Val140Ala
ATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGG


GTC-GCC
CCTCTGACCCACTGTGCCTTACCTACTCATATCTTTC






GAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATT
1913



GGACCATTCTCTTTCAGGACCTGCCAGACATATGTATGGCTT



CCACCAGGGAAGACTTTATCATCTTCTTTCTCCCTTT






CTGGCAGGTCCTGAAAG
1914






CTTTCAGGACCTGCCAG
1915





Haemophilia A
AGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTG
1916


Asn144Lys
GCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACT


AATg-AAA
GTGCCTTACCTACTCATATCTTTCTCATGTGGACCTG






CAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGG
1917



GTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGAC



ATATGTATGGCTTCCACCAGGGAAGACTTTATCATCT






AAAGAGAATGGTCCAAT
1918






ATTGGACCATTCTCTTT
1919





Haemophilia AG
ATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCA
1920


Gly145Asp
GGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTG


GGT-GAT
CCTTACCTACTCATATCTTTCTCATGTGGACCTGGT






ACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGT
1921



GGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAG



ACATATGTATGGCTTCCACCAGGGAAGACTTTATCAT






AGAGAATGGTCCAATGG
1922






CCATTGGACCATTCTCT
1923





Haemophilia A
ATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCA
1924


Gly145Val
GGTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTG


GGT-GTT
CCTTACCTACTCATATCTTTCTCATGTGGACCTGGT






ACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAGT
1925



GGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCCAG



ACATATGTATGGCTTCCACCAGGGAAGACTTTATCAT






AGAGAATGGTCCAATGG
1926






CCATTGGACCATTCTCT
1927





Haemophilia A
GATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCAG
1928


Pro146Ser
GTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGC


tCCA-TCA
CTTACCTACTCATATCTTTCTCATGTGGACCTGGTAA






TTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACA
1929



GTGGGTCAGAGGCCATTGGACCATTCTCTTTCAGGACCTGCC



AGACATATGTATGGCTTCCACCAGGGAAGACTTTATC






AGAATGGTCCAATGGCC
1930






GGCCATTGGACCATTCT
1931





Haemophilia A
CCATACATATGTCTGGCAGGTCCTGAAAGAGAATGGTCCAAT
1932


Cys153Trp
GGCCTCTGACCCACTGTGCCTTACCTACTCATATCTTTCTCAT


TGCc-TGG
GTGGACCTGGTAAAAGACTTGAATTCAGGCCTCATT






AATGAGGCCTGAATTCAAGTCTTTTACCAGGTCCACATGAGAA
1933



AGATATGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTGGA



CCATTCTCTTTCAGGACCTGCCAGACATATGTATGG






CCACTGTGCCTTACCTA
1934






TAGGTAAGGCACAGTGG
1935





Haemophilia A
TGTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGA
1936


Tyr156Term
CCCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCTG


TACt-TAA
GTAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTA






TAGGGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGTC
1937



CACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAGA



GGCCATTGGACCATTCTCTTTCAGGACCTGCCAGACA






CTTACCTACTCATATCT
1938






AGATATGAGTAGGTAAG
1939





Haemophilia A
GTCTGGCAGGTCCTGAAAGAGAATGGTCCAATGGCCTCTGAC
1940


Ser157Pro
CCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCTGG


cTCA-CCA
TAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTAC






GTAGGGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGT
1941



CCACATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGTCAG



AGGCCATTGGACCATTCTCTTTCAGGACCTGCCAGAC






TTACCTACTCATATCTT
1942






AAGATATGAGTAGGTAA
1943





Haemophilia A
GTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGC
1944


Ser160Pro
CTTACCTACTCATATCTTTCTCATGTGGACCTGGTAAAAGACT


tTCT-CCT
TGAATTCAGGCCTCATTGGAGCCCTACTAGTATGTA






TACATACTAGTAGGGCTCCAATGAGGCCTGAATTCAAGTCTTT
1945



TACCAGGTCCACATGAGAAAGATATGAGTAGGTAAGGCACAG



TGGGTCAGAGGCCATTGGACCATTCTCTTTCAGGAC






CATATCTTTCTCATGTG
1946






CACATGAGAAAGATATG
1947





Haemophilia A
AAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGCCTTACC
1948


Val162Met
TACTCATATCTTTCTCATGTGGACCTGGTAAAAGACTTGAATT


tGTG-ATG
CAGGCCTCATTGGAGCCCTACTAGTATGTAGAGAAG






CTTCTCTACATACTAGTAGGGCTCCAATGAGGCCTGAATTCAA
1949



GTCTTTTACCAGGTCCACATGAGAAAGATATGAGTAGGTAAG



GCACAGTGGGTCAGAGGCCATTGGACCATTCTCTTT






TTTCTCATGTGGACCTG
1950






CAGGTCCACATGAGAAA
1951





Haemophilia A
CAATGGCCTCTGACCCACTGTGCCTTACCTACTCATATCTTTC
1952


Lys166Thr
TCATGTGGACCTGGTAAAAGACTTGAATTCAGGCCTCATTGG


AAA-ACA
AGCCCTACTAGTATGTAGAGAAGGTAAGTGTATGAA






TTCATACACTTACCTTCTCTACATACTAGTAGGGCTCCAATGA
1953



GGCCTGAATTCAAGTCTTTTACCAGGTCCACATGAGAAAGATA



TGAGTAGGTAAGGCACAGTGGGTCAGAGGCCATTG






CCTGGTAAAAGACTTGA
1954






TCAAGTCTTTTACCAGG
1955





Haemophilia A
ACCCACTGTGCCTTACCTACTCATATCTTTCTCATGTGGACCT
1956


Ser170Leu
GGTAAAAGACTTGAATTCAGGCCTCATTGGAGCCCTACTAGT


TCA-TTA
ATGTAGAGAAGGTAAGTGTATGAAAGCGTAGGATTG






CAATCCTACGCTTTCATACACTTACCTTCTCTACATACTAGTAG
1957



GGCTCCAATGAGGCCTGAATTCAAGTCTTTTACCAGGTCCAC



ATGAGAAAGATATGAGTAGGTAAGGCACAGTGGGT






CTTGAATTCAGGCCTCA
1958






TGAGGCCTGAATTCAAG
1959





Haemophilia A
AATGTTCTCACTTCTTTTTCAGGGAGTCTGGCCAAGGAAAAGA
1960


Phe195Val
CACAGACCTTGCACAAATTTATACTACTTTTTGCTGTATTTGAT


aTTT-GTT
GAAGGTTAGTGAGTCTTAATCTGAATTTTGGATT






AATCCAAAATTCAGATTAAGACTCACTAACCTTCATCAAATACA
1961



GCAAAAAGTAGTATAAATTTGTGCAAGGTCTGTGTCTTTTCCT



TGGCCAGACTCCCTGAAAAAGAAGTGAGAACATT






TGCACAAATTTATACTA
1962






TAGTATAAATTTGTGCA
1963





Haemophilia A
CTTCTTTTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCT
1964


Leu198His
TGCACAAATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAG


CTT-CAT
TGAGTCTTAATCTGAATTTTGGATTCCTGAAAGAA






TTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACTAACCTTC
1965



ATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAAGGTCTGT



GTCTTTTCCTTGGCCAGACTCCCTGAAAAAGAAG






TATACTACTTTTTGCTG
1966






CAGCAAAAAGTAGTATA
1967





Haemophilia A
TTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCTTGCACA
1968


Ala200Asp
AATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAGTGAGTC


GCT-GAT
TTAATCTGAATTTTGGATTCCTGAAAGAAATCCTC






GAGGATTTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACT
1969



AACCTTCATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAA



GGTCTGTGTCTTTTCCTTGGCCAGACTCCCTGAAA






ACTTTTTGCTGTATTTG
1970






CAAATACAGCAAAAAGT
1971





Haemophilia A
TTTTCAGGGAGTCTGGCCAAGGAAAAGACACAGACCTTGCAC
1972


Ala200Thr
AAATTTATACTACTTTTTGCTGTATTTGATGAAGGTTAGTGAGT


tGCT-ACT
CTTAATCTGAATTTTGGATTCCTGAAAGAAATCCT






AGGATTTCTTTCAGGAATCCAAAATTCAGATTAAGACTCACTA
1973



ACCTTCATCAAATACAGCAAAAAGTAGTATAAATTTGTGCAAG



GTCTGTGTCTTTTCCTTGGCCAGACTCCCTGAAAA






TACTTTTTGCTGTATTT
1974






AAATACAGCAAAAAGTA
1975





Haemophilia A
AACTCCTTGATGCAGGATAGGGATGCTGCATCTGCTCGGGCC
1976


Val234Phe
TGGCCTAAAATGCACACAGTCAATGGTTATGTAAACAGGTCTC


aGTC-TTC
TGCCAGGTATGTACACACCTGCTCAACAATCCTCAG






CTGAGGATTGTTGAGCAGGTGTGTACATACCTGGCAGAGACC
1977



TGTTTACATAACCATTGACTGTGTGCATTTTAGGCCAGGCCCG



AGCAGATGCAGCATCCCTATCCTGCATCAAGGAGTT






TGCACACAGTCAATGGT
1978






ACCATTGACTGTGTGCA
1979





Haemophilia A
ATTTCAGATTCTCTACTTCATAGCCATAGGTGTCTTATTCCTAC
1980


Gly247Glu
TTTACAGGTCTGATTGGATGCCACAGGAAATCAGTCTATTGGC


GGA-GAA
ATGTGATTGGAATGGGCACCACTCCTGAAGTGCA






TGCACTTCAGGAGTGGTGCCCATTCCAATCACATGCCAATAG
1981



ACTGATTTCCTGTGGCATCCAATCAGACCTGTAAAGTAGGAAT



AAGACACCTATGGCTATGAAGTAGAGAATCTGAAAT






TCTGATTGGATGCCACA
1982






TGTGGCATCCAATCAGA
1983





Haemophilia A
ATAGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCAC
1984


Trp255Cys
AGGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACT


TGGc-TGT
CCTGAAGTGCACTCAATATTCCTCGAAGGTCACACA






TGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGT
1985



GCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGGCAT



CCAATCAGACCTGTAAAGTAGGAATAAGACACCTAT






GTCTATTGGCATGTGAT
1986






ATCACATGCCAATAGAC
1987





Haemophilia A
ATAGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCAC
1988


Trp255Term
AGGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACT


TGGc-TGA
CCTGAAGTGCACTCAATATTCCTCGAAGGTCACACA






TGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGT
1989



GCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGGCAT



CCAATCAGACCTGTAAAGTAGGAATAAGACACCTAT






GTCTATTGGCATGTGAT
1990






ATCACATGCCAATAGAC
1991





Haemophilia A
AGGTGTCTTATTCCTACTTTACAGGTCTGATTGGATGCCACAG
1992


His256Leu
GAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCC


CAT-CTT
TGAAGTGCACTCAATATTCCTCGAAGGTCACACATT






AATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTG
1993



GTGCCCATTCCAATCACATGCCAATAGACTGATTTCCTGTGG



CATCCAATCAGACCTGTAAAGTAGGAATAAGACACCT






CTATTGGCATGTGATTG
1994






CAATCACATGCCAATAG
1995





Haemophilia A
TATTCCTACTTTACAGGTCTGATTGGATGCCACAGGAAATCAG
1996


Gly259Arg
TCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAAGTGC


tGGA-AGA
ACTCAATATTCCTCGAAGGTCACACATTTCTTGTGA






TCACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTC
1997



AGGAGTGGTGCCCATTCCAATCACATGCCAATAGACTGATTT



CCTGTGGCATCCAATCAGACCTGTAAAGTAGGAATA






ATGTGATTGGAATGGGC
1998






GCCCATTCCAATCACAT
1999





Haemophilia A
TTGGATGCCACAGGAAATCAGTCTATTGGCATGTGATTGGAAT
2000


Val266Gly
GGGCACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCA


GTG-GGG
CACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTT






AAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCT
2001



TCGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCATTCCA



ATCACATGCCAATAGACTGATTTCCTGTGGCATCCAA






TCCTGAAGTGCACTCAA
2002






TTGAGTGCACTTCAGGA
2003





Haemophilia A
CAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAAG
2004


Glu272Gly
TGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGAA


GAA-GGA
CCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAAC






GTTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTC
2005



ACAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAG



GAGTGGTGCCCATTCCAATCACATGCCAATAGACTG






ATTCCTCGAAGGTCACA
2006






TGTGACCTTCGAGGAAT
2007





Haemophilia A
TCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAA
2008


Glu272Lys
GTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGA


cGAA-AAA
ACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAA






TTATTGGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCA
2009



CAAGAAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAG



GAGTGGTGCCCATTCCAATCACATGCCAATAGACTGA






TATTCCTCGAAGGTCAC
2010






GTGACCTTCGAGGAATA
2011





Haemophilia A
GGCATGTGATTGGAATGGGCACCACTCCTGAAGTGCACTCAA
2012


Thr275Ile
TATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCATCGCCA


ACA-ATA
GGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTAC






GTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGA
2013



TGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATATTGAGT



GCACTTCAGGAGTGGTGCCCATTCCAATCACATGCC






AGGTCACACATTTCTTG
2014






CAAGAAATGTGTGACCT
2015





Haemophilia A
TTGGAATGGGCACCACTCCTGAAGTGCACTCAATATTCCTCG
2016


Val278Ala
AAGGTCACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCT


GTG-GCG
TGGAAATCTCGCCAATAACTTTCCTTACTGCTCAAAC






GTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCAAGGAC
2017



GCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTTCGAGG



AATATTGAGTGCACTTCAGGAGTGGTGCCCATTCCAA






ATTTCTTGTGAGGAACC
2018






GGTTCCTCACAAGAAAT
2019





Haemophilia A
TGGGCACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTC
2020


Asn280Ile
ACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAA


AAC-ATC
TCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTT






AAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCA
2021



AGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGACCTT



CGAGGAATATTGAGTGCACTTCAGGAGTGGTGCCCA






TGTGAGGAACCATCGCC
2022






GGCGATGGTTCCTCACA
2023





Haemophilia A
ACCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACAT
2024


Arg282Cys
TTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGC


tCGC-TGC
CAATAACTTTCCTTACTGCTCAAACACTCTTGATGG






CCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGA
2025



TTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTGT



GACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGGT






GGAACCATCGCCAGGCG
2026






CGCCTGGCGATGGTTCC
2027





Haemophilia A
CCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATT
2028


Arg282His
TCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCC


CGC-CAC
AATAACTTTCCTTACTGCTCAAACACTCTTGATGGA






TCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAG
2029



ATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTG



TGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGG






GAACCATCGCCAGGCGT
2030






ACGCCTGGCGATGGTTC
2031





Haemophilia A
CCACTCCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATT
2032


Arg282Leu
TCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCC


CGC-CTC
AATAACTTTCCTTACTGCTCAAACACTCTTGATGGA






TCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAG
2033



ATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGTG



TGACCTTCGAGGAATATTGAGTGCACTTCAGGAGTGG






GAACCATCGCCAGGCGT
2034






ACGCCTGGCGATGGTTC
2035





Haemophilia A
CTGAAGTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGT
2036


Ala284Glu
GAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAAC


GCG-GAG
TTTCCTTACTGCTCAAACACTCTTGATGGACCTTGG






CCAAGGTCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATT
2037



GGCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAG



AAATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAG






TCGCCAGGCGTCCTTGG
2038






CCAAGGACGCCTGGCGA
2039





Haemophilia A
CCTGAAGTGCACTCAATATTCCTCGAAGGTCACACATTTCTTG
2040


Ala284Pro
TGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGCCAATAA


gGCG-CCG
CTTTCCTTACTGCTCAAACACTCTTGATGGACCTTG






CAAGGTCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTG
2041



GCGAGATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAA



ATGTGTGACCTTCGAGGAATATTGAGTGCACTTCAGG






ATCGCCAGGCGTCCTTG
2042






CAAGGACGCCTGGCGAT
2043





Haemophilia A
TATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCATCGCCA
2044


Ser289Leu
GGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTACTGCTCAA


TCG-TTG
ACACTCTTGATGGACCTTGGACAGTTTCTACTGTT






AACAGTAGAAACTGTCCAAGGTCCATCAAGAGTGTTTGAGCA
2045



GTAAGGAAAGTTATTGGCGAGATTTCCAAGGACGCCTGGCGA



TGGTTCCTCACAAGAAATGTGTGACCTTCGAGGAATA






GGAAATCTCGCCAATAA
2046






TTATTGGCGAGATTTCC
2047





Haemophilia A
GTCACACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGG
2048


Phe293Ser
AAATCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGAT


TTC-TCC
GGACCTTGGACAGTTTCTACTGTTTTGTCATATCTC






GAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCATCAAG
2049



AGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTCCAAG



GACGCCTGGCGATGGTTCCTCACAAGAAATGTGTGAC






AATAACTTTCCTTACTG
2050






CAGTAAGGAAAGTTATT
2051





Haemophilia A
ACATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATC
2052


Thr295Ala
TCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACC


tACT-GCT
TTGGACAGTTTCTACTGTTTTGTCATATCTCTTCCC






GGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCA
2053



TCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTTC



CAAGGACGCCTGGCGATGGTTCCTCACAAGAAATGT






CTTTCCTTACTGCTCAA
2054






TTGAGCAGTAAGGAAAG
2055





Haemophilia A
CATTTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCT
2056


Thr295Ile
CGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACCT


ACT-ATT
TGGACAGTTTCTACTGTTTTGTCATATCTCTTCCCA






TGGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCC
2057



ATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGATTT



CCAAGGACGCCTGGCGATGGTTCCTCACAAGAAATG






TTTCCTTACTGCTCAAA
2058






TTTGAGCAGTAAGGAAA
2059





Haemophilia A
TTCTTGTGAGGAACCATCGCCAGGCGTCCTTGGAAATCTCGC
2060


Ala296Val
CAATAACTTTCCTTACTGCTCAAACACTCTTGATGGACCTTGG


GCT-GTT
ACAGTTTCTACTGTTTTGTCATATCTCTTCCCACCA






TGGTGGGAAGAGATATGACAAAACAGTAGAAACTGTCCAAGG
2061



TCCATCAAGAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAG



ATTTCCAAGGACGCCTGGCGATGGTTCCTCACAAGAA






CCTTACTGCTCAAACAC
2062






GTGTTTGAGCAGTAAGG
2063





Haemophilia A
TCTCGCCAATAACTTTCCTTACTGCTCAAACACTCTTGATGGA
2064


Leu308Pro
CCTTGGACAGTTTCTACTGTTTTGTCATATCTCTTCCCACCAA


CTG-CCG
CATGGTAATATCTTGGATCTTTAAAATGAATATTA






TAATATTCATTTTAAAGATCCAAGATATTACCATGTTGGTGGGA
2065



AGAGATATGACAAAACAGTAGAAACTGTCCAAGGTCCATCAA



GAGTGTTTGAGCAGTAAGGAAAGTTATTGGCGAGA






GTTTCTACTGTTTTGTC
2066






GACAAAACAGTAGAAAC
2067





Haemophilia A
ACAGCCTAATATAGCAAGACACTCTGACATTGTTTGGTTTGTC
2068


Glu321Lys
TGACTCCAGATGGCATGGAAGCTTATGTCAAAGTAGACAGCT


gGAA-AAA
GTCCAGAGGAACCCCAACTACGAATGAAAAATAATG






CATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGACAGCTGTC
2069



TACTTTGACATAAGCTTCCATGCCATCTGGAGTCAGACAAACC



AAACAATGTCAGAGTGTCTTGCTATATTAGGCTGT






ATGGCATGGAAGCTTAT
2070






ATAAGCTTCCATGCCAT
2071





Haemophilia A
ATATAGCAAGACACTCTGACATTGTTTGGTTTGTCTGACTCCA
2072


Tyr323Term
GATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGTCCAGAG


TATg-TAA
GAACCCCAACTACGAATGAAAAATAATGAAGAAGCG






CGCTTCTTCATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGA
2073



CAGCTGTCTACTTTGACATAAGCTTCCATGCCATCTGGAGTCA



GACAAACCAAACAATGTCAGAGTGTCTTGCTATAT






GAAGCTTATGTCAAAGT
2074






ACTTTGACATAAGCTTC
2075





Haemophilia A
AAGACACTCTGACATTGTTTGGTTTGTCTGACTCCAGATGGCA
2076


Val326Leu
TGGAAGCTTATGTCAAAGTAGACAGCTGTCCAGAGGAACCCC


aGTA-CTA
AACTACGAATGAAAAATAATGAAGAAGCGGAAGACT






AGTCTTCCGCTTCTTCATTATTTTTCATTCGTAGTTGGGGTTC
2077



CTCTGGACAGCTGTCTACTTTGACATAAGCTTCCATGCCATCT



GGAGTCAGACAAACCAAACAATGTCAGAGTGTCTT






ATGTCAAAGTAGACAGC
2078






GCTGTCTACTTTGACAT
2079





Haemophilia A
TGACATTGTTTGGTTTGTCTGACTCCAGATGGCATGGAAGCTT
2080


Cys329Arg
ATGTCAAAGTAGACAGCTGTCCAGAGGAACCCCAACTACGAA


cTGT-CGT
TGAAAAATAATGAAGAAGCGGAAGACTATGATGATG






CATCATCATAGTCTTCCGCTTCTTCATTATTTTTCATTCGTAGT
2081



TGGGGTTCCTCTGGACAGCTGTCTACTTTGACATAAGCTTCC



ATGCCATCTGGAGTCAGACAAACCAAACAATGTCA






TAGACAGCTGTCCAGAG
2082






CTCTGGACAGCTGTCTA
2083





Haemophilia A
GACATTGTTTGGTTTGTCTGACTCCAGATGGCATGGAAGCTTA
2084


Cys329Tyr
TGTCAAAGTAGACAGCTGTCCAGAGGAACCCCAACTACGAAT


TGT-TAT
GAAAAATAATGAAGAAGCGGAAGACTATGATGATGA






TCATCATCATAGTCTTCCGCTTCTTCATTATTTTTCATTCGTAG
2085



TTGGGGTTCCTCTGGACAGCTGTCTACTTTGACATAAGCTTCC



ATGCCATCTGGAGTCAGACAAACCAAACAATGTC






AGACAGCTGTCCAGAGG
2086






CCTCTGGACAGCTGTCT
2087





Haemophilia A
ACTCCAGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGT
2088


Arg336Term
CCAGAGGAACCCCAACTACGAATGAAAAATAATGAAGAAGCG


aCGA-TGA
GAAGACTATGATGATGATCTTACTGATTCTGAAATGG






CCATTTCAGAATCAGTAAGATCATCATCATAGTCTTCCGCTTC
2089



TTCATTATTTTTCATTCGTAGTTGGGGTTCCTCTGGACAGCTG



TCTACTTTGACATAAGCTTCCATGCCATCTGGAGT






CCCAACTACGAATGAAA
2090






TTTCATTCGTAGTTGGG
2091





Haemophilia A
GATTCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTC
2092


Arg372Cys
CTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAA


tCGC-TGC
AACTTGGGTACATTACATTGCTGCTGAAGAGGAGG






CCTCCTCTTCAGCAGCAATGTCAATGTACCCAAGTTTTAGGATG
2093



CTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGAGTT



GTCATCATCAAACCTGACCACATCCATTTCAGAATC






TCCAAATTCGCTCAGTT
2094






AACTGAGCGAATTTGGA
2095





Haemophilia A
ATTCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCC
2096


Arg372His
TTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAA


CGC-CAC
ACTTGGGTACATTACATTGCTGCTGAAGAGGAGGA






TCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGAT
2097



GCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGAGT



TGTCATCATCAAACCTGACCACATCCATTTCAGAAT






CCAAATTCGCTCAGTTG
2098






CAACTGAGCGAATTTGG
2099





Haemophilia A
CTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTTC
2100


Ser373Leu
CTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACT


TCA-TTA
TGGGTACATTACATTGCTGCTGAAGAGGAGGACTG






CAGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAG
2101



GATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAG



AGTTGTCATCATCAAACCTGACCACATCCATTTCAG






AATTCGCTCAGTTGCCA
2102






TGGCAACTGAGCGAATT
2103





Haemophilia A
TCTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTT
2104


Ser373Pro
CCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAAC


cTCA-CCA
TTGGGTACATTACATTGCTGCTGAAGAGGAGGACT






AGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGG
2105



ATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAGA



GTTGTCATCATCAAACCTGACCACATCCATTTCAGA






AAATTCGCTCAGTTGCC
2106






GGCAACTGAGCGAATTT
2107





Haemophilia A
CTGAAATGGATGTGGTCAGGTTTGATGATGACAACTCTCCTTC
2108


Ser373Term
CTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACT


TCA-TAA
TGGGTACATTACATTGCTGCTGAAGAGGAGGACTG






CAGTCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAG
2109



GATGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGGAG



AGTTGTCATCATCAAACCTGACCACATCCATTTCAG






ATTCGCTCAGTTGCCA
2110






TGGCAACTGAGCGAATT
2111





Haemophilia A
CCTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTA
2112


Ile386Phe
AAACTTGGGTACATTACATTGCTGCTGAAGAGGAGGACTGGG


cATT-TTT
ACTATGCTCCCTTAGTCCTCGCCCCCGATGACAGGT






ACCTGTCATCGGGGGCGAGGACTAAGGGAGCATAGTCCCAG
2113



TCCTCCTCTTCAGCAGCAATGTAATGTACCCAAGTTTTAGGAT



GCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAGG






TACATTACATTGCTGCT
2114






AGCAGCAATGTAATGTA
2115





Haemophilia A
CTTCCTTTATCCAAATTCGCTCAGTTGCCAAGAAGCATCCTAA
2116


Ile386Ser
AACTTGGGTACATTACATTGCTGCTGAAGAGGAGGACTGGGA


ATT-AGT
CTATGCTCCCTTAGTCCTCGCCCCCGATGACAGGTA






TACCTGTCATCGGGGGCGAGGACTAAGGGAGCATAGTCCCA
2117



GTCCTCCTCTTCAGCAGCAIATGTAATGTACCCAAGTTTTAGGA



TGCTTCTTGGCAACTGAGCGAATTTGGATAAAGGAAG






ACATTACATTGCTGCTG
2118






CAGCAGCAATGTAATGT
2119





Haemophilia A
AAATTCGCTCAGTTGCCAAGAAGCATCCTAAAACTTGGGTACA
2120


Glu390Gly
TTACATTGCTGCTGAAGAGGAGGACTGGGACTATGCTCCCTT


GAG-GGG
AGTCCTCGCCCCCGATGACAGGTAAGCACTTTTTGA






TCAAAAAGTGCTTACCTGTCATCGGGGGCGAGGACTAAGGGA
2121



GCATAGTCCCAGTCCTCCTCTTCAGCAGCAATGTAATGTACC



CAAGTTTTAGGATGCTTCTTGGCAACTGAGCGAATTT






TGCTGAAGAGGAGGACT
2122






AGTCCTCCTCTTCAGCA
2123





Haemophilia A
TCAGTTGCCAAGAAGCATCCTAAAACTTGGGTACATTACATTG
2124


Trp393Gly
CTGCTGAAGAGGAGGACTGGGACTATGCTCCCTTAGTCCTCG


cTGG-GGG
CCCCCGATGACAGGTAAGCACTTTTTGACTATTGGT






ACCAATAGTCAAAAAGTGCTTACCTGTCATCGGGGGCGAGGA
2125



CTAAGGGAGCATAGTCCCAGTCCTCCTCTTCAGCAGCAATGT



AATGTACCCAAGTTTTAGGATGCTTCTTGGCAACTGA






AGGAGGACTGGGACTAT
2126






ATAGTCCCAGTCCTCCT
2127





Haemophilia A
GCCTACCTAGAATTTTTCTTCCCAACCTCTCATCTTTTTTTCTC
2128


Lys408Ile
TTATACAGAAGTTATAAAAGTCAATATTTGAACAATGGCCCTC


AAA-ATA
AGCGGATTGGTAGGAAGTACAAAAAAGTCCGATT






AATCGGACTTTTTTGTACTTCCTACCAATCCGCTGAGGGCCAT
2129



TGTTCAAATATTGACTTTTATAACTTCTGTATAAGAGAAAAAAA



GATGAGAGGTTGGGAAGAAAAATTCTAGGTAGGC






AAGTTATAAAAGTCAAT
2130






ATTGACTTTTATAACTT
2131





Haemophilia A
TTTTCTTCCCAACCTCTCATCTTTTTTTCTCTTATACAGAAGTT
2132


Leu412Phe
ATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTAG


TTGa-TTT
GAAGTACAAAAAAGTCCGATTTATGGCATACACA






TGTGTATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATC
2133



CGCTGAGGGCCATTGTTCAAATATTGACTTTTATAACTTCTGT



ATAAGAGAAAAAAAGATGAGAGGTTGGGAAGAAAA






CAATATTTGAACAATGG
2134






CCATTGTTCAAATATTG
2135





Haemophilia A
TCATCTTTTTTTCTCTTATACAGAAGTTATAAAAGTCAATATTTG
2136


Arg418Trp
AACAATGGCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTC


gCGG-TGG
CGATTTATGGCATACACAGATGAAACCTTTAAGA






TCTTAAAGGTTTCATCTGTGTATGCCATAAATCGGACTTTTTTG
2137



TACTTCCTACCAATCCGCTGAGGGCCATTGTTCAAATATTGAC



TTTATAACTTCTGTATAAGAGAAAAAAAGATGA






GCCCTCAGCGGATTGGT
2138






ACCAATCCGCTGAGGGC
2139





Haemophilia A
TTTTTCTCTTATACAGAAGTTATAAAAGTCAATATTTGAACAAT
2140


Gly420Val
GGCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTCCGATTT


GGT-GTT
ATGGCATACACAGATGAAACCTTTAAGACTCGTGA






TCACGAGTCTTAAAGGTTTCATCTGTGTATGCCATAAATCGGA
2141



CTTTTTTGTACTTCCTACCAATCCGCTGAGGGCCATTGTTCAA



ATATTGGACTTTTATAACTTCTGTATAAGAGAAAAA






GCGGATTGGTAGGAAGT
2142






ACTTCCTACCAATCCGC
2143





Haemophilia A
GAAGTTATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGAT
2144


Lys425Arg
TGGTAGGAAGTACAAAAAAGTCCGATTTATGGCATACACAGAT


AAA-AGA
GAAACCTTTAAGACTCGTGAAGCTATTCAGCATGA






TCATGCTGAATAGCTTCACGAGTCTTAAAGGTTTCATCTGTGT
2145



ATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATCCGCTG



AGGGCCATTGTTCAAATATTGACTTTTATAACTTC






GTACAAAAAAGTCCGAT
2146






ATCGGACTTTTTTGTAC
2147





Haemophilia A
TATAAAAGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTA
2148


Arg427Term
GGAAGTACAAAAAAGTCCGATTTATGGCATACACAGATGAAAC


cCGA-TGA
CTTTAAGACTCGTGAAGCTATTCAGCATGAATCAG






CTGATTCATGCTGAATAGCTTCACGAGTCTTAAAGGTTTCATC
2149



TGTGTATGCCATAAATCGGACTTTTTTGTACTTCCTACCAATC



CGCTGAGGGCCATTGTTCAAATATTGACTTTTATA






AAAAAGTCCGATTTATG
2150






CATAAATCGGACTTTTT
2151





Haemophilia A
TATTTGAACAATGGCCCTCAGCGGATTGGTAGGAAGTACAAA
2152


Tyr431Asn
AAAGTCCGATTTATGGCATACACAGATGAAACCTTTAAGACTC


aTAC-AAC
GTGAAGCTATTCAGCATGAATCAGGAATCTTGGGAC






GTCCCAAGATTCCTGATTCATGCTGAATAGCTTCACGAGTCTT
2153



AAAGGTTTCATCTGTGTATGCCATAAATCGGACTTTTTTGTAC



TTCCTACCAATCCGCTGAGGGCCATTGTTCAAATA






TTATGGCATACACAGAT
2154






ATCTGTGTATGCCATAA
2155





Haemophilia A
GCCCTCAGCGGATTGGTAGGAAGTACAAAAAAGTCCGATTTA
2156


Thr435Ile
TGGCATACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCA


ACC-ATC
GCATGAATCAGGAATCTTGGGACCTTTACTTTATGG






CCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAATAG
2157



CTTCACGAGTCTTAAAGGTTTCATCTGTGTATGCCATAAATCG



GACTTTTTTGTACTTCCTACCAATCCGCTGAGGGC






AGATGAAACCTTTAAGA
2158






TCTTAAAGGTTTCATCT
2159





Haemophilia A
ACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCAGCATGA
2160


Pro451Leu
ATCAGGAATCTTGGGACCTTTACTTTATGGGGAAGTTGGAGA


CCT-CTT
CACACTGTTGGTAAGTTGAAGAAAAGATTTAAGGTC






GACCTTAAATCTTTTCTTCAACTTACCAACAGTGTGTCTCCAA
2161



CTTCCCCATCAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTG



AATAGCTTCACGAGTCTTAAAGGTTTCATCTGTGT






CTTGGGACCTTTACTTT
2162






AAAGTAAAGGTCCCAAG
2163





Haemophilia A
TACACAGATGAAACCTTTAAGACTCGTGAAGCTATTCAGCATG
2164


Pro451Thr
AATCAGGAATCTTGGGACCTTTACTTTATGGGGAAGTTGGAGA


aCCT-ACT
CACACTGTTGGTAAGTTGAAGAAAAGATTTAAGGT






ACCTTAAATCTTTTCTTCAACTTACCAACAGTGTGTCTCCAACT
2165



TCCCCATAAAGTAAAGGTCCCAAGATTCCTGATTCATGCTGAA



TAGCTTCACGAGTCTTAAAGGTTTCATCTGTGTA






TCTTGGGACCTTTACTT
2166






AAGTAAAGGTCCCAAGA
2167





Haemophilia A
ACCTTTAAGACTCGTGAAGCTATTCAGCATGAATCAGGAATCT
2168


Gly455Arg
TGGGACCTTTACTTTATGGGGAAGTTGGAGACACACTGTTGG


tGGG-AGG
TAAGTTGAAGAAAAGATTTAAGGTCAGGTAAGAAGA






TCTTCTTACCTGACCTTAAATCTTTTCTTCAACTTACCAACAGT
2169



GTGTCTCCAACTTCCCCATAAAGTAAAGGTCCCAAGATTCCTG



ATTCATGCTGAATAGCTTCACGAGTCTTAAAGGT






TACTTTATGGGGAAGTT
2170






AACTTCCCCATAAAGTA
2171





Haemophilia A
CCTTTAAGACTCGTGAAGCTATTCAGCATGAATCAGGAATCTT
2172


Gly455Glu
GGGACCTTTACTTTATGGGGAAGTTGGAGACACACTGTTGGT


GGG-GAG
AAGTTGAAGAAAAGATTTAAGGTCAGGTAAGAAGAA






TTCTTCTTACCTGACCTTAAATCTTTTCTTCAACTTACCAACAG
2173



TGTGTCTCCAACTTCCCATAAAGTAAAGGTCCCAAGATTCCT



GATTCATGCTGAATAGCTTCACGAGTCTTAAAGG






ACTTTATGGGGAAGTTG
2174






CAACTTCCCCATAAAGT
2175





Haemophilia A
CGTGAAGCTATTCAGCATGAATCAGGAATCTTGGGACCTTTAC
2176


Asp459Asn
TTTATGGGGAAGTTGGAGACACACTGTTGGTAAGTTGAAGAA


aGAC-AAC
AAGATTTAAGGTCAGGTAAGAAGAAAAAGTCTGGAG






CTCCAGACTTTTTCTTCTTACCTGACCTTAAATCTTTTCTTCAA
2177



CTTACCAACAGTGTGTCTCCAACTTCCCCATAAAGTAAAGGTC



CCAAGATTCCTGATTCATGCTGAATAGCTTCACG






AAGTTGGAGACACACTG
2178






CAGTGTGTCTCCAACTT
2179





Haemophilia A
TGTTGATCCTAGTCGTTTTAGGATTTGATCTTAGATCTCGCTTA
2180


Phe465Cys
TACTTTCAGATTATATTTAAGAATCAAGCAAGCAGACCATATAA


TTT-TGT
CATCTACCCTCACGGAATCACTGATGTCCGTCC






GGACGGACATCAGTGATTCCGTGAGGGTAGATGTTATATGGT
2181



CTGCTTGCTTGATTCTTAAATATAATCTGAAAGTATAAGCGAG



ATCTAAGATCAAATCCTAAAACGACTAGGATCAACA






GATTATATTTAAGAATC
2182






GATTCTTAAATATAATC
2183





Haemophilia A
TCGTTTTAGGATTTGATCTTAGATCTCGCTTATACTTTCAGATT
2184


Ala469Gly
ATATTTAAGAATCAAGCAAGCAGACCATATAACATCTACCCTC


GCA-GGA
ACGGAATCACTGATGTCCGTCCTTTGTATTCAAG






CTTGAATACAAAGGACGGACATCAGTGATTCCGTGAGGGTAG
2185



ATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATCTGAAA



GTATAAGCGAGATCTAAGATCAAATCCTAAAACGA






GAATCAAGCAAGCAGAC
2186






GTCTGCTTGCTTGATTC
2187





Haemophilia A
TTAGGATTTGATCTTAGATCTCGCTTATACTTTCAGATTATATT
2188


Arg471Gly
TAAGAATCAAGCAAGCAGACCATATAACATCTACCCTCACGG


cAGA-GGA
AATCACTGATGTCCGTCCTTTGTATTCAAGGAGAT






ATCTCCTTGAATACAAAGGACGGACATCAGTGATTCCGTGAG
2189



GGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAATATAATC



TGAAAGTATAAGCGAGATCTAAGATCAAATCCTAA






AAGCAAGCAGACCATAT
2190






ATATGGTCTGCTTGCTT
2191





Haemophilia A
TTGATCTTAGATCTCGCTTATACTTTCAGATTATATTTAAGAAT
2192


Tyr473Cys
CAAGCAAGCAGACCATATAACATCTACCCTCACGGAATCACT


TAT-TGT
GATGTCCGTCCTTTGTATTCAAGGAGATTACCAAA






TTTGGTAATCTCCTTGAATACAAAGGACGGACATCAGTGATTC
2193



CGTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAA



TATAATCTGAAAGTATAAGCGAGATCTAAGATCAA






CAGACCATATAACATCT
2194






AGATGTTATATGGTCTG
2195





Haemophilia A
TTTGATCTTAGATCTCGCTTATACTTTCAGATTATATTTAAGAA
2196


Tyr473His
TCAAGCAAGCAGACCATATAACATCTACCCTCACGGAATCACT


aTAT-CAT
GATGTCCGTCCTTTGTATTCAAGGAGATTACCAA






TTGGTAATCTCCTTGAATACAAAGGACGGACATCAGTGATTCC
2197



GTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATTCTTAAAT



ATAATCTGAAAGTATAAGCGAGATCTAAGATCAAA






GCAGACCATATAACATC
2198






GATGTTATATGGTCTGC
2199





Haemophilia A
TTAGATCTCGCTTATACTTTCAGATTATATTTAAGAATCAAGCA
2200


Ile475Thr
AGCAGACCATATAACATCTACCCTCACGGAATCACTGATGTCC


ATC-ACC
GTCCTTTGTATTCAAGGAGATTACCAAAAGGTAA






TTACCTTTTGGTAATCTCCTTGAATACAAAGGACGGACATCAG
2201



TGATTCCGTGAGGGTAGATGTTATATGGTCTGCTTGCTTGATT



CTTAAATATAATCTGAAAGTATAAGCGAGATCTAA






ATATAACATCTACCCTC
2202






GAGGGTAGATGTTATAT
2203





Haemophilia A
TTATACTTTCAGATTATATTTAAGAATCAAGCAAGCAGACCATA
2204


Gly419Arg
TAACATCTACCCTCACGGAATCACTGATGTCCGTCCTTTGTAT


cGGA-AGA
TCAAGGAGATTACCAAAAGGTAAATATTCCCTCG






CGAGGGAATATTTACCTTTTGGTAATCTCCTTGAATACAAAGG
2205



ACGGACATCAGTGATTCCGTGAGGGTAGATGTTATATGGTCT



GCTTGCTTGATTCTTAAATATAATCTGAAAGTATAA






ACCCTCACGGAATCACT
2206






AGTGATTCCGTGAGGGT
2207





Haemophilia A
CCAATTCTGCCAGGAGAAATATTCAAATATAAATGGACAGTGA
2208


Thr522Ser
CTGTAGAAGATGGGCCAACTAAATCAGATCCTCGGTGCCTGA


aACT-TCT
CCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAG






CTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGC
2209



ACCGAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGT



CCATTTATATTTGAATATTTCTCCTGGCAGAATTGG






ATGGGCCAACTAAATCA
2210






TGATTTAGTTGGCCCAT
2211





Haemophilia A
CCAGGAGAAATATTCAAATATAAATGGACAGTGACTGTAGAAG
2212


Asp525Asn
ATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATT


aGAT-AAT
ACTCTAGTTTCGTTAATATGGAGAGAGATCTAGCTT






AAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCG
2213



GGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTAC



AGTCACTGTCCATTTATATTTGAATATTTCTCCTGG






CTAAATCAGATCCTCGG
2214






CCGAGGATCTGATTTAG
2215





Haemophilia A
GAAATATTCAAATATAAATGGACAGTGACTGTAGAAGATGGGC
2216


Arg527Trp
CAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA


tCGG-TGG
GTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGAC






GTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGTA
2217



ATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTGGCCCATC



TTCTACAGTCACTGTCCATTTATATTTGAATATTTC






CAGATCCTCGGTGCCTG
2218






CAGGCACCGAGGATCTG
2219





Haemophilia A
TATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCA
2220


Arg531Cys
GATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATA


cCGC-TGC
TGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTC






GAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA
2221



CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATT



TAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATA






GCCTGACCCGCTATTAC
2222






GTAATAGCGGGTCAGGC
2223





Haemophilia A
TATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCA
2224


Arg531Gly
GATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATA


cCGC-GGC
TGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTC






GAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA
2225



CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATT



TAGTTGGCCCATCTTCTACAGTCACTGTCCATTTATA






GCCTGACCCGCTATTAC
2226






GTAATAGCGGGTCAGGC
2227





Haemophilia A
ATAAATGGACAGTGACTGTAGAAGATGGGCCAACTAAATCAG
2228


Arg531His
ATCCTCGGTGCCTGACCCGCTATTACTCTAGTTTCGTTAATAT


CGC-CAC
GGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCT






AGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAA
2229



CGAAACTAGAGTAATAGCGGGTCAGGCACCGAGGATCTGATT



TAGTTGGCCCATCTTCTACAGTCACTGTCCATTTAT






CCTGACCCGCTATTACT
2230






AGTAATAGCGGGTCAGG
2231





Haemophilia A
ACAGTGACTGTAGAAGATGGGCCAACTAAATCAGATCCTCGG
2232


Ser534Pro
TGCCTGACCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAG


cTCT-CCT
ATCTAGCTTCAGGACTCATTGGCCCTCTCCTCATCT






AGATGAGGAGAGGGCCAATGAGTCCTGAAGCTAGATCTCTCT
2233



CCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACCGAG



GATCTGATTTAGTTGGCCCATCTTCTACAGTCACTGT






GCTATTACTCTAGTTTC
2234






GAAACTAGAGTAATAGC
2235





Haemophilia A
GTGACTGTAGAAGATGGGCCAACTAAATCAGATCCTCGGTGC
2236


Ser535Gly
CTGACCCGCTATTACTCTAGTTTCGTTAATATGGAGAGAGATC


tAGT-GGT
TAGCTTCAGGACTCATTGGCCCTCTCCTCATCTGCT






AGCAGATGAGGAGAGGGCCAATGAGTCCTGAAGCTAGATCTC
2237



TCTCCATATTAACGAAACTAGAGTAATAGCGGGTCAGGCACC



GAGGATCTGATTTAGTTGGCCCATCTTCTACAGTCAC






ATTACTCTAGTTTCGTT
2238






AACGAAACTAGAGTAAT
2239





Haemophilia A
TAGAAGATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCC
2240


Val537Asp
GCTATTACTCTAGTTTCGTTAATATGGAGAGAGATCTAGCTTC


GTT-GAT
AGGACTCATTGGCCCTCTCCTCATCTGCTACAAAGA






TCTTTGTAGCAGATGAGGAGAGGGCCAATGAGTCCTGAAGCT
2241



AGATCTCTCTCCATATTAACGAAACTAGAGTAATAGCGGGTCA



GGCACCGAGGATCTGATTTAGTTGGCCCATCTTCTA






TAGTTTCGTTAATATGG
2242






CCATATTAACGAAACTA
2243





Haemophilia A
CAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA
2244


Arg541Thr
GTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGG


AGA-ACA
CCCTCTCCTCATCTGCTACAAAGAATCTGTAGATCA






TGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAATG
2245



AGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAGT



AATAGCGGGTCAGGCACCGAGGATCTGATTTAGTTG






TATGGAGAGAGATCTAG
2246






CTAGATCTCTCTCCATA
2247





Haemophilia A
CTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTTT
2248


Asp542Gly
CGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCC


GAT-GGT
TCTCCTCATCTGCTACAAAGAATCTGTAGATCAAAG






CTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCA
2249



ATGAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAG



AGTAATAGCGGGTCAGGCACCGAGGATCTGATTTAG






GGAGAGAGATCTAGCTT
2250






AAGCTAGATCTCTCTCC
2251





Haemophilia A
ACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTT
2252


AspS42His
TCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCC


aGAT-CAT
CTCTCCTCATCTGCTACAAAGAATCTGTAGATCAAA






TTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAAT
2253



GAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAG



TAATAGCGGGTCAGGCACCGAGGATCTGATTTAGT






TGGAGAGAGATCTAGCT
2254






AGCTAGATCTCTCTCCA
2255





Haemophilia A
ACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTAGTT
2256


Asp542Tyr
TCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCC


aGAT-TAT
CTCTCCTCATCTGCTACAAAGAATCTGTAGATCAAA






TTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGCCAAT
2257



GAGTCCTGAAGCTAGATCTCTCTCCATATTAACGAAACTAGAG



TAATAGCGGGTCAGGCACCGAGGATCTGATTTAGT






TGGAGAGAGATCTAGCT
2258






AGCTAGATCTCTCTCCA
2259





Haemophilia A
GTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCT
2260


Glu557Term
CTCCTCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACC


aGAA-TAA
AGGTGAGTTCTTGCCTTTCCAAGTGCTGGGTTTCAT






ATGAAACCCAGCACTTGGAAAGGCAAGAACTCACCTGGTTTC
2261



CTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAGGGC



CAATGAGTCCTGAAGCTAGATCTCTCTCCATATTAAC






GCTACAAAGAATCTGTA
2262






TACAGATTCTTTGTAGC
2263





Haemophilia A
ATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCTCC
2264


Ser558Phe
TCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGGT


TCT-TTT
CAGTTCTTGCCTTTCCAAGTGCTGGGTTTCATTCTC






GAGAATGAAACCCAGCACTTGGAAAGGCAAGAACTCACCTGG
2265



TTTCCTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGAGAG



GGCCAATGAGTCCTGAAGCTAGATCTCTCTCCATAT






CAAAGAATCTGTAGATC
2266






GATCTACAGATTCTTTG
2267





Haemophilia A
TGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTCTCCTCA
2268


Val559Ala
TCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGGTGA


GTA-GCA
GTTCTTGCCTTTCCAAGTGCTGGGTTTCATTCTCAGT






ACTGAGAATGAAACCCAGCACTTGGAAAGGCAAGAACTCACC
2269



TGGTTTCCTCTTTGATCTACAGATTCTTTGTAGCAGATGAGGA



GAGGGCCAATGAGTCCTGAAGCTAGATCTCTCTCCA






AGAATCTGTAGATCAAA
2270






TTTGATCTACAGATTCT
2271









EXAMPLE 14
Hemophilia—Factor IX Deficiency

The attached table discloses the correcting oligonucleotide base sequences for the Factor IX oligonucleotides of the invention.










TABLE 21







Factor IX Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Haemophilia B
ATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAA
2272



Asn2Asp
TCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTT


tAAT-GAT
CAAGGGAACCTTGAGAGAGAATGTATGGAAGAAA






TTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCT
2273



TCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTT



GTTGGCGTTTTCATGATCAAGAAAAACTGAAAT






AGAGGTATAATTCAGGT
2274






ACCTGAATTATACCTCT
2275





Haemophilia B
TTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAAT
2276


Asn2lle
CGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTT


AAT-ATT
CAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAA






TTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTC
2277



TTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTT



TGTTGGCGTTTTCATGATCAAGAAAAACTGAAA






GAGGTATAATTCAGGTA
2278






TACCTGAATTATACCTC
2279





Haemophilia B
ATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAA
2280


Asn2Tyr
TCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTT


tAAT-TAT
CAAGGGAACCTTGAGAGAGAATGTATGGAAGAAA






TTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCT
2281



TCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTT



GTTGGCGTTTTCATGATCAAGAAAAACTGAAAT






AGAGGTATAATTCAGGT
2282






ACCTGAATTATACCTCT
2283





Haemophilia B
TCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATC
2284


Ser3Pro
GGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCA


tTCA-CCA
AGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT






ACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAAC
2285



TCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCAGAA



TTTTGTTGGCGTTTTCATGATCAAGAAAAACTGA






GGTATAATTCAGGTAAA
2286






TTTACCTGAATTATACC
2287





Haemophilia B
TTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCC
2288


Gly4Asp
AAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGG


GGT-GAT
AACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAG






CTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAAC
2289



AAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCA



GAATTTTGTTGGCGTTTTCATGATCAAGAAAAA






TAATTCAGGTAAATTGG
2290






CCAATTTACCTGAATTA
2291





Haemophilia B
GTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGC
2292


Gly4Ser
CAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGG


aGGT-AGT
GAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTA






TACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACA
2293



AACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATTCA



GAATTTTGTTGGCGTTTTCATGATCAAGAAAAAC






ATAATTCAGGTAAATTG
2294






CAATTTACCTGAATTAT
2295





Haemophilia B
TTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAA
2296


Lys5Glu
AGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAA


tAAA-GAA
CCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTT






AACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGA
2297



ACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCGATT



CAGAATTTTGTTGGCGTTTTCATGATCAAGAAA






ATTCAGGTAAATTGGAA
2298






TTCCAATTTACCTGAAT
2299





Haemophilia B
ATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTA
2300


Glu7Ala
TAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAG


GAA-GCA
AGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGA






TCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTT
2301



CCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTG



GCCGATTCAGAATTTTGTTGGCGTTTTCATGAT






TAAATTGGAAGAGTTTG
2302






CAAACTCTTCCAATTTA
2303





Haemophilia B
GATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGG
2304


Glu7Lys
TATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTG


gGAA-AAA
AGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAG






CTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTC
2305



CCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGG



CCGATTCAGAATTTTGTTGGCGTTTTCATGATC






GTAAATTGGAAGAGTTT
2306






AAACTCTTCCAATTTAC
2307





Haemophilia B
ATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTA
2308


Glu7Val
TAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAG


GAA-GTA
AGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGA






TCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTT
2309



CCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTG



GCCGATTCAGAATTTTGTTGGCGTTTTCATGAT






TAAATTGGAAGAGTTTG
2310






CAAACTCTTCCAATTTA
2311





Haemophilia B
ATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA
2312


Glu8Ala
TTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAG


GAG-GCG
AGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGC






GCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAG
2313



GTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCT



TTGGCCGATTCAGAATTTTGTTGGCGTTTTCAT






ATTGGAAGAGTTTGTTC
2314






GAACAAACTCTTCCAAT
2315





Haemophilia B
ATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA
2316


Glu8Gly
TTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAG


GAG-GGG
AGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGC






GCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAG
2317



GTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACCTCT



TTGGCCGATTCAGAATTTTGTTGGCGTTTTCAT






ATTGGAAGAGTTTGTTC
2318






GAACAAACTCTTCCAAT
2319





Haemophilia B
AAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTC
2320


Phe9Cys
AGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGA


TTT-TGT
ATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACG






CGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTC
2321



AAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATAC



CTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTT






GGAAGAGTTTGTTCAAG
2322






CTTGAACAAACTCTTCC
2323





Haemophilia B
GAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATT
2324


Phe9lle
CAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAG


gTTT-ATT
AATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCAC






GTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCA
2325



AGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAATTATACC



TCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTC






TGGAAGAGTTTGTTCAA
2326






TTGAACAAACTCTTCCA
2327





Haemophilia B
TTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTC
2328


Arg(-1)Ser
TGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTT


AGGt-AGC
TGTTCAAGGGAACCTTGAGAGAGAATGTATGGAA






TTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCC
2329



AATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTT



GGCGTTTTCATGATCAAGAAAAACTGAAATGTAA






CCAAAGAGGTATAATTC
2330






GAATTATACCTCTTTGG
2331





Haemophilia B
TTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATT
2332


Arg(-1)Thr
CTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAG


AGG-ACG
TTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGA






TCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCA
2333



ATTTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTG



GCGTTTTCATGATCAAGAAAAACTGAAATGTAAA






GCCAAAGAGGTATAATT
2334






AATTATACCTCTTTGGC
2335





Haemophilia B
CTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAA
2336


Lys(-2)Asn
TTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGA


AAGa-AAT
GTTTGTTCAAGGGAACCTTGAGAGAGAATGTATG






CATACATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAAT
2337



TTACCTGAATTATACCTCTTTGGCCGATTCAGAATTTTGTTGG



CGTTTTCATGATCAAGAAAAACTGAAATGTAAAAG






CGGCCAAAGAGGTATAA
2338






TTATACCTCTTTGGCCG
2339





Haemophilia B
AATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCC
2340


Arg(-4)Gln
AACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAAT


CGG-CAG
TGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGA






TCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTG
2341



AATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCA



TGATCAAGAAAAACTGAAATGTAAAAGAATAATT






TCTGAATCGGCCAAAGA
2342






TCTTTGGCCGATTCAGA
2343





Haemophilia B
AATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCC
2344


Arg(-4)Leu
AACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAAT


CGG-CTG
TGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGA






TCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTG
2345



AATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCA



TGATCAAGAAAAACTGAAATGTAAAAGAATAATT






TCTGAATCGGCCAAAGA
2346






TCTTTGGCCGATTCAGA
2347





Haemophilia B
GAATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGC
2348


Arg(-4)Trp
CAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAA


tCGG-TGG
TTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAG






CTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGA
2349



ATTATACCTCTTTGGCCGATTCAGAATTTTGTTGGCGTTTTCAT



GATCAAGAAAAACTGAAATGTAAAAGAATAATTC






TTCTGAATCGGCCAAAG
2350






CTTTGGCCGATTCAGAA
2351





Haemophilia B
GCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTA
2352


Gln11Term
AATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTAT


tCAA-TAA
GGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAG






CTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCT
2353



CTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTGAAT



TATACCTCTTTGGCCGATTCAGAATTTTGTTGGC






AGTTTGTTCAAGGGAAC
2354






GTTCCCTTGAACAAACT
2355





Haemophilia B
ACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATT
2356


Gly12Ala
GGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGA


GGG-GCG
AGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTT






AAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACA
2357



TTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCT



GAATTATACCTCTTTGGCCGATTCAGAATTTTGT






TGTTCAAGGGAACCTTG
2358






CAAGGTTCCCTTGAACA
2359





Haemophilia B
AACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAAT
2360


Gly12Arg
TGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGG


aGGG-AGG
AAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTT






AAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACAT
2361



TCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTG



AATTATACCTCTTTGGCCGATTCAGAATTTTGTT






TTGTTCAAGGGAACCTT
2362






AAGGTTCCCTTGAACAA
2363





Haemophilia B
ACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATT
2364


Gly12Glu
GGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGA


GGG-GAG
AGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTT






AAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACA
2365



TTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCT



GAATTATACCTCTTTGGCCGATTCAGAATTTTGT






TGTTCAAGGGAACCTTG
2366






CAAGGTTCCCTTGAACA
2367





Haemophilia B
CGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTC
2368


Glu17Gln
AAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTT


aGAA-CAA
TTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAA






TTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACAC
2369



TTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTC



TTCCAATTTACCTGAATTATACCTCTTTGGCCG






TTGAGAGAGAATGTATG
2370






CATACATTCTCTCTCAA
2371





Haemophilia B
CGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTC
2372


Glu17Lys
AAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTT


aGAA-AAA
TTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAA






TTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACAC
2373



TTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAAACTC



TTCCAATTTACCTGAATTATACCTCTTTGGCCG






TTGAGAGAGAATGTATG
2374






CATACATTCTCTCTCAA
2375





Haemophilia B
CCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAG
2376


Cys18Arg
GGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTG


aTGT-CGT
AAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAA






TTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTA
2377



CACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAA



ACTCTTCCAATTTACCTGAATTATACCTCTTTGG






AGAGAGAATGTATGGAA
2378






TTCCATACATTCTCTCT
2379





Haemophilia B
CAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGG
2380


Cys18Tyr
GAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAA


TGT-TAT
GAAGCACGAGAAGTTTTTGAAAACACTGAAAGAAC






GTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACT
2381



ACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTTGAACAA



ACTCTTCCAATTTACCTGAATTATACCTCTTTG






GAGAGAATGTATGGAAG
2382






CTTCCATACATTCTCTC
2383





Haemophilia B
GGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCT
2384


Glu20Val
TGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGC


GAA-GTA
ACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAG






CTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTC
2385



AAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCCTT



GAACAAACTCTTCCAATTTACCTGAATTATACC






ATGTATGGAAGAAAAGT
2386






ACTTTTCTTCCATACAT
2387





Haemophilia B
TATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTG
2388


Glu21Lys
AGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCAC


aGAA-AAA
GAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTA






TACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCT
2389



TCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAGGTTCCC



TTGAACAAACTCTTCCAATTTACCTGAATTATA






GTATGGAAGAAAAGTGT
2390






ACACTTTTCTTCCATAC
2391





Haemophilia B
TCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGA
2392


Cys23Arg
GAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAA


gTGT-CGT
GTTTTTGAAAACACTGAAAGAACAGTGAGTATTTCCA






TGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGT
2393



GCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCAAG



GTTCCCTTGAACAAACTCTTCCAATTTACCTGA






AAGAAAAGTGTAGTTTT
2394






AAAACTACACTTTTCTT
2395





Haemophilia B
CAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAG
2396


Cys23Tyr
AATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGT


TGT-TAT
TTTTGAAAACACTGAAAGAACAGTGAGTATTTCCAC






GTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAACTTCTC
2397



GTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTCTCTCA



AGGTTCCCTTGAACAAACTCTTCCAATTTACCTG






AGAAAAGTGTAGTTTTG
2398






CAAAACTACACTTTTCT
2399





Haemophilia B
AATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTAT
2400


Phe25Ser
GGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAA


TTT-TCT
AACACTGAAAGAACAGTGAGTATTTCCACATAATA






TATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAAAC
2401



TTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTCTC



TCTCAAGGTTCCCTTGAACAAACTCTTCCAATT






GTGTAGTTTTGAAGAAG
2402






CTTCTTCAAAACTACAC
2403





Haemophilia B
TTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATG
2404


Glu26Gln
GAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAA


tGAA-CAA
ACACTGAAAGAACAGTGAGTATTTCCACATAATACC






GGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTCAAAA
2405



ACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATACATTC



TCTCTCAAGGTTCCCTTGAACAAACTCTTCCAA






GTAGTTTTGAAGAAGCA
2406






TGCTTCTTCAAAACTAC
2407





Haemophilia B
AAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAG
2408


Glu27Ala
AAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACAC


GAA-GCA
TGAAAGAACAGTGAGTATTTCCACATAATACCCTTC






GAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTT
2409



CAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATA



CATTCTCTCTCAAGGTTCCCTTGAACAAACTCTT






TTTTGAAGAAGCACGAG
2410






CTCGTGCTTCTTCAAAA
2411





Haemophilia B
AGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGA
2412


Glu27Asp
AAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACT


GAAg-GAC
GAAAGAACAGTGAGTATTTCCACATAATACCCTTCA






TGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTT
2413



TCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCAT



ACATTCTCTCTCAAGGTTCCCTTGAACAAACTCT






TTTGAAGAAGCACGAGA
2414






TCTCGTGCTTCTTCAAA
2415





Haemophilia B
GAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAA
2416


Glu27Lys
GAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACA


aGAA-AAA
CTGAAAGAACAGTGAGTATTTCCACATAATACCCTT






AAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTTC
2417



AAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATAC



ATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTC






GTTTTGAAGAAGCACGA
2418






TCGTGCTTCTTCAAAAC
2419





Haemophilia B
AAGAGTTTGTTCAAGGGAACTTGAGAGAGAATGTATGGAAG
2420


Glu27Val
AAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACAC


GAA-GTA
TGAAAGAACAGTGAGTATTTCCACATAATACCCTTC






GAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGTGTTTT
2421



CAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTTCCATA



CATTCTCTCTCAAGGTTCCCTTGAACAAACTCTT






TTTTGAAGAAGCACGAG
2422






CTCGTGCTTCTTCAAAA
J 2423





Haemophilia B
TTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT
2424


Arg29Gln
GTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAG


CGA-CAA
AACAGTGAGTATTTCCACATAATACCCTTCAGATGC






GCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAG
2425



TGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCT



TCCATACATTCTCTCTCAAGGTTCCCTTGAACAA






AGAAGCACGAGAAGTTT
2426






AAACTTCTCGTGCTTCT
2427





Haemophilia B
TTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT
2428


Arg29Pro
GTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAG


CGA-CCA
AACAGTGAGTATTTCCACATAATACCCTTCAGATGC






GCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAG
2429



TGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCT



TCCATACATTCTCTCTCAAGGTTCCCTTGAACAA






AGAAGCACGAGAAGTTT
2430






AAACTTCTCGTGCTTCT
2431





Haemophilia B
TTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGT
2432


Arg29Term
GTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAG


aCGA-TGA
AACAGTGAGTATTTCCACATAATACCCTTCAGATG






CATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTCAGT
2433



GTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTTCTT



CCATACATTCTCTCTCAAGGTTCCCTTGAACAAA






AAGAAGCACGAGAAGTT
2434






AACTTCTCGTGCTTCTT
2435





Haemophilia B
GTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGT
2436


Glu30Lys
AGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAA


aGAA-AAA
CAGTGAGTATTTCCACATAATACCCTTCAGATGCAG






CTGCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTC
2437



AGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTT



CTTCCATACATTCTCTCTCAAGGTTCCCTTGAAC






AAGCACGAGAAGTTTTT
2438






AAAAACTTCTCGTGCTT
2439





Haemophilia B
GTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGT
2440


Glu30Term
AGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAA


aGAA-TAA
CAGTGAGTATTTCCACATAATACCCTTCAGATGCAG






CTGCATCTGAAGGGTATTATGTGGAAATACTCACTGTTCTTTC
2441



AGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAACTACACTTTT



CTTCCATACATTCTCTCTCAAGGTTCCCTTGAAC






AAGCACGAGAAGTTTTT
2442






AAAAACTTCTCGTGCTT
2443





Haemophilia B
CCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAA
2444


Glu33Asp
GCACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTATTT


GAAa-GAC
CCACATAATACCCTTCAGATGCAGAGCATAGAATA






TATTCTATGCTCTGCATCTGAAGGGTATTATGTGGAAATACTC
2445



ACTGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAA



ACTACACTTTTCTTCCATACATTCTCTCTCAAGG






GTTTTTGAAAACACTGA
2446






TCAGTGTTTTCAAAAAC
2447





Haemophilia B
AACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAG
2448


Glu33Term
AAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAGTGAGTAT


tGAA-TAA
TTCCACATAATACCCTTCAGATGCAGAGCATAGAA






TTCTATGCTCTGCATCTGAAGGGTATTATGTGGAAATACTCAC
2449



TGTTCTTTCAGTGTTTTCAAAAACTTCTCGTGCTTCTTCAAAAC



TACACTTTTCTTCCATACATTCTCTCTCAAGGTT






AAGTTTTTGAAAACACT
2450






AGTGTTTTCAAAAACTT
2451





Haemophilia B
CAAAACACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTT
2452


Trp42Term
TATAGACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCAT


TGG-TAG
TTTATCCTCTAGCTAATATATGAAACATATGAG






CTCATATGTTTCATATATTAGCTAGAGGATAAAATGAATTGCTT
2453



ACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATAAAAG



AAGACAAATTAACGGTAATATCTAAAGTGTTTTG






TGAATTTTGGAAGCAGT
2454






ACTGCTTCCAAAATTCA
2455





Haemophilia B
AAACACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTTTA
2456


Lys43Glu
TAGACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCATTT


gAAG-GAG
TATCCTCTAGCTAATATATGAAACATATGAGAA






TTCTCATATGTTTCATATATTAGCTAGAGGATAAAATGAATTGC
2457



TTACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATAAAA



GAAGACAAATTAACGGTAATATCTAAAGTGTTT






AATTTTGGAAGCAGTAT
2458






ATACTGCTTCCAAAATT
2459





Haemophilia B
CACTTTAGATATTACCGTTAATTTGTCTTCTTTTATTCTTTATAG
2460


Gln44Term
ACTGAATTTTGGAAGCAGTATGTTGGTAAGCAATTCATTTTATC


gCAG-TAG
CTCTAGCTAATATATGAAACATATGAGAATTA






TAATTCTCATATGTTTCATATATTAGCTAGAGGATAAAATGAAT
2461



TGCTTACCAACATACTGCTTCCAAAATTCAGTCTATAAAGAATA



AAAGAAGACAAATTAACGGTAATATCTAAAGTG






TTTGGAAGCAGTATGTT
2462






AACATACTGCTTCCAAA
2463





Haemophilia B
CCGGGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAAC
2464


Asp49Gly
CTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTA


GAT-GGT
AATGGCGGCAGTTGCAAGGATGACATTAATTCCTA






TAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATG
2465



GATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAGAA



ATTGAATTGGCACGTAAACTGCTTAGAATGCCCGG






AGATGGAGATCAGTGTG
2466






CACACTGATCTCCATCT
2467





Haemophilia B
GCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATC
2468


Gln50His
TCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGG


CAGt-CAC
CGGCAGTTGCAAGGATGACATTAATTCCTATGAA






TTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAA
2469



CATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTA



AGAAATTGAATTGGCACGTAAACTGCTTAGAATGC






GGAGATCAGTGTGAGTC
2470






GACTCACACTGATCTCC
2471





Haemophilia B
GGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTA
2472


Gln50Pro
TCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAAT


CAG-CCG
GGCGGCAGTTGCAAGGATGACATTAATTCCTATGA






TCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAAC
2473



ATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAA



GAAATTGAATTGGCACGTAAACTGCTTAGAATGCC






TGGAGATCAGTGTGAGT
2474






ACTCACACTGATCTCCA
2475





Haemophilia B
GGGCATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCT
2476


Gln50Term
ATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAA


tCAG-TAG
TGGCGGCAGTTGCAAGGATGACATTAATTCCTATG






CATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACA
2477



TGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTTAAG



AAATTGAATTGGCACGTAAACTGCTTAGAATGCCC






ATGGAGATCAGTGTGAG
2478






CTCACACTGATCTCCAT
2479





Haemophilia B
CATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCT
2480


Cys51Arg
CAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGG


gTGT-CGT
CGGCAGTTGCAAGGATGACATTAATTCCTATGAAT






ATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAA
2481



ACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTT



AAGAAATTGAATTGGCACGTAAACTGCTTAGAATG






GAGATCAGTGTGAGTCC
2482






GGACTCACACTGATCTC
2483





Haemophilia B
CATTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCT
2484


Cys51Ser
CAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGG


gTGT-AGT
CGGCAGTTGCAAGGATGACATTAATTCCTATGAAT






ATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAA
2485



ACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGGTT



AAGAAATTGAATTGGCACGTAAACTGCTTAGAATG






GAGATCAGTGTGAGTCC
2486






GGACTCACACTGATCTC
2487





Haemophilia B
TTCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCTCA
2488


Cys51Trp
AAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCG


TGTg-TGG
GCAGTTGCAAGGATGACATTAATTCCTATGAATGT






ACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTT
2489



AAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAGG



TTAAGAAATTGAATTGGCACGTAAACTGCTTAGAA






GATCAGTGTGAGTCCAA
2490






TTGGACTCACACTGATC
2491





Haemophilia B
TCTAAGCAGTTTACGTGCCAATTCAATTTCTTAACCTATCTCAA
2492


Glu52Term
AGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGG


tGAG-TAG
CAGTTGCAAGGATGACATTAATTCCTATGAATGTT






AACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATT
2493



TAAACATGGATTGGACTCACACTGATCTCCATCTTTGAGATAG



GTTAAGAAATTGAATTGGCACGTAAACTGCTTAGA






ATCAGTGTGAGTCCAAT
2494






ATTGGACTCACACTGAT
2495





Haemophilia B
TTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAG
2496


Pro55Ala
ATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCA


tCCA-GCA
AGGATGACATTAATTCCTATGAATGTTGGTGTCCCT






AGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACT
2497



GCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCT



TTGAGATAGGTTAAGAAATTGAATTGGCACGTAAA






AGTCCAATCCATGTTTA
2498






TAAACATGGATTGGACT
2499





Haemophilia B
TTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA
2500


Pro55Arg
TCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAA


CCA-CGA
GGATGACATTAATTCCTATGAATGTTGGTGTCCCTT






AAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC
2501



TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATC



TTTGAGATAGGTTAAGAAATTGAATTGGCACGTAA






GTCCAATCCATGTTTAA
2502






TTAAACATGGATTGGAC
2503





Haemophilia B
TTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA
2504


Pro55Gln
TCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAA


CCA-CAA
GGATGACATTAATTCCTATGAATGTTGGTGTCCCTT






AAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC
2505



TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATC



TTTGAGATAGGTTAAGAAATTGAATTGGCACGTAA






GTCCAATCCATGTTTAA
2506






TTAAACATGGATTGGAC
2507





Haemophilia B
TTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGA
2508


Pro55Leu
TCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAA


CCA-CTA
GGATGACATTAATTCCTATGAATGTTGGTGTCCCTT






AAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAAC
2509



TGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATC



TTTGAGATAGGTTAAGAAATTGAATTGGCACGTAA






GTCCAATCCATGTTTAA
2510






TTAAACATGGATTGGAC
2511





Haemophilia B
TTTACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAG
2512


Pro55Ser
ATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCA


tCCA-TCA
AGGATGACATTAATTCCTATGAATGTTGGTGTCCCT






AGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACT
2513



GCCGCCATTTAAACATGGATTGGACTCACACTGATCTCCATCT



TTGAGATAGGTTAAGAAATTGAATTGGCACGTAAA






AGTCCAATCCATGTTTA
2514






TAAACATGGATTGGACT
2515





Haemophilia B
ACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATC
2516


Cys56Arg
AGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGG


aTGT-CGT
ATGACATTAATTCCTATGAATGTTGGTGTCCCTTTG






CAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCA
2517



ACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC



ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGT






CCAATCCATGTTTAAAT
2518






ATTTAAACATGGATTGG
2519





Haemophilia B
ACGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATC
2520


Cys56Ser
AGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGG


aTGT-AGT
ATGACATTAATTCCTATGAATGTTGGTGTCCCTTTG






CAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGCA
2521



ACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC



ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACGT






CCAATCCATGTTTAAAT
2522






ATTTAAACATGGATTGG
2523





Haemophilia B
CGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATCA
2524


Cys56Ser
GTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGA


TGT-TCT
TGACATTAATTCCTATGAATGTTGGTGTCCCTTTGG






CCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGC
2525



AACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC



ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACG






CAATCCATGTTTAAATG
2526






CATTTAAACATGGATTG
2527





Haemophilia B
CGTGCCAATTCAATTTCTTAACCTATCTCAAAGATGGAGATCA
2528


Cys56Tyr
GTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGA


TGT-TAT
TGACATTAATTCCTATGAATGTTGGTGTCCCTTTGG






CCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGC
2529



AACTGCCGCCATTTAAACATGGATTGGACTCACACTGATCTCC



ATCTTTGAGATAGGTTAAGAAATTGAATTGGCACG






CAATCCATGTTTAAATG
2530






CATTTAAACATGGATTG
2531





Haemophilia B
ATTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAG
2532


Asn58Lys
TCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTA


AATg-AAG
ATTCCTATGAATGTTGGTGTCCCTTGGATTTGAA






TTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCA
2533



TCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACACT



GATCTCCATCTTTGAGATAGGTTAAGAAATTGAAT






TGTTTAAATGGCGGCAG
2534






CTGCCGCCATTTAAACA
2535





Haemophilia B
TCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTC
2536


Gly59Asp
CAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAT


GGC-GAC
TCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG






CCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGT
2537



CATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACA



CTGATCTCCATCTTTGAGATAGGTTAAGAAATTGA






TTTAAATGGCGGCAGTT
2538






AACTGCCGCCATTTAAA
2539





Haemophilia B
TCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTC
2540


Gly59Val
CAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAT


GGC-GTC
TCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG






CCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGT
2541



CATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACA



CTGATCTCCATCTTTGAGATAGGTTAAGAAATTGA






TTTAAATGGCGGCAGTT
2542






AACTGCCGCCATTTAAA
2543





Haemophilia B
TTCAATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGT
2544


Gly59Ser
CCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAA


tGGC-AGC
TTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAG






CTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTC
2545



ATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCACAC



TGATCTCCATCTTTGAGATAGGTTAAGAAATTGAA






GTTTAAATGGCGGCAGT
2546






ACTGCCGCCATTTAAAC
2547





Haemophilia B
AATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA
2548


Gly60Ser
ATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTC


cGGC-AGC
CTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAA






TTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT
2549



GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCA



CACTGATCTCCATCTTTGAGATAGGTTAAGAAATT






TAAATGGCGGCAGTTGC
2550






GCAACTGCCGCCATTTA
2551





Haemophilia B
AATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA
2552


Gly60Cys
ATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTC


cGGC-TGC
CTATGAATGTTGGTGTCCCTTTGGATTGAAGGAA






TTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT
2553



GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCA



CACTGATCTCCATCTTTGAGATAGGTTAAGAAATT






TAAATGGCGGCAGTTGC
2554






GCAACTGCCGCCATTTA
2555





Haemophilia B
ATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAA
2556


Gly60Asp
TCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCC


GGC-GAC
TATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAA






TTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAA
2557



TGTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTC



ACACTGATCTCCATCTTTGAGATAGGTTAAGAAAT






AAATGGCGGCAGTTGCA
2558






TGCAACTGCCGCCATTT
2559





Haemophilia B
AATTTCTTAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCA
2560


Gly60Arg
ATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTC


cGGC-CGC
CTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAA






TTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAAT
2561



GTCATCCTTGCAACTGCCGCCATTTAAACATGGATTGGACTCA



CACTGATCTCCATCTTTGAGATAGGTTAAGAAATT






TAAATGGCGGCAGTTGC
2562






GCAACTGCCGCCATTTA
2563





Haemophilia B
TAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATG
2564


Cys62Tyr
TTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAA


TGC-TAC
TGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTG






CAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGG
2565



AATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATT



GGACTCACACTGATCTCCATCTTTGAGATAGGTTA






CGGCAGTTGCAAGGATG
2566






CATCCTTGCAACTGCCG
2567





Haemophilia B
TAACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATG
2568


Cys62Ser
TTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAA


TGC-TCC
TGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTG






CAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGG
2569



AATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGATT



GGACTCACACTGATCTCCATCTTTGAGATAGGTTA






CGGCAGTTGCAAGGATG
2570






CATCCTTGCAACTGCCG
2571





Haemophilia B
AACCTATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGT
2572


Cys62Term
TTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAAT


TGCa-TGA
GTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGT






ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG
2573



GAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACATGGAT



TGGACTCACACTGATCTCCATCTTTGAGATAGGTT






GGCAGTTGCAAGGATGA
2574






TCATCCTTGCAACTGCC
2575





Haemophilia B
TCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAAT
2576


Asp64Glu
GGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGG


GATg-GAG
TGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTA






TAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACAT
2577



TCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAAC



ATGGATTGGACTCACACTGATCTCCATCTTTGAGA






TGCAAGGATGACATTAA
2578






TTAATGTCATCCTTGCA
2579





Haemophilia B
ATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAA
2580


Asp64Gly
TGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTG


GAT-GGT
GTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATT






AATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATT
2581



CATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACA



TGGATTGGACTCACACTGATCTCCATCTTTGAGAT






TTGCAAGGATGACATTA
2582






TAATGTCATCCTTGCAA
2583





Haemophilia B
TATCTCAAAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAA
2584


Asp64Asn
ATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTG


gGAT-AAT
GTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAAT






ATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTC
2585



ATAGGAATTAATGTCATCCTTGCAACTGCCGCCATTTAAACAT



GGATTGGACTCACACTGATCTCCATCTTTGAGATA






GTTGCAAGGATGACATT
2586






AATGTCATCCTTGCAAC
2587





Haemophilia B
AAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCG
2588


lle66Ser
GCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCC


ATT-AGT
CTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAA






TTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACC
2589



AACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATT



TAAACATGGATTGGACTCACACTGATCTCCATCTT






GGATGACATTAATTCCT
2590






AGGAATTAATGTCATCC
2591





Haemophilia B
AAGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCG
2592


Ile66Thr
GCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCC


ATT-ACT
CTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAA






TTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACC
2593



AACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCCATT



TAAACATGGATTGGACTCACACTGATCTCCATCTT






GGATGACATTAATTCCT
2594






AGGAATTAATGTCATCC
2595





Haemophilia B
TGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAG
2596


Asn67Lys
TTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTT


AATt-AAA
GGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTAA






TTACTTACCTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGAC
2597



ACCAACATTCATAGGAATTAATGTCATCCTTGCAACTGCCGCC



ATTTAAACATGGATTGGACTCACACTGATCTCCA






GACATTAATTCCTATGA
2598






TCATAGGAATTAATGTC
2599





Haemophilia B
ATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCA
2600


Tyr69Cys
AGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATT


TAT-TGT
TGAAGGAAAGAACTGTGAATTAGGTAAGTAACTATT






AATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAATCCAAA
2601



GGGACACCAACATTCATAGGAATTAATGTCATCCTTGCAACTG



CCGCCATTTAAACATGGATTGGACTCACACTGAT






TAATTCCTATGAATGTT
2602






AACATTCATAGGAATTA
2603





Haemophilia B
TGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGA
2604


Cys71Term
CATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGA


TGTt-TGA
AAGAACTGTGAATTAGGTAAGTAACTATTTTTTGAA






TTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAA
2605



ATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTT



GCAACTGCCGCCATTTAAACATGGATTGGACTCA






TATGAATGTTGGTGTCC
2606






GGACACCAACATTCATA
2607





Haemophilia B
GTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG
2608


Cys71Ser
ACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG


TGT-TCT
AAAGAACTGTGAATTAGGTAAGTAACTATTTTTTGA






TCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAA
2609



TCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTG



CAACTGCCGCCATTTAAACATGGATTGGACTCAC






CTATGAATGTTGGTGTC
2610






GACACCAACATTCATAG
2611





Haemophilia B
GTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG
2612


Cys71Tyr
ACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGG


TGT-TAT
AAAGAACTGTGAATTAGGTAAGTAACTATTTTTTGA






TCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAA
2613



TCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTG



CAACTGCCGCCATTTAAACATGGATTGGACTCAC






CTATGAATGTTGGTGTC
2614






GACACCAACATTCATAG
2615





Haemophilia B
TGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGAT
2616


Cys71Ser
GACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAG


aTGT-AGT
GAAAGAACTGTGAATTAGGTAAGTAACTATTTTTTG






CAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCAAAT
2617



CCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCTTGC



AACTGCCGCCATTTAAACATGGATTGGACTCACA






CCTATGAATGTTGGTGT
2618






ACACCAACATTCATAGG
2619





Haemophilia B
GAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGAC
2620


Trp72Arg
ATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAA


tTGG-AGG
AGAACTGTGAATTAGGTAAGTAACTATTTTTTGAAT






ATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTTCA
2621



AATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATCCT



TGCAACTGCCGCCATTTAAACATGGATTGGACTC






ATGAATGTTGGTGTCCC
2622






GGGACACCAACATTCAT
2623





Haemophilia B
GTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACAT
2624


Trp72Term
TAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAG


TGGt-TGA
AACTGTGAATTAGGTAAGTAACTATTTTTTGAATAC






GTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCTT
2625



CAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCATC



CTTGCAACTGCCGCCATTTAAACATGGATTGGAC






GAATGTTGGTGTCCCTT
2626






AAGGGACACCAACATTC
2627





Haemophilia B
CCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAA
2628


Cys73Tyr
TTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAAC


TGT-TAT
TGTGAATTAGGTAAGTAACTATTTTTTGAATACTC






GAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCC
2629



TTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCA



TCCTTGCAACTGCCGCCATTTAAACATGGATTGG






ATGTTGGTGTCCCTTTG
2630






CAAAGGGACACCAACAT
2631





Haemophilia B
TCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTA
2632


Cys73Arg
ATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAA


gTGT-CGT
CTGTGAATTAGGTAAGTAACTATTTTTTGAATACT






AGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCCT
2633



TCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCAT



CCTTGCAACTGCCGCCATTTAAACATGGATTGGA






AATGTTGGTGTCCCTTT
2634






AAAGGGACACCAACATT
2635





Haemophilia B
CCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAA
2636


Cys73Phe
TTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAAC


TGT-TTT
TGTGAATTAGGTAAGTAACTATTTTTTGAATACTC






GAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTCC
2637



TTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTCA



TCCTTGCAACTGCCGCCATTTAAACATGGATTGG






ATGTTGGTGTCCCTTTG
2638






CAAAGGGACACCAACAT
2639





Haemophilia B
CAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAAT
2640


Cys73Term
TCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACT


TGTc-TGA
GTGAATTAGGTAAGTAACTATTTTTTGAATACTCA






TGAGTATTCAAAAAATAGTTACTTACCTAATTCACAGTTCTTTC
2641



CTTCAAATCCAAAGGGACACCAACATTCATAGGAATTAATGTC



ATCCTTGCAACTGCCGCCATTTAAACATGGATTG






TGTTGGTGTCCCTTTGG
2642






CCAAAGGGACACCAACA
2643





Haemophilia B
GTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGA
2644


Gly76Val
ATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTA


GGA-GTA
GGTAAGTAACTATTTTTTGAATACTCATGGTTCAA






TTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTCACA
2645



GTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAA



TTAATGTCATCCTTGCAACTGCCGCCATTTAAAC






TCCCTTTGGATTTGAAG
2646






CTTCAAATCCAAAGGGA
2647





Haemophilia B
TGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATG
2648


Gly76Arg
AATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATT


tGGA-AGA
AGGTAAGTAACTATTTTTTGAATACTCATGGTTCA






TGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTCACAG
2649



TTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAGGAAT



TAATGTCATCCTTGCAACTGCCGCCATTTAAACA






GTCCCTTTGGATTTGAA
2650






TTCAAATCCAAAGGGAC
2651





Haemophilia B
TAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG
2652


Phe77Cys
TTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGT


TTT-TGT
AAGTAACTATTTTTTGAATACTCATGGTTCAAAGT






ACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC
2653



ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG



GAATTAATGTCATCCTTGCAACTGCCGCCATTTA






CTTTGGATTTGAAGGAA
2654






TTCCTTCAAATCCAAAG
2655





Haemophilia B
TAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG
2656


Phe77Ser
TTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGT


TTT-TCT
AAGTAACTATTTTTTGAATACTCATGGTTCAAAGT






ACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC
2657



ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG



GAATTAATGTCATCCTTGCAACTGCCGCCATTTA






CTTTGGATTTGAAGGAA
2658






TTCCTTCAAATCCAAAG
2659





Haemophilia B
TAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATG
2660


Phe77Tyr
TTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGT


TTT-TAT
AAGTAACTATTTTTTGAATACTCATGGTTCAAAGT






ACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAATTC
2661



ACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCATAG



GAATTAATGTCATCCTTGCAACTGCCGCCATTTA






CTTTGGATTTGAAGGAA
2662






TTCCTTCAAATCCAAAG
2663





Haemophiiia B
AATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTT
2664


Glu78Lys
GGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAA


tGAA-AAA
GTAACTATTTTTTGAATACTCATGGTTCAAAGTTT






AAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACCTAAT
2665



TCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACATTCAT



AGGAATTAATGTCATCCTTGCAACTGCCGCCATT






TTGGATTTGAAGGAAAG
2666






CTTTCCTTCAAATCCAA
2667





Haemophilia B
GCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGT
2668


Gly79Val
GTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTA


GGA-GTA
ACTATTTTTTGAATACTCATGGTTCAAAGTTTCCCT






AGGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTAC
2669



CTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACA



TTCATAGGAATTAATGTCATCCTTGCAACTGCCGC






ATTTGAAGGAAAGAACT
2670






AGTTCTTTCCTTCAAAT
2671





Haemophilia B
GGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGG
2672


Gly79Arg
TGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGT


aGGA-AGA
AACTATTTTTTGAATACTCATGGTTCAAAGTTTCCC






GGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTACC
2673



TAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACAT



TCATAGGAATTAATGTCATCCTTGCAACTGCCGCC






GATTTGAAGGAAAGAAC
2674






GTTCTTTCCTTCAAATC
2675





Haemophilia B
GCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGT
2676


Gly79Glu
GTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGGTAAGTA


GGA-GAA
ACTATTTTTTGAATACTCATGGTTCAAAGTTTCCCT






AGGGAAACTTTGAACCATGAGTATTCAAAAAATAGTTACTTAC
2677



CTAATTCACAGTTCTTTCCTTCAAATCCAAAGGGACACCAACA



TTCATAGGAATTAATGTCATCCTTGCAACTGCCGC






ATTTGAAGGAAAGAACT
2678






AGTTCTTTCCTTCAAAT
2679





Haemophilia B
TTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT
2680


Cys88Ser
CTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGC


TGT-TCT
AGTTTTGTAAAAATAGTGCTGATAACAAGGTGGT






ACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC
2681



TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA



GACAGTAACAGCATCATTTAACATGCATTTCTAA






TGTAACATGTAACATTA
2682






TAATGTTACATGTTACA
2683





Haemophilia B
TTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT
2684


Cys88Phe
CTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGC


TGT-TTT
AGTTTTGTAAAAATAGTGCTGATAACAAGGTGGT






ACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC
2685



TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA



GACAGTAACAGCATCATTTAACATGCATTTCTAA






TGTAACATGTAACATTA
2686






TAATGTTACATGTTACA
2687





Haemophilia B
TTTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCT
2688


Cys88Arg
TCTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAG


aTGT-CGT
CAGTTTTGTAAAAATAGTGCTGATAACAAGGTGG






CCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATCT
2689



GCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA



GACAGTAACAGCATCATTTAACATGCATTTCTAAA






ATGTAACATGTAACATT
2690






AATGTTACATGTTACAT
2691





Haemophilia B
TTAGAAATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTT
2692


Cys88Tyr
CTTTTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGC


TGT-TAT
AGTTTTGTAAAAATAGTGCTGATAACAAGGTGGT






ACCACCTTGTTATCAGCACTATTTTTACAAAACTGCTCGCATC
2693



TGCCATTCTTAATGTTACATGTTACATCTAAAAGAAGCAAAATA



GACAGTAACAGCATCATTTAACATGCATTTCTAA






TGTAACATGTAACATTA
2694






TAATGTTACATGTTACA
2695





Haemophilia B
ATGCATGTTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTA
2696


Ile90Thr
GATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTT


ATT-ACT
GTAAAAATAGTGCTGATAACAAGGTGGTTTGCTC






GAGCAAACCACCTTGTTATCAGCACTATTTTTACAAAACTGCT
2697



CGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAAGAAG



CAAAATAGACAGTAACAGCATCATTTAACATGCAT






ATGTAACATTAAGAATG
2698






CATTCTTAATGTTACAT
2699





Haemophilia B
TGTTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGT
2700


Asn92His
AACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAA


gAAT-CAT
AATAGTGCTGATAACAAGGTGGTTTGCTCCTGTA






TACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACAAAA
2701



CTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTAAAA



GAAGCAAAATAGACAGTAACAGCATCATTTAACA






ACATTAAGAATGGCAGA
2702






TCTGCCATTCTTAATGT
2703





Haemophilia B
TTAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAA
2704


Asn92Lys
CATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAA


AATg-AAA
TAGTGCTGATAACAAGGTGGTTTGCTCCTGTACT






AGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACAA
2705



AACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTA



AAAGAAGCAAAATAGACAGTAACAGCATCATTTAA






ATTAAGAATGGCAGATG
2706






CATCTGCCATTCTTAAT
2707





Haemophilia B
AAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACA
2708


Gly93Asp
TGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATA


GGC-GAC
GTGCTGATAACAAGGTGGTTTGCTCCTGTACTGA






TCAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTAC
2709



AAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCT



AAAAGAAGCAAAATAGACAGTAACAGCATCATTT






TAAGAATGGCAGATGCG
2710






CGCATCTGCCATTCTTA
2711





Haemophilia B
TAAATGATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAAC
2712


Gly93Ser
ATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAAT


tGGC-AGC
AGTGCTGATAACAAGGTGGTTTGCTCCTGTACTG






CAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTTTTACA
2713



AAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTACATCTA



AAAGAAGCAAAATAGACAGTAACAGCATCATTTA






TTAAGAATGGCAGATGC
2714






GCATCTGCCATTCTTAA
2715





Haemophilia B
GATGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTA
2716


Arg94Ser
ACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGC


AGAt-AGT
TGATAACAAGGTGGTTTGCTCCTGTACTGAGGGA






TCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTATTT
2717



TTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTTAC



ATCTAAAAGAAGCAAAATAGACAGTAACAGCATC






AATGGCAGATGCGAGCA
2718






TGCTCGCATCTGCCATT
2719





Haemophilia B
TGCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAAC
2720


Cys95Tyr
ATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTG


TGC-TAC
ATAACAAGGTGGTTTGCTCCTGTACTGAGGGATA






TATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTAT
2721



TTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGTT



ACATCTAAAAGAAGCAAAATAGACAGTAACAGCA






TGGCAGATGCGAGCAGT
2722






ACTGCTCGCATCTGCCA
2723





Haemophilia B
GCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACA
2724


Cys95Trp
TTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGA


TGCg-TGG
TAACAAGGTGGTTTGCTCCTGTACTGAGGGATAT






ATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTA
2725



TTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGT



TACATCTAAAAGAAGCAAAATAGACAGTAACAGC






GGCAGATGCGAGCAGTT
2726






AACTGCTCGCATCTGCC
2727





Haemophilia B
GCTGTTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACA
2728


Cys95Term
TTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGA


TGCg-TGA
TAACAAGGTGGTTTGCTCCTGTACTGAGGGATAT






ATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAGCACTA
2729



TTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTACATGT



TACATCTAAAAGAAGCAAAATAGACAGTAACAGC






GGCAGATGCGAGCAGTT
2730






AACTGCTCGCATCTGCC
2731





Haemophilia B
TACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAG
2732


Gln97Pro
AATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACA


CAG-CCG
AGGTGGTTTGCTCCTGTACTGAGGGATATCGACT






AGTCGATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCA
2733



GCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTT



ACATGTTACATCTAAAAGAAGCAAAATAGACAGTA






ATGCGAGCAGTTTTGTA
2734






TACAAAACTGCTCGCAT
2735





Haemophilia B
TTACTGTCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAA
2736


Gln97Glu
GAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAAC


gCAG-GAG
AAGGTGGTTTGCTCCTGTACTGAGGGATATCGAC






GTCGATATCCCTCAGTACAGGAGCAAACCACCTTGTTATCAG
2737



CACTATTTTTACAAAACTGCTCGCATCTGCCATTCTTAATGTTA



CATGTTACATCTAAAAGAAGCAAAATAGACAGTAA






GATGCGAGCAGTTTTGT
2738






ACAAAACTGCTCGCATC
2739





Haemophilia B
TCTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAGAATGG
2740


Cys99Arg
CAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTG


tTGT-CGT
GTTTGCTCCTGTACTGAGGGATATCGACTTGCAG






CTGCAAGTCGATATCCCTCAGTACAGGAGCAAACCACCTTGT
2741



TATCAGCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTT



AATGTTACATGTTACATCTAAAAGAAGCAAAATAGA






AGCAGTTTTGTAAAAAT
2742






ATTTTTACAAAACTGCT
2743





Haemophilia B
CTATTTTGCTTCTTTTAGATGTAACATGTAACATTAAGAATGGC
2744


Cys99Tyr
AGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTG


TGT-TAT
GTTTGCTCCTGTACTGAGGGATATCGACTTGCAGA






TCTGCAAGTCGATATCCCTCAGTACAGGAGCAAACCACCTTG
2745



TTATCAGCACTATTTTTACAAAACTGCTCGCATCTGCCATTCTT



AATGTTACATGTTACATCTAAAAGAAGCAAAATAG






GCAGTTTTGTAAAAATA
2746






TATTTTTACAAAACTGC
2747





Warfarin sensitivity
TTTTTTGCTAAAACTAAAGAATTATTCTTTTACATTTCAGTTTTT
2748


Ala(-10)Thr
CTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGA


cGCC-ACC
GGTATAATTCAGGTAAATTGGAAGAGTTTGTTC






GAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCCG
2749



ATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGAAA



TGTAAAAGAATAATTCTTTAGTTTTAGCAAAAAA






ATGAAAACGCCAACAAA
2750






TTTGTTGGCGTTTTCAT
2751





Warfarin sensitivity
TTTTTGCTAAAACTAAAGAATTATTCTTTTACATTTCAGTTTTTC
2752


Ala(-10)Val
TTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAG


GCC-GTC
GTATAATTCAGGTAAATTGGAAGAGTTTGTTCA






TGAACAAACTCTTCCAATTTACCTGAATTATACCTCTTTGGCC
2753



GATTCAGAATTTTGTTGGCGTTTTCATGATCAAGAAAAACTGA



AATGTAAAAGAATAATTCTTTAGTTTTAGCAAAAA






TGAAAACGCCAACAAAA
2754






TTTTGTTGGCGTTTTCA
2755





Haemophilia B
TGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCCTCA
2756


Gly(-26)Val
TCACCATCTGCCTTTTAGGATATCTACTCAGTGCTGAATGTAC


GGA-GTA
AGGTTTGTTTCCTTTTTTAAAATACATTGAGTATGC






GCATACTCAATGTATTTTAAAAAAGGAAACAAACCTGTACATTC
2757



AGCACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGCC



TGGTGATTCTGCCATGATCATGTTCACGCGCTGCA






CCTTTTAGGATATCTAC
2758






GTAGATATCCTAAAAGG
2759





Haemophilia B
TTATGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCC
2760


Leu(-27)Term
TCATCACCATCTGCCTTTTAGGATATCTACTCAGTGCTGAATG


TTA-TAA
TACAGGTTTGTTTCCTTTTTTAAAATACATTGAGTA






TACTCAATGTATTTTAAAAAAGGAAACAAACCTGTACATTCAGC
2761



ACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGCCTGG



TGATTCTGCCATGATCATGTTCACGCGCTGCATAA






CTGCCTTTTAGGATATC
2762






GATATCCTAAAAGGCAG
2763





Haemophilia B
TAGCAAAGGTTATGCAGCGCGTGAACATGATCATGGCAGAAT
2764


Ile(-30)Asn
CACCAGGCCTCATCACCATCTGCCTTTTAGGATATCTACTCAG


ATC-AAC
TGCTGAATGTACAGGTTTGTTTCCTTTTTTAAAATA






TATTTTAAAAAAGGAAACAAACCTGTACATTCAGCACTGAGTA
2765



GATATCCTAAAAGGCAGATGGTGATGAGGCCTGGTGATTCTG



CCATGATCATGTTCACGCGCTGCATAACCTTTGCTA






CATCACCATCTGCCTTT
2766






AAAGGCAGATGGTGATG
2767





Haemophilia B
ACTAATCGACCTTACCACTTTCACAATCTGCTAGCAAAGGTTTA
2768


Ile(-40)Phe
TGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCCTCA


gATC-TTC
TCACCATCTGCCTTTTAGGATATCTACTCAGTGCTG






CAGCACTGAGTAGATATCCTAAAAGGCAGATGGTGATGAGGC
2769



CTGGTGATTCTGCCATGATCATGTTCACGCGCTGCATAACCTT



TGCTAGCAGATTGTGAAAGTGGTAAGGTCGATTAGT






TGAACATGATCATGGCA
2770






TGCCATGATCATGTTCA
2771





Haemophilia B
ACTTTGGTACAACTAATCGACCTTACCACTTTCACAATCTGCT
2772


Arg(-44)His
AGCAAAGGTTATGCAGCGCGTGAACATGATCATGGCAGAATC


CGC-CAC
ACCAGGCCTCATCACCATCTGCCTTTTAGGATATCT






AGATATCCTAAAAGGCAGATGGTGATGAGGCCTGGTGATTCT
2773



GCCATGATCATGTTCACGCGCTGCATAACCTTTGCTAGCAGA



TTGTGAAAGTGGTAAGGTCGATTAGTTGTACCAAAGT






TATGCAGCGCGTGAACA
2774






TGTTCACGCGCTGCATA
2775









EXAMPLE 15
Alpha Thalassemia—Hemoglobin Alpha Locus 1

The thalassemia syndromes are a heterogeneous group of inherited anemias characterized by defects in the synthesis of one or more globin chain subunits. For example, beta-thalassemia discussed in Example 6, is caused by a decrease in beta-chain production relative to alpha-chain production; the converse is the case for alpha-thalassemia. The attached table discloses the correcting oligonucleotide base sequences for the hemoglobin alpha locus 1 oligonucleotides of the invention.










TABLE 22







HBA1 Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:





Thalassaemia alpha
CCCTGGCGCGCTCGCGGCCCGGCACTCTTCIGGTCCCCACA
2776



Met(−1)Val
GACTCAGAGAGAACCCACCATGGTGCTGICTCCTGCCGACA


cATG-GTG
AGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGC






GCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTG
2777



TCGGCAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGT



GGGGACCAGAAGAGTGCCGGGCCGCGAGCGCGCCAGGG






AACCCACCATGGTGCTG
2778






CAGCACCATGGTGGGTT
2779





Haemoglobin variant
CACAGACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCC
2780


Ala12Asp
GACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGC


GCC-GAC
GCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTG






CACCTCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGC
2781



GCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGG



CAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGTG






CGTCAAGGCCGCCTGGG
2782






CCCAGGCGGCCTTGACG
2783





Haemoglobin variant
AGAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCA
2784


Gly15Asp
ACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGG


GGT-GAT
CGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCT






AGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCC
2785



AGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGG



TCTTGTCGGCAGGAGACAGCACCATGGTGGGTTCTCTCT






CGCCTGGGGTAAGGTCG
2786






CGACCTTACCCCAGGCG
2787





Haemoglobin variant
CTGCCGACAAGACCMCGTCAAGGCCGCCTGGGGTAAGGTC
2788


Tyr24Cys
GGCGCGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGA


TAT-TGT
GGTGAGGCTCCCTCCCCTGCTCCGACCCGGGCTCCTCGCC






GGCGAGGAGCCCGGGTCGGAGCAGGGGAGGGAGCCTCACC
2789



TCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGCGCCG



ACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGGCAG






TGGCGAGTATGGTGCGG
2790






CCGCACCATACTCGCCA
2791





Haemoglobin variant
GACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCAC
2792


Glu27Asp
GCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCT


GAGg-GAT
CCCTCCCCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGAC



C






GGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGGGGAG
2793



GGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCCAG



CGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTC






GGTGCGGAGGCCCTGGA
2794






TCCAGGGCCTCCGCACC
27955





Haemoglobin variant
GAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGG
2796


Asn68Lys
TGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGA


AACg-AAG
CATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG






CGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG
2797



TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCAC



CTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTC






CTGACCAACGCCGTGGC
2798






GCCACGGCGTTGGTCAG
2799





Haemoglobin variant
AGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGACC
2800


Asp74Gly
AACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCTGTC


GAC-GGC
CGCCCTGAGCGACCTGCACGCGCACAAGCHCGGGTGGA






TCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGA
2801



CAGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGG



TCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCT






GCACGTGGACGACATGC
2802






GCATGTCGTCCACGTGC
2803





Haemoglobin variant
CAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGAC
2804


Asp74His
CAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCTGT


gGAC-CAC
CCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGG






CCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGAC
2805



AGCGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGT



CAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTG






CGCACGTGGACGACATG
2806






CATGTCGTCCACGTGCG
2807





Haemoglobin variant
CACGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGG
2808


Asn78His
CGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGC


cAAC-CAC
GACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACT






AGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCG
2809



CTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGC



CACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCGTG






ACATGCCCAACGCGCTG
2810






CAGCGCGTTGGGCATGT
2811





Haemoglobin variant
ACCAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCT
2812


His87Tyr
GTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGG


gCAC-TAC
ACCCGGTCAACTTCAAGGTGAGCGGCGGGCCGGGAGCGA






TCGCTCCCGGCCCGCCGCTCACCTTGAAGTTGACCGGGTCC
2813



ACCCGAAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAG



CGCGTTGGGCATGTCGTCCACGTGCGCCACGGCGHGGT






GCGACCTGCACGCGCAC
2814






GTGCGCGTGCAGGTCGC
2815





Haemogiobin variant
GGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGA
2816


Lys90Asn
GCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAAC


AAGc-AAC
TTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAG






CTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGT
2817



TGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTC



AGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCC






GCGCACAAGCTTCGGGT
2818






ACCCGAAGCTTGTGCGC
2819





Haemoglobin variant
TGGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTG
2820


Lys90Thr
AGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAA


AAG-ACG
CTTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGA






TCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGTT
2821



GACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTCA



GGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCCA






CGCGCACAAGCTTCGGG
2822






CCCGAAGCTTGTGCGCG
2823





Haemoglobin variant
ACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGAC
2824


Arg92Gln
CTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAA


CGG-CAG
GGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCG






CGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTT
2825



GAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGT



CGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGT






CAAGCTTCGGGTGGACC
2826






GGTCCACCCGAAGCTTG
2827





Haemoglobin variant
ACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCAC
2828


Asp94Gly
GCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAG


GAC-GGC
CGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGG






CCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCT
2829



CACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGT



GCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGT






TCGGGTGGACCCGGTCA
2830






TGACCGGGTCCACCCGA
2831





Haemoglobin variant
ACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG
2832


Pro95Arg
CACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAGCGG


CCG-CGG
CGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGGCGC






GCGCCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCC
2833



GCTCACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCG



CGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGT






GGTGGACCCGGTCAACT
2834






AGTTGACCGGGTCCACC
2835





Haemoglobin variant
CGGCGGCTGCGGGCCTGGGCCCTCGGCCCCACTGACCCTC
2836


Ser102Arg
TCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTG


AGCc-AGA
GCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCAC






GTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCC
2837



AGGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAA



GAGGGTCAGTGGGGCCGAGGGCCCAGGCCCGCAGCCGCCG






CTCCTAAGCCACTGCCT
2838






AGGCAGTGGCTTAGGAG
2839





Haemoglobin variant
TTCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTG
2840


Glu116Lys
GCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGC


cGAG-AAG
CTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGC






GCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCG
2841



TGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCA



GGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAA






TCCCCGCCGAGTTCACC
2842






GGTGAACTCGGCGGGGA
2843





Haemoglobin variant
TCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTC
2844


Ala120Glu
CCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAA


GCG-GAG
GTTCCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAATA






TATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTG
2845



TCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGA



GGTGGGCGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGA






CACCCCTGCGGTGCACG
2846






CGTGCACCGCAGGGGTG
2847





Thalassaemia alpha
TGGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCAC
2848


Leu129Pro
GCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCTG


CTG-CCG
ACCTCCAAATACCGTTAAGCTGGAGCCTCGGTGGCCAT






ATGGCCACCGAGGCTCCAGCHAACGGTATTTGGAGGTCAGC
2849



ACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTG



CACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCA






CAAGTTCCTGGCTTCTG
2850






CAGAAGCCAGGAACTTG
2851





Haemoglobin variant
TGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCG
2852


Arg141Leu
TGCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTGGCCA


CGT-CTT
TGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCT






AGGAGGGGCTGGGGGGAGGCCCAAGGGGCMGMGCATGG
2853



CCACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCACG



GTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCA






CMATACCGTTAAGCTG
2854






CAGCTTAACGGTATTTG
2855









EXAMPLE 16
Alpha-thalassemia—Hemoglobin Alpha Locus 2

The attached table discloses the correcting oligonucleotide base sequences for the hemoglobin alpha locus 2 oligonucleotides of the invention.










TABLE 23







HBA2 Mutations and Genome-Correcting Oligos










Clinical Phenotype &

SEQ ID


Mutation
Correcting Oligos
NO













Thalassaemia alpha
CCTGGCGCGCTCGCGGGCCGGCACTCTTCTGGTCCCCACAG
2856



Met(-1)Thr
ACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAG


ATG-ACG
ACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCA






TGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTT
2857



GTCGGCAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCT



GTGGGGACCAGAAGAGTGCCGGCCCGCGAGCGCGCCAGG






ACCCACCATGGTGCTGT
2858






ACAGCACCATGGTGGGT
2859





Haemoglobin variant
CACAGACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCC
2860


Ala12Asp
GACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGC


GCC-GAC
GCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTG






CACCTCTCCAGGGCCTCCGCACCATACTCGCCAGCGTGCGC 2861



GCCGACCTTACCCCAGGCGGCCTTGACGTTGGTCTTGTCGG



CAGGAGACAGCACCATGGTGGGTTCTCTCTGAGTCTGTG






CGTCAAGGCCGCCTGGG
2862






CCCAGGCGGCCTTGACG
2863





Haemoglobin variant
AGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCAAC
2864


Lys16Glu
GTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGGCG


tAAG-GAG
AGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCTCC






GGAGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCG 2865



CCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGTT



GGTCTTGTCGGCAGGAGACAGCACCATGGTGGGTTCTCT






CCTGGGGTAAGGTCGGC
2866






GCCGACCTTACCCCAGG
2867





Haemoglobin variant
GGTGCTGTCTCCTGCCGACAAGACCAACGTCAAGGCCGCCT
2868


His20Gln
GGGGTAAGGTCGGCGCGCACGCTGGCGAGTATGGTGCGGA


CACg-CAA
GGCCCTGGAGAGGTGAGGCTCCCTCCCCTGCTCCGACCCG






CGGGTCGGAGCAGGGGAGGGAGCCTCACCTCTCCAGGGCC
2869



TCCGCACCATACTCGCCAGCGTGCGCGCCGACCTTACCCCA



GGCGGCCTTGACGTTGGTCTTGTCGGCAGGAGACAGCACC






GGCGCGCACGCTGGCGA
2870






TCGCCAGCGTGCGCGCC
2871





Haemoglobin variant
GACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCAC
2872


Glu27Asp
GCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCT


GAGg-GAC
CCCTCCCCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGAC



C






GGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGGGGAG
2873



GGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCGCCAG



CGTGCGCGCCGACCTTACCCCAGGCGGCCHGACGHGGTC






GGTGCGGAGGCCCTGGA
2874






TCCAGGGCCTCCGCACC
2875





Thalassaemia alpha
ACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGG
2876


Leu29Pro
CGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCTCC


CTG-CCG
CCTGCTCCGACCCGGGCTCCTCGCCCGCCCGGACCCACAG






CTGTGGGTCCGGGCGGGCGAGGAGCCCGGGTCGGAGCAGG 2877



GGAGGGAGCCTCACCTCTCCAGGGCCTCCGCACCATACTCG



CCAGCGTGCGCGCCGACCTTACCCCAGGCGGCCTTGACGT






GGAGGCCCTGGAGAGGT
2878






ACCTCTCCAGGGCCTCC
2879





Haemoglobin variant
GCTTCTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACCAAG
2880


Asp47His
ACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCA


cGAC-CAC
GGHAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGA






TCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGG
2881



GCAGAGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAGGTCTT



GGTGGTGGGGAAGGACAGGAACATCCTGCGGGGAGAAGC






CGCACTTCGACCTGAGC
2882






GCTCAGGTCGAAGTGCG
2883





Haemoglobin variant
CTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACCAAGACCT
2884


Leu48Arg
ACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCAGGTTA


CTG-CGG
AGGGCCACGGCAAGAAGGTGGCCGACGCGCTGACCAA






TTGGTCAGCGCGTCGGCCACCTTCTTGCCGTGGCCCTTAAC
2885



CTGGGCAGAGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAG



GTCTTGGTGGTGGGGAAGGACAGGAACATCCTGCGGGGAG






CTTCGACCTGAGCCACG
2886






CGTGGCTCAGGTCGAAG
2887





Haemoglobin variant
CTGTCCTTCCCCACCACCAAGACCTACTTCCCGCACTTCGAC
2888


Gln54Glu
CTGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAA


cCAG-GAG
GGTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGG






CCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCACCHC 2889



TTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTCAGGTC



GAAGTGCGGGAAGTAGGTCTTGGTGGTGGGGAAGGACAG






GCTCTGCCCAGGTTAAG
2890






CTTAACCTGGGCAGAGC
2891





Haemoglobin variant
CCAAGACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTG 2892


Gly59Asp
CCCAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCT


GGC-GAC
GACCAACGCCGTGGCGCACGTGGACGACATGCCCAACGC







GCGTTGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAG 2893



CGCGTCGGCCACCTTCTTGCCGTGGCCCTTAACCTGGGCAG



AGCCGTGGCTCAGGTCGAAGTGCGGGAAGTAGGTCTTGG






GGGCCACGGCAAGAAGG
2894






CCTTCTTGCCGTGGCCC
2895





Haemoglobin variant
GAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGG
2896


Asn68Lys
TGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGA


AACg-AAG
T CATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG







CGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG 2897



TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCAC



CTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTC






CTGACCAACGCCGTGGC
2898






GCCACGGCGTTGGTCAG
2899





Haemoglobin variant
GAGCCACGGCTCTGCCCAGGTAAAGGGCCACGGCAAGAAGG
2900


Asn68Lys
TGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGA


AACg-AAA
CATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG






CGCGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATG
2901



TCGTCCACGTGCGCCACGGCGTTGGTCAGCGCGTCGGCCAC



CTTCTTGCCGTGGCCCTTAACCTGGGCAGAGCCGTGGCTC






CTGACCAACGCCGTGGC
2902






GCCACGGCGTTGGTCAG
2903





Haemoglobin variant
CGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGGCG
2904


Asn78Lys
CACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGA


AACg-AAA
CCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACTTC






GAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGT
2905



CGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGC



GCCACGGCGTTGGTCAGCGCGTCGGCCACCTTCTTGCCG






ATGCCCAACGCGCTGTC
2906






GACAGCGCGTTGGGCAT
2907





Haemoglobin variant
CGCTGACCAACGCCGTGGCGCACGTGGACGACATGCCCAAC
2908


Asp85Val
GCGCTGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCG


GAC-GTC
GGTGGACCCGGTCAACTTCAAGGTGAGCGGCGGGCCGGG






CCCGGCCCGCCGCTCACCTTGAAGTTGACCGGGTCCACCCG
2909



AAGCTTGTGCGCGTGCAGGTCGCTCAGGGCGGACAGCGCGT



TGGGCATGTCGTCCACGTGCGCCACGGCGTTGGTCAGCG






CCTGAGCGACCTGCACG
2910






CGTGCAGGTCGCTCAGG
2911





Haemoglobin variant
GGCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGA
2912


Lys90Asn
GCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAAC


AAGc-AAT
TTCAAGGTGAGCGGCGGGCCGGGAGCGATCTGGGTCGAG






CTCGACCCAGATCGCTCCCGGCCCGCCGCTCACCTTGAAGT
2913



TGACCGGGTCCACCCGAAGCTTGTGCGCGTGCAGGTCGCTC



AGGGCGGACAGCGCGTTGGGCATGTCGTCCACGTGCGCC






GCGCACAAGCTTCGGGT
2914






ACCCGAAGCTTGTGCGC
2915





Haemoglobin variant
GACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCA
2916


Asp94His
CGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGA


gGAC-CAC
GCGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATG






CATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCCGCTC
2917



ACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCGCGTG



CAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGTCGTC
.






TTCGGGTGGACCCGGTC
2918






GACCGGGTCCACCCGAA
2919





Haemoglobin variant
ACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCG
2920


Pro95Leu
CACAAGCTTCGGGTGGACCCGGTCAACTTCAAGGTGAGCGG


CCG-CTG
CGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGGCGC






GCGCCATCTCGCCCCTCGACCCAGATCGCTCCCGGCCCGCC
2921



GCTCACCTTGAAGTTGACCGGGTCCACCCGAAGCTTGTGCG



CGTGCAGGTCGCTCAGGGCGGACAGCGCGTTGGGCATGT






GGTGGACCCGGTCAACT
2922






AGTTGACCGGGTCCACC
2923





Haemoglobin variant
TAGCGCAGGCGGCGGCTGCGGGCCTGGGCCGCACTGACCC
2924


Ser102Arg
TCTTCTCTGCACAGCTCCTAAGCCACTGCCTGCTGGTGACCC


aAGC-CGC
TGGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGC






GCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGCGGCCAG
2925



GGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCAGAGAAGA



GGGTCAGTGCGGCCCAGGCCCGCAGCCGCCGCCTGCGCTA






AGCTCCTAAGCCACTGC
2926






GCAGTGGCTTAGGAGCT
2927





Haemoglobin H disease
GGCGGCGGCTGCGGGCCTGGGCCGCACTGACCCTCTTCTCT
2928


Cys104Tyr
GCACAGCTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGC


TGC-TAC
CCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTC






GAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGG
2929



CGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGAGCTGTGCA



GAGAAGAGGGTCAGTGCGGCCCAGGCCCGCAGCCGCCGCC






AAGCCACTGCCTGCTGG
2930






CCAGCAGGCAGTGGCTT
2931





Haemoglobin variant
CCGCACTGACCCTCTTCTCTGCACAGCTCCTAAGCCACTGCC
2932


Ala111Val
TGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTCACC


GCC-GTC
CCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGCTTC






GAAGCCAGGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGT
2933



GAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGG



CAGTGGCTTAGGAGCTGTGCAGAGAAGAGGGTCAGTGCGG






CCTGGCCGCCCACCTCC
2934






GGAGGTGGGCGGCCAGG
2935





Haemoglobin variant
TCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTC
2936


Ala210Glu
CCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAA


GCG-GAG
GTTCCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAATA






TATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAGGAACTTG
2937



TCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGGCGGGGA



GGTGGGCGGCCAGGGTCACCAGCAGGCAGTGGCTTAGGA






CACCCCTGCGGTGCACG
2938






CGTGCACCGCAGGGGTG
2939





Haemoglobin variant
CCACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCG
2940


His122Gln
AGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTG


CACq-CAG
GCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAA






TTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAG
2941



GAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCGG



CGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTGG






GCGGTGCACGCCTCCCT
2942






AGGGAGGCGTGCACCGC
2943





Haemoglobin variant
CACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGA
2944


Ala123Ser
GTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGG


cGCC-TCC
CTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAG






CTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCA
2945



GGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTCG



GCGGGGAGGTGGGCGGCCAGGGTCACCAGCAGGCAGTG






CGGTGCACGCCTCCCTG
2946






CAGGGAGGCGTGCACCG
2947





Thalassaemia alpha
TGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTCACC
2948


Leu125Pro
CCTGCGGTGCACGCCTCCCTGGACAAGTTCCTGGCTTCTGT


CTG-CCG
GAGCACCGTGCTGACCTCCAAATACCGTTAAGCTGGAGC






GQTCCAGCTTAACGGTATTTGGAGGTCAGCACGGTGCTCACA
2949



GAAGCCAGGAACHGTCCAGGGAGGCGTGCACCGCAGGGG



TGAACTCGGCGGGGAGGTGGGCGGCCAGGGTCACCAGCA






CGCCTCCCTGGACAAGT
2950






ACTTGTCCAGGGAGGCG
2951





Haemoglobin variant
GCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTC
2952


Ser131Pro
CCTGGACAAGTfCCTGGCTTCTGTGAGCACCGTGCTGACCTC


tTCT-CCT
CAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTTCCTC






GAGGAACGGCTACCGAGGCTCCAGCTTAACGGTATTTGGAG
2953



GTCAGCACGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGA



GGCGTGCACCGCAGGGGTGAACTCGGCGGGGAGGTGGGC






TCCTGGCTTCTGTGAGC
2954






GCTCACAGAAGCCAGGA
2955





Haemoglobin variant
GAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCT
2956


Leu136Met
GGCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAGC


gCTG-ATG
TGGAGCCTCGGTAGCCGTTCCTCCTGCCCGCTGGGCCT






AGGCCCAGCGGGCAGGAGGAACGGCTACCGAGGCTCCAGC
2957



TTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCAG



GAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACTC






GCACCGTGCTGACCTCC
2958






GGAGGTCAGCACGGTGC
2959





Haemoglobin variant
AGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTTCCTG
2960


Leu136Pro
GCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAGCT


CTG-CCG
GGAGCCTCGGTAGCCGTTCCTCCTGCCCGCTGGGCCTC






GAGGCCCAGCGGGCAGGAGGAACGGCTACCGAGGCTCCAG
2961



CTTAACGGTATTTGGAGGTCAGCACGGTGCTCACAGAAGCCA



GGAACTTGTCCAGGGAGGCGTGCACCGCAGGGGTGAACT






CACCGTGCTGACCTCCA
2962






TGGAGGTCAGCACGGTG
2963





Haemoglobin variant
GTGCACGCCTCGCTGGACAAGTTCCTGGCTTCTGTGAGCACC
2964


Arg141Cys
GTGCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCC


cCGT-TGT
GTTCCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCC






GGAGGGCCCGTTGGGAGGCCCAGCGGGGAGGAGGAACGGC
2965



TACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCACGGT



GCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTGCAC






CCAAATACCGTTAAGCT
2966






AGCTTAACGGTATTTGG
2967





Haemoglobin variant
CACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTG
2968


Term142Gln
CTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTT


tTAA-CAA
CCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCC






GGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGGAAC
2969



GGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCA



CGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTG






AATACCGTTAAGCTGGA
2970






TCCAGCTTAACGGTATT
2971





Haemoglobin variant
CACGCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTG
2972


Term142Lys
CTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTT


tTAA-AAA
CCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCC







GGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGGAAC
2973



GGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAGCA



CGGTGCTCACAGAAGCCAGGAACTTGTCCAGGGAGGCGTG






AATACCGTTAAGCTGGA
2974






TCCAGCTTAACGGTATT
2975





Haemoglobin variant
CGCCTCCGTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCT
2976


Term142Tyr
GACCTCCAAATACCGTTAAGCTGGAGCCTCGGTAGCCGTTCC


TAAg-TAT
TCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCCCC






GGGGAGGAGGGCCCGTTGGGAGGCCCAGCGGGCAGGAGG
2977



AACGGCTACCGAGGCTCCAGCTTAACGGTATTTGGAGGTCAG



CACGGTGCTCACAGAAGCCAGGAACHGTCCAGGGAGGCG






TACCGTTAAGCTGGAGC
2978






GCTCCAGCTTAACGGTA
2979









EXAMPLE 17
Human Mismatch Repair—MLH1

The human MLH1 gene is homologous to the bacterial mutL gene, which is involved in mismatch repair. Mutations in the MLH1 gene have been identified in many individuals with hereditary nonpolyposis colorectal cancer (HNPCC). Mutations in the MLH1 gene are also implicated in predisposition to a variety of cancers associated with, for example, Muir-Torre syndrome and Turcot syndrome. The attached table discloses the correcting oligonucleotide base sequences for the MLH1 oligonucleotides of the invention.










TABLE 24







MLH1 Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:





Non-polyposis
TTGGCTGAAGGCACTTCCGTTGAGCATCTAGACGTTTCCTTG
2980



colorectal cancer
GCTCTTCTGGCGCCAAAATGTCGTTCGTGGCAGGGGTTATTC


Met1Arg
GGCGGCTGGACGAGACAGTGGTGAACCGCATCGCGGC





ATG-AGG
GCCGCGATGCGGTTCACCACTGTCTCGTCCAGCCGCCGAAT
2981



AACCCCTGCCACGAACGACATTTTGGCGCCAGAAGAGCCAA



GGAAACGTCTAGATGCTCAACGGAAGTGCCTTCAGCCAA






CGCCAAAATGTCGTTCG
2982






CGAACGACATTTTGGCG
2983





Non-polyposis
TTGGCTGAAGGCACTTCCGTTGAGCATCTAGACGTTTCCTTG
2984


colorectal cancer
GCTCTTCTGGCGCCAAAATGTCGTTCGTGGCAGGGGTTATTC


Met1Lys
GGCGGCTGGACGAGACAGTGGTGAACCGCATCGCGGC





ATG-AAG
GCCGCGATGCGGTTCACCACTGTCTCGTCCAGCCGCCGAAT
2985



AACCCCTGCCACGAACGACATTTTGGCGCCAGAAGAGCCAA



GGAAACGTCTAGATGCTCAACGGAAGTGCCTTCAGCCAA






CGCCAAAATGTCGTTCG
2986






CGAACGACATTTTGGCG
2987





Non-polyposis
TGGTGAACCGCATCGCGGCGGGGGAAGTTATCCAGCGGCCA
2988


colorectal cancer
GCTAATGCTATCAAAGAGATGATTGAGAACTGGTACGGAGGG


Met35Arg
AGTCGAGCCGGGCTCACTTAAGGGCTACGACTTAACGG





ATG-AGG
CCGTTAAGTCGTAGCCCTTAAGTGAGCCCGGCTCGACTCCCT
2989



CCGTACCAGTTCTCAATCATCTCTTTGATAGCATTAGCTGGCC



GCTGGATAACTTCCCCCGCCGCGATGCGGTTCACCA






CAAAGAGATGATTGAGA
2990






TCTCAATCATCTCTTTG
2991





Non-polyposis
TAGAGTAGTTGCAGACTGATAAATTATTTTCTGTTTGATTTGCC
2992


colorectal cancer
AGTTTAGATGCTAAAATCCACAAGTATTCAAGTGATTGTTAAAG


Ser44Phe
AGGGAGGCCTGAAGTTGATTCAGATCCAAGACAA





TCC-TTC
TTGTCTTGGATCTGAATCAACTTGAGGCCTCCCTCTTTAACAA
2993



TCACTTGAATACTTGTGGATTTTGCATCTTAAACTGGCAAATCA



AACAGAAAATAATTTATCAGTCTGCAACTACTCTA






TGCAAAATCCACAAGTA
2994






TACTTGTGGATTTTGCA
2995





Non-polyposis
GCAAAATCCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGC
2996


colorectal cancer
CTGAAGTTGATTCAGATCCAAGACAATGGCACCGGGATCAGG


Gln62Lys
GTAAGTAAAACCTCAAAGTAGCAGGATGTTTGTGCGC





CAA-AAA
GCGCACTAAACATCCTGCTACTTTGAGGTTTTACTTACCCTGAT
2997



CCCGGTGCCATTGTCTTGGATCTGAATCAACTTCAGGCCTCC



CTCTTTAACAATCACTTGAATACTTGTGGATTTTGC






TTCAGATCCAAGACAAT
2998






ATTGTCTTGGATCTGAA
2999





Non-polyposis
GCAAAATCCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGC
3000


colorectal cancer
CTGAAGTTGATTCAGATCCAAGACAATGGCACCGGGATCAGG


Gln62Term
GTAAGTAAAACCTCAAAGTAGCAGGATGTTTGTGCGC





CAA-TAA
GCGCACAAACATCCTGCTACTTTGAGGTTTTACTTACCCTGAT
3001



CCCGGTGCCATTGTCTTGGATCTGAATCAACTTCAGGCCTCC



CTCTTTAACAATCACTTGAATACTTGTGGATTTTGC






TTCAGATCCAAGACAAT
3002






ATTGTCTTGGATCTGAA
3003





Non-polyposis
CCACAAGTATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGT
3004


colorectal cancer
TGATTCAGATCCAAGACAATGGCACCGGGATCAGGGTAAGTA


Asn64Ser
AAACCTCAAAGTAGCAGGATGTTTGTGCGCTTCATGG





AAT-AGT
CCATGAAGCGCACAAACATCCTGCTACTTTGAGGTTTTACTTA
3005



CCCTGATCCCGGTGCCATTCTCTTGGATCTGAATCAACTTCA



GGCCTCCCTCTTTAACAATCACTTGAATACTTGTGG






CCAAGACAATGGCACCG
3006






CGGTGCCATTGTCTTGG
3007





Non-polyposis
ATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTCAGA
3008


colorectal cancer
TCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAAACCTCAA


Gly67Arg
AGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCA





GGG-AGG
TGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT
3009



TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATC



AACTTCAGGCCTCCGTCTTTAACAATCACTTGAAT






ATGGCACCGGGATCAGG
3010






CCTGATCCCGGTGCCAT
3011





Non-polyposis
ATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTCAGA
3012


colorectal cancer
TCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAACCTCAA


Gly67Arg
AGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCA





GGG-CGG
TGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT
3013



TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATC



AACTTCAGGCCTCCCTCTTTAACAATCACTTGAAT






ATGGCACCGGGATCAGG
3014






CCTGATCCCGGTGCCAT
3015





Non-polyposis
ATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAGTTGATTTCAGA
3016


colorectal cancer
TCCAAGACAATGGCACCGGGATCAGGGTAAGTAAAACCTCAA


Gly67Trp
AGTAGCAGGATGTTTGTGCGCTTCATGGAAGAGTCA





GGG-TGG
TGACTCTTCCATGAAGCGCACAAACATCCTGCTACTTTGAGGT
3017



TTTACTTACCCTGATCCCGGTGCCATTGTCTTGGATCTGAATC



AACTTCAGGCCTCCCTCTTTAACAATCACTTGAAT






ATGGCACCGGGATCAGG
3018






CCTGATCCCGGTGCCAT
3019





Non-polyposis
GTAACATGATTATTTACTCATCTTTTGGTATCTAACAGAPAGA
3020


colorectal cancer
AGATCTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTG


Cys77Arg
CAGTCCTTTGAGGATTTAGCCAGTATTTCTACCT





TGT-CGT
AGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTTTACT
3021



AGTAGTGAACCTTTCACATACAATATCCAGATCTTTCTTTGTT



AGATACCAAAAAGATGAGTAAATAATCATGTTAC






ATATTGTATGTGAAAGG
3022






CCTTTCACATACAATAT
3023





Non-polyposis
TAACATGATTATTTACTCATCTTTTTGGTATCTAACAGAAGAA
3024


colorectal cancer
GATCTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTGC


Cys77Tyr
AGTCCTTTGAGGATTTAGCCAGTATTTCTACCTA





TGT-TAT
TAGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTTTAC
3025



TAGTAGTGAACCTTTCACATACAATATCCAGATCTTCTTTCTGT



TAGATACCAAAAAGATGAGTAAATAATCATGTTA






TATTGTATGTGAAAGGT
3026






ACCTTTCACATACAATA
3027





Non-polyposis
CTGGATATTGTATGTGAAAGGTTCACTACTAGTAAACTGCAGT
3028


colorectal cancer
CCTTTGAGGATTTAGCCAGTATTTCTACCTATGGCTTTCGAGG


Ser93Gly
TGAGGTAAGCTAAAGATTCAAGAAATGTGTAAAAT





AGT-GGT
ATTTTACACATTTCTTGAATCTTTAGCTTACCTCACCTCGAAAG
3029



CCATAGGTAGAAATACTGGCTAAATCCTCAAAGGACTGCAGTT



TACTAGTAGTGAACCTTTCACATACAATATCCAG






ATTTAGCCAGTATTTCT
3030






AGAAATACTGGCTAAAT
3031





Non-polyposis
TTCACTACTAGTAAACTGCAGTCCTTTGAGGATTTAGCCAGTA
3032


colorectal cancer
TTTCTACCTATGGCTTTCGAGGTGAGGTAAGCTAAAGATTCAA


Arg100Term
GAAATGTGTAAAATATCCTCCTGTGATGACATTGT





CGA-TGA
ACAATGTCATCACAGGAGGATATTTTACACATTTCTTGAATCTT
3033



TAGCTTACCTCACCTCGAAAGCCATAGGTAGAAATACTGGCTA



AATCCTCAAAGGACTGCAGTTTACTAGTAGTGAA






ATGGCTTTCGAGGTGAG
3034






CTCACCTCGAAAGCCAT
3035





Non-polyposis
ACCCAGCAGTGAGTTTTTCTTTCAGTCTATTTTCTTTTCTTCCT
3036


colorectal cancer
TAGGCTTTGGCCAGCATAAGCCATGTGGCTCATGTTACTATTA


Ile107Arg
CAACGAAAACAGCTGATGGAAAGTGTGCATACAG





ATA-AGA
CTGTATGCACACTTTCCATCAGCTGTTTTCGTTGTAATAGTAA
3037



CATGAGCCACATGGCTTATGCTGGCCAAAGCCTTAGGAAGAA



AAGAAAATAGACTGAAAGAAAAACTCACTGCTGGGT






GGCCAGCATAAGCCATG
3038






CATGGCTTATGCTGGCC
3039





Non-polyposis
TTTCTTTTCTTCCTTAGGCTTTGGCCAGCATAAGCCATGTGGC
3040


colorectal cancer
TCATGTTACTATTACAACGAAAACAGCTGATGGAAAGTGTGCA


Thr117Arg
TACAGGTATAGTGCTGACTTCTTTTACTCATATAT





ACG-AGG
ATATATGAGTAAAAGAAGTCAGCACTATACCTGTATGCACACT
3041



TTCCATCAGCTGTTTTCGTTGTAATAGTAACATGAGCCACATG



GCTTATGCTGGCCAAAGCCTAAGGAAGAAAAGAAA






TATTACAACGATAAACAG
3042






CTGTTTTCGTTGTAATA
3043





Non-polyposis
TTTCTTTTCTTCCTTAGGCTTTGGCCAGCATAAGCCATGTGGC
3044


colorectal cancer
TCATGTTACTATTACAACGAAAACAGCTGATGGAAAGTGTGCA


Thr117Met
TACAGGTATAGTGCTGACTTCTTTTACTCATATAT





ACG-ATG
ATATATGAGTTAAAAGAAGTCAGCACTATACCTGTATGCACACT
3045



TTCCATCAGCTGTTTTCGTTGTAATAGTAACATGAGCCACATG



GCTTATGCTGGCCAAAGCGTAAGGAAGAAAAGAAA






TATTACAACGAAAACAG
3046






CTGTTTTCGTTGTAATA
3047





Non-polyposis
TCTATCTCTCTACTGGATATTAATTTGTTATATTTTCTCATTAGA
3048


colorectal cancer
GCAAGTTACTCAGATGGAAAACTGAAAGCCCCTCCTAAACCA


Gly133Term
TGTGCTGGCAATCAAGGGACCCAGATCACGGTAA





GGA-TGA
TTACCGTGATCTGGGTCCCTTGATTGCCAGCACATGGTTTAG
3049



GAGGGGCTTTCAGTTTTCCATCTGAGTAACTTGCTCTAATGAG



ATAAATATAACAAATTAATATCCAGTAGAGAGATAGA






ACTCAGATGGAAAACTG
3050






CAGTTTTCCATCTGAGT
3051





Non-polyposis
TAGTGTGTGTTTTTGGCAACTCTTTTCTTACTCTTTTGTTTTTC
3052


colorectal cancer
TTTTCCAGGTATTCAGTACACAATGCAGGCATTAGTTTTCTCAG


Val185Gly
TTAAAAAAGTAAGTTCTTGGTTTATGGGGGATGG





GTA-GGA
CCATCCCCCATAAACCAAGAAGTTACTTTTTTAACTGAGAAAC
3053



TAATGCCTGCATTGTGTACTGAATACCTGGAAAAGAATAAACAA



AAGAGTAAGTAAAAGAGTTGCCAAAAACACACACTA






GTATTCAGTACACAATG
3054






CATTGTGTACTGAATAC
3055





Non-polyposis
TTTCTTACTCTTTTGTTTTTCTTTTCCAGGTATTCAGTACACAAT
3056


colorectal cancer
GCAGGCATTAGTTTCTCAGTTAAAAAAGTAAGTTCTTGGTTTAT


Ser193Pro
GGGGGATGGTTTTGTTTTATGTAAAAGAAAAAA





TCA-CCA
TTTTTTCTTTTCATAAAACAAAACCATCCCCCATAAACCAAGAA
3057



CTTACTTTTTTAACTGAGAAACTAATGCCTGCATTGTGTACTG



AATACCTGGAAAAGAAAAACAAAAGAGTAAGAAA






TTAGTTTCTCAGTTAAA
3058






TTTAACTGAGAAACTAA
3059





Non-polyposis
TTTGTTTATCAGCTAGGAGAGACAGTAGCTGATGTTAGGACA
3060


colorectal cancer
CTACCCAATGCCTCAACCGTGGACAATATTCGCTCCATCTTTG



GAAATGCTGTTAGTCGGTATGTCGATAACCTATATA






TATATAGGTTATCGACATACCGACTAACAGCATTTCCAAAGAT
3061



GGAGCGAATATTGTCCACGGTTGAGGCATTGGGTAGTGTCCT



AACATCAGCTACTGTCTCTCCTTGCTGATAAACAAA






CCTCAACCGTGGACAAT
3062






ATTGTCCACGGTTGAGG
3063





Non-polyposis
CAAGGAGAGACAGTAGCTGATGTTAGGACACTACCCAATGCC
3064


colorectal cancer
TCAACCGTGGACAATATTCGCTCCATCTTTGGAAATGCTGTTA


Arg217Cys
GTCGGTATGTCGATAACCTATATAAAAAAAATCTTTT





CGC-TGC
AAAAGATTTTTTTATATAGGTTATCGACATACCGACTAACAGCA
3065



TTTCCAAAGATGGAGCGAATATTGTCCACGGTTGAGGCATTG



GGTAGTGTCCTAACATCAGCTACTGTCTCTCCTTG






ACAATATTCGCTCCATC
3066






GATGGAGCGAATATTGT
3067





Non-polyposis
GAGACAGTAGCTGATGTTAGGACACTACCCAATGCCTCAACC
3068


colorectal cancer
GTGGACAATATTCGCTCCATCTTTGGAAATGCTGTTAGTCGGT


Ile219Val
ATGTCGATAACCTATATAAAAAAATCTTTTACATTT





ATC-GTC
AAATGTAAAAGATTTTTTTATATAGGTTATCGACATACCGACTA
3069



ACAGCATTTCCAAAGATGGAGCGAATATTGTCCACGGTTGAG



GCATTGGGTAGTGTCCTAACATCAGCTACTGTCTC






TTCGCTCCATCTTTGGA
3070






TCCAAAGATGGAGCGAA
3071





Non-polyposis
CTAATAGAGAACTGATAGTAAATTGGATGTGAGGATAAAACCCT
3072


colorectal cancer
AGCCTTCAAAATGAATGGTTACATATCCAATGCAAACTACTCA


Gly244Asp
GTGAAGAAGTGCATCTTCTTACTCTTCATCAACCG





GGT-GAT
CGGTTGATGAAGAGTAAGAAGATGCACTTCTTCACTGAGTAG
3073



TTTGCATTGGATATGTAACCATTCATTTTGAAGGCTAGGGTT



TATCCTCACATCCAATTTCTATCAGTTCTCTATTAG






AATGAATGGTTACATAT
3074






ATATGTAACCATTCATT
3075





Non-polyposis
GATGTGAGGATAAAACCCTAGCCTTCAAPATGAATGGTTACAT
3076


colorectal cancer
ATCCAATGCAAACTACTCAGTGAAGAAGTGCATCTCTTACTC


Ser252Term
TTCATCAACCGTAAGTTAAAAAGAACCACATGGGA





TCA-TAA
TCCCATGTGGTTCTTTTTAACTTACGGTTGATGAAGAGTAAGA
3077



AGATGCACTTCTTCACTGAGTAGTTTGCATTGGATATGTAACC



ATTCATTTTGAAGGCTAGGGTTTTATCCTCACATC






AAACTACTCAGTGAAGA
3078






TCTTCACTGAGTAGTTT
3079





Non-polyposis
CACCCCTCAGGACAGTTTTGAACTGGTTGCTTTCTTTTTATTG
3080


colorectal cancer
TTTAGATCGTCTGGTAGAATCAACTTCCTTGAGAAAAGCCATA


Glu268Gly
GAAACAGTGTATGCAGCCTATTTGCCCAAAAACAC





GAA-GGA
GTGTTTTTGGGCAAATAGGCTGCATACACTGTTTCTATGGCTT
3081



TTCTCAAGGAAGTTGATTCTACCAGACGATCTAAACAATAAAA



AGAAAGCAACCAGTTCAAAACTGTCCTGAGGGGTG






TCTGGTAGAATCAACTT
3082






AAGTTGATTCTACCAGA
3083





Non-polyposis
CCCTCAGGACAGTTTTGAACTGGTTGCTTTCTTTTTATTGTTTA
3084


colorectal cancer
GATCGTCTGGTAGAATCAACTTCCTTGAGTAAAGCCATAGAAA


Ser269Term
CAGTGTATGCAGCCTATTTGCCCAAAAACACACA





TCA-TGA
TGTGTGTTTTTGGGCAAATAGGCTGCATACACTGTTTCTATGG
3085



CTTTTCTCAAGGAAGTTGATTCTACCAGACGATCTAAACAATA



AAAAGAAAGCAACCAGTTCAAAACTGTCCTGAGGG






GGTAGAATCAACTTCCT
3086






AGGAAGTTGATTCTACC
3087





Non-polyposis
CTTTTTCTCCCCCTCCCACTATCTAAGGTAATTGTTCTCTCTTA
3088


colorectal cancer
TTTTCCTGACAGTTTAGAAATCAGTCCCCAGAATGTGGATGTT


Glu297Term
AATGTGCACCCCACTAAAGCATGAAGTTCACTTCC





GAA-TAA
GGAAGTGAACTTCATGCTTTGTGGGGTGCACATTAACATCCA
3089



CATTCTGGGGACTGATTTCTAAACTGTCAGGAAAATAAGAGAG



AACAATTACCTTAGATAGTGGGAGGGGGAGAAAAAG






ACAGTTTAGAAATCAGT
3090






ACTGATTTCTAAACTGT
3091





Non-polyposis
CTCCCACTATCTAAGGTAATTGTTCTCTCTTATTTTCCTGACAG
3092


colorectal cancer
TTTAGAAATCAGTCCCCAGAATGTGGATGTTAATGTGCACCCC


Gln301Term
ACAAAGCATGAAGTTCACTTCCTGCACGAGGAGA





CAG-TAG
TCTCCTCGTGCAGGAAGTGAACTTCATGCTTTGTGGGGTGCA
3093



CATTAACATCCACATTCTGGGGACTGATTTCTAAACTGTCAGG



AAAATAAGAGAGAACAATTACCTTAGATAGTGGGAG






TCAGTCCCCAGAATGTG
3094






CACATTCTGGGGACTGA
3095





Non-polyposis
ATGTGCACCCCACAAAGCATGAAGTTCACTTCGTGCACGAGG
3096


colorectal cancer
AGAGCATCCTGGAGCGGGTGCAGCAGCACATCGAGAGCAAG


Val326Ala
CTCCTGGGCTCCAATTCCTCCAGGATGTACTTCACCCA





GTG-GCG
TGGGTGAAGTACATCCTGGAGGAATTGGAGCCCAGGAGCTT
3097



GCTCTCGATGTGCTGCTGCACCCGCTCCAGGATGCTCTCCT



CGTGCAGGAAGTGAACTTCATGCTTTGTGGGGTGCACAT






GGAGCGGGTGCAGCAGC
3098






GCTGCTGCACCCGCTCC
3099





Non-polyposis
CCACAAAGCATGAAGTTCACTTCCTGCACGAGGAGAGCATCC
3100


colorectal cancer
TGGAGCGGGTGCAGCAGCACATCGAGAGCAAGCTCCTGGGC


His329Pro
TCCAATTCCTCCAGGATGTACTTCACCCAGGTCAGGGC





CAC-CCC
GCCCTGACCTGGGTGAAGTACATCCTGGAGGAATTGGAGCC
3101



CAGGAGCTTGCTCTCGATGTGCTGCTGCACCCGCTCCAGGA



TGCTCTCCTCGTGCAGGAAGTGAACTTCATGCTTTGTGG






GCAGCAGCACATCGAGA
3102






TCTCGATGTGCTGCTGC
3103





Non-polyposis
CAAGTCTGACCTCGTCTTCTACTTCTGGAAGTAGTGATAAGGT
3104


colorectal cancer
CTATGCCCACCAGATGGTTCGTACAGATTCCCGGGAACAGAA


Val384Asp
GCTTGATGCATTTCTGCAGCCTCTGAGCAAACCCCT





GTT-GAT
AGGGGTTTGCTCAGAGGCTGCAGAAATGCATCAAGCTTCTGT
3105



TCCCGGGAATCTGTACGAACCATCTGGTGGGCATAGACCTTA



TCACTACTTCCAGAAGTAGAAGACGAGGTCAGACTTG






CCAGATGGTTCGTACAG
3106






CTGTACGAACCATCTGG
3107





Non-polyposis
AGTGGCAGGGCTAGGCAGCAAGATGAGGAGATGCTTGAACT
3108


colorectal cancer
CCCAGCCCCTGCTGAAGTGGCTGCCAAAAATCAGAGCTTGGA


Ala441Thr
GGGGGATACAACAAAGGGGACTTCAGAAATGTCAGAGA





GCT-ACT
TCTCTGACATTTCTGAAGTCCCCTTTGTTGTATCCCCCTCCAA
3109



GCTCTGATTTTTGGCAGCCACTTCAGCAGGGGCTGGGAGTTC



AAGCATCTCCTCATCTTGCTGCCTAGCCCTGCCACT






CTGAAGTGGCTGCCAAA
3110






TTTGGCAGCCACTTCAG
3111





Non-polyposis
CTTCATTGCAGAAAGAGACATCGGGAAGATTCTGATGTGGAA
3112


colorectal cancer
ATGGTGGAAGATGATTCCCGAAAGGAAATGACTGCAGCTTGT


Arg487Term
ACCCCCCGGAGAAGGATCATTAACCTCACTAGTGTTT





CGA-TGA
AAACACTAGTGAGGTTAATGATCCTTCTCCGGGGGGTACAAG
3113



CTGCAGTCATTTCCTTTCGGGAATCATCTTCCACCATTTCCAC



ATCAGAATCTTCCCGATGTCTCTTTCTGCAATGAAG






ATGATTCCCGTAAAGGAA
3114






TTCCTTTCGGGAATCAT
3115





Non-polyposis
AGACATCGGGAAGATTCTGATGTGGAAATGGTGGAAGATGAT
3116


colorectal cancer
TCCCGAAAGGAAATGACTGCAGCTTGTACCCCCCGGAGAAG


Ala492Thr
GATCATTAACCTCACTAGTGTTTTGAGTCTCCAGGAAG





GCA-ACA
CTTCCTGGAGACTCAAAACACTAGTGAGGTTAATGATCCTTCT
3117



CCGGGGGGTACAAGCTGCAGTCATTTCCTTTCGGGAATCATC



TTCCACCATTTCCACATCAGAATCTTCCCGATGTCT






AAATGACTGCAGCTTGT
3118






ACAAGCTGCAGTCATTT
3119





Non-polyposis
CCCGAAAGGAAATGACTGCAGCTTGTACCCCCCGGAGAAGG
3120


colorectal cancer
ATCATTAACCTCACTAGTGTTTTGAGTCTCCAGGAAGAAATTA


Val506Ala
ATGAGCAGGGACATGAGGGTACGTAAACGCTGTGGCC





GTT-GCT
GGCCACAGCGTTTACGTACCCTCATGTCCCTGCTCATTAATTT
3121



CTTCCTGGAGACTCAAAACACTAGTGAGGTTAATGATCCTTCT



CCGGGGGGTACAAGCTGCAGTCATTTCCTTTCGGG






CACTAGTGTTTTGAGTC
3122






GACTCAAAACACTAGTG
3123





Non-polyposis
GGGAGATGTTGCATAACCACTCCTTCGTGGGCTGTGTGTGAATC
3124


colorectal cancer
CTCAGTGGGCCTTGGCACAGCATCAAACCAAGTTATACCTTCT


Gln542Leu
TTCAACACCACCAAGCTTAGGTAAATCAGCTGAGTGTG





CAG-CTG
CACACTCAGCTGATTTACCTAAGCTTGGTGGTGTTGAGAAGG
3125



TATAACTTGGTTTGATGCTGTGCCAAGGCCCACTGAGGATTC



ACACAGCCCACGTAGGAGTGGTTATGCTACATCTCCC






CTTGGCACAGCATCAAA
3126






TTTGATGCTGTGCCAAG
3127





Non-polyposis
CCTTCGTGGGCTGTGTGAATCCTCAGTGGGCCTTGGCACAG
3128


colorectal cancer
CATCAAACCAAGTTATACCTTCTCAACACCACCAAGCTTAGGT


Leu549Pro
AAATCAGCTGAGTGTGTGAACAAGCAGAGCTACTACA





CTT-CCT
TGTAGTAGCTCTGCTTGTTCACACACTCAGCTGATTTACCTAA
3129



GCTTGGTGGTGTTGAGAAGGTATAACTTGGTTTGATGCTGTG



CCAAGGCCCACTGAGGATTCACACAGCCCACGAAGG






GTTATACCTTCTCAACA
3130






TGTTGAGAAGGTATAAC
3131





Non-polyposis
TGGGCTGTGTGAATCCTCAGTGGGCCTTGGCACAGCATCAAA
3132


colorectal cancer
CCAAGTTATACCTTCTCAACACCACCAAGCTTAGGTAAATCAG


Asn551Thr
CTGAGTGTGTGAACAAGCAGAGCTACTACAACAATG





AAC-ACC
CATTGTTGTAGTAGCTCTGCTTGTTCACACACTCAGCTGATTT
3133



ACCTAAGCTTGGTGGTGTTGAGAAGGTATAACTTGGTTTGATG



CTGTGCCAAGGCCCACTGAGGATTCACACAGCCCA






CCTTCTCAACACCACCA
3134






TGGTGGTGTTGAGAAGG
3135





Non-polyposis
ATGAATTCAGCTTTTCCTTAAAGTCACTTCATTTTTATTTTCAG
3136


colorectal cancer
TGAAGAACTGTTCTACCAGATACTCATTTATGATTTTGCCAATT


Gln562Term
TTGGTGTTCTCAGGTTATCGGTAAGTTTAGATC





CAG-TAG
GATCTAAACTTACCGATAACCTGAGAACACCAAAATTGGCAAA
3137



ATCATAAATGAGTATCTGGTAGAACAGTTCTTCACTGAAAATA



AAAATGAAGTGACTTTAAGGAAAAGCTGAATTCAT






TGTTCTACCAGATACTC
3138






GAGTATCTGGTAGAACA
3139





Non-polyposis
GCTTTTCCTTAAAGTCACTTCATTTTTATTTTCAGTGAAGAACT
3140


colorectal cancer
GTTCTACCAGATACTCATTTATGATTTTGCCAATTTTGGTGTTC


Ile565Phe
TCAGGTTATCGGTAAGTTTAGATCCTTTTCACT





ATT-TTT
AGTGAAAAGGATCTAAACTTACCGATAACCTGAGAACACCAAA
3141



ATTGGCAAAATCATAAATGAGTATCTGGTAGAACAGTTCTTCA



CTGAAAATAAAAATGAAGTGACTTTAAGGAAAAGC






AGATACTCATTTATGAT
3142






ATCATAAATGAGTATCT
3143





Non-polyposis
TTTTCAGTGAAGAACTGTTCTACCAGATACTCATTTATGATTTT
3144


colorectal cancer
GCCAATTTTGGTGTTCTCAGGTTATCGGTAAGTTTAGATCCTT


Leu574Pro
TTCACTTCTGAAATTTCAACTGATCGTTTCTGAA





CTC-CCC
TTCAGAAACGATCAGTTGAAATTTCAGAAGTGAAAAGGATCTA
3145



AACTTACCGATAACCTGAGAACACCAAAATTGGCAAAATCATA



AATGAGTATCTGGTAGAACAGTTCTTCACTGAAAA






TGGTGTTCTCAGGTTAT
3146






ATAACCTGAGAACACCA
3147





Non-polyposis
TGGATGCTCCGTTTAAAGCTTGCTCCTTCATGTTCTTGCTTCTT
3148


colorectal cancer
CCTAGGAGCCAGCACCGCTCTTTGACCTTGCCATGCTTGCCT


Leu582Val
TAGATAGTCCAGAGAGTGGCTGGACAGAGGAAGATG





CTC-GTC
CATCTTCCTCTGTCCAGCCACTCTCTGGACTATCTAAGGCAA
3149



GCATGGCAAGGTCAAAGAGCGGTGCTGGCTCCTAGGAAGAA



GCAAGAACATGAAGGAGCAAGCTTTAACGGAGCATCCA






CAGCACCGCTCTTTGAC
3150






GTCAAAGAGCGGTGCTG
3151





Non-polyposis
TGCTTGCCTTAGATAGTCCAGAGAGTGGCTGGACAGAGGAAG
3152


colorectal cancer
ATGGTCCCAAAGAAGGACTTGCTGAATACATTGTTGAGTTTCT


Leu607His
GAAGAAGAAGGCTGAGATGCTTGCAGACTATTTCTC





CTT-CAT
GAGAAATAGTCTGCAAGCATCTCAGCCTTCTTCTTCAGAAACT
3153



CAACAATGTATTCAGCAAGTCCTTCTTTGGGACCATCTTCCTC



TGTCCAGCCACTCTCTGGACTATCTAAGGCAAGCA






AGAAGGACTTGCTGAAT
3154






ATTCAGCAAGTCCTTCT
3155





Non-polyposis
ACAGAGGAAGATGGTCCCAAAGAAGGACTTGCTGAATACATT
3156


colorectal cancer
GTTGAGTTTCTGAAGAAGAAGGCTGAGATGCTTGCAGACTAT


Lys618Term
TTCTCTTTGGAAATTGATGAGGTGTGACAGCCATTCT





AAG-TAG
AGTATGGCTGTCACACCTCATCAATTTCCAAAGAGAAATAGTC
3157



TGCAAGCATCTCAGCCTTCTTCTTCAGAAACTCAACAATGTAT



TCAGCAAGTCCTTCTTTGGGACCATCTTCCTCTGT






TGAAGAAGAAGGCTGAG
3158






CTCAGCCTTCTTCTTCA
3159





Non-polyposis
CAGAGGAAGATGGTCCCAAAGAAGGACTTGCTGAATACATTG
3160


colorectal cancer
TTGAGTTTCTGAAGAAGAAGGCTGAGATGCTTGCAGACTATTT


Lys618Thr
CTCTTTGGAAATTGATGAGGTGTGACAGCCATTCTT





AAG-ACG
AAGAATGGCTGTCACACCTCATCAATTTCCAAAGAGAAATAGT
3161



CTGCAAGCATCTCAGCCTTCTTCTTCAGAAACTCAACAATGTA



TTCAGCAAGTCCTTCTTTGGGACCATCTTCCTCTG






GAAGAAGAAGGCTGAGA
3162






TCTCAGCCTTCTTCTTC
3163





Non-polyposis
TACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGAC
3164


colorectal cancer
TGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATCA


Arg659Leu
AGCAGATACTAAGCATTTCGGTACATGCATGTGTGC





CGA-CTA
GCACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCAC
3165



TGACCTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCT



CCAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTA






CATTCTTCGACTAGCCA
3166






TGGCTAGTCGAAGAATG
3167





Non-polyposis
TACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGAC
3168


colorectal cancer
TGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATCA


Arg659Pro
AGCAGATACTAAGCATTTCGGTACATGCATGTGTGC





CGA-CCA
GCACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCAC
3169



TGACGTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCT



CCTAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTA






CATTCTTCGACTAGCCA
3170






TGGCTAGTCGAAGAATG
3171





Non-polyposis
TTACCCCTTCTGATTGACAACTATGTGCCCCCTTTGGAGGGA
3172


colorectal cancer
CTGCCTATCTTCATTCTTCGACTAGCCACTGAGGTCAGTGATC


Arg659Term
AAGCAGATACTAAGCATTTCGGTACATGCATGTGTG





CGA-TGA
CACACATGCATGTACCGAAATGCTTAGTATCTGCTTGATCACT
3173



GACCTCAGTGGCTAGTCGAAGAATGAAGATAGGCAGTCCCTC



CAAAGGGGGCACATAGTTGTCAATCAGAAGGGGTAA






TCATTCTTCGACTAGCC
3174






GGCTAGTCGAAGAATGA
3175





Non-polyposis
TTGGACCAGGTGAATTGGGACGAAGAAAAGGAATGTTTTGAA
3176


colorectal cancer
AGCCTCAGTAAAGAATGCGCTATGTTCTATTCCATCCGGAAG


Ala681Thr
CAGTACATATCTGAGGAGTCGACCCTCTCAGGCCAGC





GCT-ACT
GCTGGCCTGAGAGGGTCGACTCCTCAGATATGTACTGCTTCC
3177



GGATGGAATAGAACATAGCGCATTCTTTACTGAGGCTTTCAAA



ACATTCCTTTTCTTCGTCCCAATTCACCTGGTCCAA






AAGAATGCGCTATGTTC
3178






GAACATAGCGCATTCTT
3179





Non-polyposis
AGGCTTATGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGG
3180


colorectal cancer
CTCCATTCCPAACTCCTGGAAGTGGACTGTGGAACACATTGT


Trp712Term
CTATAAAGCCTTGCGCTCACACATTCTGCCTCCTAA





TGG-TAG
TTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATAGACAATG
3181



TGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGAGCCAGGC



ACTTCACTCTGGAAAACACATTAGATGTCATAAGCCT






AAACTCCTGGAAGTGGA
3182






TCCACTTCCAGGAGTTT
3183





Non-polyposis
ATGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCAT
3184


colorectal cancer
TCCAAACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAA


Trp714Term
GCCTTGCGCTCACACATTCTGCCTCCTAAACATTT





TGG-TAG
AAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATAG
3185



ACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGAG



CCAGGCACTTCACTCTGGAAAACACATTAGATGTCAT






CTGGAAGTGGACTGTGG
3186






CCACAGTCCACTTCCAG
3187





Non-polyposis
TGACATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCATT
3188


colorectal cancer
CCAAACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAA


Trp714Term
GCCTTGCGCTCACACATTCTGCCTCCTAAACATTTC





TGG-TGA
GAAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTTTATA
3189



GACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAATGGA



GCCAGGCACTTCACTCTGGAAkACACATTAGATGTCA






TGGAAGTGGACTGTGGA
3190






TCCACAGTCCACTTCCA
3191





Non-polyposis
ATCTAATGTGTTTTCCAGAGTGAAGTGCCTGGCTCCATTCCAA
3192


colorectal cancer
ACTCCTGGAAGTGGACTGTGGAACACATTGTCTATAAAGCCTT


Val716Met
GCGCTCACACATTCTGCCTCCTAAACATTTCACAG





GTG-ATG
CTGTGAAATGTTTAGGAGGCAGAATGTGTGAGCGCAAGGCTT
3193



TATAGACAATGTGTTCCACAGTCCACTTCCAGGAGTTTGGAAT



GGAGCCAGGCACTTCACTCTGGAAAACACATTAGAT






AGTGGACTGTGGAACAC
3194






GTGTTCCACAGTCCACT
3195





Non-polyposis
GAGTGAAGTGCCTGGCTCCATTCCAAACTCCTGGAAGTGGAC
3196


colorectal cancer
TGTGGAACACATTGTCTATAAAGCCTTGCGCTCACACATTCTG


Tyr721Term
CCTCCTAAACATTTCACAGAAGATGGAAATATCCTG





TAT-TAA
CAGGATATTTCCATCTTCTGTGAAATGTTTAGGAGGCAGAATG
3197



TGTGAGCGCAAGGCTTTATAGACAATGTGTTCCACAGTCCAC



TTCCAGGAGTTTGGAATGGAGCCAGGCACTTCACTC






ATTGTCTATAAAGCCTT
3198






AAGGCTTTATAGACAAT
3199





Non-polyposis
CTAAACATTTCACAGAAGATGGAAATATCCTGCAGCTTGCTAA
3200


colorectal cancer
CCTGCCTGATCTATACAAAGTCTTTGAGAGGTGTTAAATATGG


Lys751Arg
TTATTTATGCACTGTGGGATGTGTTCTTCTTTCTC





AAA-AGA
GAGTAAGAAGAACACATCCCACAGTGCATAAATAACCATATTT
3201



AACACCTCTCAAAGACTTTGTATAGATCAGGCAGGTTAGCAAG



CTGCAGGATATTTCCATCTTCTGTGAAATGTTTAG






TCTATACAAAGTCTTTG
3202






CAAAGACTTTGTATAGA
3203





Non-polyposis
ACAGAAGATGGAAATATCCTGCAGCTTGCTAACCTGCCTGAT
3204


colorectal cancer
CTATACAAAGTCTTTGAGAGGTGTTAAATATGGTTATTTATGCA


Arg755Trp
CTGTGGGATGTGTTCTTCTTTCTCTGTATTCCGAT





AGG-TGG
ATCGGAATACAGAGAAAGAAGAACACATCCCAGAGTGCATAA
3205



ATAACCATATTTAACACCTCTCAAAGACTTTGTATAGATCAGG



CAGGTTAGCAAGCTGCAGGATATTTCCATCTTCTGT






TCTTTGAGAGGTGTTAA
3206






TTAACACCTCTCAAAGA
3207









EXAMPLE 18
Human Mismatch Repair—MSH2

The human MSH2 gene is homologous to the bacterial mutS gene, which is involved in mismatch repair. Mutations in the MSH2 gene have been identified in a variety of cancers, including, for example, ovarian tumors, colorectal cancer, endometrial cancer, uterine cancer. The attached table discloses the correcting oligonucleotide base sequences for the MSH2 oligonucleotides of the invention.










TABLE 25







MSH2 Mutations and Genome-Connecting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:





Non polyposis
TTTTCCACAAAAGACATTTATCAGGACCTCAACCGGTTGTTGA
3208



colorectal cancer
AAGGCAAAAAGGGAGAGCAGATGAATAGTGCTGTATTGCCAG


Gln252Term
AAATGGAGAATCAGGTACATGGATTATAAATGTGAA





CAG-TAG
TTCACATTTATAATCCATGTACCTGATTCTCCATTTCTGGCAAT
3209



ACAGCACTATTCATCTGCTCTCCCTTTTTGCCTTTCAACAACC



GGTTGAGGTCCTGATAAATGTCTTTTGTGGAAAA






AGGGAGAGCAGATGAAT
3210






ATTCATCTGCTCTCCCT
3211





Non polyposis
TCATCACTGTCTGCGGTAATCAAGTTTTTAGAACTCTTATCAG
3212


colorectal cancer
ATGATTCCAACTTTGGACAGTTTGAACTGACTACTTTTGACTT


Gln288Term
CAGCCAGTATATGAAATTGGATATTGCAGCAGTCA





CAG-TAG
TGACTGCTGCAATATCCAATTTCATATACTGGCTGAAGTCAAA
3213



AGTAGTCAGTTCAAACTGTCCAAAGTTGGAATCATCTGATAAG



AGTTCTAAAAACTTGATTACCGCAGACAGTGATGA






ACTTTGGACAGTTTGAA
3214






TTCAAACTGTCCAAAGT
3215





Non polyposis
AACTTTGGACAGTTTGAACTGACTACTTTTGACTTCAGCCAGT
3216


colorectal cancer
ATATGAAATTGGATATTGCAGCAGTCAGAGCCCTTAACCTTTT


Ala305Thr
TCAGGTAAAAAAAAAAAAAAAAAAAAAAAAAAAGG





GCA-ACA
CCTTTTTTTTTTTTTTTTTTTTTTTTTACCTGAAAAAGGTTAAG
3217



GGCTCTGACTGCTGCAATATCCAATTTCATATACTGGCTGAAG



TCAAAAGTAGTCAGTTCAAACTGTCCAAAGTT






TGGATATTGCAGGAGTC
3218






GACTGCTGCAATATCCA
3219





Non polyposis
AGCTTGCCATTCTTTCTATTTTATTTTTTGTTTACTAGGGTTCT
3220


colorectal cancer
GTTGAAGATACCACTGGCTCTCAGTCTCTGGCTGCCTTGCTG


Gly322Asp
AATAAGTGTAAAACCCCTCAAGGACAAAGACTTGT





GGC-GAC
ACAAGTCTTTGTCCTTGAGGGGTTTTACACTTATTCAGCAAGG
3221



CAGCCAGAGACTGAGAGCCAGTGGTATCTTCAACAGAACCCT



AGTAAACAAAAAATAAAATAGAAAGAATGGCAAGCT






TACCACTGGCTCTCAGT
3222






ACTGAGAGCCAGTGGTA
3223





Non polyposis
TTGCCATTCTTTCTATTTTATTTTTTGTTTACTAGGGTTCTGTTG
3224


colorectal cancer
AAGATACCACTGGCTCTCAGTCTGTGGCTGGCTTGCTGAATA


Ser323Cys
AGTGTAAAACCCCTCAAGGACAAAGACTTGTTAA





TCT-TGT
TTAACAAGTCTTTGTCCTTGAGGGGTTTTACACTTATTCAGCA
3225



AGGCAGCCAGAGACTGAGAGCCAGTGGTATCTTCAACAGAAC



CCTAGTAAACAAAAAATAAAATAGAAAGAATGGCAA






CACTGGCTCTCAGTCTC
3226






GAGACTGAGAGCCAGTG
3227





Non polyposis
GTGGAAGCTTTTGTAGAAGATGCAGAATGAGGCAGACTTTA
3228


colorectal cancer
CAAGAAGATTTACTTCGTCGATTCGCAGATCTTAACCGACTTG


Arg383Term
CCAAGAAGTTTCAAAGACAAGCAGCAAACTTACAAG





CGA-TGA
CTTGTAAGTTTGCTGCTTGTCTTTGAAACTTCTTGGCAAGTCG
3229



GTTAAGATCTGGGAATCGACGAAGTAAATCTTCTTGTAAAGTC



TGCCTCAATTCTGCATCTTCTACAAAAGCTTCCAC



TACTTCGTCGATTCCCA
3230






TGGGAATCGACGAAGTA
3231





Non polyposis
CAAGAAGATTTACTTCGTCGATTCCCAGATCTTAACCGACTTG
3232


colorectal cancer
CCAAGAAGTTTCAAAGACAAGCAGCAAACTTACAAGATTGTTA


Gln397Term
CCGACTCTATCAGGGTATAAAATCAACTACCTAATG





CAA-TAA
CATTAGGTAGTTGATTTATACCCTGATAGAGTCGGTAACAATC
3233



TTGTAAGTTTGCTGCTTGTCTTTGAAACTTCTTGGCAAGTCGG



TTAAGATCTGGGAATCGACGAAGTAAATCTTCTTG






TTCAAAGACAAGCAGCA
3234






TGCTGCTTGTCTTTGAA
3235





Non polyposis
GATCTTAACCGACTTGCCAAGAAGTTTCAAAGACAAGCAGCA
3236


colorectal cancer
AACTTACAAGATTGTTACCGACTCTATCAGGGTATAAATCAAC


Arg406Term
TACCTAATGTTATACAGGCTCTGGAAAAACATGAAG





CGA-TGA
CTTCATGTTTTTCCAGAGCCTGTATAACATTAGGTAGTTGATTT
3237



ATACCCTGATAGAGTCGGTAACAATCTTGTAAGTTTGCTGCTT



GTCTTTGAAACTTCTTGGCAAGTCGGTTAAGATC






ATTGTTACCGACTCTAT
3238






ATAGAGTCGGTAACAAT
3239





Non polyposis
GCAAACTTACAAGATTGTTACCGACTCTATCAGGGTATAAATC
3240


colorectal cancer
AACTACCTAATGTTATACAGGCTCTGGAAAATTACATGAAGGTAA


Gln419Term
CAAGTGATTTTGTTTTTTTGTTTTCTTCAACTCA





CAG-TAG
TGAGTTGAAGGAAAACAAAAAAACAAAATCACTTGTTACCTTC
3241



ATGTTTTTCGAGAGCCTGTATAACATTAGGTAGTTGATTTATAC



CCTGATAGAGTCGGTAACAATCTTGTAAGTTTGC






ATGTTATACAGGCTCTG
3242






CAGAGCCTGTATAACAT
3243





Non polyposis
TATTCTGTAAAATGAGATCTTTTTATTTGTTGTTTTACTACTTT
3244


colorectal cancer
CTTTTAGGAAAACACCAGAAATTATTGTTGGCAGTTTTTGTGA


Gln429Term
CTCCTCTTACTGATCTTCGTTCTGACTTCTCCA





GAG-TAG
TGGAGAAGTCAGAACGAAGATCAGTAAGAGGAGTCACAAAAA
3245



CTGCCAACAATAATTTCTGGTGTTTTCCTAAAAGAAAGTAGTA



AAACAAACAAATAAAAAGATCTCATTTTACAGAATA






GAAAACACCAGAAATTA
3246






TAATTTTGGTGTTTTC
3247





Non polyposis
CTCCTCTTACTGATCTTCGTTCTGACTTCTCCAAGTTTCAGGA
3248


colorectal cancer
AATGATAGAAACAACTTTAGATATGGATCAGGTATGGAATATA


Leu458Term
CTTTTTAATTTAAGCAGTAGTTATTTTTAAAAAGC





TTA-TGA
GCTTTTTAAAAATAACTACTGCTTAAATTTAAAAGTATATTGCA
3249



TACCTGATCCATATCTAAAGTTGTTTCTATCATTTCCTGAAACT



TGGAGAAGTCAGAACGAAGATCAGTAAGAGGAG






AACAACTTTAGATATGG
3250






CCATATCTAAAGTTGTT
3251





Non polyposis
TTTCTTCTTGATTATCAAGGCTTGGACCCTGGCAAAGAGATTA
3252


colorectal cancer
AACTGGATTCCAGTGCACAGTTTGGATATTACTTCGTGTAAC


Gln518Term
CTGTAAGGAAGAAAAAGTCCTTCGTAACAATAAAA





CAG-TAG
TTTTATTGTTACGAAGGACTTTTTCTTCCTTACAGGTTACACGA
3253



AAGTAATATCCAAACTGTGCACTGGAATCCAGTTTAATCTGTT



TGCCAGGGTCCAAGCCTTGATAATCAAGAAGAAA






CCAGTGCACAGTTTGGA
3254






TCCAAACTGTGCACTGG
3255





Non polyposis
GCTTGGACCCTGGCAAACAGATTAAACTGGATTCCAGTGCAC
3256


colorectal cancer
AGTTTGGATATTACTTTCGTGTAACCTGTAAGGAAGAAAAAGT


Arg524Pro
CCTTCGTAACAATAAAAACTTTAGTACTGTAGATAT





CGT-CCT
ATATCTACAGTACTTAAAGTTTTTATTGTTACGAAGGACTTTTTC
3257



TTCCTTACAGGTTACACGTAAAGTAATATCCAAACTGTGCACTG



GAATCCAGTTTAATCTGTTTGCCAGGGTCCAAGC






TTACTTTCGTGTAACCT
3258






AGGTTACACGAAAGTAA
3259





Non polyposis
TTAATATTTTTAATAAAACTGTTATTTCGATTTGCAGCAAATTGA
3260


colorectal cancer
CTTCTTTAAATGAAGAGTATACCAAAAATAAAACAGAATATGAA


Glu562Tal
GAAGCCCAGGATGCCATTGTTAAAGAAATTGT





GAG-GTG
ACAATTTCTTTAACAATGGCATCCTGGGCTTCTTCATATTCTGT
3261



TTTATTTTTGGTATACTCTTCATTTAAAGAAGTCAATTTGCTGC



AAATCGAAATAACAGTTTTATTAAAAATATTAA






AAATGAAGAGTATACCA
3262






TGGTATACTCTTCATTT
3263





Glioma
AATGAAGAGTATACCAAAAATAAAACAGAATATGAAGAAGCCC
3264


Glu580Term
AGGATGCCATTGTAAAGAAATTGTCAATATTTGTTCAGGTAAA


GAA-TAA
CTTAATAGAACTAATAATGTTCTGAATGTCACCT






AGGTGACATTCAGAACATTATTAGTTCTATTAAGTTTACCTGAA
3265



GAAATATTGACAATTTCTTTAAGAATGGCATCCTGGGCTTCTT



CATATTCTGTTTTATTTTTGGTATACTCTTCATT






TTGTTAAAGAAATTGTC
3266






GACAATTTCTTTAACAA
3267





Non polyposis
TGTTTTTATTTTTATACAGGGTATGTAGAACCAATGCAGACACT
3268


colorectal cancer
CAATGATGTGTTAGCTCAGCTAGATGCTGTTGTCAGCTTTGCT


Gln601Term
CACGTGTCAAATGGAGCACCTGTTCCATATGTAC





CAG-TAG
GTACATATGGAACAGGTGCTCCATTTGACACGTGAGCAAAGC
3269



TGACAACAGCATCTAGCTGAGCTAACACATCATTGAGTGTCTG



CATTGGTTCTACATAGCCTGTATAAAAATAAAAACA






TGTTAGCTCAGCTAGAT
3270






ATCTAGCTGAGCTAACA
3271





Non polyposis
AGCTCAGCTAGATGCTGTTGTCAGCTTTGCTCACGTGTCAAAT
3272


colorectal cancer
GGAGCACCTGTTCCATATGTACGACCAGCCATTTTGGAGAAA


Tyr619Term
GGACAAGGAAGAATTATATTAAAAGCATCCAGGCAT





TAT-TAG
ATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTCTCCA
3273



AAATGGCTGGTCGTACATATGGAACAGGTGCTCCATTTGACA



CGTGAGCAAAGCTGACAACAGCATCTAGCTGAGCT






GTTCCATATGTACGACC
3274






GGTCGTACATATGGAAC
3275





Non polyposis
CAGCTAGATGCTGTTGTCAGCTTTGCTCACGTGTCAAATGGA
3276


colorectal cancer
GCACCTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGA


Arg621Term
CAAGGAAGAATTATATTAATAGCATCCAGGCATGCTT





CGA-TGA
AAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTTC
3277



TCCAAAATGGCTGGTCGTACATATGGAACAGGTGCTCCATTT



GACACGTGAGCAAAGCTGACAACAGCATCTAGCTG






CATATGTACGACCAGCC
3278






GGCTGGTCGTACATATG
3279





Non polyposis
TAGATGCTGTTGTCAGCTTTGCTCAGGTGTCAAATGGAGCAC
3280


colorectal cancer
CTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGACAAG


Pro622Leu
GAAGAATTATATTAAAAGCATCCAGGCATGCTTGTGT





CCA-CTA
ACACAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTC
3281



CTTTCTCCAAAATGGCTGGTCGTACATATGGAACAGGTGCTC



CATTTGACACGTGAGCAAAGCTGACAACAGCATCTA






TGTACGACCAGCCATTT
3282






AAATGGCTGGTCGTACA
3283





Non polyposis
CCTGTTCCATATGTACGACCAGCCATTTTGGAGAAAGGACAA
3284


colorectal cancer
GGAAGAATTATATTAAAAGCATCCAGGCATGCTTGTGTTGAAG


Ala636Pro
TTCAAGATGAAATTGCATTTATTCCTAATGACGTAT





GCA-CCA
ATACGTCATTAGGAATAAATGCAATTTCATCTTGAAGTTCAACA
3285



CAAGCATGCCTGGATGCTTTTAATATAATTCTTCCTTGTCCTTT



CTCCAAAATGGCTGGTCGTACATATGGAACAGG






TATTAAAAGCATCCAGG
3286






CCTGGATGCTTTTAATA
3287





Non polyposis
ATGTACGACCAGCCATTTTGGAGAAAGGACAAGGAAGAATTA
3288


colorectal cancer
TATTAAAAGCATCCAGGCATGCTTGTGTTGAAGTTCAAGATGA


TTis639Arg
AATTGCATTTATTCCTAATGACGTATACTTTGAAAA





CAT-CGT
TTTTCAAAGTATACGTCATTAGGAATAAATGCAATTTCATCTTG
3289



AACTTCAACACAAGCATGCCTGGATGCTTTTAATATAATTCTTC



CTTGTCCTTTCTCCAAAATGGCTGGTCGTACAT






ATCCAGGCATGCTTGTG
3290






CACAAGCATGCCTGGAT
3291





Non polyposis
TATGTACGACCAGCCATTTTGGAGAAAGGACAAGGAAGAATT
3292


colorectal cancer
ATATTAAAAGCATCCAGGCATGCTTGTGTTGAAGTTCAAGATG


TTis639Tyr
AAATTGCATTTATTCCTAATGACGTATACTTTGAAA





CAT-TAT
TTTCAAAGTATACGTCATTAGGAATAAATGCAATTTCATCTTGA
3293



ACTTCAACACAAGCATGCCTGGATGCTTTTAATATAATTCTTC



CTTGTCCTTTCTCCAAAATGGCTGGTCGTACATA






CATCCAGGCATGCTTGT
3294






ACAAGCATGCCTGGATG
3295





Non polyposis
AAAGGACAAGGAAGAATTATATTAAAAGCATCCAGGCATGGTT
3296


colorectal cancer
GTGTTGAAGTTCAAGATGAAATTGCATTTATTCCTAATGACGT


Glu647Lys
ATACTTTGAAAAAGATAAACAGATGTTCCACATCA





GAA-AAA
TGATGTGGAACATCTGThTATCTTTTTCAAAGTATACGTCATTA
3297



GGAATAAATGCAATTTCATCTTGAACTTCAACACAAGCATGCC



TGGATGCTTTTAATATAATTCTTCCTTGTCCTTT






TTCAAGATGAAATTGCA
3298






TGCAATTTCATCTTGAA
3299





Non polyposis
ATCCAGGCATGCTTGTGTTGAAGTTCAAGATGAAATTGCATTT
3300


colorectal cancer
ATTCCTAATGACGTATACTTTGAAAAAGATAAACAGATGTTCCA


Tyr656Term
CATCATTACTGGTAAAAAACCTGGTTTTTGGGCT





TAC-TAG
AGCCCAAAAACCAGGTTTTTTACCAGTAATGATGTGGAACATC
3301



TGTTTATCTTTTTCAAAGTATACGTCATTAGGAATAAATGCAAT



TTCATCTTGAACTTCAACACAAGCATGCCTGGAT






GACGTATACTTTGTAAAA
3302






TTTTCAAAGTATACGTC
3303





Non polyposis
GAAAGAAGTTTAAAATCTTGCTTTCTGATATAATTTGTTTTGTA
3304


colorectal cancer
GGCCCCAATATGGGAGGTAAATCAACATATATTCGACAAACT


Gly674Asp
GGGGTGATAGTACTCATGGCCCAAATTGGGTGTTT





GGT-GAT
AAACACCCAATTTGGGCCATGAGTAGTATCACCCCAGTTTGTC
3305



GAATATATGTTGATTTACCTCCCATATTGGGGCCTACAAAACA



AATTATATCAGAAAGCAAGATTTTAAACTTCTTTTC






TATGGGAGGTAAATCAA
3306






TTGATTTACCTCCCATA
3307





Non polyposis
TTGCTTTCTGATATAATTTGTTTTGTAGGCCCCAATATGGGAG
3308


colorectal cancer
GTAAATCAACATATATTCGACAAACTGGGGTGATAGTACTCAT


Arg680Term
GGCCCAAATTGGGTGTTTTGTGCCATGTGAGTCAG





CGA-TGA
CTGACTCACATGGCACAAAACACCCAATTTGGGCCATGAGTA
3309



CTATCACCCCAGTTTGTCGAATATATGTTGATTTACCTCCCAT



ATTGGGGCCTACAAAACAAATTATATCAGAAAGCAA






CATATATTCGACAAACT
3310






AGTTTGTCGAATATATG
3311





Non polyposis
ATGGGAGGTAAATCAACATATATTCGACAAAACTGGGGTGATA
3312


colorectal cancer
GTACTCATGGCCCAAATTGGGTGTTTTGTGCCATGTGAGTCA


Gly692Arg
GCAGAAGTGTCCATTGTGGACTGCATCTTAGCCCGAG





GGG-CGG
CTCGGGCTAAGATGCAGTCCACAATGGACACTTCTGCTGACT
3313



CACATGGCACAAAACACCCAATTTGGGCCATGAGTACTATCA



CCCCAGTTTGTCGAATATATGTTGATTTACCTCCCAT






CCCAAATTGGGTGTTTT
3314






AAAACACCCAATTTGGG
3315





Non polyposis
ACATATATTCGACAAACTGGGGTGATAGTACTCATGGCCCAAA
3316


colorectal cancer
TTGGGTGTTTTGTGCCATGTGAGTCAGCAGAAGTGTCCATTG


Cys697Arg
TGGACTGCATCTTAGCCCGAGTAGGGGCTGGTGACA





TGT-CGT
TGTCACCAGCCCCTACTCGGGCTAAGATGCAGTCCACAATGG
3317



ACACTTCTGCTGACTCACATGGCACAAAACACCCAATTTGGG



CCATGAGTACTATCACCCCAGTTTGTCGAATATATGT






TTGTGCCATGTGAGTCA
3318






TGACTCACATGGCACAA
3319





Non polyposis
CATATATTCGACAAACTGGGGTGATAGTACTCATGGCCCAAAT
3320


colorectal cancer
TGGGTGTTTTGTGCCATGTGAGTCAGCAGAAGTGTCCATTGT


Cys697Phe
GGACTGCATCTTAGCCCGAGTAGGGGCTGGTGACAG





TGT-TTT
CTGTCACCAGCCCCTACTCGGGCTAAGATGCAGTCCACAATG
3321



GACACTTCTGCTGACTCACATGGCACAAAACACCCAATTTGG



GCCATGAGTACTATCACCCCAGTTTGTCGAATATATG






TGTGCCATGTGAGTCAG
3322






CTGACTCACATGGCACA
3323





Non polyposis
GAGTCAGCAGAAGTGTCCATTGTGGACTGCATCTTAGCCCGA
3324


colorectal cancer
GTAGGGGCTGGTGACAGTCAATTGAAAGGAGTCTCCACGTTC


Gln718Term
ATGGCTGAAATGTTGGAAACTGCTTCTATCCTCAGGT





CAA-TAA
ACCTGAGGATAGAAGCAGTTTCCAACATTTCAGCCATGAACG
3325



TGGAGACTCCTTTCAATTGACTGTCACCAGCCCCTACTCGGG



CTAAGATGCAGTCCACAATGGACACTTCTGCTGACTC






GTGACAGTCAATTGAAA
3326






TTTCAATTGACTGTCAC
3327





Non polyposis
CCAATCAGATACCAACTGTTAATAATCTACATGTCACAGCACT
3328


colorectal cancer
CACCACTGAAGAGACCTTAACTATGCTTTATCAGGTGAAGAAA


Leu811Term
GGTATGTACTATTGGAGTACTCTTAAATTCAGAACT





TTA-TGA
AGTTCTGAATTTAGAGTACTCCAATAGTACATACCTTTCTTCAC
3329



CTGATTAAAGCATAGTTAAGGTCTCTTCAGTGGTGAGTGCTGT



GACATGTAGATTATTAACAGTTGGTATCTGATTGG






AGAGACCTTAACTATGC
3330






GCATAGTTAAGGTCTCT
3331





Non polyposis
TTCCCCAAATTTCTTATAGGTGTCTGTGATCAAAGTTTTGGGA
3332


colorectal cancer
TTCATGTTGCAGAGCTTGCTAATTTCCCTAAGCATGTAATAGA


Ala834Thr
GTGTGCTAAACAGAAAGCCCTGGAACTTGAGGAGT





GCT-ACT
ACTCCTCAAGTTCCAGGGCTTTCTGTTTAGCACACTCTATTAC
3333



ATGCTTAGGGAAATTAGCAAGCTCTGCAACATGAATCCCAAAA



CTTTGATCACAGACACCTATAAGAAATTTGGGGAA






CAGAGCTTGCTAATTTC
3334






GAAATTAGCAAGCTCTG
3335





Non polyposis
ATAGAGTGTGCTAAACAGAAAGCCCTGGAACTTGAGGAGTTT
3336


colorectal cancer
CAGTATATTGGAGAATCGCAAGGATATGATATCATGGAACCAG


Gln861Term
CAGCAAAGAAGTGCTATCTGGAAAGAGAGGTTTGTC





CAA-TAA
GACAAACCTCTCTTTCCAGATAGCACTTCTTTGCTGCTGGTTC
3337



CATGATATCATATCCTTGCGATTCTCCAATATACTGAAACTCCT



CAAGTTCCAGGGCTTTCTGTTTAGCACACTCTAT






GAGAATCGCAAGGATAT
3338






ATATCCTTGCGATTCTC
3339





Non polyposis
AGGAGTTCCTGTCCAAGGTGGAACAAATGCCCTTTACTGAAAT
3340


colorectal cancer
GTCAGAAGAAAACATCACAATAAAGTTAAAACAGCTAAAAGCT


Thr905Arg
GAAGTAATAGCAAAGAATAATAGCTTTGTAAATGA





ACA-AGA
TCATTTACAAAGCTATTATTCTTTGCTATTACTTCAGCTTTTAG
3341



CTGTTTTAACTTTATTGTGATGTTTTCTTCTGACATTTCAGTAA



AGGGCATTTGTTTCACCTTGGACAGGAACTCCT






AAACATCACAATAAAGT
3342






ACTTTATTGTGATGTTT
3343









EXAMPLE 19
Human Mismatch Repair—MSH6

The human MSH6 gene is homologous to the bacterial mutS gene, which is involved in mismatch repair. Mutations in the MSH6 gene have been identified in a variety of cancers, including particularly hereditary nonpolyposis colorectal cancer. The attached table discloses the correcting oligonucleotide base sequences for the MSH6 oligonucleotides of the invention.










TABLE 26







MSH6 Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Non-polyposis
GGAAATCAGTCCGTGTTCATGTACAGTTTTTTGATGACAGCCC
3344



colorectal cancer
AACAAGGGGCTGGGTTAGCAAAAGGCTTTTAAAGCCATATAC


Ser144lle
AGGTAAGAGTCACTACTGCCATGTGTGTGTGTTTGT


AGC-ATC



ACAAACACACACACATGGCAGTAGTGACTCTTACCTGTATATG
3345



GCTTTAAAAGCCTTTTGCTAACCCAGCCCCTTGTTGGGCTGT



CATCAAAAAACTGTACATGAACACGGACTGATTTCC






CTGGGTTAGCAAAAGGC
3346






GCCTTTTGCTAACCCAG
3347





Endometrial cancer
CGTGAGCCTCTGCACCCGGCCCTTATTGTTTATAAATACATTT
3348


Ser156Term
CTTTCTAGGTTCAAAATCAAAGGAAGCCCAGAAGGGAGGTCA


TCA-TGA
TTTTTACAGTGCAAAGCCTGAAATACTGAGAGCAAT






ATTGCTCTCAGTATTTCAGGCTTTGCACTGTAAAAATGACCTC
3349



CCTTCTGGGCTTCCTTTGATTTTGAACCTAGAAAGAAATGTAT



TTATAAACAATAAGGGCCGGGTGCAGAGGCTCACG






TTCAAAATCAAAGGAAG
3350






CTTCCTTTGATTTTGAA
3351





Early onset colorectal
TTCCAAATTTTGATTTGTTTTTAAATACTCTTTCCTTGCCTGGC
3352


cancer
AGGTAGGCACAACTTACGTAACAGATAAGAGTGAAGAAGATA


Tyr214Term
ATGAAATTGAGAGTGAAGAGGAAGTACAGCCTAAG


TAC-TAG



CTTAGGCTGTACTTCCTCTTCACTCTCAATTTCATTATCTTCTT
3353



CACTCTTATCTGTTACGTAAGTTGTGCCTACCTGCCAGGCAA



GGAAAGAGTATTTAAAAACAAATCAAAATTTGGAA






ACAACTTACGTAACAGA
3354






TCTGTTACGTAAGTTGT
3355





Endometrial cancer
GAAGAGGAAGTACAGCCTAAGACACAAGGATCTAGGCGAAGT
3356


Arg248Term
AGCCGCCAAATAAAAAAACGAAGGGTCATATCAGATTCTGAG


CGA-TGA
AGTGACATTGGTGGCTCTGATGTGGAATTTAAGCCAG






CTGGCTTAAATTCCACATCAGAGCCACCAATGTCACTCTCAGA
3357



ATCTGATATGACCCTTCGTTTTTTTATTTGGCGGCTACTTCGC



CTAGATCCTTGTGTCTTAGGCTGTACTTCCTCTTC






TAAAAAAACGAAGGGGTC
3358






GACCCTTCGTTTTTTTA
3359





Colorectal cancer
TTAAGCCAGACACTAAGGAGGAAGGAAGCAGTGATGAAATAA
3360


Ser285lle
GCAGTGGAGTGGGGGATAGTGAGAGTGAAGGCCTGAACAGC


AGT-ATT
CCTGTCAAAGTTGCTCGAAAGCGGAAGAGAATGGTGAC






GTCACCATTCTCTTCCGCTTTCGAGCAACTTTGACAGGGCTG
3361



TTCAGGCCTTCACTCTCACTATCCCCCACTCCACTGCTTATTT



CATCACTGCTTCCTTCCTCCTTAGTGTCTGGCTTAA






GGGGGATAGTGAGAGTG
3362






CACTCTCACTATCCCCC
3363





Colorectal cancer
GAGGAAGATTCTTCTGGCCATACTCGTGCATATGGTGTGTGC
3364


Gly566Arg
TTTGTTGATACTTCACTGGGAAAGTTTTTCATAGGTCAGTTTTC


GGA-AGA
AGATGATCGCCATTGTTCGAGATTTAGGACTCTAG






CTAGAGTCCTAAATCTCGAACJAATGGCGATCATCTGAAAACTG
3365



ACCTATGAAAAACTTTCCCAGTGAAGTATCAACAAAGCACACA



CCATATGCACGAGTATGGCCAGAAGAATCTTCCTC






CTTCACTGGGAAAGTTT
3366






AAACTTTCCCAGTGAAG
3367





Non-polyposis
GAATTGGCCCTCTCTGCTCTAGGTGGTTGTGTCTTCTACCTC
3368


colorectal cancer
AAAAAATGCCTTATTGATCAGGAGCTTTTATCAATGGCTAATTT


Gln698Glu
TGAAGAATATATTCCCTTGGATTCTGACACAGTCA


CAG-GAG



TGACTGTGTCAGAATCCAAGGGAATATATTCTTCAAAATTAGC
3369



CATTGATAAAAGCTCCTGATCAATAAGGCATTTTTTGAGGTAG



AAGACACAACCACCTAGAGCAGAGAGGGCCAATTC






TTATTGATCAGGAGCTT
3370






AAGCTCCTGATCAATAA
3371





Endometrial cancer
CCCTTGGATTCTGACACAGTCAGCACTACAAGATCTGGTGCT
3372


Gln731Term
ATCTTCACCAAAGCCTATCAACGAATGGTGCTAGATGCAGTG


CAA-TAA
ACATTAAACAACTTGGAGATTTTTCTGAATGGAACAA






TTGTTCCATTCAGAAAAATCTCCAAGTTGTTTAATGTCACTGCA
3373



TCTAGCACCATTCGTTGATAGGCTTTGGTGAAGATAGCACCA



GATCTTGTAGTGCTGACTGTGTCAGAATCCAAGGG






AAGCCTATCAACGAATG
3374






CATTCGTTGATAGGCTT
3375





Colorectal cancer
GCCCCACTCTGTAACCATTATGCTATTAATGATCGTCTAGATG
3376


Val800Leu
CCATAGAAGACCTCATGGTTGTGCCTGACAAAATCTCCGAAG


GTT-CTT
TTGTAGAGCTTCTAAAGAAGCTTCCAGATCTTGAGA






TCTCAAGATCTGGAAGCTTCTTTAGAAGCTCTACAACTTCGGA
3377



GATTTTGTCAGGCACAACCATGAGGTCTTCTATGGCATCTAGA



CGATCATTAATAGCATAATGGTTACAGAGTGGGGC






ACCTCATGGTTGTGCCT
3378






AGGCACAACCATGAGGT
3379





Colorectal cancer
GTAACCATTATGCTATTAATGATCGTCTAGATGGCATAGAAGA
3380


Asp803Gly
CCTCATGGTTGTGCCTGACAAAATCTCCGAAGTTGTAGAGCT


GAC-GGC
TCTAAAGAAGCTTCCAGATCTTGAGAGGCTACTCAG






CTGAGTAGCCTCTCAAGATCTGGAAGCTTCTTTAGAAGCTCTA 3381



CAACTTCGGAGATTTTGTCAGGCACAACCATGAGGTCTTCTAT



GGCATCTAGACGATCATTAATAGCATAATGGTTAC






TGTGCGTGACAAAATCT
3382






AGATTTTGTCAGGCACA
3383





Non-polyposis
CTCCCCTGAAGAGTCAGAACCACCCAGACAGCAGGGCTATAA
3384


colorectal cancer
TGTATGAAGAAACTACATACAGCAAGAAGAAGATTATTGATTT


Tyr850Cys
TCTTTCTGCTCTGGAAGGATTCAAAGTAATGTGTAA


TAC-TGC



TTACACATTACTTTGAATCCTTCCAGAGCAGAAAGAAATCAA
3385



TAATCTTCTTCTTGCTGTATGTAGTTTCTTCATACATTATAGCC



CTGCTGTCTGGGTGGTTCTGACTCTTCAGGGGAG






AACTACATACAGCAAGA
3386






TCTTGCTGTATGTAGTT
3387





Colorectal cancer
TATAGTCGAGGGGGTGATGGTCCTATGTGTCGCCCAGTAATT
3388


Pro1087Thr
CTGTTGCCGGAAGATACCCCCCCCTTCTTAGAGCTTAAAGGA


CCC-ACC
TCACGCCATCCTTGCATTACGAAGACTTTTTTTGGAG






CTCCAAAAAAAGTCTTCGTAATGCAAGGATGGCGTGATCCTTT
3389



AAGCTCTAAGAAGGGGGGGGTATCTTCCGGCAACAGAATTAC



TGGGCGACACATAGGACCATCACCCCCTCGACTATA






AAGATACCCCCCCCTTC
3390






GAAGGGGGGGGTATCTT
3391





Non-polyposis
ACTATAAAATGTCGTACATTATTTFCAACTCACTACCATTCATT
3392


colorectal cancer
AGTAGAAGATTATTCTCAAAATGTTGCTGTGCGCCTAGGACAT


Gln1258Term
ATGGTATGTGCAAATTGTTTTFTTCCACAAATTC


CAA-TAA



GAATTTGTGGAAAAAAACAATTTGCACATACCATATGTCCTAG
3393



GCGCACAGCAACATTTTGAGAATAATCTTCTACTAATGAATGG



TAGTGAGTTGAAAATAATGTACGACATTTTATAGT






ATTATTCTCAAAATGTT
3394






AACATTTTGAGAATAAT
3395









EXAMPLE 20
Hyperlipidemia—APOE

Hyperlipidemia is the abnormal elevation of plasma cholesterol and/or triglyceride levels and it is one of the most common diseases. The human apolipoprotein E protein is involved in the transport of endogenous lipids and appears to be crucial for both the direct removal of cholesterol-rich LDL from plasma and conversion of IDL particles to LDL particles. Individuals who either lack apolipoprotein E or who are homozygous for particular alleles of apoE may have have a condition known as dysbetalipoproteinemia, which is characterized by elevated plasma cholesterol and triglyceride levels and an increased risk for atherosclerosis.


In a comprehensive review of apoE variants, de Knijff et al., Hum. Mutat. 4:178-194 (1994) found that 30 variants had been characterized, including the most common variant, apoE3. To that time, 14 apoE variants had been found to be associated with familial dysbetalipoproteinemia. The attached table discloses the correcting oligonucleotide base sequences for the APOE oligonucleotides of the invention.










TABLE 27







APOE Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Apolipoprotein
TTGTTCCACACAGGATGCCAGGCCAAGGTGGAGCAAGCGGT
3396



Glu13Lys
GGAGACAGAGCCGGAGCCCGAGCTGCGCCAGCAGACCGAG


cGAG-AAG
TGGCAGAGCGGCCAGCGCTGGGAACTGGCACTGGGTCGCT






AGCGACCCAGTGCCAGTTCCCAGCGCTGGCCGCTCTGCCAC
3397



TCGGTCTGCTGGCGCAGCTCGGGCTCCGGCTCTGTCTCCAC



CGCTTGCTCCACCHGGCCTGGCATCCTGTGTGGAACAA






CGGAGCCCGAGCTGCGC
3398






GCGCAGCTCGGGCTCCG
3399





Apolipoprotein E
CAAGGTGGAGCAAGCGGTGGAGACAGAGCCGGAGCCCGAG
3400


Trp20Term
CTGCGCCAGCAGACCGAGTGGCAGAGCGGCCAGCGCTGGG


TGGc-TGA
AACTGGCACTGGGTCGCTTFTGGGATTACCTGCGCTGGGTG






CACCCAGCGCAGGTAATCCCAAAAGCGACCCAGTGCCAGTT
3401



CCCAGCGCTGGCCGCTCTGCCACTCGGTCTGCTGGCGCAGC



TCGGGCTCCGGCTCTGTCTCCACCGCTTGCTGCACCTTG






ACCGAGTGGCAGAGCGG
3402






CCGCTCTGCCACTCGGT
3403





Apolipoprotein E
CAGAGCCGGAGCCCGAGCTGCGCCAGCAGACCGAGTGGCA
3404


Leu28Pro
GAGCGGCCAGCGCTGGGAACTGGCACTGGGTCGCTTTTGGG


CTG-CCG
ATTACCTGCGCTGGGTGCAGACACTGTCTGAGCAGGTGCA






TGCACCTGCTCAGACAGTGTCTGCACCCAGCGCAGGTAATCC
3405



CAAAAGCGACCCAGTGCCAGTTCCCAGCGCTGGCCGCTCTG



CCACTCGGTGTGCTGGCGCAGCTCGGGCTCCGGCTCTG






CTGGGAACTGGCACTGG
3406






CCAGTGCCAGTTCCCAG
3407





Apolipoprotein E
CGGCTGTCCAAGGAGCTGCAGGCGGCGCAGGCCCGGCTGG
3408


Cys112Arg
GCGCGGACATGGAGGACGTGTGCGGCCGCCTGGTGCAGTA


gTGC-CGC
CCGCGGCGAGGTGCAGGCCATGCTCGGCCAGAGCACCGAGG






CCTCGGTGCTCTGGCCGAGCATGGCCTGCACCTCGCCGCGG
3409



TACTGCACCAGGCGGCCGCACACGTCCTCCATGTCCGCGCC



CAGCCGGGCCTGCGCCGCCTGCAGCTCCTTGGACAGCCG






AGGACGTGTGCGGCCGC
3410






GCGGCCGCACACGTCCT
3411





Apolipoprotein E
ACATGGAGGACGTGTGCGGCCGCCTGGTGCAGTACCGCGG
3412


Gly127Asp
CGAGGTGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGT


GGC-GAC
CGGGTGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCG






CGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCACCC
3413



GCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCACCTCG



CCGCGGTACTGCACCAGGCGGCCGCACACGTCCTCCATGT






CATGCTCGGCCAGAGCA
3414






TGCTCTGGCCGAGCATG
3415





Apolipoprotein E
GTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGA
3416


Arg136Cys
GCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCG


gCGC-TGC
CAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGC






GCAGGTCATGGGCATCGCGGAGGAGCCGCTTACGCAGCTTG
3417



CGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGC



TCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCAC






TGCGGGTGCGCCTCGCC
3418






GGCGAGGCGCACCCGCA
3419





Apolipoprotein E
TGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGAG
3420


Arg136His
CACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCGC


CGC-CAC
AAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGCA






TGCAGGTCATCGGCATCGCGGAGGAGCCGCTTACGCAGCTT
3421



GCGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTG



CTCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCA






GCGGGTGCGCCTCGCCT
3422






AGGCGAGGCGCACCCGC
3423





Apolipoprotein E
GTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCCAGA
3424


Arg136Ser
GCACCGAGGAGCTGCGGGTGCGCCTCGCCTCGCACCTGCG


gCGC-AGC
CAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGC






GCAGGTCATCGGCATCGCGGAGGAGCCGCTTACGCAGTTG
3425



CGCAGGTGGGAGGCGAGGCGCACCCGCAGCTCCTCGGTGC



TCTGGCCGAGCATGGCCTGCACCTCGCCGCGGTACTGCAC






TGCGGGTGCGCCTCGCC
3426






GGCGAGGCGCACCCGCA
3427





Apolipoprotein E
GTGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGCGGG
3428


Arg142Cys
TGCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTC


gCGC-TGC
CTCCGCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGT






ACACTGCCAGGCGCTTCTGCAGGTCATCGGCATCGCGGAGG
3429



AGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGCA



CCCGCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCAC






CCCACCTGCGCAAGCTG
3430






CAGCTTGCGCAGGTGGG
3431





Apolipoprotein E
TGCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGCGGGT
3432


Arg142Leu
GCGCCTCGCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCC


CGC-CTC
TCCGCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGTA






TACACTGCCAGGCGCTTCTGCAGGTCATCGGCATCGCGGAG
3433



GAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGCGAGGCGC



ACCCGCAGCTCCTCGGTGCTCTGGCCGAGCATGGCCTGCA






CCACCTGCGCAAGCTGC
3434






GCAGCTTGCGCAGGTGG
3435





Apolipoprotein E
ATGCTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCG
3436


Arg145Cys
CCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGAT


gCGT-TGT
GCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCG






CGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGCA
3437



TCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGG



CGAGGCGCACCCGCAGGTCCTCGGTGCTCTGGCCGAGCAT






GCAAGCTGCGTAAGCGG
3438






CCGCTTACGCAGCTTGC
3439





Apolipoprotein E
TGCTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGC
3440


Arg145Pro
CTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATG


CGT-CCT
CCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGG






CCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGC
3441



ATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAG



GCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAGCA






CAAGCTGCGTAAGCGGC
3442






GCCGCTTACGCAGCTTG
3443





Apolipoprotein E
CTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGCCT
3444


Lys146Gln
CCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCC


tAAG-CAG
GATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGG






CCCCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCG
3445



GCATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGA



GGCGAGGCGCACCCGCAGCTCCTCGGTGCTGTGGCCGAG






AGCTGCGTAAGCGGCTC
3446






GAGCCGCTTACGCAGCT
3447





Apolipoprotein E
CTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGCCT
3448


Lys146Glu
CCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCC


tAAG-GAG
GATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGG






CCCCGGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCG
3449



GCATCGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGA



GGCGAGGCGCACCCGCAGCTCCTCGGTGCTCTGGCCGAG






AGCTGCGTAAGCGGCTC
3450






GAGCCGCTTACGCAGCT
3451





Apolipoprotein E
GCCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGA
3452


Arg158Cys
TGCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCG


gCGC-TGC
GGGCCCGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCC






GGATGGCGCTGAGGCCGCGCTCGGCGCCCTCGCGGGCCCC
3453



GGCCTGGTACACTGCCAGGCGCTTCTGCAGGTCATCGGCAT



CGCGGAGGAGCCGCTTACGCAGCTTGCGCAGGTGGGAGGC






TGCAGAAGCGCCTGGCA
3454






TGCCAGGCGCTTCTGCA
3455





Apolipoprotein E
CGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCCGCGAGC
3456


Gln187Glu
GCCTGGGGCCCCTGGTGGAACAGGGCCGCGTGCGGGCCGC


aCAG-GAG
CACTGTGGGCTCCCTGGCCGGCCAGCCGCTACAGGAGCGGG






CCCGCTCCTGTAGCGGCTGGCCGGCCAGGGAGCCCACAGT
3457



GGCGGCCCGCACGCGGCCCTGTTCCACCAGGGGCCCCAGG



CGCTCGCGGATGGCGCTGAGGCCGCGCTCGGCGCCCTCGCG






TGGTGGAACAGGGCCGC
3458






GCGGCCCTGTTCCACCA
3459





Apolipoprotein E
TGCGGGCCGCCACTGTGGGCTCCCTGGCCGGCCAGCCGCT
3460


Trp210Term
ACAGGAGCGGGCCCAGGCCTGGGGCGAGCGGCTGCGCGC


TGG-TAG
GCGGATGGAGGAGATGGGCAGCCGGACCCGCGACCGCCTGGA






TCCAGGCGGTCGCGGGTCCGGCTGCCCATCTCCTCCATCCG
3461



CGCGCGCAGCCGCTCGCCCCAGGCCTGGGCCCGCTCCTGT



AGCGGCTGGCCGGCCAGGGAGCCCACAGTGGCGGCCCGCA






CCAGGCCTGGGGCGAGC
3462






GCTCGCCCCAGGCCTGG
3463





Apolipoprotein E
CAGGCCTGGGGCGAGCGGCTGCGCGCGCGGATGGAGGAGA
3464


Arg228Cys
TGGGCAGCCGGACCCGCGACCGCCTGGACGAGGTGAAGGA


cCGC-TGC
GCAGGTGGCGGAGGTGCGCGCCAAGCTGGAGGAGCAGGCCC






GGGCCTGCTCCTCCAGCTTGGCGCGCACCTCCGCCACCTGC
3465



TCCTTCACCTCGTCCAGGCGGTCGCGGGTCCGGCTGCCCAT



CTCCTCCATCCGCGCGCGCAGCCGCTCGCCCCAGGCCTG






CCCGCGACCGCCTGGAC
3466






GTCCAGGCGGTCGCGGG
3467





Apolipoprotein E
CGGACCCGCGACCGCCTGGACGAGGTGAAGGAGCAGGTGG
3468


Glu244Lys
CGGAGGTGCGCGCCAAGCTGGAGGAGCAGGCCCAGCAGAT


gGAG-AAG
ACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCT






AGCTCTTGAGGCGGGCCTGGAAGGCCTCGGCCTGGAGGCGT
3469



ATCTGCTGGGCCTGCTCCTCCAGCTTGGCGCGCACCTCCGC



CACCTGCTCCTTCACCTCGTCCAGGCGGTCGCGGGTCCG






CCAAGCTGGAGGAGCAG
3470






CTGCTCCTCCAGCTTGG
3471









EXAMPLE 21
Familial Hypercholesterolemia—LDLR

Familial hypercholesterolemia is characterized by elevation of serum cholesterol bound to low density lipoprotein (LDL) and is, hence, one of the conditions producing a hyperlipoproteinemia phenotype. Familial hypercholesterolemia is an autosomal dominant disorder characterized by elevation of serum cholesterol bound to low density lipoprotein (LDL). Mutations in the LDL receptor (LDLR) gene cause this disorder. The attached table discloses the correcting oligonucleotide base sequences for the LDLR oligonucleotides of the invention.










TABLE 28







LDLR Mutations and Genome-Correcting Oligos











Cilnical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Hypercholesterolaemia
GCGTTGAGAGACCCTTTCTCCTTTTCCTCTCTCTCAGTGGGC
3472



Glu10Term
GACAGATGCGAAAGAAACGAGTTCCAGTGCCAAGACGGGAA


cGAG-TAG
ATGCATCTCCTACAAGTGGGTCTGCGATGGCAGCGCTG






CAGCGCTGCCATCGCAGACCCACTTGTAGGAGATGCATTTCC
3473



CGTCTTGGCACTGGAACTCGTTTCTTTCGCATCTGTCGCCCA



CTGAGAGAGAGGAAAAGGAGAAAGGGTCTCTCAACGC






AAAGAAACGAGTTCCAG
3474






CTGGAACTCGTTTCTTT
3475





Hypercholesterolaemia
AGAGACCCTTTCTCCTTTTCCTCTCTCTCAGTGGGCGACAGA
3476


Gln12Term
TGCGAAAGAAACGAGTTCCAGTGCCAAGACGGGAAATGCATC


cCAG-TAG
TCCTACAAGTGGGTCTGCGATGGCAGCGCTGAGTGCC






GGCACTCAGCGCTGCCATCGCAGACCCACTTGTAGGAGATG
3477



CATTTCCCGTCTTGGCACTGGAAGTCGTTTCTTTCGCATCTGT



CGCCCACTGAGAGAGAGGAAAAGGAGAAAGGGTCTCT






ACGAGTTCCAGTGCCAA
3478






TTGGCACTGGAACTCGT
3479





Hyperchoiesterolaemia
CCTTTCTCCTTTTCCTCTCTCTCAGTGGGCGACAGATGCGAA
3480


Gln14Term
AGAAACGAGTTCCAGTGCCAAGACGGGAAATGCATCTCCTAC


cCAA-TAA
AAGTGGGTCTGCGATGGCAGCGCTGAGTGCCAGGATG






CATCCTGGCACTCAGCGCTGCCATCGCAGACCCACTTGTAG
3481



GAGATGCATTTCCCGTCTTGGCACTGGAACT



CATCTGTCGCCCACTGAGAGAGAGGAAAAGGAGAAAGG






TCCAGTGCCAAGACGGG
3482






CCCGTCTTGGCACTGGA
3483





Hypercholesterolaemia
GCGACAGATGCGAAAGAAACGAGTTCCAGTGCCAAGACGGG
3484


Trp23Term
AAATGCATCTCCTACAAGTGGGTCTGCGATGGCAGCGCTGAG


TGG-TAG
TGCCAGGATGGCTCTGATGAGTCCCAGGAGACGTGCTG






CAGCACGTCTCCTGGGACTCATCAGAGCCATCCTGGCACTCA
3485



GCGCTGCCATCGCAGACCCACTTGTAGGAGATGCATTTCCCG



TCTTGGCACTGGAACTCGTTTCTTTCGCATCTGTCGC






CTACAAGTGGGTCTGCG
3486






CGCAGACCCACTTGTAG
3487





Hypercholesterolaemia
AACGAGTTCCAGTGCCAAGACGGGAAATGCATCTCCTACAAG
3488


Ala29Ser
TGGGTCTGCGATGGCAGCGCTGAGTGCCAGGATGGCTCTGA


cGCT-TCT
TGAGTCCCAGGAGACGTGCTGTGAGTCCCCTTTGGGCA






TGCCCAAAGGGGACTCACAGCACGTCTCCTGGGACTCATCA
3489



GAGCCATCCTGGCACTCAGCGCTGCCATCGCAGACCCACTT



GTAGGAGATGCATTTCCCGTCTTGGCACTGGAACTCGTT






ATGGCAGCGCTGAGTGC
3490






GCACTCAGCGCTGCCAT
3491





Hypercholesterolaemia
TCCAGTGCCAAGACGGGAAATGCATCTCCTACAAGTGGGTCT
3492


Cys31Tyr
GCGATGGCAGCGCTGAGTGCCAGGATGGCTCTGATGAGTCC


TGC-TAC
CAGGAGACGTGCTGTGAGTCCCCTTTGGGCATGATATG






CATATCATGCCCAAAGGGGACTCACAGCACGTCTCCTGGGAC
3493



TCATCAGAGCCATCCTGGCACTCAGCGCTGCCATCGCAGAC



CCACTTGTAGGAGATGCATTTCCCGTCTTGGCACTGGA






CGCTGAGTGCCAGGATG
3494






CATCCTGGCACTCAGCG
3495





Hypercholesterolaemia
AATCCTGTCTCTTCTGTAGTGTCTGTCACCTGCAAATCCGGG
3496


Arg57Cys
GACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATTCCTCA


cCGT-TGT
GTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAACG






CGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAG
3497



GAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCG



GATTTGCAGGTGACAGACACTACAGAAGAGACAGGATT






GTGGGGGCCGTGTCAAC
3498






GTTGACACGGCCCCCAC
3499





Hypercholesterolaemia
TCTGTCACCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCG
3500


Gln64Term
TGTCAACCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCA


tCAG-TAG
AGTGGACTGCGACAACGGCTCAGACGAGCAAGGCTGTC






GACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCACTTGGC
3501



CATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGACACGG



CCCCCACAGCTGAAGTCCCCGGATTTGCAGGTGACAGA






GCATTCCTCAGTTCTGG
3502






CCAGAACTGAGGAATGC
3503





Hypercholesterolaemia
ACCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAA
3504


Trp66Gly
CCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGG


cTGG-GGG
ACTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGT






ACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCA
3505



CTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTG



ACACGGCCCCCACAGCTGAAGTCCCCGGATTTGCAGGT






CTCAGTTCTGGAGGTGC
3506






GCACCTCCAGAACTGAG
3507





Hypercholesterolaemia
CCTGCAAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAAC
3508


Trp66Term
CGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGA


TGG-TAG
CTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTG






CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCC
3509



ACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCGGTG



ACACGGCCCCCACAGCTGAAGTCCCCGGATTTGCAGG






TCAGTTCTGGAGGTGCG
3510






CGCACCTCCAGAACTGA
3511





Hypercholesterolaemia
AAATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTG
3512


Cys68Arg
CATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGA


gTGC-CGC
CAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCC






GGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGC
3513



AGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAG



CGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATTT






TCTGGAGGTGCGATGGC
3514






GCCATCGCACCTCCAGA
3515





Hypercholesterolaemia
ATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCA
3516


Cys68Trp
TTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACA


TGCg-TGG
ACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCT






AGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTC
3517



GCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCA



GCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGAT






TGGAGGTGCGATGGCCA
3518






TGGCCATCGCACCTCCA
3519





Hypercholesterolaemia
AATCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGC
3520


Cys68Tyr
ATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGAC


TGC-TAC
AACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCC






GGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTC
3521



GCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCA



GCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGATT






CTGGAGGTGCGATGGCC
3522






GGCCATCGCACCTCCAG
3523





Hypercholesterolaemia
TCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCAT
3524


Asp69Asn
TCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACA


cGAT-AAT
ACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTG






CAGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGT
3525



CGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATG



CAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGA






GGAGGTGCGATGGCCAA
3526






TTGGCCATCGCACCTCC
3527





Hypercholesterolaemia
CCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATT
3528


Asp69Gly
CCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAA


GAT-GGT
CGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTGC






GCAGGGCCACACTTACGACAGCCTTGGTCGTCTGAGCCGTT
3529



GTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAAT



GCAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGG






GAGGTGCGATGGCCAAG
3530






CTTGGCCATCGCACCTC
3531





Hypercholesterolaemia
TCCGGGGACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCAT
3532


Asp69Tyr
TCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACA


cGAT-TAT
ACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTG






CAGGGCCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGT
3533



CGCAGTCCACTTGGCCATCGCACCTCCAGAACTGAGGAATG



CAGCGGTTGACACGGCCCCCACAGCTGAAGTCCCCGGA






GGAGGTGCGATGGCCAA
3534






TTGGCCATCGCACCTCC
3535





Hypercholesterolaemia
GACTTCAGCTGTGGGGGCCGTGTCAACCGCTGCATTCCTCA
3536


Gln71Glu
GTTCTGGAGGTGCGATGGCCAAGTGGACTGCGACAACGGCT


cCAA-GAA
CAGACGAGCAAGGCTGTCGTAAGTGTGGCCCTGCCTTTG






CAAAGGCAGGGCCACACTTACGACAGCCTTGCTCGTCTGAG
3537



CCGTTGTCGCAGTCCACTTGGCCATCGCACCTCCAGAACTGA



GGAATGCAGCGGTTGACACGGCCCCCACAGCTGAAGTC






GCGATGGCCAAGTGGAC
3538






GTCCACTTGGCCATCGC
3539





Hypercholesterolaemia
TGTGGGGGCCGTGTCAACCGCTGCATTCCTCAGTTCTGGAG
3540


Cys74Gly
GTGCGATGGCCAAGTGGACTGCGACAACGGCTCAGACGAGC


cTGC-GGC
AAGGCTGTCGTAAGTGTGGCCCTGCCTTTGCTATTGAGC






GCTCAATAGCAAAGGCAGGGCCACACTTACGACAGCCTTGCT
3541



CGTCTGAGCCGTTGTCGCAGTCCACTTGGCCATCGCACCTC



CAGAACTGAGGAATGCAGCGGTTGACACGGCCCCCACA






AAGTGGACTGCGACAAC
3542






GTTGTCGCAGTCCACTT
3543





Hypercholesterolaemia
TCAACCGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAG
3544


Ser78Term
TGGACTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAG


TCA-TGA
TGTGGCCCTGCGTTTGCTATTGAGCCTATCTGAGTCCT






AGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCACACTTA
3545



CGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCCACTTGG



CCATCGCACCTCCAGAACTGAGGAATGCAGCGGTTGA






CAACGGCTCAGACGAGC
3546






GCTCGTCTGAGCCGTTG
3547





Hypercholesterolaemia
CGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGA
3548


Glu80Lys
CTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTG


cGAG-AAG
GCCCTGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGA






TCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCA
3549



CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCC



ACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCG






GCTCAGACGAGCAAGGC
3550






GCCTTGCTCGTCTGAGC
3551





Hypercholesterolaemia
CGCTGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGA
3552


GTu80Term
CTGCGACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTG


cGAG-TAG
GCCCTGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGA






TCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGGCCA
3553



CACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAGTCC



ACTTGGCCATCGCACCTCCAGAACTGAGGAATGCAGCG






GCTCAGACGAGCAAGGC
3554






GCCTTGCTCGTCTGAGC
3555





Hypercholesterolaemia
TGCATTCCTCAGTTCTGGAGGTGCGATGGCCAAGTGGACTGC
3556


Gln81Term
GACAACGGCTCAGACGAGCAAGGCTGTCGTAAGTGTGGCCC


gCAA-TAA
TGCCTTTGCTATTGAGCCTATCTGAGTCCTGGGGAGTG






CACTCCCCAGGACTCAGATAGGCTCAATAGCAAAGGCAGGG
3557



CCACACTTACGACAGCCTTGCTCGTCTGAGCCGTTGTCGCAG



TCCACTTGGCCATCGCACCTCCAGAACTGAGGAATGCA






CAGACGAGCAAGGCTGT
3558






ACAGCCTTGCTCGTCTG
3559





Hypercholesterolaemia
TGGGAGACTTCACACGGTGATGGTGGTCTCGGCCCATCCAT
3560


Cys88Arg
CCCTGCAGCCCCCAAGACGTGCTCCCAGGACGAGTTTCGCT


gTGC-CGC
GCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTCTGTG






CACAGACGAACTGCCGAGAGATGCAGTTCCCATCGTGGCAG
3561



CGAAACTCGTCCTGGGAGCACGTCTTGGGGGCTGCAGGGAT



GGATGGGCCGAGACCACCATCACCGTGTGAAGTCTCCCA






CCAAGACGTGCTCCCAG
3562






CTGGGAGCACGTCTTGG
3563





Hypercholesterolaemia
CACGGTGATGGTGGTCTCGGCCCATCCATCCCTGCAGCCCC
3564


Glu92Term
CAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGATGGGA


cGAG-TAG
AGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGG






CCCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTTC
3565



CCATCGTGGCAGCGTAAACTCGTCCTGGGAGCACGTCTTGGG



GGCTGCAGGGATGGATGGGCCGAGACCACCATCACCGTG






CCCAGGACGAGTTFCGC
3566






GCGAAACTCGTCCTGGG
3567





Hypercholesterolaemia
GGTGGTCTCGGCCCATCCATCCCTGCAGCCCCCAAGACGTG
3568


Cys95Arg
CTCCCAGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCT


cTGC-CGC
CTCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGG






CCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGCCGAGAG
3569



ATGCACTTCCCATCGTGGCAGCGAAACTCGTCCTGGGAGCA



CGTCTTGGGGGCTGCAGGGATGGATGGGCCGAGACCACC






AGTTTCGCTGCCACGAT
3570






ATCGTGGCAGCGAAACT
3571





Hypercholesterolaemia
CTCGGCCCATCCATCCCTGCAGCCCCCAAGACGTGCTCCCA
3572


Asp91Tyr
GGACGAGTTTCGCTGCCACGATGGGAAGTGCATCTCTCGGC


cGAT-TAT
AGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACGGCT






AGCCGTCCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGC
3573



CGAGAGATGCACTTCCCATCGTGGCAGCGAAACTCGTCCTG



GGAGCACGTCTTGGGGGCTGCAGGGATGGATGGGCCGAG






GCTGCCACGATGGGAAG
3574






CTTCCCATCGTGGCAGC
3575





Hypercholesterolaemia
GGGTCGGGACACTGCCTGGCAGAGGCTGCGAGCATGGGGC
3576


Trp(−12)Arg
CCTGGGGCTGGAAATTGCGCTGGACCGTCGCCTTGCTCCTC


cTGG-AGG
GCCGCGGCGGGGACTGCAGGTAAGGCTTGCTCCAGGCGCC






GGCGCCTGGAGCAAGCCTTACCTGCAGTCCCCGCCGCGGC
3577



GAGGAGCAAGGCGACGGTCCAGCGCAATTCCAGCCCCAGG



GCCCCATGCTCGCAGCCTCTGCCAGGCAGTGTCCCGACCC






AATTGCGCTGGACCGTC
3578






GACGGTCCAGCGCAATT
3579





Hypercholesterolaemia
CAGCAGGTCGTGATCCGGGTCGGGACACTGCCTGGCAGAGG
3580


Trp(−18)Term
CTGCGAGCATGGGGCCCTGGGGCTGGAAATTGCGCTGGACC


TGGg-TGA
GTCGCCTTGCTCCTCGCCGCGGCGGGGACTGCAGGTAAG






CTTACCTGCAGTCCCCGCCGCGGCGAGGAGCAAGGCGACG
3581



GTCCAGCGCAATTTCCAGCCCCAGGGCCCCATGCTCGCAGC



CTCTGCCAGGCAGTGTCCCGACCCGGATCACGACCTGCTG






GGGCCCTGGGGCTGGAA
3582






TTCCAGCCCCAGGGCCC
3583





Hypercholesterolaemia
CAGCTAGGACACAGCAGGTCGTGATCCGGGTCGGGACACTG
3584


Met(−21)Leu
CCTGGCAGAGGCTGCGAGCATGGGGCCCTGGGGCTGG


cATG-TTG
TTGCGCTGGACCGTCGCCTTGCTCCTCGCCGCGGCGGGGA






TCCCCGCCGCGGCGAGGAGCAAGGCGACGGTCCAGCGCAA
3585



TTTCCAGCCCCAGGGCCCCATGCTCGCAGCCTCTGCCAGGC



AGTGTGCCGACCCGGATCACGACCTGCTGTGTCCTAGCTG






CTGCGAGCATGGGGCCC
3586






GGGCCCCATGCTCGCAG
3587





Hypercholesterolaemia
CAGCTAGGACACAGCAGGTCGTGATCCGGGTCGGGACACTG
3588


Met(−21 )Val
CCTGGCAGAGGCTGCGAGCATGGGGCCCTGGGGCTGG


cATG-GTG
TTGCGCTGGACCGTCGCCTTGCTCCTCGCCGCGGCGGGGA






TCCCCGCCGCGGCGAGGAGCAAGGCGACGGTCCAGCGCAA
3589



TTTCCAGCCCCAGGGCCCCATGCTCGCAGCCTCTGCCAGGC



AGTGTCCCGACCCGGATCACGACCTGCTGTGTCCTAGCTG






CTGCGAGCATGGGGCCC
3590






GGGCCCCATGCTCGCAG
3591





Hypercholesterolaemia
ATCCCTGCAGCCCCCAAGACGTGCTCCCAGGACGAGTTTCG
3592


lle101Phe
CTGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTCTGTGA


cATC-TTC
CTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGCCT






AGGCCTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCA 3593



CAGACGAACTGCCGAGAGATGCACTTCCCATCGTGGCAGCG



AAACTCGTCCTGGGAGCACGTCTTGGGGGCTGCAGGGAT






GGAAGTGCATCTCTCGG
3594






CCGAGAGATGCACTTCC
3595





Hypercholesterolaemia
GCCCCCAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGA
3596


Gln104Term
TGGGAAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCG


gCAG-TAG
GGACTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGG






CCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCAGTCCCG
3597



GTCTGAGTCACAGACGAACTGCCGAGAGATGCACTTCCCATC



GTGGCAGCGAAACTCGTCCTGGGAGCACGTCTTGGGGGC






TCTCTCGGCAGTTCGTC
3598






GACGAACTGCCGAGAGA
3599





Hypercholesterolaemia
TTFCGCTGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTC
3600


Cys113Arg
TGTGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGC


cTGC-CGC
CTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCC






GGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGC
3601



CTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCACAGA



CGAACTGCCGAGAGATGCACTTCCCATCGTGGCAGCGAAA






ACCGGGACTGCTTGGAC
3602






GTCCAAGCAGTCCCGGT
3603





Hypercholesterolaemia
AAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGGAC
3604


Glu119Lys
TGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCAC


cGAG-AAG
CTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCT






AGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTG
3605



AGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCATTAGCAGTC



CCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTT






GCTCAGACGAGGCCTCC
3606






GGAGGCCTCGTCTGAGC
3607





Hypercholesterolaemia
AAGTGCATCTCTCGGCAGTTCGTCTGTGACTCAGACCGGGAC
3608


Glu119Term
TGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCAC


cGAG-TAG
CTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCT






AGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGGTG
3609



AGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCAGTC



CCGGTCTGAGTCACAGACGAACTGCCGAGAGATGCACTT






GCTCAGACGAGGCCTCC
3610






GGAGGCCTCGTCTGAGC
3611





Hypercholesterolaemia
TCGGCAGTTCGTCTGTGACTCAGACCGGGACTGCTTGGACG
3612


Cys122Term
GCTCAGACGAGGCCTCCTGCCCGGTGCTCACCTGTGGTCCC


TGCc-TGA
GCCAGCTFCCAGTGCAACAGCTCCACCTGCATCCCCCAG






CTGGGGGATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGG
3613



GACCACAGGTGAGCACCGGGCAGGAGGCCTCGTCTGAGCC



GTCCAAGCAGTCCCGGTCTGAGTCACAGACGAACTGCCGA






GCCTCCTGCCCGGTGCT
3614






AGCACCGGGCAGGAGGC
3615





Hypercholesterolaemia
TGACTCAGACCGGGACTGCTTGGACGGCTCAGACGAGGCCT
3616


Cys127Trp
CCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCCAGTGC


TGTg-TGG
AACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGAC






GTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGC
3617



ACTGGAAGCTGGCGGGACCACAGGTGAGCACCGGGCAGGA



GGCCTCGTCTGAGCCGTCCAAGCAGTCCCGGTCTGAGTCA






CTCACCTGTGGTCCCGC
3618






GCGGGACCACAGGTGAG
3619





Hypercholesterolaemia
TGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCAC
3620


Gln133Term
CTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCAT


cCAG-TAG
CCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCG






CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT
3621



GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAGG



TGAGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAAGCA






CCAGCTTCCAGTGCAAC
3622






GTTGCACTGGAAGCTGG
3623





Hypercholesterolaemia
TTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCACCTG
3624


Cys134Gly
TGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATCC


gTGC-GGC
CCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAG






CTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGG
3625



ATGCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA



GGTGAGCACCGGGCAGGAGGCCTCGTCTGAGCCGTCCAA






GCTTCCAGTGCAACAGC
3626






GCTGTTGCACTGGAAGC
3627





Hypercholesterolaemia
GAGGCCTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTT
3628


Cys139Gly
CCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCT


cTGC-GGC
GCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGT






ACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAG
3629



GCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAA



GCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGCCTC






GCTCCACCTGCATCCCC
3630






GGGGATGCAGGTGGAGC
3631





Hypercholesterolaemia
AGGCCTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTC
3632


Cys139Tyr
CAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTG


TGC-TAC
CGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTG






CACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCA
3633



GGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGA



AGCTGGCGGGACCACAGGTGAGCACCGGGCAGGAGGCCT






CTCCACCTGCATCCCCC
3634






GGGGGATGCAGGTGGAG
3635





Hypercholesterolaemia
CTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCAT
3636


Cys146Term
CCCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAG


TGCg-TGA
ATGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTT






AAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTTC
3637



GCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGATG



CAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACAG






TGGGCCTGCGACAACGA
3638






TCGTTGTCGCAGGCCCA
3639





Hypercholesterolaemia
TGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC
3640


Asp147Asn
CCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGA


cGAC-AAC
TGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTT






AAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT
3641



CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT



GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA






GGGCCTGCGACAACGAC
3642






GTCGTTGTCGCAGGCCC
3643





Hypercholesterolaemia
TGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC
3644


Asp147His
CCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGA


cGAC-CAC
TGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTT






AAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT
3645



CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT



GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA






GGGCCTGCGACAACGAC
3646






GTCGTTGTCGCAGGCCC
3647





Hypercholesterolaemia
TGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCACCTGCATC
3648


Asp147Tyr
CCCCAGCTGTGGGCCTGCGACAACGACCCCGACTGCGAAGA


cGAC-TAC
TGGCTCGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTT






AAAGACCCCTACAGCGCTGCGGCCACTCATCCGAGCCATCTT
3649



CGCAGTCGGGGTCGTTGTCGCAGGCCCACAGCTGGGGGAT



GCAGGTGGAGCTGTTGCACTGGAAGCTGGCGGGACCACA






GGGCCTGCGACAACGAC
3650






GTCGTTGTCGCAGGCCC
3651





Hypercholesterolaemia
TTCCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGC
3652


Cys152Arg
CTGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGT


cTGC-CGC
GGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGG






CCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCAC
3653



TCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGC



CCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAA






ACCCCGACTGCGAAGAT
3654






ATCTTCGCAGTCGGGGT
3655





Hypercholesterolaemia
TTCCAGTGCAACAGCTCCACCTGCATGCCCCAGCTGTGGGC
3656


Cys152Gly
CTGCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGT


cTGC-GGC
GGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGG






CCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCGGCCAC
3657



TCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGC



CCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGGAA






ACCCCGACTGCGAAGAT
3658






ATCTTCGCAGTCGGGGT
3659





Hypercholesterolaemia
CCAGTGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCT
3660


Cys152Trp
GCGACAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGG


TGCg-TGG
CCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGAC






GTCCCCTFGGAACACGTAAAAGACCCCTACAGCGCTGCGGCC
3661



ACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCGCAG



GCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCACTGG






CCCGACTGCGAAGATGG
3662






CCATCTTCGCAGTCGGG
3663





Hypercholesterolaemia
TGCAACAGCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGA
3664


Asp154Asn
CAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGC


aGAT-AAT
AGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTA






TACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCG
3665



GCCACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTGTCG



CAGGCCCACAGCTGGGGGATGCAGGTGGAGCTGTTGCA






ACTGCGAAGATGGCTCG
3666






CGAGCCATCTTCGCAGT
3667





Hypercholesterolaemia
GCTCCACCTGCATCCCCCAGCTGTGGGCCTGCGACAACGAC
3668


Ser156Leu
CCCGACTGCGAAGATGGCTCGGATGAGTGGCCGCAGCGCTG


TCG-HG
TAGGGGTCTTFACGTGTTCCAAGGGGACAGTAGCCCCTG






CAGGGGCTACTGTCCCCTTGGAACACGTAAAGACCCCTACAG
3669



CGCTGCGGCCACTCATCCGAGCCATCTTCGCAGTCGGGGTC



GTTGTCGCAGGCCCACAGCTGGGGGATGCAGGTGGAGC






AGATGGCTCGGATGAGT
3670






ACTCATCCGAGCCATCT
3671





Hypercholesterolaemia
TGTGGGCCTGCGACAACGACCCCGACTGCGAAGATGGCTCG
3672


Cys163Tyr
GATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAA


TGT-TAT
GGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTG






CAGTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTG
3673



GAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCG



AGCCATCTTCGCAGTCGGGGTCGTTGTCGCAGGCCCACA






GCAGCGCTGTAGGGGTC
3674






GACCCCTACAGCGCTGC
3675





Hypercholesterolaemia
CAACGACCCCGACTGCGAAGATGGCTCGGATGAGTGGCCGC
3676


Tyr167Term
AGCGCTGTAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGC


TACg-TAG
CCCTGCTCGGCCTTCGAGTTCCACTGCCTAAGTGGCGAG






CTCGCCACTTAGGCAGTGGAACTCGAAGGCCGAGCAGGGGC
3677



TACTGTCCCCTTGGAACACGTAAAGACCCCTACAGCGCTGCG



GCCACTCATCCGAGCCATCTTCGCAGTCGGGGTCGTTG






GGTCTTTACGTGTTCCA
3678






TGGAACACGTAAAGACC
3679





Hypercholesterolaemia
CCCGACTGCGAAGATGGCTCGGATGAGTGGCCGCAGCGCTG
3680


Gln170Term
TAGGGGTCTTTACGTGTTCCAAGGGGACAGTAGCCCCTGCTC


cCAA-TAA
GGCCHCGAGTTCCACTGCCTAAGTGGCGAGTGCATCC






GGATGCACTCGCCACTTAGGCAGTGGAACTCGAAGGCCGAG
3681



CAGGGGCTACTGTCCCCTTGGAACACGTAAAGACCCCTACAG



CGCTGCGGCCACTCATCCGAGCCATCTTCGCAGTCGGG






ACGTGTTCCAAGGGGAC
3682






GTCCCCTTGGAACACGT
3683





Hypercholesterolaemia
CGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTC
3684


Cys176Phe
CAAGGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTG


TGC-TTC
CCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGA






TCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA
3685



GTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTGGA



ACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCG






TAGCCCCTGCTCGGCCT
3686






AGGCCGAGCAGGGGCTA
3687





Hypercholesterolaemia
CGGATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTC
3688


Cys176Tyr
CAAGGGGACAGTAGCCCCTGCTCGGCCTFCGAGTTCCACTG


TGC-TAC
CCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGA






TCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA
3689



GTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTGGA



ACACGTAAAGACCCCTACAGCGCTGCGGCCACTCATCCG






TAGCCCCTGCTCGGCCT
3690






AGGCCGAGCAGGGGCTA
3691





Hypercholesterolaemia
ATGAGTGGCCGCAGCGCTGTAGGGGTCTTTACGTGTTCCAAG
3692


Ser177Leu
GGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTGCCTA


TCG-TTG
AGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATGG






CCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAG
3693



GCAGTGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTT



GGAACACGTAAAGACCCCTACAGCGCTGCGGCCACTCAT






CCCCTGCTCGGCCTTCG
3694






CGAAGGCCGAGCAGGGG
3695





Hypercholesterolaemia
TACGTGTTCCAAGGGGACAGTAGCCCCTGCTCGGCCTTCGA
3696


Glu187Lys
GTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGC


cGAG-AAG
GCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACG






CGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGC
3697



CAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTC



GAAGGCCGAGCAGGGGCTACTGTCCCCTTGGAACACGTA






TAAGTGGCGAGTGCATC
3698






GATGCACTCGCCACTTA
3699





Hypercholesterolaemia
CAAGGGGACAGTAGCCCCTGCTCGGCCTTCGAGTTCCACTG
3700


His190Tyr
CCTPAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATG


cCAC-TAC
GTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACT






AGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCAT
3701



CACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAG



TGGAACTCGAAGGCCGAGCAGGGGCTACTGTCCCCTTG






AGTGCATCCACTCCAGC
3702






GCTGGAGTGGATGCACT
3703





Hypercholesterolaemia
CCTTCGAGTFCCACTGCCTAAGTGGCGAGTGCATCCACTCCA
3704


Gly198Asp
GCTGGCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCT


GGC-GAC
GACGAGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGG






CCCACCCTGGCCCCGCCCATACCGCAGTTTTCCTCGTCAGAT
3705



TTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAGCTGGA



GTGGATGCACTCGCCACTTAGGCAGTGGAACTCGAAGG






TGATGGTGGCCCCGACT
3706






AGTCGGGGCCACCATCA
3707





Hypercholesterolaemia
GAGTTCCACTGCCTAAGTGGCGAGTGCATCCAGTCCAGCTG
3708


Asp200Asn
GCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACG


cGAC-AAC
AGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGG






CCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTTCCTCG
3709



TCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCAG



CTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTC






GTGGCCCCGACTGCAAG
3710






CTTGCAGTCGGGGCCAC
3711





Hypercholesterolaemia
AGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGC
3712


Asp200Gly
GCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAG


GAC-GGC
GAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGG






CCCGCCCCCACCCTGGCCCCGCCCATACCGCAGJTFTCCTC
3713



GTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCGCCA



GCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACT






TGGCCCCGACTGCAAGG
3714






CCTTGCAGTCGGGGCCA
3715





Hypercholesterolaemia
GAGTTCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTG
3716


Asp200Tyr
GCGCTGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACG


cGAC-TAC
AGGAAAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGG






CCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTFCCTCG
3717



TCAGATTTGTCCTTGCAGTGGGGGCCACCATCACAGCGCCAG



CTGGAGTGGATGCACTCGCCACTTAGGCAGTGGAACTC






GTGGCCCCGACTGCAAG
3718






CTTGCAGTCGGGGCCAC
3719





Hypercholesterolaemia
CCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCT
3720


Cys201Term
GTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAA


TGCa-TGA
AACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGT






ACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTT
3721



CCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGC



GCCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGG






CCCGACTGCAAGGACAA
3722






TTGTCCTTGCAGTCGGG
3723





Hypercholesterolaemia
TCCACTGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGC
3724


Cys201Tyr
TGTGATGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGA


TGC-TAC
AAACTGCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCG






CGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCAGTTTTC
3725



CTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATCACAGCG



CCAGCTGGAGTGGATGCACTCGCCACTTAGGCAGTGGA






CCCCGACTGCAAGGACA
3726






TGTCCTTGCAGTCGGGG
3727





Hypercholesterolaemia
TGCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGA
3728


Asp203Asn
TGGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACT


gGAC-AAC
GCGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCGTA






TAGGACGCCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA
3729



GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATC



ACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGCA






ACTGCAAGGACAAATCT
3730






AGATTTGTCCTTGCAGT
3731





Hypercholesterolaemia
GCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGAT
3732


Asp203Gly
GGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTG


GAC-GGC
CGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTAT






ATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA
3733



GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATC



ACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGC






CTGCAAGGACAAATCTG
3734






CAGATTTGTCCTTGCAG
3735





Hypercholesterolaemia
GCCTAAGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGAT
3736


Asp203Val
GGTGGCCCCGACTGCAAGGACAAATCTGACGAGGAAAACTG


GAC-GTC
CGGTATGGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTAT






ATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATACCGCA
3737



GTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCACCATC



ACAGCGCCAGCTGGAGTGGATGCACTCGCCACTTAGGC






CTGCAAGGACAAATCTG
3738






CAGATTTGTCCTTGCAG
3739





Hypercholesterolaemia
AGTGGCGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGG
3740


Ser205Pro
CCCCGACTGCAAGGACAAATCTGACGAGGAAAACTGCGGTAT


aTCT-CCT
GGGCGGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCT






AGGTGATAGGACGCCCCGCCCCCACCCTGGCCCCGCCCATA
3741



CCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCGGGGCCA



CCATCACAGCGCCAGCTGGAGTGGATGCACTCGCCACT






AGGACAAATCTGACGAG
3742






CTGGTCAGATTTGTCCT
3743





Hypercholesterolaemia
CGAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCG
3744


Asp206Glu
ACTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGC


GACg-GAG
GGGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCC






GGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCCG
3745



CCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTCG



GGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTCG






AAATCTGACGAGGAAAA
3746






TTTTCCTCGTCAGATTT
3747





Hypercholesterolaemia
GAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA
3748


Glu207Gln
CTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGCG


cGAG-CAG
GGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCT






AGGGACAGGTGATAGGACGCCCCGCCCCCACGCTGGCCCC
3749



GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTC



GGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTC






AATCTGACGAGGAAAAC
3750






GTTTTCCTCGTCAGATT
3751





Hypercholesterolaemia
GAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA
3752


Glu207Lys
CTGCAAGGACPAATCTGACGAGGAAAACTGCGGTATGGGCG


cGAG-AAG
GGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCT






AGGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCC
3753



GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTC



GGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTC






AATCTGACGAGGAAAAC
3754






GTTTTCCTCGTCAGATT
3755





Hypercholesterolaemia
GAGTGCATCCACTCCAGCTGGCGCTGTGATGGTGGCCCCGA
3756


Glu207Term
CTGCAAGGACAAATCTGACGAGGAAAACTGCGGTATGGGCG


cGAG-TAG
GGGCCAGGGTGGGGGCGGGGCGTCCTATCACCTGTCCCT






AGGGACAGGTGATAGGACGCCCCGCCCCCACCCTGGCCCC
3757



GCCCATACCGCAGTTTTCCTCGTCAGATTTGTCCTTGCAGTC



GGGGCCACCATCACAGCGCCAGCTGGAGTGGATGCACTC






AATCTGACGAGGAAAAC
3758






GTTTTCCTCGTCAGATT
3759





Hypercholesterolaemia
TCTTGAGAAAATCAACACACTCTGTCCTGTTTTCCAGCTGTGG
3760


Glu219Lys
CCACCTGTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACT


cGAA-AAA
GCATCCATGGCAGCCGGCAGTGTGACCGGGAATATG






CATATTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTTC
3761



CATCAGAGCACTGGAATTCGTCAGGGCGACAGGTGGCCACA



GCTGGAAAACAGGACAGAGTGTGTTGATTTTCTCAAGA






GCCCTGACGAATTCCAG
3762






CTGGAATTCGTCAGGGC
3763





Hypercholesterolaemia
GAAAATCAACACACTCTGTCCTGTTYFCCAGGTGTGGCCACCT
3764


Gln221Term
GTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCC


cCAG-TAG
ATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCA






TGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATGC
3765



AGTTTCCATCAGAGCACTGGAATTCGTCAGGGCGACAGGTGG



CCACAGCTGGAAAACAGGACAGAGTGTGTTGATTTTC






ACGAATTCCAGTGCTCT
3766






AGAGCACTGGAATTCGT
3767





Hypercholesterolaemia
CCTGTTTTCCAGCTGTGGCCACCTGTCGCCCTGACGAATTCC
3768


Cys227Phe
AGTGCTCTGATGGAAACTGCATCCATGGCAGCCGGCAGTGT


TGC-TTC
GACCGGGAATATGACTGCAAGGACATGAGCGATGAAGT






ACTTCATCGCTCATGTCCTTGCAGTCATATTCCCGGTCACACT
3769



GCCGGCTGCCATGGATGCAGTTTCCATCAGAGCACTGGAATT



CGTCAGGGCGACAGGTGGCCACAGCTGGAAAACAGG






TGGAAACTGCATCCATG
3770






CATGGATGCAGTTTCCA
3771





Hypercholesterolaemia
TCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCCA
3772


Asp235Glu
TGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGACA


GACc-GAA
TGAGCGATGAAGTTGGTTAATGGTGAGCGCTGG






CCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCATGTC
3773



CTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGAT



GCAGTTTCCATCAGAGCACTGGAATTCGTCAGGGCGA






CAGTGTGACCGGGAATA
3774






TATTCCCGGTCACACTG
3775





Hypercholesterolaemia
GTCGCCCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCC
3776


Asp235Gly
ATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGAC


GAC-GGC
ATGAGCGATGAAGTTGGCTGCGTTAATGGTGAGCGCTG






CAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCATGTCC
3777



TTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCATGGATG



CAGTTTCCATCAGAGCACTGGAATFCGTCAGGGCGAC






GCAGTGTGACCGGGAAT
3778






ATTCCCGGTCACACTGC
3779





Hypercholesterolaemia
CCTGACGAATTCCAGTGCTCTGATGGAAACTGCATCCATGGC
3780


Glu237Lys
AGCCGGCAGTGTGACCGGGAATATGACTGCAAGGACATGAG


gGAA-AAA
CGATGAAGTTGGCTGCGTTAATGGTGAGCGCTGGCCAT






ATGGCCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCA
3781



TGTCCTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCAT



GGATGCAGTTTCCATCAGAGCACTGGAATTCGTCAGG






GTGACCGGGAATATGAC
3782






GTCATATTCCCGGTCAC
3783





Hypercholesterolaemia
TCCAGTGCTCTGATGGAAACTGCATCCATGGCAGCCGGCAGT
3784


Cys240Phe
GTGACCGGGAATATGACTGCAAGGACATGAGCGATGAAGTTG


TGC-TTC
GCTGCGTTAATGGTGAGCGCTGGCCATCTGGTTFTCC






GGAAAACCAGATGGCCAGCGCTCACCABAACGCAGCCAACT
3785



TCATCGCTCATGTCCTTGCAGTCATATTCCCGGTCACACTGC



CGGCTGCCATGGATGCAGTTTCCATCAGAGCACTGGA






ATATGACTGCAAGGACA
3786






TGTCCTTGCAGTCATAT
3787





Hypercholesterolaemia
AAACTGCATCCATGGCAGCCGGCAGTGTGACCGGGAATATG
3788


Asp245Glu
ACTGCAAGGACATGAGCGATGAAGTTGGCTGCGTTAATGGTG


GATg-GAA
AGCGCTGGCCATCTGGTTTTCCATCCCCCATTCTCTGT






ACAGAGAATGGGGGATGGAAAACCAGATGGCCAGCGCTCAC
3789



CATTAACGGAGCCAACTTCATCGCTCATGTCCTTGCAGTCATA



TTCCCGGTCACACTGCCGGCTGCCATGGATGCAGTTT






ATGAGCGATGAAGTTGG
3790






CCAACTTCATCGCTCAT
3791





Hypercholesterolaemia
ATGGCAGCCGGCAGTGTGACCGGGAATATGACTGCAAGGAC
3792


Cys249Tyr
ATGAGCGATGAAGTTGGCTGCGTTAATGGTGAGCGCTGGCC


TGC-TAC
ATCTGGTTTTCCATCCCCCATTCTCTGTGCCTTGCTGCT






AGCAGCAAGGCACAGAGAATGGGGGATGGAAAACCAGATGG
3793



CCAGCGCTCACCATTAACGCAGCCAACTTCATCGCTCATGTC



CTTGCAGTCATATTCCCGGTCACACTGCCGGCTGCCAT






AGTTGGCTGCGTTAATG
3794






CATTAACGCAGCCAACT
3795





Hypercholesterolaemia
AGGCTCAGACACACCTGACCTTCCTCCTTCCTCTCTCTGGCT
3796


Glu256Lys
CTCACAGTGACACTCTGCGAGGGACCCAACAAGTTCAAGTGT


cGAG-AAG
CACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCA






TGCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACACT
3797



TGAACTTGTTGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCA



GAGAGAGGAAGGAGGAAGGTCAGGTGTGTCTGAGCCT






CACTCTGCGAGGGACCC
3798






GGGTGCCTCGCAGAGTG
3799





Hypercholesterolaemia
CCTCTCTCTGGCTCTCACAGTGACACTCTGCGAGGGACCCAA
3800


Ser265Arg
CAAGTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAA


AGCg-AGA
AGTCTGCAACATGGCTAGAGACTGCCGGGACTGGTCA






TGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTGTC
3801



CAGGGTGATGCATTCGCCGCTGTGACACTTGAACTTGTFGGG



TCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGAGAGG






TGTCACAGCGGCGAATG
3802






CATTCGCCGCTGTGACA
3803





Hypercholesterolaemia
TCTCTGGCTCTCACAGTGACACTCTGCGAGGGACCCAACAAG
3804


Glu267Lys
TTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTC


cGAA-AAA
TGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATG






CATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTT
3805



TGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACTTGT



TGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGA






ACAGCGGCGAATGCATC
3806






GATGCATTCGCCGCTGT
3807





Hypercholesterolaemia
TCTCTGGCTCTGACAGTGACACTCTGCGAGGGACCCAACAAG
3808


Glu267Term
TTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTC


cGAA-TAA
TGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATG






CATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTT
3809



TGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACTFGT



TGGGTCCCTCGCAGAGTGTCACTGTGAGAGCCAGAGA






ACAGCGGCGAATGCATC
3810






GATGCATTCGCCGCTGT
3811





Hypercholesterolaemia
ACACTCTGCGAGGGACCCAACAAGTTCAAGTGTCACAGCGG
3812


Lys273Glu
CGAATGCATCACCCTGGACAAAGTCTGCAACATGGCTAGAGA


cAAA-GAA
CTGCCGGGACTGGTCAGATGAACCCATCAAAGAGTGCG






CGCACTCTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTC
3813



TAGCCATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGC



TGTGACACTTGAACTTGTTGGGTCCCTCGCAGAGTGT






CCCTGGACAAAGTCTGC
3814






GCAGACTTTGTCCAGGG
3815





Hypercholesterolaemia
CGAGGGACCCAACAAGTTCAAGTGTCACAGCGGCGAATGCA
3816


Cys275Term
TCACCCTGGACAAAGTCTGCAACATGGCTAGAGACTGCCGG


TGCa-TGA
GACTGGTCAGATGAACCCATCAAAGAGTGCGGTGAGTCT






AGACTCACCGCACTCTTTGATGGGTTCATCTGACCAGTCCCG
3817



GCAGTCTCTAGCCATGTTGCAGACTTFGTCCAGGGTGATGCA



TTCGCCGCTGTGACACTTGAACTTGTTGGGTCCCTCG






AAAGTCTGCAACATGGC
3818






GCCATGTTGCAGACTTT
3819





Hypercholesterolaemia
AGTTCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAG
3820


Asp280Gly
TCTGCAACATGGCTAGAGACTGCCGGGACTGGTCAGATGAA


GAC-GGC
CCCATCAAAGAGTGCGGTGAGTCTCGGTGCAGGCGGCT






AGCCGCCTGCACCGAGACTCACCGCACTCTTTGATGGGTTCA
3821



TCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGACTTTG



TCCAGGGTGATGCATTCGCCGCTGTGACACTTGAACT






GGCTAGAGACTGCCGGG
3822






CCCGGCAGTCTCTAGCC
3823





Hypercholesterolaemia
TCAAGTGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCT
3824


Cys281Tyr
GCAACATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCC


TGC-TAC
ATCAAAGAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGC






GCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGATGGG
3825



TTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGCAGAC



TTTGTCCAGGGTGATGCATTCGCCGCTGTGACACTTGA






TAGAGACTGCCGGGACT
3826






AGTCCCGGCAGTCTCTA
3827





Hypercholesterolaemia
TGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAAC
3828


Asp283Asn
ATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAA


gGAC-AAC
GAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGT






ACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGA
3829



TGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGC



AGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACA






ACTGCCGGGACTGGTCA
3830






TGACCAGTCCCGGCAGT
3831





Hypercholesterolaemia
TCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAACAT
3832


Asp283Glu
GGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAAG


GACt-GAG
AGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTT






AAACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTT
3833



GATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTT



GCAGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGA






TGCCGGGACTGGTCAGA
3834






TCTGACCAGTCCCGGCA
3835





Hypercholesterolaemia
TGTCACAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAAC
3836


Asp283Tyr
ATGGCTAGAGACTGCCGGGACTGGTCAGATGAACCCATCAAA


gGAC-TAC
GAGTGCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGT






ACTCTGCAAGCCGCCTGCACCGAGACTCACCGCACTCTTTGA
3837



TGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCATGTTGC



AGACTTTGTCCAGGGTGATGCATTCGCCGCTGTGACA






ACTGCCGGGACTGGTCA
3838






TGACCAGTCCCGGCAGT
3839





Hypercholesterolaemia
CAGCGGCGAATGCATCACCCTGGACAAAGTCTGCAACATGG
3840


Trp284Term
CTAGAGACTGCCGGGACTGGTCAGATGAACCCATCTAAAGAGT


TGGt-TGA
GCGGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTTGTG






CACTAAACTCTGCAAGCCGCCTGCACCGAGACTGACCGCACT
3841



CTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGCCA



TGTTGCAGACTTFGTCCAGGGTGATGCATTCGCCGCTG






CGGGACTGGTCAGATGA
3842






TCATCTGACCAGTCCCG
3843





Hypercholesterolaemia
GCGGCGAATGCATCACCCTGGACAAAGTCTGCAACATGGCTA
3844


Ser285Leu
GAGACTGCCGGGACTGGTCAGATGAACCCATCAAAGAGTGC


TCA-TTA
GGTGAGTCTCGGTGCAGGCGGCTTGCAGAGTTTGTGGG






CCCACAAACTCTGCAAGCCGCCTGCACCGAGACTCACCGCA
3845



CTCTTTGATGGGTTCATCTGACCAGTCCCGGCAGTCTCTAGC



CATGTTGCAGACTTTGTCCAGGGTGATGCATTCGCCGC






GGACTGGTCAGATGAAC
3846






GTTCATCTGACCAGTCC
3847





Hypercholesterolaemia
CCCTGGACTAAAGTCTGCAACATGGCTAGAGACTGCCGGGAC
3848


Lys290Arg
TGGTCAGATGAACCCATCAAAGAGTGCGGTGAGTCTCGGTG


AAA-AGA
CAGGCGGCTTGCAGAGTTTGTGGGGAGCCAGGAAAGGGA






TCCCTTTCGTGGCTCCCCACAAACTCTGCAAGCCGCCTGCAC
3849



CGAGACTCACCGCACTCTTTGATGGGTTCATCTGACCAGTCC



CGGCAGTCTCTAGCCATGTTGCAGACTTTGTCCAGGG






ACCCATCAAAGAGTGCG
3850






CGCACTCTTTGATGGGT
3851





Hypercholesterolaemia
GGGTAGGGGCCCGAGAGTGACCAGTCTGCATCCCCTGGCCC
3852


Cys297Phe
TGCGCAGGGACCAACGAATGCTTGGACAACAACGGCGGCTG


TGC-TTC
TTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTG






CACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAG
3853



CCGCCGTTGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGG



CCAGGGGATGCAGACTGGTCACTCTCGGGCCCCTACCC






CAACGAATGCTTGGACA
3854






TGTCCAAGCATTCGTTG
3855





Hypercholesterolaemia
GGGTAGGGGCCCGAGAGTGACCAGTCTGCATCCCCTGGCCC
3856


Cys297Tyr
TGCGCAGGGACCAACGAATGCTTGGACAACAACGGCGGCTG


TGC-TAC
TTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTG






CACTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACAG
3857



CCGCCGTTGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGG



CCAGGGGATGCAGACTGGTCACTCTCGGGCCCCTACCC






CAACGAATGCTTGGACA
3858






TGTCCAAGCATTCGTTG
3859





Hypercholesterolaemia
TGCATCCCCTGGCCCTGCGCAGGGACCAACGAATGCTTGGA
3860


His306Tyr
CAACAACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGAT


cCAC-TAC
CGGCTACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGG






CCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGATC
3861



TTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCC



AAGCATTCGTTGGTCCCTGCGCAGGGCCAGGGGATGCA






GCTGTTCCCACGTCTGC
3862






GCAGACGTGGGAACAGC
3863





Hypercholesterolaemia
CCCTGGCCCTGCGCAGGGACCAACGAATGCTTGGACAACAA
3864


Cys308Gly
CGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTA


cTGC-GGC
CGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCC






GGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTA
3865



GCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGT



TGTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGGCCAGGG






CCCACGTCTGCAATGAC
3866






GTCATTGCAGACGTGGG
3867





Hypercholesterolaemia
CCTGGCCCTGCGCAGGGACCAACGAATGCTTGGACAACAAC
3868


Cys308Tyr
GGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTAC


TGC-TAC
GAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCA






TGGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTA
3869



GCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTT



GTTGTCCAAGCATTCGTTGGTCCCTGCGCAGGGCCAGG






CCACGTCTGCAATGACC
3870






GGTCATTGCAGACGTGG
3871





Hypercholesterolaemia
ACCAACGAATGCTTGGACAACAACGGCGGCTGTTCGCACGTC
3872


Gly314Ser
TGCAATGACCTTAAGATCGGCTACGAGTGGCTGTGCCCCGAC


cGGC-AGC
GGCTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTG






CACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCCGTCG
3873



GGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGAC



GTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGTTGGT






TTAAGATCGGCTACGAG
3874






CTCGTAGCCGATCTTAA
3875





Hypercholesterolaemia
CCAACGAATGCTTGGACAACAACGGCGGCTGTTCCCACGTCT
3876


Gly314Val
GCAATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGAC


GGC-GTC
GGCTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGA






TCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCCGTC
3877



GGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCAGA



CGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCGTTGG






TAAGATCGGCTACGAGT
3878






ACTCGTAGCCGATCTTA
3879





Hyperchoesterolaemia
CGAATGCTTGGACAACAACGGCGGCTGTTCCCACGTCTGCAA
3880


Tyr315Term
TGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTT


TACg-TAA
CCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTC






GAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCC
3881



GTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATTGCA



GACGTGGGAACAGCCGCCGTTGTTGTCCAAGCATTCG






ATCGGCTACGAGTGCCT
3882






AGGCACTCGTAGCCGAT
3883





Hypercholesterolaemia
TGCTTGGACAACTAACGGCGGCTGTTCCCACGTCTGCAATGAC
3884


Cys317Gly
CTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTTCCA


gTGC-GGC
GCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCGGG






CCCGGAAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGG
3885



AAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTC



ATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCA






GCTACGAGTGCCTGTGC
3886






GCACAGGCACTCGTAGC
3887





Hypercholesterolaemia
TGCTTGGACAACAACGGCGGCTGTTCCCACGTCTGCAATGAC
3888


Cys317Ser
CTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGCTTCCA


gTGC-AGC
GCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCGGG






CCCGGAAATCACCTFCGCATCTTCGCTGGGCCACCAGCTGG
3889



AAGCCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTC



ATTGCAGACGTGGGAACAGCCGCCGTTGTTGTCCAAGCA






GCTACGAGTGCCTGTGC
3890






GCACAGGCACTCGTAGC
3891





Hypercholesterlaemia
ACAACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCG 3892


Pro320Arg
GCTACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCC


CCC-CGC
CAGCGAAGATGCGAAGGTGATTTCCGGGTGGGACTGAG






CTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTGGGCC
3893



ACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCGAT



CTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTTGT






CCTGTGCCCCGACGGCT
3894






AGCCGTCGGGGCACAGG
3895





Hypercholesterolaemia
AACGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGC
3896


Asp321Asn
TACGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCA


cGAC-AAC
GCGAAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCC






GGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTGGG
3897



CCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAGCCG



ATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCGTT






TGTGCCCCGACGGCTTC
3898






GAAGCCGTCGGGGCACA
3899





Hypercholesterolaemia
CGGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTA
3900


Asp321Glu
CGAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGC


GACg-GAG
GAAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCCCT






AGGGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCTG
3901



GGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTAG



CCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGCCG






TGCCCCGACGGCTTCCA
3902






TGGAAGCCGTCGGGGCA
3903





Hypercholesterolaemia
GGCGGCTGTTCCCACGTCTGCAATGACCTTAAGATCGGCTAC
3904


Gly322Ser
GAGTGCCTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGCG


cGGC-AGC
AAGATGCGAAGGTGATTTCCGGGTGGGACTGAGCCCTG






CAGGGCTCAGTCCCACCCGGAAATCACCTTCGCATCTTCGCT
3905



GGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCACTCGTA



GCCGATCTTAAGGTCATTGCAGACGTGGGAACAGCCGGC






GCCCCGACGGCTTCCAG
3906






CTGGAAGCCGTCGGGGC
3907





Hypercholesterolaemia
TGTTCCCACGTCTGCAATGACCTTAAGATCGGCTACGAGTGC
3908


Gln324Term
CTGTGCCCCGACGGCTTCCAGCTGGTGGCCCAGCGAAGATG


cCAG-TAG
CGAAGGTGATTTCCGGGTGGGACTGAGCCCTGGGCCCC






GGGGCCCAGGGCTCAGTCCCACCCGGAAATCACCTTCGCAT
3909



CTTCGCTGGGCCACCAGCTGGAAGCCGTCGGGGCACAGGCA



CTCGTAGCCGATCTTAAGGTCATTGCAGACGTGGGAACA






ACGGCTTCCAGCTGGTG
3910






CACCAGCTGGAAGCCGT
3911





Hypercholesterolaemia
ATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGGC
3912


Arg329Pro
TTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCCG


CGA-CCA
GGTGGGACTGAGCCCTGGGCCCGCTCTGCGCTTCCTGAC






GTCAGGAAGCGCAGAGGGGGCCCAGGGCTCAGTCCCACCC
3913



GGAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAG



CCGTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCAT






GGCCCAGCGAAGATGCG
3914






CGCATCTTCGCTGGGCC
3915





Hypercholesterolaemia
AATGACCTTAAGATCGGCTACGAGTGCCTGTGCCCCGACGG
3916


Arg329Term
CTTCCAGCTGGTGGCCCAGCGAAGATGCGAAGGTGATTTCC


gCGA-TGA
GGGTGGGACTGAGCCCTGGGCCCCCTCTGCGCTTCCTGA






TCAGGAAGCGCAGAGGGGGCCCAGGGCTCAGTCCCACCCG
3917



GAAATCACCTTCGCATCTTCGCTGGGCCACCAGCTGGAAGCC



GTCGGGGCACAGGCACTCGTAGCCGATCTTAAGGTCATT






TGGCCCAGCGAAGATGC
3918






GCATCTTCGCTGGGCCA
3919





Hypercholesterolaemia
TCTAGCCATTGGGGAAGAGCCTCCCCACCAAGCCTCTTTCTC
3920


Glu336Lys
TCTCTTCCAGATATCGATGAGTGTCAGGATCCCGACACCTGC


tGAG-AAG
AGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACAAGT






ACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAG
3921



GTGTCGGGATCCTGACACTCATCGATATCTGGAAGAGAGAGA



AAGAGGCTTGGTGGGGAGGCTCTTCCCCAATGGCTAGA






ATATCGATGAGTGTCAG
3922






CTGACACTCATCGATAT
3923





Hypercholesterolaemia
CATTGGGGAAGAGCCTCCCCACCAAGCCTCTTTCTCTCTCTT
3924


Gln338Term
CCAGATATCGATGAGTGTCAGGATCCCGACACCTGCAGCCAG


tCAG-TAG
CTCTGCGTGAACCTGGAGGGTGGCTACAAGTGCCAGT






ACTGGCACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGG
3925



CTGCAGGTGTCGGGATCCTGACACTCATCGATATCTGGAAGA



GAGAGAAAGAGGCTTGGTGGGGAGGCTCTTCCCCAATG






ATGAGTGTCAGGATCCC
3926






GGGATCCTGACACTCAT
3927





Hypercholesterolaemia
TCCCCACCAAGCCTCTTFCTCTCTCTTCCAGATATCGATGAGT
3928


Cys343Arg
GTCAGGATCCCGACACCTGCAGCCAGCTCTGCGTGAACCTG


cTGC-CGC
GAGGGTGGCTACAAGTGCCAGTGTGAGGAAGGCTTCC






GGAAGCCTTCCTCACACTGGCACTTGTAGCCACCCTCCAGGT
3929



TCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTGACACTCA



TCGATATCTGGAAGAGAGAGAAAGAGGCTTGGTGGGGA






CCGACACCTGCAGCCAG
3930






CTGGCTGCAGGTGTCGG
3931





Hypercholesterolaemia
CAAGCCTCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGA
3932


Gln345Arg
TCCCGACACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTG


CAG-CGG
GCTACAAGTGCCAGTGTGAGGAAGGCTTCCAGCTGGA






TCCAGCTGGAAGCCTTCCTCAGACTGGCACTTGTAGCCACCC
3933



TCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTG



ACACTCATCGATATCTGGAAGAGAGAGAAAGAGGCTTG






CTGCAGCCAGCTCTGCG
3934






CGCAGAGCTGGCTGCAG
3935





Hypercholesterolaemia
TCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGATCCCGA
3936


Cys347Tyr
CACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACA


TGC-TAC
AGTGCCAGTGTGAGGAAGGCTTCCAGCTGGACCCCCA






TGGGGGTCCAGCTGGAAGCCTTCCTCACACTGGCACTTGTA
3937



GCCACCCTCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGG



GATCCTGACAGTCATCGATATCTGGAAGAGAGAGAAAGA






CCAGCTCTGCGTGAACC
3938






GGTTCACGCAGAGCTGG
3939





Hypercholesterolaemia
CTCTTTCTCTCTCTTCCAGATATCGATGAGTGTCAGGATCCCG
3940


Cys347Arg
ACACCTGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTAC


cTGC-CGC
AAGTGCCAGTGTGAGGAAGGCTTCCAGCTGGACCCCC






GGGGGTCCAGCTGGAAGCCTTCCTCACACTGGCACTTGTAG
3941



CCACCCTCCAGGTTCACGCAGAGCTGGCTGCAGGTGTCGGG



ATCCTGACACTCATCGATATCTGGXAGAGAGAGAAAGAG






GCCAGCTCTGCGTGAAC
3942






GTTCACGCAGAGCTGGC
3943





Hypercholesterolaemia
CAGATATCGATGAGTGTCAGGATCCCGACACCTGCAGCCAGC
3944


Gly352Asp
TCTGCGTGAACCTGGAGGGTGGCTACAAGTGCCAGTGTGAG


GGT-GAT
GAAGGCTTCCAGCTGGACCCCCACACGAAGGCCTGCAA






TTGCAGGCCTTCGTGTGGGGGTCCAGCTGGAAGCCTTCCTC
3945



ACACTGGCACTTGTAGCCACCCTCCAGGTTCACGCAGAGCTG



GCTGCAGGTGTCGGGATCCTGACACTCATCGATATCTG






CCTGGAGGGTGGCTACA
3946






TGTAGCCACCCTCCAGG
3947





Hypercholesterolaemia
TCGATGAGTGTCAGGATCCCGACACCTGCAGCCAGCTCTGC
3948


Tyr354Cys
GTGAACCTGGAGGGTGGCTACAAGTGCCAGTGTGAGGAAGG


TAC-TGC
CTTCCAGCTGGACCCCCACACGAAGGCCTGCAAGGCTGT






ACAGCCTTGCAGGCCTTCGTGTGGGGGTCCAGCTGGAAGCC
3949



TTCCTCACACTGGCACTTGTAGCCACCCTCCAGGTTCACGCA



GAGCTGGCTGCAGGTGTCGGGATCCTGACACTCATCGA






GGGTGGCTACAAGTGCC
3950






GGCACTTGTAGCCACCC
3951





Hypercholesterolaemia
CAGGATCCCGACACCTGCAGCCAGGTCTGCGTGAACCTGGA
3952


Cys358Arg
GGGTGGCTACAAGTGCCAGTGTGAGGAAGGCTTCCAGCTGG


gTGT-CGT
ACCCCCACACGAAGGCCTGCAAGGCTGTGGGTGAGCACG






CGTGCTCACCCACAGCCTTGCAGGCCTTCGTGTGGGGGTCC
3953



AGCTGGAAGCCTTCCTCACACTGGCACTTGTAGCCACCCTCC



AGGTTCACGCAGAGCTGGCTGCAGGTGTCGGGATCCTG






AGTGCCAGTGTGAGGAA
3954






TTCCTCACACTGGCACT
3955





Hypercholesterolaemia
TGCAGCCAGCTCTGCGTGAACCTGGAGGGTGGCTACAAGTG
3956


Gln363Term
CCAGTGTGAGGAAGGCTTCCAGCTGGACCCCCACACGAAGG


cCAG-TAG
CCTGCAAGGCTGTGGGTGAGCACGGGAAGGCGGCGGGTG






CACCCGCCGCCTTCCCGTGCTCACCCACAGCCTTGCAGGCC
3957



TTCGTGTGGCGGTCCAGCTGGAAGCCTTCCTCACACTGGCA



CTTGTAGCCACCCTCCAGGTTCACGCAGAGCTGGCTGCA






AAGGCTTCCAGCTGGAC
3958






GTCCAGCTGGAAGCCTT
3959









EXAMPLE 22
UDP-glucuronosyltransferase—UGT1

Mutations in the human UGT1 gene result in a range of disease syndromes, ranging from relatively common diseases such as Gilbert's syndrome, which effects up to 7% of the population, to rare disorders such as Crigler-Najjar syndrome. Symptoms of these diseases are the result of diminished bilirubin conjugation and typically present with jaundice or, when mild, as an incidental finding during routing laboratory analysis. Severe cases of Crigler-Najar syndrome are caused by an absence of UGT1 activity and the majority of these patents die in the neonatal period. The only known treatment is liver transplant. The attached table discloses the correcting oligonucleotide base sequences for the UGT1 oligonucleotides of the invention.










TABLE 29







UGT1 Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Crigler-Najjar
GCAGGAGCAAAGGCGCCATGGCTGTGGAGTCCCAGGGCGG
3960



syndrome 2
ACGCCCACTTGTCCTGGGCCTGCTGCTGTGTGTGCTGGGCC


Leu15Arg
CAGTGGTGTCCCATGCTGGGAAGATACTGTTGATCCCAGT


CTG-CGG



ACTGGGATCAACAGTATCTTCCCAGCATGGGACACCACTGGGCGTCC
3961



CCCAGCACACACAGCAGCAGGCCCAGGACAAGTGGGCGTCC



GCCCTGGGACTCCACAGCCATGGCGCCTTTGCTCCTGC






CCTGGGCCTGCTGCTGT
3962






ACAGCAGCAGGCCCAGG
33963





Crigler-Najjar
GGGAAGATACTGTTGATCCCAGTGGATGGCAGCCACTGGCT
3964


syndrome 1
GAGCATGCTTGGGGCCATCCAGCAGCTGCAGCAGAGGGGAC


Gln49Term
ATGAAATAGTTGTCCTAGCACCTGACGCCTCGTTGTACA


CAG-TAG



TGTACAACGAGGCGTCAGGTGCTAGGACAACTATTTCATGTC
3965



CCCTCTGCTGCAGCTGCTGGATGGCCCCAAGCATGCTCAGC



CAGTGGCTGCCATCCACTGGGATCAACAGTATGTTCCC






GGGCCATCCAGCAGCTG
3966






CAGCTGCTGGATGGCCC
3967





Crigler-Najjar
CAGCAGAGGGGACATGAAATAGTTGTCCTAGCACCTGACGCC
3968


syndrome 1
TCGTTGTACATCAGAGACGGAGCATTTTACACCTTGAAGACGT


Gly71Arg
ACCCTGTGCCATTCCAAAGGGAGGATGTGAAAGAGT


GGA-AGA



ACTCTTTCACATCCTCCCTTTGGAATGGCACAGGGTACGTCTT
3969



CAAGGTGTAAAATGCTCCGTCTCTGATGTACAACGAGGCGTC



AGGTGCTAGGACAACTATTTCATGTCCCCTCTGCTG






TCAGAGACGGAGCATTT
3970






AAATGCTCCGTCTCTGA
3971





Gilbert syndrome
GGGTGAAGAACATGCTCATTGCCVTTTCACAGAACTTTCTGTG
3972


Pro229Gln
CGACGTGGTTTATTCCCCGTATGCAACCCTTGCCTCAGAATT


CCG-CAG
CCTTCAGAGAGAGGTGACTGTCCAGGACCTATTGAG






CTCAATAGGTCCTGGACAGTCACCTCTCTCTGAAGGAATTCT
3973



GAGGCAAGGGTTGCATACGGGGAATAAACCACGTCGCACAG



AAGTTCTGTGAAAAGGCAATGAGCATGTTCTTCACCC






TTATTCCCCGTATGCAA
3974






TTGCATACGGGGAATAA
3975





Crigler-Najjar
TGTGAAGGATTACCCTAGGCCCATCATGCCCAATATGGTTTTT
3976


syndrome 1
GTTGGTGGTAATCAACTGCCTTCACCAAAATCCACTATCCCAG


Cys280Term
GTGTGTATTGGAGTGGGACTTTTACATGCGTATATT


TGC-TGA



AATATACGCATGTAAAAGTCCCACTCCAATACACACCTGGGAT
3977



AGTGGATTTTGGTGAAGGCAGTTGATTCCACCAACAAAAAC



ATATTGGGCATGATGGGCCTAGGGTAATCCTTCACA






ATCAAACTGCCTTCACCA
3978






TGGTGAAGGCAGTTGAT
3979





Crigler-Najjar
ATCAAAGAATATGAGAAAAAATTAACTGAAAATTTTTCTTCTGG
3980


syndrome 1
CTCTAGGAATTTGAAGCCTACATTAATGCTTCTGGAGAACATG


Ala292Val
GAATTGTGGTTTTCTCTTTGGGATCAATGGTCTC


GCC-GTC



GAGACCATTGATCCCAAAGAGAAAACCACAATTCCATGTTCTC
3981



CAGAAGCATTAATGTAGGCTTCAAATTCCTAGAGCCAGAAGAA



AAATTTTCAGTTAATTTTTTCTCATATTCTTTGAT






ATTTGAAGCCTACATTA
3982






taatgtagGCTTCAAAT
3983





Crigler-Najjar
AGGAATTTGAAGCCTACATTAATGCTTCTGGAGAACATGGAAT
3984


syndrome 1
TGTGGTTTTCTCTTTGGGATCAATGGTCTCAGAAATTCCAGAG


Gly308Glu
AAGAAAGCTATGGCAATTGCTGATGCTTTGGGCAA


GGA-GAA



TTGCCCAAAGCATCAGCAATTGCCATAGCTTTCTTCTCTGGAA
3985



TTTCTGAGACCATTGATCCCAAAGAGAAAACCACAATTCCATG



TTCTCCAGAAGCATTAATGTAGGCTTCAAATTCCT






CTCTTTGGGATCAATGG
3986






CCATTGATCCCAAAGAG
3987





Crigler-Najjar
GTCTCAGAAATTCCAGAGAAGAAAGCTATGGCAATTGCTGAT
3988


syndrome 1
GCTTTGGGCAAAATCCCTCAGACAGTAAGAAGATTCTATACCA


Gln331Term
TGGCCTCATATCTATTTTCACAGGAGCGCTAATCCC


CAG-TAG



GGGATTAGCGCTCCTGTGAAAATAGATATGAGGCCATGGTAT
3989



AGAATCTTCTTACTGTCTGAGGGATTTTGCCCAAAGCATCAGC



AATTGCCATAGCTTTCTTCTCTGGAATTTCTGAGAC






AAATCCCTCAGACAGTA
3990






TACTGTCTGAGGGATTT
3991





Crigler-Najjar
TCTAATCATATTATGTTCTTTCTTTACGTTCTGCTCTTTTTGCC
3992


syndrome 1
CCTCCCAGGTCCTGTGGCGGTACACTGGAACCCGACCATCG


Trp335Term
AATCTTGCGAACAACACGATACTTGTTAAGTGGCTA


TGG-TGA



TAGCCACTTAACAAGTATCGTGTTGTTCGCAAGATTCGATGGT
3993



CGGGTTCCAGTGTACCGCCACAGGACCTGGGAGGGGCAAAA



AGAGCAGAACGTAAAGAAAGAACATAATATGATTAGA






GTCCTGTGGCGGTACAC
3994






GTGTACCGCCACAGGAC
3995





Crigler-Najjar
ACACTGGAACCCGACCATCGAATCTTGCGAACAACACGATAC
3996


syndrome 1
TTGTTAAGTGGCTACCCCAAAACGATCTGCTTGGTATGTTGG


Gln357Arg
GCGGATTGGATGTATAGGTCAAACCAGGGTCAAATTA


CAA-CGA



TAATTTGACCCTGGTTTGACCTATACATCCAATCCGCCCAACA
3997



TACCAAGCAGATCGTTTTGGGGTAGCCACTTAACAAGTATCGT



GTTGTTCGCAAGATTCGATGGTCGGGTTCCAGTGT






GCTACCCCAAAACGATC
3998






GATCGTTTTGGGGTAGC
3999





Crigler-Najjar
TACACTGGAACCCGACCATCGAATCTTGCGAACAACACGATA
4000


syndrome 1
CTTGTTAAGTGGCTACCCCAAAACGATCTGCTTGGTATGTTG


Gln357Term
GGCGGATTGGATGTATAGGTCAAACCAGGGTCAAATT


CAA-TAA



AATTTGACCCTGGTTTGACCTATACATCCAATCCGCCCAACAT
4001



ACCAAGCAGATCGTTTTGGGGTAGCCACTTAACAAGTATCGT



GTTGTTCGCAAGATTCGATGGTCGGGTTCCAGTGTA






GGCTACCCCAAAACGAT
4002






ATCGTTTTGGGGTAGCC
4003





Gilbert syndrome
AACTCAGAGATGTAACTGCTGACATCCTCCCTATTTTGCATCT
4004


Arg367Gly
CAGGTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTT


CGT-GGT
CCCATGGTGTTTATGAAAGCATATGCAATGGCGTTC






GAACGCCATTGCATATGCTTTCATAAACACCATGGGAACCAG
4005



CATGGGTGATAAAGGCACGGGTCATCGGGTGACCTGAGATG



CAAAATAGGGAGGATGTCAGCAGTTACATCTCTGAGTT






CGATGACCCGTGCCTTT
4006






AAAGGCACGGGTCATCG
4007





Crigler-Najjar
TCAGAGATGTAACTGCTGACATCCTCCCTATTTTGCATCTCAG
4008


syndrome 1
GTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTTCCC


Ala368Thr
ATGGTGTTTATGAAAGCATATGCAATGGCGTTCCCA


GCC-ACC



TGGGAACGCCATTGCATATGCTTTCATAAACACCATGGGAAC
4009



CAGCATGGGTGATAAAGGCACGGGTCATCGGGTGACCTGAG



ATGCAAAATAGGGAGGATGTCAGCAGTTACATCTCTGA






TGACCCGTGCCTTTATC
4010






GATAAAGGCACGGGTCA
4011





Crigler-Najjar
CCTCCCTATTTTTGCATCTCAGGTCACCCGATGACCCGTGCCT
4012


syndrome 1
TTATCACCCATGCTGGTTCCCATGGTGTTTATGAAAGCATATG


Ser375Phe
CAATGGCGTTCCCATGGTGATGATGCCCTTGTTTGG


TCC-TTC



CCAAACAAGGGCATCATCACCATGGGAACGCCATTGCATATG
4013



CTTTCATAAACACCATGGGAACCAGCATGGGTGATAAAGGCA



CGGGTCATCGGGTGACCTGAGATGCAAAATAGGGAGG






TGCTGGTTCCCATGGTG
4014






CACCATGGGAACCAGCA
4015





Crigler-Najjar
AGGTCACCCGATGACCCGTGCCTTTATCACCCATGCTGGTTC
4016


syndrome 1
CCATGGTGTTTATGAAAGCATATGCAATGGCGTTCCCATGGT


Ser381Arg
GATGATGCCCTTGTTTGGTGATCAGATGGACAATGCA


AGC-AGG



TGCATTGTCCATCTGATCACCAAACAAGGGCATCATCACCAT
4017



GGGAACGCCATTGCATATGCTTTCATAAACACCATGGGAACC



AGCATGGGTGATAAAGGCACGGGTCATCGGGTGACCT






TATGAAAGCATATGCAA
4018






TTGCATATGCTTTCATA
4019





Crigler-Najjar
AGCATATGCAATGGCGTTCCCATGGTGATGATGCCCTTGTTT
4020


syndrome 1
GGTGATCAGATGGACAATGCAAAGCGCATGGAGACTAAGGG


Ala401Pro
AGCTGGAGTGACCCTGAATGTTCTGGAAATGACTTCTG


GCA-CCA



CAGAAGTCATTTCCAGAACATTCAGGGTCACTCCAGCTCCCT
4021



TAGTCTCCATGCGCTTTGCATTGTCCATCTGATCACCAAACAA



GGGCATCATCACCATGGGAACGCCATTGCATATGCT






TGGACAATGCAAAGCGC
4022






GCGCTTTGCATTGTCCA
4023





Crigler-Najjar
GGAGCTGGAGTGACCCTGAATGTTCTGGAAATGACTTCTGAA
4024


syndrome 1
GATTTAGAAAATGCTCTAAAAGCAGTCATCAATGACAAAAGGT


Lys428Glu
AAGAAAGAAGATACAGAAGAATACTTTGGTCATGGC


AAA-GAA



GCCATGACCAAAGTATTCTTCTGTATCTTCTTCTTTACCTTTTG
4025



TCATTGATGACTGCTTTTAGAGCATTTTCTAAATGTTCAGAAGT



CATTTCCAGAACATTCAGGGTCACTCCAGCTCC






ATGCTCTAAAAGCAGTC
4026






GACTGCTTTTAGAGCAT
4027





Crigler-Najjar
ATGAGGCACAAGGGCGCGCCACACCTGCGCCCCGCAGCCC
4028


syndrome 1
ACGACCTCACCTGGTACCAGTACCATTCCTTGGACGTGATTG


Tyr486Asp
GTTTCCTCTTGGCCGTCGTGCTGACAGTGGCCTTCATCA


TAC-GAC



TGATGAAGGCCACTGTCAGCACGACGGCCAAGAGGAAACCA
4029



ATCACGTCCAAGGAATGGTACTGGTACCAGGTGAGGTCGTG



GGCTGCGGGGCGCAGGTGTGGCGCGCCCTTGTGCCTCAT






GGTACCAGTACCATTCC
4030






GGAATGGTACTGGTACC
4031





Crigler-Najjar
ACAAGGGCGCGCCACACCTGCGCCCCGCAGCCCACGACCT
4032


syndrome 1
CACCTGGTACCAGTACCATTCCTTGGACGTGATTGGTTTCCT


Ser488Phe
CTTGGCCGTCGTGCTGACAGTGGCCTTCATCACCTTTAA


TCC-UC



TTAAAGGTGATGAAGGCCACTGTCAGCACGACGGCCAAGAG
4033



GAAACCAATCACGTCCAAGGAATGGTACTGGTACCAGGTGAG



GTCGTGGGCTGCGGGGCGCAGGTGTGGCGCGCCCTTGT






GTACCATTCCTTGGACG
4034






CGTCCAAGGAATGGTAC
4035









EXAMPLE 23
Alzheimer's Disease—Amyloid Precursor Protein (APP)

Over the past few decades Alzheimer's disease (AD), once considered a rare disorder, has become recognized as a major public health problem. Although there is no agreement on the exact prevalence of Alzheimer's disease, in part due to difficulties of diagnosis, studies consistently point to an exponential rise in prevalence of this disease with age. After age 65, the percentage of affected people approximately doubles with every decade of life, regardless of definition. Among people age 85 or older, studies suggest that 25 to 35 percent have dementia, including Alzheimer's disease; one study reports that 47.2 percent of people over age 85 have Alzheimer's disease, exclusive of other dementias.


Alzheimer's disease progressively destroys memory, reason, judgment, language, and, eventually, the ability to carry out even the simplest tasks. Anatomic changes associated with Alzheimer's disease begin in the entorhinal cortex, proceed to the hippocampus, and then gradually spread to other regions, particularly the cerebral cortex. Chief among such anatomic changes are the presence of characteristic extracellular plaques and internal neurofibrillary tangles.


At least four genes have been identified to date that contribute to development of Alzheimer's disease: AD1 is caused by mutations in the amyloid precursor gene (APP); AD2 is associated with a particular allele of APOE (see Example 20); AD3 is caused by mutation in a gene encoding a 7-transmembrane domain protein, presenilin-1 (PSEN1), and AD4 is caused by mutation in a gene that encodes a similar 7-transmembrane domain protein, presenilin-2 (PSEN2). The attached table discloses










TABLE 30







APP Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Alzheimer disease
CTGCATACTTTAATTATGATGTAATACAGGTTCTGGGTTGACA
4036



Glu665Asp
AATATCAAGACGGAGGAGATCTCTGAAGTGAAGATGGATGCA


GAG-GAC
GAATTCCGACATGACTCAGGATATGAAGTTCATCAT






ATGATGAACTTCATATCCTGAGTCATGTCGGAATTCTGCATCC
4037



ATCTTCACTTCAGAGATCTCCTCCGTCTTGATATTTGTCAACC



CAGAACCTGTATTACATCATAATTAAAGTATGCAG






ACGGAGGAGATCTCTGA
4038






TCAGAGATCTCCTCCGT
4039





Alzheimer disease
ATTATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTT
4040


Ala692Gly
CAAGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGC


GCA-GGA
AATCATTGGACTCATGGTGGGCGGTGTTGTCAT






ATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTTTG
4041



TTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAAATT



AAGAAAAAGAATTTTAATTTCTAAATGCAATATAAT






GTTCTTTGCAGAAGATG
4042






CATCTTCTGCAAAGAAC
4043





Alzheimer disease
TATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTTC
4044


Glu693Gln
AAGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCA


GAA-CAA
ATCATTGGACTCATGGTGGGCGGTGTTGTCATAG






CTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCTT
4045



TGTTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAAA



TTAAGAAAAAGAATTTTAATTTCTAAATGCAATATA






TCTTTGCAGAAGATGTG
4046






CACATCTTCTGCAAAGA
4047





Alzheimer disease
ATATTGCATTTAGAAATTAAAATTCTTTTTCTTAATTTGTTTTCA
4048


Glu693Gly
AGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCAA


GAA-GGA
TCATTGGACTCATGGTGGGCGGTGTTGTCATAGC






GCTATGACAACACCGCCCACCATGAGTCCAATGATTGCACCT
4049



TTGTTTGAACCCACATCTTCTGCAAAGAACACCTTGAAAACAA



ATTAAGAAPAAGAATTTTAATTTCTAAATGCAATAT






CTTTGCAGAAGATGTGG
4050






CCACATCTTCTGCAAAG
4051





Alzheimer disease
GAAGATGTGGGTTCAAACAAAGGTGCAATCATTGGACTCATG
4052


Ala713Thr
GTGGGCGGTGTTGTCATAGCGACAGTGATCGTCATCACCTTG


GCG-ACG
GTGATGCTGAAGAAGAAACAGTACACATCCATTCATC






GATGAATGGATGTGTACTGTTTCTTCTTCAGCATCACCAAGGT
4053



GATGACGATCACTGTCGCTATGACAACACCGCCCACCATGAG



TCCAATGATTGCACCTTTGTTTGAACCCACATCTT






TTGTCATAGCGACAGTG
4054






CACTGTCGCTATGACAA
4055





Schizophrenia
AAGATGTGGGTTCAAACAAAGGTGCAATCATTGGACTCATGG
4056


Ala713Val
TGGGCGGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGG


GCG-GTG
TGATGCTGAAGAAGAAACAGTACACATCCATTCATCA






TGATGAATGGATGTGTACTGTTTCTTCTTCAGCATCACCAAGG
4057



TGATGACGATCACTGTCGCTATGACAACACCGCCCACCATGA



GTCCAATGATTGCACCTTTGTTTGAACCCACATCTT






TGTCATAGCGACAGTGA
4058






TCACTGTCGCTATGACA
4059





Alzheimer disease
GTGGGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGC
4060


Val715Met
GGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGGTGATG


GTG-ATG
CTGAAGAAGAAACAGTACACATCCATTCATCATGGTG






CACCATGATGAATGGATGTGTACTGTTTCTTCTTCAGCATCAC
4061



CAAGGTGATGACGATCACTGTCGCTATGACAACACCGCCCAC



CATGAGTCCAATGATTGCACCTTTGTTTGAACCCAC






TAGCGACAGTGATCGTC
4062






GACGATCACTGTCGCTA
4063





Alzheimer disease
GGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGT
4064


Ile716Val
GTTGTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTG


ATC-GTC
AAGAAGAAACAGTACACATCCATTCATCATGGTGTGG






CCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAGCAT
4065



CACCAAGGTGATGACGATCACTGTCGCTATGACAACACCGCC



CACCATGAGTCCAATGATTGCACCTTTGTTTGAACC






CGACAGTGATCGTCATC
4066






GATGACGATCACTGTCG
4067





Alzheimer disease
CAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTTG
4068


Val717Gly
TCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAGA


GTC-GGC
AGAAACAGTACACATCCATTCATCATGGTGTGGTGGA






TCCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCA
4069



GCATCACCAAGGTGATGACGATCACTGTCGCTATGACAACAC



CGCCCACCATGAGTCCAATGATTGCACCTTTGTTTG






AGTGATCGTCATCACCT
4070






AGGTGATGACGATCACT
4071





Aizheimer disease
TCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTT
4072


Val17Ile
GTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAG


GTC-ATC
AAGAAACAGTACACATCCATTCATCATGGTGTGGTGG






CCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAG
4073



CATCACCAAGGTGATGACGATCACTGTCGCTATGACAACACC



GCCCACCATGAGTCCAATGATTGCACCTTTGTTTGA






CAGTGATCGTCATCACC
4074






GGTGATGACGATCACTG
4075





Alzheimer disease
TCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTT
4076


Val717Phe
GTCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAG


GTC-TTC
AAGAAACAGTACACATCCATTCATCATGGTGTGGTGG






CCACCACACCATGATGAATGGATGTGTACTGTTTCTTCTTCAG
4077



CATCACCAAGGTGATGACGATCACTGTCGCTATGACAACACC



GCCCACCATGAGTCCAATGATTGCACCTTTGTTTGA






CAGTGATCGTCATCACC
4078






GGTGATGACGATCACTG
4079





Alzheimer disease
TTGGACTCATGGTGGGCGGTGTTGTCATAGCGACAGTGATCG
4080


Leu723Pro
TCATCACCTTGGTGATGCTGAAGAAGAAACAGTACACATCCAT


CTG-CCG
TCATCATGGTGTGGTGGAGGTAGGTAAACTTGACTG






CAGTCAAGTTTACCTACCTCCACCACACCATGATGAATGGAT
4081



GTGTACTGTTTCTTCTTCAGCATCACCAAGGTGATGACGATCA



CTGTCGCTATGACAACACCGCCCACCATGAGTCCAA






GGTGATGCTGAAGAAGA
4082






TCTTCTTCACCATCACC
4083









EXAMPLE 24
Alzheimer's Disease—Presenilin-1 (PSEN1)

The attached table discloses the correcting oligonucleotide base sequences for the PSEN1 oligonucleotides of the invention.










TABLE 31







PSEN1 Mutations and Genome-Correcting Oligos











Clinical Phenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Alzheimer disease
CCCGGCAGGTGGTGGAGCAAGATGAGGAAGAAGATGAGGAG
4084



Ala79Val
CTGACATTGAAATATGGCGCCAAGCATGTGATCATGCTCTTTG


GCC-GTC
TCCCTGTGACTCTCTGCATGGTGGTGGTCGTGGCTAC






GTAGCCACGACCACCACCATGCAGAGAGTCACAGGGACAAA
4085



GAGCATGATCACATGCTTGGCGCCATATTTCAATGTCAGCTC



CTCATCTTCTTCCTCATCTTGCTCCACCACCTGCCGGG






ATATGGCGCCAAGCATG
4086






CATGCTTGGCGCCATAT
4087





Alzheimer disease
GTGGTGGAGCAAGATGAGGAAGAAGATGAGGAGCTGACATT
4088


Val82Leu
GAAATATGGCGCCAAGCATGTGATCATGCTCTTTGTCCCTGT


tGTG-CTG
GACTCTCTGCATGGTGGTGGTCGTGGCTACCATTAAGT






ACTTAAGGTAGCCACGACCACCACCATGCAGAGAGTCACAG
4089



GGACAAAGAGCATGATCACATGCTTGGCGCCATATTTCAATG



TCAGCTCCTCATCTTCTTCCTCATCTTGCTCCACCAC






CCAAGCATGTGATCATG
4090






CATGATCACATGCTTGG
4091





Alzheimer disease
AAATATGGCGCCAAGCATGTGATCATGCTCTTTGTCCCTGTG
4092


Val96Phe
ACTCTCTGCATGGTGGTGGTCGTGGCTACCATTAAGTCAGTC


gGTC-TTC
AGCTTTTATACCCGGAAGGATGGGCAGCTGTACGTAT






ATACGTACAGCTGCCCATCCTTCCGGGTATAAAAGCTGACTG
4093



ACTTAATGGTAGCCACGACCACCACCATGCAGAGAGTCACAG



GGACAAAGAGCATGATCACATGCTTGGCGCCATATTT






TGGTGGTGGTCGTGGCT
4094






AGCCACGACCACCACCA
4095





Alzheimer disease
CTTTGTCCCTGTGACTCTCTGCATGGTGGTGGTCGTGGCTAC
4096


Phe105Leu
CATTAAGTCAGTCAGCTTTTATACCCGGAAGGATGGGCAGCT


TTTt-TTG
GTACGTATGAGTTTTGTTTTATTATTCTCAAAGCCAG






CTGGCTTTGAGAATAATAAAACAAAACTCATACGTACAGCTGC
4097



CCATCCTTCCGGGTATAAAAGCTGACTGACTTAATGGTAGCC



ACGACCACCACCATGCAGAGAGTCACAGGGACAAAG






GTCAGCTTTTATACCCG
4098






CGCGTATAAAAGCTGAC
4099





Alzheimer disease
TGGTGATCTCCATTAACACTGACCTAGGGCTTTTGTGTTTGTT
4100


Thr116Asn
TTATTGTAGAATCTATACCCCATTCACAGAAGATACCGAGACT


ACC-AAC
GTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGC






GCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTCG
4101



GTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACAAAC



ACAAAAGCCCTAGGTCAGTGTTAATGGAGATCACCA






AATCTATACCCCATTCA
4102






TGAATGGGGTATAGATT
4103





Alzheimer disease
TGATCTCCATTAACACTGACCTAGGGCTTTTGTGTTTGTTTTAT
4104


Pro117Leu
TGTAGAATCTATACCCCATTCACAGAAGATACCGAGACTGTG


CCA-CTA
GGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGC






GCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTC
4105



TCGGTATCTTCTGTGAATGGGGTATAGATTCTACAATAAAACA



AACACAAAAGCCCTAGGTCAGTGTTAATGGAGATCA






CTATACCCCATTCACAG
4106






CTGTGAATGGGGTATAG
4107





Alzheimer disease
TAACACTGACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCT
4108


Glu120Asp
ATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGAG


GAAg-GAT
CCCTGCACTCAATTCTGAATGCTGCCATCATGATC






GATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTG
4109



GCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCT



ACAATAAAACAAACACAAAAGCCCTAGGTCAGTGTTA






TTCACAGAAGATACCGA
4110






TCGGTATCTTCTGTGAA
4111





Alzheimer disease
TAACACTGACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCT
4112


Glu120Asp
ATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGAG


GAAg-GAC
CCCTGCACTCAATTCTGAATGCTGCCATCATGATC






GATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTG
4113



GCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCT



ACAATAAAACAAACACAAAAGCCCTAGGTCAGTGTTA






TTCACAGAAGATACCGA
4114






TCGGTATCTTCTGTGAA
4115





Alzheimer disease
ATTAACACTGACCTAGGGCTTTTGTGTTTGTTTATTGTAGAAT
4116


Glu120Lys
CTATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAG


aGAA-AAA
AGCCCTGCACTCAATTCTGAATGCTGCCATCATGA






TCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGC
4117



CCACAGTCTCGGTATCTTCTGTGAATGGGGTATAGATTCTACA



ATAAAACAAACACAAAAGCCCTAGGTCAGTGTTAAT






CATTCACAGAAGATACC
4118






GGTATCTTCTGTGAATG
4119





Alzheimer disease
GACCTAGGGCTTTTGTGTTTGTTTTATTGTAGAATCTATACCC
14120


Glu123Lys
CATTCACAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGT


cGAG-AAG
CACTCAATTCTGAATGCTGCCATCATGATCACTGTCA






TGACACTGATCATGATGGCAGCATTCAGAATTGAGTGCAGGG
4121



CTCTCTGGCCCACAGTCTCGGTATCTTCTGTGAATGGGGTAT



AGATTCTACAATAAAACAAACACAAAAGCCCTAGGTC






AAGATACCGAGACTGTG
4122






CACAGTCTCGGTATCTT
4123





Alzheimer disease
TATACCCCATTCACAGAAGATACCGAGACTGTGGGCCAGAGA
4124


Asn13SAsp
GCCCTGCACTCAATTCTGAATGCTGCCATCATGATCAGTGTC


gAAT-GAT
ATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTATA






TATACAGAACCACCAGGAGGATAGTCATGACAACAATGACAC
4125



TGATCATGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCT



GGCCCACAGTCTCGGTATCTTCTGTGAATGGGGTATA






CAATTCTGAATGCTGCC
4126






GGCAGCATTCAGAATTG
4127





Alzheimer disease
AGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCAA
4128


Met139Ile
TTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGAC


ATGa-ATA
TATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTAT






ATAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATG
4129



ACAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT



GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCT






GCCATCATGATCAGTGT
4130






ACACTGATCATGATGGC
4131





Alzheimer disease
CAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCA
4132


Met139Lys
ATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGA


ATG-AAG
CTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTA






TAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA
4133



CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT



GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTG






TGCCATCATGATCAGTG
4134






CACTGATCATGATGGCA
4135





Alzheimer disease
CAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTCA
4136


Met139Thr
ATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATGA


ATG-ACG
CTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCTA






TAGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA
4137



CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT



GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTG






TGCCATCATGATCAGTG
4138






CACTGATCATGATGGCA
4139





Alzheimer disease
ACAGAAGATACCGAGACTGTGGGCCAGAGAGCCCTGCACTC
4140


Met139Val
AATTCTGAATGCTGCCATCATGATCAGTGTCATTGTTGTCATG


cATG-GTG
ACTATCCTCCTGGTGGTTCTGTATAAATACAGGTGCT






AGCACCTGTATTTATACAGAACCACCAGGAGGATAGTCATGA
4141



CAACAATGACACTGATCATGATGGCAGCATTCAGAATTGAGT



GCAGGGCTCTCTGGCCCACAGTCTCGGTATCTTCTGT






CTGCCATCATGATCAGT
4142






ACTGATCATGATGGCAG
4143





Alzheimer disease
GAGACTGTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGCT
4144


Ile143Phe
GCCATCATGATCAGTGTCATTGTTGTCATGACTATCCTCCTGG


cATT-TTT
TGGTTCTGTATAAATACAGGTGCTATAAGGTGAGCA






TGCTCACCTTATAGCACCTGTATTTATACAGAACCACCAGGAG
4145



GATAGTCATGACAACAATGACACTGATCATGATGGCAGCATTC



AGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCTC






TCAGTGTCATTGTTGTC
4146






GACAACAATGACACTGA
4147





Alzheimer disease
AGACTGTGGGCCAGAGAGCCCTGCACTCAATTCTGAATGCTG
4148


Ile143Thr
CCATCATGATCAGTGTCATTGTTGTCATGACTATCCTCCTGGT


ATT-ACT
GGTTCTGTATAAATACAGGTGCTATAAGGTGAGCAT






ATGCTCACCTTATAGCACCTGTATTTATACAGAACCACCAGGA
4149



GGATAGTCATGACAACAATGACACTGATCATGATGGCAGCAT



TCAGAATTGAGTGCAGGGCTCTCTGGCCCACAGTCT






CAGTGTCATTGTTGTCA
4150






TGACAACAATGACACTG
4151





Alzheimer disease
CCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATGAT
4152


Met146Ile
CAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTAT


ATGa-ATA
AAATACAGGTGCTATAAGGTGAGCATGAGACACAGA






TCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGA
4153



ACCACCAGGAGGATAGTCATGACAACAATGACACTGATCATG



ATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGG






GTTGTCATGACTATCCT
4154






AGGATAGTCATGACAAC
4155





Alzheimer disease
CCAGAGAGCCCTGCACTCAATTCTGAATGGTGCCATCATGAT
4156


Met146Ile
CAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTAT


ATGa-ATC
AAATACAGGTGCTATAAGGTGAGCATGAGACACAGA






TCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGA
4157



ACCACCAGGAGGATAGTCATGACAACAATGACACTGATCATG



ATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGG






GTTGTCATGACTATCCT
4158






AGGATAGTCATGACAAC
4159





Alzheimer disease
GGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATG
4160


Met146Leu
ATCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGT


cATG-UG
ATAAATACAGGTGCTATAAGGTGAGCATGAGACACA






TGTGTCTCATGCTCACCUATAGCACCTGTATTTATACAGAAC
4161



CACCAGGAGGATAGTCATGACAACAATGACACTGATCATGAT



GGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCC






TTGTTGTCATGACTATC
4162






GATAGTCATGACAACAA
4163





Alzheimer disease
GGCCAGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATG
4164


Met146Val
ATCAGTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGT


cATG-GTG
ATAAATACAGGTGCTATAAGGTGAGCATGAGACACA






TGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACAGAAC
4165



CACCAGGAGGATAGTCATGACAACAATGACACTGATCATGAT



GGCAGCATTCAGAATTGAGTGCAGGGCTCTCTGGCC






TTGTTGTCATGACTATC
4166






GATAGTCATGACAACAA
4167





Alzheimer disease
AGAGAGCCCTGCACTCAATTCTGAATGCTGCCATCATGATCA
4168


Thr147Ile
GTGTCATTGTTGTCATGACTATCCTCCTGGTGGTTCTGTATAA


ACT-ATT
ATACAGGTGCTATAAGGTGAGCATGAGACACAGATC






GATCTGTGTCTCATGCTCACCTTATAGCACCTGTATTTATACA
4169



GAACCACCAGGAGGATAGTCATGACAACAATGACACTGATCA



TGATGGCAGCATTCAGAATTGAGTGCAGGGCTCTCT






TGTCATGACTATCCTCC
4170






GGAGGATAGTCATGACA
4171





Alzheimer disease
CTTTTTAAGGGTTGTGGGACCTGTTAATTATATTGAAATGCTTT
4172


His163Arg
CTTTTCTAGGTCATCCATGCCTGGCTTATTATATCATCTCTATT


CAT-CGT
GTTGCTGTTCTTTTTTTCATTCATTTACTTGGG






CCCAAGTAAATGAATGAAAAAAAGAACAGCAACAATAGAGATG
4173



ATATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTT



CAATATAATTAACAGGTCCCACAACCCTTAAAAAG






GGTCATCCATGCCTGGC
4174






GCCAGGCATGGATGACC
4175





Alzheimer disease
ACTTTTTAAGGGTTGTGGGACCTGTTAATTATATTGAAATGCTT
4176


His163Tyr
TCTTTTCTAGGTCATCCATGCCTGGCTTATTATATCATCTCTAT


cCAT-TAT
TGTTGCTGTTTCTTTTTTTCATTCATTTACTTGG






CCAAGTAAATGAATGAAAAAAAGAACAGCAACAATAGAGATGA
4177



TATAATAAGCCAGGCATGGATGACCTAGAAAAGAAAGCATTTC



AATATAATTAACAGGTCCCACAACCCTTAAAAAGT






AGGTCATCCATGCCTGG
4178






CCAGGCATGGATGACCT
4179





Alzheimer disease
AGGGTTGTGGGACCTGTTAATTATATTGAAATGCTTTCTTTTCT
4180


Trp165Cys
AGGTCATCCATGCCTGGCTTATTATATCATCTCTATTGTTGCT


TGGc-TGC
GTTCTTTTTTTCATTCATTTACTTGGGGTAAGTT






AACTTACCCCAAGTAAATGAATGAAAAAAAGAACAGCAACAAT
4181



AGAGATGATATAATAAGCCAGGCATGGATGACCTAGAAAAGA



AAGCATTTCAATATAATTAACAGGTCCCACAACCCT






CATGCCTGGCTTATTAT
4182






ATAATAAGCCAGGCATG
4183





Alzheimer disease
ACCTGTTAATTATATTGAAATGCTTTCTTTTCTAGGTCATCCAT
4184


Ser169Leu
GCCTGGCTTATTATATCATCTCTATTGTTGCTGTTCTTTTTTTC


TCA-TTA
ATTCATTTACTTGGGGTAAGTTGTGAAATTTTT






AAAAATTTCACAACTTACCCCAAGTAAATGAATGAAAAAAAGAA
4185



CAGCAACAATAGAGATGATATAATAAGCCAGGCATGGATGAC



CTAGAAAAGAAAGCATTTCAATATAATTAACAGGT






TATTATATCATCTCTAT
4186






ATAGAGATGATATAATA
4187





Alzheimer disease
TAATTATATTGAAATGCTTTCTTTTCTAGGTCATCCATGCCTGG
4188


Leu171Pro
CTTATTATATCATCTCTATTGTTGCTGTTCTTTTTTTCATTCATT


CTA-CCA
TACTTGGGGTAAGTTGTGAAATTTTTGGTCTG






CAGACCAAAAATTTCACAACTTACCCCAAGTAAATGAATGAAA
4189



AAAAGAACAGCAACAATAGAGATGATATAATAAGCCAGGCAT



GGATGACCTAGAAAAGAAAGCATTTCAATATAATTA






ATCATCTCTATTGTTGC
4190






GCAACAATAGAGATGAT
4191





Alzheimer disease
TATTGAAATGCTTTCTTTTCTAGGTCATCCATGCCTGGCTTATT
4192


Leu173Trp
ATATCATCTCTATTGTTGCTGTTCTTTTTTTCATTCATTTACTTG


TTG-TGG
GGGTAAGTTGTGAAATTTTTGGTCTGTCTTTC






GAAAGACAGACCAAAAATTTCACAACTTACCCCAAGTAAATGA
4193



ATGAAAAAAAGAACAGCAACAATAGAGATGATATAATAAGCCA



GGCATGGATGACCTAGAAAAGAAAGCATTCAATA






TCTATTGTTGCTGTTCT
4194






AGAACAGCAACAATAGA
4195





Alzheimer disease
TATAACGTTGCTGTGGACTACATTACTGTTGCACTCCTGATCT
4196


Gly209Arg
GGAATTTTGGTGTGGTGGGAATGATTTCCATTCACTGGAAAG


gGGA-AGA
GTCCACTTCGACTCCAGCAGGCATATCTCATTATGA






TCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTCC
4197



AGTGAATGGAAATCATTCCCACCACACCAAAATTCCAGATCAG



GAGTGCAACAGTAATGTAGTCCACAGCAACGTTATA






GTGTGGTGGGAATGATT
4198






AATCATTCCCACCACAC
4199





Alzheimer disease
ATAACGTTGCTGTGGACTACATTACTGTTGCACTCCTGATCTG
4200


Gly209Val
GAATTTTGGTGTGGTGGGAATGATTTCCATTCACTGGAAAGGT


GGA-GTA
CCACTTCGACTCCAGCAGGCATATCTCATTATGAT






ATCATAATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTC
4201



CAGTGAATGGAAATCATTCCCACCACACCAAAATTCCAGATCA



GGAGTGCAACAGTAATGTAGTCCACAGCAACGTTAT






TGTGGTGGGAATGATTT
4202






AAATCATTCCCACCACA
4203





Alzheimer disease
TGGACTACATTACTGTTGCACTCCTGATCTGGAATTTTGGTGT
4204


Ile213Thr
GGTGGGAATGATTTCCATTCACTGGAAAGGTCCACTTCGACT


ATT-ACT
CCAGCAGGCATATCTCATTATGATTAGTGCCCTCAT






ATGAGGGCACTAATCATAATGAGATATGCCTGCTGGAGTCGA
4205



AGTGGACCTTTCCAGTGAATGGAAATCATTCCCACCACACCA



AAATTCCAGATCAGGAGTGCAACAGTAATGTAGTCCA






GATTTCCATTCACTGGA
4206






TCCAGTGAATGGAAATC
4207





Alzheimer disease
CACTCCTGATCTGGAATTTTGGTGTGGTGGGAATGATTTCCAT
4208


Leu219Pro
TCACTGGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCAT


CTT-CCT
TATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAA






TTGATAAACACCAGGGCCATGAGGGCACTAATCATAATGAGA
4209



TATGCCTGCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAA



ATCATTCCCACCACACCAAAATTCCAGATCAGGAGTG






AGGTCCACTTCGACTCC
4210






GGAGTCGAAGTGGACCT
4211





Alzheimer disease
ATTTCCATTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCA
4212


Ala231Thr
TATCTCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCA


tGCC-ACC
AGTACCTCCCTGAATGGACTGCGTGGCTCATCTTGG






CCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGATAA
4213



ACACCAGGGCCATGAGGGCACTAATCATAATGAGATATGCCT



GCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAAAT






TGATTAGTGCCCTCATG
4214






CATGAGGGCACTAATCA
4215





Alzheimer disease
TTTCCATTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCAT
4216


Ala231Val
ATCTCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAA


GCC-GTC
GTACCTCCCTGAATGGACTGCGTGGCTCATCTTGGC






GCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGATA
4217



AACACCAGGGCCATGAGGGCACTAATCATAATGAGATATGCC



TGCTGGAGTCGAAGTGGACCTTTCCAGTGAATGGAAA






GATTAGTGCCCTCATGG
4218






CCATGAGGGCACTAATC
4219





Alzheimer disease
TTCACTGGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCA
4220


Met233Thr
TTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTACCT


ATG-ACG
CCCTGAATGGACTGCGTGGCTCATCTTGGCTGTGAT






ATCACAGCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTAC
4221



TTGATAAACACCAGGGCCATGAGGGCACTAATCATAATGAGA



TATGCCTGCTGGAGTCGAAGTGGACCTTCCAGTGAA






TGCCCTCATGGCCCTGG
4222






CCAGGGCCATGAGGGCA
4223





Alzheimer disease
GGAAAGGTCCACTTCGACTCCAGCAGGCATATCTCATTATGA
4224


Leu235Pro
TTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTACCTCCCTG


CTG-CCG
AATGGACTGCGTGGCTCATCTTGGCTGTGATTTCAGT






ACTGAAATCACAGCCAAGATGAGCCACGCAGTCCATTCAGGG
4225



AGGTACTTGATAAACACCAGGGCCATGAGGGCACTAATCATA



ATGAGATATGCCTGCTGGAGTCGAAGTGGACCTTTCC






CATGGCCCTGGTGTTTA
4226






TAAACACCAGGGCCATG
4227





Alzheimer disease
TCATTATGATTAGTGCCCTCATGGCCCTGGTGTTTATCAAGTA
4228


Ala246Glu
CCTCCCTGAATGGACTGCGTGGCTCATCTTGGCTGTGATTTC


GCG-GAG
AGTATATGGTAAAACCCAAGACTGATAATTTGTTTG






CAAACAAATTATCAGTCTTGGGTTTTACCATATACTGAAATCAC
4229



AGCCAAGATGAGCCACGCAGTCCATTCAGGGAGGTACTTGAT



AAACACCAGGGCCATGAGGGCACTAATCATAATGA






ATGGACTGCGTGGCTCA
4230






TGAGCCACGCAGTCCAT
4231





Alzheimer disease
GTGCCCTCATGGCCCTGGTGTTTATCAAGTACCTCCCTGAAT
4232


Leu250Ser
GGACTGCGTGGCTCATCTTGGCTGTGATTTCAGTATATGGTA


TTG-TCG
AAACCCAAGACTGATAATTTGTTTGTCACAGGAATGC






GCATTCCTGTGACAAACAAATTATCAGTCTTGGGTTTTACCAT
4233



ATACTGAAATCACAGCCAAGATGAGCCACGCAGTCCATTCAG



GGAGGTACTTGATAAACACCAGGGCCATGAGGGCAC






GCTCATCTTGGCTGTGA
4234






TCACAGCCAAGATGAGC
4235





Alzheimer disease
AGTTTAGCCCATACATTTTATTAGATGTCTTTTATGTTTTTCTTT
4236


Ala260Val
TTCTAGATTTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCG


GCT-GTT
TATGCTGGTTGAAACAGCTCAGGAGAGAAATGA






TCATTTCTCTCCTGAGCTGTTTCAACCAGCATACGAAGTGGAC
4237



CTTTCGGACACAAAACAGCCACTAAATCTAGAAAAAGAAAAAC



ATAAAAGACATCTAATAAAATGTATGGGCTAAACT






TTTAGTGGCTGTTTTGT
4238






ACAAAACAGCCACTAAA
4239





Alzheimer disease
CCCATACATTTTATTAGATGTCTTTTATGTTTTTCTTTTTCTAGA
4240


Leu262Phe
TTTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTG


TTGt-TTC
GTTGAAACAGCTCAGGAGAGAAATGAAACGCTT






AAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCATACGA
4241



AGTGGACCTTTCGGACACAAAACAGCCACTAAATCTAGAAAAA



GAAAAACATAAAAGACATCTAATAAAATGTATGGG






GCTGTTTTGTGTCCGAA
4242






TTCGGACACAAAACAGC
4243





Alzheimer disease
CCATACATTTTATTAGATGTCTTTTATGTTTTCTTTTTCTAGAT
4244


Cys263Arg
TTAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTG


gTGT-CGT
GTTGAAACAGCTCAGGAGAGAAATGAAACGCTTT






AAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCATACG
4245



AAGTGGACCTTTCGGACACAAAACAGCCACTAAATCTAGAAA



AAGAAAAACATAAAAGACATCTAATAAAATGTATGG






CTGTTTTGTGTCCGAAA
4246






TTTCGGACACAAAACAG
4247





Alzheimer disease
ACATTTTATTAGATGTCTTTTATGTTTTTCTTTTTCTAGATTTAG
4248


Pro264Leu
TGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTG


CCG-CTG
AAACAGCTCAGGAGAGAAATGAAACGCTTTTTCC






GGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCA
4249



TACGAAGTGGACCTTTCGGACACAAAACAGCCACTAAATCTA



GAAAAAGAAAAACATAAAAGACATCTAATAAAATGT






TTTGTGTCCGAAAGGTC
4250






GACCTTTCGGACACAAA
4251





Alzheimer disease
GTCTTTTATGTTTTTCTTTTTCTAGATTTAGTGGCTGTTTTGTG
4252


Arg269Gly
TCCGAAAGGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGA


tCGT-GGT
GAGAAATGAAACGCTTTTTCCAGCTCTCATTTACT






AGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCTGAGC
4253



TGTTTCAACCAGCATACGAAGTGGACCTTTCGGACACAAAAC



AGCCACTAAATCTAGAAAAAGAAAAACATAAAAGAC






GTCCACTTCGTATGCTG
4254






CAGCATACGAAGTGGAC
4255





Alzheimer disease
TCTTTTATGTTTTTCTTTTTCTAGATTTAGTGGCTGTTTTGTGTC
4256


Arg269His
CGAAAGGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGAGA


CGT-CAT
GAAATGAAACGCTTTTTCCAGCTCTCATTTACTC






GAGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCTGAG
4257



CTGTTTCAACCAGCATACGAAGTGGACCTTTCGGACACAAAA



CAGCCACTAAATCTAGAAAAAGAAAAACATAAAAGA






TCCACTTCGTATGCTGG
4258






CCAGCATACGAAGTGGA
4259





Alzheimer disease
TAGTGGCTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGG
4260


Arg278Thr
TTGAAACAGCTCAGGAGAGAAATGAAACGCTTTTTCCAGCTCT


AGA-ACA
CATTTACTCCTGTAAGTATTTGAGAATGATATTGAA






TTCAATATCATTCTCAAATACTTACAGGAGTAAATGAGAGCTG
4261



GAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACCAGCAT



ACGAAGTGGACCTTTCGGACACAAAACAGCCACTA






TCAGGAGAGAAATGAAA
4262






TTTCATTTCTCTCCTGA
4263





Alzheimer disease
CTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAAC
4264


Glu280Ala
AGCTCAGGAGAGAAATGAAACGCTTTTTCCAGCTCTCATTTAC


GAA-GCA
TCCTGTAAGTATTTGAGAATGATATTGAATTAGTA






TACTAATTCAATATCATTCTCAAATACTTACAGGAGTAAATGAG
4265



AGCTGGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACC



AGCATACGAAGTGGACCTTTCGGACACAAAACAG






GAGAAATGAAACGCTTT
4266






AAAGCGTTTCATTTCTC
4267





Alzheimer disease
CTGTTTTGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAAC
4268


Glu280Gly
AGCTCAGGAGAGAAATGAAACGCTTTTTCCAGCTCTCATTTAC


GAA-GGA
TCCTGTAAGTATTTGAGAATGATATTGAATTAGTA






TACTAATTCAATATCATTCTCAAATACTTACAGGAGTAAATGAG
4269



AGCTGGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTTTCAACC



AGCATACGAAGTGGACCTTTCGGACACAAAACAG






GAGAAATGAAACGCTTT
4270






AAAGCGTTTCATTTCTC
4271





Alzheimer disease
TGTGTCCGAAAGGTCCACTTCGTATGCTGGTTGAAACAGCTC
4272


Leu282Arg
AGGAGAGAAATGAAACGCTTTTTCCAGCTCTCATTTACTCCTG


CTT-CGT
TAAGTATTTGAGAATGATATTGAATTAGTAATCAGT






ACTGATTACTAATTCAATATCATTCTCAAATACTTACAGGAGTA
4273



AATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCTGAGCTGTT



TCAACCAGCATACGAAGTGGACCTTTCGGACACA






TGAAACGCTTTTTCCAG
4274






CTGGAAAAAGCGTTTCA





Alzheimer disease
AAGGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGAGAGAA
4276


ATa285Val
ATGAAACGCTTTTTCCAGCTCTCATTTACTCCTGTAAGTATTTG


GCT-GTT
AGAATGATATTGAATTAGTAATCAGTGTAGAATTT






AAATTCTACACTGATTACTAATTCAATATCATTCTCAAATACTTA
4277



CAGGAGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTCCT



GAGCTGTTTCAACCAGCATACGAAGTGGACCTT






TTTTCCAGCTCTCATTT
4278






AAATGAGAGCTGGAAAA
4279





Alzheimer disease
GGTCCACTTCGTATGCTGGTTGAAACAGCTCAGGAGAGAAAT
4280


Leu286Val
GAAACGCTTTTTCCAGCTCTCATTTACTCCTGTAAGTATTTGA


tCTC-GTC
GAATGATATTGAATTAGTAATCAGTGTAGAATTTAT






ATAAATTCTACACTGATTACTAATTCAATATCATTCTCAAATACT
4281



TACAGGAGTAAATGAGAGCTGGAAAAAGCGTTTCATTTCTCTC



CTGAGCTGTTTCAACCAGCATACGAAGTGGACC






TTCCAGCTCTCATTTAC
4282






GTAAATGAGAGCTGGAA
4283





Alzheimer disease
GTGACCAACTTTTTAATATTTGTAACCTTTCCTTTTTAGGGGGA
4284


Gly384Ala
GTAAAACTTGGATTGGGAGATTTCATTTTCTACAGTGTTCTGG


GGA-GCA
TTGGTAAAGCCTCAGCAACAGCCAGTGGAGACTG






CAGTCTCCACTGGCTGTTGCTGAGGCTTTACCAACCAGAACA
4285



CTGTAGAAAATGAAATCTCCCAATCCAAGTTTTACTCCCCCTA



AAAAGGAAAGGTTACAAATATTAAAAAGTTGGTCAC






TGGATTGGGAGATTTCA
4286






TGAAATCTCCCAATCCA
4287





Alzheimer disease
TTTGTAACCTTTCCTTTTTAGGGGGAGTAAAACTTGGATTGGG
4288


Ser390Ile
AGATTTCATTTTCTACAGTGTTCTGGTTGGTAAAGCCTCAGCA


AGT-ATT
ACAGCCAGTGGAGACTGGAACACAACCATAGCCTG






CAGGCTATGGTTGTGTTCCAGTCTCCACTGGCTGTTGCTGAG
4289



GCTTTACCAACCAGAACACTGTAGAAAATGAAATCTCCCAATC



CAAGTTTTACTCCCCCTAAAAAGGAAAGGTTACAAA






TTTCTACAGTGTTCTGG
4290






CCAGAACACTGTAGAAA
4291





Alzheimer disease
AACCTTTCCTTTTTAGGGGGAGTAAAACTTGGATTGGGAGATT
4292


Leu392Val
TCATTTTCTACAGTGTTCTGGTTGGTAAAGCCTCAGCAACAGC


tCTG-GTG
CAGTGGAGACTGGAACACAACCATAGCCTGTTTCG






CGAAACAGGCTATGGTTGTGTTCCAGTCTCCACTGGCTGTTG
4293



CTGAGGCTTTACCAACCAGAACACTGTAGAAAATGAAATCTCC



CAATCCAAGTTTTACTCCCCCTAAAAAGGAAAGGTT






ACAGTGTTCTGGTTGGT
4294






ACCAACCAGAACACTGT
4295





Alzheimer disease
ATTTCATTTTCTACAGTGTTCTGGTTGGTAAAGCCTCAGCAAC
4296


Asn405Ser
AGCCAGTGGAGACTGGAACACAACCATAGCCTGTTTCGTAGC


AAC-AGC
CATATTAATTGTAAGTATACACTAATAAGAATGTGT






ACACATTCTTATTAGTGTATACTTACAATTAATATGGCTACGAA
4297



ACAGGCTATGGTTGTGTTCCAGTCTCCACTGGCTGTTGCTGA



GGCTTTACCAACCAGAACACTGTAGAAAATGAAAT






AGACTGGAACACAACCA
4298






TGGTTGTGTTCCAGTCT
4299





Alzheimer disease
TACAGTGTTCTGGTTGGTAAAGCCTCAGCAACAGCCAGTGGA
4300


Ala409Thr
GACTGGAACACAACCATAGCCTGTTTCGTAGCCATATTAATTG


aGCC-ACC
TAAGTATACACTAATAAGAATGTGTCAGAGCTCTTA






TAAGAGCTCTGACACATTCTTATTAGTGTATACTTACAATTAAT
4301



ATGGCTACGAAACAGGCTATGGTTGTGTTCCAGTCTCCACTG



GCTGTTGCTGAGGCTTTACCAACCAGAACACTGTA






CAACCATAGCCTGTTTC
4302






GAAACAGGCTATGGTTG
4303





Alzheimer disease
GTGTTCTGGTTGGTAAAGCCTCAGCAACAGCCAGTGGAGACT
4304


Cys410Tyr
GGAACACAACCATAGCCTGTTTCGTAGCCATATTAATTGTAAG


TGT-TAT
TATACACTAATAAGAATGTGTCAGAGCTCTTAATGT






ACATTAAGAGCTCTGACACATTCTTATTAGTGTATACUACAAT
4305



TAATATGGCTACGAAACAGGCTATGGTTGTGTTCCAGTCTCCA



CTGGCTGTTGCTGAGGCTTTACCAACCAGAACAC






CATAGCCTGTTTCGTAG
4306






CTACGAAACAGGCTATG
4307





Alzheimer disease
TGTGAATGTGTGTCTTTCCCATCTTCTCCACAGGGTTTGTGCC
4308


Ala426Pro
TTACATTATTACTCCTTGCCATTTTCAAGAAAGCATTGCCAGCT


tGCC-CCC
CTTCCAATCTCCATCACCTTTGGGCTTGTTTTCT






AGAAAACAAGCCCAAAGGTGATGGAGATTGGAAGAGCTGGCA
4309



ATGCTTTCTTGAAAATGGCAAGGAGTAATAATGTAAGGCACAA



ACCCTGTGGAGAAGATGGGAAAGACACACATTCACA






TACTCCTTGCCATTTTC
4310






GAAAATGGCAAGGAGTA
4311





Alzheimer disease
AGGGTTTGTGCCTTACATTATTACTCCTTGCCAVTTTCAAGAA
4312


Pro436Gln
AGCATTGCCAGCTCTTCCAATCTCCATCACCTTTGGGCTTGTT


CCA-CAA
TTCTACTTTGCCACAGATTATCTTGTACAGCCTTT






AAAAGGCTGTACAAGATAATCTGTGGCAAAGTAGAAAACAAGC
4313



CCAAAGGTGATGGAGATTGGAAGAGCTGGCAATGCTTTCTTG



AAAATGGCAAGGAGTAATAATGTAAGGCACAAACCCT






AGCTCTTCCAATCTCCA
4314






TGGAGATTGGAAGAGCT
4315





Alzheimer disease
CAGGGTTTGTGCCTTACATTATTACTCCTTGCCATTTTCAAGA
4316


Pro436Ser
AAGCATTGCCAGCTCTTCCAATCTCCATCACCTTTGGGCTTGT


tCCA-TCA
TTTCTACTTTGCCACAGATTATCTTGTACAGCCTT






AAGGCTGTACAAGATAATCTGTGGCAAAGTAGAAAACAAGCC
4317



CAAAGGTGATGGAGATTGGAAGAGCTGGCAATGCTTTCTTGA



AAATGGCAAGGAGTAATAATGTAAGGCACAAACCCTG






CAGCTCTTCCAATCTCC
4318






GGAGATTGGAAGAGCTG
4319









EXAMPLE 25
Alzheimer's Disease—Presenilin-2 (PSEN2)

The attached table discloses the correcting oligonucleotide base sequences for the PSEN2 oligonucleotides of the invention.










TABLE 32







PSEN2 Mutations and Genome-Correcting Oligos











ClinicaPhenotype &

SEQ ID



Mutation
Correcting Oligos
NO:













Alzheimer disease
GATGTGGTTTCCCACAGAGAAGCCAGGAGAACGAGGAGGAC
4320



Arg62His
GGTGAGGAGGACCCTGACCGCTATGTCTGTAGTGGGGTTCC


CGC-CAC
CGGGCGGCCGCCAGGCCTGGAGGAAGAGCTGACCCTCAA






TTGAGGGTCAGCTCTTCCTCCAGGCCTGGCGGCCGCCCGGG
4321



AACCCCACTACAGACATAGCGGTCAGGGTCCTCCTCACCGTC



CTCCTCGTTCTCCTGGCTTCTCTGTGGGAAACCACATC






CCCTGACCGCTATGTCT
4322






AGACATAGCGGTCAGGG
4323





Alzheimer disease
GCCTCGAGGAGCAGTCAGGGCCGGGAGCATCAGCCCTTTGC
4324


Thr122Pro
CTTCTCCCTCAGCATCTACACGACATTCACTGAGGACACACC


cACG-CCG
CTCGGTGGGCCAGCGCCTCCTCAACTCCGTGCTGAACA






TGTTCAGCACGGAGTTGAGGAGGCGCTGGCCCACCGAGGGT
4325



GTGTCCTCAGTGAATGTCGTGTAGATGCTGAGGGAGAAGGCA



AAGGGCTGATGCTCCCGGCCCTGACTGCTCCTCGAGGC






GCATCTACACGACATTC
4326






GAATGTCGTGTAGATGC
4327





Alzheimer disease
ACACGCCATTCACTGAGGACACACCCTCGGTGGGCCAGCGC
4328


Asn141Ile
CTCCTCAACTCCGTGCTGAACAGCCTCATCATGATCAGCGTC


AAC-ATC
ATCGTGGTTATGACCATCTTCTTGGTGGTGCTCTACAA






TTGTAGAGCACCACCAAGAAGATGGTCATAACCACGATGACG
4329



CTGATCATGATGAGGGTGTTCAGCACGGAGTTGAGGAGGCG



CTGGCCCACCGAGGGTGTGTCCTCAGTGAATGGCGTGT






CGTGCTGAACACCCTCA
4330






TGAGGGTGTTCAGCACG
4331





Alzheimer disease
CCACTGGAAGGGCCCTCTGGTGCTGCAGCAGGCCTACCTCA
4332


Met239Ile
TCATGATCAGTGCGCTCATGGCCCTAGTGTTCATCAAGTACCT


ATGg-ATA
CCCAGAGTGGTCCGCGTGGGTCATCCTGGGCGCCATC






GATGGCGCCCAGGATGACCCACGCGGACCACTCTGGGAGGT
4333



ACTTGATGAACACTAGGGCCATGAGCGCACTGATCATGATGA



GGTAGGCCTGCTGCAGCACCAGAGGGCCCTTCCAGTGG






GCGCTCATGGCCCTAGT
4334






ACTAGGGCCATGAGCGC
4335





Alzheimer disease
ATCCACTGGAAGGGCCCTCTGGTGCTGCAGCAGGCCTACCT
4336


Met239Val
CATCATGATCAGTGCGCTCATGGCCCTAGTGTTCATCAAGTA


cATG-GTG
CCTCCCAGAGTGGTCCGCGTGGGTCATCCTGGGCGCCA






TGGCGCCCAGGATGACCCACGCGGACCACTCTGGGAGGTAC
4337



TTGATGAACACTAGGGCCATGAGCGCACTGATCATGATGAGG



TAGGCCTGCTGCAGCACCAGAGGGCCCTTCCAGTGGAT






GTGCGCTCATGGCCCTA
4338






TAGGGCCATGAGCGCAC
4339









EXAMPLE 26
Plant Cells

The oligonucleotides of the invention can also be used to repair or direct a mutagenic event in plants and animal cells. Although little information is available on plant mutations amongst natural cultivars, the oligonucleotides of the invention can be used to produce “knock out” mutations by modification of specific amino acid codons to produce stop codons (e.g., a CAA codon specifying Gln can be modified at a specific site to TAA; a MG codon specifying Lys can be modified to UAG at a specific site; and a CGA codon for Arg can be modified to a UGA codon at a specific site). Such base pair changes will terminate the reading frame and produce a defective truncated protein, shortened at the site of the stop codon. Alternatively, frameshift additions or deletions can be directed into the genome at a specific sequence to interrupt the reading frame and produce a garbled downstream protein. Such stop or frameshift mutations can be introduced to determine the effect of knocking out the protein in either plant or animal cells.


All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

Claims
  • 1. A method of optimizing an oligonucleotide for in vitro targeted chromosomal sequence alteration, comprising: (a) Providing a first oligonucleotide and a second oligonucleotide for alteration of a targeted nucleic acid sequence, i) wherein said first oligonucleotide: (1) is a single-stranded nonhairpin oligonucleotide 17-121 nucleotides in length,(2) has an unmodified DNA domain of at least 8 contiguous deoxyribonucleotides,(3) is fully complementary in sequence to the sequence of a first strand of the nucleic acid target but for one or more mismatches as between the sequences of said deoxyribonucleotides domain and its complement on the target nucleic acid first strand, each of said mismatches positioned at least 8 nucleotides from said first oligonucleotide's 5′ and 3′ termini, and(4) has at least one terminal modification selected from the group consisting of: at least one terminal locked nucleic acid (LNA), at least one terminal 2′-O-Me base analog, and at least three terminal phophorothioate linkages, andii) wherein said second oligonucleotide is selected from the group consisting of (1) an oligonucleotide that is fully complementary to the target and lacks the mismatch,(2) a fully modified phosphothiolated oligonucleotide,(3) a fully modified 2′-O-methylated oligonucleotide, and(4) a chimeric double-stranded double hairpin containing RNA and DNA nucleotides, andiii) wherein the targeted nucleic acid sequence alteration is not in human embryonic stem cells;(b) combining the targeted nucleic acid with said first or said second oligonucleotide in the presence of cellular repair proteins;(c) combining the targeted nucleic acid with the other of said first or second oligonucleotide in the presence of cellular repair proteins;(d) quantifying the percentage of target molecules that undergo a sequence alteration event;(e) comparing the efficiency of alteration of said targeted nucleic acid sequence by said first oligonucleotide with the efficiency of alteration of the same targeted nucleic acid sequence by said second oligonucleotide; and(f) repeating steps (a) through (e) two or more times to optimize said first oligonucleotide for in vitro targeted chromosomal sequence alteration.
  • 2. The method of claim 1, wherein said sequence alteration is a substitution of at least one base.
  • 3. The method of claim 1, wherein said sequence alteration is a deletion of at least one base.
  • 4. The method of claim 1, wherein said sequence alteration is an insertion of at least one base.
  • 5. The method of claim 1, wherein the target nucleic acid is cellular chromosomal DNA.
  • 6. The method of claim 1, wherein the target nucleic acid is an artificial chromosome.
  • 7. The method of claim 1, wherein the alteration is produced in a cell.
  • 8. The method of claim 7, wherein said cell is cultured ex vivo.
  • 9. The method of claim 1, wherein the alteration is produced in a cell-free extract.
  • 10. The method of claim 1, wherein said cellular repair proteins are of a cell selected from the group consisting of prokaryotic cells and eukaryotic cells.
  • 11. The method of claim 10, wherein said cell is a prokaryotic cell.
  • 12. The method of claim 11, wherein said prokaryotic cell is a bacterial cell.
  • 13. The method of claim 12, wherein said bacterial cell is an E. coli cell.
  • 14. The method of claim 10, wherein said cell is a eukaryotic cell.
  • 15. The method of claim 14, wherein said eukaryotic cell is a yeast cell, plant cell, human cell, or a mammalian cell.
  • 16. The method of claim 15, wherein said eukaryotic cell is a yeast cell.
  • 17. The method of claim 16, wherein said yeast cell is a Saccharomyces cerevisiae, Ustilago maydis, or Candida albicans cell.
  • 18. The method of claim 15, wherein said eukaryotic cell is a plant cell.
  • 19. The method of claim 15, wherein said eukaryotic cell is a human cell.
  • 20. The method of claim 19, wherein said human cell is selected from the group consisting of liver cell, lung cell, colon cell, cervical cell, kidney cell, epithelial cell, cancer cell, and stem cell.
  • 21. The method of claim 15, wherein said eukaryotic cell is from a mammal.
  • 22. The method of claim 21, wherein said mammal is selected from the group consisting of rodent, mouse, hamster, rat, and monkey.
  • 23. The method of claim 1, wherein said first oligonucleotide is at least 25 nucleotides in length.
  • 24. The method of claim 1, wherein said first oligonucleotide is no more than 74 nucleotides in length.
  • 25. The method of claim 1, wherein said first strand is the nontranscribed strand of the target nucleic acid.
  • 26. The method of claim 1, wherein the sequences of said deoxyribonucleotides domain and of the target nucleic acid first strand are mismatched at a single nucleotide.
  • 27. The method of claim 1, wherein the sequences of said deoxyribonucleotides domain and of its complement on the target nucleic acid first strand are mismatched at two or more nucleotides.
  • 28. The method of claim 1, wherein said at least one terminal modification is at least on 3′ terminal LNA analog.
  • 29. The method of claim 1, wherein said first oligonucleotide has no more than 3 LNA analogs at its 3′ terminus.
  • 30. The method of claim 1, wherein said first oligonucleotide has at least one LNA at its 3′ terminus and at least one LNA at its 5′ terminus.
  • 31. The method of claim 30, wherein said first oligonucleotide has no more than 3 contiguous LNA at each of its 3′ or 5′ termini.
  • 32. The method of claim 1, wherein said at least one terminal modification is at least one 2′-O-methyl ribonucleotides analog at its 3′ terminus.
  • 33. The method of claim 32, wherein said first oligonucleotide has no more than 4 contiguous 2′-O-methyl ribonucleotides analogs.
  • 34. The method of claim 32, wherein said first oligonucleotide has at least one 2′-O-methyl ribonucleotide analog at its 3′ terminus and at least one 2′-O-methyl ribonucleotide analog at its 5′ terminus.
  • 35. The method of claim 34, wherein said first oligonucleotide has no more than 4 contiguous 2′-O-methyl ribonucleotides analogs.
  • 36. The method of claim 1, wherein said at least one terminal modification comprises at least three terminal phosphorothioate linkages.
  • 37. The method of claim 36, wherein said phosphorothioate linkages are at said first oligonucleotide's 3′ terminus.
  • 38. The method of claim 36, wherein said first oligonucleotide comprises no more than 6 contiguous phosphorothioate linkages.
  • 39. The method of claim 1, wherein said second oligonucleotide is fully complementary to the target and lacks the mismatch.
  • 40. The method of claim 1, wherein said second oligonucleotide is a fully modified phosphothiolated oligonucleotide.
  • 41. The method of claim 1, wherein said second oligonucleotide is a fully modified 2′-O-methylated oligonucleotide.
  • 42. The method of claim 1, wherein said second oligonucleotide is a chimeric double-stranded double hairpin containing RNA and DNA nucleotides.
  • 43. A method of optimizing an oligonuoleotide for targeted nucleic acid sequence alteration of a nucleic acid present within selectively enriched cells in vitro, cells in culture, or cell-free extracts, comprising: (a) Providing a first oligonucleotide and a second oligonucleotide for alteration of a targeted nucleic acid sequence, i) wherein said first oligonucleotide: (1) is a single-stranded nonhairpin oligonucleotide 17-121 nucleotides in length,(2) has an unmodified DNA domain of at least 8 contiguous deoxyribonucleotides,(3) is fully complementary in sequence to the sequence of a first strand of the nucleic acid target but for one or more mismatches as between the sequences of said deoxyribonucleotides domain and its complement on the target nucleic acid first strand, each of said mismatches positioned at least 8 nucleotides from said first oligonucleotide's 5′ and 3′ termini, and(4) has at least one terminal modification selected from the group consisting of: at least one terminal locked nucleic acid (LNA), at least one terminal 2′-O-Me base analog, and at least three terminal phophorothioate linkages, andii) wherein said second oligonucleotide is selected from the group consisting of (1) an oligonucleotide that is fully complementary to the target and lacks the mismatch,(2) a fully modified phosphothiolated oligonucleotide,(3) a fully modified 2′-O-methylated oligonucleotide, and(4) a chimeric double-stranded double hairpin containing RNA and DNA nucleotides, andiii) wherein said cultured or selectively enriched cells are not human embryonic stem cells, andiv) wherein said targeted nucleic acid is selected from the group of human genes consisting of: ADA, p53, beta-globin, RB, BRCA1, BRCA2, CFTR, CDKN2A, APC, Factor V, Factor VIII, Factor IX, hemoglobin alpha 1, hemoglobin alpha 2, MLH1, MSH2, MSH6, ApoE, LDL receptor, UGT1, APP, PSEN1, and PSEN2;(b) combining the targeted nucleic acid with said first or said second oligonucleotide in the presence of cellular repair proteins;(c) combining the targeted nucleic acid with the other of said first or said second oligonucleotide in the presence of cellular repair proteins;(d) quantifying the percentage of target molecules that undergo a sequence alteration event;(e) comparing the efficiency of alteration of said targeted nucleic acid sequence by said first oligonucleotide with the efficiency of alteration of the same targeted nucleic acid sequence by said second oligonucleotide; and(f) repeating steps (a) through (e) two or more times to optimize said first oligonucleotide for targeted nucleic acid sequence alteration.
  • 44. A method of optimizing an oligonucleotide for targeted sequence alteration of a nucleic acid present within selectively enriched cells in vitro, cells in culture, or cell-free extracts, comprising: (a) Providing a first oligonucleotide and a second oligonucleotide for alteration of a targeted nucleic acid sequence, i) wherein said first oligonucleotide: (1) is a single-stranded nonhairpin oligonucleotide 17-121 nucleotides in length,(2) has an unmodified DNA domain of at least 8 contiguous deoxyribonucleotides,(3) is fully complementary in sequence to the sequence of a first strand of the nucleic acid target but for one or more mismatches as between the sequences of said deoxyribonucleotides domain and its complement on the target nucleic acid first strand, each of said mismatches positioned at least 8 nucleotides from said first oligonucleotide 's 5′ and 3′ termini, and(4) has at least one terminal modification selected from the group consisting of: at least one terminal locked nucleic acid (LNA), at least one terminal 2′-O-Me base analog, and at least three terminal phophorothioate linkages, andii) wherein said second oligonucleotide is selected from the group consisting of (1) an oligonucleotide that is fully complementary to the target and lacks the mismatch,(2) a fully modified phosphothiolated oligonucleotide,(3) a fully modified 2′-O-methylated oligonucleotide, and(4) a chimeric double-stranded double hairpin containing RNA and DNA nucleotides, andiii) wherein said cultured or selectively enriched cells are not human embryonic stem cells, andiv) wherein said first and second oligonucleotides include the sequence of any one of SEQ ID NOs: 1-4340;(b) combining the targeted nucleic acid with said first or said second oligonucleotide in the presence of cellular repair proteins;(c) combining the targeted nucleic acid with the other of said first or said second oligonucleotide in the presence of cellular repair proteins;(d) quantifying the percentage of target molecules that undergo a sequence alteration event;(e) comparing the efficiency of alteration of said targeted nucleic acid sequence by said first oligonucleotide with the efficiency of alteration of the same targeted nucleic acid sequence by said second oligonucleotide; and(f) repeating steps (a) through (e) two or more times to optimize said first oligonucleotide for targeted sequence alteration of a nucleic acid.
  • 45. The method of claim 44, wherein said first and second oligonucleotides consist of the sequence of any one of SEQ ID NOs: 1-4340.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Patent Application No. PCT/US01/09761, filed Mar. 27, 2001, which designated the United States and which claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Application Nos. 60/244,989, filed Oct. 30, 2000; 60/208,538, filed Jun. 1, 2000; 60/192,176, filed Mar. 27, 2000; and 60/192,179, filed Mar. 27, 2000.

STATEMENT REGARDING FEDERALLY FUNDED RESEARCH

This invention was made in the course of research under N.I.H. grants R01 HL58563-05 and R01 DK56134-03. The government has certain rights in this invention.

US Referenced Citations (9)
Number Name Date Kind
5565350 Kmiec Oct 1996 A
5731181 Kmiec Mar 1998 A
5801154 Baracchini Sep 1998 A
5912340 Kutyavin Jun 1999 A
5955363 Lewis Sep 1999 A
6004804 Kumar Dec 1999 A
6136601 Meyer Oct 2000 A
6271360 Metz Aug 2001 B1
20020119570 Yoon Aug 2002 A1
Foreign Referenced Citations (7)
Number Date Country
WO 9914226 Mar 1999 WO
WO 9958702 Nov 1999 WO
WO 0056748 Sep 2000 WO
WO 0066604 Nov 2000 WO
WO 0115740 Mar 2001 WO
WO 0192512 Dec 2001 WO
WO 0226967 Apr 2002 WO
Related Publications (1)
Number Date Country
20040014057 A1 Jan 2004 US
Provisional Applications (4)
Number Date Country
60244989 Oct 2000 US
60208538 Jun 2000 US
60192179 Mar 2000 US
60192176 Mar 2000 US
Continuations (1)
Number Date Country
Parent PCT/US01/09761 Mar 2001 US
Child 10261185 US